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RESUMO

ROCHA, F. F. Métodos mistos multiescala aprimorados para escoamentos bifásicos em
meios porosos de alto contraste. 2020. 150 p. Tese (Doutorado em Ciências – Ciências de
Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2020.

Esta tese propõe novos métodos para a solução numérica de escoamentos bifásicos em meios
porosos de alto contraste, típicos em reservatórios de petróleo. Utiliza-se uma técnica de
segregação de operadores, onde a saturação de uma das fases e o campo de velocidades são
atualizados sequencialmente. Nosso objetivo é aproximar o campo de velocidades através de
métodos multiescala, permitindo que a solução global seja calculada em malhas grosseiras
(escala grossa), enquanto funções de base detalhadas são definidas localmente (geralmente em
paralelo) em uma malha mais fina (escala fina). Os métodos aqui desenvolvidos são baseados
no Multiscale Robin Coupled Method (MRCM), um método de decomposição de domínio que
generaliza outros métodos mistos multiescala da literatura e adiciona grande flexibilidade à
escolha dos espaços de interface e às condições de contorno do acoplamento das soluções
locais. Identificamos que o acoplamento de subdomínios através da imposição de uma pressão
contínua (respectivamente, fluxos normais) é a melhor estratégia em termos de precisão para
escoamentos bifásicos na presença de canais (resp., regiões) de alta (resp., baixa) permeabilidade.
Assim, introduzimos uma técnica adaptativa para definir o parâmetro algorítmico de Robin do
MRCM, que controla a importância relativa das condições de contorno de Dirichlet e Neumann
no acoplamento dos subdomínios. A nova estratégia apresenta soluções precisas em campos de
permeabilidade desafiadores. Essa técnica é então utilizada para melhorar a precisão do MRCM,
considerando escolhas alternativas para os espaços de interface que não sejam os clássicos
polinômios, uma vez que esses não são adequados para representar estruturas de alto contraste
como canais de alta permeabilidade e barreiras (baixa permeabilidade). Introduzimos novos
espaços de interface, baseados na física, para lidar com campos de permeabilidade contendo
simultaneamente canais altamente permeáveis e barreiras, acomodadas respectivamente, pelos
espaços de pressão e fluxo. Mostramos que os espaços de interface propostos produzem soluções
significativamente mais precisas do que espaços polinomiais para problemas com coeficientes de
permeabilidade de alto contraste. Diferentes técnicas para aprimorar a solução de escoamentos
bifásicos em termos de eficiência computacional são estudadas. Formulamos o Multiscale

Perturbation Method for Two-Phase Flows (MPM-2P) para acelerar a solução de escoamentos
bifásicos. Neste contexto, apresentamos um método de segregação de operadores modificado,
onde reutilizamos funções de base calculadas pelo MRCM em um tempo anterior da simulação
ao invés de calcular atualizações completas das soluções locais. Mostramos que o MPM-2P reduz
drasticamente o custo computacional das simulações de escoamentos bifásicos, sem apresentar
perdas de precisão. O MRCM também foi estudado em um esquema sequencial implícito



para escoamentos bifásicos, que possibilita passos de tempo arbitrariamente grandes quando
comparado à métodos explícitos no tempo, melhorando a eficiência da simulação. Mostramos que
o MRCM produz aproximações precisas e robustas quando combinado com diferentes esquemas
para leis de conservação hiperbólicas, incluindo técnicas implícitas. Nossas simulações de
escoamentos bifásicos mostram que o MRCM apresenta uma precisão sem precedentes para
problemas realistas quando comparado com alguns métodos multiescala da literatura. Além
disso, o MRCM pode tirar proveito de supercomputadores de última geração para simular
eficientemente escoamentos bifásicos em meios porosos de alto contraste.

Palavras-chave: Métodos mistos multiescala, Escoamentos bifásicos, Meios porosos de alto
contraste, Multiscale Robin Coupled Method, Simulação de reservatórios.



ABSTRACT

ROCHA, F. F. Enhanced multiscale mixed methods for two-phase flows in high-contrast
porous media. 2020. 150 p. Tese (Doutorado em Ciências – Ciências de Computação e
Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2020.

This thesis proposes new methods for the numerical solution of two-phase flows in high-contrast
porous media typical of petroleum reservoirs. An operator splitting strategy is used, where the
saturation of one of the phases and the velocity field are updated sequentially. We focus on
approximating the velocity field by multiscale methods, which allow for the global solution to
be computed on coarse meshes (large scale), while detailed basis functions are defined locally
(usually in parallel) in a much finer grid (small scale). The methods developed here are based
on the Multiscale Robin Coupled Method (MRCM), a domain decomposition method that
generalizes other well-established multiscale mixed methods and adds great flexibility to the
choice of interface spaces as well as in the boundary conditions for coupling of local solutions.
We find that the coupling of nearest neighbor subdomains through the imposition of a continuous
pressure (respectively, normal fluxes) is the best strategy in terms of accuracy to approximate
two-phase flows in the presence of high (resp., low) permeability channels (resp., regions).
Thus, we introduce a new adaptivity strategy for setting the Robin algorithmic parameter of the
MRCM, that controls the relative importance of Dirichlet and Neumann boundary conditions in
the coupling of subdomains. The new strategy presents accurate approximations in challenging,
high-contrast permeability fields. Then, it is used to improve the accuracy of the MRCM by
considering alternative choices for the interface spaces other than the classical polynomials since
they are not optimal for high-contrast features such as high permeability channels and barriers
(low permeability). We introduce new interface spaces, which are based on physics, to deal
with permeability fields in the simultaneous presence of high permeability channels and barriers,
accommodated respectively, by the pressure and flux spaces. We show that the proposed interface
spaces produce solutions significantly more accurate than polynomial spaces for problems with
high-contrast permeability coefficients. We investigate different techniques to enhance the
approximation of two-phase flows in terms of computational efficiency. We formulate a new
procedure, the Multiscale Perturbation Method for Two-Phase Flows (MPM-2P), to speed-up
the solution of two-phase flows. A modified operator splitting method is presented, where we
replace full updates of local solutions by reusing basis functions computed by the MRCM at an
earlier time of the simulation. We show that the MPM-2P reduces drastically the computational
cost of two-phase flow simulations, without loss of accuracy. The MRCM is also investigated
in a sequential implicit scheme for two-phase flows, that allows for the use of arbitrarily large
time steps when compared to explicit time integration methods, improving the efficiency of
the simulation. We show that the MRCM produces accurate and robust approximations when



combined with different hyperbolic solvers, including implicit techniques. Our numerical
simulations of two-phase flows with the MRCM present an unprecedented accuracy for realistic
problems when compared to some standard multiscale methods. Moreover, the MRCM can
take advantage of state-of-the-art supercomputers to efficiently simulate two-phase flows in
high-contrast porous media.

Keywords: Multiscale mixed methods, Two-phase flows, High-contrast porous media, Multi-
scale Robin Coupled Method, Reservoir simulation.
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CHAPTER

1
INTRODUCTION

Petroleum reservoirs are sedimentary rock formations that contain several void spaces
between their mineral grains. The void spaces establish interconnected pore networks that can
store and transmit fluids derived from hydrocarbons, as oil (AZIZ; SETTARI, 1979).

Techniques to displace the oil towards production wells are usually applied to extract
it from the reservoirs (EWING, 1983; LIE, 2019). The natural type of oil recover, referred
to primary recovery, consists of the displacement of the oil by drilling through the naturally
pressurized reservoir. However, this process can leave a significant amount of oil into the reservoir.
The called secondary recovery is used to recover part of the remaining oil through the injection
of a fluid (typically water) into injection wells while oil is produced through production wells.
Nevertheless, some oil is left into the reservoir even with this strategy. In order to recover more
of the residual oil, tertiary recovery techniques, that involve chemical and thermal effects are
considered. These techniques aim to make the oil flow more readily, for example through the
injection of solvent, gases, or other chemical species to mix with the oil, the injection of polymers
to increase the water viscosity, and the use of thermal effects to reduce the oil viscosity. The
different recovery methods are considered by several computational models for multiphase flows
in porous media to estimate production aspects (CHEN; HUAN; MA, 2006; LIE, 2019).

The simulation models of petroleum reservoirs deal with highly heterogeneous perme-
ability fields with multiple scales and high-contrast. The representation of the solution must
capture the heterogeneity of the porous medium. Depending on the level of details required
and the size of the problem, the reservoir characterization can lead to a model with several
billion cells and thousands of time steps, making the numerical simulations extremely expensive
(CHEN; HUAN; MA, 2006).

The multiscale methods have been introduced to exploit the multiscale structure of the
problem and provide efficient approximations at a reduced computational cost by decomposing
large computational tasks in a family of smaller problems. They allow the global solution to be
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computed in coarse meshes (large scale), while detailed basis functions are produced locally in a
much finer grid (small scale). The local problems can be solved simultaneously in state-of-the-art
parallel machines making possible the simulation of huge problems as opposed to traditional
simulation techniques developed for serial calculations that cannot handle effectively problems
of the same magnitude. These methods have received considerable attention from several groups.
See (KIPPE; AARNES; LIE, 2008) for a very comprehensive comparison of procedures of this
type.

Typical models for multiphase flows in porous media include an elliptic equation for
pressure and velocity coupled with a hyperbolic conservation law for the saturation transport
problem (PEACEMAN, 2000; EWING, 1983). Several multiscale methods have been proposed
to approximate the velocity fields whereas different schemes have been used for the transport
equation. In this thesis, we investigate the simulation of two-phase (oil-water) flows using
multiscale methods for the elliptic equation and finite volume schemes to approximate the
transport problem.

In section 1.1, we present a literature review on the multiscale methods related to the
one that we investigate, namely the Multiscale Robin Coupled Method (GUIRALDELLO et al.,
2018). Then, in section 1.2 we show how the thesis is organized.

1.1 Multiscale methods

The past years have seen remarkable advances in the multiscale methods research for
modeling of flows in heterogeneous porous media. Multiscale methods have been developed in
the framework of finite volume (JENNY; LEE; TCHELEPI, 2003; JENNY; LEE; TCHELEPI,
2005; WANG; HAJIBEYGI; TCHELEPI, 2016; CORTINOVIS; JENNY, 2017), finite element
(HOU; WU, 1997; AARNES; HOU, 2002; EFENDIEV; GALVIS; HOU, 2013), and mixed
finite element methods (CHEN; HOU, 2003; AARNES, 2006; ARBOGAST et al., 2007a;
HARDER; PAREDES; VALENTIN, 2013; FRANCISCO et al., 2014; CHUNG; EFENDIEV;
LEE, 2015). Many applications to two-phase flows can be found, for example, in (EFENDIEV
et al., 2006; AARNES; KROGSTAD; LIE, 2006; GANIS et al., 2014c; MØYNER; LIE, 2016;
PRESHO; GALVIS, 2016; DURÁN et al., 2020) and references therein. The coupling of the
multiscale flow and transport problem has already been treated by operator splitting techniques
(DOUGLAS; FURTADO; PEREIRA, 1997; FURTADO et al., 2011; PRESHO; HILL, 2020)
and implicit formulations (JENNY; LEE; TCHELEPI, 2006; JIANG; TCHELEPI, 2019; GANIS
et al., 2014c).

In this thesis, we focus on approximating two-phase flows using multiscale mixed
finite element methods. A literature review on this class of multiscale methods can be found in
subsection 1.1.1 followed by subsection 1.1.2, where we recall the main features of the multiscale
method that we are interested in.
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1.1.1 Developments on multiscale mixed finite element methods ap-
plied to flows in heterogeneous porous media

To show the advances in the multiscale mixed finite element methods research area
we present a list of the articles that apply them to flows in porous media. The articles can be
classified into the following five groups according to the multiscale procedure:

1. Multiscale Mixed Finite Element Method (MsMFEM);

2. Multiscale Mortar Mixed Finite Element Method (MMMFEM);

3. Multiscale Hybrid-Mixed Finite Element Method (MHM);

4. Multiscale mixed methods based on Robin interface conditions: the Multiscale Mixed
Method (MuMM) and the Multiscale Robin Coupled Method (MRCM);

5. Mixed Generalized Multiscale Finite Element Method (mixed-GMsFEM).

A summary of each group is given below.

The Multiscale Finite Element Method (MsFEM) (HOU; WU, 1997) and the Multiscale
Mixed Finite Element Method (MsMFEM) (CHEN; HOU, 2003) were developed for solving
second order elliptic equations with oscillating coefficients. However, the original MsFEM
is not mass conservative, and the MsMFEM produces a globally (but not necessarily locally)
mass conservative velocity field. To deal with this issue a modified MsMFEM that produces
a velocity field (globally and locally mass conservative) was proposed (AARNES, 2004). The
modified MsMFEM was later combined with streamline methods (AARNES; KIPPE; LIE,
2005); extended to nonuniform, unstructured coarse grids (AARNES; KROGSTAD; LIE, 2006);
and used in adaptive simulations (AARNES; EFENDIEV, 2006). Another extension of the
MsMFEM considers the corner-point grid geometry using a mimetic discretization (AARNES;
KROGSTAD; LIE, 2008), which was also applied in unstructured grids (AARNES; EFENDIEV,
2008b) and used as a basis for the development of an adaptive local-global method (ALPAK;
PAL; LIE, 2012). The MsMFEM was applied to a coupled wellbore-reservoir flow model
(KROGSTAD; DURLOFSKY, 2007); three-phase black oil problems (KROGSTAD et al.,
2009); and compressible flows (KROGSTAD, 2011; KROGSTAD; LIE; SKAFLESTAD, 2012).
It was considered in an adjoint formulation that uses coarse-grid mappings for the optimization
of waterflooding computations (KROGSTAD; HAUGE; GULBRANSEN, 2011), and also used
to speed up the computations within multilevel Monte Carlo techniques (EFENDIEV; ILIEV;
KRONSBEIN, 2013). Another mixed framework for the MsMFEM that uses limited global
information from the heterogeneities was presented by (AARNES; EFENDIEV; JIANG, 2008)
and (AARNES et al., 2010), the last for unstructured grids. The MsMFEM is also closely
related to the sub-grid upscaling techniques (ARBOGAST; BOYD, 2006; JIANG; EFENDIEV;
MISHEV, 2010; ARBOGAST, 2011). In (JIANG; EFENDIEV; MISHEV, 2010), for example,



36 Chapter 1. Introduction

the authors investigate the use of the approximated global information by computing a partial
upscaling. More improvements for the MsMFEM include the development of the expanded
MsMFEM (JIANG; COPELAND; MOULTON, 2012); the extension to a coarse grid with
subdivided faces (LIE et al., 2014); and the dynamically adaptive computation of fluid transport
equations in highly heterogeneous porous media (ZHANG et al., 2017). Other studies on the
MsMFEM comprise the validation for two-phase flows in challenging and geologically realistic
corner-point grids (PAL et al., 2015); its performance investigation in parallel simulations of
two-phase flows (PUSCAS; ENCHÉRY; DESROZIERS, 2018); some numerical tests using
the MATLAB Reservoir Simulation Toolbox (MRST) (ABDULLAH et al., 2019); and the
simulation of gas flow in shale porous media (ZHANG et al., 2020).

Next, we present a classification of the articles concerning the type of flow (single-phase
or multiphase/black-oil) and porous medium (low-contrast, high-contrast, and fractured). The
difference between the articles that are classified for a medium of low or high-contrast considers
only if this information was highlighted by the authors in the articles. It means that the objective
of applying the method for highly heterogeneous media was pointed out by the authors in
the articles of the high-contrast group, while no mention of it was made in the articles of the
low-contrast category.

Chart 1 – Classification of the articles related to the MsMFEM.

Flow Medium Articles

Single-
phase

Low-
contrast (ARBOGAST; BOYD, 2006)

High-
contrast (ARBOGAST, 2011; LIE et al., 2014)

Fractured (ZHANG et al., 2020)

Multi-
phase

or
black-

oil

Low-
contrast

(AARNES, 2004; AARNES; KIPPE; LIE, 2005; AARNES; EFENDIEV, 2006;
KROGSTAD; DURLOFSKY, 2007; AARNES; EFENDIEV, 2008b; AARNES;
EFENDIEV; JIANG, 2008; KROGSTAD et al., 2009; JIANG; EFENDIEV;
MISHEV, 2010; KROGSTAD; HAUGE; GULBRANSEN, 2011; EFENDIEV;
ILIEV; KRONSBEIN, 2013; PUSCAS; ENCHÉRY; DESROZIERS, 2018;
ABDULLAH et al., 2019)

High-
contrast

(CHEN; HOU, 2003; AARNES; KROGSTAD; LIE, 2006; AARNES;
KROGSTAD; LIE, 2008; AARNES et al., 2010; KROGSTAD, 2011; AL-
PAK; PAL; LIE, 2012; KROGSTAD; LIE; SKAFLESTAD, 2012; JIANG;
COPELAND; MOULTON, 2012; PAL et al., 2015; ZHANG et al., 2017)

Source: Research data.

The Multiscale Mortar Mixed Finite Element Method (MMMFEM) (ARBOGAST et al.,
2007b) was introduced as a more flexible formulation to the existing multiscale finite element
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methods. This approach imposes the continuity of the flux via a mortar finite element space on
a coarse grid scale. A computationally efficient implementation for the method was proposed
by defining a multiscale flux basis (GANIS; YOTOV, 2009). The MMMFEM was applied
to slightly compressible Darcy flows (KIM et al., 2007), and combined with the multipoint
flux mixed finite element method (WHEELER; XUE; YOTOV, 2012). The framework of the
MMMFEM was considered in (GANIS et al., 2012) to introduce an approach for preconditioning
systems arising in multiphase flows, where a global nonlinear interface problem was solved. A
linearization of the global system in both subdomain and interface variables simultaneously to
yield a single Newton iteration was addressed to the single-phase slightly compressible flows
model (GANIS et al., 2014a). Then, the algorithm was extended to fully-implicit two-phase flows
in three dimensions considering a porous medium with capillarity, gravity, and compressibility
(GANIS et al., 2014c). Afterward, an efficient parallel two-stage preconditioner using the linear
system obtained as a result of the global approach was proposed (GANIS et al., 2014b). The
multiscale mixed finite element space based on homogenization theory to avoid the problems
with anisotropy (ARBOGAST, 2011) was adapted to a multiscale mortar space that incorporates
local information from homogenization (ARBOGAST; XIAO, 2013). These spaces were firstly
tested with a formally first order mortar space and then a formally second-order mortar space was
considered (ARBOGAST; TAO; XIAO, 2013). Other developments on the MMMFEM include a
general framework for a posteriori error estimation in the multiscale, multinumerics, and mortar
coupling (PENCHEVA et al., 2013); a flux basis algorithm developed for the Stokes–Darcy
flow problems (GANIS et al., 2017); the unique solvability and optimal convergence error for
nonlinear elliptic problems, besides the prove of quadratic convergence for the Newton’s method
to solve the nonlinear algebraic system (ARSHAD; PARK; SHIN, 2018); a local-global mortar
multiscale space with basis functions that can capture global information (FU; CHUNG, 2019);
and the multiscale mortar expanded mixed method (ARSHAD; PARK, 2020). In Chart 2 we
show the classification of the articles related to the MMMFEM.

The Multiscale Hybrid-Mixed Finite Element Method (MHM) for solving the Darcy
equation was presented by (HARDER; PAREDES; VALENTIN, 2013). This method relaxes
the continuity of the pressure to a coarse grid while assuring the strong continuity of the normal
component of flux in a fine grid. An analysis of the MHM was presented (ARAYA et al.,
2013), providing both a priori and a posteriori error estimates and the proof of existence and
uniqueness of a solution. An important extension of the procedure was presented in (HARDER;
PAREDES; VALENTIN, 2015), where the authors consider the reaction-advection-diffusion
equation. Then, a more general form of the method was explored in (MADUREIRA, 2015), where
a connection between a dual hybrid formulation and the multiscale finite element methods was
presented. An abstract setting for the construction and analysis of the MHM with emphasis on the
general properties of the approximations generated by solving the local problems approximately
was added in (HARDER; VALENTIN, 2016). The uniform convergence of the MHM for
elliptic problems with rough periodic coefficients was also addressed (PAREDES; VALENTIN;
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Chart 2 – Classification of the articles related to the MMMFEM.

Flow Medium Articles

Single-
phase

Low-
contrast

(KIM et al., 2007; GANIS; YOTOV, 2009; ARBOGAST; XIAO, 2013;
PENCHEVA et al., 2013; GANIS et al., 2014a; ARSHAD; PARK; SHIN,
2018; ARSHAD; PARK, 2020)

High-
contrast (WHEELER; XUE; YOTOV, 2012; ARBOGAST; TAO; XIAO, 2013)

Fractured (GANIS et al., 2017)

Multi-
phase

or
black-

oil

Low-
contrast (ARBOGAST et al., 2007b)

High-
contrast

(GANIS et al., 2012; GANIS et al., 2014b; GANIS et al., 2014c; FU; CHUNG,
2019)

Source: Research data.

VERSIEUX, 2017). High-performance computing simulations considering different simulator
prototypes have been explored to evaluate the MHM (GOMES et al., 2017). Recently, a variant
for the MHM that considers a full mixed formulation was developed (DURÁN et al., 2019). In
the new formulation, mixed finite elements were considered at the local problems stage, instead
of continuous finite elements as used in the previous works. The MHM was also combined
with discrete fracture models by (DEVLOO; TENG; ZHANG, 2019). More extensions of the
MHM formulation include the Stokes and Brinkman equations (ARAYA et al., 2017); general
non-conforming polygonal meshes (BARRENECHEA et al., 2020); and the two-phase flows
problem (DURÁN et al., 2020). We remark that the MHM has also been used in other types
of applications as the Maxwell equations, Helmholtz equation, and linear elasticity models. In
Chart 3 we present the classification of the cited articles.

Multiscale mixed methods based on Robin interface conditions have received consider-
able attention. We mention the Multiscale Mixed Method (MuMM) (FRANCISCO et al., 2014),
which was developed to approximate the solution of elliptic problems with high contrast in their
coefficients. The MuMM is based on a nonoverlapping iterative domain decomposition for mixed
finite elements (DOUGLAS et al., 1993). This procedure has been a basis for some improvements
on multiscale methods. For example, a recursive formulation to replace multiscale global inter-
face problems by linear combinations of the local subdomain solutions (AKBARI et al., 2019),
and the development of the Multiscale Perturbation Method (MPM) (ALSADIG et al., 2020),
a novel procedure to speed-up the parallel numerical solution of multiphase flow problems. A
new multiscale method based on the MuMM has been introduced: the Multiscale Robin Coupled
Method (MRCM) (GUIRALDELLO et al., 2018). The MRCM generalizes the MMMFEM and
MHM, which are the extreme cases for the Robin boundary conditions of subdomain coupling.
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Chart 3 – Classification of the articles related to the MHM.

Flow Medium Articles

Single-
phase

Low-
contrast

(PAREDES; VALENTIN; VERSIEUX, 2017; MADUREIRA, 2015; DURÁN
et al., 2019)

High-
contrast

(HARDER; PAREDES; VALENTIN, 2013; ARAYA et al., 2013; HARDER;
PAREDES; VALENTIN, 2015; HARDER; VALENTIN, 2016; GOMES et al.,
2017; ARAYA et al., 2017; BARRENECHEA et al., 2020)

Fractured (DEVLOO; TENG; ZHANG, 2019)

Multi-
phase

or
black-

oil

Low-
contrast

(DURÁN et al., 2020)

Source: Research data.

This method adds great flexibility to the choice of independent spaces on the skeleton of the
decomposition, corresponding to interface pressures and fluxes. In (GUIRALDELLO et al.,
2019) two types of interface spaces for the MRCM were compared: piecewise polynomial spaces
and informed spaces, the latter obtained from sets of snapshots by dimensionality reduction. In
(GUIRALDELLO et al., 2020), the MRCM was used to assess the applicability of new post-
processing procedures to recover local conservation of velocity fields produced by multiscale
approximations. Later, the MRCM was extended to the approximation of two-phase flows in
highly heterogeneous porous media (ROCHA et al., 2020b), where a concept of adaptivity for
the procedure was introduced. The most recent development is the introduction of physics-based
interface spaces for multiscale mixed methods (ROCHA et al., 2020a). A classification of the
articles concerning multiscale mixed methods based on Robin interface conditions can be found
in Chart 4.

