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RESUMO

ANGHINONI, L. Caracterização da estrutura de redes complexas para aprendizado de
máquinas. 2023. 94 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2023.

Na última década, o aprendizado de máquina prosperou devido à avanços significativos na
capacidade do hardware e no desenvolvimento de novos modelos. Modelos baseados em redes
têm atraído bastante atenção recentemente por sua capacidade de aprender não somente com
base nas características físicas dos dados (similaridade, distribuição, etc.) mas também com
base no padrão de conexão entre os dados. Na busca de modelos melhores, a pesquisa evoluiu
para incorporar a estrutura da rede no processo de aprendizagem. Alguns trabalhos recentes têm
mostrado que explorar a estrutura da rede pode levar a melhores resultados de aprendizagem.
Isto é feito capturando as conexões mais relevantes no processo de aprendizagem baseado na
topologia da rede. Em vista disso, esta tese desenvolve quatro estudos para incorporar a estrutura
da rede em algoritmos de aprendizado de máquina. No primeiro estudo, a estrutura da rede
é utilizada para aprender padrões de séries temporais através de algoritmos de detecção de
comunidades. O segundo estudo usa uma estrutura de rede core-periphery para representar
dados onde uma das classes tem uma alta dispersão e é difícil de ser classificada por algoritmos
tradicionais. Em outras palavras, introduzimos um método baseado em rede para representar o
padrão de dados "sem padrão". O terceiro estudo propõe modelar um surto epidêmico através da
predição de conexões em uma rede construída a partir de dados reais. Mostra-se que o isolamento
social e o uso de máscaras pode diminiur o pico de casos de COVID-19. No último estudo,
propomos um novo modelo de rede neural em grafo (Graph Neural Network) que combina a
estrutura de comunidade dos dados do grafo e os vetores de características dos nós para gerar
um embedding do grafo de forma rápida. A GNN proposta evita o problema de over-smoothing

de métodos clássicos. Estes estudos mostram que a abordagem através de redes complexas pode
superar várias deficiências de técnicas clássicas de aprendizado.

Palavras-chave: Aprendizado de Máquina, Redes Complexas, Estrutura de Comunidades, Redes
Core-Periphery, Graph Neural Network.





ABSTRACT

ANGHINONI, L. Structure characterization of complex networks for machine learning.
2023. 94 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computaci-
onal) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2023.

Over the last decade, machine learning has flourished due to significant advances in hardware
capacity and model developments. Network based models have recently gained a lot of attention
due to their capacity to learn not only from the physical features (similarity, distribution, etc.),
but also from the connectivity pattern of the data. In the search of better models, the research has
evolved to incorporate the structure of the network in the learning process. Some recent works
have shown that exploiting the network structure can lead to better learning performance. This is
done by capturing the more relevant connections in the training process based on the network
topology. In light of this, this thesis carries out four studies to incorporate the network structure
in machine learning algorithms. In the first study, the network structure is used to learn time
series patterns via community detection algorithms. The second study uses a core-periphery
network structure to represent data where the data within one of the classes has a very high
dispersion and is hard to be classified by traditional algorithms. In other words, we introduce a
network-based method to represent data pattern of the data “without pattern”. The third study
aims to model an epidemic outbreak via link prediction in a network constructed from real
data. We find that social isolation and wearing masks can effectively decrease the COVID-19
epidemics peak. In the final study, we propose a novel Graph Neural Network (GNN) model
by combining the community structure of the underlying data graph and the feature vectors
of the nodes to generate a graph embedding in a fast way. The proposed GNN can avoid the
over-smoothing drawback of classic ones. These studies show that complex network approach
can overcome various shortcomings of classic learning techniques.

Keywords: Machine Learning, Complex Networks, Community Structure, Core-Periphery
Network, Graph Neural Network.





LIST OF FIGURES

Figure 1 – Examples of two different network structures. . . . . . . . . . . . . . . . . 17
Figure 2 – Examples of adjacency matrices for two different types of network structure.

A black dot represents a connection between two nodes. The relation in data
is captured by the interconnections of the whole system. . . . . . . . . . . . 17

Figure 3 – Preliminary result of the novel TransGNN with attention. The whole slide
image of a gastrointestinal sample is segmented into five different classes,
including tumor and normal regions. Visual comparison with annotated slides
suggests a good performance of the model. . . . . . . . . . . . . . . . . . . 89





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Time series pattern identification . . . . . . . . . . . . . . . . . . . . . 21
1.2.2 Prediction of viral disease spread . . . . . . . . . . . . . . . . . . . . . 21
1.2.3 Classification of data with high dispersion . . . . . . . . . . . . . . . 21
1.2.4 Capturing global information for graph neural network learning . . . 22
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 TIME SERIES PATTERN IDENTIFICATION BY HIERARCHICAL
COMMUNITY DETECTION . . . . . . . . . . . . . . . . . . . . . . 25

3 QUANTITATIVE ANALYSIS OF THE EFFECTIVENESS OF PUB-
LIC HEALTH MEASURES ON COVID-19 TRANSMISSION . . . . 35

4 CHARACTERIZING DATA PATTERNS WITH CORE–PERIPHERY
NETWORK MODELING . . . . . . . . . . . . . . . . . . . . . . . . 63

5 TRANSGNN: A TRANSDUCTIVE GRAPH NEURAL NETWORK
WITH GRAPH DYNAMIC EMBEDDING . . . . . . . . . . . . . . . 77

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91





15

CHAPTER

1
INTRODUCTION

Since the development of the first computing hardware, human have wondered if a
machine would ever learn like humans do. As a consequence, Machine Learning (ML) has
become one of the greatest endeavors in the scientific field. ML concerns proposing methods to
enable a machine learn from past experience, in a similar way as humans do. This includes, for
example, inferring the class of a new instance after reasoning over a set of classified instances
(MITCHELL et al., 2007). In a higher level, a lot o similarities can be observed between the
way that a human being learns and the way that the state-of-art ML algorithms work. However,
modeling such kind of tools is still a challenge since the human decision process cannot always
be converted to machine language. Still, ML algorithms are becoming more present in our daily
life in a very fast pace and in a variety of areas, such as shopping, construction, medical, finance
and many others.

In a general way, a ML algorithm aims to learn a target function from a set of training
examples based on a cost function that reduces the error to the lowest level in the training set
(BISHOP; NASRABADI, 2006; LECUN; BENGIO; HINTON, 2015; ZHOU, 2021). Although
many different categorizations have been proposed over the years, these algorithms can be divided
into four big groups, depending on how much is known about the training samples: (i) Supervised,
(ii) Semi-supervised, (iii) Unsupervised and (iv) Reinforcement (SARKER, 2021). In the first
group (supervised) all the training samples are labeled. The learning objective is to construct a
classifier to predict the labels of new data samples. In these algorithms, usually the larger the
data-set, the better the label prediction performance. The downside is that the computational cost
tends to be high with large training sets. In the second group (semi-supervised), a small portion
of the training set is labeled and the labels are propagated to the data samples without labels.
Such algorithms are quite useful for problems with big data-sets, which would require a large
amount of manual annotations. In the unsupervised algorithms, no data sample is labeled. In this
case, the learning process tries to find out intrinsic data patterns, such as clusters. Finally, the
reinforcement algorithms work by applying a reward and penalty rule to evaluate the optimal
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behavior in a given context.

The majority of the classic and the state-of-the-art ML algorithms works in a similar way
when grouping the data samples into different classes or clusters: Splitting the data space or the
feature space into sub-spaces that best separates each class or cluster (BISHOP; NASRABADI,
2006; LECUN; BENGIO; HINTON, 2015; ZHOU, 2021). This approach has proved to be a very
robust strategy, specially when the training data is vast. However, such a strategy can suffer from
the large variations of data patterns and the high complexity of class (cluster) boundaries. Also,
these algorithms can have high computational complexity (LECUN; BENGIO; HINTON, 2015)
in high dimensional data or feature spaces. Moreover, classic ML techniques have difficulty to
interpret the learning results, since they lack a mechanism to characterize the large region or
global data patterns.

In the recent years, there is an increasing interest in the development of new ML algo-
rithms which are able to capture not only the physical features, but also the semantic relationship
of the data. Such an approach can learn data pattern with complex geometrical forms (SILVA;
ZHAO, 2012a; SILVA; ZHAO, 2015; COLLIRI et al., 2018; CARNEIRO; ZHAO, 2017). A
powerful way to capture various kinds of relationship in the data is through the topology structure
of a complex network.

A complex network is a large scale graph with non-trivial connections 1 (STROGATZ,
2001; BOCCALETTI et al., 2006). They are in the heart of the complex systems for their
interdisciplinary, quantitative, mathematical and computational nature. Complex networks play
an important role in real world applications due to their ability to capture the underlying relation
between entities (BARABÁSI, 2013). The mesoscale structure of a complex network can be
very useful to reveal data patterns, which are hard to be uncovered in regular space, such as the
Euclidean space.

A complex network structure can refer to several types of arrangements. One of the
salient features of complex networks is the presence of communities. The notion of community in
networks is defined as a sub-graph whose nodes are densely connected within itself, but sparsely
connected with the rest of the network. Community detection in complex networks has turned
out to be an important topic in graph mining and data mining (FORTUNATO, 2010; NEWMAN;
GIRVAN, 2004; DANON et al., 2005). A lot of efforts has been spent to develop efficient
community detection methods. For a comprehensive review of this topic, see (FORTUNATO,
2010). A network with a defined community structure presents regions with denser connections,
which can be measured by a modularity index (NEWMAN; GIRVAN, 2004). In the communities,
the intra-community degree of every node is much higher than the inter-community degree.
Another interesting feature of complex networks is the core-periphery structure (BORGATTI;
EVERETT, 2000). A core-periphery structure, on the other hand, supposes a higher density

1 Complex network and graph share the same definition. Therefore, the two terms are interchangeable in
this document
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(a) Network with a community structure. Each
color represents a different community, with
a higher intra-class degree and lower inter-
class degree.

(b) Network with a core-periphery structure.
The red samples represent the core and the
blue samples the periphery.

Figure 1 – Examples of two different network structures.

(a) Adjacency matrix of a community structured
network.

(b) Adjacency matrix of a core-periphery net-
work.

Figure 2 – Examples of adjacency matrices for two different types of network structure. A black dot repre-
sents a connection between two nodes. The relation in data is captured by the interconnections
of the whole system.

within the core classes and a low density in the other regions, i.e., the intra-class degree of the
periphery class is also low. These two kinds of complex network structures are illustrated in
Figure 1 and their respective adjacency matrix in Figure 2.

In this thesis, we will explore the community and the core-periphery structures to
represent data patterns for various ML tasks.

In the domain of ML, the topological network structure is very useful to detect various
forms of clusters or classes by an agglomeration or classification algorithm. As a consequence,
network-based methods in learning tasks have become a very active area of research with a
variety of applications, such as supervised learning (IOSIFIDIS; TEFAS; PITAS, 2015; NICKEL
et al., 2015; ZHANG; CUI; ZHU, 2020), semi-supervised learning (CHAPELLE; SCHOLKOPF;
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ZIEN, 2009; GONG et al., 2015; SILVA; ZHAO, 2012a; ZHANG et al., 2014; ZHU, 2005),
data clustering (CHEN; LV; YI, 2017; FORTUNATO, 2010; SILVA; ZHAO, 2012b; SILVA;
ZHAO, 2012a; VERRI; URIO; ZHAO, 2016), graphs and sub-graphs matching (ZHANG et

al., 2015), regression (NI; YAN; KASSIM, 2010), feature selection (BUNKE; RIESEN, 2011),
dimensionality reduction (RIESEN; BUNKE, 2009), interpretation of ML via visualization
(ZHANG et al., 2018). The emergence of machine learning based on complex networks is
explained by the inherent advantages that the representation of data as networks provide, allowing
to capture spatial, topological, dynamic and functional relationships of large data sets. Some
encouraging results have already been obtained by the research group led by the advisor of this
thesis in this direction (SILVA; ZHAO, 2016; BREVE et al., 2011). For example, a particle
competition model for community detection, data grouping and semi-supervised classification
was developed (SILVA; ZHAO, 2012b; SILVA; ZHAO, 2012a; VERRI; URIO; ZHAO, 2016).
The basic idea of the particle competition model is as follows: We put some particles in a
given graph, then, these particles travel in the graph and try to dominate as many nodes as
possible. At the same time, each particle competes with other particles to avoid intrusion to
its territory. At the end, each particle is expected to occupy a sub-graph corresponding to a
community. The model is inspired by real systems, such as election champions, competition
for food, water or territory among animals, etc. The great advantage of the proposed technique
comes from its ability to identify arbitrary form and distributed data groups. Another salient
feature of the model is the walking behavior of the particles. At each step, each particle chooses a
neighbor node to visit using a combined random walking and preferential walking rule. Random
walk means that a particle randomly selects a neighbor to visit. It represents an exploratory
behavior, i.e., a particle tries to discover new territory, while preferential walk means that a
particle prefers to visit a node already dominated by itself. It characterizes a defensive behavior,
i.e., the particle would like to strengthen its own base instead of exploring the whole network.
The particle competition model presents a robust while efficient way to identify the data graph
structure, specifically the modular structure. In the case of supervised learning, a high-level data
classification technique was proposed in (SILVA; ZHAO, 2012a) and extended in (CARNEIRO;
ZHAO, 2017; CARNEIRO et al., 2019; SILVA; ZHAO, 2015). In this scheme, the low-level
classification can be implemented by any traditional classification technique, while the high-level
technique explores the complex topological properties of the network built from the input data.
A salient feature of high-level classification is the classification of data based on the pattern
formation of the input data instead of considering only the physical attributes, and is therefore
referred to as a high-level classification.

Deep learning has revolutionized many machine learning tasks in recent years, such
as object detection (REDMON et al., 2016; REN et al., 2015), machine translation (LUONG;
PHAM; MANNING, 2015; WU et al., 2016), and speech recognition (HINTON et al., 2012). The
data sets used in deep learning are typically represented in the Euclidean space. However, there
is an increasing number of applications, where data samples are generated from non-Euclidean
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domains and are represented as graphs with complex relationships between objects. For example,
in e-commerce, a graph-based learning system can exploit the interactions between users and
products to make highly accurate recommendations. In chemistry, molecules are modeled as
graphs, and their bio-activity needs to be identified for drug discovery. In social networks, people
are linked to each other and, at the same time, they can be categorized into different groups. The
complexity of graph data has imposed significant challenges on the existing machine learning
algorithms. This is because some important operations (e.g., convolutions) are easy to compute in
the structured domain, for example, in images, but difficult to apply to the graph domain. Based
on Convolutional Neural Networks (CNNs) and graph embedding, variants of Graph Neural
Networks (GNNs) are proposed to collectively aggregate information from graph structure. Thus
they can model input and output consisting of elements and their dependency (see (WARD et al.,
2022; ZHANG; CUI; ZHU, 2020; WU et al., 2020; ZHOU et al., 2020) and references therein).
The main component of GNNs is the graph embedding generation to capture the relationship
among nodes. One of the important mechanisms for generating graph embedding is by means of
message passing, i.e., propagating feature vectors of the nodes to a certain range of neighbors
in the graph. However, current message passing mechanisms are indiscriminate and propagate
signals locally, resulting in a shallow neural network mostly with three layers, which limits us
from taking the advantages of deep learning. Moreover, current message passing mechanisms
also lead to over-smoothing phenomenon, resulting in gradient vanishing. Therefore, still in
this thesis, we will develop a new GNN by applying particle competition mechanism for graph
embedding generation to overcome the above mentioned shortcomings of GNNs.

The studies developed in this work explore novel ways to incorporate the network
structure information into machine learning models. The first paper has been developed in the
first year of my doctorate. In this paper, we explore the topological structures to represent time
series patterns, specifically, we use hierarchical community structure of a complex network
constructed from time series data. In the second year of my doctorate, Covid-19 became an
urgent topic of research and at that time, we modeled the viral spread using the SIR model in a
networked environment. We conceived the model together and my contribution on every step
was focused on the network construction and modeling. Later, while studying some medical
data, we realized some problems may present a highly dispersed class, i.e., the instances do not
share any similarity. To deal with this, we have explored core-periphery networks to represent
such problems. This time, I teamed up with other researchers to write a paper on x-ray image
classification. Finally, in the last years of my doctorate, we have dedicated ourselves to study
Graph Neural Networks (GNNs) and more advanced medical image processing problems, such
as whole slide image classification in image pathology. We realized that network science can
make a good contribution to GNN modeling, specifically, the message passing in a structured
graph could improve the GNN′ s ability to learn global and local features. Therefore, we have
proposed a way to combine the information generated in the clustering process with the original
features of the data.
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In the next Section I detail the objectives and motivations of all the works presented here.

1.1 Objectives

The main goal of this work is to characterizing data patterns using various complex
network structures and metrics in the topological space. The underlying hypothesis of all the
papers presented in this document is that learning the topological structure of the data can lead
to a better understanding of the relationship among data samples, consequently, can overcome
some shortcomings of the current ML techniques.

More specifically, I tackle four specific topics in the following Sections:

∙ Identification of time series patterns, by converting stochastic time series to state transition
networks and clustering it hierarchically, for trend prediction. In other words, we transform
the time series from the time-frequency space to the topological space and we use the
community structure to represent each time series pattern.

∙ Predicting a viral disease spread by fitting a network to real data and estimating the
spread using an early-time dynamic of the SIR model to simulate the spread. The network
structure is changed to test the efficacy of public health measures. The paper shows that
social isolation and wearing masks can effectively decrease the COVID-19 epidemics peak,
which has special importance at that confusing time. For this reason, this article generated
big repercussion in the main Brazilian national medias, such as Agência FAPESP, UOL,
Revista Galileu, G1, Folha de São Paulo, and EPTV.

∙ Characterization of data patterns with high dispersion through core-periphery network
structure. The hypothesis here is that the core structure can capture the pattern of normal
samples and the periphery the pattern of abnormal samples, that present high dispersion. In
this way, we propose a method to characterize data patterns for those kinds of data "with
out patterns";

∙ Improvement of graph embeddings by learning the graph structure prior to performing the
message passing of a graph neural network. Due to its high robustness and high efficiency
(linear time complexity), we hope the new GNN to be developed contains the following
features: 1) The generated graph embedding captures not only local relationship between
nodes but also global structure of the graph. This feature is useful to classify data samples
distributed in the border or highly mixed region. 2) More iterations that the particles walk
in the underlying graph correspond to more layers of the neural network. In this way, we
will get a real deep GNN, consequently, improving its learning performance. 3) The high
efficiency of the Particle Competition model allows the new GNN to process large-scale
data graphs.
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1.2 Motivations

The motivations behind each of the works presented here are presented in the following
subsections.

1.2.1 Time series pattern identification

Identifying time series patterns is a vital task for many scientific and applied fields.
The correct assessment of the data is crucial to develop models that not only can identify the
patterns but also predict the upcoming ones. Traditional statistical models are very effective
when the data can be decomposed in trends, cycles and noise (RANI et al., 2014; BAHETI;
TOSHNIWAL, 2014). Unfortunately, many important real world applications are presented in
the form of stochastic-like data, i.e., the data presents stochastic characteristics but, eventually, a
sequence of patterns can be captured by modern machine learning algorithms, that track temporal
evolution of the data. Although neural network models (LSTM) have been quite successful with
a variety of applications, when it comes to more complicated data, such as stock market prices,
modeling the patterns and their temporal relation is still a challenging task (SIAMI-NAMINI;
TAVAKOLI; NAMIN, 2018).

1.2.2 Prediction of viral disease spread

Predicting the spread of a new disease can be a challenging task, specially in the first
moments of an outbreak. Traditional models, such as the SIR model, should not be applied with-
out considering the spatial distribution of the cases (KEELING; EAMES, 2005; STEGEHUIS;
HOFSTAD; LEEUWAARDEN, 2016). Early stage behavior is also hard to model (LIU et al.,
2023) and the effect of public health measures are also difficult to incorporate in traditional
model due to a lag in its outcome.

1.2.3 Classification of data with high dispersion

In the supervised learning paradigm, the algorithm learns a function from the labeled
samples that maps the data to the classes, which is later used to classify unlabeled data. Several
models have been developed, including a number of state-of-the-art algorithms (BISHOP;
NASRABADI, 2006; LECUN; BENGIO; HINTON, 2015). However, they all work in a similar
way, by dividing the data space into sub-spaces that best divide the training data. In this scheme,
strong distortions in the boundaries lead to poor performance, as well as high dispersion in some
classes, or the presence of classes without a defined pattern. Moreover, the semantic relationships
are not considered and the advanced models tend to be hard to interpret (ZHANG; ZHU, 2018).
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1.2.4 Capturing global information for graph neural network learning

Graph Neural Networks (GNNs) are a recent type of neural network that considers
the relationship contained in the data (WU et al., 2020). In a general GNN architecture, the
information is passed from one node to its neighbors through a message passing function and
an aggregation function is used to update the node‘s embedding. The model then learns an
inductive function based on the error propagated by each epoch, as in a neural network. GNNs
are inherently shallow. This means that they are very good at learning local information, but fail
too learn global information, as this can lead to the so-called over-smoothing (every node ends
up with a similar feature) (OONO; SUZUKI, 2019).

1.3 Outline

In the next chapters, four papers are presented. All of them are studies based on the
structure characterization of complex networks to address the objective and motivations listed in
the previous sections.

In Chapter 2 a method to identify time series patterns based on complex networks
communities is proposed. The paper also shows that the network partitioning process can be
done progressively in order to capture local and global patterns. As a result, the model is able to
identify long and short trend in an artificial data-set and correctly classify up and down trend in a
stock price chart.

In chapter 3, a method is proposed to model the Covid outbreak in Brazil. The model
constructs a transmission network by fitting the network links to real data of the cities in the early
stage of the outbreak. Then an early-dynamic SIR model is applied on top of the constructed
network to simulate the evolution in every city of the network. The effectiveness of public
measures is evaluated by inspecting the change in the Covid-19 epidemic peak, when the network
structure is changed to reflect the omission of this public measures.

Next, in chapter 4, contributions on classification of high dispersion data is shown.
A method is proposed based on the structure of a core-periphery network. Unlike traditional
methods, the proposed framework uses high-level classification to group the normal data in the
core structure and the high dispersion data in the periphery structure. The model is then applied
to a data-set of x-ray chest images containing normal images and Covid images (high dispersion
class) and is able to correctly classify new unlabeled instances.

In chapter 5, a method is proposed to capture the structure of the network and embed
this information in the feature of each node of the network. To accomplish that, it is proposed a
pre-processing step, based on the particle competition and cooperation algorithm, that assigns
the most probable cluster to every node. This information is included in the node feature, so that
the GNN starts the learning process considering this global feature.
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Finally, in chapter 6, the final remarks of this work are presented. The works presented
here are shortly evaluated and possible future works are outlined.
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CHAPTER

2
TIME SERIES PATTERN IDENTIFICATION

BY HIERARCHICAL COMMUNITY
DETECTION
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Abstract Identifying time series patterns is of great importance for many real-world problems in a variety
of scientific fields. Here, we present a method to identify time series patterns in multiscale levels based
on the hierarchical community representation in a complex network. The construction method transforms
the time series into a network according to its segments’ correlation. The constructed network’s quality is
evaluated in terms of the largest correlation threshold that reaches the largest main component’s size. The
presence of repeated hierarchical patterns is then captured through network metrics, such as the modularity
along the community detection process. We show the benefits of the proposed method by testing in one
artificial dataset and two real-world time series applications. The results indicate that the method can
successfully identify the original data’s hierarchical (micro and macro) characteristics.

1 Introduction

Time series pattern recognition is a broad field of
research. It has advanced over the last decade with the
developments of techniques tackling the time series in
different domains [1,2]. An important area of research is
analyzing the time series with the aid of a complex net-
work [3–13]. Studies on network topology have remark-
ably advanced our understanding of this domain, both
in terms of data complexity—that went from a single
univariate time series to complex data flows containing
concept drifts [3–6]—and in terms of proposed frame-
works [13–17,28,29]. Most of these frameworks can be
generalized by a two-step process of converting the data
into a network (mapping) and analyzing it through net-
work metrics.

Once the data are mapped to a network, it can
be analyzed through network metrics. In particular,
detecting the community structure of the network has
gained a lot of attention since some works have shown
that the community structure can represent the data
patterns and reflect changes along time [17–20]. More
recently, some works have shown that, intuitively, the
communities can contain information about structural
patterns of the original data [5,13], even exploring rep-
etition cycles for stochastic times series [29]. Although
previous works have set well-established tools for mod-

a e-mail: anghinoni@usp.br (corresponding author)

eling and mining time series based on networks, there
is a lack of understanding of the relationship between
the discovered patterns and the original data, such as
their hierarchy and recurrent cycles, which is still an
open and challenging task. Moreover, in many cases,
the results depend on how well tailored is the rule for
mapping the data according to the problem.

Here, we propose a more general method to iden-
tify time series patterns in multi-scale levels based on
the hierarchical community representation in a complex
network. The construction process follows the general
rule of adopting the largest correlation threshold that
leads to a less fragmented network. The presence of
repeated hierarchical patterns is then captured through
network metrics concerning the modularity along the
community detection process. This way, we can eval-
uate how the modularity impacts the resulting clus-
tered network. Moreover, the method allows visualiz-
ing the relationship between the discovered multi-scale
patterns and the original time series data, according to
the detected communities.

