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RESUMO

GUZMÁN J.A. Processos epidêmicos não-Markovianos em redes complexas. 2023. 144 p.
Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2023.

Um dos pilares mais importantes na modelagem matemática de processos epidêmicos é conside-

rar os processos de infecção e recuperação como Markovianos. Isto significa que, os tempos em

que um indivíduo infectado irá contagiar os seus vizinhos e, o tempo em que irá recuperar-se são

exponencialmente distribuídos. No entanto, a propagação de doenças depende diretamente do

comportamento humano e de períodos de incubação de doença, que em geral são fenômenos des-

critos por distribuições não-exponenciais. Na presente pesquisa, objetivamos explorar diferentes

problemas relacionados a processos epidêmicos não-Markovianos em redes complexas. Especifi-

camente, realizamos simulações numéricas para estudar o modelo SIR e SIS não-Markovianos

com um processo de infecção Weibull em diferentes tipos de redes: (i) redes regulares aleatória

descritas pelo modelo Erdós e Renyi, (ii) redes sem escala feita com o modelo Barabási Albert e

(iii) redes com caraterística de pequeno mundo descritas pelo modelo Watts Strogatz. Foi mos-

trado que considerar um processo de infecção não-Markoviano pode mudar significativamente

o tamanho da epidemia e o valor da taxa crítica de transmissão. Quanto maior o parâmetro de

forma α , associado ao envelhecimento da probabilidade de infecção, epidemias com menor

tamanhos e maiores taxas críticas de transmissão são encontradas. Também, estudamos processo

SIR não-Markovianos em redes modulares. Para um processo de infecção Weibull foi encontrado

que estruturas de comunidades mais fortes e envelhecimentos positivos tendem a gerar epidemias

com maiores tamanho. Além disso, nossos resultados sugerem que enquanto a taxa crítica de

transmissão estiver abaixo da taxa efetiva de transmissão, envelhecimentos positivos podem

enfatizar o efeito de estruturas de comunidades. Isto se deve ao fato de que o envelhecimento

gera uma transmissão mais lenta, o que permite que as comunidades sejam mais efetivas em

conter a doença, evitando a contaminação de comunidades saudáveis.

Palavras-chave: Modelos epidêmicos, Porcessos não-Markovianos, Redes complexas, Redes

modulares, Simulações de epidemias.





ABSTRACT

GUZMÁN J.A. Non-Markovian epidemic processes in complex networks. 2023. 144 p.
Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2023.

One of the cornerstones of mathematical epidemic modeling consists in assuming that infection

and recovery can be described by Markov processes. This assumption implies that the inter-event

times follow a negative exponential distribution. However, real-world epidemics are influenced

by complex factors like human behavior and non-exponential incubation periods. As a result,

there has been a growing interest in exploring non-Markovian epidemic processes. in the last

decade. This work has the goal of exploring different problems concerning non-Markovian

epidemics in complex networks. In particular, numerical simulations were conducted to study

SIR and SIS non-Markovian epidemics using Weibull infection processes on different network

models: (i) regular random networks (Erdos and Renyi model), (ii) scale-free networks (Barabási

Albert model), and (iii) small-world networks (Watts Strogatz model). Our results reveal that

considering a non-Markovian infection can significantly alter the epidemic size and threshold

values. Increasing the shape parameter α , associated with aging in the probability of infection,

leads to smaller epidemic sizes and higher critical effective rates. Our investigation also extends

to the study of SIR non-Markovian processes in modular networks. For a Weibull infection

process, we verify that strong community structures and positive aging contribute to larger

epidemic sizes. Furthermore, the results suggest that as long as the critical transition rate remains

below the effective rate chosen, positive aging processes can hence the role of communities in

hindering the disease propagation to the entire network. This is caused by the slower propagation

associated with the positive aging process, which prevents the disease from reaching healthy

communities.

Keywords: Epidemic models, Non-Markovian processes, Complex networks, Modular networks,

Epidemic simulations.
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is performed on an Erdős and Rényi network, b) on a Barabási Albert network,

and c) on a Watts Strogatz network. . . . . . . . . . . . . . . . . . . . . . 94

Figure 22 – Vulnerability ∆ as a function of the effective transition rate λe f f in log scale

for Erdős and Rényi networks. Each plot corresponds to a different shape

parameter α , indicated at the top, and each color is associated with different

network size in the interval [N = 102,N = 5x103]. . . . . . . . . . . . . . . 96

Figure 23 – Vulnerability ∆ as a function of the effective transition rate λe f f in log scale

for Barabási Albert networks. Each plot corresponds to a different shape

parameter α , indicated at the top, and each color is associated with different

network size in the interval [N = 102,N = 5x103]. . . . . . . . . . . . . . . 96

Figure 24 – Vulnerability ∆ as a function of the effective transition rate λe f f in log scale

for Watts Strogatz networks. Each plot corresponds to a different shape

parameter α , indicated at the top, and each color is associated with different

network size in the interval [N = 102,N = 5x103]. . . . . . . . . . . . . . . 97



Figure 25 – Critical effective transition rate as a function of the shape parameter α for

different network sizes and models for a SIR epidemic process. In a) critical

rates for ER model, in b) for BA model and in c) a WS model. . . . . . . . 98

Figure 26 – Compression of the critical effective rate λc calculated with the vulnerability

analysis in a SIR process with the NIMFA approximation λ NIMFA
c and the

upper bound λUB
c for the SIS epidemic model described in section 4.3.1.

Each plot correspond to a different size and network model, stated in the title

above of each image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 27 – Compression of the critical transition as a function of the shape parameter

α in a SIR epidemic process between the three models: Erdős and Rényi,
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ER Erdős and Rényi network model

GA Gillespie Algorithm

HMF Heterogeneous mean-field approach

LFR Lancichinetti–Fortunato–Radicchi benchmark algorithm

QMF Quench mean-field approach

SF Sale-free networks

SIR Susceptible - Infected - Recovered

SIS Susceptible - Infected - Susceptible

WS Watts Strogatz network model





LIST OF SYMBOLS

σ — Transmission or infection rate

γ — Recovery rate

R0 — Basic reproduction number

G — Network or Graph

N — Total number of individuals or total number of nodes in the case of network models

L — Total number of edges or vertices of a network

ki — Degree of node i

⟨k⟩ — Average degree of a network

⟨k⟩ — Degree distribution

A — Adjacency matrix

ν — Exponent of the degree distribution of a scale free network

ξ — Rewiring probability of the Watts Strogatz model

λc — Critical transmission rate for epidemics on networks

λ HMF
c — Heterogeneous mean-field approximation for the critical transmission rate

λ
QMF
c — Heterogeneous mean-field approximation for the critical transmission rate

χ — Susceptibility of a system

∆ — Vulnerability of a system

λ NIMFA
c — NIMFA approximation for critical transmission rate for a non-Markovian SIS epi-

demic with Weibull infection

λUB
c — Upper bound of the critical transmission rate for a non-Markovian SIS epidemic with

Weibull infection

Tin f — Random variables that describe the interarrival times of infection for a non-Markovian



epidemic process

Tr — Random variables that describe the interarrival times of recovery for a non-Markovian

epidemic process

τin f — Random time at which the susceptible node of the active link will get infected

τr — random times at which a node spontaneously recovers

ψin f (τin f — Probability distribution of τin f

ψin f (τrec — Probability distribution of τr

γ — Recovery rate of the non-Markovian epidemic process with Weibull infection and Poisson

recovery

α — Shape parameter of the Weibull distribution that describes the infection process for a

non-Markovian epidemic

β — Scale parameter of the Weibull distribution that describes the infection process for a

non-Markovian epidemic

Ψin f (τ) — Survival probability

λ (τ) — Hazard rate of a non-Markovian epidemic process

λe f f — Effective transmission rate of a non-Markovian epidemic process

ϒ — Exponent of the power law distribution of degree in the LFR benchmark model

Ω — Exponent of the power law distribution of community sizes in the LFR benchmark model

smax — Maximum community size in the LFR algorithm

smin — Minimum community size in the LFR algorithm

µ — Mixing parameter in the LFR algorithm

M — Number of communities in a modular network

TM — Time when the disease has infected at least one individual in each community of a modular

network

Tl — Epidemic life.

∆ρ — Difference in prevalence between two epidemic processes.



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.1 Chapter organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 FUNDAMENTAL CONCEPTS: EPIDEMIC MODELS AND COM-

PLEX NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Basic Epidemic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 SIS model: Susceptible - Infected - Susceptible . . . . . . . . . . . . 36

2.1.2 SIR model: Susceptible - Infected - Recovered . . . . . . . . . . . . 38

2.2 Complex Networks: Basic Concepts . . . . . . . . . . . . . . . . . . . 40

2.2.1 Terminology and basic parameters of networks . . . . . . . . . . . . 41

2.3 Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Random Networks or Erdős and Rényi model . . . . . . . . . . . . . 42

2.3.2 Scale-free Network and Barabási–Albert (BA) model . . . . . . . . . 45

2.3.3 Small World Network and Watts-Strogatz model . . . . . . . . . . . 47

2.3.4 Modular networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 EPIDEMICS IN COMPLEX NETWORKS AND STOCHASTIC PRO-

CESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Revision of Stochastic Processes . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.2 Point processes and counting processes. . . . . . . . . . . . . . . . . 53

3.1.3 Poisson processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.4 Renewal processes and memory-less property . . . . . . . . . . . . . 56

3.1.4.1 Markov assumption: How can we interpret the memory-less property? . . . 56

3.2 Epidemic Processes in Complex Networks . . . . . . . . . . . . . . . 58

3.2.1 Mean-field approximation . . . . . . . . . . . . . . . . . . . . . . . . . 60



3.2.1.1 Heterogeneous mean-field (HMF) approximation or Degree Based mean-field

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1.2 Quench mean-field (QMF) approximation or Individual Based mean-field

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 Simulation focused approaches . . . . . . . . . . . . . . . . . . . . . . 64

3.2.2.1 Gillespie algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.2.2 Finding the threshold value of the system . . . . . . . . . . . . . . . . . . 65

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 NON MARKOVIAN EPIDEMIC PROCESSES IN COMPLEX NET-

WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Why bother with non-markovianity in epidemic processes? . . . . . 68

4.2 The standard non-Markovian approach for epidemic in complex net-

works: the application of renewal processes . . . . . . . . . . . . . . 68

4.3 Literature review of non-Markovian epidemic processes: approaches

and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Analytical approaches and mean-field approximations . . . . . . . . 71

4.3.2 Simulations and numerical approaches . . . . . . . . . . . . . . . . . . 72

4.3.3 Comparison between Markov and non-Markov processes . . . . . . . 73

4.3.4 Future problems in the field . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 NON-MARKOVIAN EPIDEMIC PROCESS WITH WEIBULL IN-

FECTION IN DIFFERENT NETWORK TOPOLOGIES . . . . . . . 77

5.1 Non-Markovian Epidemic process with Weibull infection . . . . . . . 78

5.2 Simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Event driven non-Markovian simulation . . . . . . . . . . . . . . . . . 82

5.3 Non-Markovian SIS process with Weibull infection . . . . . . . . . . 83

5.3.1 Critical transition for the SIS non-Markovian epidemic processes. . 85

5.4 Non-Markovian SIR process with Weibull infection . . . . . . . . . . 92

5.4.1 Critical transition for the SIR non-Markovian epidemic processes . 94

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



6 SIR NON-MARKOVIAN EPIDEMIC PROCESS WITH WEIBULL

INFECTION IN MODULAR NETWORKS . . . . . . . . . . . . . . 103

6.1 Revision of epidemics on Modular networks . . . . . . . . . . . . . . 104

6.2 LFR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Results on SIR non-Markovian process with Weibull infection in

modular networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Aging process delays the spread of the disease from communities . 108

6.3.2 Prevalence of the epidemic. . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.3 Epidemic life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.4 Difference in prevalence . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.5 Effect of the Number o communities . . . . . . . . . . . . . . . . . . 119

6.4 Simulations on real-world networks . . . . . . . . . . . . . . . . . . . 120

6.4.0.1 Results of difference in prevalence for real networks . . . . . . . . . . . . . 125

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 Limitations and future woks . . . . . . . . . . . . . . . . . . . . . . . . 133

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137





31

CHAPTER

1
INTRODUCTION

Throughout the course of human history, infectious diseases have been a significant

threats to society, particularly when they spread rapidly and give rise to epidemic outbreaks

[Anderson and May 1992]. In recent times, the world has witnessed the devastating consequences

of an uncontrolled pandemic caused by the SARS-CoV-2 virus. The far-reaching impact of the

COVID-19 pandemic has highlighted the urgent need to develop effective strategies to combat

such infectious crises, leading to a surge in research projects exploring epidemics and disease

propagation [Cai, Fry and Wagner 2020]. Although the scientific community has given particular

attention to epidemic processes in the last few years, the interest in propagation phenomena is

not new.

One of the main approaches used to understand epidemics is the study of mathematical

models. In this context, one of the first and most relevant works was developed by Kermack and

McCormick in the 1920s [Kermack, McKendrick and Walker 1927], which was followed by a

golden age in mathematical modeling of epidemics in mid-20th century [Pastor-Satorras et al.

2015]. These first models were based on the idea of classifying individuals in compartments

according to their state related to the infection, for example, infected, recovered, exposed, etc.

Unfortunately, the majority of these models used the homogeneously mixed assumption, which

implicated that all individuals can interact with each other. This assumption is far from reality,

where spatial limitations determine how people interact.

Independently, in the second half of the 20th century, the study of complex systems

emerged as a new field of research. This kind of system is characterized as being hopelessly
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complicated, as it can not be understood just as a sum of the individual behavior of its components

[Barabási and Pósfai 2016]. The concept of complex networks, as a combination of graph theory

and probability theory, is one of the most useful tools to face the challenges of complex systems.

The idea of nodes or individuals connected is very powerful, and network science can help to

describe fundamental aspects of many real systems like human interaction, computer systems,

species interaction, and many more [Vespignani 2009, Butts 2009, Jackson 2008]. The power

of complex networks becomes particularly evident in the analysis of spreading phenomena,

which often manifest in systems such as those aforementioned. Take, for instance, the spread of

epidemics, which relies heavily on human interactions; the proliferation of computer viruses,

facilitated by the internet; or the dissemination of fake news across social media networks. In

each case, the underlying structure of complex networks plays a crucial role in shaping the

dynamics of these spreading processes.

In the first decades of the new century, a second wave of interest in epidemic modeling

appeared, mainly focusing on combining the concept of complex networks with epidemic models

[Pastor-Satorras et al. 2015]. With this approach, some spatial characteristics could be added to

further deepen the understanding of real epidemics. The first work in this field was elaborated in

2001 by R. Pastor Satorras and A. Vespigani [Pastor-Satorras and Vespignani 2001], where a

mean-field approximation proved that heterogeneity in complex networks can help spreading

processes. From this point forward, epidemics in networks have been a growing research area,

and it has been characterized by a variety of approaches: from mean field approximations to

simulation-based research [Keeling et al. 2011, Keeling and Eames 2005, Pastor-Satorras et al.

2015, Boguñá et al. 2014, Masuda and Rocha 2018]. Also, a lot of interest in these topics comes

from the versatility of these models, as they can be applied to describe other dynamical processes.

For example, these epidemic models can be used to study information diffusion, rumor spreading,

and even the adoption of social behaviors [Bikhchandani, Hirshleifer and Welch 1992, Goffman

and Newill 1964].

One of the main simplifications used in epidemic modeling is considering that the

processes involved are well described by Markovian processes. The central idea of this approxi-

mation is to consider that the probabilities of the characteristic inter-event times of an epidemic

(infection, recovery, etc) come from an exponential probability distribution, and have constant

transition rates. These models are memory-less, which means the probability of future events

does not depend on the past.
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This simplification has led to many analytical and numerical results that have helped

deepen the understanding of real epidemic processes. However, this approximation has been

challenged in recent years. The increase of big databases of human interactions has revealed that

homogeneous temporal processes are not always adequate to describe networks of empirical

data [Gonzalez, Hidalgo and Barabasi 2008, Stouffer, Malmgren and Amaral 2005, Brockmann,

Hufnagel and Geisel 2006]. Many times, these empirical studies have shown inter-event times

with heavy-tailed distributions, instead of exponential ones [Barabási 2005]. For this reason, the

study of non-Markovian processes, which are in general described by non-exponential probability

distributions, has been increasing in popularity [Vazquez et al. 2007,Boguñá et al. 2014,Starnini,

Gleeson and ná 2017, Feng et al. 2019].