Chart 4 – Classification of the articles concerning multiscale mixed methods based on Robin interface
conditions.

Flow Medium Articles

Single-
phase

High-
contrast

(FRANCISCO et al., 2014; GUIRALDELLO et al., 2018; GUIRALDELLO et
al., 2019; AKBARI et al., 2019; GUIRALDELLO et al., 2020; ALSADIG et
al., 2020)

Multi-
phase

or
black-

oil

High-
contrast (ROCHA et al., 2020b)

Fractured (ROCHA et al., 2020a)

Source: Research data.
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The Generalized Multiscale Finite Element Method (GMsFEM) (EFENDIEV; GALVIS;
HOU, 2013) is another approach based on finite element methods that has been extended to
the mixed context (CHUNG; EFENDIEV; LEE, 2015). The main idea of the GMsFEM is
to divide the computation into an offline stage to construct a snapshot space and an online
stage for computing the multiscale functions based on a spectral decomposition of the offline
space. Adaptive offline and online mixed strategies have been developed to construct the basis
function spaces (CHAN; CHUNG; EFENDIEV, 2016; CHUNG; EFENDIEV; HOU, 2016).
An enriched multiscale mortar space approach was obtained based on the constructions of
local multiscale basis functions by following the framework of the GMsFEM (CHUNG; FU;
YANG, 2016). Then, the GMsFEM was extended to the mortar mixed case (YANG; CHUNG;
FU, 2018), where an online basis enrichment computed using residuals with the mortar mixed
finite element method and oversampling technique was proposed. Extensions of the mixed
GMsFEM to adaptive online techniques include basis enrichment considering oversampling
(YANG; FU; CHUNG, 2020) and the constraint energy minimizing (CHUNG; PUN, 2019).
The concept of energy minimizing snapshot was also investigated in (CALO et al., 2016;
CHUNG; EFENDIEV; LEUNG, 2018). Furthermore, this concept was used together with
oversampling as a general strategy for constructing the multiscale basis functions (CHUNG;
EFENDIEV; LEUNG, 2019). The mixed GMsFEM has been applied to perforated domains
(CHUNG; LEUNG; VASILYEVA, 2016) and the black oil model problem (SINGH; LEUNG;
WHEELER, 2019). Other developments include the construction of multiscale basis functions
based on least-squares (CHEN; CHUNG; JIANG, 2016); the goal-oriented adaptivity with
different error indicators (CHUNG; POLLOCK; PUN, 2017); a two-grid preconditioner with an
adaptive coarse space for flow simulations in highly heterogeneous media (YANG; FU; CHUNG,
2019); an enrichment for pressure multiscale basis functions (CHEN et al., 2019); an extension
to the Darcy-Forchheimer model (SPIRIDONOV et al., 2019); and an application to Bayesian
inverse problem of multi-term time fractional diffusion models (SONG; JIANG; ZHENG, 2020).
In Chart 5 we present a classification of the above referred articles.

There are multiscale mixed methods that are derived from the variational multiscale
approach (HUGHES, 1995; HUGHES et al., 1998), for example (NAKSHATRALA et al., 2006;
JUANES; DUB, 2008; LARSON; MÅLQVIST, 2009; MÅLQVIST, 2011). Other developments
on multiscale mixed methods include a proposed approach based on a localized orthogonal
decomposition of Raviart-Thomas finite element spaces (MÅLQVIST; PETERSEIM, 2014),
and the use of multiscale mixed methods in domain decomposition preconditioners problems
(XIE; XU, 2019). Several applications of the different multiscale mixed methods are available
in the literature. The use of stochastic and random porous media, for example, can be found
in (WHEELER; WILDEY; YOTOV, 2011; AMBARTSUMYAN et al., 2019) for single-phase
flows and (AARNES; EFENDIEV, 2008a; JIANG; MISHEV; LI, 2010; MA; ZABARAS, 2011;
WEI et al., 2014; JIANG; MOULTON; WEI, 2014; JIANG; LI, 2017) for the multiphase case.
More applications to fractured reservoirs have been addressed by (GULBRANSEN; HAUGE;
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Chart 5 – Classification of the articles related to the GMsFEM.

Flow Medium Articles

Single-
phase

Low-
contrast (SONG; JIANG; ZHENG, 2020)

High-
contrast

(CALO et al., 2016; CHAN; CHUNG; EFENDIEV, 2016; CHUNG; FU;
YANG, 2016; CHUNG; LEUNG; VASILYEVA, 2016; CHEN; CHUNG;
JIANG, 2016; CHUNG; POLLOCK; PUN, 2017; CHUNG; PUN, 2019;
CHUNG; EFENDIEV; LEUNG, 2018; CHUNG; EFENDIEV; LEUNG, 2019;
SPIRIDONOV et al., 2019)

Multi-
phase

or
black-

oil

High-
contrast

(CHUNG; EFENDIEV; LEE, 2015; YANG; CHUNG; FU, 2018; YANG; FU;
CHUNG, 2020; SINGH; LEUNG; WHEELER, 2019; YANG; FU; CHUNG,
2019)

Fractured (CHUNG; EFENDIEV; HOU, 2016; CHEN et al., 2019)

Source: Research data.

LIE, 2010; ZHANG et al., 2016; SPIRIDONOV; VASILYEVA, 2018; AHMED; FUMAGALLI;
BUDIŠA, 2019) (for single-phase flows) and (NATVIG et al., 2011; ZHANG et al., 2017) (for
multiphase flows).

One can note that it is possible to find several applications of the multiscale mixed
finite element methods. This class of methods provides significant advances in the modeling
of multiphase flow and transport problems in heterogeneous porous media. Another review on
multiscale mixed methods for Darcy flows can be found in (ARBOGAST, 2012).

1.1.2 The Multiscale Robin Coupled Method

We are interested on studying the Multiscale Robin Coupled Method (GUIRALDELLO
et al., 2018; GUIRALDELLO et al., 2019), which is based on the domain decomposition
described in (DOUGLAS et al., 1993) and on the MuMM (FRANCISCO et al., 2014). The
MRCM formulation can take advantage of parallel computations with a computational cost
comparable to existing procedures and producing more accurate solutions than some standard
multiscale mixed methods.

Different strategies to the calculation of the basis functions are adopted by the distinct
multiscale methods. The MRCM allows for the independent choice of the pressure and flux
interface spaces through the imposition of Robin boundary conditions. It can be seen as a
generalization of the MMMFEM (ARBOGAST et al., 2007a; GANIS; YOTOV, 2009) and
the MHM (HARDER; PAREDES; VALENTIN, 2013; ARAYA et al., 2013), which consider
respectively, pressure and flux interface spaces. We expect to take advantage of the flexibility of
the MRCM to improve its accuracy on simulating two-phase flows.

The first study on the MRCM for two-phase flows (ROCHA et al., 2020b) has shown that
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its accuracy compared to other popular methods for single-phase flows is also observed for the
two-phase case. In the referred work, we find that the coupling of adjacent subdomains through
the imposition of continuous pressure is the best strategy to approximate two-phase flows in
the presence of high permeability channels. On the other hand, the coupling of subdomains
through the imposition of continuous normal components of fluxes is an adequate strategy to
handle low permeability regions. Thus, we introduced an adaptivity strategy for setting the Robin
algorithmic parameter of the MRCM according to the permeability variations. With this new
strategy one can control the relative importance of Dirichlet and Neumann boundary conditions
in the coupling of subdomains as a function of the permeability field.

Realistic oil reservoirs contain features as channels/fractures and barriers that are chal-
lenging for the multiscale simulation. It is well known that classic multiscale interface spaces as
the polynomial are not optimal for the high contrast, channelized permeability fields (CHUNG;
EFENDIEV; LI, 2014; CHUNG; FU; YANG, 2016; AARNES; KROGSTAD; LIE, 2006;
MØYNER; LIE, 2016; CORTINOVIS; JENNY, 2017; GUIRALDELLO et al., 2019). We
investigate alternative choices for the interface spaces of the MRCM based on the geometry
of the heterogeneities, especially when they are relatively large as happens in fractured karst
reservoirs (BAOMIN; JINGJIANG, 2009; POPOV et al., 2009; HUANG; YAO; WANG, 2013;
LOPES et al., 2019). We proposed new interface spaces to capture the large scale features of the
channelized structures (ROCHA et al., 2020a). The pressure space is designed to accommodate
channels whereas the flux space is built to accommodate barriers. The adaptivity of the MRCM
is used to automatically select the appropriate parameters at each location.

In order to enhance the approximation of two-phase flows we introduce a new procedure,
the Multiscale Perturbation Method for Two-Phase Flows (MPM-2P), which combines the
MRCM with the recently proposed Multiscale Perturbation Method (MPM) (ALSADIG et

al., 2020). The MPM is a procedure based on classical perturbation theory that has been
developed to speed-up the parallel (multi-core) numerical solution of multiphase flow problems.
In (ALSADIG et al., 2020), the MPM was used to approximate the velocity field by reusing
multiscale basis functions computed for a distinct pressure equation (with different, but closely
related coefficients), providing that the solutions of the two elliptic equations are associated. We
formulate the MPM-2P, where we replace a full update of local solutions by reusing multiscale
basis functions that are computed by the MRCM at an earlier time of the simulation. One can
replace hundreds of fully updated multiscale solutions by inexpensive MPM-2P approximations
without loss of accuracy.

In this thesis we consider finite volume schemes to approximate the transport of sat-
uration. The MRCM can be combined with any hyperbolic solver. In most of our numerical
experiments we use a classic operator splitting strategy (DOUGLAS; EWING; WHEELER,
1983; DOUGLAS; FURTADO; PEREIRA, 1997; DOUGLAS; PEREIRA; YEH, 2000), where
the saturation (approximated by an explicit finite volume scheme) and the velocity are updated
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sequentially. The use of implicit techniques is another possibility for the approximation of the
transport problem. Thus, we propose to combine the MRCM with an implicit scheme, in a
sequential fashion (WATTS, 1986). The new approach allows for the use of arbitrarily large time
steps when compared to explicit time integration methods. Our numerical experiments show that
the MRCM produces accurate and robust results for the simulation of two-phase flows when
combined with different hyperbolic solvers.

1.2 Outline
This thesis is organized as follows:

• Chapter 2 introduces the problem of the two-phase flows. We present the governing
equations and the numerical approximation, where we show the formulations of the
methods that we consider.

• Chapter 3 presents the new adaptivity concept for the MRCM, as well as its numerical
simulation results for two-phase flows.

• Chapter 4 describes the new interface spaces based on physics to deal with high-contrast
channelized structures. We show how the physics-based interface spaces are built and
present our numerical experiments for single and two-phase flows.

• Chapter 5 exhibits the formulation of the MPM-2P and the numerical tests performed.

• Chapter 6 details the sequential implicit solver and discusses the numerical results obtained
by its combination with the MRCM for the approximation of two-phase flows.

• Chapter 7 summarizes the main results obtained and the plans for future work.

• Appendix A recalls the derivation of the equations for flows in porous media.
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CHAPTER

2
TWO-PHASE FLOWS IN POROUS MEDIA

We consider a high-contrast heterogeneous oil reservoir through which an immiscible and
incompressible two-phase flow of water and oil (denoted by w and o, respectively) takes place.
The heterogeneity of the medium is represented by a space-dependent permeability coefficient in
the elliptic model. This coefficient exhibits variations of many orders of magnitude over short
distances, being a challenge for the numerical methods. In the next section we present the model
problem for two-phase flows.

2.1 Mathematical setting
Our model consider that the reservoir contains injection wells, from which water is

injected to displace the trapped oil towards production wells. The saturations of oil and water are
related considering a fully saturated medium (the sum of both oil and water saturation is equal to
one). Therefore the model considers only the water saturation in the transport problem.

The unknowns are the Darcy velocity u(x, t) and the fluid pressure p(x, t), given by
Darcy’s law with a statement of conservation of mass

u =−λ (s)K(x)∇p in Ω

∇ ·u = q in Ω

p = g on ∂Ωp

u ·n = z on ∂Ωu

(2.1)

and the water saturation s(x, t) given by the transport problem

∂ s
∂ t

+∇ · ( f (s)u) = 0 in Ω

s(x, t = 0) = s0(x) in Ω

s(x, t) = s̄(x, t) in ∂Ω−

(2.2)

where Ω⊂ Rd, d = 2 or d = 3 is the computational domain; K(x) is the symmetric, uniformly
positive definite absolute permeability tensor; q = q(x, t) is a source term; g = g(x, t) is the
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pressure condition specified at the boundary ∂Ωp; z = z(x, t) is the normal velocity condition
(n is the outward unit normal) specified at the boundary ∂Ωu; s0 is the initial condition for
the saturation and s̄ is the saturation at the inlet boundaries ∂Ω− = {x ∈ ∂Ω, u ·n < 0}. The
functions λ (s) and f (s) are respectively the total mobility and the fractional flow of water, given
by

λ (s) = λw(s)+λo(s) =
krw(s)

µw
+

kro(s)
µo

and f (s) =
λw(s)
λ (s)

, (2.3)

where kr j(s) and µ j, j∈{w,o}, are respectively the relative permeability function and viscosity of
phase j. For simplicity, the capillary pressure and gravity effects are not considered. Furthermore,
we assume a constant porosity already scaled out by changing the time variable. We refer to the
conductivity by κ = λ (s(x))K(x) for two-phase flows and κ = K(x) for some examples on the
single-phase flows context. More details about the fundamental equations for flows in porous
media can be found in Appendix A.

Since both equations (2.1) and (2.2) are very different, it is natural to split their compu-
tation in time, taking advantage of the specific methods developed for each class of equations
(DOUGLAS; EWING; WHEELER, 1983; DOUGLAS; FURTADO; PEREIRA, 1997; DOU-
GLAS; PEREIRA; YEH, 2000; COATS, 2000). We intend to combine the MRCM for the
approximation of Darcy’s velocity with finite volume methods to approximate the hyperbolic
conservation law for the water saturation. Any hyperbolic solver can be combined with the
MRCM. The numerical approximation used for the splitting is introduced in the next section.
Then, the MRCM is presented in section 2.3, while the hyperbolic solvers considered in this
thesis are discussed in section 2.4.

2.2 Numerical approximation

We consider a common operator splitting approach for solving the equations (2.1)-
(2.2). Precisely, we solve (2.1) to compute p(x, t) and u(x, t) and (2.2) for s(x, t), sequentially
(DOUGLAS; FURTADO; PEREIRA, 1997). This splitting procedure has the advantage of
improving the computational efficiency, usually considering larger time steps for the pressure
equation (2.1) compared to those used for the hyperbolic equation (2.2), where CFL-type
condition is enforced to ensure numerical stability of explicit schemes (more details can be
found in (DOUGLAS; EWING; WHEELER, 1983; DOUGLAS; FURTADO; PEREIRA, 1997;
DOUGLAS; PEREIRA; YEH, 2000)).

Let ∆ts be the time step used in the discretization of the saturation equation, and let ∆tp

be the time step for pressure (and velocity) updates. We set the relation ∆tp =C∆ts, where C is a
positive integer, assuming that ∆ts is constant (in practice we allow for variable ∆ts). Therefore,
pressure and velocity are updated at times tn = n∆tp, for n = 0,1, . . . , while the saturation is
computed at intermediate times tn,k = tn + k∆ts, for k = 1,2, . . . ,C, such that tn < tn,k ≤ tn+1.
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Accuracy can be further improved by extrapolation of the last computed velocities for
each time tn,k of the saturation transport time step. In that sense, the velocity field to be considered
at time tn,k can be computed as

ue(x, t) =

 u0(x), if 0≤ t ≤ t1,
t− tn−1

∆tp
un(x)− t− tn

∆tp
un−1(x), if tn < t ≤ tn+1, n > 0

(2.4)

for each t = tn,k, k = 1,2, . . . ,C, where un(x) is the velocity computed by the pressure equation
(2.1) at time t = tn, approximating u(x, tn) (see (DOUGLAS; FURTADO; PEREIRA, 1997)).
The algorithm to compute the approximate solutions for saturation, velocity and pressure at time
tn+1 from the solutions at time tn, is described in Algorithm 1.

Algorithm 1 – Solving equations (2.1)-(2.2) by operator splitting

1: Given sn(x), pn(x) and un(x) computed from previous time step
2: for k ∈ {1, · · · ,C} do
3: tn,k = tn + k∆ts
4: Compute ue(x, tn,k) from Eq. (2.4) . The extrapolation step is optional
5: Solve Eq. (2.2) with u = ue to compute s(x, tn,k) . Using an explicit hyperbolic solver
6: end for
7: Given sn+1(x), update κ = λ (sn+1(x))K(x)
8: Solve Eq. (2.1) to obtain pn+1(x) and un+1(x) . Using a multiscale method
9: Make n← n+1 and return to step 1

2.3 Solving the elliptic equation by the MRCM
Considering the most up-to-date saturation sn+1(x), one can obtain the most recent

conductivity κ = λ (sn+1(x))K(x), which allows the solution of pressure equation in the whole
domain Ω. From now onwards, for the sake of notation, we will drop the time dependency on
these equations, keeping in mind that this dependency can only come from the source term, the
boundary data (which is rather uncommon in most applications), and most importantly, from the
conductivity.

The Multiscale Robin Coupled method is a non-overlapping multiscale domain decom-
position method that generalizes the Multiscale Mixed Method (MuMM) (FRANCISCO et al.,
2014), which is based on a domain decomposition method that was first introduced by Douglas
et al. (DOUGLAS et al., 1993). The main idea of these methods is to subdivide the domain Ω in
N non-overlapping subdomains Ωi, i = 1,2, . . . ,N, such that local solutions can be computed
independently for each Ωi (which is naturally parallelizable) in a fine scale h, associated to
the size of the discretization of the local problems. Continuity of the solution is enforced by
compatibility conditions, that in the multiscale sense, are weakly imposed only on a coarse scale
H� h to reduce computational cost. Here H is the characteristic size of the subdomains. Let Γ

be the skeleton of the decomposition, i.e., the union of all interfaces Γi j = Ωi∩Ω j. This means
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that the multiscale solution (uh, ph) obtained by the MRCM satisfies the compatibility conditions

∫
Γ

(u+
h −u−h ) · ň ψ dΓ = 0 and

∫
Γ

(p+h − p−h ) φ dΓ = 0 (2.5)

for all (φ ,ψ) ∈UH×PH , which are low-dimensional spaces defined over the set of edges Eh

of the skeleton Γ. The + and − superscripts denote the solution on each side of the interface Γ.
In this equation we refer to a fixed (global) normal vector ň to the skeleton Γ, pointing outwards
from the subdomain with smallest index. One of the key ingredients of the MRCM is the
definition of normal flux and pressure unknowns at the interfaces, namely (UH ,PH) ∈UH×PH

such that these compatibility conditions can be fulfilled by imposing the Robin-type boundary
conditions on the local problems, namely

− αH
κi(x)

ui
h · ň

i + pi
h =−

αH
κi(x)

UH ň · ňi +PH , x ∈ Γi j, (2.6)

where Γi j = Ωi∩Ω j stands for the interfaces between Ωi and its nearest neighbor subdomains
Ω j, (ui

h, pi
h) denotes the multiscale solution within subdomain Ωi, and ňi is the normal vector to

Γ pointing outside of Ωi.

Two observations can be drawn from equations (2.5)-(2.6). First one can note from (2.5)
that in the limit case of H = h, the fine grid solution obtained in the undecomposed case is
recovered, and continuity of both velocity and pressure is satisfied at the fine scale h. Second,
the parameter appearing in equation (2.6) for the Robin boundary condition, namely

βi(x) =
αH

κi(x)
, (2.7)

can modify the behavior of the MRCM in such way that other popular methods can be recovered.
It was demonstrated in (GUIRALDELLO et al., 2018) that in the limit α → 0, the solution of
the MMMFEM of Arbogast et al. (ARBOGAST et al., 2007a) is recovered, while in the limit
α →+∞, the solution of the MHM of Harder et al. (HARDER; PAREDES; VALENTIN, 2013;
ARAYA et al., 2013) is obtained. This is intuitively controlled by the parameter α in equation
(2.6): In the former (MMMFEM), only flux continuity is weakly imposed in the coarse scale,
while in the latter (MHM), only pressure continuity is weakly imposed in the coarse scale.

The differential formulation of the MRCM can be written as: Find solutions (ui
h, pi

h) for
each subdomain Ωi, and global unknowns (UH ,PH) satisfying the local problems

ui
h = −κ(x) ∇pi

h in Ωi

∇ ·ui
h = q in Ωi

pi
h = gp on ∂Ωi∩∂Ωp

ui
h · ň

i = gu on ∂Ωi∩∂Ωu

−βiui
h · ň

i + pi
h = −βiUH ň · ňi +PH on ∂Ωi∩Γ

(2.8)
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and the compatibility conditions on the skeleton Γ

N

∑
i=1

∫
∂Ωi∩Γ

(ui
h · ň

i) ψ dΓ = 0

N

∑
i=1

∫
∂Ωi∩Γ

βi(ui
h · ň

i−UH ň · ňi) φ (ň · ňi) dΓ = 0
(2.9)

which must hold for all pair of functions (φ ,ψ) ∈UH×PH .

The choice of the coarse spaces UH and PH also plays an important role in the approx-
imation, which is well explored in (GUIRALDELLO et al., 2019). Also known as interface
spaces, UH and PH are local and independently built on each interface Γi, j ⊂ Γ as subspaces of

Fh(Eh) = { f : Eh→ R; f |e ∈ P0 , ∀e ∈ Eh} . (2.10)

These spaces are spanned by the so-called multiscale basis functions {φ1,φ2, · · · ,φNU} and
{ψ1,ψ2, · · · ,ψNP}, where NU = dim(UH) and NP = dim(PH) are the respective dimensions of
the interface spaces. In terms of degrees of freedom per interface, these dimensions are given
by NU = kU ×NI and NP = kP×NI , where kU , kP and NI are, respectively, the flux degrees
of freedom, pressure degrees of freedom and number of interfaces between subdomains (see
(GUIRALDELLO et al., 2018) for more details).

The implementation of the MRCM considers an additive decomposition of the local
solutions (ui

h, pi
h) given by

ui
h = ûi

h + ūi
h, pi

h = p̂i
h + p̄i

h, (2.11)

that satisfies
ûi

h = −κ(x) ∇ p̂i
h in Ωi

∇ · ûi
h = 0 in Ωi

p̂i
h = 0 on ∂Ωi∩∂Ωp

ûi
h · ň

i = 0 on ∂Ωi∩∂Ωu

−βiûi
h · ň

i + p̂i
h = −βiUH ň · ňi +PH on ∂Ωi∩Γ

(2.12)

and
ūi

h = −κ(x) ∇p̄i
h in Ωi

∇ · ūi
h = q in Ωi

p̄i
h = gp on ∂Ωi∩∂Ωp

ūi
h · ň

i = gu on ∂Ωi∩∂Ωu

−βiūi
h · ň

i + p̄i
h = 0 on ∂Ωi∩Γ.

(2.13)

The local problems in Eq. (2.12) satisfy a nonzero Robin boundary condition for the subdomain
coupling and have source terms as well as physics boundary conditions identically equal to zero.
They correspond to the homogeneous part of the solution and are used to compute the set of
multiscale basis functions. On the other hand, the local problems in Eq. (2.13) have interface
Robin boundary condition for the subdomain coupling equal to zero and take into account the
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contribution of the source terms as well as the physics boundary conditions. These problems
generate one additional local basis function, that represents the non-homogeneous part of the
solution.

