• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.55.2017.tde-13112017-105506
Documento
Autor
Nome completo
Fausto Guzzo da Costa
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2017
Orientador
Banca examinadora
Mello, Rodrigo Fernandes de (Presidente)
Louzada Neto, Francisco
Ponti, Moacir Antonelli
Rios, Ricardo Araújo
Soriano, Diogo Coutinho
Título em inglês
Employing nonlinear time series analysis tools with stable clustering algorithms for detecting concept drift on data streams
Palavras-chave em inglês
Clustering
Concept drift
Data streams
Machine learning
Nonlinear time series
Resumo em inglês
Several industrial, scientific and commercial processes produce open-ended sequences of observations which are referred to as data streams. We can understand the phenomena responsible for such streams by analyzing data in terms of their inherent recurrences and behavior changes. Recurrences support the inference of more stable models, which are deprecated by behavior changes though. External influences are regarded as the main agent actuacting on the underlying phenomena to produce such modifications along time, such as new investments and market polices impacting on stocks, the human intervention on climate, etc. In the context of Machine Learning, there is a vast research branch interested in investigating the detection of such behavior changes which are also referred to as concept drifts. By detecting drifts, one can indicate the best moments to update modeling, therefore improving prediction results, the understanding and eventually the controlling of other influences governing the data stream. There are two main concept drift detection paradigms: the first based on supervised, and the second on unsupervised learning algorithms. The former faces great issues due to the labeling infeasibility when streams are produced at high frequencies and large volumes. The latter lacks in terms of theoretical foundations to provide detection guarantees. In addition, both paradigms do not adequately represent temporal dependencies among data observations. In this context, we introduce a novel approach to detect concept drifts by tackling two deficiencies of both paradigms: i) the instability involved in data modeling, and ii) the lack of time dependency representation. Our unsupervised approach is motivated by Carlsson and Memolis theoretical framework which ensures a stability property for hierarchical clustering algorithms regarding to data permutation. To take full advantage of such framework, we employed Takens embedding theorem to make data statistically independent after being mapped to phase spaces. Independent data were then grouped using the Permutation-Invariant Single-Linkage Clustering Algorithm (PISL), an adapted version of the agglomerative algorithm Single-Linkage, respecting the stability property proposed by Carlsson and Memoli. Our algorithm outputs dendrograms (seen as data models), which are proven to be equivalent to ultrametric spaces, therefore the detection of concept drifts is possible by comparing consecutive ultrametric spaces using the Gromov-Hausdorff (GH) distance. As result, model divergences are indeed associated to data changes. We performed two main experiments to compare our approach to others from the literature, one considering abrupt and another with gradual changes. Results confirm our approach is capable of detecting concept drifts, both abrupt and gradual ones, however it is more adequate to operate on complicated scenarios. The main contributions of this thesis are: i) the usage of Takens embedding theorem as tool to provide statistical independence to data streams; ii) the implementation of PISL in conjunction with GH (called PISLGH); iii) a comparison of detection algorithms in different scenarios; and, finally, iv) an R package (called streamChaos) that provides tools for processing nonlinear data streams as well as other algorithms to detect concept drifts.
Título em português
Aplicando ferramentas de análise de séries temporais não lineares e algoritmos de agrupamento estáveis para a detecção de mudanças de conceito em fluxos de dados
Palavras-chave em português
Agrupamento
Aprendizado de máquina
Fluxos de dados
Mudanças de conceito
Séries temporais não lineares
Resumo em português
Diversos processos industriais, científicos e comerciais produzem sequências de observações continuamente, teoricamente infinitas, denominadas fluxos de dados. Pela análise das recorrências e das mudanças de comportamento desses fluxos, é possível obter informações sobre o fenômeno que os produziu. A inferência de modelos estáveis para tais fluxos é suportada pelo estudo das recorrências dos dados, enquanto é prejudicada pelas mudanças de comportamento. Essas mudanças são produzidas principalmente por influências externas ainda desconhecidas pelos modelos vigentes, tal como ocorre quando novas estratégias de investimento surgem na bolsa de valores, ou quando há intervenções humanas no clima, etc. No contexto de Aprendizado de Máquina (AM), várias pesquisas têm sido realizadas para investigar essas variações nos fluxos de dados, referidas como mudanças de conceito. Sua detecção permite que os modelos possam ser atualizados a fim de apurar a predição, a compreensão e, eventualmente, controlar as influências que governam o fluxo de dados em estudo. Nesse cenário, algoritmos supervisionados sofrem com a limitação para rotular os dados quando esses são gerados em alta frequência e grandes volumes, e algoritmos não supervisionados carecem de fundamentação teórica para prover garantias na detecção de mudanças. Além disso, algoritmos de ambos paradigmas não representam adequadamente as dependências temporais entre observações dos fluxos. Nesse contexto, esta tese de doutorado introduz uma nova metodologia para detectar mudanças de conceito, na qual duas deficiências de ambos paradigmas de AM são confrontados: i) a instabilidade envolvida na modelagem dos dados, e ii) a representação das dependências temporais. Essa metodologia é motivada pelo arcabouço teórico de Carlsson e Memoli, que provê uma propriedade de estabilidade para algoritmos de agrupamento hierárquico com relação à permutação dos dados. Para usufruir desse arcabouço, as observações são embutidas pelo teorema de imersão de Takens, transformando-as em independentes. Esses dados são então agrupados pelo algoritmo Single-Linkage Invariante à Permutação (PISL), o qual respeita a propriedade de estabilidade de Carlsson e Memoli. A partir dos dados de entrada, esse algoritmo gera dendrogramas (ou modelos), que são equivalentes a espaços ultramétricos. Modelos sucessivos são comparados pela distância de Gromov-Hausdorff a fim de detectar mudanças de conceito no fluxo. Como resultado, as divergências dos modelos são de fato associadas a mudanças nos dados. Experimentos foram realizados, um considerando mudanças abruptas e o outro mudanças graduais. Os resultados confirmam que a metodologia proposta é capaz de detectar mudanças de conceito, tanto abruptas quanto graduais, no entanto ela é mais adequada para cenários mais complicados. As contribuições principais desta tese são: i) o uso do teorema de imersão de Takens para transformar os dados de entrada em independentes; ii) a implementação do algoritmo PISL em combinação com a distância de Gromov-Hausdorff (chamado PISLGH); iii) a comparação da metodologia proposta com outras da literatura em diferentes cenários; e, finalmente, iv) a disponibilização de um pacote em R (chamado streamChaos) que provê tanto ferramentas para processar fluxos de dados não lineares quanto diversos algoritmos para detectar mudanças de conceito.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-11-13
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.