In summary, the main contributions of this work are
threefold:

1. We explore how the time series’s characteristics are
carried to the network structure by detailing the
parameters setting of the proposed framework.

2. We detail the community formation process using a
dendrogram, making explicit the hierarchical rela-
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tion of the time series patterns and its multi-scale
properties.

3. We map the communities back to the time series to
show the patterns’ temporal relation.

The remainder of this paper is structured as fol-
lows: Sect. 2 presents a brief description of the meth-
ods employed in this work to analyze a given time series
through its community structure. In Sect. 3, we present
our proposed method is presented and its details on
each of the steps. Section 4, we have the results in an
artificial dataset to illustrate some of the main charac-
teristics of our approach. Section 5 presents the results
of applying the method in two real data-sets. Finally,
conclusions are presented in Sect. 6.

2 Materials and methods

2.1 Time series analysis through network topology

To study a time series through network topology, the
data have to be converted into a network’s represen-
tation and then analyzed over the different aspects
present in this type of structure, such as the centrality
measures [10,14], minimum paths [4], network’s mod-
ularity [13,29], among many others. Mapping a time
series into a complex network can be done by several dif-
ferent methods, comprehensively described in [20]. The
three main approaches, however, consists of (i) cycle
networks, (ii) visibility graphs, and (iii) recurrence net-
works.

In a cycle network [21], the time series is divided into
several disjoint parts. These parts become the network
nodes, which are then connected based on some rule,
like the phase space distance or the Pearson correlation
between each segment.

The visibility graph [15] considers the time series as
a landscape. In this approach, each point of the time
series becomes a node, which is then connected if they
can ‘see’ each other with no interference of any other
point. Many variations of the original idea have been
proposed by creating specific rules for considering the
time series’s points and how they connect (some meth-
ods allow that two points are not completely visible, i.e.,
there can be a certain amount of obstruction between
them).

Finally, the recurrence network [16] considers the
time series as a sequence of phase space vectors. This
method has flourished over the last years due to the
possibility of adaptation to different problems since the
state vector can assume any proposed shape.

These three approaches have inspired many different
works and led to several variants of the original ideas.
Besides, many applications can be found in the litera-
ture, in a wide variety of research fields, such as finance
(stock time series), medical (EEG/fMRI signals time
series), engineering (fluid flow time series), meteorol-
ogy (temperature time series), and others [20].

2.2 Community detection

Community detection methods have also developed
over the last decade to adapt to various problems [22].
These methods can be divided into two big groups: (i)
divisive (or top-down) algorithms and (ii) agglomera-
tive (or bottom-up) algorithms. In the divisive algo-
rithms, the whole network is considered to be one com-
munity. At each iteration, the algorithm detaches a new
group of nodes until the network modularity is maxi-
mized or the number of desired communities is reached.
Several algorithms follow this idea, such as in [23]. On
the other hand, the agglomerative algorithms consider
each node to be a community at the beginning of the
process. At each step, a specific number of nodes are
clustered. The clustering process stops either when the
maximum modularity is reached [24], when the number
of communities is reached or when the system reached
equilibrium [5]. The algorithm can also take into con-
sideration the overlapping nature of the communities
[22,25,27] or consider that a node can only belong to
one community.

One way to measure the quality of a graph partition
is to calculate its modularity Q. The modularity mea-
sures the difference between the connections observed in
a given network and the expected connections observed
in a random network [26]. The idea stems from the fact
that the probability of connection between two nodes
of the same community is higher than for nodes in dis-
tinct communities. Formally, the modularity is defined
as follows:

Q =
1

2m

∑

vw

[
Avw − kvkw

2m

]
δ (cv, cw) (1)

δ (cv, cw) =

{
1, if v and w belong to the same community
0, otherwise

(2)

where m is the total number of edges, Avw is the actual
number of edges between v and w, kv and kw are the
degrees of nodes v and w. Hence, the sum term of the
equation calculates the difference from the actual edges
and the expected number of edges in a random distribu-
tion over every pair of nodes and weights them consid-
ering the total number of edges and whether they are in
the same community or not. The higher the value of Q,
the less random are the connections, i.e., the network
presents structured communities. We use the modular-
ity as a reference indicator of the network’s quality in
this work, as described in the next Sect. 3.

Probabilistic approaches can also be applied to this
task since the size of real networks can impose a compu-
tational limitation on deterministic methods. In [27], for
example, a Bayesian model is presented to tackle mas-
sive networks by computing the community of parts of
the full graph and updating the communities’ estimate
based on the previous step.
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3 Proposed method

Here, we propose a framework to understand how the
community structure reflects the original data’s pat-
terns. A good community structure is found in a high
modularity network, meaning that the constructed net-
work presents distinguishable patterns (represented by
each community). Therefore, every parameter used to
construct the network has to be set to maximize the
network modularity.

Having that in mind, the proposed framework will
rely on traditional methods to keep the number of
parameters low (two to be more precise). Besides, we
analyzed the communities, including their relations and
hierarchy, by making gradual decomposition of the com-
munities into smaller ones. The method is summarized
in the flowchart of Fig. 1.

3.1 Network construction

First, we map our data using a sliding window to deter-
mine the Pearson correlation between every data point,
similarly to the method proposed in [28]. Therefore, let
w be the size of the sliding window, the network will
be formed by N − w nodes, where N is the size of the
time series. At first, every node is connected, and the
weight of the edge is equal to the Pearson correlation ρ
between the two data points.

Given a time series S(t), t = 0, 1, 2, . . . , N , we define
the segments Si = {S

(
i − �w/2�

)
, . . . , S

(
i + �w/2�

)
}

and Sj in a similar way, with i, j = {x ∈ Z | �w/2� ≤
x ≤ N − �w/2�} and i �= j. Then, the edge eij is the
similarity between Si and Sj , which is calculated by the
Pearson correlation as:

ρ(Si,Sj) =
E[SiSj ] − E[Si] · E[Sj ]√

E[Si
2] − (E[Si])2 ·

√
E[Sj

2] − (E[Sj ])2

(3)
However, in the method, weak connections are not

considered since they create noise in the constructed
network. Therefore, a threshold ρmin is used in the fol-
lowing manner:

eij =

{
1, if ρ ≥ ρmin

0, if ρ < ρmin
(4)

where eij is the edge between nodes i and j.
It is important to notice that setting a high ρmin can

generate a network with more than one component and
even disconnected nodes. Therefore, we propose the fol-
lowing rules to set the parameters w and ρ.

3.1.1 Setting the parameters

First, we set the sliding window value w used to gen-
erate the segments to be compared. By definition, a
time series cycle can be defined as the data between
two peaks. Also, the segment between two peaks should
contain two main patterns, a decreasing one and an

increasing one. Therefore, let k be the number of peaks
in the time series, we set w to:

w =
⌊ N

2k

⌋
(5)

Setting the Pearson correlation ρmin requires evalu-
ating the constructed network. The value will depend
on the original data’s characteristics, like the amount of
noise and the presence of repeated patterns. High ρmin

will be used in time series with little noise and repeat-
ing patterns, whereas stochastic time series will require
lower values for ρmin. A direct way to set ρmin is by set-
ting it to 1 and gradually decrease the value until the
constructed network is composed of one component. At
this value of ρmin every segment is connected to at least
another segment and can be assigned a community in
the clustering process.

3.2 Analyzing community patterns

To study the community patterns present in a given
data-set, we perform a progressive partitioning using
the Newman–Girvan [23] community detection method.
This means that instead of stopping the process at the
higher modularity, we measure the modularity at each
step until the network is decomposed into communities
formed by single nodes. By doing so, it is possible to
understand the following properties of the data:

– How significant the sub-patterns are;
– How the modularity behaves in terms of community

number, instead of just looking at the maximum
modularity (sometimes, in real applications, fewer
communities can yield more stable patterns without
compromising in terms of modularity);

– How the communities (or patterns) are linked hier-
archically. A pattern can be composed of several
sub-patterns in a time series, and the community
splitting procedure should generate a dendrogram
representing that.

In the next section, these characteristics will be stud-
ied, where we use an artificial data-set to verify them.

4 Experiments

Before applying the framework to real data-sets, some
experiments were conducted on an artificial time series
to evaluate the properties mentioned in the previous
section.

To test the proposed method on a controlled data-set,
we introduce the artificial time series S:

S(t) = sin(t) + 2sin(
t

10
), 0 < t < 200 (6)
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Fig. 1 Flowchart of the
proposed framework. *The
number of segments
depends on the size of the
window used in the
experiment. **The level of
similarity is also a
parameter to be set. Both
of these parameters will be
detailed further in this
paper

Fig. 2 Artificial dataset
used to depict each step of
the proposed method

where t can be set to any interval, we used the interval
between 0 and 200, with a step of 0.5 between each data
point. The data-set can be seen on Fig. 2.

To construct the network, we need to set two param-
eters, w and ρmin. The data contain three full cycles
and 400 time periods, since S is calculated with a step
of 0.5. Therefore, by using the rule described before,
w = �400/(2 · 3)� = 66. Once w is set, we study the
best value for ρmin. In Fig. 3a, we can see the size of
the main component cs as a percentage of the total
number of nodes for the window that we set before. In
this case, ρmin can be set to 0.96, a high value, since the
artificial data has no noise and clear repeating patterns.

4.1 Analyzing community patterns

In the next experiment, we performed the communi-
ties’ gradual decomposition into smaller ones until the
modularity decreases below the peak value. In Fig. 3b,
we can see that, for S(t), the highest modularity is
reached when the network is divided into 19 communi-
ties. However, it is important to notice that the modu-
larity increases rapidly from 2 to 10 communities. This
indicates that breaking the patterns in more than 10
communities might add little information to understand
the time series (i.e., the artificial one). For these exper-
iments, w = 66 and ρmin = 0.96, as discussed before.

The next step is to analyze how the communities are
formed from the start of the divisive process until it
reaches the peak modularity (19 communities). Figure

4 shows a dendrogram of this process, depicting the
top-down process of how the communities are formed.

To depict how this method classifies the time series
into different patterns, depending on the number of
communities, we plotted the time series corresponding
to two different cuts, two and nineteen communities.
Figure 5 shows the classified time series. Notice that
when the network is divided into two communities, the
time series classification reflects only the two major
patterns (up trend in green and down trend in blue
in Fig. 5a). All the smaller patterns inside the major
pattern are grouped (which was also verified by the
dendrogram). When we continue the partitioning pro-
cess (until we reach 19 communities), sub-patterns are
detected. In the Fig. 5b, we can see that the major up
and downtrends were divided into sub-patterns repre-
senting the smaller fluctuations. For the sake of visual-
ization, we have plotted only 6 of the 19 communities.
The major up trend (green in Fig. 5a), for example,
is composed of two sub-patterns, green for the short
up trend and magenta for the short down trend. The
major down trend is also composed of two sub-patterns,
which are represented by different communities, in this
case depicted in yellow and red, respectively. Also, we
can see patterns indicating the reversal of the major
trends, such as the blue that shows the end of a long
up trend and and the purple that show the end of a long
down trend. This picture also shows the temporal rela-
tion of the communities and how they repeat over time,
since the patterns always appear in the same position
in relation to the longer cycle.
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Fig. 3 Parameter used to set w and ρ for the artificial dataset. a Size of the main component cs as a percentage of the
total number of nodes; b modularity variation along the community detection process

Fig. 4 Dendrogram of the
progressive partitioning
process. From top to
bottom, the network is
divided until it reaches the
peak modularity at 19
communities. We can see
the hierarchy between each
community in the
dendrogram and by
following the order in
which the communities are
split, we can infer the
connection strength
between them

5 Application

In the previous section, we tested the proposed method
in an artificial time series S(t) and analyzed it thor-
oughly using the community structure of the con-
structed network. In this section, we apply the same
framework to real data-sets. The choice of w and ρmin

were made following the ideas presented in the previous
section.

First, we applied the method to a temperature data-
set [30]. This time series presents a cyclic behavior but
contains a lot of noise, unlike the artificial data-set
studied before. A period of 1000 days was analyzed—
roughly 3 years. The parameters w and ρmin were set to
166 and 0.85 respectively. Figure 6a shows the param-
eter setting charts. As we can see, the noise plays an
important role in the value of ρmin, requiring the value
to be much lower to generate a single component net-
work.

In Fig. 6b, we can see that the best division is
obtained with 13 communities. However, in this case,
the modularity increase obtained by dividing the data-

set into more than two patterns is marginal. This indi-
cates that the data contains two important patterns,
and the other 11 are not very relevant. To visualize this,
we mapped back the communities to the time series in
Fig. 7. As we can see, the other eleven patterns are
reversal patterns. They indicate the end and the begin-
ning of the two main patterns and that the reversal
happens in different ways, given that the pattern is not
always the same.

Next, we used stock market data, specifically a period
of the Bovespa index (main Brazilian stock market
index). Like any stock market time series, this time
series is regarded as being generated by a stochastic
process, which should impose some challenges to the
proposed framework. This data-set was further explored
in a previous work [29].

A period of 500 observations was used, and the
parameter selection is based on Fig. 8a. The param-
eters w and ρmin were set to 20 and 0.70, respectively.
In this case, the ρmin is even lower due to the nature
of the data. The best division is obtained with 18 com-
munities as indicated in Fig. 8b.
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Fig. 5 Artificial dataset
classified into a 2 different
communities and b 19
different communities (only
6 of them are plotted). In
these pictures, the
communities are mapped
back to the time series,
verifying the temporal
relation between the
communities

Fig. 6 Parameter used to set w and ρ for the temperature dataset. a Size of the main component cs as a percentage of
the total number of nodes; b modularity variation along the community detection process

Fig. 7 Classified
temperature data

The classified data can be seen in Fig. 9. Notice that
other reversal patterns also appear, others than the two
major trends (represented in green and purple). How-
ever, in this case, the modularity gain from 2 to 18 is

even less significant than in the previous experiments,
and no sub-patterns are found.

These three data-sets show how the method is able
to capture the underlying patterns according to dif-
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Fig. 8 Parameter used to set w and ρ for the stock price dataset. a Size of the main component cs as a percentage of the
total number of nodes; b modularity variation along the community detection process

Fig. 9 Classified stock
price dataset

ferent types of data. The artificial case presents clear
cycles and no noise. Therefore, the highest modularity
generated meaningful patterns. The temperature data
presents clear cycles but with a lot of noise. In this case,
the method captured the main patterns and the rever-
sal patterns when using the highest modularity division.
Finally, the stock market data had a very low gain in
modularity after the first division.

6 Conclusions

This work explored the community structure of the time
series by proposing a framework to study how the pat-
terns observed in a time series relate to the constructed
network’s community structure.

We showed that the resulting network’s modularity
can be optimized by adjusting the construction param-
eters and that this results in clear time series patterns.
We also showed that depending on the original data, the
pattern could be meaningful or not, and, therefore, the
division process should be stopped in an earlier step.

One of the goals of this work was to depict how the
characteristics of a time series are carried to a com-
plex network structure and how it can be mapped back
to the time series. Therefore, although we present a
straightforward process for analyzing time series pat-

terns, the idea proposed here can be extended to more
complex scenarios and aimed at different objectives
such as classification task and predictive models. Also,
both the mapping method, which used the Pearson
correlation, and the community detection method can
be replaced by other methods. For example, as future
work, a community detection method that captures
community overlaps could be employed since many
stochastic time series present overlapping patterns.
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Abstract

Although COVID-19 has spread almost all over the world, social isolation is still a controversial public
health policy and governments of many countries still doubt its level of effectiveness. This situation
can create deadlocks in places where there is a discrepancy among municipal, state and federal policies.
The exponential increase of the number of infectious people and deaths in the last days shows that the
COVID-19 epidemics is still at its early stage in Brazil and such political disarray can lead to very
serious results. In this work, we study the COVID-19 epidemics in Brazilian cities using early-time
approximations of the SIR model in networks. Different from other works, the underlying network
is constructed by feeding real-world data on local COVID-19 cases reported by Brazilian cities to a
regularized vector autoregressive model, which estimates directional COVID-19 transmission channels
(links) of every pair of cities (vertices) using spectral network analysis. Our results reveal that social
isolation and, especially, the use of masks can effectively reduce the transmission rate of COVID-19
in Brazil. We also build counterfactual scenarios to measure the human impact of these public health
measures in terms of reducing the number of COVID-19 cases at the epidemics peak. We find that the
efficiency of social isolation and of using of masks differs significantly across cities. For instance, we
find that they would potentially decrease the COVID-19 epidemics peak in São Paulo (SP) and Brası́lia
(DF) by 15% and 25%, respectively. We hope our study can support the design of further public health
measures.

Keywords: COVID-19, SARS-CoV-2, health policy, network, VAR, SIR

1. Introduction

The quick spread of the COVID-19 across countries has evidenced the high degree of interconnected-
ness worldwide. In less than six months, the COVID-19 epicenter traveled around the globe, starting
in China, then moving to Italy, and to the US. The Coronavirus Resource Center at the John Hopkins
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University registers more than 4 million cases of the COVID-19 spread around 187 affected countries,
i.e., roughly 96% of all countries recognized by the United Nations. Factors of such a rapid spreading
include large flows of international air transportation, enabling cross-country jumps of the new coron-
avirus. Recently, the airline industry has been experiencing large drops in revenue mainly because of
international border closures implemented by governments worldwide to detain “imported transmis-
sions” of the virus. However, COVID-19 cases still substantially grow inside borders and represent
a serious health concern of several countries across the globe. In this scenario, we can say that con-
cerns about cross-country transmission have reduced and the understanding of the COVID-19 domestic
transmission has gained much relevance.

This paper focuses on the COVID-19 domestic transmission in Brazil, which already registers cases in
all 27 states as depicted in Figure 1a. We analyze the efficiency of public health measures—such as
social isolation/quarantine and use of masks—in mitigating the COVID-19 transmission in the country
using an innovative network-based approach that accounts for intra and intercity COVID-19 transmis-
sion channels. There are several unique features that make Brazil an important case study. First, there
is a political confusion about the effectiveness of social isolation by the Brazilian federal and state
governments [1]. The exponential increase in the number of infectious people and deaths in the last
days indicates that such political disarray can lead to very serious results. Second, Brazil contains
the 6th largest population in the world. Thus, the human impact of the COVID-19 can be substantial
if not properly mitigated and a second wave of cross-country spillovers could be potentially sizable
in the future.1 Third, Brazil has significant socioeconomic and cultural disparities across its 5,570
cities. Therefore, COVID-19 transmission and mortality rates may largely differ across cities, such as
evidenced in Figures 1a–1b. The model proposed in this paper is able to estimate these city-specific
COVID-19 transmission rates, thus accounting for their distinctive aspects. Fourth, WHO reports show
that Latin America will most probably be the next epicenter of the COVID-19 outbreak. Since Brazil is
the largest Latin American country and borders 83% of all South American countries, an understanding
of the regional aspects of the COVID-19 transmission is crucial for designing public health measures.

Most countries in the Americas are still facing the early stages of the COVID-19 and Brazil is no
different. While it is important to have a full picture of the pandemic in each country to better design
government policies aimed at mitigating the COVID-19 spread considering their local particularities,
the omission of the government in taking effective measures at the onset of the epidemics can have
large human and economic effects in the long term. Some eastern countries, such as China, South
Korea and Singapore, may be an indication that having previous organized policies and mask usage
culture are key to successfully mitigate the death toll. In this work, we consider only the availability of
early-time data on the COVID-19 dynamics, thus better reflecting the real-world conditions that most
governments are facing.

The dynamic of the COVID-19 epidemics is not only determined by the local aspects of cities. There
is a continuous flow of persons from and to different cities either through roadways, domestic airlines,
or sea routes that could transport the disease. However, these intercity transmission spillovers are not
limited to biological risk factors. For instance, economic activities could also be related to the propen-
sity of acquiring the virus from other places, such as when households or firms buy supplies abroad
that are conditioned on surfaces that the virus is viable for long periods without proper sanitation.2

1In [2], the authors projects recurrent wintertime outbreaks of SARS-CoV-2 will occur after the initial pandemic wave.
They argue that prolonged or intermittent social distancing could be necessary up to 2022. Even with apparent elimination,
the authors state that the resurgence in contagion could be possible as late as 2024.

2Studies have show that the virus is more stable on smooth surfaces, such as plastic and stainless steel (detectable up
to 7 days), and is very sensitive to temperature (the inactivation time is reduced to 5 mins at 70 degrees Celsius)[3]. The
aerosol and surface stability of SARS-CoV-2 is similar to SARS-CoV-1, with a half-life of about 1hr in the form of aerosol
and up to 7hrs on plastic surfaces. Other surfaces, such as copper, cardboard and stainless steel have also long half-life
values, ranging from 1 to 6 hours [4].

2
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Figure 1: COVID-19 geographical spreading pattern in Brazil in terms of (a) COVID-19 cases at the city level and (b)
mortality rate at the state level as of May 8, 2020. Gray areas represent cities that have not reported any COVID-19
epidemiologcal bulletin. We evaluate mortality rates by taking the ratio of the number of deaths due to COVID-19 to
the number of infectious persons. Mortality rates are probably upward biased because the number of observed infectious
persons is likely to be underestimated, as the COVID-19 may pass unnoticed for some cases (mild or no adverse conditions
at all). We report mortality rates at the state rather than city level because there are many cities with few COVID-19 cases
and deaths, which would distort the estimated mortality rates.

This transmission dynamic renders each city subject not only to its inherent “COVID-19 natural trans-
mission rate” dictated by the local aspects of the city itself—such as demography, culture, law, and
weather—but also from outside the city. Our model permits to estimate transmission rates of each city
while accounting for infectious factors from the outside using the Susceptible-Infectious-Recovered
(SIR) model in a special type of transmission network among cities.

We take an innovative approach to construct the underlying COVID-19 transmission network among
cities. Even though we apply the model for the COVID-19 propagation inside Brazil, the model is
general and could be applied for any networked environment, such as in cross-country studies or even
more granular approaches than at the city level. We model such network using a weighted directed
graph. Vertices are cities and links represent potential COVID-19 contagion/spillovers from one city
to another. To estimate the links, we consider a panel-format data 3 composed of city-specific COVID-
19 infectious counts of locals over time. We then use a vector autoregressive (VAR) model to find
directional COVID-19 transmissions of every pair of cities in the network. Since the seminal paper of
[5], VARs have provided key empirical input into substantive economic and financial aspects. Despite
the robustness of the model, their use in epidemiology is still a new topic. Here, we design a VAR
model that explicitly considers the temporal ordering of the disease spreading. We let every city-
specific infectious count be dependent not only on its own past value but also from all other cities.
The weights of past values of each city j that influence the current city i’s infectious local count are
the links in our network. Such links are estimated by fitting the entire network structure to temporal

3A panel data is composed of n multivariate time series, each representing the evolution of COVID-19 cases of a
specific city. It is a mixture of cross-sectional data—in which we observe n cities all in a specific time point—and time
series data—in which we observe a single individual over time.

3
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city-specific infectious count data. We mitigate concerns with parameter overfitting by using an elastic
net regularization scheme during training time4 and one-step ahead rolling validation methodologies
borrowed from the machine learning literature.5

An interesting property of the early-time dynamics of a SIR model is that it still enables us to esti-
mate the transmission rate β of the model. Given the recovery rate γ of infectious persons,6 then the
model can be completely described [11], including late-time dynamics and infectious peak. It is worth
mentioning that the rate γ can be divided into two parts, the time from onset to death and the time
from onset to recovery. Both can vary from country to country, since they are highly correlated to
demographics, health care system and the treatments available. The onset to recovery time is, however,
invariant to the topological structure of the system and, therefore, we use an average value of 14 days
in all scenarios of our study

In early-time dynamics, the effective transmission rate β of an isolated SIR and a networked SIR model
differs by the spectrum of the estimated COVID-19 transmission network. When we do not consider
the network environment, we are effectively supposing the existence of a single large city composed of
all cities in the model. In this way, the susceptibility of being infected depends on the total number of
infected (all cities). The introduction of multiple cities effectively reduces this propensity by imposing
that the likelihood of being infected is higher inside cities rather than across cities. The network
spectrum corresponds to the largest eigenvalue of the network adjacency matrix. If the isolated SIR has
a transmission rate β , then the networked SIR will have an effective transmission rate of βeff = λmaxβ ,
in which λmax is the largest eigenvalue of the network. The network spectrum encodes all the graph
structure in terms of its ability of spreading and amplifying intercity contagion at early time.

In this paper, we also analyze the efficiency of health policy measures implemented by the Brazilian
government to mitigate the COVID-19 propagation. Social isolation and quarantine measures were
adopted by several states at different time scales. Following that, the Brazilian Health Ministry recom-
mended the use of masks at the federal level. Political disagreements on the effectiveness of quarantine
measures by the federal and state governments were on display and may have lead the population into
confusion, thus affecting the efficacy of such measures. Our work contributes to this discussion by
estimating the joint efficacy of these measures.