The interface unknowns UH and PH are given by a linear combination of the multiscale
basis functions

UH =
NU

∑
l=1

Ulφl, PH =
NP

∑
l=1

Plψl, (2.14)

where the coefficients Ul and Pl are the solution of the global interface system generated by the
Eqs. (2.9) when tested with all basis functions of UH and PH . The multiscale basis functions, in
turn, are the solutions to the local problems in Eq. (2.12) by setting the Robin boundary data
(UH ,PH) = (φl,0) and (UH ,PH) = (0,ψl), respectively. We remark that the local problems can
be computed in parallel.

The complete variational formulation, some theoretical results about existence and
uniqueness of the solution of MRCM, along with more implementation and algorithmic details
can be seen in (GUIRALDELLO et al., 2018; GUIRALDELLO et al., 2019).

Notice that no method was specified for the discretization of (2.8). Any method such as
finite volumes, finite elements or finite differences can be used, provided that edge fluxes and
pressures at subdomain interfaces are available for the multiscale method when requested.

2.3.1 Cost estimation of the MRCM

To give an idea of the cost of just the elliptic solver by the MRCM in 2D, suppose we
have a domain decomposition of N = Nx×Ny subdomains, each one with nx×ny fine grid cells.
The cost is heavily dependent on the choice of the interface spaces UH and PH , described above.
The number of basis functions in each subdomain can be estimated as NB = 4× (kU + kP)+1,
which corresponds to the set of homogeneous basis functions for each one of the 4 edges of the
subdomain, plus one additional basis function for the inhomogeneous part of the solution. Notice
that some subdomains will have less than that due to physical boundary conditions. To compute
the complete set of basis functions, one has to solve approximately NB problems for a grid of
size nx×ny cells per each one of the N subdomains. These problems are independent and can be
solved in parallel using multicore machines.

To complete the MRCM algorithm, the solution of one global problem (2.9) has to be
computed to write the final solution. The size of this global problem depends on the number
of interfaces between subdomains, that is exactly NI = Nx× (Ny−1)+Ny× (Nx−1). Then the
size of the global interface system is estimated to be NI× (kU + kP).

Let us consider as an example a domain decomposition of 11×3 subdomains discretized
by 20×20 fine grid cells each, choosing the interface spaces as linear polynomials for both flux
and pressure. This is a typical domain decomposition in some of our numerical experiments. In
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this example, kU = kP = 2, and the total number of basis functions to be computed is roughly
NB = 17 per subdomain, requiring the solution of linear systems for a grid of size 20×20 = 400
cells. The total amount of work is thus (a) solving 33 local linear systems of dimension 400,
each with 17 different right-hand sides, which can be solved all in parallel with no required
communication between processing cores, plus (b) solving the global system (2.9) that couples
the different subdomains, which has size NI× (kU + kP) = 52×4 = 208 unknowns. Therefore
the solution yielded by the MRCM for this example, computed in a parallel environment, is,
in principle, cheaper than the cost of the undecomposed case, which requires the solution of
a linear system for a grid of size 220× 60 = 13200 cells. The gain increases when larger,
three-dimensional problems are considered.

2.3.2 Velocity post-processing (downscaling)

The weak imposition of flux continuity in a coarse scale by the MRCM brings a well
known problem in multiscale methods: the normal component of fluxes may not be continuous at
the interfaces of the skeleton Γ. A continuous flux at the fine scale is necessary for applications
involving the transport of species, such as pollutants (in single-phase flows) or saturation (in
two-phase flows and more complex models). Solutions for this problem include post-processing
fluxes using downscaling techniques (GUIRALDELLO et al., 2020; FRANCISCO et al., 2014;
JENNY; LEE; TCHELEPI, 2003). Some strategies of this type have already been applied to the
MRCM in (GUIRALDELLO et al., 2020).

One of these approaches is by averaging fluxes on interfaces defined by

Ūi j
h =

1
2
(
ui

h|Γi j +u j
h|Γi j

)
. (2.15)

for each interface Γi j, which defines a unique normal flux, but unbalances masses across sub-
domains. A remedy is to use the averaged fluxes at the interfaces to define new Neumann local
problems to recover mass conservation at the fine scale, by solving

ũi
h =−κ ∇ p̃i

h in Ωi

∇ · ũi
h = qi in Ωi

ũi
h · ň

i = ui
h · ň

i on ∂Ωi∩∂Ω

ũi
h · ň

i = Ūi j
h · ň

i on Γi j ∀ j

(2.16)

for all Ωi, i = 1,2, . . . ,N. Note that the local problems are undefined up to a pressure constant.
In order to remove this indeterminacy, a common approach is to impose pressure at some point.
After solving all these local problems, normal fluxes are ensured to be continuous and the overall
solution is conservative, however, by doing that we violate Darcy’s law across subdomains, which
is a small price to pay for normal flux continuity. The cost of this downscaling post-processing is
one extra local problem solution per subdomain.

Other two downscaling techniques, as well as comparative studies between them can be
found in (GUIRALDELLO et al., 2020).
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2.4 The transport problem
Different explicit schemes to approximate the solution of scalar conservation laws have

been used in the approximation of flows through porous media. For example, the upwind method
(LEVEQUE, 2002), high order variations of the Godunov method (EDWARDS, 1996) and central
schemes (ABREU; PEREIRA; RIBEIRO, 2009). We consider the central scheme Kurganov-
Tadmor (KURGANOV; TADMOR, 2000; DAMIÁN; NIGRO; BUSCAGLIA, 2016) and the
classic first order upwind method. Both methods are known to produce robust approximations
along with accurate numerical solutions.

Let us consider the hyperbolic conservation law (2.2) in the form

∂ s
∂ t

+
∂

∂x
( f (s) ux)+

∂

∂y
( f (s) uy) = 0, (2.17)

where ux = ux(x,y, t) and uy = uy(x,y, t) denote the x and y components of the velocity field u.
The spacial finite volume semi-discretization is given by

d
dt

si, j(t) =−
1

∆x

(
Fi+1/2, j(t)−Fi−1/2, j(t)

)
− 1

∆y

(
Gi, j+1/2(t)−Gi, j−1/2(t)

)
, (2.18)

where the variable si, j(t) = s(xi,y j, t) is assumed to have a piecewise constant variation over each
cell (i, j) at time t. The functions Fi+1/2, j and Gi, j+1/2 are the discrete fluxes, which represent
the balance of quantities at the faces of cell. Different choices for Fi+1/2, j and Gi, j+1/2 define
distinct hyperbolic solvers. In subsection 2.4.1 we present the Kurganov-Tadmor method, while
the upwind method is recalled in subsection 2.4.2.

2.4.1 The Kurganov-Tadmor method

The Kurganov-Tadmor (KT) central scheme (KURGANOV; TADMOR, 2000; DAMIÁN;
NIGRO; BUSCAGLIA, 2016) has discrete fluxes Fi−1/2, j on interfaces xi−1/2 given by

Fi−1/2, j =

(
f (s−i, j)+ f (s+i−1, j)

2
−

ai−1/2, j

2

(
s−i, j− s+i−1, j

))
ux

i−1/2, j, (2.19)

where ai−1/2, j is an estimate to local speeds of wave propagation on interfaces

ai−1/2, j = max
s∈[si−1, j,si, j]

∣∣ f ′(s)∣∣ (2.20)

The discrete fluxes Gi, j−1/2 are calculated in y direction analogously to the Fi−1/2, j in x direction.

The saturation solution considers a spatial reconstruction of the form

s(x,y, t) = si, j(t)+σ
x
i (x− xi)+σ

y
j (y− y j), (2.21)

for xi−1/2 ≤ x < xi+1/2 and y j−1/2 ≤ y < y j+1/2. We consider the KT spatial reconstruction given
by the limiter function minmod (LEVEQUE, 2002):

σ
x
i = minmod

(
si+1, j− si, j

∆x
,
si, j− si−1, j

∆x

)
(2.22)
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and
σ

y
j = minmod

(
si, j+1− si, j

∆y
,
si, j− si, j−1

∆y

)
, (2.23)

where

minmod(a1, · · · ,am) =

 sgn(a1) min
16k6m

{|ak|}, if sgn(a1) = · · ·= sgn(am)

0, otherwise
. (2.24)

One can observe that if the reconstruction is constant (i.e, σ x
i = 0 ∀ i and σ

y
j = 0 ∀ j)

then this discretization will result in the Rusanov method (RUSANOV, 1962).

2.4.2 The first order upwind scheme

The first order upwind scheme has the discrete fluxes Fi−1/2, j and Gi, j−1/2 on respective
interfaces xi−1/2 and y j−1/2, given by

Fi−1/2, j =

{
f (si−1, j) ux

i−1/2, j if ux
i−1/2, j > 0

f (si, j) ux
i−1/2, j otherwise

(2.25)

and

Gi, j−1/2 =

{
f (si, j−1) uy

i, j−1/2 if uy
i, j−1/2 > 0

f (si, j) uy
i, j−1/2 otherwise

. (2.26)

In our numerical simulations, the time discretization of Eq. (2.18) is given by the classical
Forward Euler method.
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CHAPTER

3
AN ADAPTIVE STRATEGY FOR THE MRCM

In this chapter we present the first study on the MRCM for two-phase flows in porous me-
dia (ROCHA et al., 2020b). The choice of parameters for the MRCM is thoroughly investigated,
demonstrating its accuracy compared to other popular methods for problems with high contrast
permeability coefficients. We investigate the performance of the multiscale approximations for
two-phase flows taking advantage of the great flexibility to the choice of interface spaces as well
as the boundary conditions for subdomain coupling allowed by the MRCM formulation.

From our numerical experiments, we find that the coupling of adjacent subdomains
through the imposition of a continuous pressure is the best strategy to approximate two-phase
flows in the presence of high permeability channels; such coupling can be implemented by the
MMMFEM. On the other hand, the coupling of subdomains through the imposition of continuous
normal components of fluxes is an adequate strategy to handle low permeability regions; this
can be accomplished by the use of the MHM. Thus, accuracy in the approximation of two-phase
flows would require that, adaptively, the numerical procedure to solve for velocity and pressure
switches between the MMMFEM and MHM, depending on the underlying heterogeneity A
method that allows one to switch between the MMMFEM and MHM locally in the skeleton
of the domain decomposition is not known. However, such task is easily accomplished if one
takes advantage of a built-in algorithmic parameter of the MRCM, that allows this method to
produce either MMMFEM-like or MHM-like solutions, by setting this parameter to extreme
values. The MRCM is the only multiscale procedure that has this flexibility to switch from
Dirichlet-dominated to Neumann-dominated coupling of subdomains; a new adaptive scheme
based on this idea is proposed.

The adaptive strategy is introduced to give specific treatment to selected regions of the
domain according to the variation on the permeability field. For this purpose, instead of dealing
with a previously fixed α parameter in equation (2.7), we will instead consider a more flexible
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definition of βi,

βi(x) =
α(x)H
κi(x)

, (3.1)

such that α(x) can be locally chosen in an adaptive fashion. We remark that the concept of
adaptivity has been very recently applied in the numerical approximation of two-phase flows
(CORTINOVIS; JENNY, 2017), where improved accuracy in numerical solutions requires the
construction of special multiscale basis functions adapted to the underlying heterogeneity.

In the next sections, we present numerical results, comparisons, and an assessment of
the MRCM for two-phase flows. We fix the numerical set-up for this chapter in section 3.1,
after that we show our numerical experiments. Initially, in section 3.2, we study global errors of
saturation and velocity fields and compare our findings with single-phase flows results discussed
in (GUIRALDELLO et al., 2018; GUIRALDELLO et al., 2019). Then we focus on a detailed
analysis of fingering instabilities in heterogeneous permeability fields. In section 3.3 we consider
high-contrast permeability fields having either a high permeability channel or a low permeability
region. Our numerical studies indicate that the best solutions for two-phase flows in such
challenging fields occur for extreme values of α . These numerical results are used in the adaptive
strategy for setting the parameter α according to the variation of the permeability field. Results
with this new strategy are presented in section 3.4, followed by section section 3.5 with the
concluding remarks of the chapter.

3.1 Numerical set-up
The MRCM is investigated through several numerical simulations of two-phase flows in

high-contrast formations. In all simulations the reservoir is initially fully saturated with oil and
water is injected at a constant rate. We use quadratic relative permeability curves: kro = (1− s)2

and krw = s2, such that the fractional flow function is given by

f (s) =
Ms2

Ms2 +(1− s)2 , (3.2)

where M = µo/µw. We take M = 40 in our numerical experiments.

For each production well, the fraction of oil in the produced fluid is given by

P(t) = 1−
∫

∂Ωout
f (s) u ·n dl∫

∂Ωout
u ·n dl

, (3.3)

where ∂Ωout denotes the outflow well boundaries with the outward unit normal n. We refer to the
dimensionless time expressed in Pore Volume Injected (PVI), a standard time unit in reservoir
simulation that refers to the fraction of the total accessible pore volume that has been injected
into the domain (CHEN; HUAN; MA, 2006)

TPVI =−V−1
p

∫ t

0

∫
∂Ωin

u(x,τ) ·n dl dτ, (3.4)
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where Vp is the total pore-volume of the reservoir, t is the time taken for injection and ∂Ωin the
inflow well boundaries with the outward unit normal n.

The time steps are chosen such that they satisfy a CFL condition (LEVEQUE, 2002).The
number of transport steps between successive elliptic updates used in the operator splitting
scheme is at most 20. The hyperbolic equation (2.2) is approximated by an explicit Euler time
integration combined with the Kurganov-Tadmor method. We use the extrapolation of Eq. (2.4)
in our numerical experiments.

We present and discuss results of numerical simulations performed with two-dimensional
permeability fields set initially to be layers of the 3D SPE10 field (<www.spe.org/web/csp/
index.html>) (CHRISTIE; BLUNT, 2001). For the fields considered the permeability contrast
is Kmax/Kmin ≈ 106 and the computational grid has 220×60 cells distributed on a rectangular
domain Ω = [0,11/3]× [0,1]. In most of our simulations, we consider a slab geometry, with
no-flow boundary conditions at the top and bottom boundaries (y = 0 and y = 1) along with an
imposed flux on the left (x = 0) and right (x = 11/3) boundaries, with no source terms. This is
the geometry considered in the numerical experiments unless stated otherwise.

Concerning the MRCM, we consider linear polynomials spaces UH and PH for inter-
faces unknowns. For simplicity, the skeleton partition TH is built by taking only one element per
interface Γi j between subdomains. Refinements of TH are possible in the MRCM algorithm, but
these are left for future work. The downscaling scheme presented in the previous chapter is used.

3.2 Two-phase flows: global errors

The objective of this study is to investigate whether the improved accuracy shown by
the MRCM when compared to existing procedures in the approximation of single phase flow
(GUIRALDELLO et al., 2018; GUIRALDELLO et al., 2019) is also present for two-phase
flows. In the references just mentioned the improved accuracy of the MRCM indicates that
typically minimal error for pressure and flux is attained somewhere between the MMMFEM-
like and MHM-like solutions. Note that by setting small (respectively, large) values for the
MRCM algorithmic parameter α one can produce MMMFEM-like (resp., MHM-like) numerical
approximations.

Numerical results obtained with the MRCM for two-phase problem at TPVI = 0.3 are
shown in Figure 1 for some selected layers of the SPE10 field that contain channelized structures.
The domain is divided into 11× 3 subdomains with 20× 20 cells into each one. The L2(Ω)

and L1(Ω) relative errors, for flux and water saturation, respectively, are computed with respect
to a reference fine grid solution. Figure 1 shows that the behavior of the errors for the flux is
similar to that reported in (GUIRALDELLO et al., 2018), where a strong dependence on the
parameter α is noticed. We have observed that applying a downscaling procedure (used here, but
not in (GUIRALDELLO et al., 2018)) shifts the position of the minimum for the errors from

www.spe.org/web/csp/index.html
www.spe.org/web/csp/index.html
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values of α ∈ [1,100] to α ∈ [0.01,1]. Moreover, the minimum errors for saturation and flux are
attained at essentially the same values of α . Once the minimum errors for saturation occur for
intermediate values of α we confirm that the MRCM when applied to two-phase flows produces
more accurate solutions when compared to both MMMFEM and MHM. We have selected layer
number 36 of the SPE10 field to investigate flux and saturation errors throughout a simulation.
Figure 2 shows that the minima for both quantities do not vary significantly over time.

Figure 1 – Relative errors computed at TPVI = 0.3. L2(Ω) errors for flux (top) and L1(Ω) errors for
saturation (bottom). Each curve shows the results of a different SPE10 layer as a function of
the algorithmic parameter α . Note that the minimum errors for saturation and flux are attained
at intermediate values of α .

Source: Research data.

Next, in line with similar studies discussed in (KIPPE; AARNES; LIE, 2008) and
(GUIRALDELLO et al., 2019), we consider all SPE10 layers in a study to assess the accuracy
of the MRCM when compared to two-phase flows approximated by the MMMFEM and the
MHM. We set α = 1 in the MRCM (see (GUIRALDELLO et al., 2019) for a justification
of this choice) and we refer to the method with this choice as the MRCM-usual. In order to
produce MMMFEM-like and MHM-like solutions we take α = 10−8 and α = 108, respectively.
In Figure 3 we present L2(Ω) and L1(Ω) relative errors for flux and saturation, respectively. The
errors are computed at TPVI = 0.3 for all SPE10 layers. Note that the MHM-like solutions are the
least accurate ones, a result that is similar to a study presented in (GUIRALDELLO et al., 2019)
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Figure 2 – Relative errors for layer 36 as a function of the algorithmic parameter α at different times.
L2(Ω) errors for flux (top) and L1(Ω) errors for saturation (bottom). Note that the behavior of
errors for both quantities do not vary significantly throughout the simulation.

Source: Research data.

(performed with other choices of interface spaces, without the effect of downscaling and for
single-phase flows). The MRCM-usual solution is comparable in accuracy to the MMMFEM-like
solution, however for the flux variable the MMMFEM-like solution behaves poorly for some
of the layers around 40 and 80. These results are reflected also in the corresponding saturation
fields. Our results indicate that the MRCM-usual produces more accurate solutions for flux and
saturation than the corresponding solutions produced with the MHM-like method, for all layers
of the SPE10 field. Moreover the MRCM-usual results are more accurate than the simulation
results performed with the MMMFEM-like method in the case where the permeability field is
highly channelized (layers 36 to 85).

We close this discussion of global errors with the result reported in Figure 4. In order to
illustrate that the choice of a domain decomposition does not affect the main trend of saturation
error curves, we consider different domain decompositions for the 36th layer of SPE10 project.
Errors are computed at TPVI = 0.3 and can be seen in Figure 4. We consider subdivisions of
11×3, 20×4 and 22×6 subdomains, having 20×20, 11×15 and 10×10 fine grid cells inside
each subdomain, respectively.
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Figure 3 – Relative flux and saturation errors for the MRCM-usual, the MMMFEM-like method and
the MHM-like method for each layer of the SPE10 field at TPVI = 0.3. L2(Ω) error for flux
(top) and L1(Ω) error for saturation (bottom). Note that the MRCM-usual is the most accurate
procedure on highly channelized permeability layers (36 to 85).

Source: Research data.

Multi-phase flows in high-contrast formations are typically dominated by fingering
instabilities. The details of such fingers are not well captured by the global norms considered
above. However, the correct approximations of such water-oil fingers is essential in predicting
breakthrough times, that are important for decision making in reservoir engineering. Next
we perform a more detailed assessment of the performance of multiscale mixed methods by
comparing their 2D saturation profiles. We will also compare results produced by multiscale
mixed methods with a classical multiscale method: the Multiscale Finite Volume Method (MSFV)
(JENNY; LEE; TCHELEPI, 2003; LUNATI; LEE, 2009).

3.3 Two-phase flows: detailed analysis

We now compare saturation profiles of two-phase flows approximated by the MRCM,
the MMMFEM-like and MHM-like procedures and the MSFV.
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Figure 4 – Relative L1(Ω) error for saturation as a function of the algorithmic parameter α for different
choices of the domain decomposition. Errors are calculated for the 36th layer of the SPE10 field
at TPVI = 0.3. We compare results for subdivisions of the domain in 11×3, 20×4 and 22×6
subdomains with 20×20, 11×15 and 10×10 fine grid cells in each subdomain, respectively.
Note that all domain decompositions considered share the same trend for the saturation error
curves.

Source: Research data.

3.3.1 Permeability field with a high permeability channel

In our first study we consider the 36th layer of the SPE10 field with a domain decom-
position of 20× 4 subdomains, each one discretized by 11× 15 cells. Note that the MSFV
version that we use for comparison (presented in (JENNY; LEE; TCHELEPI, 2003) with the
correction functions proposed in (LUNATI; LEE, 2009)) requires an odd number of cells in each
direction in the discretization of subdomains. Layer 36 of the SPE10 project has a channel of
high permeability. The approximation of the velocity field in such a high-contrast formation
presents a challenge for the multiscale methods. Figure 5 shows the permeability field (log-
scaled) along with the saturation profiles at TPVI = 0.06 (before breakthrough time) approximated
by multiscale methods. The methods that produce a saturation solution closer to the reference run
(fine grid solution of the problem at hand) are the MRCM-usual and MMMFEM-like method,
while the latter is the most accurate in capturing the details of the fingers. The MSFV and the
MHM-like method produce very inaccurate solutions for this channelized permeability field.
The oil production curves along with saturation relative errors corresponding to the simulations
reported in Figure 5 are displayed in Figure 6. In this figure, the breakthrough time for the
fine grid simulation is illustrated by a dashed line in the saturation relative errors plot. The
oil production curve computed by the MHM-like method clearly differs considerably from the
reference one. The procedures that better predict oil production curves are the MRCM-usual and
the MMMFEM-like method. The saturation global errors reflect these results: we note that the
errors associated with the MRCM-usual and MMMFEM-like method are the smallest.

We also consider another version of this example by using a point source for water
injection and production wells, along with no-flow boundary condition in the whole domain,
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Figure 5 – Comparison of multiscale methods. Saturation profiles at TPVI = 0.06 for layer 36 of the SPE10
field are shown. Left column, top to bottom: high-contrast permeability field (log-scaled);
MSFV saturation profile; MMMFEM-like saturation profile. Right column, top to bottom:
reference fine grid solution; MRCM-usual saturation profile; MHM-like saturation profile. The
MMMFEM-like method is the most accurate in capturing the details of the fingers on this field
with a high permeability channel.

Source: Research data.

keeping the same permeability field and domain decomposition of the previous case. Water is
injected at the bottom-left corner while the production well is located at the top-right corner. The
saturation profiles at TPVI = 0.13 (just before breakthrough time) are shown in Figure 7, where
one can observe the same behavior as for the slab geometry, with the MMMFEM-like being the
most accurate in capturing the details of the fingers. Similar results are also attained for the oil
production curves and saturation relative errors, presented in Figure 8, where better predictions
of oil production curves are obtained by the MMMFEM-like method, as well as the smallest
saturation global errors.

3.3.2 Permeability field with a region of low permeability

Regions of low permeability also pose difficulties for multiscale methods. In order
to assess the various methods considered here in such a situation we built a region of low
permeability taking advantage of the channelized structure of layer 36. We consider a region
at the bottom left corner of the layer 36 with 165× 45 fine grid cells divided into 15× 3
subdomains. The low permeability region is defined along the channel of layer 36. The boundary
conditions for this case follow the slab geometry as before. Figure 9 shows the permeability
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Figure 6 – Oil production curve (left) and relative L1(Ω) errors for saturation (right) on layer 36 of SPE10
model as a function of time. The breakthrough time is illustrated by a dashed line (right plot).
We note that the best approximations of oil production curves and the smallest saturation errors
are performed by the MRCM-usual and MMMFEM-like method.