Some of these researches have shown that epidemic processes can drastically change

when considering non-Markovian transition processes and indicating that in many cases the

memory effect is not just a correction of the Markovian models [Mieghem and Bovenkamp

2013, Boguñá et al. 2014]. One of the most popular non-Markovian models studied is the non-

Markovian SIS process with Weibull infection, where the inter-event times of the infection

process are described by a Weibull distribution. In this model, as infected nodes spend more

time in the infected state, the likelihood of infecting others changes. This consideration has

been reported to significantly modify key characteristics of the process like the total number

infected individuals at the end of the process, the time until the steady state is reached, and the

threshold values associated with process [Cator, Bovenkamp and Mieghem 2013, Boguñá et al.

2014, Mieghem and Liu 2019].

Although the study of non-Markovian epidemics has increased in the past years, there

are still many answered question. Unfortunately, many techniques and results of Markovian

theory do not have a direct translation to non-Markovian systems. As mentioned, nowadays it is

well known that considering non-Markovian aspects can alter the outcome of an epidemic, but

how this happens for more complex epidemiological models, like a SIRS or SEIR model, or the

effects in network with specific characteristics, like modularity, clustering and temporal changes,

are still open problems.

The present dissertation is dedicated to the exploration of some of this problems of non-

Markovian epidemic processes in complex networks. Specifically, we focused on the simulation

of a SIS and SIR non-Markovian process with Weibull infection in different network models

with different topological characteristics.
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1.1 Chapter organization

This text is organized into seven chapters. The first one (the current chapter) contains

the introduction and chapter organization. The next five chapters are organized into topics with

the goal of constructing a logical sequence. Chapter 2 called “Fundamental Concepts: epidemic

models and Complex Networks” has e goal of presenting the basic concepts needed to develop

this research. This chapter is divided into two parts, the first one, in section 2.1 presents the SIS

and SIR compartmental models and their main characteristics. The second one, in section 2.2,

presents a brief revision of Complex networks, from basic properties to a quick review of the

most popular models.

Once we establish the basics of epidemic processes and complex networks we will

combine them in chapter 3. To do this we make a revision of stochastic processes in section

3.1, which are a fundamental tool used in describing epidemics on networks. Sections 3.1.4 and

3.1.4.1 are particularly relevant for this project as they present the idea of Renewal processes,

which are the heart of non-Markovian epidemics. Once we described the most important ideas of

the stochastic process we present the main results and approaches used in epidemics in complex

networks in section 3.2.

In Chapter 4 we start with the main topic of the text: non-Markovian epidemics in

Complex Networks. Using the ideas, concepts, and methods described in the previous chapters,

we present the standard approach used in the literature for describing non-Markovian epidemic

processes. The rest of the chapter is a literature revision of the most important works in this field

4.3.

Followed by this, chapter 5 and 6 present the main results of the research associated

with this dissertation. In the first of them, chapter 5, we explore the SIS and SIR non-Markovian

epidemic for three network models: regular random networks described by the Erdős and Rényi

model, heterogeneous scale-free networks, made by the Barabási Albert model, and the Watts

Strogatz networks with small world characteristic. We verify some results present in the literature

and further explore some characteristics associated with the critical rate of these systems. In

chapter 6, we present the results of the study of a SIR non-Markovian process with Weibull

infection in networks with community structure.

The last chapter 7 contains the conclusions, final considerations, limitations and possible

future works.
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CHAPTER

2
FUNDAMENTAL CONCEPTS: EPIDEMIC

MODELS AND COMPLEX NETWORKS

In this section, we cover some of the fundamentals and basic concepts needed to develop

this research project. These basic concepts are divided into two big areas: basic epidemic models

and fundamentals of complex networks. The first part is a brief revision of the traditional

homogeneously mixed SIS and SIR compartmental models, and the second part is a revision

of basic concepts used in network science: properties and measurements of complex networks,

models used to construct them, and modularity in networks. The next chapter 3, covers a

second part of fundamental concepts but focused on epidemics in complex networks, which is a

combination of the ideas presented in the current section.

2.1 Basic Epidemic Models

Mathematical epidemic models are a fundamental approach to understanding and con-

trolling infectious diseases [Pastor-Satorras et al. 2015]. Develop a mechanism of how diseases

spread between individuals is the first important step in modeling [Kiss, Miller and Simon 2017].

In this context, the work of Kermack and MacKendrick [Kermack, McKendrick and Walker

1927] defined the modern approach to epidemic modeling. This is, the compartmental models,

which are a very general technique that consists in assigning to each individual a label that

describes its status in relation to the disease. For example, an individual could be assigned the

label of “Infected” if it has a pathogen and can infect other people.
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This basic idea can be used in numberless ways to create models that mimic real epi-

demics. Most of the models studied in the last century where characterized for being homo-

geneously mixed deterministic models [Kiss, Miller and Simon 2017]. In this approach, the

homogeneously mixed characteristic implies that all individuals can interact with each other, and

as consequence we don’t need to care about which compartment each individual belongs, and

rather we can just look to the overall fraction of individuals in each compartment. This models

are deterministic, and differential equations are used to study the dynamics of the total number of

individuals that belong to a specific group (Infected, Susceptible, etc). Now we will present two

of the most popular compartmental models in the lens of this deterministic approach: the SIS

and SIR model. Although this project centers its attention in stochastic simulations for epidemic

processes, this deterministic approach in homogeneously mixed systems is important as it can be

used to introduce the basic concepts around epidemic models.

2.1.1 SIS model: Susceptible - Infected - Susceptible

The Susceptible - Infected - Susceptible (SIS) model considers that an individual that

has recovered from a disease can get infected again. This means that in an ongoing epidemic a

person can go trough a cycle where they get infected then recover, then infected again and so

on. It is a very simplified model, but can be used as a basic approach to describe STDs or viral

diseases characterized by viruses that mutate constantly over time [Keeling and Eames 2005].

In this model, the a population of N individuals is divided into two groups: “I”, which

are the infected ones, and “S” which are the susceptible ones. An infection occurs between a

susceptible individual and an infected individual. In the case of a continuous time approach

we can consider a constant transmission or infection rate (σ ), , which can be understand as the

number of infection-transmitting contacts infected individuals make per unit of time. Another

way to understand this constant is as the inverse of the mean time between successfully infections

of an infected person. With the same logic, we consider a constant recovery rate (γ) [Keeling

and Eames 2005]. In equation (2.1) we present a diagram of the infection cycle.

S σ−→ I
γ−→ S (2.1)

In a population the total rate of infectious contacts is σ I, but just a fraction S/N of these

contacts will occur with susceptible individuals. The recovery does not depend on the contacts,
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so the rate is the same independently of the number of infected or susceptible individuals.

Considering a fully mixed population (everyone can contact everyone), and without considering

birth and death, which implies N is a constant value, we can construct a model by writing a set

of differential equations:

dS
dt

=−σ
S
N
+ γI

dI
dt

= σ I
S
N
− γI

S(t)+ I(t) = N

(2.2)

As N is just a constant we can perform a normalization considering new variables:

s = S/N and i = I/N

ds
dt

=−σ is+ γi

di
dt

= σs− γi

s(t)+ i(t) = 1

(2.3)

We can substitute s = 1− i and obtain an ordinary differential equation that involves just

i and t:

di
dt

=−σ i(1− i)+ γi (2.4)

We won’t go through all details of the solution, but Equation (2.4) can be easily solved

using variable separation, a complete procedure can be found in [Kiss, Miller and Simon 2017].

However, the specific equation that describes i as a function of time t isn’t always useful, and for

most complex models, it is even impossible to express this relation in an analytic form. Because

of this, we will focus on the qualitative behavior by describing the steady states. In this case, we

have two steady states that depend on the relation of the transmission rate σ and recovery rate.

For this, we define the basic reproduction number R0 = σ/γ , which can be understood as an

effective transmission rate. If R0 = σ/γ < 1 the recovery process "wins" over the transmission

process, and for large time i → 0, on the other hand if R0 = σ/γ > 1 we have an endemic steady

state i → (1− γ

σ
). In the second case, the steady state occurs when in average the same number
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of individuals that get infected are recovering per unit of time, causing the fraction of infected

and susceptible individuals to stay constant [Kiss, Miller and Simon 2017] In figure 1 we can see

a numerical solution of equations (2.3) for different values of R0.

Figure 1 – Numerical solution for the deterministic SIS model. The graphs show the fraction of infected
and susceptible individuals as a function of time for different values of R0.

Source: Elaborated by the author.

In R0 = 1 a phase transition occurs where the behavior of the epidemic when t → ∞

changes dramatically.

2.1.2 SIR model: Susceptible - Infected - Recovered

The Susceptible - Infected - Recovered (SIR) model considers that after some time of

infection, the individual infected recovers from the disease and can’t get infected again. This

idea can be applied for diseases where individuals develop lifelong immunity [Pastor-Satorras et

al. 2015].

For the deterministic continuous time approach to solve the SIR model we consider a

transmission rate σ and a recovery rate γ . These rates have essentially the same meaning as

the rates described for the SIS model, with the exception that in the recovery process, infected

individuals don’t return to the susceptible group, but go to a new group of recovered individuals.

S σ−→ I
γ−→ R (2.5)

Again, in a population of size N with I infected , S susceptible and R recovered individuals

the total rate of infectious contacts is σ I, but just a fraction S/N of these contacts will occur with

susceptible individuals. Considering the assumption of a fully mixed population with a constant
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number of individuals, we can write a system of differential equations:

dS
dt

=−σ I
S
N

dI
dt

= σ I
S
N
− γI

dR
dt

= σ I

S(t)+ I(t)+R(t) = N

(2.6)

If we perform a normalization where s = S/N, i = I/N and r = R/N it can be obtained:

ds
dt

=−σ is

di
dt

= σ is− γi

dr
dt

= γi

s(t)+ i(t)+ r(t) = 1

(2.7)

This is still a vary simple model, but the addition of a third class of individuals compli-

cates the solution of the differential equations causing the impossibility of finding an analytic

solution. As a result, in this problem a qualitative analysis of the steady states appears to be best

way to understand the behavior of the model.

There is only one steady state for the fraction of infected people: i → 0 as t → ∞. So

in contrast to the SIS model, the SIR model does not allow an endemic solution where i stays

constant. This makes sense because in the worst case scenario where all individuals get infected

at some point the lifelong immunity guarantees that, for a time far from the first contagion, there

won’t be any more individuals that can get infected. Although there is just one steady state for i,

there are other aspects of en epidemic that can be studied. For instance, we can look at the size of

the epidemic ρ . For the SIR model this measures is defined as the fraction of recovered people

as t → ∞. Considering a small population of infected people at the beginning of the epidemic we

can obtain an implicit equation for ρ [Kiss, Miller and Simon 2017]:

ρ = 1− e−
σr∞

γ (2.8)

For R0 = σ/γ > 0 there are two solutions for (2.8): a trivial solution ρ = 0 that corre-

sponds to case wheres i(0) = 0, and a non trivial solution ρ > 0. In contrast, if R0 ≤ 1 we have



40 Chapter 2. FUNDAMENTAL CONCEPTS: EPIDEMIC MODELS AND COMPLEX NETWORKS

that ρ → 0 is the only solution, and corresponds to the case where i will just decrease over time.

This means that, just as in the SIS model, R0 = 1 correspond to a phase transition. Figure 2

shows some numerical solutions of (2.6):

Figure 2 – Numerical solution for the deterministic SIR model. The graphs show the fraction of infected,
susceptible and recovered individual as a function of time for different values of R0.

Source: Elaborated by the author.

The homogeneously mixed models have been very important for epidemic modeling,

especially for their simplicity. Unfortunately, the lack of spatial and structural characteristics is

one of the main disadvantages of the homogeneously mixed assumption as, in real life, humans

are constrained to spatula limits.

2.2 Complex Networks: Basic Concepts

In this subsection, we cover the basic concepts and ideas needed to understand the use of

complex networks for this project. First, we present a brief idea of what a complex network is,

what are its characteristics and how can we measure them. Then we go through some classes of

networks and how we can construct them. And finally present some ideas related to modularity

in networks, which is a topic of interest for this project.

A network can be understood as a collection of points joined together in pairs by

lines [Newman 2018]. Usually, when these networks have a large number of individuals and

don’t have trivial topology we called them Complex Networks [Barabási and Pósfai 2016]. This

is a simple definition, but captures the essence of complex networks, and with this basic idea is

easy to see how this concept can be used to describe biological, social, and physical systems

composed by a large number of interacting individuals [Barabási and Pósfai 2016].
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2.2.1 Terminology and basic parameters of networks

Although networks and graphs are rigorously different concepts, for this project we use

this terms interchangeably, and in general use G to refer to a generic network . A network is an

abstraction of a system composed by nodes or vertices, which are the components of the system

that often interact, and links or edges, which are the explicit relation or interaction between two

components [Barabási and Pósfai 2016]. We can characterize a network by its size, generally

described byN , total numbers of nodes, and LN , total number of edges.

In general, each node of the system has a label that could be any relevant information

about the node. However, it usual to use natural numbers as labels, as it facilities the construction

of other concepts, like the adjacency matrix. In this sense, we could have a network G with N

nodes characterized by a labels: 1,2,3..., i, ...,N. With this logic, edges are usually represented

as pair of numbers according to the label of the nodes it connects, for example, if node i is

connected to node j than the edge is represented by: (i, j).

Networks can be directed if the links have a direction, in other words, a connection

from node i to node j does not imply that a connection from j to i exists. Naturally, we define

an underacted network as one where links don’t have directions, so the existence of an edge

from i to j doesn’t mean that exists a connection the other way around. Also, networks can be

weighted if there are different kinds of links, characterized by weights, or unweighted if all links

represent the same kind of relation. These concepts are important because for this project we

work exclusively with underacted unweighted networks, and this is fundamental as it can change

how we define some basic parameters and properties.

To characterize a network we need to define some concepts [Barabási and Pósfai 2016,

Newman 2018]:

1. Degree: For a node i, we define the degree as the total number of links between this node

and any other node. We use the notation ki as the degree of node i.

2. Neighbors: For a node i, we define the neighbors as the collection of nodes j that are

connected with i by one link. This concept is directly related to the concept of the degree:

if ki = 3 it means node i has three links and, as we are considering underacted networks, it

also means that i has 3 neighbors.

3. Average Degree: This is a fundamental property that can characterize and differentiate
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networks. Is defined as the sum of all degrees from every node divided by the total number

of nodes. We denote this quantity with the character: ⟨k⟩ :

⟨k⟩= 1
N

N

∑
i=1

ki (2.9)

4. Degree distribution: Is a function that returns the probability that a randomly chosen

node in the network has degree k. We use the notation pk or p(k). This is a fundamental

concept to understand how some networks are constructed.

5. Adjacency matrix: For mathematical purposes, we usually represent a network using its

adjacency matrix. This is a matrix A with N rows and N columns (each corresponding to

a specific node), and its elements for an unweighted network are defined as:

Ai j =

0, if there isn’t a link between i and j.

1, if there is a link between i and j.
(2.10)

For underacted networks the adjacency matrix is symmetric, so Ai j = A ji

There are many more parameters and concepts associated with networks such as: con-

nectedness, centrality, clustering coefficient, paths, distances, etc. But, for this project, these are

the essential definitions, if some other concept emerges later in the text it will be defined in its

own context.

2.3 Network Models

So far we were concern with defining the essential terminology of network theory. But,

haven’t talk about how can these networks be generated. Network models help us develop

algorithms and strategies for creating synthetic networks that captures characteristics of real

systems. In this subsection we will present some of the most popular ones.

2.3.1 Random Networks or Erdős and Rényi model

Paul Erdős and Alfréd Rényi, two Hungarian mathematicians, are considered to be the

founders of modern network science. They did this by introducing probability theory in graph

theory [Fienberg 2012]. In this context, they first introduced the Erdős and Rényi network

model (ER) in 1959 [Erdös and Renyi 1984, Erdös and Rényi 1959], which is one of the most
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fundamental models. In honor to this mathematicians this type of networks is often referred as

Erdős and Rényi network or ER networks.

Although Erdős and Rényi receive a lot of credit for the Random Network model,

Edgar Gilbert, an American mathematician, introduced the same concept independently and

contemporaneously [Fienberg 2012]. As a consequence, we can define random network in two

ways [Barabási and Pósfai 2016]:

∙ G(N,L) Model: N nodes are connected with L randomly placed links. This is the original

definition used by Erdős and Rényi.

∙ G(N, p) Model: Each of the N nodes are connected to the rest N −1 other vertices with

probability p. Definition introduced by Gilbert.