We find that the quarantine and use of masks measures decreased the growth rate of the spectrum
of the COVID-19 transmission network over time, suggesting that the measures were effective. To
get a sense, Figure 2 portrays the average COVID-19 growth rate of cities in the state of São Paulo
segregated in terms of their average social distancing index in the period.7 First, after the use of masks
recommendation, the COVID-19 growth rate, in general, decreased. However, it decreased more in
cities of São Paulo with low social distancing measures. This may be due to the fact that these cities

4The elastic net is composed of a convex combination of the Lasso (L1) and Ridge (L2 norm) regularization. We refer
the reader to the seminal work of [6] for further details.

5Parameter overfitting becomes a serious concern when we have several cities in the model. For instance, we apply our
method to Brazilian data, which is a country with vast territorial dimensions and with more 5,570 cities (end of 2019). In
this case, we would have to estimate 5,570×5,570≈ 31 million parameters with only a few time points (because we only
have early-time data). Ensuring regularization is vital to have reasonable out-of-sample estimates. See [7] for more details
on regularization of VAR models.

6The recovery rate can be estimated from the timeline between the appearance of symptoms and the case resolution.
Several ongoing studies report estimates for the recovery rate. For instance, the authors in [8] assumes that the duration of
the infection ranges from 15 to 20 days. Data from the outbreak in Wuhan show an onset-to-death time of 17.8 days and an
onset-to-recovery time of 24.7 days [9]. This results are, however, biased to higher values due to the overwhelmed health
care system in Wuhan in the early days of the outbreak and the sub-notification of the outcome of mild-cases. Reports from
WHO indicate a recovery time of 14 days for mild cases and 21-42 days for severe cases. Among those who die the onset
to outcome ranges from 14 to 56 days [10]. Since the mild cases account for most of the cases, we set gamma to 14 days in
this study.

7Such index represents the extent of compliance of the population to the quarantine measures.

4
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Figure 2: Average COVID-19 growth rate in cities of the state of São Paulo, Brazil, with low, medium, and high social-
distancing indices. Available data goes until May 8, 2020. The first vertical line is the beginning of SP quarantine, while
the second represents the use of mask recommendation by the federal government. Data from social distancing is public
and comes from the São Paulo State Government (in Portuguese). To alleviate week seasonality, we use 7-day moving
averages to construct the average growth rates. The low, medium, and high social-distancing indices represent the bottom,
middle, and upper terciles of the corresponding distribution. Data from the number of infectious persons per each city is
discussed in Section 4.1.

could have more potential close human-to-human contact and therefore the use of masks is crucial
to detain the COVID-19 transmission. To get a sense of the human impact of such measures, we
build counterfactual scenarios in which we consider that none of these measures were taken by the
government. By running the SIR model in networks, we find that the quarantine and the use of masks
recommendation reduced the peak of the COVID-19 epidemics, on average, in 15% in São Paulo (SP)
and almost 25% in Brası́lia (DF), when we look at the average effect in the last week of available data
(May 2 to 8, 2020). This reduction is explained by the flattening of the epidemics curve: São Paulo
(SP) and Brası́lia (DF) have peak date shifts from July 7 to July 24 and August 29 to September 28,
respectively.

Our results show the increasing trend of infectious cases in the last days, which is confirmed by the up-
dated official data in Brazil. This situation is consistent with the decreasing social isolation rate shown
by Figure 2, which, in turn, probably caused by the political discrepancy in public health measure
application.

2. Related background and literature

In this section, we present relevant background on SIR models in networks and the related literature
about our work.

2.1. Relevant background: early-time dynamic of SIR models in networks
In this section, we present relevant background on the Susceptible-Infectious-Recovered (SIR) model
in networks. We refer the reader to [11] for a comprehensive analysis on epidemiological models and
to [12] for the seminal paper on the original SIR model. Since we focus on the early-time dynamics
of the SIR models, we can assume that the number of births and deaths are much smaller than the
population, in a way that the closed population hypothesis holds.

Define as si(t), xi(t), and ri(t) the share of susceptible, infectious, and recovery persons of city i rela-
tive to the local population at time t. In a closed population, the SIR model in networks is government
by the following differential equations:

5
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d
dt
si(t +1) =−β ·si(t) · ∑

j∈V
Ai jx j(t) (1)

d
dt
xi(t +1) = β ·si(t) · ∑

j∈V
Ai jx j(t)− γ ·xi(t) (2)

d
dt
ri(t +1) = γ ·xi(t) (3)

1 = si(t)+xi(t)+ri(t) (4)

∀i ∈ V and t ≥ 0. We can substitute (4) into (2), yielding:

d
dt
xi(t +1) = β · (1−xi(t)−ri(t)) · ∑

j∈V
Ai jx j(t)− γ ·xi(t) (5)

In early time, i.e., we can assume that xi(t)� 1 and ri(t) ≈ 0, ∀i ∈ V . Therefore, we can ignore
second-order xi(t) terms and effectively set ri(t) to 0. With these modifications, Equation (5) becomes:

d
dt
xi(t +1) = β · ∑

j∈V
Ai jx j(t)− γ ·xi(t)

= β · ∑
j∈V

(
Ai j−

γ
β

δi j

)
x j(t),

= β
(
A−

(
γ
β

)
I

)
x(t)

= βMx(t) (6)

in which I is the identity matrix, M = A−
(

γ
β

)
I is the adjacency matrix A with a homogeneous

perturbation of γ
β in the main diagonal, and δi j = 1 if i = j, and δi j = 0 otherwise. Equation (6) is a

standard differential linear system whose solution can be written in terms of the eigenvector basis of
the adjacency matrixA:

xi(t) =
V

∑
k=1
ai,k(0)e(λkβ−γ)tvi,k, (7)

in which A ·vk = λkvk holds ∀k ∈ {1, . . . ,V}. The term λk is the k-th eigenvalue of A, vi,k is the i-th
entry of the eigenvector associated with the k-th eigenvalue. The parameter ai,k(0) in (7) is a scaling
constant that depends on the initial condition of city i.

In early time, the growth rate of equation (7) is government by the exponent term with the largest eigen-
value λ1 = λmax of matrixA, which is a well-known measure from spectral graph theory denominated
graph spectrum [13]. Therefore:

6
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xi(t)≈ vi,1e(λmaxβ−γ)t , (8)

i.e., the growth rate is λmaxβ − γ and the probability of contagion is proportional to the eigenvector
associate with the largest eigenvalue λmax, v1, which corresponds to the eigenvector centrality measure
of the graph, according to the spectral graph theory [13].

2.2. Relative literature
Basically, there are two strategies to prevent epidemic spreading in networks [14]. One is the efficient
immunization protocols and the other is to find out relevant spreaders and activation mechanisms.

Immunization strategies are methods for identification of nodes that shall be immunized, taking into
account the network structure. Immunized nodes and all the incident links can be removed from the
epidemic network. Immunization can not only protect immunized individuals, but can also reduce the
epidemic threshold, precluding the outbreak of the disease. Among various immunization strategies,
random immunization protocol is the simplest one, where a fraction of randomly selected nodes are
made immune. However, in this case, the immunization threshold tends to be 1 in heterogeneous
networks, indicating that almost the whole network must be immunized to suppress the disease [15].
Target immunization protocol considers special nodes to be immunized. In [16, 15], the authors show
that the immunization threshold can be exponentially small over a large range of the spreading rate if
considers the immunization of a fraction of nodes with the largest degree. Other approaches consider
not only the critical nodes, but also the entire prevalence curve (the so-called viral conductance) [17,
18].

Although immunization is a fundamental strategy in the epidemic study, the research community pays
also much attention to find out which nodes, links and local structures are most influential or effec-
tive in the spreading process [19, 20, 21, 22, 23, 24, 25, 26]. These findings aimed at understanding
network measures on nodes and links, such as degree, betweenness, K-core index, closeness, link prop-
erty on spreading dynamics. Besides of finding superspreaders, some researchers also worked on the
identification of how topological features influence global epidemics [27, 28, 29].

However, the above mentioned strategies require the discovery of vaccine or at least partial knowledge
on the epidemic network under consideration. With the mass and quick spreading of COVID-19,
neither of them is a practical method to prevent the outbreak. Therefore, global intervention methods,
like social isolation, even lockdown, have already been proven to be efficient. For this reason, we
study the effectiveness of public intervention methods. Our results provide strong evidence on the
effectiveness of public health measures, such as quarantine and use of masks, to reduce the increasing
rate of infection even without detailed information of the highly dynamical population network.

3. Methodology

This section discusses the underpinnings of our methodology. Our analysis consists of the following
stages:

1. Network construction: we construct the COVID-19 network transmission network by fitting the
network links to real data.

2. COVID-19 epidemics estimation using the SIR model: we use the network estimated in Step 1
and simulate the COVID-19 evolution in every city of the network.

3. Effectiveness evaluation of public health policy: we change the network structure so as to sim-
ulate the omission of public health policies and run our epidemics model in Step 2 without the
government intervention. We estimate the efficiency of the public health policies by inspecting
the change in the COVID-19 epidemics peak.

7
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3.1. Network construction using panel data
Consider the weighted directed graph G = 〈V ,E 〉 in which V is the set of vertices and E is the set of
links. There are V = |V | vertices and E = |E | links in the network. In our epidemiological application,
vertices can represent cities, states, countries, or any well-defined entity or geographical circumscrip-
tion (neighborhood, street, house etc.). For simplicity and with no loss of generality, we denominate
the vertices as cities. We assume as given the set of cities/vertices V . In contrast, links between cities i
and j connote potential COVID-19 transmission from i to j and are a priori unknown. In the context of
cities, city-to-city contagion could happen for a series of reasons, such as when infectious persons visit
or migrate or even from intercity transportation of supplies covered in surfaces that the SARS-CoV-2
is viable for long periods. Therefore, the network G encodes all potential transmission paths between
cities be through organic or non-organic media. The goal of this section is to estimate the set of links
E , i.e., the intercity COVID-19 transmission channels.

Let x(t) = [x1(t),x2(t), . . . ,xV (t)] denote the vector with shares of infectious persons relative to the
local population of every city i ∈ V in the network at discrete time t ≥ 0. Specifically, we denote as
xi(t) ∈ [0,1] the share of infectious persons within city i at time t. That is, we take the ratio between
the number of infectious persons to the total local population in the city. When xi(t) = 1, then all
population in the city is infectious. When xi(t) = 0, none is infectious. In-between values represent
partial shares of infectious population. Define the column vector xi = [xi(0),xi(1), . . . ,xi(T )]

′ as the
COVID-19 time series evolution in city i up to time T , in which the superscript ′ is the transpose
operator. Since we perform an early-time analysis of the epidemics, T is likely to not be large. Let
also the matrixX = [x1,x2, . . . ,xV ], dim(X) = T ×V , be all the cities’ time series with the shares of
infectious persons stacked in columns over all period with available data (panel data).

To construct the network, we consider the temporal ordering of the COVID-19 spread across different
cities. We attempt to describe the current share of infectious persons vector xt with the same vector
immediately at the previous time step, i.e., xt−1 as follows:

xt = κ+A ·xt−1 +εt , (9)

∀t ∈ {0,1, . . . ,T}. The term κ, dim(κ) =V ×1, is an intercept column vector;A, dim(A) =V ×V , is
the adjacency matrix encoding the set of links E of the graph; and εt ∼ (0,Σε) is the unobservable zero
mean white noise vector process (serially uncorrelated or independent) with time-invariant covariance
matrix Σε. Let Ai j be the (i, j)-entry of A, i, j ∈ V . When Ai j > 0, then city i can spillover COVID-
19 to city j. The larger Ai j is, the stronger is such contagion. Then, the set of links is given by
E = {i, j ∈ V :Ai j > 0}.
The terms κ, A in Equation (9) are unknown and are estimated using a fitting process to the observed
data X .Equation (9) describes a VAR(1) model. To ensure that the system is stable, the companion
matrix must have roots inside the complex unit circle. To guarantee such property, our variables xi, i ∈
V , must be stationary. Since they are lower- and upper-bounded—i.e., xi ∈ [0,1]—then they are
stationary by construction. Specifically, we minimize the following regularized loss function L [7]
using the coordinate descent algorithm [30]:

L = min
κ,A

T

∑
t=0
‖εt‖2

F +Regularization(A)

= min
κ,A

T

∑
t=0
‖yt− (κ+Axt−1)‖2

F +λ (α ‖A‖1 +(1−α)‖A‖2) , (10)
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in which λ ≥ 0 is the elastic net regularization term and α ∈ [0,1] is the tradeoff parameter between
Lasso (L1 norm) and Ridge (L2 norm) regularizations. We notate ‖.‖F , ‖.‖1, ‖.‖2 as the Frobenius, L1,
and L2 norms, respectively. Larger values of λ encourage sparser networks. The first term represents
minimization of the error term εt ,∀t ∈ 0,1, . . . ,T , and ensures that the estimated adjacency matrix A
better reflects the COVID-19 transmission dynamics over time. The second term is a regularization
term over the adjacency matrix A introduced to prevent overfitting and ensure that the estimation is
numerically tractable. We do not regularize the intercept vector κ because it conceptually adapts to the
city-specific average values of our data.

There is an empirical challenge in fitting the adjacency matrix A to the panel data X when we are
dealing with large-scale networks in which the number of cities V largely surpasses the number of
available time points T , i.e., when V � T . Such problem is aggravated when we only have early-time
information about the disease, i.e., T is small. In this case, we would incur in overparametrization and
overfitting is a concern. The regularization term in (10) mitigates such concern. We opt for an elastic
net regularization scheme because it is a robust regularizator that combines positive features of Lasso
and Ridge regularizations [30].

Due to the temporal dependency of the panel data, the usual k-fold cross-validation is not well-suited
for our model selection procedure. Following [7], we optimize the penalty parameters λ and α in (10)
using a h-step ahead mean-square forecast error (MSFE). Due to data availability, we keep h = 1 so as
to minimize further data losses. We divide the data into three equally-spaced and contiguous periods:
(i) initialization (t ∈ {0, . . . ,T1}), (ii) training (t ∈ {T1 + 1, . . . ,T2}), and (iii) forecast evaluation (t ∈
{T2+1, . . . ,T}), in which T1 =

⌊T
3

⌋
and T2 =

⌊2T
3

⌋
. We also use a rolling validation process as follows.

We first fit the model using all data up to time T1 and forecast x̂(λc,αc)
T1+1 , in which λc and αc are fixed

candidate penalty terms. We then sequentially add one observation at a time and repeat this process
until T2−1. Then, we choose the penalty terms λ and α that minimize the one-step ahead MSFE given
by:

MSFE(λ ,α) =
1

T2−T1

T2−1

∑
t=T1

∥∥∥x̂(λ ,α)
t+1 − x̂t+1

∥∥∥
2

F
. (11)

Finally, we estimate the one-step ahead forecast accuracy using data points in t ∈ {T2, . . . ,T}, which
have not been used in the model selection procedure. To better assess the potentiality of the network
in amplifying contagion across different municipalities, we remove the self-loops in the estimated
network, which correspond to the influence of the local infectious population on its own future value.

3.2. Estimating transmission rate in early-time epidemics networks
In this section, we assume the network structure G = 〈V ,E 〉 as given, i.e., the set of vertices and
links are already established in accordance with the network construction described in Section 3.1. We
start from the results of the early-time dynamic of SIR models in networks described in Section 2.1.
Therein, we show that the growth rate at early time is determined by λmaxβ − γ (see Equation (8)).
Therefore, the graph spectrum λmax modulates the transmission rate parameter by either amplifying or
dampening the contagion speed.

If λmaxβ > γ , then Equation (8) grows exponentially, while it decays when λmaxβ < γ . Therefore, the
reproduction number (critical point) is R0 = λmaxβ

γ . Recall that the reproduction number in the SIR

model without network is R0 =
β
γ [12]. Therefore, the reproduction numbers of both models differ by

the graph spectrum ofA, λmax.

Equation (8) assumes that every city in the model has a single growth rate dynamics dictated by the term
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λmaxβ − γ . Changes in the epidemics spreading for each city would then be fully determined by their
eigenvector centralities, because growth rates are identical across cities (see Equation (8)). However,
studies show that the transmission rate parameter β is dependent on local aspects of cities [11]. In
contrast, the recovery rate parameter is much less variable across different places. As mentioned
earlier in this study, WHO indicates an average recovery time of 14 days for mild cases. Therefore, we
consider a different transmission rate for each city in the network βi while letting fixed the recovery rate
γ for all cities. We can still apply the classical framework of SIR in networks because, even though
transmission rates are city specific, they tend to be normally distributed around some mean natural
value. That is, large deviations are unusual. We empirically find this fact using our application to the
Brazilian case. Mathematically, we rewrite (8) as follows:

xi(t)≈ vi,1e(λ1βi−γ)t . (12)

We can linearize (12) by simply taking the log(.) at both sides of the equation for each city i in the
network:

log(xi(t)) = log(v1,i)+(λ1βi− γ) t, (13)

∀i ∈ V . The LHS and RHS are always non-negative, because x(0) ≥ 0 and is non-decreasing (early-
time assumption), e(λ1βi−γ)t ≥ 0 (asymptotically speaking), and v1,i ≥ 0 [13]. We can then apply the
log(.) without any restrictions. We can estimate (13) for all cities i at once by adding dummies for
the constant and time-dependent term for each city in the model (2 dummies per each city). We end
up with a set of 2n− 1 dummy variables, because the last one is the reference dummy. Since we
have a panel data with temporal dependencies (the same city appears multiple times), we use a linear
panel-data estimation model [31] as follows:

xi(t) = ∑
j∈V

δi j
[
α j +ρ j · t

]
+εi(t), (14)

∀i ∈ V , in which αi and ρi are the constant and time-variant dummy terms for city i, and εi(t) is the
residual from the least square estimation with dummies. We cluster the errors at the city level, such
as to mitigate concerns with heteroskedasticity and serial correlation, which could bias our coefficient
estimates. Equations (13) and (14) are linked by the following identities:

αi = log(v1,i)⇒ v1,i = eαi, (15)

ρi = λ1βi− γ ⇒ βi =
ρi + γ
λmax

.. (16)

Given the recovery rate γ—which is assumed to not change over time nor across cities—we can fully
identify the eigenvector centrality and the local transmission rate of every city i using (15) and (16),
respectively. We only take city-specific estimations of v1,i and βi that are statistically significant at the
10% level. Otherwise, we set the estimated coefficients to zero.
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3.3. Assessing efficiency of health policy measures in epidemics spreading
With our framework, we can analyze the speed of the epidemics spreading through the network at
early time by simply inspecting the graph spectrum λmax = λ1 for different time horizons using the
methodology described in Section 3.1. Since the reproduction number of the epidemics is proportional
to the graph spectrum, then large graph spectra indicate a higher speed of contagion. Any changes of
the graph spectrum can be attributed to a “net effect” of public policies of the government in the entire
network. Since we use the share of infectious persons of each Brazilian city, then this “net effect”
comprises not only federal policies, but also state- and even city-level policies.

Moreover, we can estimate the human impact of these policies in terms of changes in the number of
infectious persons at the peak by running the SIR model described in Section 3.2 for each estimated
city-specific transmission rate parameter βi defined in (16) and for different values of the graph spec-
trum. We use a conservative approach and compare the largest observed graph spectrum with the most
recent graph spectrum in our dataset. We assume that the largest graph spectrum occurs when public
policies were still latent and were not having effects in the epidemics spreading. Most recent values
of the graph spectrum are assumed to represent transmission dynamic after public policies were in, as
was the case in Brazil who adopted quarantine and recommended the use of masks in the period that
we have available data.

4. Application

In this section, we apply our model to Brazilian data at the city level.

4.1. Data
We use daily data on the number of infectious persons per each city in Brazil using COVID-19 epi-
demiological bulletins of 27 State Health Departments from February 25, 2020, to May 8, 2020.8 Each
Brazilian state compiles local reports from cities inside their geographical circumscription. We end
up with 60,021 city-time epidemiological bulletins comprising 2,754 (out of 5,570) cities affected by
COVID-19 in Brazil.

Our data is representative because local hospitals are required by law to register any COVID-19 events
to the local government while cities and states must notify the federal government. However, there
may be substantial sub-notifications due to persons that acquire the COVID-19 and recover unnoticed
or without hospitalization.

We also collect city-level population estimates in the Brazilian Institute of Geography and Statistics
(IBGE), which is the agency responsible for official collection of statistical, geographic, cartographic,
geodetic and environmental information in Brazil. We evaluate the share of infectious persons by
taking the ratio of COVID-19 cases reported in the local health bulletin and the local population size.
The use of shares in our estimation models is important because it is a stationary variable.

We apply a three-day smoothing filter on the number of infectious persons in each municipality to
alleviate concerns with late contamination reports or short-term rectifications by the local health gov-
ernment that could compromise our estimations. In our network construction procedure (see Section
3.1), we keep only cities that reported COVID-19 cases in at least 20% of the available time frame.
Our results remain qualitatively the same if we do not apply this filtering criterion. In our estimation
of the SIR parameters (see Section 3.2), we center all time points in relation to the occurrence of the
first death in the city.

8This data is scattered around a large quantity of state government sites. In general, the bulletins are not standardized
across different states and not even cities. We use the compiled dataset from Brasil.io for this task.

8Asymptomatic and mild-cases can represent up to 80% of the cases according to China reported numbers. This cases
tend not to be tested in Brazil.
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Figure 3: COVID-19 evolution in six of the most affected cities in Brazil (a) in absolute terms (number of infectious
persons) and (a) as a share of the local population size. Horizontal axis represent the relative day in terms of the first
observed death due to the COVID-19.

Figures 3a–3b portray the COVID-19 evolution in six of the most affected cities in Brazil relatively
to the first reported death in terms of the number of COVID-19 cases and as a share of the local
population size, respectively. São Paulo (SP) has the highest number of infectious persons. However,
there is strong size effect: São Paulo (SP) has almost 12.2 million residents while the second largest
city, Rio de Janeiro (RJ), has almost half of that (6.8 million). To get a sense of the local COVID-19
criticality, we can look at its evolution as a share of the local population. In this case, we note that
COVID-19 transmission speed is much larger in Manaus (AM) and Fortaleza (CE). Brası́lia (DF) and
Porto Alegre (RS) have smaller transmission rates and local COVID-19 criticality. However, mortality
rates may not follow such incidence criticality, because they correlate with local health quality and
demography characteristics.

4.2. Results
This section presents the main empirical results of the paper. We first build the COVID-19 intercity
transmission network and analyze its propensity of amplifying the COVID-19 in different cities. Then,
we analyze the net effectiveness of public health measures adopted by the Brazilian government.

4.2.1. Intercity COVID-19 transmission network in Brazil
Figure 4 shows the graph spectrum of the COVID-19 intercity transmission network of Brazil over
time. For each time point (horizontal axis), we run the network construction through the fitting process
in Section 3.1 with data from the beginning of the sample up to that specific time point. Even though
our sample starts in February 25, 2020, we start the fitting process from March 13, 2020, such as
to have enough data for the fitting process. That is, we start with 18 time points for each Brazilian
city. Therefore, we initially divide the panel data in three equally-sized groups with 6 time points for
model training, model selection (parameters and penalty terms), and model evaluation. These group
sizes increase as we add more time points. We perform the network construction estimation daily from
March 13 to May 8, 2020, in an independent manner.

In Figure 4, we add a shaded area indicating the timing window in which quarantine measures were
adopted by the most affected Brazilian states. Since São Paulo is the COVID-19 epicenter in Brazil
as it encloses 57.4% of all the COVID-19 infections in Brazil, we also add a vertical dashed red line
indicating the beginning of the quarantine adopted by the São Paulo State Government. We also draw
the use of masks recommendation beginning date by the Federal Health Ministry in Brazil as a dashed
blue line enacted. While quarantine measures are at the state level, the use of masks recommendations
goes at the federal level and encompasses all the 5,570 cities and 27 states in Brazil. São Paulo is the
most central city in the transmission network. Therefore, it practically shapes the graph spectrum of
the intercity transmission network.
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Figure 4: Graph spectrum of the COVID-19 intercity transmission network of Brazil (see Section 3.1). The shaded area
indicating the timing window in which quarantine measures were adopted by the most affected Brazilian states. The red
dashed line indices the beginning of the quarantine in São Paulo, the COVID-19 epicenter in Brazil. The blue dashed line
indices the beginning of the use of masks recommendation by the Federal Health Ministry. For each time point (horizontal
axis), we build the network with city-specific shares of infectious persons with data up to that point.

We observe a reduction in the growth rate of the graph spectrum after the quarantine measures precisely
two days after the measure. However, the growth rate still persisted at positive rates, indicating that
the COVID-19 transmission speed kept increasing after such measure, but with a slower pace. After
the incubation period following the use of masks recommendation, we observe a drastic change in the
graph spectrum. The growth rate changed sign and started to reduce, showing that the set of health
policy measures taken by the government was efficient. However, after April 23, 2020, the graph spec-
trum again started to increase. This can be due to several factors, such as social confusion in following
health guidelines in view of the political disarray that Brazil is facing, or even non-compliance with
quarantine and use of masks measures. Our model does not permit to have an isolated causal impact
of the use of masks recommendation nor of the quarantine measures. However, it enables us to under-
stand how the set of all policy measures affected the COVID-19 transmission rate across cities over
time. Combining Figures 2 and 4, it seems that the reduction in the COVID-19 growth rates after the
use of masks recommendation was more apparent in cities with relative low social distancing indices.
This may be due to the fact that these cities have more potential close human-to-human contact and
therefore the use of masks is crucial to detain the COVID-19 transmission.