Source: Research data.

field (log-scaled) with the region of low permeability and saturation profiles at TPVI = 0.09
(before breakthrough). In contrast to our findings in the previous example the only procedure that
produces a saturation field close to the reference solution is the MHM-like method. Figure 10
shows the oil production curve and the relative saturation error as a function of time. Note that all
oil production curves are quite inaccurate. This confirms that problems with obstacles are difficult
to approximate by multiscale methods. The saturation errors produced by the MHM-like method
after breakthrough time are the smallest. These results indicate that the remaining procedures
(MRCM, MMMFEM-like method and MSFV) produce poor quality solutions in presence of low
permeability regions.

We repeat this example now with point source and sink, along with no-flow boundary
condition in the whole domain, keeping the same permeability field and domain decomposition
as the previous simulation. Water is injected at the bottom-left corner, while the production
well is located at the top-right corner of the domain. The saturation profiles at TPVI = 0.18 (just
before breakthrough time) are shown in Figure 11, where one can note that the MHM-like is
the most accurate method, the same conclusion as in the slab geometry case. Similar results are
also obtained for the oil production curves and saturation relative errors, which are presented in
Figure 12. All approximations of oil production curves are inaccurate and the smallest saturation
global errors after breakthrough time are associated with the MHM-like method.
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Figure 7 – Comparison of multiscale methods using point source and no-flow boundary conditions.
Saturation profiles at TPVI = 0.13 for layer 36 of the SPE10 field are shown. Left column, top
to bottom: high-contrast permeability field (log-scaled); MSFV saturation profile; MMMFEM-
like saturation profile. Right column, top to bottom: reference fine grid solution; MRCM-usual
saturation profile; MHM-like saturation profile. The MMMFEM-like method is the most
accurate in capturing the details of the fingers.

Source: Research data.

3.4 Adaptive MRCM

The two studies reported above (permeability fields with either a high permeability
channel and a low permeability region) illustrate the difficulties of multiscale methods in the
approximation of velocity fields in high-contrast formations. Although relative errors for satura-
tion attain minima for the MRCM with the algorithmic parameter α ≈ 1 (see Figure 1) we have
determined that α = 10−8 (the MMMFEM-like method) is appropriate for the approximation
of velocity fields in the presence of high-permeability channels. This is an indication that the
coupling of nearest neighbor subdomains through the imposition of a continuous pressure is the
best strategy to approximate flow in the presence of high permeability channels. On the other
hand, the coupling of subdomains through the imposition of continuous normal components
of fluxes accomplished by setting α = 108 (the MHM-like method) is an adequate strategy
to handle low permeability regions. Note that the MRCM, as opposed to the other multiscale
procedures discussed here, has enough built-in flexibility to handle both challenging permeability
fields, by varying its algorithmic parameter α .

In order to further assess the accuracy of the methods considered here we construct
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Figure 8 – Oil production curve (left) and relative L1(Ω) errors for saturation (right) on layer 36 of
SPE10 model as a function of time using point source and no-flow boundary conditions. The
breakthrough time is illustrated by a dashed line (right plot). We confirm the better performance
of the MMMFEM-like method throughout the simulation.

Source: Research data.

a challenging, high-contrast permeability field that contains both types of structures: a high
permeability channel and a low permeability region. The domain considered is Ω = [0,33/12]×
[0,3/2] with 165× 90 fine grid cells equally divided into 15× 6 subdomains. The upper half
of the permeability field contains part of the channel structure from layer 36 of the SPE10
project and the lower half contains a region of low permeability. The permeability contrast is
Kmax/Kmin ≈ 109 and the field is shown in Figure 13. The upper and lower regions are separated
by a low permeability strip. The studies reported above indicate that for this permeability field
all the multiscale methods that we have considered might produce inaccurate solutions.

In order to approximate the saturation solution in this challenging permeability field
we propose initially a naive strategy for the selection of the MRCM parameter α . We use
α = 10−8 (MMMFEM-like method) for the upper half containing the high permeability channel
and α = 108 (MHM-like method) for the half containing the low permeability region. We refer
to this method as the MRCM-naive. We intend to use this example as a proof of concept: by
varying the algorithmic parameter α of the MRCM we intend to show that we can produce good
approximations velocity fields in complex, high-contrast formations. Clearly this strategy would
not be applicable in fields exhibiting multiple channelized and low permeability regions. We will
address the general case later.

Figure 14 shows the choice for α at the boundaries of subdomains. A comparison of
multiscale solution methods at TPVI = 0.06 is illustrated in Figure 15. For the upper half of the
domain the MHM-like procedure is clearly inaccurate while for the lower half the remaining
procedures (MSFV, MRCM-usual and the MMMFEM-like method) provide poor approximations.
Therefore the only procedure that produces a saturation solution close to the reference run is the
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Figure 9 – Comparison of multiscale methods. Saturation profiles at TPVI = 0.09 for a permeability field
exhibiting a low permeability region are shown. Left column, top to bottom: high-contrast
permeability field (log-scaled); MSFV saturation profile; MMMFEM-like saturation profile.
Right column, top to bottom: reference fine grid solution; MRCM-usual saturation profile;
MHM-like saturation profile. Note that the MHM-like solution is considerably more accurate
than the others.

Source: Research data.

MRCM-naive. Figure 16 shows the comparison of saturation profiles at TPVI = 0.5, where it can
be seen that these findings are even more evident after breakthrough.

Aiming at approximating velocity fields in realistic permeability fields where a clear
separation of high and low permeability regions would not be possible we introduce an adaptive
strategy for the choice of the α parameter. The basic idea is to identify the regions of high perme-
ability and set α adaptively. We remark that a special treatment for distinct permeability regions
has recently appeared in (CORTINOVIS; JENNY, 2017) where the focus was the construction
of additional multiscale basis functions in selected regions. Our focus is computationally more
competitive because we achieved improved approximation capabilities without adding multiscale
basis function to the original set.

Our proposed strategy consists in setting the value of α locally, depending on the values
of the permeability field at the boundaries of the subdomains. We set α = 10−8 (a MMMFEM-
like method) for regions where the permeability is larger than a cutoff value ζ and α = 108 (a
MHM-like method) for the remaining subdomain boundaries. This procedure can be considered
in a preprocessing operation, in which we map the absolute permeability variations and set α

only once in an offline step. We refer to MRCM with α set through this procedure as the MRCM-
adaptive. Figure 17 shows the α values set by the proposed method for ζ ∈ [100,101,102,103].
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Figure 10 – Oil production curve (left) and relative L1(Ω) errors for saturation (right) on a region of low
permeability as function of time. The breakthrough time is illustrated by dashed line (right
plot). We note that all approximations of oil production curves are inaccurate. The smallest
saturation errors are obtained by the MHM-like method.

Source: Research data.

We note that the high permeability channel structure is well captured for ζ = 101 or ζ = 102. In
the study reported below we set ζ = 10.

The comparison of saturation profiles for the MRCM (MRCM-usual, MRCM-naive
and MRCM-adaptive) at TPVI = 0.06 is displayed in Figure 18. Note in Figure 18 that the
MRCM-naive and MRCM-adaptive provide more accurate solutions than the MRCM-usual.
This comparison for a later time (TPVI = 0.5) is shown in Figure 19. Note that the better
solutions produced by the MRCM-naive and MRCM-adaptive remain the best after breakthrough.
Figure 20 shows oil production curves and relative saturation errors as a function of time.
The procedures that yield oil production curves close to the reference one are the naive and
adaptive versions of the MRCM. The saturation results after breakthrough time (illustrated by
the dashed line) show smaller errors for these strategies. Note that, in particular, the MRCM-
adaptive produces the smallest errors. In summary with the adaptive strategy we have successfully
predicted reservoir production in high contrast formations with both channels and obstacles.

3.5 Discussion

The Multiscale Robin Coupled method has been carefully investigated for the numerical
solution of two-phase, oil-water flows in heterogeneous, high-contrast porous media. The gov-
erning system of equations is discretized by an operator splitting technique, such that elliptic
equations for velocity and pressure and a hyperbolic conservation law for the water saturation
are solved sequentially in time.
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Figure 11 – Comparison of multiscale methods using point source and no-flow boundary conditions.
Saturation profiles at TPVI = 0.18 for a permeability field exhibiting a low permeability region
are shown. Left column, top to bottom: high-contrast permeability field (log-scaled); MSFV
saturation profile; MMMFEM-like saturation profile. Right column, top to bottom: reference
fine grid solution; MRCM-usual saturation profile; MHM-like saturation profile. Note that
the MHM-like solution is the most accurate.

Source: Research data.

Initially we show that, in line with results obtained for single phase flows, the MRCM
produces more accurate solutions than other well known multiscale procedures (in terms of
global norms of velocity and saturation fields). Then we focus on a detailed investigation of
how well multiscale methods approximate oil-water fingering instabilities in very high-contrast,
realistic permeability fields. We show that, within multiscale mixed methods, the best scenario for
the approximation of these problems involve two well known procedures: the Multiscale Mortar
Mixed Finite Element Method (that we show to be appropriate for the approximation of flows in
high permeability channels) and the Multiscale Hybrid-Mixed Finite Element Method (that we
show to be adequate to handle low permeability regions). By taking advantage of an algorithmic
parameter of the MRCM we develop a new adaptivity strategy, such that depending on the
local properties of the permeability field we can easily switch between the known procedures to
achieve much better accuracy in comparison with these procedures alone.
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Figure 12 – Oil production curve (left) and relative L1(Ω) errors for saturation (right) on a region of
low permeability as a function of time, using point source and no-flow boundary conditions.
The breakthrough time is illustrated by a dashed line (right plot). We confirm the better
performance of the MHM-like method.

Source: Research data.

Figure 13 – A high-contrast permeability field (log-scaled) built to assess the accuracy of multiscale
methods. The upper half contains the channel structure from layer 36 of the SPE10 field and
the lower half contains a low permeability region. The permeability contrast is Kmax/Kmin ≈
109.

Source: Research data.
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Figure 14 – Choice of the parameter α on subdomain boundaries for the MRCM-naive. The upper half
considers the MMMFEM-like method by setting α = 10−8 (red). The lower half considers
the MHM-like method by setting α = 108 (cyan).
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Source: Research data.
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Figure 15 – Saturation profiles at TPVI = 0.06 (before breakthrough) on the high-contrast permeability
field that combines a high permeability channel and a low permeability region. Left column,
top to bottom: reference fine grid solution; MRCM-usual saturation profile; MMMFEM-like
saturation profile. Right column, top to bottom: MSFV saturation profile; MRCM-naive
saturation profile; MHM-like saturation profile. The only procedure that produces a saturation
solution close to the reference run is the MRCM-naive.

Source: Research data.
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Figure 16 – Saturation profiles at TPVI = 0.5 on the high-contrast permeability field that combines a high
permeability channel and a low permeability region. Left column, top to bottom: reference
fine grid solution; MRCM-usual saturation profile; MMMFEM-like saturation profile. Right
column, top to bottom: MSFV saturation profile; MRCM-naive saturation profile; MHM-like
saturation profile. We note that the MRCM-naive approximation is the only method that
produces a solution close to the reference saturation map after the breakthrough.

Source: Research data.
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Figure 17 – Choice of the parameter α on subdomain boundaries for the MRCM-adaptive. The red color
considers the MMMFEM-like method (α = 10−8) on the subdomain boundaries that are in
regions of high permeability. The cyan color considers the MHM-like method (α = 108) on
the remaining subdomain boundaries. We compare four possibilities for cutoff value ζ . Left
column, top to bottom: ζ = 100; ζ = 102. Right column, top to bottom: ζ = 101; ζ = 103.
The high permeability channel structure is well captured for ζ = 101 or ζ = 102.

Source: Research data.
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Figure 18 – Comparison of the saturation solutions calculated with the different versions of the MRCM
on the high-contrast permeability field that combines a high permeability channel and a
low permeability region. Saturation profiles at TPVI = 0.06 (before breakthrough) are shown.
Left column, top to bottom: reference fine grid solution; MRCM-naive saturation profile.
Right column, top to bottom: MRCM-usual saturation profile; MRCM-adaptive saturation
profile. The MRCM-naive and MRCM-adaptive provide more accurate solutions than the
MRCM-usual.

Source: Research data.
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Figure 19 – Comparison of the saturation solutions calculated with the different versions of the MRCM
on the high-contrast permeability field that combines a high permeability channel and a low
permeability region. Saturation profiles at TPVI = 0.5 are shown. Left column, top to bottom:
reference fine grid solution; MRCM-naive saturation profile. Right column, top to bottom:
MRCM-usual saturation profile; MRCM-adaptive saturation profile. The MRCM-naive and
MRCM-adaptive results remain more accurate than the MRCM-usual after breakthrough.

Source: Research data.

Figure 20 – Oil production curve (left) and relative L1(Ω) errors for saturation (right) on the built perme-
ability field as function of time. The breakthrough time is illustrated by dashed line (right
plot). We note that the best approximations of oil production curves are performed by the
MRCM-naive and MRCM-adaptive. The MRCM-adaptive produces the smallest saturation
errors.

Source: Research data.
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CHAPTER

4
INTERFACE SPACES BASED ON PHYSICS

The multiscale approaches solve the problem on a coarse decomposition of the domain,
incorporating the fine-grid information through local basis functions. The accuracy of the
multiscale methods is related to the calculation of the basis functions. If the heterogeneities are not
well represented by the basis, inaccurate solutions are obtained. Spaces that are polynomial on the
interfaces of the domain decomposition work well for smooth or Gaussian permeability fields, but
their performance for high contrast, channelized ones is not satisfactory (CHUNG; EFENDIEV;
LI, 2014; CHUNG; FU; YANG, 2016; CORTINOVIS; JENNY, 2014; GUIRALDELLO et

al., 2019). To remedy this, informed spaces obtained from sets of snapshots by algebraic
dimensionality reduction were considered in (EFENDIEV; GALVIS; HOU, 2013; CHUNG; FU;
YANG, 2016; GUIRALDELLO et al., 2019). Another approach is to define the interface space
through eigensolutions of local partial-differential problems (MADUREIRA; SARKIS, 2017).
These approaches can also be coupled to a-posteriori error estimators (CHUNG; EFENDIEV; LI,
2014; CHUNG; EFENDIEV; LEUNG, 2017; CHUNG; PUN, 2019).

Other authors have looked for approaches more directly based on the geometry of the
heterogeneities. In (AARNES; KROGSTAD; LIE, 2006; MØYNER; LIE, 2016; KLEMETS-
DAL; MØYNER; LIE, 2019), for example, the authors consider polynomial bases but adapt
the grid to the geological properties, while in (PESZYŃSKA; WHEELER; YOTOV, 2002;
CORTINOVIS; JENNY, 2014; CORTINOVIS; JENNY, 2017) local enrichment functions were
added on high-permeability regions. These geometrical strategies are well suited for permeability
fields containing either channels or barriers, but not both. In this chapter, we propose a strategy
to deal with the simultaneous presence of channels and barriers, since such situation is not
unfrequent in reservoir simulation (HOSSEINIMEHR et al., 2019). For this purpose, we use the
MRCM for the independent choice of the pressure and flux interface spaces. In fact, the pressure
space is designed so as to accommodate channels and the flux space to accommodate barriers,
and the adaptivity of the MRCM is used to automatically select the appropriate parameters at
each location.
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Our intention is to use high-definition volumetric grids that capture the large scale
features of the fracture network, especially when they are relatively large as happens in fractured
karst reservoirs (BAOMIN; JINGJIANG, 2009; POPOV et al., 2009; HUANG; YAO; WANG,
2013; LOPES et al., 2019). Typically, fractures are handled with separate discrete models that
represent the fractures as lower-dimensional objects so as to incorporate sub-grid resolution
(MARTIN; JAFFRÉ; ROBERTS, 2005; REICHENBERGER et al., 2006; FORMAGGIA et al.,
2014; SCHWENCK et al., 2015; BERKOWITZ, 2002; FLEMISCH et al., 2018). A popular
approach is the Discrete Fracture Model (DFM) which uses unstructured grids to place fractures
at the interface between matrix cells (KIM; DEO, 2000; KARIMI-FARD; DURLOFSKY; AZIZ,
2003; HOTEIT; FIROOZABADI, 2008). Other approaches are the Embedded DFM (TENE;
KOBAISI; HAJIBEYGI, 2016; CHAI et al., 2018), the multi-continuum model (CHUNG et al.,
2017; WANG et al., 2020) and the hierarchical fracture models (HAJIBEYGI; KARVOUNIS;
JENNY, 2011; LI; LEE, 2008; EFENDIEV et al., 2015).

Since it is possible to combine discrete models with multiscale methods (BOSMA et al.,
2017; ZHANG et al., 2017; DEVLOO; TENG; ZHANG, 2019; XIA et al., 2018), the final goal
of the improved MRCM proposed here is to allow a unified treatment of fractured karst reservoirs
in which the modeling of the fractures is shared, depending on the fracture’s size, between the
volumetric grid and the discrete models. For this reason, we consider here permeability fields
containing multiple narrow and relatively straight features (channels, barriers) that mimic the
largest structures of a fractured porous medium.

In the next section, the strategies for building the physics-based interface spaces are
presented along with some numerical experiments. Then, we explain our proposed combination
of the physics-based spaces with the adaptive MRCM in section 4.2, followed by numerical
results and discussions.

4.1 Physics-based interface spaces

The interface spaces UH and PH for the MRCM were setting as low-dimensional
polynomial spaces in (GUIRALDELLO et al., 2018) and informed spaces in (GUIRALDELLO
et al., 2019). However, low-dimensional polynomial spaces are not robust to represent variations
of high-contrast permeability fields containing structures as high permeability channels and
barriers. Even informed spaces with a low number of degrees of freedom are not enough. To
better represent the variations of channelized permeability fields we present two physics-based
interface spaces. The idea is to build the multiscale basis functions based on the pressure and
flux solutions at each structure (channel/barrier). We present one space for pressure and another
for flux. The new pressure space is suited for high permeability channels, whereas the new flux
space for barriers or low permeability barriers, that cross the interface between subdomains.

The support of the new basis functions are the interfaces that contain channelized
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structures. In the remaining interfaces the spaces can be freely chosen (any low-dimensional
polynomial or informed spaces). We denote (UH,k,PH,k) the choice of the interface spaces
made up of the elementwise constant fine grid representation of polynomials over the interface
elements, where k is the degree of the polynomial. To introduce the concept we consider, for
simplicity, the linear spaces (UH,1,PH,1) for both flux and pressure. This choice of interface
spaces is used further in the numerical section. The basis of these spaces contain kU = 2 and
kP = 2 functions on each interface between two subdomains. If the permeability field contains
high-permeable structures passing through the interface we propose to replace the space PH,1

by the physics-based pressure space. On the other hand, if the permeability filed contains
barriers crossing the interface we replace the space UH,1 by the physics-based flux space. In the
following subsections, we describe how the physics-based interface spaces are built for capturing
the high-contrast structures.

4.1.1 A physics-based interface space for the pressure

We define a simplified problem test to show the behavior of the solution to define the
interface spaces. In Figure 21 we consider a high-contrast permeability field containing a vertical
high-permeable structure (Figure 21a). We show the pressure (Figure 21b) and flux (Figure 21c)
fine grid solutions. Here we consider a single-phase model, where the flow is established by
imposing a flux boundary condition from left to right and no-flow at top and bottom. This
geometry induces a one-dimensional pressure solution which is plotted along a horizontal line
in Figure 21d. Notice, the pressure is essentially constant over the high-permeable region. Any
domain decomposition with more than one subdomain in the y-direction contains horizontal
interfaces through which the high-permeable structure passes. Let Γhigh be the set of all interfaces
that contain at least one fine cell in which the permeability is larger than a cutoff value ζmax. We
intend to replace the pressure linear space PH,1 = span{ψ1,ψ2} at the interfaces Γi, j ⊂ Γhigh by
a physics-based pressure space, denoted by P∗

H .

Figure 21 – Problem with a vertical high-permeable structure. (a) Permeability field (log-scaled) contain-
ing a vertical high-permeable structure. (b) Pressure field. (c) Flux. The colors in the flux plot
refer to the log-scale flux magnitude. (d) Pressure along a horizontal line.

(a) Permeability (b) Pressure (c) Flux (d) Pressure profile

Source: Research data.
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The new pressure space mimics the behavior of the pressure across the high-permeable
structures. Let Γi, j ⊂ Γhigh be an interface with support in [a,d] through which a high-permeable
structure passes in [b,c]⊂ [a,d], as sketched in Figure 22. The basis functions are defined as:

ψ
∗
1 (x) =


b− x
b−a

if x ∈ (a,b)

0 otherwise
(4.1)

ψ
∗
2 (x) =


x−a
b−a

if x ∈ (a,b)

1 if x ∈ (b,c)
d− x
d− c

if x ∈ (c,d)

(4.2)

ψ
∗
3 (x) =


x− c
d− c

if x ∈ (c,d)

0 otherwise
. (4.3)

The new interface pressure space is then defined as P∗
H = span{ψ∗1 ,ψ∗2 ,ψ∗3} at Γi, j ⊂ Γhigh.

Since the definition of the basis depends only on the fine-grid discretization of the permeability at
the interface, any high-permeable structure crossing the interface can be represented. Therefore,
these basis functions are not restricted to structures orthogonal to the interface. If the interface
contains more than one high-permeable structure we need to define a new basis function with
similar behavior to the ψ∗2 for each structure. The total number of basis functions per interface is
thus 2+Nhigh, where Nhigh is the number of high-permeable structures at the interface.

Figure 22 – Physics-based basis functions for pressure at the interfaces that contain high-permeable
structures. Note that the set of functions is able to capture the pressure profile across the
structure.

Source: Research data.

In Figure Figure 23, we show the pressure solution at the horizontal line y = 0.49
delivered by the MMMFEM (by setting the α parameter of the MRCM to the value 10−6) in a
domain decomposition with 2×2 coarse cells. We denote by MMMFEM-PBS the multiscale
method combined with the physics-based spaces and by MMMFEM-POL the multiscale method
combined with polynomial spaces (linear in this thesis). We note that for both single (Figure 23a
and Figure 23c) and multiple (Figure 23b and Figure 23d) high-permeable structures the correct
pressure solution is only captured by the MMMFEM combined with physics-based interface
spaces.
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Figure 23 – High-contrast permeability field (log-scaled) with one (a) and two high-permeable structures
(c). Pressure solutions for one (b) and two high-permeable structures (d) computed by the
fine-grid solver and the multiscale ones MMMFEM-POL and MMMFEM-PBS. We note that
for both one and two high-permeable structures the correct pressure solution is only captured
by the MMMFEM-PBS.

(a) Permeability (b) Pressure (c) Permeability (d) Pressure

Source: Research data.

4.1.2 A physics-based interface space for the flux

Now we focus on fields containing low-permeable structures. Once again we define a
simplified problem to motivate the interface spaces. In Figure 24a we consider a high-contrast
permeability field containing a horizontal barrier. We show the fine grid solutions for pressure
(Figure 24b) and for flux (Figure 24c). Here the flow is established by imposing a pressure
gradient from left to right and no-flow at top and bottom. The x-component of the flux along a
vertical line is illustrated in Figure 24d, showing the discontinuities at the locations of transitions
to barrier regions. Any domain decomposition with more than one subdomain in x-direction
contains vertical interfaces through which the low-permeable structure passes. Let Γlow be the
set of all the interfaces that contain at least one fine cell in which the permeability is lower than a
cutoff value ζmin. We introduce the new flux spaces U ∗

H according to the behavior of the flux
solution by replacing the flux linear spaces UH,1 = span{φ1,φ2} at the interfaces Γi, j ⊂ Γlow.

Figure 24 – Horizontal barrier problem. (a) Permeability field (log-scaled) containing a horizontal barrier.
(b) Pressure field. (c) Flux. The colors in the flux plot refer to the log-scale flux magnitude.
Additionally, the x-component solution of the flux along a vertical line is illustrated in (d),
where we note that the flux is discontinuous at the transitions to barrier regions.