The two definition generate random networks and are equally valid. However, many

times the second one is chosen because real networks rarely provide a specific number of

links [Barabási and Pósfai 2016]. The algorithm for generating random networks given N and p

is:

1. Begin with N disconnected nodes.

2. Randomly select two nodes i and j. Generate a random number u between 0 and 1, if the

u > p then add a link between i and j.

3. Repeat step 2 for the N(N-1)/2 node pairs.

The random characteristic of this type of network causes that two realizations of the

same algorithm generate different networks. However, if the parameters stay the same, ⟨k⟩ will

also stay constant trough different realizations. It is can be prove the average degree is given

by [Newman 2018]:

⟨k⟩= p(N −1) =
2⟨L⟩

N
(2.11)
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The strategy of taking a random number and compare it to the probability p corresponds

to a binomial process. So the degree distribution is given by:

pk =

 N −1

k

 pk(1− p)N−1−k (2.12)

In the thermodynamic limit, N → ∞, this distribution can be approximate to a Poisson

distribution:

pk = e−⟨k⟩ ⟨k⟩k

k!
(2.13)

Figure 3 displays some ER networks with different values of p. For small p the network

is spare and as this parameter increases the network gets denser till p = 1 where a completely

connected network is generated.

Figure 3 – Visual representation of different Erdős and Rényi random networks with different values of p.

Source: Elaborated by the author.
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This model has been extensively studied, specially because of its simplicity. Unfortu-

nately, it has been shown many times that real networks don’t behave like random networks [Al-

bert, Jeong and Barabasi 1999, Redner 1998]. For example, this model doesn’t have hubs (nodes

with large degree), which are a fundamental characteristic of social networks [Watts and Strogatz

1998].

2.3.2 Scale-free Network and Barabási–Albert (BA) model

When we try to fit data from real social networks with a random network model, in

general, the results are very disappointing. A lot of real networks don’t have e Poisson’s degree

distribution, and the presence of nodes with large degree is frequent [Barabási and Pósfai

2016]. One classic example is the study of the World Wide Web and networks of scientific

citation [Albert, Jeong and Barabasi 1999, Redner 1998].

As a solution it is possible to build networks that have a power law degree distribution,

which allows the existence of nodes with large degrees. This networks are also called Sale-free

networks (SF), and equation (2.14) shows a generic form of its power law distribution:

pk ∝ k−ν (2.14)

Where ν is the degree exponent and is typically in the range 2 < ν ≤ 3

The presence of nodes with large degrees in scale-free networks compared to ER networks

can be traced to the differences in the degree distribution. Power law distributions have “heavy

tails”, so the value of pk for k far from the average degree ⟨k⟩ is orders of magnitude bigger than

its counterpart in an ER network. The result of this characteristic is the presence of a few nodes

with very large degrees and many nodes with few links. This property makes scale-free networks

heterogeneous networks, for the large diversity of degrees, in contrast with the regular networks,

like the ER network, which are called homogeneous networks. We can see a compression of

these distributions in figure 5 and in image ?? we can appreciate an example of a heterogeneous

network with the presence of 1 hub and a regular network, generated by the ER model.

The first model proposed to reproduce networks with power law distributions was

developed by Albert-László Barabási and Réka Albert [Barabasi and Albert 1999]. This model,

called Barabási Albert network model (BA), is based on two important assumption: the network

are not treated as static objects, at each step of the generating process new nodes are constantly
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Figure 4 – Graphical representation of the Poisson and Power law distribution. In a) on regular scale, and
in b) with logarithmic scale.

Source: Elaborated by the author.

Figure 5 – Visual representation of two networks: on the left a heterogeneous network with the presence
of 1 hub, and on the right a regular network generated by the ER model.

Source: Elaborated by the author.

being added; new nodes prefer well connected nodes. The second assumptions is known as the

“preferential attachment”, and follows the idea of “rich get richer”, which means that nodes with

already high degree have a bigger probability of getting new links. A simple algorithm idea for

this model follow:

1. Begin with a connected network of n0 nodes.

2. We add a new node to the network. This node is connected to m existing nodes with a

probability proportional to the degree of the original nodes. So the probability of connecting

a new node with an existing node j is:

p j =
k j

∑i ki
(2.15)

3. The second step is repeated until we reach a network with properties we desired.
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This model generate a scale-free network with power law exponent ν near 3. This formu-

lation is considered a breakthrough for network science, but there were still some characteristics

of real systems that were being left out, specifically the small world characteristic.

2.3.3 Small World Network and Watts-Strogatz model

The idea of “six degree of separation” first appeared in pop culture at the beginning of

the 1920’s [Fienberg 2012]. This concept stands that to reach any person in the world we just

need six or fewer social connection. Although this might not be completely true, it captures an

interesting characteristic of real human networks: the small world property.

Stanley Milgram, an American social psychologist, conducted many experiments in the

mid 20th century that tested the the small world concept in real social networks. The results

suggested social network are characterized by short path-lengths and high clustering, this is,

every individual can reach any other individual in a small number of steps [Travis and Milgram

1977]. Networks that present this behavior were called “small-world networks”.

Again, just like the lack of hubs in real networks, the small-world characteristic wasn’t

captured by ER model. At the end of the 1990s Duncan Watts and Steve Strogatz proposed a

new model to characterized and generate small world graphs, also called Watts Strogatz network

model (WS) [Watts and Strogatz 1998].

The remarkable characteristic of the algorithm is that we “tune” the small world charac-

teristic using just one parameter ξ . The algorithm proposed by Watts and Strogatz follows:

1. We start with a ring network. This is, nodes are placed in a one-dimensional ring with

periodic boundary conditions.

2. Connect every node with its k nearest neighbors in both directions.

3. Rewire each node with probability ξ .

If ξ =0, we stay with a ring network. In the other extreme case if p=1, we rewire all the

links, and end up with a random network. But, for intermediate values of ξ we generate networks

with small world characteristics. In figure 6 there are some networks generated with the WS

model for different values of ξ .
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Figure 6 – Visual representation of different Watts Strogatz network, each one with a different values of
ξ .

Source: Elaborated by the author.

The main disadvantage of this model is it does not capture heterogeneity in the degree

distribution. Just like in the ER network, we end up with nodes having too similar degrees, and

having a small probability for hubs.

2.3.4 Modular networks

In many social systems, individuals don’t have the same probability of connecting to any

other individual. Humans tend to group with other people who have similar social characteristics.

None of the models studied so far take this property into account, so we need to introduce a new

concept: communities

Networks with community structures, also called modular networks, are graphs where
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nodes have a higher likelihood of connecting with other nodes within the community than

with nodes outside the community [Barabási and Pósfai 2016]. This generates networks with

groups of nodes densely connected, and spare connections between nodes form different groups.

This modular structure has been proven to be relevant for modeling many social and biological

phenomena [Palla et al. 2005, Spirin and Mirny 2003, Ravasz et al. 2002, Watts, Dodds and

Newman 2002].

Not all modular networks have the same structure so it’s important to introduce the idea

of strong communities and weak communities. Consider a node i that belongs to a community

M in a modular network, we define kI
i as the internal degree of i, this is, the total number of

connections from i to any other node that belongs to M. Also, we define kO
i as the external degree

of i, in other words, the total number of links between i and any other node that is outside M.

With this consideration we define strong and weak communities, based on [Barabási and Pósfai

2016], as follows:

∙ Strong community: A module M is strong if each of its nodes has more links to other

nodes in the same community than to nodes that belong to other communities. This is:

kI
i > kO

i ,For every i ∈ M (2.16)

∙ Weak community: A module M is weak if the total internal degree exceeds their total

external degree. This is:

∑
i∈M

kI
i > ∑

i∈M
kO

i (2.17)

It also might be useful to establish the concept of Very weak community, not presented

in [Barabási and Pósfai 2016], but that comes as a logical follow-up from the strong and weak

community idea.

∙ Very weak community: A module M is very weak if the total external degree exceeds their

total internal degree. This is:

∑
i∈M

kI
i < ∑

i∈M
kO

i (2.18)

In this sense, networks can have a stronger community structure if more of their commu-

nities are strong, or a weaker community structure if have more weak communities. The specific
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criteria used to classify the structure of a network as strong or weak can vary, but for now, it’s

important just to have a basic understanding of these concepts.

A lot of research in modular network has been dedicated to develop algorithms to

successfully detect communities [Hu et al. 2008, Duch and Arenas 2005, Schaub et al. 2017,

Tasgin, Herdagdelen and Bingol 2007]. This is important, as it helps us capture an accurate

description of real-world systems. There is also an interest in generating and producing modular

networks [Lancichinetti, Fortunato and Radicchi 2008, Pasta and Zaidi 2016, Muscoloni and

Cannistraci 2018]. This is especially relevant for the study of dynamic processes on networks,

like epidemic processes.

2.4 Summary

In this chapter we covered the fundamental and basic concepts associated with the

research project. In section 2.1, we talked about the SIS and SIR deterministic homogeneously

mixed compartmental models. This is one of the most popular approaches to study epidemic

modeling and consists in classifying individuals into groups according to their state related to the

disease. For the SIS model, infected individuals recover but can get infected again so there are

two compartments: Susceptible and Infected. However, for the SIR model infected individuals

can not get infected again, so an additional compartment is added. Both models have two types

of behavior depending on the value of the basic reproduction number R0 = σ/γ .

The homogeneously mixed assumption is considering that all individuals can interact

with each other, which is not realistic. One way to consider some spatial property is using complex

networks as the structure where an infectious disease propagates. In section 2.2, we cover basic

concepts and definitions related to complex networks. We also saw three different models, being

the first the ER network, which is the most basic network model with the characteristic of being

regular and random. Many real networks have properties that are not captured by the ER network,

so the other two models the WS and BA model help include two important properties: small

world characteristic and heterogeneity in degree distribution, respectively.

We this basic ideas established, we now can combine them to have epidemic models in

complex networks. The next chapter 3 will be focused on covering this topic, together with a

revision of stochastic process, which are fundamental to integrate this two models.
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CHAPTER

3
EPIDEMICS IN COMPLEX NETWORKS AND

STOCHASTIC PROCESSES

At the beginning of the last chapter, we presented the compartmental epidemic models in

a fully mixed population. This is one of the most popular approaches to simulating epidemic

disease, but one of its biggest downsides is the lack of a spatial dimension. In the real world,

human systems are far from being fully mixed, so it’s important to take into account some spatial

property to have a more realistic model. As mentioned at the end of last chapter, one way to solve

this issue is to use networks as the social structure in which a disease spreads. This approach has

been increasing in popularity in the last few decades [Pastor-Satorras et al. 2015].

When we consider epidemics on networks the complexity of models increases and many

times deterministic approaches are not viable. Because of this stochastic approaches have been

fundamental to model this kind of systems. Before diving into some approaches on how to study

epidemics in networks in section 3.2, we must present a brief review on stochastic processes

in the first section of this chapter 3.1. Special attentions is dedicated to the "Memory-less"

property of Markov processes as it will be a fundamental concept of the models developed in the

proceeding chapters.

3.1 Revision of Stochastic Processes

The idea of stochasticity can be tracked to the origin of the word in old Greek “stokhastikos”

which can be translated as “to guess”, which reflects the idea of randomness and chance involved
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in these kind of processes [Rinne 2008]. In its most general definition a stochastic process can be

understood as any family or collection of random variables [Karlin and Taylor 1975]. Random

variables are not variables in the traditional sense, they are functions of possible outcomes of a

sample space to a measurable space [Karlin and Taylor 1975].

We consider a probability space [Ω,A,P] and a non-random index set T , called parameter

space, which is a measurable. The probability space is defined by a sample space Ω, a σ−algebra

A, and a probability measure P. A stochastic process, {Xt}t∈T , will be a collection of random

variables Xt that maps Ω×T into a measurable space S (an equivalent notation of Xt is X(t)).

The stochastic process has a state space which is the set of all possible values of the random

variables Xt . A fundamental aspect that many time distinguishes one stochastic process from

another are the probability distribution function associated with random variables involved.

With these concepts it is possible to elaborate simple classifications for stochastic

processes. If the state space is countable we call the stochastic process a point process, and if the

state space is R or any compact subset of R we call it a diffusion process. On the other hand,

if the parameter space is discrete, we call it a stochastic series or a stochastic chain, and if it is

non-countable we will deal with continuous processes. In the context of spreading and epidemic

modeling in general t represents the time, and the characterizations of continuous or discrete

parameter space implies a continuous or discrete time model. For this text, we will center on

continuous parameter space.

3.1.1 Markov processes

Markov chains, for discrete times, and Markov processes, with continuous time, are

within the most famous and widely used stochastic processes. They were proposed by Andrey

Markov and have what is usually called the “memory-less property”. There are many formulations

of this property, but one of the most common is considering that given the value of Xt , the values

of Xs for s > t, are independent of the values of Xu for u < t. This characteristic can be understood

as independence of past values and is what is called the “memory-less property”, as we only

need the present state to know the probability of future outcomes [Rinne 2008]. This idea can be

translated in the equation (3.1)

P(Xt = x|Xt1 = x1,Xt2 = x2,Xt3 = x3, ...Xtn = xn) = P(Xt = x|Xtn = xn) (3.1)
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Where the times have the relation t1 < t2 < t3 < t4... < tn < t.

3.1.2 Point processes and counting processes.

Outside these classification, we can also talk about two important types of stochastic

processes: point processes and counting processes. A point process is characterized by a sequence

of events occurring in continuous time, like birth, death, failure of a system, etc. In this kind of

processes the random variables involved are related to the time when the events will happen. For

example, a variable Tn could be the instance of occurrence of the n-th event of the system [Ross

2010]. Many times, we are interested not just on the time of occurrence but also in the total

number of events that have happened, for this we can define the total number of events in the

interval [0, t] as the random variable Nt , that follows the characteristic described in (3.2).

Nt = n i f Tn ≤ t < Tn+1 (3.2)

If we consider a family of random variables N = (Nt ,0 ≤ t < ∞) we will end up with a

counting process. Some characteristics of this kind processes follows:

∙ N is an increasing process such that Nt ≥ Ns if t ≥ s

∙ Nt ∈ 0,1,2,3...

∙ Consider two times s and t such that 0 ≤ s ≤ t. Then ∆N = Nt −Ns will be equal to the

events occurred in the interval [s, t].

There is a direct relation between Nt and Tn. For instance, if Nt < n, meaning that at time

t there has been a number of occurrences less than n then Tn > t, which means that the n-th event

occurs after time t. Similarly, if Nt ≥ n then Tn+1 > t. From these ideas we can conclude that:

P(Nt < n) = P(Tn > t) (3.3)

P(Nt ≥ n) = P(Tn+1 > t) (3.4)
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3.1.3 Poisson processes

The homogeneous Poisson process is a counting process widely used to model social and

biological phenomena. A collection of random variables {Nt , t ≥ 0} will be a Poisson process if

the following conditions are held [Ross 2010]:

1. N0 = 0

2. For all t0 = 0 < t1 < t2 < t3 < ... < tn the increments Nt1 −Nt0 , Nt2 −Nt1 , ...Ntn −Ntn−1 are

independent random variables. Which mean that the number of events in disjoint time

intervals are independent.

3. The distribution of the number of events in given interval depends just on the length of

the interval. This means that the probability distribution of Nt+h −Nt will be the same

regardless of the value of t. Also if we define a random variable Xh := Nt+h −Nt and take

h → 0 then:

∙ P(Xh = 1) = λh+o(h)

∙ P(Xh ≥ 2) = o(h)

Where λ is said to be the rate of the Poisson process. The idea of a function f being

o(h) means that limh→0
f (h)

h = 0. The condition 3, which also called the stationary increment

assumption, is a fundamental characteristic that make the Poisson process a Markov process. For

a Poisson process the probability of an event happening in the future time does not depend on

the time already passed, which is the memory-less property characteristic of Markov processes.