To understand the topological aspects of the COVID-19 intercity transmission network, Figure 5 plots
the PageRank centrality for the top 5 most central cities in each of the five regions in Brazil. We
normalize the PageRank with respect to the most central city: São Paulo (SP) on May 8, 2020. As
the city centrality becomes higher, the more it contributes to spreading the COVID-19 throughout
the network. The top 5 most central cities in the country are the following state capitals (in decreasing
order): (i) São Paulo (SP), (ii) Rio de Janeiro (RJ), (iii) Fortaleza (CE), (iv) Recife (PE), and (v) Manaus
(AM). These cities all have airports and are strongly interconnected to the remainder of cities in Brazil
through roadways and are likely to be the hubs for the COVID-19 spread to other nearby cities in Brazil,
especially countryside municipalities. The centrality of São Paulo (SP) in the Southeast monotonically
increases over the entire sample. The same roughly occurs with Manaus (AM) in the North, Fortaleza
(CE) in the Northeast. Porto Alegre (RS) in the South and Brası́lia (DF) in the Midwest have the highest
centralities in their region but with a negative growth rate in the last days of the sample. Overall, there
is a very heterogeneous profile of the city centralities over time, showing the underlying non-trivial
patterns in the COVID-19 transmission network.

4.2.2. Measuring the human impact of health policy measures to mitigate the COVID-19 propagation
In this section, we run the SIR in networks (see Equations (1)–(4)) with different transmission rate
parameters for each city in Brazil, in accordance with (16). We first estimate the city-specific ρi using
the panel-data information on counts of the share of infectious persons in each city in Brazil via (14).
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Figure 5: Evolution of the normalized PageRank centrality measure in the COVID-19 transmission network (see Section
3.1 for the network construction details). We only report the top 5 cities with highest PageRank at each Brazilian region.
For each time point (horizontal axis), we build the network with city-specific shares of infectious persons with temporal
data up to that point. Each label is composed of the city name followed by its state inside parentheses.
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(a) Potential share of spared infections at the peak over time
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(b) Potential share of spared infections at the peak as a function of the city’s
distance to the capital (normalized within state)

Figure 6: Distribution of the efficiency of health policy measures along all affected cities in Brazil over time. We plot the
efficiency distribution as a function of (a) time and (b) the city’s distance to the capital within the same state it resides.
Since states in Brazil have substantial differences in their sizes, we normalize the city’s distance to the capital to the most
distant city within the state.

Then, we estimate the transmission rate parameter βi of each city i∈ V in Brazil by fixing the recovery
rate parameter as γ = 1/14. We use the remaining parameter λmax—the graph spectrum—to evaluate
the effectiveness of the set of health policy measures in detaining the COVID-19 in Brazil. We take as
baseline model the graph spectrum reached in April 10, 2020, which is the maximum observed value.
We assume that this graph spectrum would have not changed afterwards in case the set of health policy
measures were not taken.9 We then run several SIR models with the observed graph spectrum values
in Figure 4 after the graph spectrum maximum in April, 10, 2020.

Figure 6a shows a comparison of the infectious peaks of the baseline SIR model—i.e., the hypothetical
scenario in which health policy measures were not introduced—and the ones with graph spectrum val-
ues observed daily after that maximum. The vertical axis shows the relative change in these infectious
peaks of the baseline and the observed model day by day, which can be interpreted in terms of the
potential share of spared infections at the infectious peak due to the introduction of the set of health
policy measures. Since we have data from each city affected by the COVID-19, we plot the median,
percentiles 75% (0.25 distant from the median) and 90% (0.40) of this distribution. In the Supple-
mentary Material, we provide the effectiveness of public health policies for each affected municipality
in Brazil. In April 10, 2020, the share of spared infections in the epidemics peak is zero, because
the baseline model is compared with itself. Then, as we move forward in time and use smaller graph
spectrum values, as shown in Figure 4, the potential share of spared infectious increases. The share
of spared infectious persons in the epidemics peak reaches a median value 40% lower than that of the
baseline model when we use the graph spectrum in April, 24, 2020, suggesting high effectiveness of the
quarantine and use of masks health policies. After this point, the share of spared persons decreases—
reflecting the increase in the graph spectrum in Figure 4—giving more room for the spread of the
COVID-19. The effectiveness of the health policy measures, however, remains positive throughout the
entire sample.

The first case of the COVID-19 in Brazil was reported in São Paulo (SP) on February 25, 2020. After
that, it spread to several Brazilian state capitals probably through air transportation (most of the airports
in Brazil are in the state capitals and capitals are far from each other). The epidemics took some time
before reaching the first case in countryside cities. Figure 6b displays the distribution of the potential

9This is a conservative approach, because we can observe a positive momentum of the graph spectrum growth rate
prior to reaching April 10, 2020. However, we cannot be sure whether such graph spectrum would still increase if these
policies were not in place. Therefore, we keep the conservative approach and consider such point as the maximum.
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Figure 7: Efficiency of public health measures over time as a function of (a) the share of the spared local population and
(b) the spared number of persons (in millions). We depict curves only for six capital cities that are being substantially
affected by the COVID-19: Belém (PA), Fortaleza (CE), Rio de Janeiro (RJ), Brası́lia (DF), Manaus (AM), and São Paulo
(SP).

share of spared infections in terms of the city distance to the state capital. Since Brazilian states are
very different in size, we normalize the distance to the most distant city within the state. We observe a
positive relationship between potential share of spared infectious and distance to the capital, suggesting
that health public policies are most effective in cities that are distant from the capital. This may reflect
not only the temporal delay of the COVID-19 in reaching the countryside, which puts the local COVID-
19 at very early time in these regions, but also demography aspects, such as lower population density,
and agricultural economic activities that do not require large conglomerates of persons.

Figure 7a shows the effectiveness of the set of public health measures for six of the most affected
Brazilian capitals. In particular, Brası́lia (DF) reaches a 50% lower share of infectious persons at the
peak when we compare peaks reached with the graph spectrum value on April 24, 2020 (against the
baseline in April 10, 2020). Figure 7b shows the number of potential spared infectious persons due to
the set of health policy measures. This figure is constructed by simply multiplying the share of spared
infectious with the local population size of each of the six cities. Since São Paulo (SP) is the largest
city, it would potentially spare more persons when the COVID-19 epidemics reach its peak.

5. Conclusions

At the current stage of the COVID-19 infection, many countries have stopped the entrance of foreign-
ers. Therefore, the study of virus transmission dynamics inside each country gains relevance. In the
last few days, Brazil has become one of the most infectious countries in the world. In this work, we
present a general epidemics transmission model and apply it to the Brazilian case. Our method has
three steps. First, we construct the COVID-19 transmission network by fitting city-specific COVID-19
cases over time to calibrate the network links, which represent intercity COVID-19 transmission. Sec-
ond, we gauge the network propensity of spreading COVID-19 throughout the cities using a spectral
graph analysis. Third, we propose a methodology to quantify the effectiveness of public health policies
using the dynamics of early-time SIR model and spectral network theory.

Our spectral network analysis indicates that social isolation and the use of masks can effectively reduce
the transmission rate of the COVID-19 in Brazil. The COVID-19 propagation dynamics seems to
decrease following these public health policies when we also consider an incubation period, which
lags the effect of any COVID-19 mitigation measure. Moreover, our empirical analysis supports the
view that use of masks seems to be more effective than social isolation, which is further corroborated
by what is being occurring in Austria [32]. With no vaccine up to date, public health intervention is
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still the main method of epidemic control. We hope our study can help the government make correct
decisions.
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Supplementary Material

This Supplementary Material presents additional results of our empirical application to Brazil.

Table A1: Estimated share of the local population with COVID-19 in Brazil at the peak and the corresponding month and
day in 2020. We report the peak date and share of infectious persons to the local population of the city with and without
health policy measures (see Section 4.2 for details). This simulation uses data up to May 8, 2020. We only report estimates
for cities in which the simulated infectious peak with policy is higher than 5% of the local population.

No Policy (Peak) With Policy (Peak)
Row Number Region State Name Date Infectious (%) Date Infectious (%) Reduction (%)

1 Southeast São Paulo Ourinhos Oct 17 10.42 Nov 30 7.03 36.57
2 Midwest Mato Grosso Mirassol d’Oeste Sep 29 10.96 Nov 06 7.49 35.10
3 South Paraná Santa Fé Oct 10 9.65 Nov 29 6.33 34.82
4 South Rio Grande do Sul Tio Hugo Sep 19 10.43 Oct 26 7.03 34.66
5 Southeast São Paulo Laranjal Paulista Oct 08 10.46 Nov 23 7.04 33.14
6 North Pará Cachoeira do Arari Sep 29 10.97 Nov 02 7.67 32.55
7 South Rio Grande do Sul Porto Alegre Oct 03 9.78 Nov 22 6.45 32.12
8 South Paraná Fazenda Rio Grande Oct 17 9.61 Nov 22 6.83 31.72
9 Northeast Ceará Acopiara Sep 20 14.79 Oct 21 11.03 31.70

10 Southeast São Paulo Araçariguama Sep 26 13.25 Oct 31 9.56 31.48
11 South Paraná Pato Branco Oct 01 12.13 Nov 10 8.53 31.18
12 Northeast Rio Grande do Norte Nı́sia Floresta Sep 08 14.59 Oct 06 10.83 31.05
13 Southeast São Paulo São Roque Sep 12 14.30 Oct 13 10.56 31.04
14 South Rio Grande do Sul Vacaria Oct 31 10.45 Dec 21 7.04 30.44
15 South Santa Catarina Balneário Arroio do Silva Sep 27 10.18 Nov 06 6.80 30.44
16 Northeast Bahia Feira de Santana Oct 13 10.13 Nov 29 6.76 30.21
17 South Santa Catarina Pedras Grandes Sep 10 9.88 Oct 20 6.54 30.19
18 Northeast Paraı́ba Junco do Seridó Sep 07 11.71 Oct 13 8.15 30.02
19 Southeast Rio de Janeiro Barra do Piraı́ Sep 30 10.70 Nov 11 7.26 29.75
20 South Santa Catarina Balneário Camboriú Sep 07 10.25 Oct 12 6.87 29.54
21 South Rio Grande do Sul Canoas Oct 23 10.12 Dec 14 6.76 29.49
22 Southeast São Paulo Lavrinhas Aug 31 17.11 Sep 25 13.22 29.47
23 Southeast Minas Gerais Belo Horizonte Sep 25 10.59 Nov 10 7.17 28.79
24 Northeast Piauı́ Piracuruca Sep 12 12.03 Oct 18 8.44 28.63
25 Northeast Ceará Alto Santo Aug 23 16.80 Sep 16 12.91 28.07
26 Northeast Rio Grande do Norte Tenente Ananias Sep 15 11.61 Oct 24 8.08 28.06
27 Midwest Mato Grosso do Sul Campo Grande Sep 23 12.55 Oct 31 8.92 27.80
28 South Paraná Paranaguá Sep 26 12.47 Nov 06 8.84 27.79
29 Southeast São Paulo Angatuba Sep 20 14.95 Oct 23 11.13 27.76
30 South Paraná Araruna Aug 09 15.44 Aug 30 11.60 27.71
31 Southeast São Paulo Atibaia Sep 22 11.80 Oct 30 8.25 27.42
32 Northeast Pernambuco Lagoa dos Gatos Sep 16 13.36 Oct 21 9.66 27.06
33 South Paraná Campo Mourão Sep 07 12.32 Oct 14 8.72 26.93
34 Southeast São Paulo São José do Rio Preto Sep 23 11.69 Nov 04 8.15 26.89
35 Southeast São Paulo Jacareı́ Oct 05 11.12 Nov 16 7.65 26.72
36 South Santa Catarina Florianópolis Aug 26 12.78 Sep 28 9.13 26.70
37 Midwest Mato Grosso Rondonópolis Sep 12 12.88 Oct 17 9.22 26.66
38 Northeast Rio Grande do Norte Parnamirim Aug 31 13.00 Sep 28 9.33 26.41
39 Southeast São Paulo Taubaté Sep 11 15.38 Oct 09 11.55 26.39
40 Southeast São Paulo Barra Bonita Sep 09 14.92 Oct 05 11.30 26.22
41 Southeast São Paulo Peruı́be Sep 05 13.89 Sep 28 10.77 26.19
42 South Paraná Umuarama Sep 29 15.47 Oct 25 12.27 26.17
43 Southeast Rio de Janeiro Paraty Sep 19 12.63 Oct 24 9.00 26.04
44 South Rio Grande do Sul Novo Hamburgo Oct 04 13.51 Nov 16 9.79 25.84
45 Southeast São Paulo Marı́lia Oct 19 11.32 Dec 06 7.85 25.77
46 Southeast Minas Gerais Patos de Minas Sep 15 13.92 Oct 21 10.17 25.52
47 Southeast São Paulo Nazaré Paulista Aug 20 17.97 Sep 12 14.00 25.47
48 South Paraná Cascavel Sep 10 14.14 Oct 17 10.38 25.33
49 Southeast São Paulo São José dos Campos Sep 05 12.83 Oct 09 9.18 25.33
50 Northeast Bahia Itagibá Aug 25 12.90 Sep 25 9.25 25.27
51 Southeast Rio de Janeiro Nova Friburgo Sep 03 13.96 Oct 03 10.21 24.92
52 Southeast São Paulo Mococa Oct 24 10.49 Dec 15 7.04 24.88
53 Southeast São Paulo Araçatuba Aug 28 14.64 Sep 24 10.84 24.85
54 Southeast Minas Gerais Varginha Sep 18 13.44 Oct 25 9.74 24.80
55 Midwest Distrito Federal Brası́lia Aug 26 13.12 Sep 30 9.45 24.79
56 South Santa Catarina Itapema Aug 20 17.43 Sep 12 13.47 24.62
57 South Rio Grande do Sul Alvorada Sep 22 14.16 Oct 30 10.40 24.55
58 Southeast São Paulo Bragança Paulista Sep 01 13.45 Oct 04 9.75 24.32
59 Northeast Bahia Itapetinga Sep 19 14.78 Oct 27 10.97 24.20
60 Northeast Pernambuco Catende Sep 28 12.96 Nov 09 9.32 24.11
61 Northeast Bahia Uruçuca Aug 20 13.57 Sep 19 9.87 24.05
62 South Santa Catarina Itajaı́ Aug 29 13.50 Oct 01 9.80 24.01
63 Northeast Bahia Lauro de Freitas Sep 01 13.38 Oct 04 9.70 23.89
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Table A1 – continued from previous page

No Policy (Peak) With Policy (Peak)
Row Number Region State Name Date Infectious (%) Date Infectious (%) Reduction (%)

64 Southeast Minas Gerais Patrocı́nio Aug 24 16.43 Sep 20 12.51 23.82
65 Southeast Rio de Janeiro Mangaratiba Sep 17 12.50 Oct 26 8.91 23.79
66 Southeast Minas Gerais Juiz de Fora Sep 02 13.69 Oct 05 9.98 23.64
67 Southeast São Paulo Eldorado Sep 17 12.77 Oct 26 9.16 23.63
68 Northeast Bahia Camaçari Sep 17 13.30 Oct 21 9.64 23.62
69 Southeast Minas Gerais São Sebastião do Paraı́so Oct 26 12.13 Dec 14 8.58 23.59
70 Southeast Rio de Janeiro São Pedro da Aldeia Sep 03 14.94 Oct 03 11.12 23.55
71 Southeast São Paulo São Carlos Sep 16 15.65 Oct 20 11.78 23.44
72 Midwest Goiás Goiandira Aug 14 14.83 Sep 10 11.02 23.37
73 Southeast São Paulo Lençóis Paulista Oct 17 10.91 Dec 03 7.52 23.35
74 Southeast Minas Gerais Uberlândia Sep 05 14.41 Oct 10 10.64 23.11
75 South Paraná Guairaçá Oct 15 9.29 Aug 25 6.71 23.01
76 Midwest Mato Grosso Barra do Garças Nov 12 9.31 Jan 05 6.00 22.93
77 South Paraná Maringá Aug 30 15.89 Oct 02 12.01 22.91
78 Northeast Pernambuco Aliança Aug 24 15.34 Sep 20 11.50 22.88
79 Midwest Goiás Pires do Rio Sep 01 16.06 Oct 01 12.16 22.86
80 Southeast São Paulo Mineiros do Tietê Aug 19 15.97 Sep 13 12.08 22.82
81 Southeast São Paulo Ferraz de Vasconcelos Aug 20 14.72 Sep 16 10.92 22.81
82 Southeast Rio de Janeiro Bom Jardim Aug 30 14.24 Sep 29 10.49 22.80
83 Southeast São Paulo Leme Oct 01 14.99 Nov 09 11.17 22.79
84 Northeast Rio Grande do Norte Açu Aug 09 16.04 Sep 01 12.15 22.70
85 Northeast Rio Grande do Norte São Gonçalo do Amarante Aug 13 16.13 Sep 08 12.23 22.50
86 South Rio Grande do Sul São Leopoldo Aug 30 14.77 Sep 30 10.97 22.50
87 Southeast Minas Gerais Pouso Alegre Aug 31 14.81 Oct 02 11.01 22.48
88 Northeast Pernambuco Belo Jardim Aug 31 17.17 Sep 26 13.21 22.41
89 Northeast Pernambuco Carnaı́ba Aug 28 16.53 Sep 25 12.61 22.36
90 Southeast São Paulo Monte Alto Aug 22 17.17 Sep 17 13.20 22.29
91 South Santa Catarina Sombrio Aug 11 15.00 Sep 06 11.19 22.27
92 Southeast São Paulo Cravinhos Aug 24 16.85 Sep 21 12.91 22.25
93 Southeast Minas Gerais Uberaba Aug 25 16.58 Sep 21 12.66 22.24
94 South Santa Catarina Criciúma Aug 16 14.66 Sep 15 10.87 22.22
95 Southeast São Paulo Presidente Venceslau Aug 20 16.58 Sep 17 12.66 22.06
96 Southeast Minas Gerais Ouro Fino Sep 08 14.71 Oct 13 10.93 21.98
97 Northeast Sergipe Itabaianinha Aug 31 15.77 Sep 29 11.90 21.83
98 Southeast Minas Gerais Belmiro Braga Aug 29 12.74 Sep 30 9.18 21.79
99 Southeast São Paulo Vinhedo Aug 08 18.61 Aug 28 14.58 21.74
100 Northeast Bahia Gongogi Aug 02 18.52 Aug 23 14.50 21.74
101 Northeast Ceará Aquiraz Sep 19 11.44 Aug 17 8.69 21.65
102 Southeast São Paulo Vargem Grande Paulista Aug 20 16.77 Sep 19 12.84 21.60
103 Southeast Minas Gerais Divinópolis Aug 16 16.73 Sep 12 12.79 21.58
104 Southeast São Paulo Jaboticabal Aug 16 17.30 Sep 12 13.33 21.56
105 Southeast São Paulo Capão Bonito Aug 17 22.13 Sep 05 18.05 21.56
106 South Santa Catarina São Ludgero Aug 02 15.58 Aug 27 11.73 21.48
107 Midwest Goiás Valparaı́so de Goiás Sep 13 14.62 Oct 17 10.85 21.41
108 Southeast Minas Gerais Extrema Aug 09 15.33 Sep 01 11.51 21.40
109 Southeast São Paulo Caieiras Aug 06 16.60 Aug 31 12.67 21.35
110 Southeast São Paulo São Caetano do Sul Jul 26 16.58 Aug 19 12.66 21.17
111 Southeast São Paulo Ribeirão Pires Aug 04 17.85 Aug 24 13.85 21.02
112 Northeast Pernambuco Machados Aug 12 17.94 Sep 04 13.94 21.00
113 Southeast Rio de Janeiro Miguel Pereira Aug 03 16.94 Aug 31 12.99 20.94
114 Southeast São Paulo Tatuı́ Sep 03 16.11 Sep 28 12.44 20.86
115 Southeast São Paulo Rio Claro Aug 26 18.81 Sep 23 14.77 20.84
116 Southeast São Paulo Assis Sep 02 16.11 Oct 03 12.23 20.75
117 Northeast Pernambuco Salgueiro Aug 20 17.41 Sep 10 13.65 20.69
118 Southeast Rio de Janeiro Araruama Aug 11 18.87 Sep 03 14.83 20.65
119 Northeast Pernambuco Chã de Alegria Jul 26 20.66 Aug 10 16.59 20.60
120 Southeast Minas Gerais Poços de Caldas Aug 30 16.90 Sep 27 12.96 20.49
121 Northeast Maranhão Raposa Aug 14 17.14 Sep 06 13.19 20.40
122 Southeast Rio de Janeiro Bom Jesus do Itabapoana Aug 10 17.86 Sep 03 13.86 20.39
123 Southeast Rio de Janeiro Resende Aug 17 18.32 Sep 10 14.30 20.24
124 North Acre Plácido de Castro Jul 29 16.18 Aug 19 12.30 20.22
125 South Rio Grande do Sul Serafina Corrêa Aug 13 14.84 Sep 09 11.07 20.14
126 Southeast São Paulo Cotia Jul 29 18.26 Aug 22 14.24 19.91
127 South Santa Catarina Cocal do Sul Aug 18 19.55 Sep 09 15.48 19.89
128 Northeast Rio Grande do Norte Mossoró Aug 01 18.03 Aug 26 14.03 19.87
129 South Santa Catarina Balneário Gaivota Aug 06 17.14 Aug 31 13.19 19.84
130 South Santa Catarina Urussanga Aug 13 16.24 Sep 08 12.36 19.79
131 Northeast Pernambuco Frei Miguelinho Sep 07 12.72 Oct 10 9.18 19.72
132 Southeast Minas Gerais Novo Cruzeiro Aug 15 22.42 Sep 03 18.26 19.69
133 Northeast Sergipe Simão Dias Aug 11 19.56 Sep 01 15.48 19.60
134 Southeast São Paulo Miracatu Aug 13 18.82 Sep 03 14.78 19.56
135 Southeast Rio de Janeiro Barra Mansa Aug 18 17.47 Sep 12 13.51 19.55
136 Northeast Maranhão São José de Ribamar Jul 25 18.87 Aug 13 14.83 19.55
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Table A1 – continued from previous page

No Policy (Peak) With Policy (Peak)
Row Number Region State Name Date Infectious (%) Date Infectious (%) Reduction (%)