(a) Permeability (b) Pressure (c) Flux (d) Flux profile

Source: Research data.
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Let Γi, j ⊂ Γlow be an interface with support in [a,d] through which a barrier passes in
[b,c]⊂ [a,d], as sketched in Figure 25. We define the following basis functions:

φ
∗
1 (x) =

{
1 if x ∈ (a,b)

0 otherwise
(4.4)

φ
∗
2 (x) =

{
1 if x ∈ (b,c)

0 otherwise
(4.5)

φ
∗
3 (x) =

{
1 if x ∈ (c,d)

0 otherwise
. (4.6)

The new interface space is defined as U ∗
H = span{φ∗1 ,φ∗2 ,φ∗3 } at Γlow

i, j . These basis functions are
not restricted to barriers orthogonal to the interface, similar to the pressure basis. If the interface
contains more than one barrier we need to define a new basis function with behavior similar to
that of the φ∗2 for each barrier, plus a constant function for each region between two barriers.
The total number of basis functions per interface is thus 1+2Nlow, where Nlow is the number of
barriers.

Figure 25 – Physics-based basis functions for flux at the interfaces that contain barriers.

Source: Research data.

In Figure 26 we show the x-component of the flux along x = 0.5 provided by the MHM
(by setting the α parameter of the MRCM to the value 106) in a domain decomposition with 2×2
coarse cells. We compare the approximations provided by the MHM-POL (MHM combined
with the linear spaces) and MHM-PBS (MHM combined with the physics-based spaces) with
the fine-grid solution. We note that for both single (Figure 26a and Figure 26c) and multiple
(Figure 26b and Figure 26d) barriers the correct x-component of the flux is only captured by
MHM-PBS.

4.1.3 Experiments with the physics-based interface spaces

The examples in Figure 23 and Figure 26 illustrate that the usual linear interface spaces
fail to approximate the solution in the presence of high-permeable structures and barriers even for
simple problems. The proposed physics-based spaces have been able to represent the behavior of
the solution in those problems. In this subsection, we show that the physics-based spaces work
well also in slightly more complex permeability fields. Initially, we consider a permeability field
with high permeability channels and use the physics-based pressure space combined with the
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Figure 26 – High-contrast permeability field (log-scaled) with one (a) and two barriers (c). Fine-grid
reference, MHM-POL and MHM-PBS solutions for the x-component of the flux considering
one (c) and two barriers (d). Notice that for both one and two barriers the correct x-flux
solution is only captured by the MHM-PBS.

(a) Permeability (b) Flux (c) Permeability (d) Flux

Source: Research data.

MMMFEM. Then we consider a permeability field with barriers and use the physics-based flux
space combined with the MHM.

4.1.3.1 The MMMFEM for permeability fields with high permeability channels

The first study considers a permeability field containing high permeability channels.
In this case, the physics-based pressure space is applied to the interfaces that contain cells
in which the permeability is larger than a cutoff value ζmax. We combine the new interface
space with the MMMFEM. We consider the permeability in the high-permeable structure, Kmax

varying from 10 to 108 whereas the background is homogeneous with K = 1, see Figure 27a.
The cutoff value set to capture the high-permeable structures is ζmax = 1 in all cases. The domain
considered is Ω = [0,1]× [0,1] containing 160×160 cells. In Figure 27b we show the relative
L2(Ω) errors for pressure as function of the permeability contrast. Three domain decompositions
are considered: 4×4, 8×8 and 16×16 coarse cells, each one containing, respectively 40×40,
20×20 and 10×10 fine cells. The boundary conditions in the simulations of this subsection
are no-flow at the top and bottom boundaries along with an imposed flux on the left and right
boundaries. No source terms are considered. We compare the multiscale solution considering the
usual linear polynomial (MMMFEM-POL) and the physics-based (MMMFEM-PBS) pressure
interface spaces. We note that for permeability contrasts larger than 100 the improvement with
the physics-based spaces is significant for all the domain decompositions considered. Domain
decompositions with more subdomains present smaller errors. Figure 28 shows the pressure
approximations for the decomposition of 8×8 coarse cells in the highest permeability contrast
Kmax/Kmin = 108. It is clear that the imprecisions of the MMMFEM solution with the linear
interface spaces are corrected with the use of the physics-based ones.
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Figure 27 – High-contrast permeability field with high permeability channels (a). We consider the per-
meability in the channel, Kmax varying from 10 to 108 whereas the background is homoge-
neous with K = 1. Relative L2(Ω) pressure errors as function of the contrast are shown for
the MMMFEM-POL and MMMFEM-PBS (b). Three domain decompositions are consid-
ered: with 4×4, 8×8 and 16×16 coarse cells. We note a significant improvement for the
MMMFEM-PBS in all the meshes, especially for high-contrast.

(a) Permeability (b) Pressure errors

Source: Research data.

Figure 28 – Pressure approximations considering the contrast of Kmax/Kmin = 108. Left to right: fine
mesh, MMMFEM-POL, and MMMFEM-PBS solutions. The domain decomposition consid-
ered contains 8× 8 coarse cells and is illustrated by the lines in the plot. We note that the
MMMFEM-PBS solution is more accurate than the MMMFEM-POL.

Source: Research data.

4.1.3.2 The MHM for permeability fields with barriers

In the next experiment, the same problem of the previous subsection is considered,
except that the high permeability channels are replaced by barriers of low permeability. The
physics-based flux space is used at interfaces that contain cells in which the permeability is
lower than a cutoff value ζmin. We combine the flux space with the MHM to approximate the
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solution. Similar to the previous example, we compare different permeability contrasts. Here, we
consider the permeability in the barrier, Kmin varying from 10−8 to 10−1 whereas the background
is homogeneous with K = 1, see Figure 29a. The cutoff value set to capture the barriers is
ζmin = 1 in all cases. The relative L2(Ω) errors for flux as function of the contrast are displayed
in Figure 29b. Similar to the previous case, the solution is more accurate by using the physics-
based space instead of the linear space. The flux errors provided by the linear spaces increase
quickly with the contrast whereas the errors from the physics-based spaces are controlled. The
results are consistent for the three domain decompositions, where the smaller errors are provided
by the decompositions with more subdomains. In Figure 30 we show the flux approximations for
the decomposition of 8×8 coarse cells in the highest permeability contrast Kmax/Kmin = 108.
We note that the MHM-POL solution is inaccurate and the MHM-PBS approximation captures
the correct behavior of the reference solution.

Figure 29 – High-contrast permeability field with barriers (a). We consider the permeability in the barrier,
Kmin varying from 10−8 to 10−1 whereas the background is homogeneous with K = 1. Relative
L2(Ω) flux errors as function of the contrast are shown for the MHM-POL and MHM-PBS (b).
Three domain decompositions are considered: with 4×4, 8×8 and 16×16 coarse cells. We
note that for high-contrast the only accurate approximations are produced by the MHM-PBS
(in all the meshes).

(a) Permeability (b) Flux errors

Source: Research data.

4.2 Adaptive MRCM with the physics-based interface
spaces

We can conclude from the numerical studies reported above that the physics-based
pressure (respectively, flux) space is fundamental to produce an accurate pressure (resp., flux)
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Figure 30 – Flux approximations considering the contrast of Kmax/Kmin = 108. Left to right: fine mesh,
MHM-POL, and MHM-PBS solutions. The colors in the flux plot refer to the log-scale flux
magnitude. The domain decomposition considered contains 8×8 coarse cells and is illustrated
by the lines in the plot. We note that the MHM-PBS approximation is closely related to the
reference solution and the MHM-POL is inaccurate.

Source: Research data.

solution in presence of high permeability channels (resp., barriers). Therefore if high permeability
channels and barriers appear in a single interface one can achieve a better approximation of
pressure and flux using both pressure and flux physics-based interface spaces. To attain this
goal one feature necessary for the multiscale method used is the ability to include the interface
spaces independently. For this purpose, we combine the physics-based interface spaces with the
MRCM, whose formulation enables to include the spaces separately. In the MRCM framework,
we consider the adaptive version (denoting by aMRCM ) that consists of setting the function α(x)
depending on the variation of the permeability field at the interfaces. In line with the previous
chapter, we take a small value αsmall (pressure is favored) for regions where the permeability is
larger than a cutoff parameter, and a large value αlarge (flux is favored) for the remaining areas. In
this sense, the aMRCM controls the relative importance of each interface space at each location.

To solve Equation (2.1) by the MRCM we need to set the interface parameters (i.e., the
interface spaces and the adaptive function α(x)). In Algorithm 2 we detail the preprocessing
operations to set the interface spaces and the adaptive coefficient α(x) from the permeability
field. At each interface Γk, k = 1, · · · ,M (where M is the total number of interfaces), and at each
interface cell el ∈ Γk, l = 1, · · · ,mk (where mk is the number of fine cells in Γk), it is defined
whether el corresponds to a high permeability channel, a barrier, or to background, and then
α(xl) (at the cell’s center) is set accordingly. Then, we use the proposed physics-based interface
spaces taking into account the observations presented in the previous section. We set the interface
pressure (resp., flux) spaces as P∗

H,1 (respectively, U ∗
H,1), that consider the physics-based space

for the interfaces containing high permeability channels (resp., barriers) and linear spaces for the
remaining interfaces. Finally we are able to combine the aMRCM with the physics-based spaces
(U ∗

H,1,P
∗
H,1). We refer to this combination as aMRCM-PBS and consider for comparisons,

the aMRCM-POL, which represents the aMRCM combined with linear polynomial spaces
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independently on the permeability field. We remark that the aMRCM can deal with one high-
permeable structure per interface, and hence, we use the pressure physics-based space only at
the interfaces that contain more than one high-permeable structure.

Algorithm 2 – Setting interface parameters for solving Equation (2.1) by the aMRCM-PBS

1: Given K(x), ζmin, ζmax, αsmall and αlarge
2: for k ∈ {1, · · · ,M} do
3: for l ∈ {1, · · · ,mk} do
4: Evaluate the permeability in both sides (K−(xl) and K+(xl)) of the interface cell

el ∈ Γk
5: if (max{K−(xl),K+(xl)}> ζmax) then
6: α(xl) = αsmall
7: Add Γk to Γhigh

8: else
9: α(xl) = αlarge

10: end if
11: if (min{K−(xl),K+(xl)}< ζmin) then
12: Add Γk to Γlow

13: end if
14: end for
15: if (Γk ⊂ Γhigh) then
16: Compute the physics-based functions for pressure from Equations (4.1)-(4.3)
17: Set P∗

H,1 = P∗
H at Γk

18: else
19: Compute the linear polynomials functions for pressure
20: Set P∗

H,1 = PH,1 at Γk
21: end if
22: if (Γk ⊂ Γlow) then
23: Compute the physics-based functions for flux from Equations (4.4)-(4.6)
24: Set U ∗

H,1 = U ∗
H at Γk

25: else
26: Compute the linear polynomials functions for flux
27: Set U ∗

H,1 = UH,1 at Γk
28: end if
29: end for
30: Given (U ∗

H,1,P
∗
H,1) and α(x), solve Equation (2.1) to obtain p(x) and u(x) by the aMRCM-

PBS

Next, we explore the proposed aMRCM-PBS in challenging high-contrast channelized
porous media through numerical experiments.

4.3 Numerical experiments
We present representative numerical experiments to investigate the accuracy of the intro-

duced physics-based interface spaces for the approximation of flows in high-contrast channelized
porous media. We start with the investigation of the physics-based interface spaces combined
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with the aMRCM for the elliptic problem. Then we study the influence of the physics-based
interface spaces in the approximation of two-phase problems.

In all simulations the fine grid solution is used as the reference solution for evaluating the
multiscale approximations. We consider the aMRCM (by setting αsmall = 10−2 and αlarge = 102),
MMMFEM (by setting α = 10−6) and MHM (by setting α = 106). To recover a continuous
flux at the fine scale we consider a velocity post-processing (downscaling) (GUIRALDELLO et

al., 2020). We choose the Stitch method, which has been indicated as a procedure that provides
good compromise between computational cost and precision. The patch thicknesses of the
oversampling regions for the Stitch method is fixed in two elements (that represents 10% of the
size of most subdomains considered in the examples).

4.3.1 Single-phase flows in permeability fields with high permeability
channels and barriers

We consider a permeability field containing both high permeability channels and barriers
(see Figure 31) to produce experiments as those presented in subsection 4.1.3. We fix the
homogeneous background permeability with K = 1 and consider the permeability in the barriers,
Kmin varying from 10−4 to 0.5 whereas the permeability in the high permeability channels, Kmax

varying from 10 to 104. The cutoff values considered are ζmax = ζmin = 1.

Figure 31 – Permeability field containing both high permeability channels (red) and barriers (blue). The
contrast considered vary from 10 to 108.

Source: Research data.

The relative L2(Ω) error norms for pressure and flux as function of the contrast are shown
in Figure 32 for three domain decompositions: with 4×4, 8×8 and 16×16 coarse cells. We
observe that the pressure and flux errors related to the linear interface spaces increase quickly
with the contrast. However, the errors provided by the physics-based spaces are moderate even
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for very large permeability contrasts. The results are consistent for all the domain decomposition
tested, where the smaller errors are attained by the decompositions with more subdomains. In
Figure 33 we compare the solutions provided by the aMRCM, MMMFEM and MHM considering
the domain decomposition of 8× 8 subdomains having 20× 20 fine cells into each one. The
first observation is that the MMMFEM and MHM approximations are not accurate for the
permeability field with high permeability channels and barriers even using the physics-based
interface spaces. On the other hand, the aMRCM-PBS solutions are expressively more accurate
than the ones obtained with the aMRCM-POL. The pressure and flux approximations for the
permeability contrast of 108 are shown in Figure 34 and Figure 35, respectively. The plots
confirm that the aMRCM combined with the physics-based interface spaces produces the most
accurate solutions. We observe that all methods fail when using the linear interface spaces.
We can conclude that the physics-based interface spaces are indispensable for a reasonable
approximation of pressure, flux and further applications in two-phase flows.

Figure 32 – Relative L2(Ω) pressure (left) and flux (right) errors as function of the contrast are shown for
the aMRCM-POL and aMRCM-PBS. Three domain decompositions are considered: with
4×4, 8×8 and 16×16 coarse cells. We note that the aMRCM-PBS is more accurate than
the aMRCM-POL in all the contrast and meshes considered.

Source: Research data.

Finally, we present in Figure 36 the behavior of the errors for pressure and flux as a
function of α (varying from 10−6 to 106) for the permeability contrast of 108 and maintaining
the domain decomposition of 8×8 coarse cells. We compare the MRCM errors with linear and
physics-based interface spaces. Two choices for the aMRCM are presented: setting αsmall = 10−2

and αlarge = 102 or αsmall = 10−6 and αlarge = 106. The errors for the adaptive version of the
MRCM are illustrated as horizontal lines. We note a strong dependence on the parameter α , where
the minimum errors are attained at intermediate values (for choosing α constant), similarly to
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Figure 33 – Relative L2(Ω) pressure (left) and flux (right) errors as function of the contrast are shown for
the aMRCM, MMMFEM and MHM considering both the linear and physics-based spaces.
Three domain decompositions are considered: with 4×4, 8×8 and 16×16 coarse cells. We
note that the aMRCM-PBS is more accurate than the aMRCM-POL in all the contrast and
meshes considered.

Source: Research data.

the previous works (GUIRALDELLO et al., 2018; GUIRALDELLO et al., 2019; ROCHA et al.,
2020b). But the approximations by choosing any constant value of α , even for the MRCM-PBS
are inaccurate. We remark that the MMMFEM and MHM are also included in this observation.
One can conclude that, besides the physics-based interface spaces, the aMRCM is necessary
to obtain more accurate solutions. We note that the choice of αsmall = 10−2 and αlarge = 102 or
αsmall = 10−6 and αlarge = 106 does not affect significantly the error.

These results indicate that the linear interface spaces are not robust for capturing the
effects of features as high permeability channels and barriers. Even the physics-based spaces
are not enough for complex fields if not combined with an appropriate multiscale method. In
order to study how these results are reflected in the corresponding saturation fields, in the next
subsection we present numerical results for two-phase flows.

4.3.2 Two-phase flow and transport problems

Now we focus on a study of the MRCM performance for two-phase flows using the
physics-based interface spaces for high-contrast channelized permeability fields. We introduce
the saturation comparisons with a detailed analysis of fingering instabilities to show the impact
of the design of the basis functions on the transport of the water saturation. Firstly we present
numerical results for the permeability field with high permeability channels and barriers of the
previous subsection. Then we consider a high-contrast permeability field with channels and
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Figure 34 – Pressure approximations considering the contrast of Kmax/Kmin = 108. First line, left to right:
permeability field, fine mesh, aMRCM-POL, and aMRCM-PBS solutions. Second line, left
to right: MMMFEM-POL, MMMFEM-PBS, MHM-POL, and MHM-PBS solutions. The
domain decomposition considered contains 8×8 coarse cells and is illustrated by the lines
in the plot. We note that the aMRCM-PBS approximation is the most closely related to the
reference solution followed by the aMRCM-POL.

Source: Research data.

isolated inclusions that has frequently appeared in the literature (JIANG; LI, 2017).

In all simulations the reservoir is initially filled with oil (s0 = 0) and water is injected at
a constant rate. We consider M = µo/µw set as M = 10, and the relative permeabilities given by
kro = (1− s)2 and krw = s2. The hyperbolic equation (2.2) is approximated by an explicit Euler
time integration combined with the first order upwind method. In the operator splitting approach,
we take the number of transport steps between the elliptic updates at most C = 20. We use the
extrapolation of Eq. (2.4) in our numerical experiments. The time units employed are in PVI.

4.3.2.1 High-contrast permeability field with high permeability channels and barriers

The objective of this study is to investigate the aMRCM, MMMFEM and MHM sat-
uration solutions considering the physics-based interface spaces for the high-contrast perme-
ability field with high permeability channels and barriers. We consider the permeability field
of the previous experiment, illustrated in Figure 31. We fix the highest permeability contrast
Kmax/Kmin = 108 and the domain decomposition having 8×8 subdomains, each one discretized
by 20×20 cells.

The first example considers the same slab geometry of the previous experiments, by
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Figure 35 – Flux approximations considering the contrast of Kmax/Kmin = 108. First line, left to right:
permeability field, fine mesh, aMRCM-POL, and aMRCM-PBS solutions. Second line, left
to right: MMMFEM-POL, MMMFEM-PBS, MHM-POL, and MHM-PBS solutions. The
colors refer to the log-scale flux magnitude. The domain decomposition considered contains
8×8 coarse cells and is illustrated by the lines in the plot. The only accurate procedure is the
aMRCM-PBS.

Source: Research data.

imposing the flux on the left and right boundaries and no source terms. Figure 37 shows
the permeability field (log-scaled) along with the saturation profiles at TPVI = 0.06 (before
breakthrough time) approximated by the multiscale methods with the linear and the physics-
based interface spaces. The procedure that produces a saturation solution closer to the reference
one is the aMRCM-PBS. The use of the physics-based spaces enables more accurate solutions for
the aMRCM and the MMMFEM. However, the last one is still inaccurate. The MHM solutions
are unacceptable either for linear or physics-based spaces. The corresponding relative L1(Ω)

errors throughout the simulation are presented in Figure 38. We note an expressive improvement
provided by the physics-based interface spaces combined with the aMRCM. This combination
enables the error to drop by one order of magnitude.

Now we maintain the slab geometry but using global boundary conditions of no-flow
at top and bottom boundaries along with imposed pressure on the left and right boundaries.
In Figure 39 we present the saturation profiles at TPVI = 0.0001 (before breakthrough time)
approximated by the multiscale methods with the linear and the physics-based interface spaces.
Similar results to the previous example are obtained. The corresponding relative errors throughout
the simulation are presented in Figure 40, where it is clear the improved accuracy provided
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Figure 36 – Relative L2(Ω) errors as a function of α for pressure (left) and flux (right) considering the
permeability field plotted in Figure 31 with contrast of 108 and the domain decomposition that
contains 8×8 coarse cells. The physics-based and linear spaces are compared. We include the
errors for two choices in the aMRCM: setting αsmall = 10−2 and αlarge = 102 or αsmall = 10−6

and αlarge = 106 (illustrated as horizontal lines). The improvement with the combination of
the aMRCM and the physics-based spaces is expressive.

Source: Research data.

by combining the physics-based spaces with the aMRCM. Again, the MHM solutions are not
acceptable with both interface spaces. The MMMFEM approximations improve significantly
with the physics-based spaces, however, these solutions are comparable to the aMRCM-POL
approximations.

Lastly, we test the multiscale methods in a quarter of a five-spot model, where we inject
the water at the bottom-left cell and the sink is located at the top-right cell. The saturation profiles
at TPVI = 0.09 (before breakthrough time) are shown in Figure 41. The most accurate solutions
are produced by the aMRCM considering both types of interface spaces. The MMMFEM
and MHM approximations present expressive fingering instabilities that are not present in the
fine grid solution. In Figure 42, the relative errors confirm that the aMRCM produces more
accurate solutions. It is noticeable the poor quality solutions provided by the MMMFEM and
MHM (even with the physics-based spaces), that are less accurate than the aMRCM-POL
approximation. The solutions produced by the aMRCM-PBS are much more accurate than all
the other approximations.

The high-contrast permeability fields are challenging for multiscale methods. We show
that the methods fail in a field with both high permeability channels and barriers. In all the models
previously tested, the aMRCM-PBS is the only scheme that provides satisfactory approximations.

4.3.2.2 High-contrast permeability field with channels and isolated inclusions

In this subsection, we consider a high-contrast permeability field with channels and
isolated inclusions that has frequently appeared in the literature (EFENDIEV; GALVIS; HOU,
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Figure 37 – Comparison of multiscale methods for the slab geometry with flux boundary conditions on the
left and right. Saturation profiles at TPV I = 0.06 for the permeability field with high permeabil-
ity channels and barriers are shown. First line, left to right: high-contrast permeability field
(log-scaled); reference fine grid solution; aMRCM-POL saturation profile; aMRCM-PBS
saturation profile. Second line, left to right: MMMFEM-POL saturation profile; MMMFEM-
PBS saturation profile; MHM-POL saturation profile; MHM-PBS saturation profile. The
aMRCM-PBS provides the most accurate approximation.

Source: Research data.

2013; CHUNG; EFENDIEV; LEE, 2015; CHUNG; FU; YANG, 2016; CHUNG; EFENDIEV;
LI, 2014; CHUNG; EFENDIEV; LEUNG, 2017; CHUNG; PUN, 2019; JIANG; LI, 2017). We
consider a domain Ω containing 100×100 fine grid cells divided into 5×5 subdomains. The
boundary conditions are no-flow at the top and bottom boundaries along with an imposed flux
on the left and right boundaries. No source terms are considered. The permeability contrast
considered is Kmax/Kmin = 106 and the cutoff values are set as ζmax = ζmin = 1.

Figure 43 shows the permeability field (log-scaled) containing high-permeable channels
and isolated inclusions and the saturation profiles at TPVI = 0.07 (before breakthrough). In this
example, only the pressure physics-based spaces are used to handle the high-permeable structures,
since there are no barriers. The more accurate solutions are provided by the aMRCM-PBS and
the MMMFEM-PBS. For these two methods, the figure shows that the imprecisions that happen
by using the linear spaces have completely disappeared with the physics-based spaces. The
MHM solutions are inaccurate. We remark that the MHM method provides the same solution
with the linear and the physics-based interface spaces, because this method considers only the
flux space, which is always maintained as linear for this permeability field. The relative errors
are shown in Figure 44 and reflect these observations throughout the whole simulation.
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Figure 38 – Relative L1(Ω) saturation errors as a function of time for the slab geometry with flux boundary
conditions considering the field with high permeability channels and barriers. We compare
the aMRCM, MMMFEM and MHM with both physics-based and linear spaces. We note that
the errors associated with the aMRCM-PBS are much smaller than all the others.

Source: Research data.