Now we will turn our attention to the probability distribution associated to the Poisson

Process. Let us use the notation P({Xt = m}) = Pm(t). The probability of having no events in

the time interval t +h can be written as:

P0(t +h) =P{N(t +h) = 0}

P0(t +h) =P{N(t = 0,N(t +h)−N(t) = 0}
(3.5)

From the condition 2 disjoint times are independent random variables, so we can write:

P0(t +h) =P{N(t = 0}P{N(t +h)−N(t) = 0} (3.6)
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If we call P{N(t = 0} = P0(t), and consider that P0(t) = 1− (∑∞
m=1 Pm(h)), we can

express P0(t +h) as:

P0(t +h) =P0(t)[1−
∞

∑
m=1

Pm(h))] (3.7)

From condition 3 if h → 0 we know that P1(h) = λh + o(h), and we can consider

∑
∞
m=2 Pm(h)) = o(h) so:

lim
h→0

P0(t +h) = lim
h→0

P0(t)[1−λh−o(h)]

lim
h→0

P0(t +h) = lim
h→0

[P0(t)−P0(t)λh−P0(t)o(h)]

lim
h→0

P0(t +h)−P0(t)
h

=−λP0(t)− lim
h→0

P0(t)o(h)
h

(3.8)

Note that limh→0 P0(t)o(h) = P0(t) limh→0 o(h) = 0, and the left side of the equation is

the derivative of P0(t), so:

dP0(t)
dt

=−λP0(t) (3.9)

This differential equation has a well known solution:

P0(t) = ce−λ t (3.10)

It is not relevant for this work, but it can be proven that Pm(t) =
(λ t)m

m! e−λ t ;m = 0,1,2,3..,

which is the Poisson distribution and is the origin of the name of this kind of process [Rinne

2008].

The probability of no occurrence in an interval time [0, t], is equivalent to the probability

of occurrence after a time t, this is:

P(T1 > t) = P0(t) =
(λ t)0

0!
e−λ t = e−λ t (3.11)

Where T is time of the first occurrence. From this idea and using condition 3 we can

take the point t0 to be any moment, and then we can define the inter-arrival time Y between two



56 Chapter 3. EPIDEMICS IN COMPLEX NETWORKS AND STOCHASTIC PROCESSES

successive events, which also has a negative exponential probability distribution. This means

that the cumulative probability distribution and the expected value of Y are:

P(Y < t) =FY (t) = 1− e−λ t

E(Y ) =
1
λ

(3.12)

There also exist non-homogeneous Poisson processes where the independent increment

property condition is relaxed. For this cases the rate depends on time λ (t). We just need to be

careful because other processes, like renewal process that will be presented in next subsection,

also have rates that depend on time, but they are not necessarily non-homogeneous Poisson

processes.

3.1.4 Renewal processes and memory-less property

One way we can understand renewal processes is as a generalization of a Poisson process.

A renewal process is a counting process for which the inter-arrival times (even though they are

still independent identically distributed random variables) are not constrain to an exponential

distribution, as the Poisson process, and can be any arbitrary distribution [Mieghem 2006]. A

classical renewal processes is a failure replacement processes, where events occur when elements

of a system fail and are immediately replaced, like light bulbs or components of a circuit. We

call {T} a family of random variables that give the inter-event times for failure/replacement.

For instance, T1 will give the time τ1 for the first failure/replacement, and T2 will give a random

time τ2 for the second failure/replacement elapsed since τ1. In figure 7 we can see a schematic

representation of this process where N(t) are the total number of failures by time t.

If the distribution of {T} are negative exponential distribution then we recover the

Poisson process, which is the only renewal process with the Markov property, this is, a memory-

less property.

3.1.4.1 Markov assumption: How can we interpret the memory-less property?

Let us consider random variable X which gives the inter-event times of a renewal process.

Then the probability of the event happening in a time grater then t can be written as P(X > t). If

we consider two instant of time τ1 and τ2 with τ2 > τ1, and we want to know the conditional
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Figure 7 – Representation of a renewal process described by a {T} a family of random.

Source: Elaborated by the author.

probability of the event taking place in a time grater then τ2 given that the event will occur in a

time after τ1, we can write:

P(X > τ1 + τ2|X > τ1) =
P(X > τ1 + τ2 ∩X > t)

P(X > τ1)
(3.13)

But the P(X > t + s∩X > τ1) = P(X > τ1+τ2), because if τ2 > τ1 the only cases where

X > τ1 and X > τ1 + τ2 is when X > τ1 + τ2. Then we have:

P(X > τ1 + τ2|X > τ1) =
P(X > τ1 + τ2)

P(X > τ1)
(3.14)

The memory-less assumption is encoded in considering that P(X > τ1 + τ2) = P(X >

τ1)P(X > τ2). In this case, equation (3.14) will be:

P(X > τ1 + τ2|X > τ1) =
P(X > τ1 + τ2)

P(X > τ2)

P(X > τ1 + τ2|X > τ1) =
P(X > τ1)P(X > τ2)

P(X > τ1)

(3.15)

P(X > τ1 + τ2|X > τ1) = P(X > τ2) (3.16)
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Equation (3.16) means that the knowledge of the event nos happening until a time τ1,

does not influence the probability of waiting an additional τ2 time. This is the memory-less

property for renewal processes. If P(X > τ1 + τ2) = P(X > τ1)P(X > τ2) is not true then the

process will be non-Markovian and P(X > τ1 + τ2|X > τ1) will depend on τ2 and τ1.

The function P(X > τ1) is the complementary cumulative distribution function, also

called Reliability function, and can be computed as P(X > τ1) = 1−
∫

τ1
o P(X = t)dt = Fc

X(τ1).

So the condition of a renewal process having the Markov property is:

Fc
X(τ1 + τ2) = Fc

X(τ1)Fc
X(τ2) (3.17)

The only function that satisfies this property is the exponential function [Mieghem 2006].

So any other renewal process with an inter-event time distribution different from the exponential

distribution will be non-Markovian.

Now that we establish some fundamental aspects of stochastic processes, let us discuss

the combination of epidemic modeling and complex networks.

3.2 Epidemic Processes in Complex Networks

At the beginning of the last section 2.1 we highlighted a key limitation of homogeneously

mixed models, namely their failure to consider contact structures between individuals. At the end

of the 1990s the study of complex networks really took over with. As a result, novel epidemic

models emerged that utilized networks to incorporate the structural and contact properties of real

systems. This approach gained immense popularity in the study of epidemic processes, and new

methodologies continue to emerge constantly [Pastor-Satorras et al. 2015].

The general framework employed in studying epidemics in complex networks involves

considering a network comprising N individuals, represented by an adjacency matrix A, and an

epidemic process characterized by c compartments. At any given time t, the system’s state is

described by N random variables denoted as Xi(t), representing the state of node i and assuming

values from a state space corresponding to the disease compartments. For example, in the SIS

model, we can assign Xi(t) = 1 to indicate that node i is infected, while Xi(t) = 0 represents

node i being susceptible. For SIR model, we would just need a new state, and with the same

logic any number of compartments could be added. A key aspect of epidemic modeling involves
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utilizing Markov chain theory to analyze this framework. Under this assumption, transitions

between compartments occur according to a Poisson process [Pastor-Satorras et al. 2015] with

constant rates. In line with the notation used in the previous chapter, we denote the transmission

rate as σ and the recovery rate as γ .

Although the approach described above generates an exact model, it is very limited as

few exact results have been obtained. When considering additional compartments, non-Poisson

transition processes, or complex interactions such as the simultaneous occurrence of rumor

spreading and an epidemic spreading, the exact approach becomes impractical. Consequently,

two alternative approaches have gained considerable popularity in the study of epidemics on

networks.

The first approach involves mean-field approximations, which employ reductionist as-

sumptions to derive simplified models. These models are typically analyzed using deterministic

equations, aiming to extract relevant information about the overall system. The mean-field

approach provides a more analytical approach to studying these systems, despite still relying on

numerical methods. The second approach is based on stochastic simulations, utilizing numerical

techniques such as the Gillespie algorithm to simulate the epidemic process. Stochastic simula-

tions serve as valuable tools, particularly when exact analytical solutions are lacking. In many

cases, both approaches complement each other because, although both of them need numerical

methods, mean-field approach is a more analytical way to study this systems, and the simulations

base research occupies almost an experimental role.

These approaches are used with the main goal investigating how network structure may

affect parameters like epidemic spreading velocity and epidemic sizes. Also, for the SIS and SIR

models, it has been observed that as time approaches infinity (t → ∞), the order parameter (in

general the epidemic size) exhibits a second-order phase transition depending on the values of

the transmission and recovery rates. Typically, an effective transmission rate is utilized, denoted

as λ , which is defined as the ratio of the transmission rate (σ ) to the recovery rate (γ) in the

Markov approach. A critical value of the effective transmission rate λc serves as a boundary

separating two regions: an active region and an absorbing region. When the effective transmission

rate surpasses λc, a global pandemic unfolds. In the case of the SIS model, the active region

gives rise to an endemic steady state, where infected nodes persist indefinitely. For the SIR

model, this implies an epidemic that affects a significant portion of the population. A schematic

representation of this behavior can be found in Figure 8
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Figure 8 – Representation of the phase transition observed in epidemic processes in complex networks.
At the center, an image of the phase diagram is displayed, where the green region (λ < λc)
represents the absorbing phase and the orange region the active phase (λ > λc). The plots
around the phase diagram represent the dynamical behavior of the compartments for the SIS
model (top two images) and SIR model (bottom images).

In the subsequent part of this section we will explore some of the most relevant results

in the classical Markov approach. Our specific focus will be on understanding the various

techniques employed and the key results that arise from incorporating network complexity into

epidemic models. This discussion will serve as a foundation for the upcoming chapter, where we

will delve into non-Markovian models, building upon the concepts introduced in this section.

3.2.1 Mean-field approximation

3.2.1.1 Heterogeneous mean-field (HMF) approximation or Degree Based mean-field approach

The first work that used complex networks as a way to describe contact between indi-

viduals in an epidemic model was made by Romualdo Pastor-Satorras and Alessandro Vespig-

nani [Pastor-Satorras and Vespignani 2001] in 2001. In this paper they developed a mean-field

approximation to study a SIS process in networks constructed with the Watts Strogatz and

Barabási Albert models. Nowadays we call this approximation Heterogeneous mean-field ap-

proach (HMF), and has been widely used for different researches [Pastor-Satorras and Vespignani

2001, Morita 2016]

This approach is based in the assumption that all nodes with the same degree are
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statistically equivalent [Wang et al. 2016]. For this reason, this theoretical framework is also

called degree-based mean-field approach. It is very popular because of its applicability to a

diverse types of dynamical processes [Barrat, Barthélemy and Vespignani 2008]. For a SIS

process the primary magnitude used is ρ I
k(t), which is the fraction of nodes with degree k that

are infected at a specific time t. The evolution of the system is given by equation (3.18):

dρ I
k(t)
dt

=−γρ
I
k(t)+σ [1−ρ

I
k(t)]Θk(t) (3.18)

The parameter γ is the recovery rate, similar to the one described in section 2.1 , and σ

is the transmission rate for each contact between a susceptible and an infected individual. Also,

we define Θk as the probability that a node with degree k is linked to an infected node, and is

given by Θk = ∑
′
k P(k′|k)ρ I

k′(t), where P(k′|k) is the probability that a node with degree k points

to a node with degree k′. For uncorrelated networks P(k′|k) = k′P(k′)
⟨k⟩ . In this case Θk does not

depend on k anymore so we can just write Θ.

Equation (3.18) basically says that the rate of change of the fraction of infected individu-

als with the degree k depends on the fraction of infected nodes with degree k that recover, which

is expressed in the first term of the right side of the equation, and on the fraction of new infected

nodes with degree k, which is expressed in the second term of the right side of the equation. A

trick to find the threshold of for this approach is multiplying both sides by kP(k)/⟨k⟩, and then

summing over all values of k. By doing this we obtain:

∑
k

kP(k)
k

dρ I
k(t)
dt

=−γ ∑
k

kP(k)
k

ρ
I
k(t)+σΘk(t)∑

k

kP(k)
k

[1−ρ
I
k(t)] (3.19)

Simplifying the equation and noting that the left side is the derivative of Θ we can

express:

dΘ

dt
=−γΘ+

σΘ

⟨k⟩

(
⟨k2⟩−∑

k
k2

ρ
I
kkP(k)

)
(3.20)

If we consider ρ I
k goes to zero asymptotically then dΘ

dt ≈ Θ

(
σ

⟨k⟩
⟨k2⟩ − γ

)
. With this

linearization we can establish a threshold:

λ
HMF
c =

σ

γ
=

⟨k⟩
⟨k2⟩

(3.21)
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In the case of Scale-Free networks with an exponent ν ≤ 3, like the Barabási Albert

model described in 2.3.2, there is a vanishing epidemic threshold as N → ∞ as the second

moment of the probability distributions ⟨k2⟩ diverges.

The approach for the SIR model is nearly identical to the one described above for the SIS

model. However, in this case, we consider three different partial densities, each corresponding to

a specific compartment. These partial densities can be denoted as ρ I
k , ρR

k , and ρS
k , representing

the infected, recovered, and susceptible compartments, respectively. While we will not provide a

detailed derivation as we did for the SIS model, as mean-field approximations are not the primary

focus of this project, a comprehensive development of the first HMF approach for the SIR model

can be found the work of Moreno Y. and colleagues [Moreno, Pastor-Satorras and Vespignani

2001]. For the purpose of this discussion, we will only highlight the epidemic threshold which

coincides with the one found for the SIS model: λ HMF
c = σ

γ
= ⟨k⟩

⟨k2⟩ . However, an improvement

can be done for the SIR model in which it is possible to take into account that a vertex cannot

propagate the disease to the neighbor who originally infected it. With this consideration, a

correction is made for he probability distribution and a new critical value is found, which is:

λ
HMF
c =

σ

γ
=

⟨k⟩
⟨k2⟩−⟨k⟩

(3.22)

Again, for scale free networks with ν ≤ 3 this threshold has a vanishing value, and for

ν > 3 a finite value.

3.2.1.2 Quench mean-field (QMF) approximation or Individual Based mean-field approach

In 2008, another mean-field approach was proposed by Chakrabarti and collaborators

[Chakrabarti et al. 2008]. In this approach the reduction made was not focused on the structure of

hte network, as in the case of the HMF approach, but rather in the dynamical system. Specifically,

this method focuses on the Adjacency matrix A of the network, and is commonly called Quench

mean-field approach (QMF). In this case, it is used the variable ρi(t), which is the probability

that node i is infected at a time t. Using the same recovery and infection rate mentioned before

(γ and σ ) the evolution equation of this variable is given by (3.23) [Wang et al. 2016].

dρi(t)
dt

=−γρi(t)+σ [1−ρi(t)]
N

∑
j=1

Ai jρ j(t) (3.23)
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The first term of the right side of equation (3.23) is the probability of node i recovering

from the disease, and the second term is the probability of the node getting infected at time

t. Note that the second term vanishes for the matrix values which are equal to zero, which is

obvious as nodes are in risk of infection just by their neighbors.

Using this formulation we can make a stability analysis of the system. This can be done

by finding the signal of the Jacobian’s leading eigenvalue evaluated at the fixed pint. The Jacobian

matrix elements are given by:

Ji j =
∂ ρ̇i

∂ρ j
= Ai jσ(1−ρi)−δi j

(
γ +∑

k
Aikσρk

)
(3.24)

We can make a linearization for t → 0 where ρi → zero and obtain a matrix equation of

the form:

J = σA− γI (3.25)

Where I is the identity matrix with size N. From this equation the following threshold is

obtained:

λ
QMF
c =

σ

γ
=

1
ΛA

(3.26)

Where ΛA is the largest eigenvalue of the adjacency matrix A. For heterogeneous networks

with scale-free property with ν < 2.5 λ
QMF
c ≈ ⟨k⟩/⟨k2⟩ and for ν > 2.5 then λ

QMF
c ≈ 1/

√
kmax,

which in both cases indicates a vanishing threshold in the thermodynamic limit [Wang et al.

2016].

One important aspect of the QMF approach is that it diverges from the HMF result for

scale-free networks with ν > 3. For this cases the QMF still holds a vanishing threshold for

N → ∞, which is different from the results of HMF which finds a finite value of λc.

For the SIR model the QMF approach results in the same threshold value of the SIS

model λ
QMF
c = 1

ΛA
[Youssef and Scoglio 2011]. Again we will not detail the derivation of this

threshold value.
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3.2.2 Simulation focused approaches

As shown above, the HMF and QMF approach lead to different results for the threshold

values. While these approaches are undeniably valuable, it is essential to acknowledge that

they rely on approximations which can potentially overlook crucial details in more complex

scenarios. For this reason, the use of stochastic computational simulations has been of great

use [Pastor-Satorras et al. 2015].

One way to tackle this problem is using a discrete time Monte-Carlo simulation. In this

approach, random numbers are generated to determine the events that will occur in the next

time step. Although this method is straightforward to implement, continuous time models are

more commonly used.A popular approaches for continuous time is a Monte Carlo method called

Gillespie Algorithm (GA), which was originally proposed to perform a stochastic simulation of

chemical reaction systems with known reaction rates [Gillespie 1976]. The next subsection briefly

describes this algorithm and its application to epidemic processes following the framework of

Marian Boguñá and others in [Masuda and Rocha 2018].