137 Northeast Bahia Ipiaú Sep 17 11.60 Nov 04 8.27 19.54
138 Midwest Goiás Paraúna Jul 30 20.78 Aug 18 16.67 19.45
139 Southeast São Paulo Cruzeiro Sep 01 16.77 Oct 01 12.85 19.44
140 Northeast Pernambuco Itapetim Sep 20 14.96 Sep 06 11.56 19.43
141 Southeast Minas Gerais São Romão Aug 01 22.90 Aug 16 18.97 19.36
142 Northeast Paraı́ba Marizópolis Jul 16 28.95 Jul 28 24.77 19.34
143 South Santa Catarina Palhoça Aug 14 20.13 Sep 08 16.03 19.34
144 Northeast Pernambuco Lagoa de Itaenga Aug 14 19.96 Sep 04 15.88 19.30
145 Southeast São Paulo São Manuel Aug 10 17.89 Sep 03 13.91 19.27
146 South Santa Catarina Gaspar Aug 06 18.11 Aug 30 14.11 19.25
147 Southeast São Paulo Águas de Lindóia Aug 05 19.40 Aug 28 15.33 19.21
148 Midwest Goiás Goiânia Aug 06 19.51 Aug 29 15.43 19.09
149 Southeast Minas Gerais Itabira Aug 15 21.14 Sep 07 17.00 19.00
150 North Pará Vigia Aug 13 16.46 Sep 06 12.59 18.84
151 Northeast Ceará Russas Aug 22 16.07 Sep 17 12.23 18.83
152 Southeast São Paulo Botucatu Aug 04 19.37 Aug 26 15.31 18.81
153 Midwest Mato Grosso Lucas do Rio Verde Sep 06 16.18 Oct 11 12.34 18.81
154 Southeast Minas Gerais Mariana Jul 31 20.33 Aug 22 16.23 18.66
155 Northeast Ceará Tianguá Aug 24 17.94 Sep 22 13.95 18.62
156 Southeast Espı́rito Santo Linhares Aug 01 20.61 Aug 22 16.50 18.61
157 Northeast Ceará Ipueiras Aug 13 19.66 Sep 05 15.58 18.59
158 Midwest Goiás Luziânia Aug 13 20.85 Sep 09 16.72 18.58
159 Southeast Espı́rito Santo São Mateus Aug 10 18.98 Sep 04 14.94 18.55
160 Northeast Ceará Sobral Jul 27 19.92 Aug 13 15.84 18.44
161 Northeast Ceará Jaguaribe Jul 31 21.01 Aug 22 16.88 18.43
162 Southeast São Paulo Mairiporã Aug 05 19.35 Aug 29 15.29 18.41
163 Southeast São Paulo Santo André Jul 23 20.00 Aug 13 15.91 18.33
164 Midwest Mato Grosso Cáceres Aug 15 19.85 Sep 08 15.77 18.23
165 Southeast São Paulo Santos Jul 15 20.55 Aug 03 16.44 18.23
166 Northeast Alagoas Murici Jul 27 19.40 Aug 10 16.02 18.21
167 South Paraná Guaı́ra Jul 21 23.31 Aug 07 19.11 18.09
168 Southeast São Paulo Monte Mor Nov 04 10.63 Aug 13 8.54 18.07
169 Northeast Ceará Santa Quitéria Aug 04 20.02 Aug 28 15.93 18.05
170 Southeast Espı́rito Santo Presidente Kennedy Jul 19 22.25 Aug 03 18.08 18.03
171 Southeast São Paulo Mirandópolis Aug 24 16.44 Sep 20 12.61 17.96
172 Northeast Rio Grande do Norte Natal Jul 23 20.83 Aug 12 16.70 17.89
173 Southeast Rio de Janeiro Arraial do Cabo Jul 28 20.80 Aug 19 16.68 17.88
174 Northeast Pernambuco Palmares Aug 14 19.91 Sep 08 15.83 17.85
175 Southeast São Paulo Itaquaquecetuba Jul 25 23.11 Aug 10 18.93 17.80
176 Southeast São Paulo Mauá Jul 26 21.31 Aug 13 17.17 17.78
177 North Pará São João do Araguaia Nov 13 10.15 Jul 20 8.28 17.58
178 Southeast Rio de Janeiro Teresópolis Jul 30 21.75 Aug 17 17.60 17.58
179 Northeast Alagoas Matriz de Camaragibe Nov 28 8.86 Jul 13 7.24 17.57
180 Southeast Rio de Janeiro Iguaba Grande Jul 17 21.89 Aug 04 17.73 17.54
181 Southeast São Paulo Indaiatuba Aug 03 23.92 Aug 20 19.72 17.52
182 Southeast São Paulo Paulı́nia Aug 06 21.31 Aug 24 17.17 17.51
183 Southeast Espı́rito Santo Fundão Jul 17 21.28 Jul 28 17.84 17.48
184 Southeast Rio de Janeiro Tanguá Jul 24 22.62 Aug 11 18.44 17.45
185 Southeast Rio de Janeiro Rio de Janeiro Jul 17 21.50 Aug 07 17.35 17.44
186 Northeast Ceará São Luı́s do Curu Aug 15 16.19 Sep 10 12.41 17.41
187 Northeast Rio Grande do Norte Canguaretama Jul 26 21.25 Aug 13 17.12 17.40
188 Northeast Piauı́ Pedro II Aug 09 22.84 Aug 29 18.66 17.39
189 Southeast São Paulo Santana de Parnaı́ba Jul 17 21.57 Aug 01 17.43 17.39
190 South Santa Catarina Concórdia Jul 20 20.82 Jul 31 17.39 17.37
191 Southeast São Paulo Valinhos Aug 01 22.04 Aug 21 17.88 17.37
192 Northeast Pernambuco Caruaru Aug 12 21.24 Sep 04 17.10 17.33
193 Southeast Rio de Janeiro Maricá Jul 24 21.85 Aug 12 17.70 17.32
194 Southeast São Paulo Mogi Guaçu Aug 08 22.24 Aug 30 18.07 17.32
195 Southeast São Paulo Avaré Aug 06 21.66 Aug 27 17.51 17.29
196 Northeast Maranhão Zé Doca Aug 15 18.99 Sep 06 14.97 17.23
197 Northeast Ceará Crateús Aug 12 19.08 Sep 02 15.06 17.23
198 South Santa Catarina Joinville Jul 24 22.19 Aug 13 18.03 17.22
199 Southeast São Paulo Embu das Artes Aug 02 21.86 Aug 25 17.70 17.17
200 Southeast Rio de Janeiro Niterói Jul 18 22.20 Aug 09 18.03 17.07
201 Northeast Ceará Ocara Aug 17 16.51 Sep 11 12.71 17.07
202 Southeast São Paulo Araraquara Jul 28 23.39 Aug 15 19.19 16.99
203 Southeast Rio de Janeiro Nilópolis Jul 21 22.72 Aug 05 18.54 16.94
204 Southeast São Paulo São Bernardo do Campo Jul 17 22.39 Aug 06 18.22 16.91
205 Southeast São Paulo Votorantim Aug 06 22.26 Aug 26 18.09 16.91
206 Northeast Pernambuco Abreu e Lima Jul 13 24.35 Jul 27 20.14 16.89
207 Southeast São Paulo Catanduva Aug 13 22.05 Sep 06 17.89 16.85
208 Midwest Mato Grosso do Sul Três Lagoas Jul 20 24.26 Aug 04 20.04 16.78
209 South Santa Catarina Braço do Norte Jul 01 22.61 Jul 14 18.43 16.64
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210 Northeast Pernambuco Araçoiaba Jul 18 25.23 Jul 31 21.02 16.54
211 Southeast Rio de Janeiro Cabo Frio Jul 22 25.16 Aug 06 20.93 16.47
212 Southeast Rio de Janeiro Volta Redonda Jul 12 23.30 Jul 31 19.11 16.45
213 Southeast São Paulo Itanhaém Jul 23 25.53 Aug 08 21.29 16.43
214 Southeast Espı́rito Santo Guarapari Jul 21 25.70 Aug 03 21.71 16.42
215 Southeast Rio de Janeiro Magé Jul 21 23.12 Aug 07 18.92 16.40
216 Northeast Pernambuco Macaparana Jul 19 24.02 Aug 06 19.81 16.28
217 Northeast Pernambuco Arcoverde Jul 26 22.97 Aug 14 18.78 16.27
218 North Pará Óbidos Aug 03 24.36 Aug 21 20.14 16.22
219 Southeast Rio de Janeiro Queimados Jul 18 24.11 Aug 03 19.89 16.20
220 Southeast Espı́rito Santo Aracruz Jul 22 25.14 Aug 06 20.91 16.20
221 North Pará Igarapé-Açu Jul 18 25.25 Jul 28 21.73 16.18
222 Northeast Pernambuco Ribeirão Jul 25 26.77 Aug 08 22.56 16.16
223 Northeast Bahia Salvador Jul 13 23.39 Aug 01 19.19 16.13
224 Southeast São Paulo Nova Odessa Jul 31 22.32 Aug 22 18.16 16.10
225 Northeast Rio Grande do Norte Encanto Jul 04 25.53 Jul 16 21.29 15.99
226 Southeast Espı́rito Santo Vitória Jul 05 24.08 Jul 20 19.87 15.99
227 Southeast São Paulo Diadema Jul 13 23.97 Jul 31 19.75 15.95
228 Southeast Minas Gerais Governador Valadares Aug 01 24.07 Aug 21 19.85 15.94
229 Northeast Maranhão Davinópolis Aug 08 20.75 Aug 29 16.72 15.94
230 Northeast Ceará Fortaleza Jun 30 23.92 Jul 16 19.71 15.89
231 Northeast Ceará Iguatu Jul 23 24.35 Aug 10 20.13 15.86
232 Southeast São Paulo Itapetininga Aug 02 23.22 Aug 22 19.03 15.85
233 Northeast Alagoas São Miguel dos Milagres Aug 08 18.78 Aug 31 14.79 15.84
234 Southeast Rio de Janeiro Rio Bonito Jul 12 24.15 Jul 30 19.94 15.83
235 Northeast Pernambuco Ipojuca Jul 19 24.52 Aug 04 20.30 15.80
236 Southeast São Paulo Franca Aug 09 24.26 Aug 29 20.04 15.74
237 Southeast São Paulo Arujá Jul 12 24.18 Jul 29 19.96 15.74
238 Southeast São Paulo Itapecerica da Serra Jul 15 24.50 Aug 01 20.27 15.72
239 Northeast Pernambuco Panelas Aug 01 25.63 Aug 17 21.40 15.65
240 Southeast Rio de Janeiro Macaé Jul 19 26.10 Aug 04 21.85 15.63
241 Southeast Rio de Janeiro Nova Iguaçu Jul 16 25.32 Aug 03 21.09 15.61
242 Southeast São Paulo Campinas Jul 20 24.86 Aug 08 20.63 15.58
243 North Pará Santa Cruz do Arari Jul 21 21.63 Aug 05 17.52 15.56
244 South Santa Catarina Indaial Jul 22 24.37 Aug 08 20.15 15.56
245 Northeast Bahia Ilhéus Jul 04 25.29 Jul 18 21.05 15.55
246 Southeast São Paulo Dracena Jul 23 23.75 Aug 11 19.54 15.53
247 Northeast Pernambuco Limoeiro Jul 20 25.51 Aug 05 21.27 15.52
248 Southeast São Paulo Poá Jul 12 25.12 Jul 29 20.89 15.51
249 North Amazonas Manaus Jul 03 24.79 Jul 20 20.56 15.50
250 Northeast Ceará Amontada Sep 18 16.62 Sep 04 13.32 15.50
251 Southeast São Paulo Mogi das Cruzes Jul 13 24.83 Jul 30 20.60 15.50
252 Southeast Minas Gerais Araxá Nov 04 12.40 Jul 28 10.28 15.48
253 Southeast São Paulo Francisco Morato Jul 20 24.64 Aug 07 20.41 15.47
254 Southeast São Paulo Várzea Paulista Jul 28 25.13 Aug 13 20.89 15.46
255 Southeast São Paulo Ribeirão Preto Aug 03 25.12 Aug 26 20.89 15.43
256 North Amazonas Itapiranga Jul 01 27.65 Jul 09 24.12 15.41
257 Southeast São Paulo Sumaré Sep 29 15.18 Aug 17 12.65 15.40
258 Southeast São Paulo Itu Jul 20 28.21 Aug 03 23.95 15.39
259 Southeast Rio de Janeiro Petrópolis Jul 10 25.49 Jul 28 21.25 15.39
260 Northeast Ceará Limoeiro do Norte Jul 19 24.45 Aug 05 20.24 15.38
261 North Tocantins Palmas Jul 26 23.06 Aug 13 18.88 15.34
262 Southeast São Paulo Barueri Jul 03 24.90 Jul 18 20.67 15.33
263 North Pará Marituba Jul 14 26.54 Jul 28 22.28 15.32
264 Northeast Pernambuco Bom Jardim Jul 17 25.93 Aug 03 21.68 15.28
265 Northeast Pernambuco Bonito Jul 23 27.46 Aug 06 23.19 15.28
266 Northeast Pernambuco Garanhuns Jul 30 25.83 Aug 18 21.58 15.20
267 Northeast Pernambuco São Lourenço da Mata Jul 07 26.14 Jul 22 21.89 15.17
268 South Paraná Paranavaı́ Jul 18 24.02 Aug 03 19.81 15.12
269 Southeast Espı́rito Santo Vila Velha Jun 30 25.87 Jul 15 21.62 15.06
270 North Roraima Alto Alegre Jul 17 24.05 Aug 03 19.84 15.04
271 North Amazonas Manicoré Jul 28 24.17 Aug 16 19.96 15.04
272 North Pará Curionópolis Sep 13 16.94 Aug 29 13.49 15.03
273 Northeast Piauı́ Buriti dos Lopes Sep 04 20.18 Aug 17 16.61 15.02
274 North Pará Santarém Jul 31 25.23 Aug 22 20.99 15.00
275 Southeast São Paulo São Paulo Jul 02 25.84 Jul 20 21.60 15.00
276 Southeast São Paulo Santa Bárbara d’Oeste Aug 07 25.38 Aug 25 21.14 14.96
277 North Amazonas Novo Airão Jul 27 21.65 Aug 17 17.54 14.88
278 Northeast Pernambuco Paudalho Jul 11 26.22 Jul 27 21.97 14.78
279 Northeast Pernambuco Lagoa do Carro Jul 17 23.35 Aug 05 19.17 14.76
280 Northeast Rio Grande do Norte Apodi Jul 14 24.46 Jul 30 20.25 14.75
281 Southeast Minas Gerais Santos Dumont Aug 09 21.85 Aug 29 17.72 14.74
282 Northeast Ceará Pacatuba Jul 19 23.00 Aug 03 18.83 14.71
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283 Southeast São Paulo Presidente Prudente Jul 24 25.90 Aug 11 21.65 14.65
284 Southeast São Paulo Mongaguá Jul 15 28.05 Jul 29 23.78 14.64
285 Northeast Ceará Horizonte Jul 08 25.44 Jul 22 21.20 14.64
286 Southeast São Paulo Guarujá Jul 09 28.02 Jul 22 23.75 14.60
287 North Roraima Boa Vista Jun 30 26.40 Jul 15 22.14 14.58
288 Southeast São Paulo Taboão da Serra Jul 16 27.36 Aug 03 23.09 14.55
289 Northeast Ceará Capistrano Jul 19 24.87 Aug 05 20.64 14.54
290 Southeast Rio de Janeiro Rio das Ostras Jul 09 26.91 Jul 25 22.65 14.52
291 Southeast São Paulo Araras Jul 30 24.63 Aug 14 20.65 14.46
292 Southeast São Paulo Itapevi Jul 09 26.83 Jul 24 22.57 14.46
293 Northeast Bahia Itabuna Jul 03 28.64 Jul 15 24.36 14.40
294 Northeast Maranhão Paço do Lumiar Jul 03 27.30 Jul 17 23.03 14.36
295 Northeast Pernambuco Paulista Jun 29 27.43 Jul 11 23.16 14.34
296 Northeast Ceará Maracanaú Jul 03 27.05 Jul 17 22.78 14.34
297 Northeast Ceará Massapê Aug 19 17.96 Sep 14 14.11 14.32
298 Northeast Piauı́ Canto do Buriti Aug 15 22.75 Sep 06 18.93 14.29
299 Southeast São Paulo Praia Grande Jul 08 27.67 Jul 23 23.40 14.26
300 Southeast São Paulo Limeira Jul 20 27.26 Aug 05 23.00 14.24
301 Southeast São Paulo Franco da Rocha Jul 02 27.80 Jul 17 23.53 14.22
302 Southeast São Paulo Campo Limpo Paulista Jul 11 28.92 Jul 25 24.65 14.18
303 Southeast São Paulo Embu-Guaçu Jul 07 29.87 Jul 18 25.59 14.15
304 South Rio Grande do Sul Marau Jun 25 27.43 Jul 07 23.16 14.15
305 Southeast Rio de Janeiro Belford Roxo Jul 16 28.10 Aug 02 23.83 14.15
306 Southeast Rio de Janeiro Guapimirim Jul 17 28.81 Jul 29 24.79 14.14
307 Southeast São Paulo São Lourenço da Serra Jul 07 30.04 Jul 19 25.77 14.13
308 North Acre Rio Branco Jul 02 26.11 Jul 17 21.86 14.10
309 Southeast São Paulo Agudos Jul 07 28.88 Jul 21 24.60 14.10
310 Northeast Alagoas Maragogi Jul 15 28.37 Jul 25 24.82 14.10
311 Southeast Espı́rito Santo Cariacica Jul 05 27.50 Jul 19 23.23 14.09
312 Southeast Rio de Janeiro Duque de Caxias Jul 10 28.26 Jul 26 23.98 14.03
313 South Rio Grande do Sul Garibaldi Jul 04 29.01 Jul 14 24.74 14.03
314 South Santa Catarina Penha Jul 19 27.59 Aug 03 23.32 14.01
315 Southeast Rio de Janeiro Itaboraı́ Jul 03 27.09 Jul 17 22.83 13.98
316 Southeast Rio de Janeiro Paracambi Jul 10 27.46 Jul 22 23.19 13.95
317 Northeast Sergipe Aracaju Jul 12 25.35 Jul 28 21.12 13.95
318 Southeast São Paulo Suzano Jul 08 28.35 Jul 23 24.07 13.95
319 Southeast Rio de Janeiro São Gonçalo Jul 11 28.09 Jul 27 23.82 13.94
320 Southeast São Paulo Pindamonhangaba Jul 20 28.63 Aug 04 24.35 13.89
321 Northeast Rio Grande do Norte Ipanguaçu Jul 01 32.44 Jul 11 28.18 13.85
322 North Pará Castanhal Jul 07 28.51 Jul 18 24.23 13.83
323 North Pará Marapanim Jul 15 26.37 Jul 25 22.83 13.82
324 Southeast São Paulo Piracicaba Jul 14 27.43 Jul 29 23.16 13.82
325 Southeast Espı́rito Santo Serra Jun 28 28.66 Jul 11 24.38 13.82
326 Northeast Pernambuco Tabira Jul 31 25.28 Aug 17 21.07 13.80
327 Northeast Pernambuco Moreno Jul 03 29.51 Jul 15 25.22 13.77
328 Southeast Rio de Janeiro Cachoeiras de Macacu Jul 11 28.30 Jul 25 24.02 13.75
329 Southeast São Paulo Piracaia Jul 13 30.11 Jul 25 25.83 13.69
330 Southeast São Paulo Carapicuı́ba Jul 02 28.38 Jul 17 24.10 13.69
331 Southeast São Paulo Itatiba Jul 18 28.04 Aug 04 23.77 13.69
332 North Pará Parauapebas Jul 06 29.87 Jul 18 25.59 13.61
333 Northeast Pernambuco Glória do Goitá Jul 04 31.22 Jul 15 26.94 13.60
334 Northeast Paraı́ba Cabedelo Jul 10 27.49 Jul 26 23.22 13.59
335 Northeast Paraı́ba Patos Jul 12 27.61 Jul 29 23.34 13.59
336 Southeast São Paulo Jandira Jul 08 28.37 Jul 22 24.09 13.57
337 North Pará Canaã dos Carajás Jul 15 28.22 Jul 30 23.94 13.56
338 South Rio Grande do Sul Passo Fundo Jun 29 28.71 Jul 12 24.44 13.54
339 Southeast São Paulo Sorocaba Jul 13 28.91 Jul 29 24.62 13.52
340 Southeast São Paulo Registro Jul 25 27.18 Aug 10 22.92 13.51
341 Southeast São Paulo Osasco Jul 08 28.88 Jul 25 24.60 13.50
342 Southeast Minas Gerais Nova Serrana Aug 06 25.82 Aug 25 21.59 13.50
343 North Amapá Macapá Jun 27 28.81 Jul 11 24.52 13.50
344 Northeast Pernambuco Cabo de Santo Agostinho Jul 12 28.30 Jul 28 24.03 13.49
345 North Pará Santo Antônio do Tauá Jun 28 29.17 Jul 07 24.89 13.45
346 Northeast Pernambuco Carpina Jul 08 33.15 Jul 18 28.89 13.43
347 Northeast Rio Grande do Norte São José de Mipibu Jul 02 32.22 Jul 11 27.95 13.32
348 Northeast Pernambuco Nazaré da Mata Jul 08 31.08 Jul 18 27.05 13.30
349 Southeast Rio de Janeiro São João de Meriti Jul 10 30.06 Jul 25 25.77 13.25
350 North Amazonas Manacapuru Jun 19 29.70 Jul 01 25.42 13.21
351 Northeast Piauı́ Teresina Jun 30 28.95 Jul 15 24.68 13.16
352 Southeast São Paulo Guarulhos Jul 06 29.89 Jul 22 25.60 13.13
353 Southeast São Paulo Jundiaı́ Jul 04 29.90 Jul 18 25.61 13.12
354 Southeast São Paulo Americana Jul 04 30.70 Jul 18 26.41 13.12
355 Northeast Paraı́ba João Pessoa Jun 30 29.48 Jul 13 25.20 13.10
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356 Northeast Pernambuco Timbaúba Jul 11 30.69 Jul 24 26.41 13.10
357 North Rondônia Ji-Paraná Jul 03 31.99 Jul 14 27.70 13.07
358 Northeast Pernambuco Camaragibe Jun 26 30.48 Jul 09 26.19 13.06
359 Southeast São Paulo Bauru Jul 09 30.51 Jul 23 26.22 13.06
360 North Pará Santa Izabel do Pará Jun 25 32.94 Jul 04 28.67 13.03
361 Southeast São Paulo São Sebastião Jun 30 28.18 Jul 15 23.91 13.03
362 Northeast Paraı́ba Campina Grande Jul 11 31.34 Jul 23 27.06 12.99
363 Southeast Espı́rito Santo Santa Maria de Jetibá Jul 10 30.19 Jul 22 25.91 12.99
364 Southeast Rio de Janeiro Japeri Jul 04 31.67 Jul 16 27.39 12.99
365 Northeast Pernambuco Goiana Jul 03 29.37 Jul 17 25.09 12.94
366 Southeast São Paulo Barretos Jul 03 31.74 Jul 14 27.46 12.93
367 North Amapá Oiapoque Jun 30 30.19 Jul 10 25.93 12.91
368 Southeast Rio de Janeiro Mesquita Jul 08 31.20 Jul 23 26.91 12.90
369 North Amazonas Itacoatiara Jun 24 32.06 Jul 04 27.78 12.89
370 South Rio Grande do Sul Lajeado Jun 24 31.45 Jul 03 27.16 12.84
371 Southeast Rio de Janeiro Itaguaı́ Jul 03 30.80 Jul 15 26.51 12.83
372 Southeast Minas Gerais Montes Claros Jul 18 30.59 Aug 03 26.30 12.78
373 Northeast Rio Grande do Norte Alexandria Jun 26 37.70 Jul 04 33.51 12.73
374 Southeast Rio de Janeiro Sapucaia Jun 26 30.32 Jul 07 26.03 12.73
375 Northeast Ceará Quixeramobim Jul 03 29.12 Jul 17 24.84 12.72
376 Northeast Paraı́ba Taperoá Aug 01 22.21 Aug 23 18.16 12.72
377 North Pará Ananindeua Jun 29 30.87 Jul 10 26.58 12.70
378 Southeast São Paulo Hortolândia Jul 20 27.43 Aug 03 23.20 12.70
379 Northeast Sergipe Itaporanga d’Ajuda Jul 21 27.16 Aug 05 22.91 12.69
380 Northeast Pernambuco Sertânia Jul 06 30.20 Jul 19 25.91 12.69
381 Midwest Goiás Aparecida de Goiânia Jul 13 31.02 Jul 27 26.73 12.61
382 Southeast São Paulo Cajamar Jun 29 30.01 Jul 11 25.72 12.60
383 North Pará Belém Jun 24 31.08 Jul 06 26.80 12.55
384 Northeast Ceará Bela Cruz Jul 14 26.71 Jul 25 22.71 12.52
385 Northeast Paraı́ba Santa Rita Jun 30 30.23 Jul 12 25.94 12.51
386 South Rio Grande do Sul Venâncio Aires Jul 03 35.03 Jul 13 30.78 12.50
387 North Pará Paragominas Jul 01 35.46 Jul 10 31.23 12.49
388 Northeast Pernambuco Amaraji Jul 04 31.59 Jul 15 27.30 12.49
389 Northeast Maranhão Bacabal Jul 01 34.43 Jul 11 30.18 12.48
390 North Amapá Santana Jun 30 30.79 Jul 13 26.50 12.47
391 Southeast São Paulo São Vicente Jun 30 32.44 Jul 13 28.16 12.41
392 Southeast Rio de Janeiro São Francisco de Itabapoana Jul 04 31.61 Jul 16 27.32 12.32
393 Southeast São Paulo Lins Jul 04 34.21 Jul 16 29.95 12.31
394 Southeast São Paulo Juquitiba Jul 05 32.36 Jul 17 28.07 12.27
395 North Amazonas São Paulo de Olivença Jun 25 30.06 Jul 07 25.77 12.23
396 Northeast Pernambuco Jaboatão dos Guararapes Jun 27 32.38 Jul 09 28.10 12.21
397 Northeast Maranhão São Luı́s Jun 19 32.59 Jul 01 28.31 12.09
398 Northeast Rio Grande do Norte São Rafael Jun 23 33.99 Jul 02 29.70 12.09
399 Southeast São Paulo Salesópolis Jul 16 28.92 Jul 29 24.65 12.07
400 Northeast Paraı́ba Cajazeiras Jul 07 33.28 Jul 18 29.00 11.92
401 Northeast Ceará Caucaia Jun 23 32.69 Jul 04 28.41 11.90
402 Southeast São Paulo Santa Isabel Jul 05 33.08 Jul 16 28.80 11.89
403 Northeast Alagoas Paripueira Sep 21 18.12 Jul 24 15.24 11.84
404 Southeast Espı́rito Santo Viana Jun 25 32.14 Jul 06 27.86 11.83
405 Southeast São Paulo Caraguatatuba Jun 27 33.21 Jul 10 28.93 11.82
406 Northeast Pernambuco Itapissuma Jul 16 26.95 Jul 29 22.96 11.78
407 Southeast São Paulo Lucélia Jul 08 30.50 Jul 19 26.21 11.75
408 Northeast Pernambuco Vitória de Santo Antão Jun 24 34.38 Jul 05 30.12 11.73
409 Southeast Minas Gerais Três Pontas Jul 02 35.96 Jul 12 31.71 11.71
410 North Pará Capanema Jun 27 33.88 Jul 05 29.63 11.70
411 North Amazonas Iranduba Jun 13 34.15 Jun 21 29.88 11.65
412 North Amazonas Parintins Jun 16 32.17 Jun 28 27.88 11.63
413 North Pará São Miguel do Guamá Jun 28 33.16 Jul 07 28.87 11.58
414 Northeast Piauı́ Parnaı́ba Jun 27 32.56 Jul 11 28.28 11.55
415 Northeast Pernambuco Recife Jun 12 33.78 Jun 24 29.50 11.54
416 Northeast Maranhão Cururupu Jul 03 34.12 Jul 14 29.85 11.49
417 Northeast Ceará Itaitinga Jun 21 33.93 Jul 03 29.65 11.48
418 Northeast Alagoas Marechal Deodoro Jun 25 34.17 Jul 05 29.89 11.48
419 North Amazonas Autazes Jun 13 39.32 Jun 19 35.17 11.45
420 Northeast Ceará Pedra Branca Jun 30 33.41 Jul 11 29.13 11.45
421 North Amazonas Borba Jul 07 33.62 Jul 14 30.07 11.42
422 Northeast Ceará Maranguape Jun 23 35.27 Jul 03 31.00 11.38
423 Northeast Paraı́ba Bayeux Jul 02 34.23 Jul 14 29.96 11.36
424 North Amazonas Maués Jun 24 35.68 Jul 04 31.42 11.35
425 Northeast Maranhão Imperatriz Jun 23 34.44 Jul 03 30.17 11.22
426 North Pará Benevides Jun 21 37.73 Jun 28 33.51 11.19
427 North Rondônia Porto Velho Jun 19 34.43 Jul 01 30.16 11.18
428 North Pará Cametá Jul 04 32.31 Jul 18 28.02 11.18
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429 Northeast Pernambuco Pombos Jun 18 35.87 Jun 27 31.62 11.14
430 Northeast Ceará Cascavel Jun 27 34.50 Jul 07 30.23 11.14
431 South Paraná São João do Caiuá Jun 08 38.46 Jun 13 34.24 11.06
432 South Rio Grande do Sul Tunas Jun 21 39.07 Jun 28 35.13 11.05
433 Northeast Ceará Pindoretama Jun 25 36.54 Jul 04 32.31 11.00
434 Northeast Paraı́ba Conde Jun 18 39.68 Jun 25 35.50 10.97
435 Northeast Pernambuco Itaquitinga Jun 28 37.43 Jul 07 33.20 10.79
436 North Amazonas Beruri Jun 22 39.10 Jun 30 34.91 10.76
437 North Pará Barcarena Jun 26 38.44 Jul 05 34.22 10.75
438 Northeast Pernambuco Igarassu Jun 21 36.99 Jul 01 32.74 10.75
439 North Pará Marabá Jun 28 37.72 Jul 07 33.50 10.67
440 Southeast São Paulo Guararema Jul 26 25.91 Aug 12 22.02 10.66
441 Northeast Alagoas Maceió Jun 15 36.01 Jun 26 31.75 10.60
442 North Tocantins Paraı́so do Tocantins Jul 10 33.05 Jul 23 28.76 10.50
443 Northeast Ceará Eusébio Jun 11 37.05 Jun 21 32.80 10.47
444 North Amazonas Barcelos Jul 07 33.37 Jul 18 29.08 10.46
445 North Amapá Laranjal do Jari Jun 17 37.99 Jun 24 33.79 10.45
446 Northeast Pernambuco Olinda Jun 13 37.55 Jun 23 33.31 10.41
447 Northeast Sergipe Rosário do Catete Jun 27 37.67 Jul 05 33.46 10.40
448 North Pará Viseu Sep 20 21.82 Jul 22 18.90 10.38
449 Northeast Pernambuco Água Preta Jun 26 38.68 Jul 04 34.50 10.37
450 North Amazonas Manaquiri Jun 19 42.75 Jun 26 38.65 10.27
451 Southeast Espı́rito Santo Afonso Cláudio Jun 18 40.63 Jun 26 36.47 10.20
452 Northeast Pernambuco São José da Coroa Grande Jun 15 38.38 Jun 24 34.15 10.13
453 Northeast Maranhão Mirinzal Jun 18 42.98 Jun 25 38.88 10.13
454 North Amazonas Coari Jun 10 41.64 Jun 16 37.49 10.08
455 North Pará Bragança Jun 22 38.53 Jun 29 34.31 10.06
456 Northeast Maranhão Anajatuba Jun 23 38.13 Jul 02 33.89 9.95
457 Northeast Pernambuco Trindade Jun 24 41.12 Jul 02 36.95 9.92
458 Northeast Maranhão Santa Rita Jun 18 36.87 Jun 24 33.34 9.76
459 Southeast São Paulo Pariquera-Açu Jun 11 41.34 Jun 17 37.17 9.74
460 North Amazonas Presidente Figueiredo Jun 11 38.84 Jun 19 34.62 9.74
461 Midwest Goiás Planaltina Jun 26 41.66 Jul 05 37.49 9.54
462 Northeast Ceará Pacajus Jun 22 38.11 Jun 28 34.59 9.48
463 Northeast Ceará Trairi Jun 26 38.38 Jul 05 34.15 9.36
464 Northeast Ceará Umirim Jul 02 35.27 Jul 13 31.00 9.29
465 North Pará Limoeiro do Ajuru Jun 24 38.19 Jul 03 33.96 9.29
466 Southeast Rio de Janeiro Campos dos Goytacazes Jun 20 42.22 Jun 28 38.07 9.27
467 South Paraná Santo Antônio do Caiuá Jun 02 44.72 Jun 06 40.64 9.16
468 Northeast Maranhão Arari Jun 12 43.74 Jun 19 39.62 9.14
469 Northeast Ceará São Gonçalo do Amarante Jun 11 43.73 Jun 18 39.61 8.68
470 Southeast São Paulo Serrana Jun 25 39.36 Jul 04 35.13 8.67
471 North Amazonas Tabatinga Jun 05 42.88 Jun 12 38.75 8.65
472 North Pará Ponta de Pedras Jun 13 44.19 Jun 19 40.09 8.61
473 North Amazonas Careiro Jun 06 44.39 Jun 13 40.27 8.57
474 Northeast Pernambuco Custódia Jun 15 46.14 Jun 22 42.08 8.53
475 South Rio Grande do Sul Bento Gonçalves Jun 11 47.34 Jun 16 43.59 8.47
476 Northeast Ceará Solonópole Jun 08 49.18 Jun 13 45.26 8.30
477 Northeast Maranhão Lago da Pedra Jun 18 45.01 Jun 25 40.92 8.29
478 Northeast Paraı́ba Sapé Jun 09 45.89 Jun 16 41.84 8.25
479 Southeast Minas Gerais São Francisco Jun 12 48.72 Jun 18 44.75 8.23
480 Southeast Minas Gerais Mário Campos Aug 07 31.06 Jun 25 28.08 8.20
481 Northeast Maranhão Morros Jun 19 42.01 Jun 24 38.55 8.18
482 Northeast Piauı́ Picos Jun 09 46.83 Jun 15 42.82 8.17
483 North Amazonas Tefé Jun 08 44.59 Jun 15 40.49 8.11
484 North Amazonas Urucará Jun 07 45.59 Jun 12 41.53 7.93
485 North Amazonas Rio Preto da Eva May 29 50.58 Jun 02 46.70 7.74
486 North Pará Breves Jun 08 48.58 Jun 13 44.60 7.65
487 North Pará São Caetano de Odivelas Jun 10 46.87 Jun 16 42.81 7.60
488 Northeast Ceará Acaraú Jun 02 52.90 Jun 08 49.04 7.04
489 North Amazonas Carauari May 20 56.60 May 24 52.91 6.40
490 Northeast Ceará Viçosa do Ceará Jun 01 58.12 Jun 05 54.51 5.91
491 Northeast Paraı́ba Mari May 29 62.13 Jun 01 58.73 5.57
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A B S T R A C T