As a final validation, we consider the performance of the methods in dealing with the
same high-contrast permeability field replacing the type of channelized structures to barriers,
as in (JIANG; LI, 2017). Figure 45 shows the permeability field (log-scaled) containing the
low-permeable channels and the saturation profiles at TPVI = 0.33 (before breakthrough). In this
case, only the flux physics-based spaces are used, since there are only low-permeable structures.
We note a considerable improvement in the aMRCM and MHM approximations replacing the
linear interface spaces by the physics-based ones. The MMMFEM solutions present just some
modest errors if compared to the aMRCM-POL and MHM-POL approximations. We remark
that the MMMFEM solutions are the same with the linear and the physics-based interface spaces
because, this method considers only the pressure space, which is always maintained as linear
for this permeability field. The relative errors throughout the whole simulation are shown in
Figure 46. We confirm that the aMRCM-POL and MHM-POL are not accurate, the MMMFEM
provides intermediate results and the aMRCM-PBS and MHM-PBS produce the most accurate
approximations.

The numerical studies demonstrate the improvement obtained by using physics-based
interface spaces. High-contrast fields were chosen that allowed us to assess the ability of the
methods to handle problems in the presence of both high and low-permeable structures. The
results provide strong evidence that the adaptive MRCM combined with the physics-based spaces
leads to improved transport approximations in high-contrast channelized porous media.
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Figure 39 – Comparison of multiscale methods for the slab geometry with pressure boundary conditions
on the left and right. Saturation profiles at TPV I = 0.0001 for the permeability field with
high permeability channels and barriers are shown. First line, left to right: high-contrast
permeability field (log-scaled); reference fine grid solution; aMRCM-POL saturation profile;
aMRCM-PBS saturation profile. Second line, left to right: MMMFEM-POL saturation profile;
MMMFEM-PBS saturation profile; MHM-POL saturation profile; MHM-PBS saturation
profile. The aMRCM-PBS is clearly the most accurate procedure.

Source: Research data.

4.4 Discussion
Two physics-based interface spaces (one for pressure and other for flux) have been

proposed for better capturing the high-contrast effects of channelized structures. A careful
investigation has been performed for the numerical solution of single and two-phase flows by
combining the new spaces with multiscale mixed methods.

We show that the introduced physics-based pressure space can offer much better accuracy
in comparison with the usual polynomial spaces in the presence of high-permeable structures.
On the other hand, the proposed physics-based flux space can provide more accurate solutions
in comparison with the polynomial spaces in the presence of low-permeable structures. Two
well known multiscale procedures have been applied to confirm these results: the Multiscale
Mortar Mixed Finite Element Method (combined with the pressure space) and the Multiscale
Hybrid-Mixed Finite Element Method (using the flux space). Aiming at using simultaneously
both interface spaces we combine them with the MRCM, which allows for including the interface
spaces independently. With this combination, we achieve the best accuracy in the approximation
of challenging high-contrast flows in comparison with the other multiscale methods tested.
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Figure 40 – Relative L1(Ω) saturation errors as a function of time for the slab geometry with pressure
boundary conditions considering the field with high permeability channels and barriers. We
compare the aMRCM, MMMFEM and MHM with both physics-based and linear spaces.
Similarly to the previous example, the errors associated with the aMRCM-PBS are the
smallest.

Source: Research data.
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Figure 41 – Comparison of multiscale methods for the quarter of a five-spot geometry. Saturation profiles
at TPV I = 0.09 for the permeability field with high permeability channels and barriers are
shown. First line, left to right: high-contrast permeability field (log-scaled); reference fine grid
solution; aMRCM-POL saturation profile; aMRCM-PBS saturation profile. Second line, left
to right: MMMFEM-POL saturation profile; MMMFEM-PBS saturation profile; MHM-POL
saturation profile; MHM-PBS saturation profile. The aMRCM is the only procedure that
captures the details of the fingers.

Source: Research data.

Figure 42 – Relative L1(Ω) saturation errors as a function of time for the quarter of a five-spot geometry on
the field with high permeability channels and barriers. We compare the aMRCM, MMMFEM
and MHM with both physics-based and linear spaces. The errors associated with the aMRCM-
PBS are the smallest, followed by the aMRCM-POL.

Source: Research data.
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Figure 43 – Comparison of multiscale methods. Saturation profiles at TPV I = 0.07 for the permeability
field with channels and isolated inclusions. First line, left to right: high-contrast permeability
field (log-scaled); reference fine grid solution; aMRCM-POL saturation profile; aMRCM-PBS
saturation profile. Second line, left to right: MMMFEM-POL saturation profile; MMMFEM-
PBS saturation profile; MHM-POL saturation profile; MHM-PBS saturation profile. The
more accurate approximations are attained by the aMRCM-PBS and MMMFEM-PBS.

Source: Research data.

Figure 44 – Relative L1(Ω) saturation errors as a function of time on the field with channels and isolated
inclusions. We compare the aMRCM, MMMFEM and MHM with both physics-based and
linear spaces. The errors associated with the aMRCM-PBS and MMMFEM-PBS are the
smallest.

Source: Research data.
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Figure 45 – Comparison of multiscale methods. Saturation profiles at TPV I = 0.33 for the permeabil-
ity field with barriers are shown. First line, left to right: high-contrast permeability field
(log-scaled); reference fine grid solution; aMRCM-POL saturation profile; aMRCM-PBS sat-
uration profile. Second line, left to right: MMMFEM-POL saturation profile; MMMFEM-PBS
saturation profile; MHM-POL saturation profile; MHM-PBS saturation profile. A consider-
able improvement is noticed in the aMRCM and MHM approximations replacing the linear
spaces by the physics-based.

Source: Research data.

Figure 46 – Relative L1(Ω) saturation errors as a function of time on the field with barriers. We compare
the aMRCM, MMMFEM and MHM with both physics-based and linear spaces. The aMRCM-
PBS and MMMFEM-PBS produce the smallest errors.

Source: Research data.
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CHAPTER

5
THE MUTISCALE PERTURBATION

METHOD

In this chapter, we formulate and test a new procedure, the Multiscale Perturbation
Method for Two-Phase Flows (MPM-2P), to speed-up the solution of two-phase flows in porous
media approximated by an operator splitting method. The proposed procedure is based on
domain decomposition and combines the MRCM with the Multiscale Perturbation Method
(MPM) (ALSADIG et al., 2020).

A recursive formulation of the MRCM recently introduced (FERRAZ, 2019) shows
excellent scalability (both weak and strong) for the solution of second order elliptic equations.
These conclusions were reached by solving elliptic equations on state-of-the-art multi-core
devices, for problems with a few billion variables that are of interest to the oil industry. In
(FERRAZ, 2019) the solution of a second-order elliptic equation is obtained in two steps. In a
first step, for each subdomain of a decomposition of the domain of interest, a set of multiscale
basis functions (local boundary value problems of Robin type) has to be computed. Then, a
coarse interface problem defined on the skeleton of the domain decomposition needs to be solved.
It has been shown in (FERRAZ, 2019) that the time associated with the solution of the interface
problem is essentially negligible when compared to the time spent in solving the local boundary
value problems that give the multiscale basis functions. Thus, a fair assessment of the cost of the
solution of the elliptic equation by a multiscale method can be made in terms of the number of
multiscale basis functions that are computed. Our main objective in this chapter is to design a
method that can accomplish a reduction in the number of updates of multiscale basis functions
that are needed in the numerical simulation of two-phase flows.

In order to explain our approach, consider the operator splitting scheme for two-phase
flows as presented in Chapter 2. If the MRCM is applied to solve the elliptic equation, then a set
of multiscale basis functions has to be, in principle, recomputed every time the solution algorithm
calls for an updated velocity field. Thus, the development of methods that reduce the number
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of multiscale basis functions to be computed in each subdomain, without loss of accuracy, is
of great importance to speed-up the solution of two-phase flow problems. The procedure that
we introduce in this chapter has precisely this objective. The MPM-2P is based on the original
MPM (ALSADIG et al., 2020), that was introduced to approximate the velocity field by reusing
multiscale basis functions computed for a distinct pressure equation (with different, but closely
related coefficients), provided that the solutions of the two elliptic equations at hand can be
related by classical perturbation theory. The method proposed here combines the MPM with
the MRCM for two-phase flow problems. When an update of the velocity field is called by
the operator splitting algorithm, the MPM-2P may provide an accurate and computationally
inexpensive approximation for the velocity field by reusing multiscale basis functions that are
computed by the MRCM at an earlier time of the simulation. Thus, a full update of all multiscale
basis functions required by the MRCM for the construction of a new velocity field is avoided.

The formulation and a cost analysis of the MRCM-2P are presented in section 5.1,
followed by section 5.2 with the numerical experiments. Concluding remarks of the chapter
appear in section 5.3.

5.1 The Multiscale Perturbation Method for Two-Phase
Flows

We consider the operator splitting scheme for two-phase flows as presented in Chapter 2,
where pressure is updated at times tn = n∆tp, for n = 0,1, . . . , while the saturation is computed
at intermediate times tn,k = tn + k∆ts, for k = 1,2, . . . ,Cn, such that tn < tn,k ≤ tn+1. Here, we
denote by Cn the number of transport time steps between tn and tn+1.

Let pn(x), un(x) and sn(x) denote the pressure, velocity and saturation approximations
at time tn. We compute the saturation sn(x) through Eq. (2.2) by using an explicit Euler time
integration (with un−1 constant at intermediate times tn−1,k) combined with a first order upwind
method. Then, the saturation sn(x) is used to compute the pressure pn(x) and velocity un(x)
through Eq. (2.1) by applying a multiscale method. At this point, instead of calling directly the
MRCM, our operator splitting algorithm uses it in the framework of the MPM.

5.1.1 Reusing basis functions previously computed

The goal of the MPM-2P is to approximate the pressure pn(x) and velocity un(x) by
reusing the Basis Functions (BFs) that are computed by the MRCM at an earlier time of the
simulation. In order to introduce the formulation of the MPM-2P, consider that the BFs computed
at time tm (m < n) will be reused. Therefore, we have two elliptic problems: Ptm and Ptn ,
associated with times tm and tn, respectively. Following the perturbation theory presented in
(ALSADIG et al., 2020), we express the conductivity of problem Ptn as a perturbation of
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the conductivity of problem Ptm , i.e. κn = κn(x) = λ (sn(x))K(x) = κm + εκε , where ε =

||κn−κm||L2(Ω) is a small parameter that measures the difference between κn and κm from times
tn and tm, respectively, while κε = (κn−κm)/ε is an auxiliary field related to the formulation of
the MPM. Thus, the two elliptic problems at hand can be written as

Ptm :


um =−κm∇pm in Ω

∇ ·um = q in Ω

pm = g on ∂Ωp

um ·n = z on ∂Ωu

(5.1)

and

Ptn :


un =−(κm + εκε)∇pn in Ω

∇ ·un = q in Ω

pn = g on ∂Ωp

un ·n = z on ∂Ωu.

(5.2)

For simplicity, we assume that the source term and the known boundary functions depend only
on space, but time-dependent source terms and boundary data can, in principle, be considered.
Next, we write the pressure and flux of problem Ptn as perturbations of the respective pressure
and flux of problem Ptm:

pn = pm +δ pn, (5.3)

un = um +δun. (5.4)

By combining this decomposition with problem Ptn (5.2) we get the following auxiliary system
for the pair (δun,δ pn)

Pû :


û =−(κm + εκε)∇δ pn in Ω

∇ · û = q+∇ · ((κm + εκε)∇pm) in Ω

δ pn = g− pm on ∂Ωp

û ·n = z+((κm + εκε)∇pm) ·n on ∂Ωu,

(5.5)

where û = um +δun +(κm + εκε)∇pm. Although this system is well-posed, its solution is as
expensive as the direct solution of problem Ptn , so approximations are needed in order to reduce
the cost of solving this auxiliary problem.

Since our goal is to reuse the BFs computed for problem Ptm (5.1), we need to somehow
connect the solution of Pû (5.5) to the solution space of Ptm . This would allow us to write the
solution of Pû by taking advantage of the span of the precomputed BFs. To approximate δ pn

and δun, we consider the following perturbation expansions:

δ pn = δ pn
0 + εδ pn

1 + ε
2
δ pn

2 + ε
3
δ pn

3 + · · · (5.6)

and
δun = δun

0 + εδun
1 + ε

2
δun

2 + ε
3
δun

3 + · · · (5.7)
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By applying Eqs. (5.6) and (5.7) in Eq. (5.5), and considering the expansions up to term ε`, we
get the following problems for `= 0 and ` > 0, respectively:

Pû0 :


û0 =−κm∇δ pn

0 in Ω

∇ · û0 = q+∇ · ((κm + εκε)∇pm) in Ω

δ pn
0 = g− pm on ∂Ωp

û0 ·n = z+((κm + εκε)∇pm) ·n on ∂Ωu,

(5.8)

Pû`
:


û` =−κm∇δ pn

` in Ω

∇ · û` = ∇ · (κε∇pn
`−1) in Ω

δ pn
` = 0 on ∂Ωp

û` ·n = 0 on ∂Ωu,

(5.9)

where û0 = um +δun
0 +(κm + εκε)∇pm and û` = δun

` +κε∇δ pn
`−1. The problem Pû0 is asso-

ciated with ε0, while the problems Pû`
are associated with ε`, for each ` > 0.

The approach developed in (ALSADIG et al., 2020), neglects the perturbation terms
with ` > 1, since they are small enough (ε2� 1 if the perturbation in the conductivity is small
enough from time tm to time tn). We find from our numerical experiments for two-phase flows
that, even the first-order perturbation term can be neglected. We obtain accurate results when
compared to the solution given directly by the MRCM. Therefore, our numerical experiments
consider the approximation of (δun,δ pn) given by the solution of problem Pû0 (5.8), that is
associated with ε0.

We solve Eq. (5.8) to approximate (û0,δ pn
0) by using the MRCM. Note that the conduc-

tivity in this equation is κm, thus we can take advantage of the BFs computed at time tm to solve
only one local boundary value problem with trivial Robin boundary conditions for each subdo-
main. Specifically, considering the MRCM additive decomposition of the local approximations,
we only need to solve the non-homogeneous part of the solution given by Eq. (2.13). Then, the
global unknowns are given by a linear combination of the precomputed BFs, whose coefficients
are obtained by solving an inexpensive interface problem.

With the computed approximation for (û0,δ pn
0), and hence, for (δun

0,δ pn
0), we can

determine the pair (δun,δ pn). Then, we can find the solution of problem Ptn using Eqs. (5.3)
and (5.4). Let ū = um + δun denote the approximation of the velocity field at this stage. The
resulting approximation is obtained by downscaling, where ū defines fluxes on the interfaces
of the domain decomposition, which are used as boundary conditions for the following local
problems 

ũi
h =−κn∇ p̃i

h in Ωi

∇ · ũi
h = qi in Ωi

ũi
h · ň

i = ūi
h · ň

i on ∂Ωi∩∂Ω

ũi
h · ň

i = ūi
h · ň

i on Γi j ∀ j

(5.10)
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for all Ωi, i = 1,2, · · · ,N, where ũ is the final approximation for un. We remark that these local
problems are undefined up to a pressure constant. This indeterminacy is removed by imposing a
value for the pressure variable at some point of the computational domain.

5.1.2 A modified operator splitting scheme

The operator splitting scheme for two-phase flows calls for an updated velocity field at
times tn = n∆tp, for n = 0,1, . . . . We propose a modification in the algorithm to incorporate the
option of choosing between the MRCM and MPM at the elliptic solution steps.

In order to explain our modified operator splitting algorithm, let {Φm,Ψm} denote the
set of basis functions {φ1,φ2, · · · ,φNU} and {ψ1,ψ2, · · · ,ψNP} built by the MRCM to solve the
problem Ptm (5.1), associated with time tm. We compute p0 and u0 with the MRCM and store
the set of BFs {Φ0,Ψ0}, such that we can use these basis functions to solve problems Ptn (5.2),
at times t1, t2, . . . .

The closer the field κm is to the field κn, the more accurate is the approximation provided
by the MPM (ALSADIG et al., 2020). Since the field κn takes into account an updated saturation,
it can be far from κm depending on the changes due to the displacement of oil by water interface
throughout the domain. The difference between κn and κm is given by ε = ||κn−κm||L2(Ω). We
intend to impose a tolerance for ε values in the modified operator splitting scheme to control the
difference between κn and κm. For this purpose, we may need to update the BFs more than once
throughout the simulation. Thus, we propose to separate the elliptic solutions into two cases:
the case when the BFs are reused by the MPM and the case when a full update of the BFs is
required. The latter is computed directly by the MRCM.

We start a two-phase flow simulation with the solutions p0 and u0 computed by the
MRCM, and the corresponding set of BFs {Φ0,Ψ0} stored. We use these basis functions to
solve problems Ptn (5.2), at times tn = t1, t2, · · · , tm1−1, where tm1 is the first time such that
ε > η (η is the chosen tolerance). At time tm1 we compute pm1 and um1 by the MRCM and store
the updated set of BFs {Ψm1 ,Φm1}. Then, we use these BFs to solve problems Ptn , at times
tn = tm1+1, tm1+2, · · · , tm2−1, where tm2 is the next time when ε > η , hence we compute pm2 , um2

and the updated set of BFs by the MRCM. We repeat this procedure until the final simulation
time. We remark that all the equations considered by the MPM-2P are in dimensionless form,
see (ALSADIG et al., 2020; MANKAD, 2020) for more details. The MPM-2P algorithm is
summarized in Algorithm 3, where Te denotes the total of elliptic solutions computed.

5.1.3 Computational cost of the MPM-2P

To compare the computational cost of the MRCM and MPM-2P in the solution of the
elliptic equations arising within the operator splitting algorithm we start by computing the
number of BFs required by them, considering a problem with a domain decomposition with
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Algorithm 3 – Solving equations (2.1)-(2.2) by the modified operator splitting

1: Given s0(x), compute κm0=0 = λ (s0(x))
2: Compute p0(x) and u0(x) from Eq. (2.1) by using the MRCM
3: Store the set of BFs {Ψm0=0,Φm0=0}
4: Set n = 1, `= 0, and ε = η

5: while n < Te do
6: for k ∈ {1, · · · ,Cn−1} do
7: tn−1,k = tn−1 + k∆ts . tn−1 < tn−1,k ≤ tn
8: Solve Eq. (2.2) to compute s(x, tn−1,k) . Using the first order upwind method
9: end for

10: Given sn(x), update κn = λ (sn(x))
11: if ε > η then
12: `= `+1 . Counter for the updates of the BFs
13: Compute pn=m`(x) and un=m`(x) from Eq. (2.1) by using the MRCM
14: Store the updated set of BFs {Ψm`,Φm`}
15: Update κm` = λ (sn=m`(x))
16: else
17: Compute pn(x) and un(x) from Eq. (2.1) with the MPM, reusing BFs {Ψm`,Φm`}
18: end if
19: Compute ε =‖ κn−κm` ‖L2(Ω)

20: n = n+1
21: end while

N = Nx×Ny subdomains (2D). In order to find the number of BFs required for each method
in the approximation of the two-phase flow problem, let us consider that a total of Te elliptic
solutions need to be computed. Note that:

• Number of BFs required for an elliptic solution:

The number of BFs required by the MRCM in each subdomain is N̂ = 4× (kU + kP)

homogeneous BFs for each one of the edges of the subdomain, plus one non-homogeneous
basis function. This number may be less for some subdomains due to physical boundary
conditions. To compute the total amount of BFs, we multiply N̂ + 1 by the number of
subdomains N (in a serial mode implementation). Note that this estimation considers all
subdomains having the same degrees of freedom per interface, but in practice, we allow
for local choices of degrees of freedom.

The MPM requires only the calculation of the basis function for the non-homogeneous
part of the solution in each subdomain. Therefore, we have a total of N BFs.

• Number of BFs for the coupled flow and transport problem:

The number of BFs required by the MRCM for two-phase flows is (N̂ +1)×N×Te.

To compute the total of BFs required by the MPM we have to separate the cases when the
basis functions are reused from the cases when a full update is required.
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1. Let Tm be the total number of updates required by the MPM (associated with the
counter ` at line 12 of Algorithm 3). If we compute each update with the MRCM
(considering the same number of BFs), the total number of BFs required by the
updates of the MPM is (N̂ +1)×N×Tm.

2. The total of BFs computed when reusing the basis functions is (Te−Tm)×N.

Therefore, the total number of BFs computed by the MPM is [(N̂ +1)×Tm +(Te−Tm)]×
N.

To estimate the overall cost of the methods we have to consider the cost of computing
the BFs, downscaling, and a global interface problem. Let CBF , CDS and CI be, respectively, the
estimated computational cost to compute one basis function, the downscaling in a subdomain,
and the global interface problem. We define the cost estimate of the MRCM as follows:

cost(MRCM) =
[
CBF × (N̂ +1)×N +CDS×N +CI

]
×Te

≈ CBF × (N̂ +2)×N×Te.

(5.11)

This approximation follows from the fact that the computational cost of the interface problem is
typically negligible when compared to the cost of computing BFs (FERRAZ, 2019). Furthermore,
the downscaling step has essentially the same cost of computing one basis function at each
subdomain (CDS ≈ CBF ). Thus, the cost estimate of the MPM is given by:

cost(MPM) =
[(

CBF × (N̂ +1)+CDS
)
×Tm +(CBF +CDS)× (Te−Tm)

]
×N +CI×Te

≈
[
CBF × (N̂ +2)×Tm +2×CBF × (Te−Tm)

]
×N.

(5.12)

We define a quantity to indicate the relation between the computational cost of the
methods. The following quantity (referred to as Relative Gain) measures the relative cost
reduction accomplished by the MPM-2P when compared with the approximation of two-phase
flows directly by the MRCM.

Relative Gain =
cost(MRCM)-cost(MPM)

cost(MRCM)
100%

=

[(
CBF × (N̂ +2)

)
× (Te−Tm)−2×CBF × (Te−Tm)

]
×N

CBF × (N̂ +2)×N×Te
100%

=
Te−Tm

Te

[
1− 2

N̂ +2

]
100%.

(5.13)

Let us consider as an example a domain decomposition of 11×6 subdomains for the
permeability field illustrated in Figure 13 (which contains a high-permeable channel and a
low-permeable region), that is used in some of the numerical experiments below. If we consider
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the MRCM with linear interface spaces for both flux and pressure, i.e. kU = kP = 2, the number
of homogeneous BFs to be computed is N̂ = 16 per subdomain. In order to find the Relative
Gain for a two-phase flow problem, let us consider that a total of Te = 200 elliptic solutions need
to be computed. This is typically the order of the number of elliptic solutions needed to reach
water breakthrough in some of our simulations with the permeability field at hand. We find in
our numerical experiments that approximately 8 updates are required by the MPM for this type
of problem. Therefore, the Relative Gain is given by

Relative Gain =
Te−Tm

Te

[
1− 2

N̂ +2

]
100% =

200−8
200

[
1− 2

16+2

]
100%≈ 85.33%.

(5.14)
We find in our numerical studies that the MPM-2P shows outstanding speed-up. It reduces
significantly the cost of the simulation of two-phase flow problems when compared to the
traditional operator splitting combined with the MRCM. The Relative Gain of 85.33% is the
least value that we find in the numerical studies reported here, since we consider more basis
functions in other experiments, that further increases the advantage of using the MPM-2P.

5.2 Numerical experiments

In this section, we present numerical simulations to investigate the accuracy as well as
the cost of the MPM-2P. We consider challenging two-phase flow problems, with a high-contrast
permeability field (described in subsection 5.2.1), and water-oil finger growth in a homogeneous
medium (discussed in subsection 5.2.2). Some of our preliminary results obtained for slightly
simpler cases of two-phase flows considering Gaussian permeability fields are reported in
(MANKAD, 2020).

In all simulations, we set the same quadratic relative permeabilities considered in the
experiments of the previous chapters. The time is considered in PVI, and the results are presented
in terms of the number of elliptic solutions.