3.2.2.1 Gillespie algorithm

Consider a collection of N statistically independent stochastic processes, each one with

its own rate λi. Ir operates by generating a sequence of events that specify, at each step of the

simulation, the time τ until the next event and which event i will occur. For the Markovian

approach, where all processes involved are Poisson processes, this can be accomplished using two

distributions: Π(i) for selecting the event and ψ(τ) for determining the timing of the next event.

These distributions are given by Π(i) = λi
N⟨λ ⟩ and ψ(τ) = N⟨λ ⟩e−N⟨λ ⟩τ , where ⟨λ ⟩= ∑

N
j=1 λ j.

This approach can be applied to epidemic process where transitions between com-

partments treated as the stochastic independent processes. In such case, we would define

⟨λ ⟩= σMSI(t)+ γNI(t), where MSI are the number of links between susceptible and infected

individuals, and NI the number of infected individuals. Using this average, we generate an expo-

nential time τ using ψ(τ), and then decide whether to perform a new infection with probability
σMSI
⟨λ ⟩ or a recovery with probability γNI

⟨λ ⟩ . If an infection is chosen, we select one of the existing

S-I links and randomly choose one of its ends to initiate the infection. On the other hand, if a

recovery is chosen, we randomly select an infected node for recovery.
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3.2.2.2 Finding the threshold value of the system

Considerable computational efforts have been dedicated to studying the threshold behav-

ior of epidemics on networks. As demonstrated, mean-field approaches can provide approxima-

tions of critical rate value. However, different methods can yield to varying results, and for more

complex models mean-field approximations turned out to be limited.

The simulation based approach to study threshold of the system focuses on calculating

the first and second moments of the order parameter of the system. For s SIS-like model, the

order parameter is given by the density of infected nodes at the steady state. The most basic

approach is calculated using an average of the fraction of infected nodes before reaching the

absorbing state or after reaching the endemic state. These averages are calculated after many

simulations on different networks. However, this basic method incurs a high computational cost.

To address this limitation, the quasi-stationary state analysis was developed [Ferreira, Castellano

and Pastor-Satorras 2012]. In this method, simulations are constrained to the active state by

replacing the system when the epidemic reaches the absorbing state. Essentially, during the

simulation there is a store of previous active states, and when the absorbing state (I = 0) is

reached, the system is replaced by one of the previous active state with a probability proportional

to the time the system was in that given configuration. With this technique the calculations of the

order parameter are not just more efficient but also more reliable for Markovian epidemics.

Once we have a method to obtain the first and second moments of the order parameter,

in the case of SIS-like models, the standard procedure involves studying the susceptibility of the

system [Ferreira, Castellano and Pastor-Satorras 2012]. The susceptibility is defined as follows:

χ = N
⟨ρ2⟩−⟨ρ⟩2

⟨ρ⟩
(3.27)

The specific magnitude of the susceptibility is not the primary focus; rather, our aim is to identify

the transition rate at which this measure reaches its maximum value, as it corresponds to the

critical threshold for sufficiently large systems [Ferreira, Castellano and Pastor-Satorras 2012].

For SIR-like processes the order parameter is the final size of the epidemic, this is, the

density of recovered nodes after the end of the epidemic [Pastor-Satorras et al. 2015]. For this

model, the calculation of the first and second moment are a little bit easier, and some times more

refined methods like the quasi-stationary state are not necessary [Shu et al. 2015].

In this case, it has been found that susceptibility is not a most reliable measure for



66 Chapter 3. EPIDEMICS IN COMPLEX NETWORKS AND STOCHASTIC PROCESSES

determining the critical transition rate. Typically, it provides higher transition rates compared

to those obtained from mean-field approximations. Instead, the vulnerability measure, which

is commonly used in identifying critical points in the equilibrium phase of magnetic systems,

has been demonstrated to be a more accurate measure for the SIR model [Shu et al. 2015]. The

vulnerability is defined as follows:

∆ =

√
⟨ρ2⟩−⟨ρ⟩2

⟨ρ⟩
(3.28)

Again, just like in the case of the susceptibility, in the critical transition rate λc the vulnerability

has a maximum value.

3.3 Summary

In this chapter we cover two main topics: stochastic processes and epidemics on networks.

The goal to cover this topics together in this chapter was because stochastic processes are a

fundamental tool needed to understand the models and methods used in epidemics on networks.

In section 3.1, we talked about Markov processes, Point processes, Counting processes, Poisson

processes, and Renewal processes, which are commonly used in constructing epidemic models.

We take spacial attention to the section 3.1.4.1, where we present what is the Markov assumption

for renewal processes, which is a concept that will be fundamental for the rest of the text.

In the rest of the chapter, in section 3.2 we present the main approaches, results and

concepts needed to study epidemics on networks. One of the most important results discussed is

the critical behavior of epidemics on networks. Models like SIS and SIR epidemic processes

in networks present critical behavior, where using a control parameter λ (in general associated

with the recovery and infection rate) we see two phase: an absorbing one where the disease does

not propagate in the system, and an active one where an epidemic outbreak is observed. This has

been studied with mean-field approaches, presented in section 3.2.1, and simulation approaches

3.2.2.

With this chapter, we have constructed the bases of this research field. Now we will dive

in the main topic of this text: Non-Markovian epidemic models. In chapters 4, we will present

the most popular approach to describe non-Markovian epidemic processes and the most relevant

literature in this area.
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CHAPTER

4
NON MARKOVIAN EPIDEMIC PROCESSES

IN COMPLEX NETWORKS

When studying complex phenomena, incorporating new features or details into our

models can lead to more realistic conclusions. However, this comes at the cost of increasing

the difficulty of studying such models. It is essential, therefore, to always question why we are

including new characteristics that make our models more intricate. In section 4.1, we address this

question for non-Markovian epidemic processes. We will establish the importance of working

with this kinds of models and why its a feature that cannot be ignore.

Next, we will present the standard approach to non-Markovian epidemic processes in

4.2. This step is fundamental as the term “non-Markovian” can encompass a wide range of

approaches, and is fundamental to understand where is the dependence of past states for this

systems.

Finally, in section 4.3, we will cover the main literature developed in this field, first in

a historical point of views, and then focus on different approaches and highlighting the most

important results.
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4.1 Why bother with non-markovianity in epidemic pro-

cesses?

A lot of research in epidemic modeling is centered on Markovian processes, mainly be-

cause this simplification allowed researchers to develop very useful and relatively straightforward

models. Unfortunately, many times human activities are not well characterized by Markovian

processes and are better described by heavy-tailed inter-event time distribution [Gonzalez, Hi-

dalgo and Barabasi 2008, Barabási 2005, Brockmann, Hufnagel and Geisel 2006]. Additionally,

diseases frequently exhibit incubation periods with strongly non-exponential tails [Blythe and

Anderson 1988]. As infectious diseases evolve and interact within the host, it becomes crucial

to adopt approaches that account for aging in the infection or recovery process, a characteristic

commonly observed in real infectoues diseases.

Adopting a memory-less model, while convenient, can be a big limitation in compre-

hending real systems. It has been shown that relevant biases arise when using a Markovian model

when the actual phenomena are better described by a non-Markovian approach [Kenah 2010].

Moreover, non-Markovian processes are not exclusive to epidemics; they have been

identified in various social and biological modeling domains. For instance, models with non-

Markovian characteristics have been studied for gen self-regulation and cell processes [Yin, Liu

and Wen 2021, Ebadi et al. 2016], social systems and voting models [Chen et al. 2020, Peralta,

Khalil and Toral 2020], heart and Parkinson-related research [Yulmetyev et al. 2005, Panischev,

Yulmetyev and Demin 2005], and even queuing theory [Kella and Stadje 2006]. This wealth of

evidence across diverse fields strongly suggests that epidemics are unlikely to be an exception,

reinforcing the need to incorporate non-Markovian elements into epidemic models.

4.2 The standard non-Markovian approach for epidemic

in complex networks: the application of renewal pro-

cesses

In the previous section 3.2 we explored the Markovian approach to epidemic modeling,

where infection and recovery are treated as independent Poisson processes. The theorem on

Poisson processes, as described in the book "Performance Analysis of Communications Networks
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and Systems" [Mieghem 2006] on page 146, establishes that if exactly one event of a Poisson

process occurs in an interval [0, t], then the time of occurrence of this event is uniformly

distributed. In essence, this theorem indicates that Poisson processes are the “most” random

process [Mieghem and Liu 2019]. A generalization of this formulation involves the use of

renewal theory, which is briefly described in section 3.1.4. In this framework, events are still

independent of each other, but the interarrival time of events can follow any distribution, including

distributions different from the exponential distribution [Mieghem and Liu 2019]. As shown

in section 3.1.4.1, only the exponential distribution exhibits the memoryless property, making

any renewal process with a general distribution a non-Markovian process. While not all non-

Markovian approaches for modeling epidemics on networks explicitly employ renewal theory,

most of them can be reduced to this approach as they treat the time of recovery and infection as

independent processes with general distributions.

Until now, we have have mentioned that the processes involved in non-Markovian

epidemics have general distributions, but we have not clarify what exactly does this mean. To

address this, let us introduce the notions of infection age and activation age, applicable to both

SIS and SIR models. The infection age of a node refers to the time elapsed since the node was

initially infected. Similarly, the activation age represents the elapsed time since an active link

was established, i.e., when one of two susceptible nodes connected gets infected. In the context

of a Markovian epidemic process, these age concepts hold little relevance since the probabilities

of recovery or disease transmission remain independent of these ages. However, in the case of

non-Markovian processes, the time elapsed since a node’s infection or since the establishment of

an active link generally has an impact on the probability of future events.

To gain a deeper understanding of these concepts, let us introduce two random variables

associated with the renewal processes: Tr and Tin f , which describe the interarrival times of

recovery and infection. The random variable Tr will give us a random time τr when an infected

node will spontaneously recovers in the infinitesimal time interval (τr, τr + dt). On the other

hand, Tin f provides a random time τin f at which an active link will generate a new infected node

in the infinitesimal time interval (τin f , τin f +dt). These variables follow probability distributions

ψrec(τr) and ψin f (τin). To recover the Markovian assumption we just have to consider this distri-

bution as negative exponential distributions with their respective constant rates. In the general

case, ψrec(τr) and ψin f (τin) are any probability distributions, which generate a dependence on

the infection or activation age. We can interpret this as an “aging” of the probability of transition
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between states.

It is essential to emphasize that in this approach, the non-Markovian characteristic does

not rely explicitly on the complete past states of the entire system (i.e., the history of infections

and recoveries of all nodes). Rather, the dependency on past states occurs within each individual

recovery and infection process. As time elapses, the disease ages within each individual, and this

aging process significantly impacts the probability of future events for that particular individual.

Having now established the standard approach to non-Markovian epidemic processes in

complex networks, we will proceed with a brief review of the primary works in this field.

4.3 Literature review of non-Markovian epidemic processes:

approaches and main results

From a historical perspective, the investigation of memory effects in propagation phe-

nomena has been a topic of interest for several decades. The first models exploring this concept

emerged in the late 20th century and early 2000s [Yang 1972, Yulmetyev et al. 2004]. Notably,

Vasquez and colleagues conducted pioneering research on the exchange of emails among individ-

uals within a university, employing fat-tailed distributions to describe the probability distribution

of inter-event times [Vazquez et al. 2007]. The presence of non-Poisson inter-event times revealed

longer prevalence decay times compared to those obtained with the standard Poisson process.

As the limitations of the Markovian approximation in understanding propagation dy-

namics became apparent in the first decade of the new century, there was a significant surge in

research on non-Markovian epidemics applied to network models, particularly during the 2010s.

Among these early works, a notable article by P. Van Mieghem and R. van de Bovenkamp stood

out. They modeled and simulated a non-Markovian SIS propagation with a Weibull infection

process and discovered that the characteristic threshold significantly changed with the shape

parameter of the distribution [Mieghem and Bovenkamp 2013]. Specifically, when the shape

parameter α increased, the threshold of the system also increased, and the critical transition

rate tended to zero as α decreased. In the same year, these two researchers, along with R. Cator,

developed an N-intertwined mean-field approximation (NIMFA), which is a variation of the

QMF approach, for the SIS process with Weibull infection [Cator, Bovenkamp and Mieghem

2013]. This mean-field approximation provided a first-order estimation of the threshold value for
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large networks. This threshold is:

λ
NIMFA
c =

1
Γ(1+ 1

α
)[Γ(α +1)]1/α

1

Λ
1/α

A

(4.1)

Where ΛA is the largest eigenvalue of the adjacency matrix.

Another significant contribution was made by M. Boguñá and colleagues in 2014 [Boguñá

et al. 2014]. This noteworthy work introduced a simple method to simulate non-Markovian

processes on networks using a generalization of the Gillespie Algorithm. They also highlighted

the dramatic effect of memory in SIS propagation not just in the threshold, but also in the size

of the epidemic which increases with the shape parameter when using a Weibull transmission

process.

From this point forward, it was clear that the non-Markovian process was not just a

correction of the traditional Markov assumption, but needed to be fully understood. For the rest

of this subsection, we will leave this historical aspect and focus on the approaches and main

results for the research developed in the last 10 years.

4.3.1 Analytical approaches and mean-field approximations

The analytical approaches for studying Markov processes are already quite limited and

it is natural that the scope of non-Markovian models is even more constrained. Consequently,

some of the analytically solvable models have been focused on simpler contagion dynamics, like

the SI model. Specifically, I.Kiss and colleagues worked on a solvable approach to the SI model

in infinite systems, considering general inter-event time distributions. They discovered that the

late-time dynamics exhibit a slower convergence towards a fully infected state, contrasting the

exponential decay observed in Poisson-like processes [Jo et al. 2014].

A pairwise model for the non-Markovian epidemic also was proposed with an analytical

threshold-like quantity and its relation with the final epidemic size [Kiss, Röst and Vizi 2015].

Furthermore, research that shows functional limit theorems for non-Markovian epidemic models

also was developed [Pang and Pardoux 2020].

Similarly to the traditional Markov processes, mean-field approximations serve as a

crucial tool for understanding the dynamics of epidemics with memory. As previously mentioned,

the work by Piet Van Mieghem, Bovenkamp, and E. Cator ?? explored a generalized SIS model
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with Weibull infection employing a NIMFA approach to determine a threshold value, described in

equation (4.1). Another significant study by N. Sherborne, J. Miller, and colleagues demonstrated

the equivalence between an edge-based compartmental model and message-passing models for

general non-Markovian infection and recovery in a SIR model on regular networks [Sherborne

et al. 2016]

More recently, L. Qiang and P. Van Mieghem made two important contributions regarding

mean-field approaches and threshold values of the SIS non-Markovian process. The first one in

2018, proved the existence of an upper bound for the epidemic threshold of a SIS process with

Weibull infection [Liu and Mieghem 2018], being this bound:

λc < λ
UB
c =

1
ΛA +1

(4.2)

Subsequently a NIMFA mean field approach to find explicit threshold for SIS epidemics with

Weibull and Gamma infection where found [Mieghem and Liu 2019]. For the Weibull infection

the critical value was:

λc =
1

Γ(1+ 1
α
)Φ−1( 1

1+ΛA;α )
(4.3)

Where Φ is the generating function of the random variable with Weibull probability

distribution. Through their investigation, they proved that by considering the first term of the

Lagrange series, the threshold previously identified in [Cator, Bovenkamp and Mieghem 2013]

and referenced in (4.1) serves as a reliable approximation, particularly for large spectral radii ΛA

and especially when α < 1.

Mean field approximations also have been used to study the transient state and steady

state of the non-Markovian SIS model [Feng et al. 2019].

4.3.2 Simulations and numerical approaches

In response to the analytical limitations, many researchers have directed their efforts

towards simulation-centered research. There have been two main approaches on how to accurately

simulate non-Markovian processes: non-Markovian Gillespie algorithm, and an event-driven

simulation. The first one, is a modification of a Gillespie algorithm, originally proposed for

stochastic simulation of chemical reactions [Gillespie 1976], and widely used in epidemic
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modeling. This approach has been successfully used to simulate SIS, SIR, and even SEIS

propagation models [Boguñá et al. 2014, Tomovski, Basnarkov and Abazi 2021, Kiss, Miller and

Simon 2017, Masuda and Rocha 2018].