Traditional classification techniques usually classify data samples according to the physical organization, such
as similarity, distance, and distribution, of the data features, which lack a general and explicit mechanism to
represent data classes with semantic data patterns. Therefore, the incorporation of data pattern formation in
classification is still a challenge problem. Meanwhile, data classification techniques can only work well when
data features present high level of similarity in the feature space within each class. Such a hypothesis is not
always satisfied, since, in real-world applications, we frequently encounter the following situation: On one
hand, the data samples of some classes (usually representing the normal cases) present well defined patterns;
on the other hand, the data features of other classes (usually representing abnormal classes) present large
variance, i.e., low similarity within each class. Such a situation makes data classification a difficult task. In
this paper, we present a novel solution to deal with the above mentioned problems based on the mesostructure
of a complex network, built from the original data set. Specifically, we construct a core–periphery network
from the training data set in such way that the normal class is represented by the core sub-network and the
abnormal class is characterized by the peripheral sub-network. The testing data sample is classified to the core
class if it gets a high coreness value; otherwise, it is classified to the periphery class. The proposed method
is tested on an artificial data set and then applied to classify x-ray images for COVID-19 diagnosis, which
presents high classification precision. In this way, we introduce a novel method to describe data pattern of
the data ‘‘without pattern’’ through a network approach, contributing to the general solution of classification.

1. Introduction

Over the last decades, supervised learning has advanced a lot due
to the development of new techniques and the advances in hardware
capacity. This learning paradigm has been applied to many real world
applications that can be represented as a data classification problem. In
such problem, the algorithm learns a function from the labeled samples
(training data set) that maps the data to the classes, which later is used
to classify the unlabeled data [1]. A number of classification techniques
have been developed ([1,2]), such as the kNN, Naive-Bayes, MLP, SVM,
Random Forest, and various Deep Learning models. However, all of
them work in the following similar way: Splitting the data space or
feature space into sub-spaces that best separates each class. In this
scheme, strong distortions of the decision boundaries are generally not
allowed. Moreover, the classifier is hard to be interpreted, specially in

∗ Corresponding author.
E-mail addresses: 15638100054@163.com (J. Yan), anghinoni@usp.br (L. Anghinoni), zhuyutao@bifnc.cn (Y.-T. Zhu), weiguang.liu@zut.edu.cn (W. Liu),
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deep learning models, due to its automatic feature extraction nature,
which hurdles the relationship between the classification results and
the structure of the original data. Other than that, semantic relation-
ships among data are not considered, which makes it unable for these
classifiers to learn data patterns with complex geometrical forms and
in sparse data.

Regarding the classification problem, each class of the input data
sets not only present different physical features, characterized by dis-
tance, similarity or distribution among data samples, but also form
different patterns with semantic meanings. The consideration of such
data patterns is specially useful for classifying data items, which are not
separable only by physical features. One powerful way to capture the
relationship among data and, consequently, identify the data patterns,
is through the topology structure of a complex network. The original

https://doi.org/10.1016/j.jocs.2022.101912
Received 14 July 2022; Received in revised form 10 October 2022; Accepted 14 November 2022

64 Chapter 4. Characterizing data patterns with core–periphery network modeling



Journal of Computational Science 66 (2023) 101912

2

J. Yan et al.

idea of building a network_based classification technique to character-
ize data patterns has been proposed in [3,4], where the classification
component is performed by exploring the topological properties of the
networks built from the training and testing data sets. Later, another
network-based approach according to the ‘‘importance’’ concept for
classification has been proposed in [5]. Although several advances have
been made on semantic classification, capturing data patterns is, in
general, still a hard problem.

Another salient feature, which makes the classification problem
hard is the requirement of high similarity among data samples or data
features within each class. However, such a hypothesis is not always
satisfied, since, in real-world applications, we frequently encounter the
following situation: On one hand, the data samples of some classes
(usually representing the normal cases) present well defined patterns;
on the other hand, the data features of other classes (usually represent-
ing abnormal classes) present large variance, i.e., low similarity within
each class. One of such real world examples is the COVID-19 diagnosis
by classifying X-ray chest images. The images of normal lungs present
high similarity, while the images of COVID-19 present large variance
among them.

In order to characterize the complex data patterns and solve the
above-mentioned problem, where large dispersion may occur within
each class, in this work, we explore a particular arrangement of the
data, where the data features of some classes (usually representing
the normal cases) present a well defined pattern and the data features
of other classes (usually representing abnormal classes) present large
variance, i.e., low similarity within each class. In the topology space
this can be represented by a core–periphery network allowing the
presence of dense and irregular sparse classes at the same time.

To exemplify the usefulness of network patterns for data classi-
fication, we consider a real-world application of X-ray chest image
classification for COVID-19 diagnosis. In the X-ray image data-set, we
have two classes: (i) Normal: represented by healthy lungs and (ii)
COVID-19: represented by lungs infected with the virus. In this case, the
samples of the normal class form a regular pattern, while the features
of the samples in the COVID-19 class are so dispersed that it is hard
to enclosure them in a sub-space, if not impossible. A preliminary
indicator that can be used to verify that is to calculate the mean and
standard deviation of the distance between the features extracted from
the images. In our experiments we used four features: histogram of the
image pixels, frequency components of Fourier transform, histogram of
Quadtree division [6] and the fractal dimension [7] of the images. We
found that the COVID-19 features were so dispersed that it would be
hard to define the boundaries of this class.

The COVID-19 virus can cause acute respiratory syndrome, attack-
ing the lungs of the person infected. Classifying the image of the lung,
in a fast and precise way, is of great importance, since its an indicator
of the disease severity that cannot be measured by PCR tests. One of
the important COVID-19 diagnosis methods is the X-ray chest image
classification [8,9]. In this paper, we will present a novel diagnosis
technique, contributing to this type of evaluation.

This paper is an extended version of the paper previously published
in conference proceedings [10]. Here, we have largely enhanced the
theoretical and technological analyses and discussions of the method
through presenting a number of new materials, making its innovation
much clearer. We present a novel classification technique, where the
normal class is represented by the core and the abnormal class is
represented by the periphery. In the classification phase, we calculate
the coreness measure of each testing sample. A high coreness value
classifies the testing sample to the normal class; otherwise, it belongs
to the abnormal class.

2. Related work

Our technique is based on network structures, that can represent
many real systems. Although the state-of-the art methods are very

effective in image classification, the relationship between the classifi-
cation results and the original data is hard to be interpreted and to be
understood. Our method, on the other hand, is more transparent, as
we can visualize the relationship in the graph and calculate network
measures to understand the original data. Each network measure has a
transparent meaning. If the network has a high value of the coreness
measure, it means that the underlying data contains a structure with a
well-connected normal class and an ill-posed and dispersed abnormal
class. Other network measures can be considered to be used in our
approach too. For example, a high value of the assortativity measure
implies in high homogeneity of the data; a high value of the clustering
coefficient implies in local sub-groups; a high modularity implies in
well-defined communities, and so on. In summary, the final classifica-
tion relies on the network structure constructed from the original data
and characterized by networks measures. Each network measure has a
transparent meaning. Therefore, the classification results are, in large
extent, transparent.

Complex network refers to large scale graphs with nontrivial con-
nection patterns [11,12]. Its mesoscale structure, such as community
and core–periphery structure, can be very useful to discover relation-
ships in the data. Over the last decades a lot of attention has been given
to the community structure of data, yielding many powerful algorithms
for community detection [13]. However, the community structure also
implies a high similarity among data samples in the same community.

The core–periphery structure, on the other hand, implies a high
similarity only among core nodes, which is more suitable to the prob-
lem we aim to solve. A core–periphery network consists of a subset
or subsets of strongly connected nodes to form cores and a subset
or subsets of low degree peripheral nodes. Usually, the peripheral
nodes are connected to the cores, but have few or even no connection
to other peripheral ones. Several works have been dedicated to this
type of network and this structure can be found in many complex
systems [14–18].

Since the seminal work by Borgatti and Everett [14], many other
methods have been proposed to detect core–periphery structures in
networks [19–24]. The first method proposed by Borgatti and Everett
[14] is based on an idealized pattern matrix that can be optimized to
sort the nodes into core and periphery. The following works treated
several caveats raised in the original method, such as the lack of statis-
tical significance of the core–periphery structure found by the method
and introducing quality measures to optimize the size of each block
(core and periphery). Holme [17] tackles the statistical significance
issue by introducing null models into the proposed algorithm, that is
based on the closeness centrality measures of the core and periphery.
Later, Kojaku and Masuda [25] argues that a core–periphery structure
should not be judged merely by the degree of the node, which the
previous works tend to do, and proposes an algorithm that takes into
account three blocks instead of two. A very recent work [24], however,
has proposed a fast and exact greedy algorithm to solve the single core
detection task. The author presents a numerical proof of their solution
and carries out real applications.

The research naturally evolved to find multiple core–periphery
structure. In [22], the authors present a scalable algorithm for this
task, which had been treated before but was very costly. More recently,
the research in this area has led to works that investigates what really
configures a core–periphery structure and how this mesostructure can
be compared to a community structure.

These works provide a strong background on how to mathematically
deal with these types of structure, however they ultimately provide un-
supervised clustering methods for network systems. As far as we know,
using the core–periphery structure as a network_based classification
framework presents a novelty in supervised learning.

Another technique used to represent data in the form of graphs
are knowledge graphs [26]. This type of graphs is applied to model
the relationship between nodes or groups of nodes within the graph,
where each node is an entity description (an object, a word, an idea,
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Fig. 1. Feature selection (blue): in this step we select the feature that will be used for classification, based on the dispersion of the features (the feature with the highest variance
is selected). Training (green): in these three steps we construct a network that optimizes the core–periphery measure 𝜌. Classification (orange): in these final steps we insert the
instance to be classified in the trained network and attribute a class to this instance.

etc.). The nodes are interlinked based on the ontology of the data.
The relationship among nodes, such as hierarchy, class, causality, type,
etc. can be inferred from the graph. In general, knowledge graphs
consider the relationship among nodes within graph and, each time,
part of the graph (a subset of nodes and their corresponding links)
are involved in a specific inference. On the other hand, our approach
considers the whole graph structures and we look for the original data
patterns by means of characterizing the whole graphs constructed from
the original data. In this work, we characterize in which degree the test
data samples (nodes) satisfy the constructed core–periphery network.

3. Methods

In this section we detail the proposed method, which uses a core–
periphery structure to represent the two classes of the data. The core
represents the data with high similarity and low dispersion, while
the periphery represents the class with dispersed features. In the case
of COVID-19, that will be explored in one of the applications, the
core is the normal class (healthy lungs) and periphery is the COVID-
19 class (lungs infected by COVID-19). Although we present here a
method for binary classification, the idea can be extended to multi-class
classification, as will be discussed in the Conclusions section.

Fig. 1 shows the overall process and the main steps of the proposed
method. In the first step (blue), we select the feature for classification,
based on the standard deviation of the features (the feature with the
highest variance is selected. That is done because the most disperse
feature helps to construct the core–periphery network, which is the
main point of this work. This is analogous to a PCA analysis, where
we want to preserve the feature that explains the most variance in
the data. Yes, we can select more than one features with the highest
standard deviations. However, our numerical study shows that the
selection of the one with the highest standard deviation always leads
to good classification results besides of the lower computation loads.
In the three next steps (green) we construct a network that optimizes
the core–periphery measure 𝜌. In the final steps (orange) we insert the
instance to be classified in the trained network and attribute a class to
this instance.

3.1. Feature extraction phase

This step of the method can vary depending on the type of data that
is being treated. The general model considers a set of 𝑛 samples used

for training 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)}, where the first component
of the 𝑖th tuple 𝑥𝑖 = {𝑓1,… , 𝑓𝑑} denotes the 𝑑-dimensional features of
the 𝑖th training instance (note that each feature 𝑓𝑖 can have different
dimensions and 𝑥𝑖 is the concatenation of all these features). The second
component of the tuple 𝑦𝑖 denotes the class label of the sample. Here
we treat the classification as binary problem, therefore, 𝑦𝑖 = 1, if the
sample 𝑥𝑖 belongs to core sub-network and 𝑦𝑖 = 0, if it belongs to the
periphery sub-network.

For the training phase, only one of the 𝑑-dimensional features
is selected. To do so, for each feature 𝑓 , the standard deviation 𝜎𝑖
is calculated. Finally, the feature that present the highest standard
deviation 𝑓𝑐 is selected to represent the data samples in the training
and classification process, i.e.,

𝑓𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥({𝜎1,… , 𝜎𝑙}) (1)

where 𝑙 is the number of features under consideration. For example,
in this paper, 𝑙 = 4 in the real application, because the following
4 features are considered: pixel histogram, components of Fourier
transform, fractal dimension and histogram of Quadtree division.

We will see in the artificial example that the features are generated
artificially in order to validate the model. In this case the feature
selection step is not performed. In the COVID-19 application the data-
set is composed of images and features extraction is performed as
following.

For each medical image, we extract the following features: (1) Pixel
histogram; (2) frequency components of Fourier transform; (3) fractal
dimension [7,27]; (4) histogram of Quadtree division [6]. The two
former features reveals the statistical properties of the images, while
the later ones characterize geometrical complexity of the images.

As we will see in the next section, the healthy lungs present high
similarity of the four features, while the similarity among the lungs
with COVID-19 is very low. In order to characterize the dispersed
pattern of COVID-19 images, One of the features with the biggest
average variance is chosen to construct the core–periphery network.

3.2. Training phase

In the training phase, a core–periphery network 𝐺𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is con-
structed using the selected image features of the training set. After
calculating a feature vector for every data sample and using the feature
with the largest standard deviation 𝑓𝑐 , a similarity matrix 𝑀𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
is formed containing the Euclidean distance between each pair of
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data features. We have compared the average distance and standard
deviation using different distance measures – cosine and canberra –
and observed that the main characteristics are preserved, i.e. high
dispersion for the covid class and lower for the normal class. Therefore,
we concluded that the distance measure selection is not critical to
the network construction and, consequently to the classification result.
Each image is a node in 𝐺𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and the connection between a pair of
nodes is made if the distance in 𝑀𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 is smaller than a specific
value of 𝜖. We optimize 𝜖 (see Algorithm 1) based on the normal-
ized 𝜌 measure, that evaluates the core–periphery structure according
to Eq. (2) [14]. When this measure reaches its maximum we select
the final network 𝐺𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and threshold 𝜖𝑐 . In all experiments, we set
𝑠𝑡𝑒𝑝 = 0.01.

Algorithm 1 𝜌 optimization.
Require: 𝑐 = [𝑐1, 𝑐2, ..., 𝑐𝑛] ⊳ Coreness vector
Require: 𝑀𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ⊳ Similarity matrix

𝜖 ← 0
𝑖 ← 0
while 𝜌𝑖 > 𝜌𝑖−1 do

𝐴 ← 𝑀𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, where 𝑀𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 𝜖;
𝜌 = 1

𝑛2
∑

𝑖,𝑗 𝑎𝑖𝑗𝛿𝑖𝑗 ;
𝜖 ← 𝜖 + 𝑠𝑡𝑒𝑝
𝑖 ← 𝑖 + 1

end while
return 𝜖𝑐

𝜌 = 1
𝑛2

∑
𝑖,𝑗

𝑎𝑖𝑗𝛿𝑖𝑗 , (2)

where 𝐴 is the adjacency matrix of network 𝐺 = (𝑉 ,𝐸) with 𝑛 nodes
and its element 𝑎𝑖𝑗 = 1 if node 𝑖 and node 𝑗 are linked and 0, otherwise.
𝛿𝑖𝑗 = 𝑐𝑖𝑐𝑗 , where 𝑐𝑖 measures the coreness of the node 𝑖, 𝑐𝑖 = 1 or 𝑐𝑖 = 0
means that node 𝑖 belongs to the core or the periphery, respectively. In
other words, the coreness vector is the target label vector. Specifically,
𝜌 measure reaches the maximum value when 𝐴 = 𝛥 = [𝛿𝑖𝑗 ], i.e., the
core–periphery structure seeks to find out a membership vector 𝐜 to
maximize 𝜌. The first term ( 1

𝑛2
) is a normalization factor, since 𝑛2 is

the maximum possible value for 𝜌.
Due to the sparsity of the periphery nodes, the optimum threshold

value 𝜖𝑐 can generate a network with unconnected nodes (singletons).
To overcome this situation we use kNN to force the node to connect to
its closest neighbors. Therefore, the neighborhood of a given vertex 𝑓𝑐𝑖
expressed in the adjacency matrix 𝑀𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is given by:

𝑀𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑖𝑗 =
⎧⎪⎨⎪⎩

1, if 𝑑(𝑓𝑐𝑖 , 𝑓𝑐𝑗 ) < 𝜖𝑐
𝑘𝑁𝑁(𝑓𝑐𝑖 ), if 𝑓𝑐𝑖 is a singleton

0, otherwise
(3)

where 𝑘𝑁𝑁(𝑓𝑐𝑖 ) returns the closest vertex to 𝑓𝑐𝑖 (we use 𝑘 = 1) and
𝑀𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is the final adjacency matrix to be used in the following
steps. Obtaining the adjacency matrix 𝑀𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , we automatically get
the training core–periphery network 𝐺𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 .