5.2.1 A high-contrast permeability field

The first experiment considers the high-contrast permeability field containing a high-
permeable channel and a low-permeable region illustrated in Figure 13. The domain Ω =

[0,33/12]× [0,3/2] is divided into 11×6 subdomains with 15×15 cells into each one. The flow
is established by imposing unit flow at the left boundary and zero pressure at the right boundary
along with no-flow at top and bottom. No source terms are considered. We consider that the
porous medium is initially filled with oil and water is injected at a constant rate. The viscosity
ratio is set to M = 40.

Our objective is to compare the approximations provided by the MPM-2P and the
MRCM. Concerning the MRCM, we consider the aMRCM-PBS discussed in section 4.2, which
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corresponds to the adaptive version with physics-based interface spaces. We use the physics-based
interface spaces for pressure to accommodate the high-permeable regions and the physics-based
interface spaces for flux to accommodate the barriers. Moreover, the adaptivity of the MRCM
considers αsmall = 10−2 for regions of high-permeability and αlarge = 102 for the remaining
regions (see section 4.2). We remark that the local values of α(x) are set only once in an offline
step. Figure 47 shows the map of the permeability variations at the boundaries of the subdomains.
The red color refers to regions of high-permeability, where the pressure physics-based interface
spaces are used. The cyan color denotes the regions of low-permeability, where we consider the
flux physics-based interface spaces. In the remaining subdomain boundaries we consider linear
interface spaces. The values of αsmall = 10−2 are set at the subdomain boundaries in red while
αlarge = 102 is set in all the remaining subdomain boundaries. The downscaling procedure used
is the stitch method, see (GUIRALDELLO et al., 2020) for details about this scheme.

Figure 47 – Map of the permeability variations at the boundaries of the subdomains. The red color
identifies regions of high-permeability and the cyan color represents the regions of low-
permeability. Note that the channelized structures are well captured by our procedure.

Source: Research data.

In the numerical results we have approximately 20 transport steps between successive
elliptic updates for both methods. Figure 48 shows the relative L2(Ω) errors for flux (left) and
relative L1(Ω) errors for saturation (right) as a function of the number of elliptic solutions. The
errors are computed with respect to a reference fine grid solution. In this figure, the breakthrough
time for the fine grid solution is indicated by a vertical dashed line. We compare the errors of
the MRCM and the MPM-2P with a tolerance of η = 10−2 for the values of ε , in line with
(ALSADIG et al., 2020). In both cases (computation directly by the MRCM or the MPM-2P
updates) we consider the aMRCM-POL and the aMRCM-PBS. The nodes on each of the MPM-
2P curves indicate the times when the BFs are updated. The set of BFs was computed 10 times
by the MPM-2P (the initial set plus 9 updates), that is significantly less than the total of 410 full
updates required by the MRCM. As expected, the aMRCM-PBS (and respectively the MPM-2P
that considers the aMRCM-PBS) is more accurate than the aMRCM-POL (respectively the
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MPM-2P considering the aMRCM-POL). Note that the errors of the MPM-2P are equal to the
errors of the MRCM at the updates, while the first is more accurate than the MRCM when the
BFs are reused. This result indicates that a larger value for the tolerance η can be chosen. The
MPM-2P benefits from the physics-based spaces since its advantage over the MRCM is more
significant when using these spaces rather than polynomial spaces.

Figure 48 – Relative L2(Ω) errors for flux (left) and relative L1(Ω) errors for saturation (right) as a
function of the number of elliptic solutions. We consider physics-based and polynomial
interface spaces and compare the MRCM and the MPM-2P (with η = 10−2). The nodes on
each of the MPM-2P curves indicate the times when the BFs are updated. The breakthrough
time is illustrated by a vertical dashed line. Note that the MPM-2P shows improved accuracy
using physics-based interface spaces.

Source: Research data.

In Figure 49 we include two results for the MPM-2P combined with the aMRCM-PBS:
by considering no tolerance and setting η = 0.05. If no tolerance is demand, i.e. no updates of the
BFs are made, the errors increase and cannot be bounded. In contrast, the tolerance of η = 0.05
controls the errors without requiring many updates. In this case, only three computations of the
set of BFs were needed (the initial set and two updates). The breakthrough could be simulated
with only one update, that represents an exceptional speed-up of two-phase flow simulations,
without loss of accuracy. Note that the saturation errors of the MPM-2P combined with the
aMRCM-PBS for η = 0.05 are smaller than the errors of the aMRCM-POL, which is extremely
more expensive. The behavior of ε throughout the simulation can be found in Figure 50, where
we point out the tolerance criterion controlling its values.

To close this discussion, we compare the methods in terms of their saturation profiles
in Figure 51. We show saturation plots for the fine mesh, aMRCM-POL, aMRCM-PBS, and
the MPM-2P considering η = 0.01 (combined with the aMRCM-POL and aMRCM-PBS) and
η = 0.01 (combined with the aMRCM-PBS). The profiles are taken at time TPVI = 0.06, that
corresponds to the breakthrough time, i.e. 205 elliptic solutions. Note that the improvement
provided by the aMRCM-PBS to the aMRCM-POL is reflected by the MPM-2P, that uses
these methods for the updates (for η = 0.01). The procedures that produce a saturation solution
closer to the reference are the aMRCM-PBS and the MPM-2P that uses the aMRCM-PBS and
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Figure 49 – Relative L2(Ω) errors for flux (left) and relative L1(Ω) errors for saturation (right) as a
function of the number of elliptic solutions. We consider physics-based interface spaces and
compare the MRCM and the MPM-2P (with no tolerance, η = 0.01, and η = 0.05). The
nodes on each of the MPM-2P curves indicate the times when the BFs are updated. The
breakthrough time is illustrated by a vertical dashed line. Note that the MPM-2P does not
require many updates, and its errors are controlled by the tolerance criteria for ε .

Source: Research data.

Figure 50 – Behavior of ε throughout the simulation controlled by three different tolerance criteria (no
tolerance, η = 0.01, and η = 0.05).

Source: Research data.

considers η = 0.01. We remark that the latter is much less expensive than the first. The MPM-2P
that uses the aMRCM-PBS and considers η = 0.05 is even less expensive, demonstrating only
small inaccuracies when compared to the approximation with tolerance η = 0.01. Therefore,
it is possible to produce an approximation of two-phase flows with accuracy controlled by a
tolerance criterion for ε in addition to novel, unprecedented reduction of the computational cost.

5.2.2 Water-oil finger growth in a homogeneous medium

In this experiment, we test the MPM-2P in a case with an unstable interface of oil-water
in a homogeneous medium. We consider an injection of water at the left boundary of the domain
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Figure 51 – Saturation profiles at breakthrough time TPVI = 0.06 (that corresponds to 205 elliptic solu-
tions). First line, left to right: fine grid solution; aMRCM-POL; aMRCM-PBS. Second line
considers the MPM-2P, left to right: using the aMRCM-POL for the updates with η = 0.01;
using the aMRCM-PBS for the updates with η = 0.01; using the aMRCM-PBS for the
updates with η = 0.05. Note that the improvement provided by the aMRCM-PBS to the
aMRCM-POL is reflected by the MPM-2P.

Source: Research data.

Ω = [0,3]× [0,1/2], with an initial front fully saturated of water at the left and filled with oil
at the right. The water front has a small perturbation at the center of the channel, as shown
in Figure 52. This is a 2D Riemann problem with physical instabilities, similar to the studied
in (GLIMM; MARCHESIN; MCBRYAN, 1981), where the authors have shown that a finger
grows at the center of the channel and evolves in time for a viscosity ratio of M = 4. Here we
consider the same value M = 4, that is close to the critical value for unstable flows (M ≈ 2.657)
as described in (FURTADO; PEREIRA, 2003). The boundary conditions considered are no-flow
at the top and bottom along with an imposed pressure p = 0 on the left and p = −104 on the
right boundaries. Furthermore, no source terms are considered.

Figure 52 shows the saturation evolution for times TPVI = 0.00, 0.03, 0.19, 0.39, 0.66
(corresponding to 1, 100, 600, 1100, and 1600 elliptic solutions, respectively), from top to
bottom. The reference fine grid solution (left) and the MPM-2P approximation (right) are
compared. The MPM-2P uses a domain decomposition of 15×5 subdomains, with 20×10 cells
into each one. A full set of BFs is computed by the MRCM at the update steps required by
the MPM-2P, which consider the tolerance of η = 0.01. Therefore, we do not have multiscale
inaccuracies associated with the MRCM in this comparison (the MRCM produces the fine grid
pressure solution). Inaccuracies associated with the operator splitting are reduced by setting
Cn = 1, ∀n. We note that the MPM-2P and the fine grid approximations are closely related.

The relative L2(Ω) error for flux and relative L1(Ω) error for saturation as a function of
the number of elliptic solutions can be found in Figure 53. A total of Te = 2000 elliptic solutions
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are considered, of which 63 correspond to updates of the BFs (indicated by the nodes). The trend
of quickly increasing errors until the breakthrough time (that is illustrated by a dashed line) was
controlled by the updates of the BFs. Note that a drop in the error for flux occurs every update.
Even for this complex problem with physical instabilities, the MPM-2P decreases the number
of full updates of the set of BFs from 2000 to 63. These results confirm the great potential the
MPM-2P to reduce drastically the computational cost of two-phase flow simulations, without
loss of accuracy.

Figure 52 – Saturation evolution for the Riemann problem with a small perturbation of the initial water-oil
interface at the center of the domain. We show the fine grid solution (left) and the MPM-
2P approximation (right) at times TPVI = 0.00, 0.03, 0.19, 0.39, 0.66 (corresponding to
1, 100, 600, 1100, and 1600 elliptic solutions, respectively), from top to bottom. Note that
the MPM-2P and the fine grid approximations are very close to each other.

Source: Research data.

5.3 Discussion
The MPM-2P is proposed to speed-up the numerical simulation of two-phase flows in

porous media.

Our numerical results are very encouraging. We consider challenging two-phase flow
simulations and we find that the MPM-2P can reduce significantly the computational cost of the
simulations, without loss of accuracy. The water breakthrough can be simulated with very few
updates of the MRCM set of basis functions. The errors produced by the MPM-2P are at least
comparable to the typical values of error attained by multiscale methods.

Although the new method is presented for two-phase flows it can also be applied to other
types of flows, as well as to the sequential implicit solution of multiphase flows. Other multiscale
mixed methods instead of the MRCM can also be considered in a straightforward manner.
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Figure 53 – Relative L2(Ω) error for flux and relative L1(Ω) error for saturation as a function of the
number of elliptic solutions for the Riemann problem with a small perturbation at the center
of the domain. The trend of quickly increasing errors until the breakthrough time (illustrated
by a dashed line) was controlled by the updates of the BFs (indicated by the nodes).

Source: Research data.
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CHAPTER

6
A SEQUENTIAL IMPLICIT SOLVER

In all the previous chapters we have considered the approximation of the non-linear
two-phase flows model by an operator splitting technique that uses explicit schemes. In this
chapter, we consider an implicit scheme in a sequential fashion (WATTS, 1986). The implicit
formulations allow for the use of arbitrarily large time steps when compared to explicit time
integration approaches, especially in the presence of strong heterogeneities (JENNY; TCHELEPI;
LEE, 2009; WANG; TCHELEPI, 2013).

We propose to test the performance of the MRCM combined with the Sequential Implicit
(SI) approach for the transport problem (WATTS, 1986). The accuracy and efficiency of the
proposed combination are investigated through numerical simulations of two-phase flows in
heterogeneous reservoirs.

In the next section, we present the numerical approximations for the SI algorithm to
solve the coupled equations (2.1)-(2.2). Then, we show our experimental results and discussions.

6.1 The sequential implicit scheme

In the SI algorithm, each time step consists of a sequential update for the coupled
problems of flow and transport, where a (nonlinear) Newton loop is used to solve the transport
problem implicitly. We denote by ∆t the time step used to update the coupled problems of flow
and transport at times tn = n∆t, for n = 0,1, . . . , while ν refers to the iteration levels of the
Newton loop for saturation.

Let pn(x), un(x) and sn(x) denote the pressure, velocity and saturation approximations for
p(x, tn), u(x, tn) and s(x, tn) respectively, at time tn. The pressure pn+1(x) and velocity un+1(x)
are sequentially updated by Eq. (2.1) using the saturation sn+1(x). The saturation sn+1(x) is
computed through Eq. (2.2) by using a simple implicit Euler time integration considering u
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constant in time as follows

sn+1− sn

∆t
+∇ ·

(
f (sn+1)un)= 0. (6.1)

We solve Eq. (6.1) by the Newton method, where the saturation at the new time level is taken when
the maximum absolute change in the saturation between two successive iterations is less than a
specified tolerance η . Specifically, we consider sn+1,ν=0 = sn and compute Newton iterations
until the convergence criterion max |sn+1,ν+1− sn+1,ν | ≤ η . Then, we take sn+1 = sn+1,ν+1.

To find sn+1,ν+1 through the transport equation

sn+1,ν+1− sn

∆t
+∇ ·

(
f (sn+1,ν+1)un)= 0, (6.2)

we consider a finite volume discretization of the form

sn+1,ν+1
I = sn

I −
∆t
∆x

(
F n+1,ν+1

I

)
, (6.3)

where I refers to a computational cell of an orthogonal, uniformly spaced (by directions) grid
identified as an index (I = (i, j) in 2D and I = (i, j,k) in 3D), and ∆x represents the characteristic
size of I (∆x = (∆x,∆y) in 2D and ∆x = (∆x,∆y,∆z) in 3D). Here, F n+1,ν+1

I is a function of
f (sn+1,ν+1) and un, that represents the balance of quantities at the faces of cell I. Considering
the following linearization

F n+1,ν+1 = F n+1,ν +

(
dF

ds

)n+1,ν (
sn+1,ν+1− sn+1,ν), (6.4)

we have [
sn+1,ν+1− sn +

∆t
∆x

(
F n+1,ν +

(
dF

ds

)n+1,ν (
sn+1,ν+1− sn+1,ν))]

I

= 0 (6.5)

that leads to[
∆t
∆x

F n+1,ν + sn+1,ν − sn +

(
∆t
∆x

(
dF

ds

)n+1,ν

+1

)(
sn+1,ν+1− sn+1,ν)= 0

]
I

. (6.6)

Equation (6.6) can be written as

H (sn+1,ν)+H ′(sn+1,ν)
(
sn+1,ν+1− sn+1,ν)= 0, (6.7)

where
H (sn+1,ν) =

[
∆t
∆x

F n+1,ν + sn+1,ν − sn
]

I
(6.8)

and H ′(sn+1,ν) is the Jacobian matrix. Therefore, the approximation of sn+1,ν+1 can be found
by solving the linearized system

H ′(sn+1,ν) δ
ν =−H (sn+1,ν), (6.9)
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where δ ν = sn+1,ν+1− sn+1,ν .

We consider a modification of the Newton iteration scheme proposed in (JENNY;
TCHELEPI; LEE, 2009) to ensure the convergence for any time step size. This modification was
introduced to deal with Newton initial guesses that are on the opposite side of the saturation
inflection-point concerning the saturation solution. To ensure the convergence of the Newton
iterative process two successive saturation updates are made on the same side of the saturation
inflection-point. Hence, if an update would cross the inflection-point, selective under-relaxation is
applied, i.e., if f ′′(sn+1,ν+1) f ′′(sn+1,ν)< 0, then sn+1,ν+1 = (sn+1,ν+1+sn+1,ν)/2. Additionally,
it is necessary to enforce the constraint 0≤ sn+1,ν+1 ≤ 1 after every iteration, that is justified by
the physics of the problem (JENNY; TCHELEPI; LEE, 2009).

Other developments of the modified Newton method include the use of trust-regions
related to the flux function to guide the Newton iterations (WANG; TCHELEPI, 2013), and
the development of a numerical trust-region solver, that is based on the discretized flux func-
tion (LI; TCHELEPI, 2015). However, in our context (two-phase flows without gravity and
capillary effects) the infection-point strategy can be seen as a particular case of the above cited
improvements.

The procedure to compute the approximate solutions for saturation sn+1(x), velocity
un+1(x) and pressure pn+1(x) from the solutions at time tn, is described in Algorithm 4.

Algorithm 4 – Solving equations (2.1)-(2.2) by the SI algorithm

1: Given sn(x), pn(x) and un(x) computed from previous time step
2: ν = 0
3: sn+1,ν = sn

4: step_size = η

5: while step_size≥ η do
6: Solve Eq. (6.9) to compute sn+1,ν+1 . Newton linearization
7: if sn+1,ν+1 > 1 or sn+1,ν+1 < 0 then
8: Fix sn+1,ν+1 ∈ [0,1]
9: end if

10: if f ′′(sn+1,ν+1) f ′′(sn+1,ν)< 0 then . Fixing the saturation inflection-point
11: sn+1,ν+1 = (sn+1,ν+1 + sn+1,ν)/2
12: end if
13: step_size = max |sn+1,ν+1− sn+1,ν |
14: ν = ν +1
15: end while
16: sn+1 = sn+1,ν+1

17: Given sn+1(x), update λ (sn+1(x))
18: Solve Eq. (2.1) to obtain pn+1(x) and un+1(x)
19: Make n← n+1 and return to step 1

We consider here a first order upwind scheme to define F n+1,ν
I . For example, in 2D we
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have

F n+1,ν
I = F n+1,ν

i, j =
∆t
∆x

(
Fn+1,ν

i+1/2, j−Fn+1,ν
i−1/2, j

)
− ∆t

∆y

(
Gn+1,ν

i, j+1/2−Gn+1,ν
i, j−1/2

)
, (6.10)

with discrete fluxes Fn+1,ν
i−1/2, j and Gn+1,ν

i, j−1/2 on respective interfaces xi−1/2 and y j−1/2 given by

Fn+1,ν
i−1/2, j =

{
f n+1,ν
i−1, j ux

i−1/2, j if ux
i−1/2, j > 0

f n+1,ν
i, j ux

i−1/2, j otherwise
(6.11)

and

Gn+1,ν
i, j−1/2 =

{
f n+1,ν
i, j−1 uy

i, j−1/2 if uy
i, j−1/2 > 0

f n+1,ν
i, j uy

i, j−1/2 otherwise
(6.12)

where ux = ux(x,y) and uy = uy(x,y) denote the x and y components of the velocity field u, and
f n+1,ν
i, j = f (sn+1,ν

i, j ). The variable sn+1,ν
i, j = s(xi,y j, tn+1) represents the saturation (assumed to be

a piecewise constant over each computational cell) at time t = tn+1 and at Newton iteration ν .

6.1.1 Implicit versus explicit

The modified Newton method considered is unconditionally convergent, allowing for
arbitrary sizes of time steps. Thus, the choice for the size of the time step is based only on
accuracy requirements.

One can take much larger time steps with the implicit method when compared to explicit
schemes. This is illustrated in Figure 54, where we compare the convergence of the saturation
provided by the modified Newton method (implicit) and by the explicit operator splitting scheme
considered in the previous chapters. Here, the explicit approach fixes the same time step size
for both elliptic and hyperbolic equations and does not use extrapolations of the velocities. We
consider a high-contrast permeability field with a flow established by imposing flux boundary
conditions from left to right and no-flow at top and bottom. The domain Ω = [0,1]× [0,1] (with
30×30 fine grid cells) is initially filled with oil and water is injected at a constant rate. In this
chapter, we set the tolerance of the size of step as η = 10−6, the viscosity ratio M = 10, and
the same quadratic relative permeabilities considered in all the experiments of the previous
chapters. Figure 54 shows the log-scaled permeability filed (left), the saturation solution at the
final time TPVI = 0.0625 (center), and the relative L1(Ω) error for saturation as a function of the
size of the time step (right). The time steps considered have size varying from ∆t = 9.75×10−6

to ∆t = 1.25×10−3, while the reference solutions consider ∆t = 10−6 (the time is expressed
in PVI). We compute the error for the explicit (respectively implicit) scheme considering the
explicit (resp. implicit) reference. The L1 difference between the explicit and implicit references
is approximately 10−6. One can note that the errors are essentially the same for the time step
sizes smaller than the CFL restriction (∆t ≤ ∆tCFL ≈ 7.8×10−5). The explicit scheme cannot
handle ∆t > ∆tCFL, while the implicit method maintains the same behavior (linear slope) for the
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Figure 54 – Log-scaled permeability field (left), saturation reference solution at the final time TPVI =
0.0625, and the relative L1(Ω) error for saturation as a function of the size of the time
step (right). The convergence behavior of the explicit and implicit schemes is the same for
∆t ≤ ∆tCFL (linear slope), while only the implicit approximation is possible for larger sizes of
time steps. The L1 difference between the explicit and implicit references is approximately
10−6.

Source: Research data.

larger sizes of time steps. The average number of required Newton iterations per time step for
the cases simulated vary from 2.36 for the smallest time step size to 6.5 for the largest one.

We remark that the time step restrictions in explicit discretizations can be avoided for the
elliptic problem by using the operator splitting technique with larger time steps for the elliptic
equation than those used for the hyperbolic problem, as we have considered in the previous
chapters.

6.1.2 Alternatives to the implicit solver

The modified Newton solver described above can bee seen as a trust-region method that
defines different saturation regions delineated by the inflection-point. The updates are performed
such that two successive iterations cannot cross any trust-region boundary. A more general
trust-region Newton method, that adds buoyancy and capillary effects, is presented in (WANG;
TCHELEPI, 2013). In this subsection, we investigate trust-region methods based on least-square
algorithms (NOCEDAL; WRIGHT, 2006) for the implicit solver.

Nonlinear equations are closely related to nonlinear least-squares problems. We consider
trust-region methods to define the iterative step of the implicit solver by minimizing a model
function in a selected region (YUAN, 2015). To explain the approach, consider the unconstrained
minimization problem

min
x∈Rn

ϕ(x), (6.13)

where ϕ : Rn 7−→ R is the objective function to be minimized. The trust-region algorithm
at iteration ν consists in finding a candidate direction of search d by solving the following
subproblem

min
d
{mν(d); ‖ d ‖≤ ∆

ν , d ∈ Rn}, (6.14)
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where mν is a model function that represents ϕ near the current point xν and ∆ν is the trust-
region radius, that is adjusted every iteration to produce a sufficient decreasing approximation
(ϕ(xν +d) < ϕ(xν)). The model function is usually defined to be a quadratic function of the
form

mν(d) =
1
2

dT Bνd+dT
∇ϕ(xν), (6.15)

where Bν is the Hessian matrix ∇2ϕ(xν) or an approximation to it (NOCEDAL; WRIGHT,
2006).

We consider a trust-region reflective algorithm, that restricts d to a two-dimensional
trust-region subspace spanned by the gradient direction ∇ϕ(xν) and the Newton direction
Bνd =−∇ϕ(xν) (BYRD; SCHNABEL; SHULTZ, 1988). The Newton system is computed by
applying the preconditioned conjugate gradient method (BRANCH; COLEMAN; LI, 1999).

In the context of nonlinear system of equations of the form H (s) = 0, the model function
is a scalar-valued function obtained by combining the components of the vector H . For example,
we have the following trust-region subproblem

min
d

{
mν(d) =

1
2

∥∥H (sν)+H ′(sν)d
∥∥2

2 ; ‖ d ‖≤ ∆
ν , d ∈ Rn

}
, (6.16)

for the Newton iteration of Eq. (6.9) (skipping the time notation) (CONN; GOULD; TOINT,
2000).

We consider a trust-region dogleg algorithm to compute the search direction from a
combination of Cauchy and Newton steps, as presented in (POWELL, 1968). The Cauchy step d̃
minimizes the model function mν in Eq. (6.16) along the steepest descent direction (direction
of the negative gradient), while the Newton step δ ν is given by the iteration of Eq. (6.9). The
dogleg algorithm chooses d = d̃+ χ(δ ν − d̃), where χ is the largest value in [0,1] such that
‖ d ‖≤ ∆ν . Additionally, we consider the Newton method with a global under-relaxation factor
of 0.5 and refer to the modified Newton method with under-relaxation at the inflection-points as
the local under-relaxation scheme. The Newton method with global under-relaxation is stable,
but requires significantly more iterations to converge when compared to the Newton method
with local under-relaxation (JENNY; TCHELEPI; LEE, 2009).