The second popular simulation strategy, the event driven approach, has the advantage of

being very efficient and versatile to different distributions and transmission rules [Kiss, Miller

and Simon 2017]. Event-driven can accurately produce stochastic epidemic SIR propagation

models [Cuypere et al. 2013, Kiss, Miller and Simon 2017], and other algorithms like rejection

based event-driven have been proposed to further improve these methods [Grossmann, Bortolussi

and Wolf 2020].

Additionally, data analysis has also been a fundamental branch of non-Markovian re-

search, especially to validate the analytical and numerical results. The increase of available data

due to the COVID-19 pandemic has contributed to this numerical analysis, mainly studying

the correspondence of existing models and real data [Lauro et al. 2022, Lu et al. 2022]. Other

epidemics, like the ones caused by food-to-mouth diseases or Zika viruses, also have been

studied under the non-Markovian lens [Lauro et al. 2022, Ferdousi et al. 2019].

4.3.3 Comparison between Markov and non-Markov processes

As there is a better knowledge of epidemics with Markov assumption and relatively

small literature on non-Markovianity, comparisons between these two approaches turned out to

be a necessity. Some of the most interesting results in epidemic processes with memory have

emerged from research that tries to connect Markovian processes with non-Markovian ones. We

can highlight an article by M.Boguñá and colleagues who introduced a formalism to reduce

non-Markovian processes to Markovian processes and proved that all non-Markovian aspects can

be captured in a single parameter, the effective infection rate [Starnini, Gleeson and ná 2017].

Another relevant work already mentioned in 4.3.1, develops a mean-field theory for an

SIS model and establishes an equivalence between non-Markovian and Markovian processes

that depends on a specific edge activation mechanism [Feng et al. 2019]. There are also more

particular researches like comparing the endemic behavior of a SEIS non-Markovian dynamic

with the known SIS Markovian [Tomovski, Basnarkov and Abazi 2021], and comparisons in

sparse network based on a regular network [Kuga and Tanimoto 2022].
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4.3.4 Future problems in the field

As shown from the cited research, the interest in non-Markovian epidemic processes

has been increasing over time. Nevertheless, several questions remain unanswered. Exploring

non-Markovian epidemics in various network models, like modular networks, dynamic networks

and multilayer networks is still an open challenge. Also, more complex disease models, such as

SIRS or SEIR models, are an ongoing pursuit.

An example of such research can be seen in the works conducted by L. Han and colleagues

in 2023. They proposed a general formalism to investigate non-Markovian dynamics in non-

Markovian temporal networks [Han et al. 2023]. This study holds great significance as it

recognizes that the memory effects are not limited to the infection or recovery process alone, but

are also characteristics of human interactions. By incorporating these additional factors, a more

comprehensive understanding of non-Markovian epidemics can be attained.

4.4 Summary

We started this chapter by answering two fundamental questions: why study non-

Markovian epidemic models? What is the standard approach to this kind of model? For the

first question, we mentioned some evidence that sustains that in many cases human activity and

disease incubation times are not well described by Markovian models. Moreover, considering

the non-Markovian effect has been proven to have a drastic influence on the resulting epidemic,

proving that non-Markovianity is not just a simple correction of the Markovian case. For the

second question, we mentioned that the most popular approach for non-Markovian epidemics

is considering infection, or recovery, as renewal processes with general distributions. With this

lens, the individual suffers and aging in which the probability of infecting or recovering might

be influenced by the time an individual has been in a certain state (recovered or infected). The

dependence on past states, characteristic of non-Markovian processes, is encoded in this aging

process.

In the rest of the chapter, we mentioned some of the most important literature in the field.

Spatial attention is dedicated to the works of P. Van Mieghem and collaborators and Marian

Boguñá and colleagues who have made the most influential research articles on the topic. Now

that we presented why non-Markovian epidemics are relevant, and what is the standard approach

to study them, we will present some of the most relevant results of this research project in chapter
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5 and chapter 6
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CHAPTER

5
NON-MARKOVIAN EPIDEMIC PROCESS

WITH WEIBULL INFECTION IN DIFFERENT

NETWORK TOPOLOGIES

In section 4.2 of the last chapter we described the standard approach for non-Markovian

epidemic processes in complex networks. For the first section of this chapter 5.1 we will discuss

a specific case of this approach, the non-Markovian epidemic process with Weibull infection. We

present the interpretation of the aging process in this kind of non-Markovian epidemic. After

this, in section 5.2, we cover the simulation methods used in this work for both generating the

networks and executing the stochastic simulations.

Section 5.3 shows our results on the SIS non-Markovian epidemic process with Weibull

infection in three different network models: an ER model, which generates random regular

networks, a BA model, which generates scale-free networks and a WS model which produces

networks with the small world property. We show some general results to understand the effect

of the shape parameter of non-Markovian epidemics on these systems, then proceed to find the

critical transition rate using the susceptibility of the system in section 5.3.1, and finally compare

the results with the mean-field approximations of the literature. The same results are shown for

the SIR non-Markovian epidemic process with Weibull infection in section 5.4 and 5.4.1.
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5.1 Non-Markovian Epidemic process with Weibull infec-

tion

In section 4.2, we discussed the standard approach to non-Markovian epidemic modeling.

The fundamental idea is to describe the infection and recovery as renewal processes. In the case

of the SIR and SIS model these means:

∙ Recovery: will be described by Tr, a random variable that describes the interarrival times

of recovery. For an infected node, Tr will return a random times τr at which the node will

spontaneously recover, and will be given by the probability distribution ψrec(τr).

∙ Infection: for every active link (SI), the random variable Tin f will return a random time

τin f at which the susceptible node of the active link will get infected. These time follows

probability distributions ψin f (τin f ).

As stated in section 3.1.4.1, if the probability distribution of the renewal process is a

negative exponential distribution we recover the Poisson process. For all renewal processes with

probability distribution different than an exponential distribution condition (3.17) is not held,

and consequently the process does not hold the Markov property.

For the case of non-Markovian epidemic processes the infection age, the time since a

node was infected, and activation age, the time since an active link was formed, will affect the

probability of recovery and infection. This characteristic is understood as an aging process.

The focus of this project is the non-Markovian epidemic process with Weibull infection.

As we saw in the literature review in section 4.3 this is one of the most popular non-Markovian

processes, and is given by an infection described by a renewal Weibull process, and a Poisson

recovery process. This choice is convenient as the Weibull distribution is very versatile and

maintaining the recovery as the known Poisson process reduces the complexity of the model.

The probability distribution of the recovery process is the negative exponential (5.1)

ψrec(τr) = e−γτr (5.1)

Where γ is the recovery rate. On the other hand, the probability distribution of the

infection process is the Weibull distribution, expressed in equation 5.2 and has an expected value
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given in equation 5.3 [Rinne 2008].

ψin f (τin f ) =
α

β

(
τin f

β

)α−1

e−
τin f

β

α

(5.2)

E[τin f ] = βΓ

(
1+

1
α

)
(5.3)

The parameter α is called the shape parameter, β is called the scale parameter, and Γ

is the gamma function. In general β is left as a constant parameter, as α is the responsible of

changing the general behavior of the system.

One of the most interesting characteristics of this distribution is how the shape parameter

can change the behavior of the function. We can see in figure 9 that there are three main behaviors.

∙ For α = 1 we retrieve an exponential distribution, this is especially important as it can be

used as a base for comparing a Markovian and non-Markovian process.

∙ For α < 1 the distribution takes the form of a power law distribution with a heavy tail

behavior. There are no extreme values, like maximum and minimum.

∙ Finally, for α > 1 the function rises and then falls, creating a maximum value. For this

case, we can divide the system into two sub-cases: if α < 2 then there is just one inflection

point making the function go from a concave to a convex form, and for α > 2 the function

has two inflection points making the function going from concave to convex and then

returning to concave.

.

This description doesn’t give us a physical interpretation of the Weibull infection, and

we have not understood where is the aging mentioned before. To understand this we may define

the survival probability Ψin f (τ), also called a reliability function or complementary cumulative

distribution function (CCDFF). Ψin f (τ) is the probability that a susceptible node will not get

infected before a time τ . This probability can be computed as follows:

Ψin f (τ) =
∫ +∞

τ

ψin f (τ
′)dτ

′

Ψin f (τ) = e−τα

(5.4)
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Figure 9 – Weibull probability distribution for different values of shape parameter. In a) we display
distributions with α < 1. For b), distributions with α > 1 are shown. Both a) and b) also
display the Markov case as compression in a dashed purple line. For all cases β = 1.

Source: Elaborated by the author.

From this quantity, we can also define the hazard rate of the distribution function or in

the approach of Boguñá and colleagues [Boguñá et al. 2014] the instantaneous transition rate:

λ (τ) =
ψin f (τ)

Ψin f (τ)
(5.5)

In figure 10 we can observe the hazard rate behavior for different values of α .

Figure 10 – Hazard rate of the Weibull distribution for different values of shape parameter. In a) we
display distributions with α < 1. For b), distributions with α > 1 are shown. Both a) and b)
also display the Markov case as compression in a dashed purple line. For all cases β = 1.

Source: Elaborated by the author.

This hazard rate can help to interpret the Weibull distribution as it works like an in-

stantaneous infection rate. It is important to note that, although we can define this hazard rate,
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using a Weibull infection process is not the same as considering a heterogeneous exponential

distribution with a time-dependent infection rate. The interpretation of the Weibull infection

process is related to an aging process that depends on the value of the shape parameter [Rinne

2008]. Where does this aging come from? In simple words, in the classical Markov approach the

fact that an active edge has not come to an infection until a time τ does not affect the probability

of infection happening in the future (t > τ), so the probability of infecting a neighbor in the

next 5 units of time is independent if the infected individual has been in this state for 1, 10 or

1000 units of time. Contrary to this, when considering non-exponential distributions, there is a

dependency on past times, so the fact that the infection has not happened until a certain time

will alter the probability of future infections. This generates an aging process, as the state age

increases the probability of infection may increase or decrease depending on the shape parameter

α . When α < 1 there is a negative aging process where the hazard rate follows a power law

distribution, so the probability of infection is high for early age times (τin f ) and gets smaller as

time passes. In the case where α = 1 there is no aging and the transition rate is constant, and we

recover the classical Markov process with exponential distribution. Lastly, for α > 1 there is a

positive aging process where the hazard rate is low at early times, and gets higher as time passes,

indicating that as more time passes the the probability of infection increases.

Another important measure that helps us capture the general behavior of the system is

the effective transmission rate as the rate [Starnini, Gleeson and ná 2017], which is the ratio

between the average recovery time and the average infection time λe f f = ⟨τrec⟩/⟨τin f ⟩. This

quantity is useful as it can be measured in real epidemic processes, and can be used to compare

with traditional Markov processes where this effective rate is the ratio between the constant

infection and recovery rates. In this sense, we choose the shape parameter and effective rate and

calculate the scale parameter β as a dependent variable given by β = ⟨τrec⟩
λe f f Γ(1+ 1

α
)
. For this case,

without loss of generality we can consider a ⟨τrec⟩= 1.

5.2 Simulation algorithm

Before diving into the main results of this section, let us first talk about the simulation

algorithms used to obtain the results presented.

One of the most popular approaches to simulate Markovian stochastic processes is the

Gillespie algorithm (GA), which was originally proposed to perform a stochastic simulation
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of chemical reaction systems with known reaction rates [Gillespie 1976]. In particular, this

algorithm can be used to simulate epidemic processes on networks. The algorithm randomly

chooses a specific event type (infection, recovery, etc), and randomly generates the time τ when

this event will occur, after each step we update the system. For a Markovian epidemic process,

the time τ is generated by an exponential inter-event distribution.

This algorithm can be adapted to accurately simulate non-Markovian processes [Masuda

and Rocha 2018, Boguñá et al. 2014]. The main difference is that in this approach, we don’t

choose an event type, like infection or recovery, but we consider each infected node and active link

as an independent event. This assumption is necessary, as the transition rates in non-Markovian

processes are not constant.

This non-Markovian Gillespie algorithm, as presented in [Boguñá et al. 2014], was

tested and accurately produced epidemic processes. Unfortunately, this simulation is very time-

consuming.

5.2.1 Event driven non-Markovian simulation

This algorithm is Gillespie-style, but the main advantage of this approach is that we avoid

the slow step of finding which node becomes infected at each time step. Another interesting

aspect is that the transmission and recovery rule can be any general distribution. This event-driven

algorithm was taken from [Kiss, Miller and Simon 2017], which has its own Python library

called EoN.

The base idea of the algorithm is the use of a priority queues, which is a priority structure

that allows efficient addition and removal of events. The idea is: we give each event a time that

depends on the inter-event probability distribution, and attach this event and its corresponding

time to the priority queue. The earliest event in the queue is executed and then we add new

possible events. For example, in the SIS model, if the earliest event is the recovery of a node,

after the execution of the event we put in the priority queue all activation links between the

new susceptible node and its infected neighbor. The author of these algorithms called them fast

non-Markov SIS and fast non-Markov SIR [Kiss, Miller and Simon 2017], so we will refer to

them with these names from now on.

As we mention, we will consider a Weibull infection process and Poisson recovery.

Following this fast non-Markov algorithms, the rules that generate the random times for each
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process come from these two distributions.

5.3 Non-Markovian SIS process with Weibull infection

We consider a SIS non-Markovian propagation epidemic with a Weibull infection process

and a Poisson recovery process. The simulations were executed using the event-driven algorithm

presented in the previous section 5.2.1, and the networks were generated using the networkx

python library. First, we will show the classic dynamical curves of infected and susceptible

individuals for different values of α as a function of time. This is just to have a general view of

how the shape parameter might alter the evolution of a disease.

We consider 3 different networks: a random Erdős and Rényi network, a Watts Strogatz

network with small world characteristics, and a scale-free network generated with the Barabási

Albert method. All networks have N = 103 nodes and an approximate average degree of 10. For

the BA network, we used m = 5 to approximate the average degree to 10, and for the WS we

used the parameter ξ = 0.05 to guarantee the small world characteristic as explained in 2.3.3.

For these initial simulations, we took three values of α = (0.5,1,1.5), an effective

transition rate of 0.75 and we establish γ = 1. Results are shown in figure 11.

Figure 11 – Stochastic simulation of a SIS process with a Weibull infection. The fraction of infected
individuals is shown in a) for Erdős and Rényi network, b) for scale-free networks, and c)
a Watts Strogatz networks. The fraction of susceptible individuals is shown in d) for Erdős
and Rényi network, e) for Albert Barabási networks, and f) a Watts Strogatz networks. All
networks have N = 1000 nodes, and ⟨k⟩= 10.

Source: Elaborated by the author.
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All curves follow the characteristic behavior of a SIS propagation with a transition rate

over the critical transition rate: increasing the total number of infected nodes until the system

reaches a steady state with i varying around a mean value. However, for all three network

classes, the increasing value of the shape parameter results in a smaller fraction of total infected

individuals. Also, the time until this steady state is reached appears to be shorter for smaller

values of α .

This analysis is very illustrative, but it’s not very useful, as it is a very specific case. To

have a more general idea of how the shape parameter affects the epidemic processes we construct

a prevalence versus effective rate curve. As mentioned in section 2.1.1 the prevalence ρ in a

SIS process is given by the fraction of infected individuals at the steady state. We run extensive

simulations for values of λe f f between (0,1) and calculated the average prevalence. This process

was performed by different values of α . The resulting curve is presented in figure 12.

From these plots, it is evident that the shape parameter can drastically change the outcome

of an epidemic process, no matter the network class in which the process takes place. In general,

we see that the prevalence tends to increase as α decreases. For small values of α we observe

epidemics that contaminate a big part of the population, even for small values of the effective

rate. On the other hand, for α > 1 the effective rate must be considerably large to reach a relevant

fraction of infected individuals.

This behavior can be explained by the idea of aging inside the infected individuals. For

α < 1 early infections are prioritized as the more time a node is infected smaller the probability of

transmitting the disease to its neighbors. For this reason even for smaller effective transition rates,

which means that the average recovery times are much smaller compared to average infection

times, the early infection is common enough that the propagation reaches more individuals.

For α > 1 we the positive aging in which more time a node is infected higher the chance of

transmitting the disease. For this reason, larger effective rates, which imply in larger average

recovery time compared to average infection times, are needed to have an epidemic outbreak.

So far we have just stated qualitative observations, but one quantitative aspect that is of

great interest is the change in the characteristic threshold of the SIS processes.
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Figure 12 – Curves of average prevalence versus effective (λe f f ) for a SIS process with Weibull infection,
each color corresponds to a shape parameter α between the interval [0.4,5]. All networks
have N = 1000 nodes and an average degree ⟨k⟩= 10. In a) the simulation is performed on
an Erdős and Rényi network, b) on a Scale-free network, and c) on a Watts Strogatz network.