3.3. Classification phase

At the classification phase, we insert the testing data sample 𝑥𝑡𝑒𝑠𝑡,
using the selected feature 𝑓𝑐𝑡𝑒𝑠𝑡 , to the core–periphery network con-
structed so far (𝑀𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) and generate a new matrix 𝑀𝑡𝑒𝑠𝑡, where each
element is the distance between each pair of training and the test data
features. In other words, 𝑀𝑡𝑒𝑠𝑡 is the same as 𝑀𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , but it has one
more line and column than 𝑀𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 regarding the test data feature
𝑓𝑐𝑡𝑒𝑠𝑡 . We use the same 𝜖𝑐 and feature 𝑓𝑐 selected in the previous step.
Then we construct 𝐺𝑡𝑒𝑠𝑡 from the adjacency matrix 𝑀𝑡𝑒𝑠𝑡. Finally, we
induce a sub-network 𝐻 , which is the 𝑘-core of 𝐺𝑡𝑒𝑠𝑡 with 𝑘 = 𝐾𝑐 -
core (𝐾𝑐 -core is the value of the 𝑘-core of 𝐺𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔). The 𝑘-core [18,28]

of a network is the maximal component in which all vertices have a
degree of at least 𝑘. In the core–periphery structure, there is a 𝐾𝑐 -
core containing the nodes of the normal class (core). To classify a new
instance we verify if it belongs to 𝐻 (core) or not (periphery).

𝑦𝑡𝑒𝑠𝑡 =
{

1, if 𝑥𝑡𝑒𝑠𝑡 belongs to 𝐻
0, otherwise (4)

where 𝑦𝑡𝑒𝑠𝑡 is the class of 𝑥𝑡𝑒𝑠𝑡 and 𝐻 is the 𝑘-core of 𝐺𝑡𝑒𝑠𝑡 with 𝑘 =
𝐾𝑐 -core.

Specifically, we perform the following steps for classification (also
detailed in Algorithm 2):

1. Add the new instance representation, using the selected feature
𝑓𝑐𝑡𝑒𝑠𝑡 to the data-set;

2. Calculate the distance matrix 𝑀𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, considering all the train-
ing data features and the test data feature;

3. Use the 𝜖𝑐 value obtained in the training phase to generate the
adjacency matrix 𝑀𝑡𝑒𝑠𝑡 and its corresponding network 𝐺𝑡𝑒𝑠𝑡;

4. Extract a sub-graph 𝐻 with 𝑘 − 𝑐𝑜𝑟𝑒 equals to the one of the
original network (𝐾𝑐 -core);

5. If the new instance belongs to the sub-graph 𝐻 it is classified as
core, otherwise classify it as periphery.

Algorithm 2 New instance classification
Require: 𝑓𝑐𝑡𝑒𝑠𝑡 ⊳ New instance feature vector
Require: 𝜖𝑐 ⊳ Optimum threshold value

𝐻 ← ∅
Calculate new 𝑀𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ⊳ Considers training data and new instance
𝑀𝑡𝑒𝑠𝑡 ← 𝑀𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, where 𝑀𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 𝜖𝑐
Construct 𝐺𝑡𝑒𝑠𝑡 from 𝑀𝑡𝑒𝑠𝑡
𝐻 ← 𝐾𝑐 -core of 𝐺𝑡𝑒𝑠𝑡
if 𝑥𝑡𝑒𝑠𝑡 ∈ 𝐻 then:

𝑦𝑡𝑒𝑠𝑡 ← 1 ⊳ Core class
else:

𝑦𝑡𝑒𝑠𝑡 ← 0 ⊳ Periphery class
end if
return 𝑦𝑡𝑒𝑠𝑡

4. Numerical analysis and computer simulation results

In this section, we present numerical results to show the salient
features of the proposed classification method.

4.1. Simulations on artificial data set

Here we present a simple toy model to replicate the steps of the
proposed method and visualize the expected results and the key ad-
vantages of the proposed method. The data-set is composed of 220
2-dimensional vectors (Fig. 2). The core (red dots) is composed of 60
samples, while the periphery (blue crosses) is composed of 160 samples.
The core forms a dense circle, with the samples evenly distributed
around the center of the image at coordinates (0.5, 0.5). The periphery
is represented by four concentric circles, that are not fully connected
(the lower part of the circles are missing). The green triangle is the test
data sample to be classified.

We can also observe that the toy data presents the characteristics
mentioned before for a core–periphery model, i.e., the mean distance
and standard deviation is low for the core samples and high for periph-
ery samples (Table 1). Another point to note is that we do not perform
feature selection in this toy model, since the data was generated for
visualization purposes and presents a core–periphery structure.

We will see in the experiments that the missing data in the lower
part poses a challenge to traditional classification methods. This was
intended in the selection of the toy model for two main reasons: (i)
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Fig. 2. 2-dimensional artificial data used to test the model.

Table 1
Average distance and standard deviation of the training artificial samples.

Mean distance Standard deviation

Core Periphery Core Periphery

Artificial samples 0.104 0.432 0.049 0.221

in the core–periphery model, the core should be correctly detected no
matter the pattern of the periphery and (ii) peripheral data (dispersed)
can be often incomplete, specially in high dimensional features. In the
COVID-19 experiment, for example, we may not have seen all types
of variations, what can lead to these empty areas in the 𝑛-dimensional
space.

4.1.1. Core–periphery network formation — training
In this step, we calculate a similarity matrix 𝑀𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 using all the 2

dimensional features of the 220 samples. This matrix is shown in Fig. 3
Next, we use Algorithm 1 to find the value for 𝜖 that maximizes

the 𝜌 measure. This is done by increasing the value of 𝜖 until the
aggregation of a new node to the core has no impact in the value of 𝜌.
The optimization process is depicted in Fig. 4. For this case, the highest
value for 𝜌 is 0.1147 and the threshold value of 𝜖𝑐 is 0.201.

Finally, we can generate the core–periphery adjacency matrix
𝑀𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and the network 𝐺𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 that will be used for classification.
In this step, all the entries in the distance matrix that are above the 𝜖𝑐
value are set to zero. We also do not consider self-loops in the network.
The constructed network 𝐺𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 presents the following basic info: (i)
Number of nodes: 187; (ii) number of edges: 4547; (iii) average degree:
48.62 (overall); (iv) average degree: 84,58 (core); (v) average degree:
30.21 (periphery). These two structures are shown in Fig. 5

4.1.2. Classification results
In this step, we are going to classify the test sample (green triangle)

depicted in Fig. 2. The green triangle data point is a continuation of
the smallest peripheral circle. A network-based classification should
take this feature into account and classify this instance as a periphery
sample, due to its ability of classification by pattern formation.

For that, first we calculate the 𝑘− 𝑐𝑜𝑟𝑒 of the sub-graph 𝐻 induced
by the core samples in the trained network. The value obtained for this
data-set was 62, meaning that the core is fully connected (each node is
connected to the other 62 nodes belonging to the 63 node core). Then
the new instance is classified using the method presented in Section 3.

Fig. 6 shows, respectively, the classification of the green triangle
(which was classified as periphery) in the topological domain and in
the Cartesian plane.

In order to compare the classification performance of our method,
we ran the classification of the test sample using seven different clas-
sifiers (AdaBoost (Ada), Decision Tree (DT), Multi-Layer Perceptron
(MLP), kNN (KNN), Random Forest (RF) and Support Vector Machine
(SVM)). Since these traditional methods rely on the physical features
of the data, the missing part of the concentric circles imposes a chal-
lenge for them and none can correctly classify the green triangle as a
peripheral sample. The decision boundaries of each method is depicted
in Fig. 7.

As we can see, although a high level evaluation of this image may
lead to the conclusion that part of the concentric blue circles are
missing and that the triangle is part of one of them, the traditional
classifiers, that split the space into sub-spaces cannot take that into
consideration and end up by extending the core to this empty area.

From the simulation results presented above, we perceive the fol-
lowing features of the proposed model:

1. The proposed classification method considers not only the physi-
cal features or class typologies of the data, but also considers the
semantic organization of the data, therefore, it is able to classify
data sample according to semantic pattern formation of the data;

2. It can identify the data class (periphery class) even without a
well defined physical pattern; on the other hand, other classic
classification techniques may fail in such kind of situations.

3. The peripheral samples can have distinct distributions.

4.1.3. Comparison of the proposed method with outlier detection methods
At first glance, the proposed method may seem to share character-

istics with outlier detection methods. However, the proposed method
has basic differences to outlier detection [29–31]. Outliers are usually
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Fig. 3. Similarity matrix for the artificial data-set.

Fig. 4. Optimization of 𝜌 for the artificial samples.

Fig. 5. Adjacency matrix and its respective core–periphery network. (a) Binary adjacency matrix with 𝜖𝑐 = 0.179 (white represents a connection, i.e., 1). (b) Core–periphery network,
with the core (normal class) colored in red.
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Fig. 6. (a) Network with the periphery sample inserted (green triangle). (b) Data-set with the periphery sample classified (now a blue triangle).

Fig. 7. Decision boundaries of traditional classifiers. (a) Adaboost. (b) Decision Tree. (c) Multi-layer Perceptron. (d) kNN. (e) Random Forest. (f) Support Vector Machine. Notice
the position of the green triangle.

rare events, while the abnormal class in the core–periphery model can
contain a large number of data items. Also, in the outlier detection
problem, we aim to find only the pattern of the normal class, not giving
any relevance to the outliers, since they are not considered a class by
definition.

In this sense, the method proposed in this paper not only provides a
novel classification strategy, but also can be used for outlier detection

and even outlier data pattern characterization. On the other hand,
outlier detection methods cannot be directly applied for classification
in general case, i.e., separate the periphery from the core in this
paper.

To visualize this point we have applied three different outlier detec-
tion methods to the artificial data-set. This data-set has more samples
in the periphery than in the core. This is already a problem for outlier
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Fig. 8. Decision boundaries of outlier detection methods. (a) Robust Covariance (7 instances misclassified). (b) One-Class SVM (16 instances misclassified). (c) Isolation Forest (7
instances misclassified).

detection techniques, that assume that the outlier samples cannot out-
number the inliers. Therefore, the number of points in the periphery is
reduced in this example, so that the ratio of outliers stays in 0.50 (the
upper limit of some of the methods). Fig. 8 shows the results:

Notice that none of these methods could separate the two classes
correctly, even when relaxing the definition of an outlier (considering
half of the data-set points are outliers). On the other hand, the proposed
technique can correctly detect all the ‘‘outliers’’ as periphery nodes, as
shown by the simulation results in the last subsection.

4.2. Simulations on COVID-19 data set

Here, we present the numerical results applying the proposed tech-
nique for real X-ray chest image classification.

For this purpose, the following public data set is used: the COVID-
19 Chest X-ray Database of COVID-19 Radiography Database [32].
The Kaggle Lung Images data-set contains 3.616 images labeled as
‘Covid’, 6.012 images labeled as ‘Lung Opacity’, 10.192 images labeled
as ‘Normal’ and 1.345 images labeled as ‘Viral Pneumonia’. In our work
we used batches of 150 images sampled from the ‘Covid’ and ‘Normal’
data-set, so that the experiments were always balanced.

To understand the complexity of the problem, we have performed
a supervised UMAP visualization of the raw images with the following
parameters: neighbors = 3, components = 2. We sampled 1000 images
from each class (Normal-red and Covid-blue). In Fig. 9 we can see that
the raw data is highly mixed and both classes are dispersed and form
irregular clusters. This emphasizes the need to select a feature that
explains the most variance in data.

4.2.1. Characterizing pattern dispersion of COVID-19 images
Here, we extract features of the selected image data set. We find

that the features of the normal lung images present high similarity,
while the features of the images infected by COVID-19 disperse a lot.
Therefore, the traditional classification hypothesis, which requires high
similarity within each class, is violated in this case.

In Fig. 10, we show, respectively, four images of healthy lungs
and four images of lungs infected by COVID-19. Figs. 11 and 12 show
the Quadtree division and their corresponding quadrant size histogram
for each of the 2 × 4 images. We see that the images of normal
lungs present similar features, but the COVID-19 images possess large
difference among them. Fig. 13 shows the fractal dimensions calculated
for the four normal lung and the four COVID-19 images. Again, we see
that the COVID-19 fractal dimension curves are much dispersed. The
histograms the frequency components of Fourier transform presents the
same feature.

In order to evaluate the dispersion of the features extracted, we mea-
sure the mean distance and standard deviation of each class (normal
and COVID-19) in the training set (Table 2). These numbers indicate

Table 2
Average distance and standard deviation of the training images.

Mean distance Standard deviation

Normal COVID-19 Normal COVID-19

Original images 0.135 0.656 0.150 0.673
FFT 0.088 0.611 0.139 0.936
Quadtree 0.574 0.834 0.309 0.502
Fractal dimension 0.196 0.45 0.105 0.273

that using similarity measures to classify the COVID-19 test instances
may not be possible, since this class is very dispersed (high standard
deviation). In the traditional models, each class should be contained in
a region of the subspace under consideration, therefore, in this case, a
network-based classifier (core–periphery network model) may come as
a promising solution.

4.2.2. Core–periphery network formation — training
The training step consists of constructing a series of core–periphery

networks with the training data. This is done by considering each image
feature as a node in the network and connecting every node with
distance smaller than 𝜖. The goal in this step is to find the 𝜖 value that
maximizes the function Eq. (2). Since the function is strictly increasing,
we increase 𝜖 until the 𝜌-measure reaches its maximum. The trained
core–periphery network is the one constructed with this final 𝜖.

In Fig. 14 we can see the optimization of the 𝜌-measure as a
function of 𝜖. The 𝜌-measure peaks at 𝜖 = 1.14. The trained network,
constructed with this 𝜖𝑐 value is shown in Fig. 15, which presents a
clear core–periphery pattern.

4.2.3. Classification results
After the core–periphery network is constructed, we make classifi-

cation of each test sample according the classification algorithm. The
testing data item will belong to the core class if its coreness value is
high; otherwise, it is classified to the periphery class (COVID-19 class).

Our model, denoted as (CP), was tested against seven classification
techniques: AdaBoost (Ada), Decision Tree (DT), Multi-Layer Percep-
tron (MLP), Naive-Bayes (NB), Random Forest (RF), Support Vector
Machine (SVM) and Deep Convolutional Network (DCN). We obtained
the classification results in two different configurations of the training
and testing data sets, which are shown in Tables 3 and 4. As we can
see, the proposed technique presents high classification accuracy and
f1-score and low standard deviation within the runs, in comparison to
the classic and the state-of-the-art techniques.
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Fig. 9. Supervised UMAP embedding of 1000 Normal samples (red) and 1000 Covid samples (blue).

Fig. 10. (a)–(d): Four healthy lung images. (e)–(h): Four images infected by COVID-19.
Source: Data source: COVID-19 Radiography Database [32] (https://www.kaggle.com/
tawsifurrahman/covid19-radiography-database).

5. Conclusions

In this work, we have presented a novel method to handle data
classification problems when the training set is not separable in the
physical space, as in the classic classification paradigm. We argued

that in certain situations the context and semantic of the data has to
be taken into consideration in order train the classifier properly. To
do so, we proposed converting the data into a core–periphery network
structure, where the core represents the normal data, or the data with
a pattern, and the periphery represents the dispersed data, or the data
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Fig. 11. Each figure is the Quadtree division of the corresponding image shown by Fig. 10.

Fig. 12. Each figure is the histogram of the quadrant sizes of the corresponding Quadtree division shown by Fig. 11.

without a pattern. In spite of its simplicity, this approach can shed some
light on problems where the physical separability is an issue.

We have shown in the experiments that the method performs well
both in a toy example and in a real problem. In the toy model we
showed that the traditional methods may not be able to evaluate high
level patterns and tend approximate empty areas in the physical space

to the closest class, regardless of the data pattern formation. This was
expected, since these methods are based on the division of the space
into sub-spaces and, therefore, they cannot imply the continuation of a
high level pattern if there are no samples in the training set.

As a future work, we believe a similar approach can be used for
multi-class problems, by the use of multi-core networks. A common
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Fig. 13. Fractal dimensions against the binary image thresholds of the images shown by Fig. 10. The box-counting dimension is calculated on each binary image generated from
the original image with a specific threshold value.

Fig. 14. 𝜌-measures of the networks generated by varying the 𝜖 values.

Fig. 15. Adjacency matrix and its respective core–periphery network. (a) Binary adjacency matrix with 𝜖𝑐 = 1.14 (white represents a connection, i.e., 1). (b) Core–periphery
network, with the core (normal class) colored in red.
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Table 3
Classification comparison with traditional methods. This table shows the results using
a 10% split of the data-set (270 images for training and 30 images for testing). The
experiment was run 50 times. For each run, we randomly generate a training set and
a testing set with fixed size (270 and 30, respectively). We report the average and the
standard deviation of the accuracy and f1-score. The best results are highlighted in
bold.

Technique Acc.Mean Acc.StDev f1.Mean f1.StDev

DCN 0.82 0.06 0.79 0.06
SVM 0.86 0.07 0.88 0.06
DT 0.90 0.07 0.90 0.07
RF 0.91 0.05 0.91 0.05
MLP 0.91 0.08 0.92 0.07
ADA 0.93 0.05 0.93 0.06
NB 0.93 0.04 0.93 0.04
CP 0.97 0.02 0.97 0.01

Table 4
Classification comparison with traditional methods. This table shows the results using
a 20% split of the data-set (240 images for training and 60 images for testing). The
experiment was run 50 times. Again, for each run, we randomly generate a training
and a testing set maintaining their respective sizes. We report the average and the
standard deviation of the accuracy and f1-score. The best results are highlighted in
bold.

Technique Acc.Mean Acc.StDev f1.Mean f1.StDev

DCN 0.81 0.04 0.81 0.04
SVM 0.85 0.05 0.87 0.04
DT 0.87 0.06 0.87 0.06
RF 0.90 0.05 0.90 0.04
MLP 0.89 0.04 0.89 0.04
ADA 0.91 0.04 0.91 0.04
NB 0.92 0.04 0.92 0.04
CP 0.92 0.01 0.92 0.01

way to solve such problems in the topological space is to use commu-
nity detection and cluster each class in a community. This approach,
however, may fail to capture the dispersed samples, that are usually
clustered to the closest community. A multi-core structure would, in
theory, be able to consider different levels of dispersion and aggregate
this samples following their pattern formation.
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Abstract—Graph Neural Networks (GNNs) have become a
rapidly growing field, due to their ability to capture the rela-
tionship among data, instead of only learning from the attribute
of the data. The core of any GNN is the graph embedding
generation by message passing mechanisms. In this work we
propose a new message passing technique based on the Particle
Competition and Cooperation (PCC) model, originally developed
for community detection in graphs. The proposed framework
performs a transductive learning in the network and passes the
learned information to the nodes, prior to the inductive learning
performed by traditional GNN schemes. The new GNN presents
attractive features which overcomes the over-smoothing problem
of traditional GNNs and shows promising results in terms of
classification accuracy, computational cost and learning with very
small quantity of labeled data.

Index Terms—community detection, transductive learning,
graph neural network, inductive learning

I. INTRODUCTION

Over the past few years, Graph Neural Networks (GNNs)
have become an important tool for modern problem solving
and a hot topic of research. This framework is able to address
several drawbacks of traditional neural networks, such as the
assumption that the instances are independent of each other
and the data representation in the Euclidean space. GNNs
explicitly indicate the relation between any two instances and,
by doing so, can be applied to any nth dimensional space and
to data that presents no spatial order. This characteristics also
enhances the interpretability of the model, that tends to be lost
in traditional neural network models during the convolution
process. Several real world problems have been proven to be
better solved in this paradigm, such as classification of citation
networks and recommendation in social networks [1], [2], [3].

In general scheme of GNNs, a message passing function
is used to pass information from a node to its neighbors

This work was carried out at the Center for Artificial Intelligence (C4AI-
USP), with support by the São Paulo Research Foundation (FAPESP grant
#2019/07665-4) and by the IBM Corporation. This study was financed in
part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior –
Brasil (CAPES) – Finance Code 001.

and an aggregation function is used to update the node´s
attribute at each iteration. This operation has to be permutation
invariant, since the node has no physical position. The model
learns an inductive function by propagating the error of each
epoch, as in a neural network. One of the most relevant
works in GNN is the Graph Convolutional Network (GCN)
[3], which introduces a matrix normalization in the layer
updating function to avoid the gradient exploding problem
inherited from neural networks. It also paved the way for the
construction of many other complex GNN models, including
the most recent developments [1]. These end-to-end trainable
models usually differ from each other by changing the pooling
process, the readout process, the learning function or error
propagation. Adding too many parameters, however, can make
the model costly and too task specific. The time complexity
of most recent models is O(m), where m is the number of
edges, since they usually operate on sparse matrices.

More recently, some works have proposed methods that
are not trained end-to-end. In [4], for example, the authors
combine label propagation and simple models to out-perform
GNNs in certain cases. Some other works use mixed models,
where part of learning process is done by traditional methods
and part is done by GNNs. This can be done, for example,
by performing random walks and learning which walks are
more relevant for the classification of each specific node [5].
Other works have proposed adaptive propagation mechanisms
by learning a homophily degree matrix prior to the propagation
process [6].

Despite the advantages listed above, GNNs still presents
several drawbacks and points to be explored. One of them
is that adding too many layers to a GNN is known to lead
to a over-smoothing of the graph [7], i.e., the local features
of the data instances are lost, resulting in a shallow neural
network. In the recent years, this problem has been dealt in
several different ways, such as the application of the attention
mechanisms to learn which neighbors and features are more
important and by mixed models to capture local and global
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features in different ways and combine it in the readout layer.
Another salient problem is that the aggregation function must
be permutation invariant, which, in general, only very simple
functions (mean, max, etc) satisfy such a condition.

Complex networks are large-scale graphs with non-trivial
connection patterns. One of the salient features of complex
networks is the presence of communities, and community dis-
covery in these systems has become a primary and prior object
to help us understand how subgraphs interact and produce
global behavior. From a topological structure standpoint, a
community is a subgraph, in which the inner links are dense
while the outer connections are relatively sparse. Community
detection techniques have been around for decades. They are
very good instruments to capture the structure of the graph
and can learn the influence of one node over the other even
without any label. Classifying data in the form of a graph is
not recent and has been a field of research since the 70´s,
when the first community detection algorithm was introduced
[8]. These traditional methods mainly focus in the network
topology and are usually regarded in the literature as com-
munity detection algorithms. These methods can be divided
into seven different types: Graph Partition, Statistical Infer-
ence, Hierarchical Clustering, Dynamical Methods, Spectral
Clustering, Density-based Algorithms and Optimizations [9].
Although the majority of the community detection algorithms
works in an unsupervised manner, the Dynamical Methods can
be used in the semi-supervised scheme by providing the labels
of some nodes. These methods include WalkTrap [10], LPA
[11], InfoMap [12] and Particle Competition and Cooperation
(PCC) [13]. These methods are also based in transductive
learning, where the solution is reached by reasoning over all
the samples’ attributes, instead of finding a general rule that
can be generalized outside the observed samples.

In this work, we propose a new GNN model called ’Trans-
GNN’, in which the structure of the graph is learned prior to
the inductive learning performed by the GNN and the infor-
mation is embedded in the nodes. The proposed model takes
advantage of the interpretability and low time complexity of
the transductive PCC model as a message passing mechanism
to capture the global structure of the data graph. Our study
shows that the TransGNN, proposed in this work, leads to
some advantages over a traditional GCN implementation and,
therefore, we list the contributions of this work as follows:

• The method is easy to interpret because the Particle Com-
petition and Cooperation heuristics in structure learning
presents a natural inspired conquering-defend behavior.

• DeepGNN is still an open topic of research due to its
inability to avoid over-smoothing when adding more than
a few layers [7]. Our method is able to capture infor-
mation from distant nodes without the over-smoothing
problem, since the transductive learning is governed by
independent particle walkings in the data graph with a
pre-defined dynamics;

• Transductive learning, in general, can be performed with
less labeled data and with less computational cost. Our
method takes advantage of this characteristics to produce

good results with a small portion of labeled data from
the whole data set.

II. THE PROPOSED METHOD

In this section, we present the proposed TransGNN in
details. In the first sub-section, we introduce the necessary
notations to describe the model; then, we give a short review
on the PCC model, which will be used to learn the graph
structure; after that, we show how the information obtained
by the PPC model is incorporated to the original features to
generate graph embedding. Finally, we describe the learning
mechanism of the TransGNN. The proposed framework can
be visualized in Figure 1.

A. Notation

A graph or network is defined as G = (V,E), where V =
v1, v2, . . . , vn is the set of nodes and E = ei,j is the set of
edges connecting vi to vj . A denotes the n × n adjacency
matrix. If G is unweighted, then aij = 1 if nodes vi and vj
are connected, otherwise aij = 0. If G is a weighted network,
then G = (V,E,W ) and W is a weight matrix. In this paper
we consider undirected graphs and each node is attributed,
i.e., vi ∈ V is attributed by xi ∈ X ⊆ Rn×d, or in the matrix
form, G = (V,E,X1, X2, . . . , Xn).

B. Graph Structure Learning

The proposed method is based on the idea that the structural
information of the graph can be learned before passing the
node’s embedding to a graph neural network. In this work,
we use the Particle Competition and Cooperation (PCC) [13],
[14] model as a message passing mechanism in TransGNN.
Although we recommend the reader to refer to the original
articles [13] and [14] for a deeper understanding of the
method, we describe the main concepts of the technique here.