6.2 Numerical experiments

In this section, we present numerical experiments to study the performance of the
implicit solver in the approximation of two-phase flows. Initially, we compare the implicit
approximations provided by the trust-region algorithms mentioned above. Then, we consider a
multiscale approximation, where we combine the MRCM with the sequential implicit solver.

We consider the same numerical set-up of the experiment in subsection 6.1.1, changing
only the permeability field and, consequently, adapting the domain and time step.
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6.2.1 A comparison of implicit solutions

We investigate the behavior of the trust-region algorithms for a two-phase flow problem.
We consider a permeability field given by K(x) = 0.8e4.5ξ (x), where ξ (x) is a self similar
Gaussian distribution having zero mean and the covariance function given by C(x,y) = |x−
y|−1/2. For this field, the permeability contrast is Kmax/Kmin ≈ 106 and the computational grid
has 64×64 cells distributed in Ω = [0,1]× [0,1]. Figure 55 shows the log-scaled permeability
field (left) and the convergence histories of one time step of size ∆t = 0.008≈ 40∆tCFL (right).
We note that the number of required iterations for the Newton method with local under-relaxation
is the smallest, followed by the trust-region reflective and dogleg schemes, which present a
similar performance. The Newton method with global under-relaxation is the procedure that
requires more iterations to converge. A related result comparing the Newton method with local
and global under-relaxation has been presented in (JENNY; TCHELEPI; LEE, 2009).

Figure 55 – Log-scaled permeability field (left) and convergence histories of one time step of size ∆t =
0.008≈ 40∆tCFL (right). The Newton method with local under-relaxation is the procedure
that requires the smallest number of iteration.

Source: Research data.

In order to investigate the behavior of the methods over time, we show in Figure 56 the
number of iterations required in a simulation with final time TPVI = 0.5. Different choices of size
of time step (related to ∆tCFL ≈ 1.9×10−4) are considered. We present results for ∆t chosen
as 10∆tCFL, 40∆tCFL, 160∆tCFL and 640∆tCFL, which generate, respectively, 256, 64, 16 and 4
time steps. Typically, the first time step requires more iterations than the following steps. For
small values of ∆t, the Newton methods with global and local under-relaxation require more
iterations than the trust-region reflective and dogleg schemes. On the other hand, the Newton
method with local under-relaxation requires fewer iterations than all the other procedures (that
are comparable) for the largest value of ∆t. These results are summered in Figure 57, where the
total accumulated of iterations is shown.

Next, we consider the layer number 36 of the SPE10 project, that has a high-permeable
channel and permeability contrast of Kmax/Kmin ≈ 106. The domain for this example is Ω =
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Figure 56 – Number of iteration required as a function of time (in PVI). Different choices of size of time
step as multiples of ∆tCFL are shown.

Source: Research data.

Figure 57 – Total accumulated of iterations at the final time TPVI = 0.5 for different choices of size of
time step. Note that the Newton method with local under-relaxation is the procedure that
requires fewer iterations for the largest ∆t considered.

Source: Research data.

[0,11/3]× [0,1] with 220×60 fine grid cells. Figure 58 shows the total accumulated of iterations
until time TPVI = 0.11 for different sizes of time step taken as multiples of ∆tCFL ≈ 1.3×10−5.
We start with ∆t = 32∆tCFL (that corresponds to 256 time steps) and multiply by two until
∆t = 4096∆tCFL (that corresponds to 2 time steps). We note a clear advantage in the number of
iterations for the Newton method with local under-relaxation when ∆t increases. From the two
examples reported, we can conclude that the trust-region reflective and dogleg schemes are more
competitive for sizes of time step chosen as tens of ∆tCFL, while the Newton method with local
under-relaxation is the best choice for sizes of time step selected as hundreds or thousands of
∆tCFL. The Newton method with global under-relaxation, as expected, requires more iterations
to converge than the Newton method with local under-relaxation. However, it performs better
than the trust-region reflective and dogleg algorithms for large sizes of time step.

Figure 59 shows a comparison of the saturation profiles at time TPVI = 0.11 approximated
by the Newton method with local under-relaxation. We exhibit saturation maps provided by
different sizes of time step. Note that all solutions are consistent with the physics of the problem.
Therefore, the choice of the size of the time step is based only on accuracy requirements.
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Figure 58 – Total accumulated of iterations until time TPVI = 0.11 for different choices of size of time
step. The Newton method with local under-relaxation requires fewer iterations than the other
procedures for large sizes of time step.

Source: Research data.

To close this discussion, we perform a convergence study by setting the solution computed
with ∆t = ∆tCFL as reference. We compute the errors of each method considering its own
reference solution. Figure 60 shows the convergence of the methods, where we note the same
behavior (linear slope) for all of them. We remark that linear is the expected slope, once we
compute the time discretization by the first order implicit Euler method.

6.2.2 A multiscale solution

In this section, we consider the MRCM for approximating nonlinear two-phase flows.
Since high-contrast channelized formations are challenging for multiscale methods, we repeat the
previous experiment on layer number 36 of the SPE10 field. We apply the pressure physics-based
interface space presented in Chapter 4 to better represent the solution at the high-permeable
structure. We investigate the accuracy of the MRCM combined with the SI approach by using
the Newton method with local under-relaxation, that we show to be adequate for large values
of size of time step. This choice is based only on terms of the number of iterations since all the
algorithms considered provided similar accuracy.

Concerning the MRCM, the flux interface space is linear as well as the pressure space at
the interfaces that do not cross the high-permeable channel. We set α = 10−2 at the interfaces
that cross the channel and α = 102 at the remaining interfaces by using the adaptive version of
the MRCM (ROCHA et al., 2020b). The downscaling procedure used to compute a conservative
solution for the MRCM approximation is the stitch method (GUIRALDELLO et al., 2020).

Figure 61 shows the total accumulated of iterations until time TPV I = 0.11 for the different
choices of size of time step. We present the number of iterations provided by the SI scheme when
combined with the MRCM for a domain decomposition of 11× 3 subdomains with 20× 20
cells into each one. We include the number of iterations of the SI scheme combined with the
fine mesh approximation (in space) as presented in the previous subsection. We note that the
number of iterations required by the MRCM is comparable to the demanded by the fine mesh
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Figure 59 – Saturation profiles at time TPVI = 0.11 approximated by the Newton method with local under-
relaxation considering different sizes of time step. The choice of the size of the time step is
based only on accuracy requirements.

Source: Research data.

procedure. Therefore, the sequential implicit solver does not suffer from an increase in the
number of iterations when combined with the MRCM.

A comparison of the saturation profiles at time TPVI = 0.11 approximated by the MRCM
and fine mesh procedures is displayed in Figure 62. We present saturation maps provided by
different sizes of time step. For each choice of ∆t we note that the MRCM and fine mesh
approximations are closely related. Note that there are no inaccuracies originated strictly by the
multiscale approximation.

The convergence study is reported in Figure 63, where we consider as reference the
approximation computed with ∆t = 32∆tCFL. The same behavior (linear slope) is attained
when the error of each procedure considers its own reference solution. We add the error of
the MRCM considering as reference the fine mesh solution with ∆t = 32∆tCFL. In this curve,
the multiscale imprecisions are relevant when ∆t < 512∆tCFL, while the error of the transport
procedure is dominant for larger choices of size of time step. If we compute the error of the
MRCM approximation considering as reference the respective fine mesh solution with the same
time discretization we obtain an error of the order 3×10−2 for all ∆t, that is consistent with the
dominant multiscale error observed on the convergence curve.
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Figure 60 – Convergence study by setting the solution computed with ∆t = ∆tCFL as reference. Each
method considers its own reference solution. We note the same behavior (linear slope) for all
methods.

Source: Research data.

Figure 61 – Total accumulated of iterations until time TPVI = 0.11 for the SI scheme combined with the
MRCM and fine mesh approximations. The number of iterations required by the MRCM is
comparable to the demanded by the fine mesh procedure.

Source: Research data.

To close this section, we report in Figure 64 the errors of the previous experiment as a
function of time. We show relative errors of flux and saturation for the MRCM (solid lines) and
fine grid (dashed lines) approximations considering different choices of size of time step. The
reference is the fine grid solution with ∆t = 32∆tCFL. The flux error is computed as usual: at
each time we divide the L2 norm of the difference by the L2 norm of the reference at the same
time. The saturation error (for this plot) divides the L1 norm of the differences by the maximum
absolute of the reference on time, avoiding divisions by very small values at the beginning of
the simulation. We note that the error curves do not vary significantly over time. This result
shows that the observations from the convergence study for saturation (at time TPVI = 0.11) are
maintained throughout the simulation. The flux errors of the MRCM are essentially the same for
all ∆t, whereas the fine grid errors decrease with the size of the time step.
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Figure 62 – Saturation profiles at time TPVI = 0.11 approximated by the MRCM and fine mesh procedures
considering different sizes of time step. The approximations provided by the MRCM and fine
mesh approaches are closely related for each size of time step.

Source: Research data.

6.3 Discussion

We investigate the solution of two-phase, oil-water flows in heterogeneous porous media.
Firstly, we tested the SI solver with different trust-region algorithms. We show that the trust-
region reflective and dogleg schemes are appropriated when the size of the time step is chosen as
tens of the ∆tCFL, while the Newton methods with local and global under-relaxation are adequate
to handle sizes of time step chosen as hundreds or thousands of the ∆tCFL.

Then, we combined the MRCM with the SI solver considering the Newton method with
local under-relaxation. The numerical experiments provide that the results produced by the
MRCM are accurate and robust for the simulation of two-phase flows when combined with the
implicit hyperbolic solver. This is a promising result in terms of computational efficiency since
the MRCM can take advantage of state-of-the-art parallel machines and produce two-phase flow
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Figure 63 – Convergence study by setting the solution computed with ∆t = 32∆tCFL as reference. We
compare the MRCM errors considering its own reference and the fine grid reference solution.
The multiscale imprecisions are relevant for choices of ∆t < 512∆tCFL, while the error of the
transport procedure is dominant for larger choices of size of time step.

Source: Research data.

Figure 64 – Relative errors of flux (left) and saturation (right) for the MRCM (solid lines) and fine grid
(dashed lines) approximations considering different choices of size of time step. The reference
solution is the fine grid approximation with ∆t = 32∆tCFL. We note that the error curves do
not vary significantly over time.

Source: Research data.

simulations with a reduced computational cost.

The SI algorithm produces satisfactory results in the context of two-phase flows without
gravity and capillary effects. However, the semi-implicit treatment of the velocity can generate
material balance errors in more complex models (AZIZ; SETTARI, 1979). The Sequential Fully
Implicit (SFI) scheme, developed in the Multiscale Finite Volume Method framework (JENNY;
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LEE; TCHELEPI, 2006) is an option to deal with this issue. See also (JIANG; TCHELEPI,
2019) for developments on nonlinear acceleration techniques. The results provided by the SFI
and the SI methods are closely related in the context of this chapter, however, the SFI algorithm
should be considered to further apply the MRCM to more complex models.
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CHAPTER

7
CONCLUSIONS AND FUTURE WORK

This thesis has addressed a careful assessment of the MRCM for the numerical solution
of two-phase, oil-water flows in heterogeneous, high-contrast porous media. Moreover, we have
investigated different techniques to enhance the approximation of two-phase flows in terms of
accuracy and computational efficiency.

We have shown in Chapter 3 that the improved accuracy of the MRCM for single-
phase flow problems in the approximation of velocity and pressure fields is also observed
for the saturation field. Thus, the original findings for the MRCM are fully preserved in the
approximation of two-phase flows. We have introduced an adaptivity strategy for setting the
Robin algorithmic parameter of the MRCM to capture the permeability variations. Our numerical
simulations of two-phase flows present an unprecedented accuracy, in that we produce better
solutions for problems with high-contrast permeability coefficients when compared to solutions
obtained with some standard multiscale mixed methods.

In Chapter 4, the adaptive MRCM has been combined with new interface spaces based
on physics for better capturing the high-contrast effects of channelized structures. We have
introduced two physics-based interface spaces (one for pressure and other for flux) to deal with
permeability fields in the simultaneous presence of high permeability channels and barriers. The
features of the proposed approach have been investigated through several numerical simulations
of single-phase and two-phase flows, in different heterogeneous porous media. We show that the
considered multiscale mixed methods combined with the new interface spaces are significantly
more accurate than when combined with polynomial spaces.

The MPM-2P has been proposed in Chapter 5 to speed-up the numerical simulation of
two-phase flows in porous media. We formulate a modified operator splitting method, where we
replace full updates of local solutions by reusing basis functions computed by the MRCM at an
earlier time of the simulation. Our numerical experiments demonstrate a significant reduction of
the computational cost in the approximation of challenging two-phase flow problems, while the
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accuracy is controlled by a tolerance criterion.

Finally, in Chapter 6, the MRCM has been tested in a sequential implicit scheme for
two-phase flow problems. The new approach allows for the use of arbitrarily large time steps
when compared to explicit time integration methods, improving the efficiency of the simulation.
We show that the MRCM produces accurate solutions when combined with different hyperbolic
solvers, including sequential implicit techniques.

The MRCM for two-phase flows as presented here can take advantage of state-of-the-art
supercomputers, its computational cost is comparable to existing procedures, and it presents
accurate and robust approximations for realistic problems. The contributions of this thesis are
summarized in section 7.1, followed by section 7.2, with the plans for future work.

7.1 Contributions
The contributions generated during the doctoral period are listed below.

7.1.1 Main contributions

• Two-phase flows in porous media with the MRCM: Chapter 2 and Chapter 3.

– The first study of the MRCM for two-phase flows;

– A throughout comparison of multiscale mixed methods for two-phase flows in porous
media;

– New adaptivity strategy for an important algorithmic parameter of the MRCM;

– Evidence of improved accuracy for two-phase flows in realistic permeability fields.

These chapters are based on the publication “Multiscale mixed methods for two-phase
flows in high-contrast porous media" produced in collaboration with Fabricio S. Sousa,
Roberto F. Ausas, Gustavo C. Buscaglia, and Felipe Pereira (ROCHA et al., 2020b).

• Interface spaces based on physics for multiscale mixed finite element methods: Chapter 4.

– New interface spaces to deal with permeability fields in the simultaneous presence of
high permeability channels and barriers;

– Adaptivity of the MRCM is used to set the appropriate pressure and flux spaces at
each interface of the decomposition of the domain;

– Multiscale mixed methods combined with the new interface spaces are significantly
more accurate than when combined with polynomial spaces;

– Evidence of improved accuracy is provided for both single and two-phase flows in
high-contrast permeability fields.
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This chapter is based on the manuscript “Interface spaces based on physics for multiscale
mixed methods applied to flows in channelized porous media" produced in collaboration
with Fabricio S. Sousa, Roberto F. Ausas, Felipe Pereira, and Gustavo C. Buscaglia and
submitted to a renowned international journal (ROCHA et al., 2020a).

• Approximation of two-phase flows by the Multiscale Perturbation Method: Chapter 5.

– MPM-2P introduced to speed-up the numerical solution of two-phase flow problems;

– Modified operator splitting method to reduce the computational cost of the simulation
of the two-phase flows;

– Replaces full updates of local solutions by reusing basis functions computed by the
MRCM at an earlier time of the simulation;

– Accuracy controlled by a tolerance criterion;

– Evidence of improved efficiency for challenging two-phase flow problems.

This chapter is based on the manuscript “The Multiscale Perturbation Method for Two-
Phase Flows in Porous Media" in preparation with the collaboration of Het Mankad,
Fabricio S. Sousa, and Felipe Pereira.

• The MRCM in a sequential implicit scheme for two-phase flow problems: Chapter 6.

– A comparison of sequential implicit solvers for two-phase flows in porous media;

– First study combining the MRCM with a sequential implicit scheme;

– Evidence of improved accuracy and efficiency for flows in high-contrast, heteroge-
neous porous media.

This chapter is based on the manuscript “A sequential implicit solver for two-phase
subsurface flows using the Multiscale Robin Coupled Method" in preparation with the
collaboration of Fabricio S. Sousa, Roberto F. Ausas, Gustavo C. Buscaglia, and Felipe
Pereira.

7.1.2 Other contributions

• “Precisão de métodos de volumes finitos para a solução da equação de Buckley-Leverett"
(ROCHA et al., 2018);

• “A trajectory planning model for the manipulation of particles in microfluidics" (MEACCI
et al., 2018);

• “Planejamento de trajetória para a manipulação de partículas em microfluídica" (MEACCI
et al., 2017).
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7.2 Future work
The MRCM for two-phase flows has been presented (ROCHA et al., 2020b; ROCHA et

al., 2020a). However, several improvements are still under investigation. The main directions to
extend this thesis are summarized as follows.

• Interface spaces based on physics for 3D reservoir flow problems.

The development of interface spaces based on physics for 3D reservoir flow problems is a
topic that is currently being considered. We intend to include these spaces in applications
of the MRCM for more complex flow models.

• 3D high-performance computing study.

The MRCM for two-phase flows has been investigated only in the two-dimensional case
(ROCHA et al., 2020b; ROCHA et al., 2020a). Our research group has currently develop-
ments on the 3D extension for the MRCM considering high-performance computing. The
thesis’ author intends to collaborate at this study aiming at solving large size reservoirs.

• Adaptive time stepping for the coupling of flow and transport.

We intend to investigate time-adaptivity strategies for the coupling of flow and transport
in porous media. Our research group has recently developed an adaptive time stepping
algorithm for an Implicit Pressure Explicit Saturation (IMPES) scheme (PAZ et al., 2020).
The thesis’ author intends to collaborate at this research aiming at combining the adaptive
time stepping strategy with the sequential implicit solver.
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APPENDIX

A
EQUATIONS FOR FLOWS IN POROUS

MEDIA

Flows in porous media are induced by pressure or flux imposition at the boundaries of
the domain that contains the fluid. The fundamental principles that describe this type of flows
reflect the conservation of fluid mass, the relation between pressure and velocity (given by the
Darcy’s law), and the transport for the saturation of the fluids. In the next subsections, we present
the model problem for single and two-phase flows.

A.1 Single-phase flows
The relation between pressure and velocity of a phase in a porous medium is described

by Darcy’s law, established experimentally by Henry Darcy in 1856 (AZIZ; SETTARI, 1979) as
follows:

u =−K
µ
(∇p−ρG ∇Z), (A.1)

where u = u(x) is the velocity of the phase; p = p(x) is the pressure of the phase; K = K(x)
is the absolute permeability of the medium; µ is the viscosity of the phase; ρ(x) is the density
of the phase; G is the magnitude of the acceleration due to gravity; and Z = Z(x) is the depth
vector pointing in the direction of gravity.

The permeability represents the heterogeneity of the medium. It can be interpreted as
the ability of the porous medium to transmit a fluid when the empty spaces are filled by it (LIE,
2019). Reservoirs with very connected pores, where the fluid is easily transmitted are considered
highly-permeable. The absolute permeability K is a symmetric, uniformly positive definite tensor
(EWING, 1983). By assuming that it is a diagonal tensor or it can be diagonalized, we have

K =

 kx 0 0
0 ky 0
0 0 kz

 , (A.2)
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where kx, ky, and kz are the permeability values in the directions x, y, and z, respectively. It
means, for example, that kx represents the flow in x direction caused by a change in pressure in
x direction. When kx = ky = kz, the medium is called isotropic, i.e., its physical properties are
independent on the direction considered, otherwise the medium is called anisotropic.

The velocity in equation (A.1) is studied in Darcy’s scale (typically between 10−2 and
101 meters) and considers an average of the flux within the Representative Elementary Volumes
(REVs). The REVs are volumes where the petrophysical properties can be considered constant,
which are usually between the scale of the pores of the rock (from 10−6 to 10−3 meters) and the
Darcy scale (OVAYSI; WHEELER; BALHOFF, 2014). In Figure 65, a representation of a REV
is shown, considering the porosity (fraction of the volume available for flow), that is equal to one
at the pores and zero at the rock (LIE, 2019). Figure 66 illustrates the Darcy velocity in a REV.

Figure 65 – Representation of a REV, taking into account the porosity. The REV is defined when the
porosity presents low variations, and hence, it can be considered constant.

Source: Adapted from Lie (2019).

Figure 66 – Representation of the Darcy velocity in a REV, that is an average of the flux within the REV.

Source: Lie (2019).

To derive the flow equations, we consider the conservation of mass for a REV (denoted
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by V ), given by
∂

∂ t

∫
V

φρ(x, t) dx+
∫

∂V
ρ(x, t)u ·n dS =

∫
V

q̃ dx, (A.3)

where φ is the porosity, ∂V is the boundary of V with the outward unit normal n, and q̃ is the
mass flow rate injected into V (EWING, 1983). By applying the divergence theorem in Eq. (A.3)
we obtain

∂

∂ t

∫
V

φρ dx+
∫

V
∇ · (ρu)dx =

∫
V

q̃ dx, (A.4)

that can be written as ∫
V

(
∂

∂ t
(φρ)+∇ · (ρu)

)
dx =

∫
V

q̃ dx. (A.5)

Equation (A.5) must hold for any volume element V , and hence, we find the partial differential
equation

∂

∂ t
(φρ)+∇ · (ρu) = q̃. (A.6)

By using Eq. (A.1) in Eq. (A.6) we get

∂

∂ t
(φρ)−∇ ·

(
ρK
µ

(∇p−ρG ∇Z)
)
= q̃. (A.7)

We consider an incompressible, isothermal flow, without gravitational effects. The phase
considered has constant density, and the porous medium is incompressible. Therefore, Eq. (A.7)
can be simplified to

−∇ ·
(

K
µ

∇p
)
=

q̃
ρ
. (A.8)

Finally, the elliptic model equation for single-phase flows that we consider is given by

∇ ·u = q, u =−λK∇p, (A.9)

where q = q̃/ρ and λ = 1/µ . To complete the mathematical model, boundary data for pressure
or normal fluxes are required.

A.2 Two-phase flows

Our model for two-phase flows considers an immiscible flow of water and oil (denoted
by w and o, respectively). The new unknowns, the saturations s j ∈ [0,1] of each phase j ∈ {w,o},
are the fractions of the domain that are occupied, respectively, by each phase j. We consider a
fully saturated medium, i.e. sw + so = 1. The conservation of mass for each phase is given by

∂

∂ t
(φρ js j)+∇ · (ρ ju j) = q̃ j, j ∈ {w,o}, (A.10)

while the Darcy’s law for each phase is given by

u j =−λ jK(∇p j−ρ jG ∇Z), (A.11)
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where λ j = kr j/µ j is the mobility of phase j, and kr j is the given relative permeability function
of phase j (EWING, 1983).

We consider an incompressible, isothermal flow, without gravitational effects. The
densities of each phase are constant, and the porous medium is incompressible. Furthermore, we
neglect the effects of capillary pressure, and hence, the global pressure is given by p = pw = po.
The Darcy’s law in Eq. (A.11) can be simplified to

u =−λK∇p, (A.12)

where u = uw +uo and λ = λw +λo. Thus, the elliptic model equation corresponding to two-
phase flows is given by

∇ ·u = q, u =−λK∇p, (A.13)

where q =
q̃w

ρw
+

q̃o

ρo
. By introducing the fractional flow of water function

f (sw) =
λw(sw)

λ (sw)
, (A.14)

we can rewrite Eq. (A.10) for the water saturation as

φ
∂ sw

∂ t
+∇ · ( f (sw)u) =

q̃w

ρw
. (A.15)

The source term of Eq. (A.15) usually takes into account injection and production wells and
can be converted into a suitable boundary condition (EWING, 1983). Thus, we finally get the
following hyperbolic equation

φ
∂ s
∂ t

+∇ · ( f (s)u) = 0, (A.16)

where s = sw. The model for two-phase flows that we consider is given by the coupling of Eq.
(A.13) and Eq. (A.16), along with initial and injection conditions for saturation, and boundary
data for pressure or normal fluxes.
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