5.3.1 Critical transition for the SIS non-Markovian epidemic pro-

cesses.

In section 3.2.2.2 we talked about numerical methods for estimating the critical effective

transition rate for Markovian epidemic processes. The most popular and in general adequate

approach for a SIS process is using the quasi-stationary analysis. Unfortunately, there still isn’t a
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direct conversion of this analysis for general infection distributions. In principle, this should not

represent a big challenge, but as it is not the main focus of this project we used the more “brute

force” method. In this case, we made extensive simulations and store the prevalence values for

those simulations that reached the steady state or before reaching the absorbing state (i = 0).

With these prevalence values we calculate the dynamical susceptibility:

χ = N
⟨ρ2⟩−⟨ρ⟩2

⟨ρ⟩
(5.6)

For the critical effective transition rate, the susceptibility takes a maximum value.

Based on the works of P. Van Mieghem and his collaborators [Cator, Bovenkamp and

Mieghem 2013], we expect that the critical effective rate for this non-Makrovian SIS process

with Weibull infection presents the same behavior as the Markovian SIS process for heteroge-

neous and homogeneous networks. In other words, for the BA network which is scale-free and

heterogeneous, we expect a vanishing threshold when the system size is increased. On the other

hand, for the homogeneous networks, ER and WS the critical value should not vanish.

To verify this behavior we run extensive simulations in networks with sizes from N = 102

to N = 5x103 and for different values of shape parameters and effective transition rate for all the

three network models.

In figures 13, 14 and 15 we show the susceptibility (5.6) of simulations performed in the

ER networks, BA networks, and WS networks, respectively, for different network sizes, effective

transition rates, and shape parameter. Each value of the susceptibility is calculated using the

prevalence values of an average of 100 to 500 simulations in 200 to 300 networks, depending on

the network’s size.

In figures 13, 14 and 15 we can observe the peak behavior expected for the susceptibility.

This peak indicates a numerical approximation of the critical effective transition rate. Note that

for N = 102 the peaks are not as well defined as in the other sizes, especially for smaller values

of α . Also, for the WS and ER networks, there are fluctuations for the bigger sizes N = 2×103

and N = 5×103, but the peak still is well defined.

From this susceptibility analysis, we can plot the critical transition rate as a function of

the shape parameters. These values are shown in figure 16.

The ER network and WS are homogeneous networks, a characteristic of this kind of
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Figure 13 – Susceptibility χ as a function of the effective transition rate λe f f in log scale for Erdős and
Rényi networks. Each plot corresponds to a different shape parameter α , indicated at the top,
and each color is associated with a different network size in the interval [N = 102,N = 5x103].

Source: Elaborated by the author.

Figure 14 – Susceptibility χ as a function of the effective transition rate λe f f in log scale for Barabási
Albert networks. Each plot corresponds to a different shape parameter α , indicated at the top,
and each color is associated with a different network size in the interval [N = 102,N = 5x103].

Source: Elaborated by the author.
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Figure 15 – Susceptibility χ as a function of the effective transition rate λe f f in log scale for Watts Strogatz
networks. Each plot corresponds to a different shape parameter α , indicated at the top, and
each color is associated with a different network size in the interval [N = 102,N = 5x103].

Source: Elaborated by the author.

network is that λc is approximately the same independent of the size of the system. This can be

observed in figure 16a and 16c where each curves that represents different sizes almost overlap.

The major out-liner for both cases is N = 102 where as we discussed the peak values are less

defined. On the other hand, for the BA network which is heterogeneous, we know critical rate

vanishes in the thermodynamic limit. This also is observed as the critical values decrease as the

size of the system increases.

Now let us compare our findings to the models and mean-field approaches described in

section 4.3.1. From this point forward we will just focus on bigger networks, as they are the ones

with better-defined peaks.

We can compare the critical rate found numerically through the susceptibility analysis

λ
χ
c with quantities described in section 3.2.2.2: the NIMFA mean field approximation λ NIMFA

c

and the upper bound λUB
c for SIS epidemic threshold, both described by P. Van Meighen and

colleagues [Mieghem and Liu 2019, Cator, Bovenkamp and Mieghem 2013, Liu and Mieghem
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Figure 16 – Critical effective transition rate as a function of the shape parameter α for different network
sizes and models for a SIS epidemic process. In a) critical rates for ER model, in b) for the
BA model, and in c) a WS model.

Source: Elaborated by the author.

2018]. These expressions are written in equation (5.8) and (5.7) to have them at hand.

λc < λ
UB
c =

1
ln(ΛA +1)

(5.7)
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λ
NIMFA
c =

1
Γ(1+ 1

α
)[Γ(α +1)]1/α

1

Λ
1/α

A

(5.8)

In figure 17 we compare these three quantities for the three networks models ER, BA,

and WS for N = 103,2×103,5×103.

Figure 17 – Compression of the critical effective rate λc calculated with the susceptibility analysis with
the NIMFA approximation λ NIMFA

c and the upper bound λUB
c described in section 4.3.1. Each

plot correspond to a different size and network model, stated in the title above of each image.

Source: Elaborated by the author.

For the ER networks, in the first row of the plot in figure 17, we see that the numerical

values found are very close to the NIMFA mean field approximation for almost all values of

α . For α = 2 and α = 5 the numerical approximation is higher than the mean-field approach.

Also, as N increases these quantities coincide even more, which was expected as the mean-

field approximation works better for bigger systems [Cator, Bovenkamp and Mieghem 2013].

Additionally, the λ
χ
c found are consistently bellow the upper bound λUB

c .

For the BA network, the calculated critical rate is in general above the NIMFA approxi-
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mation but follows the general behavior of the function. For N = 5000 the two values start to get

closer, so we expect that for bigger systems the threshold would coincide. On the other hand, the

upper bound λUB
c still works well.

In the case of WS networks the numeral approximation is also above the NIMFA

approximation. However, in this case, the gap does not seem to be getting smaller as the size

increases. The NIMFA approximation for WS networks is almost identical to the ER networks,

because they are both homogeneous networks, and the calculation of the largest eigenvalue is

directly related to the probability distribution, similar for both models. The WS network is a

homogeneous network with high clustering and a small average path length. It has been proven

that for homogeneous networks clustering may inhibit the epidemic and even can increase the

critical rate [Song, Song and Jiang 2017].

To understand how this affects the compression between λ
χ
c and λ NIMFA

c we must

remember some properties of the WS network. If ξ = 1 the WS network produces a random

regular network, like the ER model, and as we increase ξ the clustering increases. In figure 18

we compare the prevalence vs effective rate λe f f for WS networks with different values of ξ .

Figure 18 – Prevalence curves for a SIS epidemic process as a function of the effective transition rate λ in
a Watts Strogatz model with different values of ξ .

Source: Elaborated by the author.

As ξ decreases, and clustering increases, we see that the critical rate increases. This

clustering is lost in the NIMFA approximation so is expected that the mean-field approach is a

little smaller than the values found with the numerical method.

Lastly, we will compare the there models with each other. In figure 19 we see a plot for

N = 5×103 that compares the critical rate found for the 3 models.
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Figure 19 – Compression of the critical transition as a function of the shape parameter α between the
three models: Erdős and Rényi, Barabási Albert, and Watts Strogatz.

Source: Elaborated by the author.

The results are coherent with the expectations. The critical rate for BA networks, which

are heterogeneous, is considerably smaller than the homogeneous networks WS and ER. For

bigger systems, this difference would increase as the heterogeneous networks have a vanishing

threshold for N → ∞. On the other hand, the WS networks have higher critical rates than the ER

networks, despite both being homogeneous and having the same average degree. This happens

because, as explained before, the clustering in WS networks helps inhibit epidemics and enlarge

the critical rate, as shown in figure 18.

5.4 Non-Markovian SIR process with Weibull infection

For the SIR propagation process, we expect a similar outcome to the SIS model. First,

we simulated some specific cases just to have a general view on how a Weibull infection process

can modify an epidemic.

Again, we used three network models: Erdős and Rényi networks (ER), a Watts Strogatz

network (WS), and a scale-free network constructed with the Barabási Albert algorithm (BA),

all with a total number of nodes N = 103, and an approximate average degree of ⟨k⟩= 10. Each

network simulated three different cases, each one with different values of α . In figure 20 we can

see the dynamical curves of both the fraction of infected and the fraction of recovered individuals

For the smallest value of the shape parameter, we see a rapid epidemic process that

reaches the maximum fraction of infected much quicker than the other two cases. Also, this
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Figure 20 – Stochastic simulation of a SIR process with a Weibull infection and a Poisson recovery. Each
plot is simulated on different networks: a) and d) for an Erdős and Rényi networks, b) and e)
for a scale-free network, and c) and f) a Watts Strogatz networks. All networks have N = 1000
nodes, and an average degree of 10.

Source: Elaborated by the author.

maximum decreases and the epidemic lifetime lengthens as α increases. As expected, the size of

the epidemic, given by the total number of recovered, decreases with α , which means a bigger

fraction of the population was contaminated before the end of the epidemic.

For a more robust result, we may construct curves of prevalence e as a function of the

λe f f parameter. Note that in this case, we define the prevalence as the total number of recovered

individuals, which is the same as the epidemic size. This effective rate follows the same logic as

the one used for the SIS model, in other words, is defined as λe f f = ⟨τrec⟩/⟨τin f ⟩. Also, it serves

as a more intuitive variable as it can be compared with the effective parameter of the Markovian

case. We perform 600 hundred simulations for each different value of λe f f and α and calculate

the average infection size. The results of these simulations are shown in figure 21.

These results sustain the claims made for the specific case presented in figure 20 and

show that a SIR propagation with non-Markovian Weibull infection can radically change the

resulting epidemic. As the shape parameter increases, larger values of λe f f are necessary to

reach a considerable fraction of infected nodes. The critical effective rate also seems to increase

with larger α . To verify this behavior and make a more quantitative analysis we will repeat the

critical rate analysis made in the last section with the SIS model.
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Figure 21 – Curves of Prevalence versus effective rate for a SIR process with Weibull infection, each
color corresponds to a shape parameter α between the interval [0.4,5]. All networks have
N = 1000 nodes and an average degree ⟨k⟩= 10 and prevalence values are calculated over
600 repetitions. In a) the simulation is performed on an Erdős and Rényi network, b) on a
Barabási Albert network, and c) on a Watts Strogatz network.

Source: Elaborated by the author.

5.4.1 Critical transition for the SIR non-Markovian epidemic pro-

cesses

The procedure is similar to the one described in the previews section. We use the epidemic

size or prevalence as the order parameter ρ , which for the SIR process is the total number of
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recovered individuals at the end of the simulation. Extensive simulations were carried out to

calculate the first and second moments of the order parameter. For the SIR process, as explained

in section 3.2.2.2, a better measure to find the critical transition rate is the vulnerability instead

of the susceptibility used in the SIS model. The vulnerability is defined as:

∆ =

√
⟨ρ2⟩−⟨ρ⟩2

⟨ρ⟩
(5.9)

The vulnerability ∆ has a maximum value at the critical transition rate λc.

We will go a little faster in this section as the results presented for the SIR model repeat

many the same behavior as the SIS model discussed before.

From the works done on Markovian epidemics, we expect heterogeneous networks, like

the BA network, to have a vanishing threshold at the thermodynamic limit. However, for the WS

and ER networks that are homogeneous, we expect a constant critical rate despite the size of

the system. To verify this behavior we run extensive simulations in networks with sizes ranging

from N = 102 to N = 5×103.

In figure 22, 23 and 24 we show the vulnerability measure as a function of effective

transition rate for the different network models: ER networks, BA networks, and WS networks,

respectively.

From figures 22, 23 and 24 we can calculate the critical rate by taking the effective rate

that gives the maximum value of ∆. From this critical rate, we can make a plot of the λc as a

function of the shape parameter for three models. These plots are shown in figure 25.

In this case, different from the SIS model, peaks are less well defined, especially for

small system sizes like N = 102 and N = 2×102. Nevertheless, we can still see the difference

between the homogeneous networks ER and WS with the heterogeneous BA network. For the

homogeneous networks, ER and WS, despite points from different sizes do not coincide as well

as in the SIS model, this variation does not follow any particular tendency. However, for the BA

network critical rates calculated from bigger networks are consistently below the critical sizes of

smaller networks. This is a sign of the vanishing threshold expected for heterogeneous networks.

For the SIR non-Markovian process with Weibull infection, the development of a mean-

field approximation for the critical effective rate remains an ongoing challenge. However, as

stated by P. Van Mieghem in [Mieghem and Liu 2019], the NIMFA mean field approximation
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Figure 22 – Vulnerability ∆ as a function of the effective transition rate λe f f in log scale for Erdős and
Rényi networks. Each plot corresponds to a different shape parameter α , indicated at the top,
and each color is associated with different network size in the interval [N = 102,N = 5x103].

Source: Elaborated by the author.

Figure 23 – Vulnerability ∆ as a function of the effective transition rate λe f f in log scale for Barabási
Albert networks. Each plot corresponds to a different shape parameter α , indicated at the top,
and each color is associated with different network size in the interval [N = 102,N = 5x103].

Source: Elaborated by the author.
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Figure 24 – Vulnerability ∆ as a function of the effective transition rate λe f f in log scale for Watts Strogatz
networks. Each plot corresponds to a different shape parameter α , indicated at the top, and
each color is associated with different network size in the interval [N = 102,N = 5x103].

Source: Elaborated by the author.

for the SIS model can be used as a lower bound for the SIR critical. Typically, the SIR epidemic

threshold is slightly higher than the SIS threshold. With this in mind, we will compare the

numerical approximations λ ∆
c found for the SIR model with the λ)cNIMFA and the upper bound

λUB
c described in (4.1) and (5.7). This compression is shown in figure 26

For the ER and BA networks the numerical approximation critical rates found are in

general slightly above the NIMFA critical rate, although is closer than expected for the ER

networks. However, for the WS networks, the critical rate is considerably above the lower bound

given by the NIMFA approximation. It is also worth noting that, for α = 2 and α = 5 the

numerical approximation is above the upper bound, which was not expected. We saw in the

previous section that for higher values of the shape parameter the numerical approximation gets

further from the mean-field approach, so it is possible that in this case, the critical rate passing

the upper bound is due to some additional care needed for these values of shape parameter.

Finally, let us compare the three models with each other. In figure 27 we plot the critical

effective rates for the largest sizes for each network model as a function of the shape parameter.

Once again, this is very similar to the SIS process. All three networks have an increasing

threshold as we take larger values of α . These results are coherent with the definition of the
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Figure 25 – Critical effective transition rate as a function of the shape parameter α for different network
sizes and models for a SIR epidemic process. In a) critical rates for ER model, in b) for BA
model and in c) a WS model.

Source: Elaborated by the author.

Weibull distribution and the role of the shape parameter. Smaller values of α generate bigger

probabilities to smaller inter-event times, so we expect a faster epidemic where nodes infect their

neighbors with a higher frequency per unit of time.

The BA network has in general lower threshold compared to the other two networks.
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Figure 26 – Compression of the critical effective rate λc calculated with the vulnerability analysis in
a SIR process with the NIMFA approximation λ NIMFA

c and the upper bound λUB
c for the

SIS epidemic model described in section 4.3.1. Each plot correspond to a different size and
network model, stated in the title above of each image.

Source: Elaborated by the author.

Figure 27 – Compression of the critical transition as a function of the shape parameter α in a SIR epidemic
process between the three models: Erdős and Rényi, Barabási Albert, and Watts Strogatz.

Source: Elaborated by the author.
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Regarding the WS network’s critical rates being above the ER, the interpretation can be the same

as the last subsection. The increase in clustering, due to the small-world characteristic, helps

inhibit the epidemic and enlarges the critical rate of the homogeneous network.

5.5 Summary

In section 5.1, we described the implications of considering a Weibull infection process.

The shape parameter of the Weibull distribution is associated with aging in the infection process.

When α < 1 there is a negative aging in which the hazard rate has a heavy-tailed behavior and

indicates a high probability of early infections, and as time passes the infected node is less likely

to transmit the disease. For α > 1. there is a positive aging that causes a hazard rate that increases

with time, which implicates a low probability of infection in early times and a high probability

as the node stays infected.

We verified for both the SIS and SIR models that positive aging can inhibit the epidemic,

generating smaller epidemic sizes and slower propagation. On the other hand, negative aging

has the opposite effect, making it easier for the disease to spread and causing higher epidemic

sizes. We also verified that the critical effective transmission rate λc can dramatically change for

Weibull infection, specifically, increasing with α .