PCC is a graph-based semi-supervised learning technique.
Given a data graph, each labeled node contains a particle and
it walks in the graph based on a combined random-preferential
rule. The particles of the same class (a team) cooperate among
themselves, while the particles of different classes compete
with each other to propagate class labels to the whole network.
Finally, each team occupies a sub-graph corresponding to
a data class. In this way, PCC propagates labels to all the
unlabeled nodes (data items).

In PCC model, a dominance vector vwl
i is attached to every

node in the graph G. This vector has l positions, each one
representing the dominance w of each class to a certain node
i, therefore the summation over each vector is equal to one,
as in Equation 1.

L∑

l=1

vwl
i = 1 (1)

where L is the total number of classes.
At the beginning, each dominance vector is started as shown

by Equation 2, i.e., if the node is labeled, then the position of
that class is set to 1 and the other positions to 0. If the node is
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Fig. 1: Proposed framework. (a) Original Graph, where each node is represented by its original features hn; (b) Structure learning
performed by PCC, where each node receives a domination vector vn, representing the probability of a node belonging to a
certain community; (c) Embedding update by combining the original feature with the probable class of the node and (d) GCN
learning over the updated embedding.

not labeled, then every position is set to the same dominance
and equal to 1/l.

vwl
i (0) =





1 if yi = l,
0 if yi ̸= l and yi ∈ L,
1
l if yi = ∅.

(2)

In the semi-supervised scheme, the PCC method places a
particle k in each labeled node. Once the algorithm starts, each
particle visits a neighbor following Equation 3. The particle
chooses a neighbor node to visit with the combination of
preferential and random walk, represented by the probabilities
Ppref and Prand, respectively. A factor λ ∈ [0, 1] is used to
balance the behavior of the particles between defensive and
exploratory. This factor can be optimized for each graph G,
depending on its topology.

P
(k)
transition(t) = λP

(k)
pref (t) + (1− λ)P

(k)
rand(t) (3)

The probabilities Prand and Ppref are, respectively repre-
sented by Equations 4 and 5:

P
(k)
rand(i, j) =

ai,j
V∑

u=1
ai,u

(4)

P
(k)
pref (i, j, t) =

ai,jN̄
(k)
j (t)

V∑
u=1

ai,uN̄
(k)
u (t)

(5)

Notice that, in the random walk (representing an exploratory
behavior), the probability of visiting a neighbor u is only
proportional to the number of neighbors. The preferential walk
(representing a defensive behavior), on the other hand, depends
on the the vector N̄(t), which records the number of visits of
each particle on each node and is defined as:

N̄ (k)(t) = [N̄1
(k)

(t), N̄2
(k)

(t), . . . , N̄V
(k)

(t)]T (6)

where k is the particle in consideration, N̄ (k)(t) records the
number of visits of particle k on each node up to time t, and
V is the total number of nodes in graph G.

The system dynamics can be summarized by the function ϕ
(Equation 7), i.e., at each time step a particle in node i visits
a neighbor j with probability P

(k)
transition, the vector N̄ (k)(t)

is updated and the dominance vector is updated according to
function γ.

ϕ :





p(k)(t+ 1) = j, j ∼ P
(k)
transition(t),

N
(k)
i (t+ 1) = N

(k)
i (t) + 1[p(k)(t+1)=i]

vwl
i (t+ 1) = γ

(7)

Every time a particle visits a node, it increases the dom-
inance level of its team over that node and reduces the
dominance level of other teams of particles on the same node.
The dominance level of the node is updated as follows:

γ : vwl
i (t+ 1) =





max(0, vwl
i (t)− ∆vρ

w
j (t)

L−1 )

if yi = ∅ and l ̸= ρfj ,

vwl
i (t) +

∑
q ̸=l

v
wq

i (t)− v
wq

i (t+ 1)

if yi = ∅ and l = ρfj ,

vwl
i (t) if yi ∈ L

(8)

Conditions 1 and 2 are used when the particle visits an
unlabeled node (yi = ∅). Condition 1 rules how the dominance
of opposite classes are decreased (l ̸= ρfj , where ρfj is the
particle class) and condition 2 rules how the dominance of the
particle class is increased. Finally, if a particle visits a labeled
node, the dominance vector is unchanged as in condition 3.

There are two other parameters in Equation 8. The first
one is ∆v ∈ [0, 1] ⊆ R, that controls the rate of which the
changes are made and is a settable parameter. The other one
is ρwv , which records the particle strength at time. The particle
strength and its reanimation procedure are detailed in [13].
The algorithm stops when the number of iterations is reached
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or when the system reaches an equilibrium, i.e., the class of
every node remains the same for a certain amount of iterations.
The complete implementation is available at [15].

The equilibrium of the PCC system, however, is not guar-
anteed. In data-sets with low modularity, each run of the
algorithm can present a significant difference in performance.
This is common in real world applications where the clusters
are sparse and sometimes overlapping. To overcome this
situation we add a voting module after we perform a pre-
defined number of runs. This voting module looks at the
community assigned for each node individually across all the
runs and assigns as the final community the most frequent
label as described below:

vwl
i = Mo(vwl

i r1
, vwl

i r2
, . . . , vwl

i rn
) (9)

where Mo is the mode function, vwl
i is the dominance vector

of a specific node and rn is the number of the performed run
out of n runs.

C. Embedding Update

At the end of the particle competition-cooperation pro-
cess, each node has a dominance vector vwl

i representing
the probability that node i belongs to a certain community.
In graphs with a high modularity, i.e., where the nodes are
clustered in well-defined communities, it is common that vwl

i

ends up as a one hot encoding, with a few nodes (usually
the high centrality ones) belonging to multiple communities.
Our method, however, is focused in finding local relationships
in the data, regardless of the global structure or the node’s
features. The intuition is that a node with a high probability
of belonging to the same local structure will also present high
feature similarity. By considering both information in the GNN
we expect that the classification accuracy is improved since the
local structure can act as decider for nodes with low feature
similarity.

In this paper we use a concatenation rule, where the feature
information hi and the structure information vwl

i are combined
in the final feature ĥi with different weights, defined by a
parameter α ∈ [0, 1] ⊆ R. Equation 10 shows how each node
is updated. Notice that we use a argmax function in the vector
vwl
i to transform it into a one hot encoding.

ĥi =

N∥∥∥
i=1

(1− α)hi, α(argmax(vwl
i )) (10)

As will be discussed in the Experimental Results, the
parameter α can be adjusted to give more weight to the
attribute vector or the structure vector. This will depend on
the characteristics of the problem and the parameter can be
optimized accordingly.

D. Classifier

In this paper we consider a two layer Graph Convolutional
Network (GCN) with the same propagation rule as proposed
in [3]:

Ĥ(l+1)
s = σ

(
D− 1

2AD− 1
2 Ĥ(l)

s W (l)
s

)
(11)

where σ is the activation function (Relu), D is the graph degree
matrix, A is the graph adjacency matrix and W is the layer-
wise learnable weight matrix. Ĥ is the node embedding at the
lth layer and Ĥ(0) is equal to the updated embedding instead
of the original features.

The predicted class ŷ is obtained by applying softmax
to the the last layer, which has a size equal to the number
of classes. We also use a standard cross-entropy as the loss
function L to be minimized (Equation 12).

ŷi = softmax(ĥi.W )

L = −
M∑

c=1

yi,c log(ŷi,c)
(12)

E. Computational Complexity

Once the graph is constructed or in the case where the data is
already in the form of a graph, PCC has linear time complexity,
O(n), if the graph is sparse and quadratic complexity, O(n2),
otherwise, where n is the number of nodes [16]. Real world
graphs frequently are sparse, therefore, we hope PCC works
on linear time complexity em general.

GNNs, in general, have a time complexity of O(m), where
m is the number of edges. However, some models can be more
costly, ranging from O(n2) as in DiffPool [17] to O(n3) as
in PGC-DGCNN [18]. In this work we use a plain GCN as
in [3], which has a time complexity of O(m). Therefore our
model has a time complexity of O(n+m), i.e., linear to the
sum of the number of the nodes and the number of the edges,
for sparse graphs.

III. METHOD APPLICATION AND ABLATION STUDY

In this section we report the experimental results obtained
by TransGNN. For this purpose, we use an artificial data-
set and three well known public data-sets (Cora, Citeseer
and Pubmed). Firstly, we explore the artificial toy data-set
to clearly illustrate the advantages of the proposed model
in different levels of class mixture and graph heterophily
(neighboring nodes with different features). Then we apply
TransGNN to the real data-sets and present an ablation study
for some some of the real data-sets.

A. Artificial Toy Data-set

The toy data-set is composed of two classes of points form-
ing two hyper-planes. The distance between every neighbor
node of the same class is fixed. The two hyper-planes overlap
and in the overlapped area the distance between two adjacent
nodes from different classes is the same as the distance from
an adjacent node of the same class. This area contains 25%
of the total nodes. This setup is depicted in Figure 2.

The edges are added according to the following rule: for
each class, the intra-class degree of every node is equal to three
(dintra=3), so each node is connected to 3 random neighbors
of the same class. For the intra-class connections, two different
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(a) Neighbor size = 1 and inter-
class connections = 2%.

(b) Neighbor size = 2 and inter-
class connections = 34%.

Fig. 2: Visualization of different setups of the artificial data. In
(a) the nodes of the same class only connect to direct neighbors
(1-hop) and the classes present little mix (2%). In (b) the nodes
of the same class connect to nodes up to two steps away (2-
hop) and the classes are very mixed (34%).

Fig. 3: Chart view of Table I showing the performance of the
model under different scenarios in the artificial data-set. Left
chart: 1-hop results; Right chart: 2-hop results.

scenarios were tested, considering the size of the neighborhood
(1 and 2). Then, a number of inter-class edges are randomly
added and in this case six scenarios are tested, depending on
the amount of edges in relation to the total edges (2%, 3%,
6%, 11%, 21% and 34%). As for the labeled nodes, in every
scenario we use 2% of the total nodes for training and 98%
for testing. The training nodes are split in half for training and
validation in the GCN.

In general, we can see from the results in Table I and
Figure 3 that the particle competition performs better than
the GCN when the inter-class edges rate is low, especially
when the neighborhood size is larger. The GCN also has a
very low performance when the neighborhood size is larger,
which is expected since the network presents a high degree
of heterophily in this case (nodes with different features are
directly connected). In every scenario, however, the GCN is
better than the PCC when the inter-class edges rate is high,
since in this case the structure degrades but the GCN can still
rely on the node´s feature. Finally, TransGNN can incorporate
the advantages of both methods and keep a higher F1-Score in
every scenario. In this experiment, we set α = 0.5, giving the
same weight to the features and the network structure. This
way TransGNN can learn from both information.

TABLE I: Performance under different combinations of class
mixture and feature dissimilarity. The amount of inter-class
edges (mixture in the table) simulates the degree of mixture
in the structure of different classes, while the the number of
hops in the neighborhood of a node represents the dissimilarity
allowed for two nodes to be connected.

F1-score

1-hop 2-hop

Mixture GCN PCC TransGNN GCN PCC TransGNN

2% 0.669 0.729 0.791 0.683 0.777 0.806
3% 0.641 0.618 0.731 0.603 0.658 0.751
6% 0.610 0.549 0.664 0.626 0.595 0.692

11% 0.557 0.523 0.602 0.560 0.552 0.634
21% 0.542 0.506 0.582 0.543 0.512 0.565
34% 0.508 0.506 0.582 0.515 0.504 0.522

B. Real Data-sets

All three data-sets (Cora, Citeseer and Pubmed) are citation
data-sets. They are presented as graph objects, where each
node represents a paper and a connection exists between two
papers if either one cites the other. The node’s features are
bag-of-words vectors representing the most common words in
the paper. The label of the node is the subject area of the
paper.

The data was downloaded from Spektral Python package
[16] and the masks (training, validation and testing) provided
by the package are used in the ablation study when no mask
is specified.

The Cora data-set consists of 2708 nodes, 5429 edges and
the nodes are divided into 7 classes. Each node contains a
feature vector with 1433 positions (filled with either 0 or 1).
The training mask contains 140 nodes, the validation mask
500 nodes and the test mask 1000 nodes. The Citeseer data-
set consists of 3327 nodes, 9228 edges and the nodes are
divided into 6 classes. Each node contains a feature vector
with 3703 positions (filled with either 0 or 1). The training
mask contains 120 nodes, the validation mask 500 nodes and
the test mask 1000 nodes. The Pubmed data-set consists of
19717 nodes, 44338 edges and the nodes are divided into 3
classes. Each node contains a feature vector with 500 positions
(filled with either 0 or 1). The training mask contains 60 nodes,
the validation mask 500 nodes and the test mask 1000 nodes.

In order to visualize the problem and how the structure
learning improves the data separation we perform a UMAP
for supervised dimension reduction for Cora and Pubmed data-
sets. The parameters used are: n neighbors = 7, min dist =
0.5 and n components = 2.

As we can see in Figure 4, in the original data, the
classes are much closer than in the updated version, where
the community information has been appended to the node
embedding. This shows that this is step is able to learn the
overall structure of the data, which will be useful in the
inductive learning.

Now we compare the proposed method with recent state-
of-the-art methods. The experiments setups were set to match
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(a) Original (b) Updated

Fig. 4: Umap of Cora features before (a) and after (b)
embedding update.

(a) Pubmed Original (b) Pubmed Updated

Fig. 5: Umap of Pubmed features before (a) and after (b)
embedding update.

the ones used in [19] (such as the split rate and the number
of times the algorithm is run), this way we present the same
results with the addition of our model and the PCC when
ran separately. We also use as the basic metrics the F1-Score
and the MMC [19], since they are able to better express the
performance of unbalanced data-sets.

As we can see in Table II, the proposed method presents
a better performance in both Cora and Pubmed data-sets and
stays in top three in the Citeseer data-set, ranking first in com-
parison with the other presented methods when considering the
F1-Score.

C. Ablation Study

In this section we present an ablation study of the pro-
posed method. We compare the proposed method with a pure
PCC implementation and the classic GCN implementation as
presented in [3]. We present this study because our method
changes the attributes’ representations of the nodes and not
the learning architecture of the GNN, which means that our
method could be generalized to most of the many GNN
variations [1]. Therefore, our goal here is to demonstrate how
our framework, which combines two different approaches,
performs when compared to its related parts. In this part we
use Cora and Pubmed data-sets.

The first experiment was conducted to evaluate the effect
of α, as introduced in Equation 10, in the final accuracy. To
do so, vary α in the range [0, 1] with a step of 1

26 . When
α = 0, the model gives no weight to the PCC structure and

(a) Alpha Cora (b) Alpha Pubmed

Fig. 6: Classification accuracy for different values of alpha on
Cora and Pubmed data-sets.

only considers the attributes of the nodes. On the other hand,
when α = 1 the model only considers the graph structure
and ignores the attributes of the nodes by the natural of PCC
model.

For both the Cora and Pubmed Data-sets, we see that the
best classification accuracy is reached when we combine both
information (Figure 6). The Cora data-set reaches its peak
accuracy with α = 0.666, while the Pubmed data-set reaches
its peak accuracy tieh α = 0.125. As we can see, α must
be set according to the data-set, since each one might present
different properties. While the Cora data-set depends more on
the structure of the data, the Pubmed data-set depends more
on the attributes of the nodes.

In Figure 7, we plot the boxplot of the three methods for
the Cora data-set (a) and for the Pubmed data-set (b). In this
simulations, TransGNN uses the enhanced attribute ĥ, while
the GCN uses the original attribute h. The PCC method only
uses the labels and the adjacency matrix by its nature.

For the Cora data-set we can see that the PCC method per-
forms better than a plain GCN (acc pcc = 0.787, acc gcn =
0.782), however PCC is not stable, with a high standard
deviation and a high spread from the lowest to highest
accuracy (std pcc = 0.007, std gcn = 0.004). TransGNN
presents a better stability than the GCN (std transgnn =
0.002) with a significant higher accuracy than the plain GCN
(acc transgnn = 0.829).

As for the Pubmed data-set, the GCN presents a slightly
higher accuracy than the PCC (acc pcc = 0.756, acc gcn =
0.759), with the PCC with a higher standard deviation as
before (std pcc = 0.008, std gcn = 0.002). However, Trans-
GNN again performs significantly better in this data-set and
presents a very low standard deviation (acc transgnn =
0.784, std transgnn = 0.002). All of these results are in
line with the previous results, that showed that the structure
information is more relevant to the Cora data-set.

Another feature of the proposed model is that it outperforms
the compared methods with any number of labeled samples.
In Figure 8 we show the accuracy of the model for the Cora
Data-set depending on how many samples are labeled per
class. With one labeled sample per class, the proposed model
matches the performance of the PCC model and outperforms
by a lot the plain GCN. In the range 1 to 10 samples, the

83



TABLE II: Comparison of proposed method against state-of-the-art methods. Results from methods 1-9 (above the break line)
are replicated from [19]. Results in bold are the best results for the data-set, while the underlined results are the other two
top three results. Both the F1-Score and MMC are reported for each data-set. The rank is based on the F1-Score, that is more
commonly used in other works.

CORA CITESEER PUBMED

F1-Score MMC F1-Score MMC F1-Score MMC Rank

ChebNet 0.6551±0.0115 0.5367±0.0087 0.5767±0.0124 0.5196±0.0115 0.6874±0.0072 0.5761±0.0094 10.67
GraphSAGE 0.6848±0.0071 0.5823±0.0058 0.6014±0.0097 0.5474±0.0061 0.7349±0.0043 0.6043±0.0047 9.67

GCN 0.6861±0.0023 0.6146±0.0014 0.6158±0.0029 0.5549±0.0014 0.7524±0.0023 0.6265±0.0038 8.33
GAT 0.7134±0.0072 0.6379±0.0061 0.6290±0.0085 0.5662±0.0107 0.7516±0.0034 0.6234±0.0028 7.33

Grand 0.7156±0.0059 0.6484±0.0045 0.6248±0.0057 0.5838±0.0046 0.7614±0.0053 0.6357±0.0061 6.33
GCNII 0.7162±0.0064 0.6531±0.0076 0.6235±0.0078 0.5861±0.0069 0.7586±0.0047 0.6376±0.0052 6.67

GraphSMOTE 0.7213±0.0075 0.6553±0.0066 0.6294±0.0091 0.6113±0.0083 0.7649±0.0045 0.6399±0.0047 4.33
DR-GCN 0.7247±0.0057 0.6588±0.0065 0.6332±0.0049 0.6143±0.0038 0.7659±0.0043 0.6428±0.0046 3.33

GNN-INCM 0.7508±0.0045 0.7237±0.0051 0.6490±0.0048 0.6274±0.0036 0.7704±0.0039 0.6493±0.0059 2.00

PCC 0.7170±0.0100 0.6700±0.0120 0.5380±0.0120 0.4450±0.0140 0.7860±0.0030 0.6790±0.0040 6.00
TransGNN 0.7730±0.0180 0.7350±0.0210 0.6340±0.0160 0.5600±0.0190 0.8110±0.0080 0.7170±0.0110 1.33

(a) Boxplot Core (b) Boxplot Pubmed

Fig. 7: Accuracy comparison of the proposed method against
its parts.

proposed method outperforms both methods and than it starts
to show a similar performance as the GCN. In this study, the
labeled samples are randomly chosen and are different than the
ones provided by the Spektral Data-set, therefore the accuracy
with the same number of labeled samples is not comparable.
Also, we test the model in all the samples not used as the
training set.

IV. CONCLUSION

In this work we have proposed a GNN that uses dynamic
variable values of PCC as message passing mechanism to
enhance the nodes attributes. We showed that by learning the
network structure in advance and adding this information to the
feature matrix, a plain GCN can learn better than using only
the original attributes. As we have showed, the weight of each
element (network structure / node attribute) can be optimized
in a way that the performance of the mixed model is better
than its parts. Also, the proposed model has shown promising
results when compared to other state-of-the-art methods.

Another important feature of the the method is its ability
to incorporate information from distant nodes to the nodes’
embedding without over-smoothing the data graph, which is
still a problem to be solved in deep graph neural network
structures.

Fig. 8: Influence of training set size in the Cora Data-set
accuracy. In blue the proposed method accuracy (TransGNN),
in green the plain GCN accuracy and in red the PCC accuracy.

As a future work, we believe more applications can be
explored, such as image segmentation and classification, where
the structure of image tiles can be as significant as the tiles
attributes. Another field to be explored is the combination of
different transductive/inductive methods. Nowadays there as
several transduction methods with high precision and low com-
plexity and several GNN variations which are task specific. We
believe that combinations like the one we have proposed may
help improving this field of research.
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CHAPTER

6
CONCLUSION

Machine learning models based on the structure of complex networks can be defined
in a general framework composed of three steps. Firstly, the vector-based data, such as times
series and images, must be converted to a network. This first step encompasses the network
construction. In the second step, the network structure is characterized, using the training data to
split the labeled samples into separated structures, such as clusters, core structures and periphery
structures. Finally, new instances are classified according to their similarities to the training data
or via models that process the whole graph with the learned information. In this research, we
have studied problems with different network structures and proposed particular solutions to
each of the learning tasks upon the networks. The contributions include not only the results
presented in the previous Chapters but also the understanding of local characteristics versus
global characteristics and how the models could deal with these differences in novel ways.

Besides of the presented papers, the author of this thesis has also made important contribu-
tions to the following paper within the same research topic: "Gao, X., Zheng, Q., Vega-Oliveros,
D. A., Anghinoni, L., & Zhao, L. (2020). Temporal network pattern identification by community
modelling. Scientific Reports, 10(1), 240. <https://doi.org/10.1038/s41598-019-57123-1>." The
paper is not included in the thesis because he is the third author.

6.1 Concluding remarks

In this section, each topic of research is commented and the concluding remarks are
listed below.

In Chapter 2, it is presented a paper that transforms a time series into a complex network
considering the time series as a sequence of phase space vectors, which are then connected
following a threshold in the Pearson correlation of these segments. The final product of this step
is a recurrence network, where each pattern of a temporal segment is a node and it is connected

https://doi.org/10.1038/s41598-019-57123-1
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to the next temporal pattern. The study shows that these temporal segment patterns tend to form
clusters, meaning that some patterns are more likely to be connected to each other. This is an
interesting observation, since such a phenomenon is not observed in the original stochastic time
series. When the network is mapped back to the time series, the study shows that even stochastic
series present recurrent temporal sequences, which may be useful for prediction purposes.

In Chapter 3, a study was conducted to predict the spreading rate in the early stages of
the Covid-19 outbreak in Brazil. It is worth noticing that this research was conducted in the
beginning of the outbreak, when the data started to become public. Still, the research was able to
present some insightful results, regarding the effects of public measures and predicting the peak
date and the percentage number of infected people at this date for every available city in Brazil.

In Chapter 4, the data patterns are characterized by a different type o structure, the core-
periphery network. In this structure, the core data are very well connected while the periphery
data is sparse. This research has shown that the core-periphery structure can be useful to represent
certain types of data organizations, specifically when one of the classes has a high dispersion. To
evaluate this, we construct a network from the x-ray chest images, where the core represents the
normal lung class and the periphery represents the Covid-19 class with dispersed feature The
model is able to train a network by optimizing the core-periphery structure in a way the new
unlabeled instances could be classified accordingly.

Finally, in Chapter 5, the community structure of networks is used again to enhance the
node embedding of a GNN architecture. In this case, the proposed model is not trained end-to-end
but, instead, is composed of two main steps: (i) the structure learning, which is achieved by a
transductive method and (ii) the classification process, which is done by an inductive method.
The paper shows that, if the network presents some degree of clustering, i.e., higher modularity
than random, then the GNN should benefit from the information acquired at the first step.

6.2 Future works
Although the presented researches have tackled specific problems, some future works

can be listed based on these contributions.

1. Studying how overlapping communities interferes in the hierarchical community represen-
tation of the time series.

2. Modeling stochastic time series via Markov Chain process built from clustered networks.

3. Development of predictive models based on LSTM neural networks and the pattern
sequence generated from the clustered network.

4. Revisiting the network SIR model to incorporate recent pandemic data and proposing a
new model for future events.
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Figure 3 – Preliminary result of the novel TransGNN with attention. The whole slide image of a gastroin-
testinal sample is segmented into five different classes, including tumor and normal regions.
Visual comparison with annotated slides suggests a good performance of the model.

5. Proposal for expansion of the core-periphery model to multi-core periphery model, in
order to capture different dispersion levels and multi-class problems.

6. Incorporating attention mechanisms to the TransGNN model. This can be achieved from
the information generated in the particle competition step by generating weights to the
edges of the graph based on dominance similarity. This topic of research is an extension
of the work developed in this thesis and is currently under development with some good
preliminary results. We have applied this novel TransGNN in the field of digital pathology,
specifically to segment H&E-stained whole slide images, as in Figure 3. This new study
should be finished in a short period of time.

7. Proposal for a deep GNN model based on the network structure. A possible way of
addressing this issue can be performing the message passing hierarchically on different
community levels, avoiding the over-smoothing problem.
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