• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.55.2010.tde-13072010-144634
Documento
Autor
Nome completo
Alberto Yukinobu Hata
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2010
Orientador
Banca examinadora
Wolf, Denis Fernando (Presidente)
Figueiredo, Mauricio Fernandes
Osório, Fernando Santos
 
Título em português
Mapeamento de ambientes externos utilizando robôs móveis
Palavras-chave em português
Mapeamento
Máquina de suporte vetorial
Redes neurais artificiais
Robôs móveis
Sensor laser
Resumo em português
A robótica móvel autônoma é uma área relativamente recente que tem como objetivo a construção de mecanismos capazes de executar tarefas sem a necessidade de um controlador humano. De uma forma geral, a robótica móvel defronta com três problemas fundamentais: mapeamento de ambientes, localização e navegação do robô. Sem esses elementos, o robô dificilmente poderia se deslocar autonomamente de um lugar para outro. Um dos problemas existentes nessa área é a atuação de robôs móveis em ambientes externos como parques e regiões urbanas, onde a complexidade do cenário é muito maior em comparação aos ambientes internos como escritórios e casas. Para exemplificar, nos ambientes externos os sensores estão sujeitos às condições climáticas (iluminação do sol, chuva e neve). Além disso, os algoritmos de navegação dos robôs nestes ambientes devem tratar uma quantidade bem maior de obstáculos (pessoas, animais e vegetações). Esta dissertação apresenta o desenvolvimento de um sistema de classificação da navegabilidade de terrenos irregulares, como por exemplo, ruas e calçadas. O mapeamento do cenário é realizado através de uma plataforma robótica equipada com um sensor laser direcionado para o solo. Foram desenvolvidos dois algoritmos para o mapeamento de terrenos. Um para a visualização dos detalhes finos do ambiente, gerando um mapa de nuvem de pontos e outro para a visualização das regiões próprias e impróprias para o tráfego do robô, resultando em um mapa de navegabilidade. No mapa de navegabilidade, são utilizados métodos de aprendizado de máquina supervisionado para classificar o terreno em navegável (regiões planas), parcialmente navegável (grama, casacalho) ou não navegável (obstáculos). Os métodos empregados foram, redes neurais artificais e máquinas de suporte vetorial. Os resultados de classificação obtidos por ambos foram posteriormente comparados para determinar a técnica mais apropriada para desempenhar esta tarefa
 
Título em inglês
Outdoor mapping using mobile robots
Palavras-chave em inglês
Artificial neural networks
Laser range finder
Mapping
Mobile robots
Support vector machines
Resumo em inglês
Autonomous mobile robotics is a recent research area that focus on the construction of mechanisms capable of executing tasks without a human control. In general, mobile robotics deals with three fundamental problems: environment mapping, robot localization and navigation. Without these elements, the robot hardly could move autonomously from a place to another. One problem of this area is the operation of the mobile robots in outdoors (e.g. parks and urban areas), which are considerably more complex than indoor environments (e.g. offices and houses). To exemplify, in outdoor environments, sensors are subjected to weather conditions (sunlight, rain and snow), besides that the navigation algorithms must process a larger quantity of obstacles (people, animals and vegetation). This dissertation presents the development of a system that classifies the navigability of irregular terrains, like streets and sidewalks. The scenario mapping has been done using a robotic platform equipped with a laser range finder sensor directed to the ground. Two terrain mapping algorithms has been devolped. One for environment fine details visualization, generating a point cloud map, and other to visualize appropriated and unappropriated places to robot navigation, resulting in a navigability map. In this map, it was used supervised learning machine methods to classify terrain portions in navigable (plane regions), partially navigable (grass, gravel) or non-navigable (obstacles). The classification methods employed were artificial neural networks and support vector machines. The classification results obtained by both were later compared to determine the most appropriated technique to execute this task
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2010-07-13
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.