In this study, we investigated the behavior of SIS and SIR epidemics on heterogeneous

networks generated by the Barabási-Albert (BA) model, as well as on homogeneous networks

such as the Watts-Strogatz (WS) and Erdős-Rényi (ER) models. Our findings revealed that the

critical rate in the BA networks decreased as the system size increased, implying a vanishing

threshold. On the other hand, for the homogeneous WS and ER networks, we did not observe

a clear change in the critical rate as the system size varied. The critical rate in these networks

remained relatively stable with respect to the network size.

Additionally, we compared the numerically determined values of the critical rate, denoted

as λc, for the SIS model with the NIMFA approximation reported in the literature [Cator,

Bovenkamp and Mieghem 2013, Mieghem and Liu 2019]. Notably, our results demonstrated

a good agreement between the numerical values and the NIMFA approximation, particularly

for the ER model. For the SIR model, the critical rate generally fell between the upper bound

described for the SIS model and the λ NIMFA
c , except for higher values of the shape parameter

(α = 5), where the critical rate surpassed the upper bound. This intriguing finding indicates that
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the critical rate for the SIR model may display unexpected behavior under certain conditions.

Finally, for both SIS and SIR model the WS networks presented higher values of the

critical effective rate than the ER network, despite having the same average degree. The behavior

probably occurs due to clustering effects. The BA network presented the lower values of the 3

models, and its expected that if larger networks are used then λc → 0.
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CHAPTER

6
SIR NON-MARKOVIAN EPIDEMIC PROCESS

WITH WEIBULL INFECTION IN MODULAR

NETWORKS

In the previous chapter, we talked about the SIS and SIR non-Markovian epidemic process

with Weibull infection in different network models. These models had different characteristics

like the small world property of the WS model or the presence of hubs in the BA model.

However, there are still many unanswered questions related to the impact of network structure

on non-Markovian epidemic processes. For instance, Modular structure has been demonstrated

to be relevant for modeling both social and biological phenomena [Palla et al. 2005, Spirin

and Mirny 2003, Ravasz et al. 2002, Watts, Dodds and Newman 2002] and spreading processes

in networks [Ghalmane et al. 2019]. This modular organization generates groups of densely

connected nodes [Fortunato and Hric 2016], making it a crucial feature that cannot be overlooked.

In this chapter, we explore the influence of community structure on a SIR epidemic

process with a Weibull non-Markovian infection. Most of the results presented here are part of

an article that is the final stages of preparation and will be submitted to Physical Review E.

In section 6.1 and 6.2, we present a brief review of epidemics in networks with community

structure and explore the LFR benchmark algorithm used to create this kind of networks. After

this, we see some specific cases of the non-Markovian SIR process with Weibull infection to

have a general notion of the influence of aging in the system. In the proceeding section, we
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explore how the shape parameter may change the prevalence and epidemic life, and how this

non-Markovian process can alter the role of modular structure. Finally, in section 6.4 we show

simulations in real networks that further support our previous results in synthetic networks.

6.1 Revision of epidemics on Modular networks

Topology plays a fundamental role in how diseases spread in networks. For instance,

the presence of communities can drastically change the development of an epidemic outbreak.

Some effort has been devoted to understanding the role of these communities in slowing down

or speeding up contagious processes.

One of the most frequent results is that modularity can significantly slow SIR and SIS

propagation if we straighten the modular structure [Salathé and Jones 2010,Nadini et al. 2018,Hui

and Zi-You 2007]. Also, the presence of modules can reduce the final epidemic size [Huang and

Li 2007, Huang, Park and Lai 2006]. This can be measured using the mixing parameter, which is

a way to measure how strong the structure of a network is [Min et al. 2013, Pastor-Satorras et al.

2015].

Other studies focus on understanding how modularity affects epidemics in more networks

with specific characteristics. For example, studies with modular time-varying networks [Nadini

et al. 2018], or modular adaptive networks [Tunc and Shaw 2014]. Other researchers focus

on developing immunization strategies using community structures [Gupta, Singh and Cherifi

2014, Ghalmane, Hassouni and Cherifi 2019].

6.2 LFR algorithm

To address the challenge of creating networks with community structure we used the

Lancichinetti–Fortunato–Radicchi benchmark algorithm (LFR). This strategy originally was pro-

posed to test community detection methods, but it also allows us to create a network with known

communities [Lancichinetti, Fortunato and Radicchi 2008]. The main advantages of this algo-

rithm is the explicit mixing parameter µ , which is the average fraction of inter-community links,

this is, edges between nodes that don’t belong to the same community. The algorithm consists

in distributing the node degrees and the community sizes according to a power law distribution

with different exponents ϒ and Ω respectively. The general algorithm can be described:
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∙ Generate a network with node degrees that follow a power law distribution with exponent

ϒ and an average degree ⟨k⟩.

∙ Generate a community sizes that follow a power law distribution with exponent Ω. It is

necessary to establish the smax, the maximum community size, and smin the minimum

community size.

∙ We randomly distribute the N nodes to the M communities. If a node is put in a complete

community, then we randomly choose another community.

∙ We rewire the links with to goal to approximate the average fraction of external connection

to total connections to the pre-defined µ parameter.

An advantage of this algorithm is that allows us to construct modular networks with

stronger or weaker community structures depending on the mixing parameter. If we set µ = 0,

we generate a graph with isolated communities without connections between modules. On the

other hand, if we set µ = 1 we have a fully mixed network where all connections are established

between nodes from different communities, in this case, the resulting network is scale-free

without a modular structure.

In figure 28 we can appreciate the effect of the mixing parameter in the LFR networks.

With low values of µ we have sparse links between communities. As we increase the value of

the mixing parameter we see an increase in inter-community links, and for the µ = 0.8 we have

an almost fully mixed structure.

6.3 Results on SIR non-Markovian process with Weibull

infection in modular networks

First, just as in the last section, let us explore some specific cases to get a general notion

of how this kind of epidemic behaves in modular networks. For this initial analysis, we will look

at a small LFR network with N = 300, ⟨k⟩ = 7, ϒ = 2.5, Ω = 1.5, and µ = 0.05. With these

parameters, we generate a modular network with 6 communities. We will perform an epidemic

simulation with λe f f = 0.75, γ = 1. In figure 29 we first compare the Markov case with α = 1

and with a negative aging α = 0.75.
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Figure 28 – Visual representation of synthetic modular networks generated by the LFR algorithm. Each
network has a different mixing parameter.

Source: Elaborated by the author.

In figure 29, we see three-time instances t = [0.5,1,2.5] for two identical networks with

different epidemic processes, one with no aging (second column) and the other with a negative

aging (first column). The first striking difference is that in negative aging, the disease has a faster

dispersion from one community to another. We can see this comparing time t = 1, for which in

case α = 0.75 all communities have infected nodes, and three of them have more the half of the

population infected, on the contrary for α = 1 there are still 3 completely healthy communities.

For time t = 2.5 almost all individuals have been infected and recovered for the negative aging,

whereas for the traditional Markov case, the system is still at the peak number of infected nodes.

Now let us compare another case, but this time we will use an epidemic with no aging

(α = 1) and an epidemic with positive aging α = 2. We see these results in figure 30

The positive aging process has the opposite effect of negative aging. In this case of

positive aging, the probability of infection is low at early times and gets higher as time passes. In

this specific case, this causes the disease takes a longer time to reach healthy communities. At

time t = 2.5, for the Markov case with no aging the disease has reached all communities and
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Figure 29 – Compression between two epidemic models in the same modular network, but with different
shape parameters. The LFR network generated has 300 nodes and an average degree of 6. Each
row represents a different instant in time, and each column has the network representation
and dynamical curves for different shape parameters: a negative aging of α = 0.75 in the first
column, and the Markovian case with α = 1 in the second column.

Source: Elaborated by the author.

the epidemic is near the maximum number of simultaneous infected individuals. However for

the positive aging with α = 2 at the same time, t = 2.5 half of the communities are completely

healthy. For time t = 5 for α = 1 we see almost all individuals recovered from the disease,

whereas for α = 2 many individuals are still susceptible, and infected individuals are starting to

decrease, indicating that probably a big fraction of individuals will not be reached by the disease.

These examples are merely illustrative but can give us a quick perspective of the effect of

the aging process in the LFR networks. It appears that the main difference between the compared

cases is in how quickly the disease is able to move from one community to the other. In the next

subsection, we will explore this idea in a more general way.
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Figure 30 – Compression between two epidemic models in the same modular network, but with different
shape parameters. The LFR network generated has 300 nodes and an average degree of 6. Each
row represents a different instant in time, and each column has the network representation
and dynamical curves for different shape parameters: the Markovian case with α = 1 in the
first column, and a positive aging with α = 2 in the second column.

Source: Elaborated by the author.

6.3.1 Aging process delays the spread of the disease from communi-

ties

At the beginning of the epidemic, a small percentage of individuals are randomly selected

to be initially infected at time zero. Since these initial infections occur randomly, the disease will

begin spreading in a certain number of communities, denoted as M0. Over time, the infection

will gradually extend to the remaining communities. To assess the impact of aging on the rate of

infection spread to healthy communities, we introduce the time TM as the point in time when

the disease has infected at least one individual in each community. By measuring TM, we can

have a notion of how the aging process affects the speed at which infections reach previously

uninfected communities.
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We consider an LFR network with N = 7500, ϒ = 2.5, Ω = 1.5, and ⟨k⟩= 6. With these

conditions, the resulting networks end with approximately 50 communities. Figure 31 illustrates

the values of TM as a function of the shape parameter for networks with different values of µ .

Figure 31 – Values of TM , time until all communities have at least one infected individual, as a function of
the shape parameter al pha. Each color represents a different mixing parameter from 0.05 to
1. Each point is calculated as the average time of 100 simulations.

It is observed that the values of TM increase as the shape parameter increases for all

curves. This behavior indicates that the disease takes longer time to reach healthy communities.

When weaker community structures are present with higher values of µ , α still manages to

introduce a delay in the disease’s spread across communities, but the effect is relatively less

pronounced. This phenomenon can be attributed to the aging process slowing down the spreading

dynamics, thereby delaying the activation of inter-community links in networks with community

structure.

It’s essential to acknowledge that this analysis provides valuable insights into how

aging can potentially influence the dynamics of an epidemic. However, it is not comprehensive

enough to fully understand the overall impact of Weibull infection. To gain a more complete

understanding, further investigation is required.

Now, we will turn our attention to the prevalence and epidemic life, as they are commonly

used variables that help to measure the impact of an epidemic in a population.

6.3.2 Prevalence of the epidemic.

For the SIR epidemic process, we will define the prevalence, also called epidemic size,

as the relative number of recovered individuals after the end of the simulation, which occurs

when there are no more infected individuals in the population.
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To understand how this variable is affected by the modular characteristic of the network

and the aging associated with the non-Markvoian epidemic we perform extensive simulation

varying the mixing parameter µ and the shape parameter α . The simulations were performed

on a network with N = 7500, ϒ = 2.5, Ω = 1.5, and ⟨k⟩ = 6. With this condition, we obtain

networks with an average of 50 communities. We perform 400 simulations for different values of

α,µ, and λe f f and calculate the average number of recovered people at the end of the simulation.

The results are presented in figure 32 which has 6 heat maps, each one with different values of

effective rate.

Figure 32 – Heat maps generated by a SIR process with Weibull infection on a modular network. The
colors represent the prevalence found for each pair values of shape and mixing parameter.
Each map corresponds to a shape parameter: a) λe f f = 0.2, b) λe f f = 0.4, c) λe f f = 0.5,
d)λe f f = 0.6, e)λe f f = 0.7, f)λe f f = 0.8.
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For the first two maps, 32a and 32b, we used smaller values of the effective transition

rate. In these cases, most values of α above 1, in 32a, and values of α larger 2, in 32b, have

prevalence values near zero. This indicates that the change in the critical effective ratio associated

with the α parameter put the system in the absorbing state. For the values of α that result in an

active state, the change in prevalence is primarily in the vertical direction, which indicates that

the community structure does not play an important role in changing the final epidemic size.

As we increase the effective transition rate λe f f the absorbing region shrinks and we see

some more interesting behaviors. In case 32c (with λe f f = 0.6), the shape parameter continues

to dominate the changes in prevalence. As α increases, the fraction of the population affected

by the epidemic process reduces. While we observe a subtle effect of the mixing parameter for

higher values of α , it becomes more evident in cases 32d, 32e, and 32f, where we have values of

λe f f well above the critical effective rate. For these latter cases, when the mixing parameter is

higher than 0.3, the influence of the shape parameter still remains the primary driver of changes

in prevalence. However, the scenario changes when the mixing parameter decreases, especially

for µ < 0.3. In such situations, the effect of the community structure becomes evident and a

notable reduction in prevalence values is observed. In other words, the µ parameter appears to be

more relevant for higher shape parameters, indicating that the community structure’s influence

becomes more apparent.

In a summary, the prevalence of the epidemic consistently decreases with an increase in

the shape parameter and a decrease in the mixing parameter. Although the non-Markov effect

appears to exert a more substantial influence on the final epidemic size, strong community

structures (indicated by small values of µ) still play a crucial when dealing with higher shape

parameters. To gain a more comprehensive understanding of the epidemic dynamics, our focus

now shifts to examining the epidemic life of the system.

6.3.3 Epidemic life

In the SIR epidemic model nodes that recovered from the disease can not get infected

again, so the epidemic will always die after a certain amount of time, with the extreme case

where all individuals of the network get infected and recovered. In this process, we define the

epidemic life Tl as the time until there are no more infected individuals in the system, at which

we say that the epidemic “dies”.
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We perform 400 simulations for different values of α,µ, and λe f f and calculate the

average number of epidemic life of the simulation. The results are presented in figure 33 which

has 6 heat maps, each one with different values of effective rate.

Figure 33 – Heat maps generated by a SIR process with Weibull infection on a modular network. The
colors represent the life of the epidemic found for each pair values of shape and mixing
parameter. Each map corresponds to a shape parameter: a) λe f f = 0.2, b) λe f f = 0.4, c)
λe f f = 0.5, d)λe f f = 0.6, e)λe f f = 0.7, f)λe f f = 0.8

Again, we have to be careful with the case 33a and 33b as λe f f is low and won’t be

above the critical transition rate for all values of α . Short epidemic lives could either be because

there was a quick propagation of the epidemic or if the system is below the critical effective

rate because the epidemic dies before spreading through the entire network. It is important to
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compare this map to the maps in 32. In general, if there is a short epidemic life but the prevalence

value is high, then we are dealing with a quick epidemic that spreads through the network. On

the other hand, if the epidemic life is short and prevalence is low, then the system probably is

below the critical effective rate and has an epidemic that dies out very quickly.

With this consideration, we can interpret results in figure 33. For the negative aging

process α < 1, almost all simulations have a relatively short epidemic life, and the µ parameter

does not play a relevant role as there is basically no change as µ increases. Comparing with 32

we see that in this region there are high prevalence values, so we are dealing with a disease that

spreads very quickly regardless of the community structure.

For positive aging processes α > 1, we see a more interesting behavior. In the case of

meat maps 33c and d33d the largest epidemic lives occur for higher values of α . In this case, we

see a change with respect to µ . For very low values of the mixing parameter epidemic lives are

short, and as µ increases we see that the epidemic lives get longer and longer until a maximum,

then return to shorter lives. The interpretation of this behavior is as follows: for very strong

community structures and positive aging the epidemic lives are shorter and prevalence values

also are small, this probably occurs, as we saw in section 6.3.1, positive aging can cause slower

propagation through each community, and for very strong community structure this can lead to a

fast infection that quickly dies out before reaching healthy communities. As the communities

start to mix with the increase in µ the positive aging is not enough to contain the disease inside

the infected communities, we see this as the prevalence values increase with µ in this region.

Despite this, longer epidemic lives are found, as it takes more for each individual to infect their

neighbors.

The effect described above is more prevalent in the case e33 and f33 where the peak

values of the epidemic life occur for very small mixing parameters. In this peak, the epidemic

reaches a considerable prevalence value (near 0.4) but the epidemic has large values of Tl as the

epidemic has a slow propagation through the network. After the peak in Tl as µ increases shorter

epidemic lives appear again, which further indicates that communities are not just not able to

contain the epidemic but they don’t meaningful effect in the epidemic process.

To this point, we have explored the general effect of the µ and α parameters in the

epidemic process. But these have been just general observations of the effect of each variable

in the process. Now, we have to further understand how the aging associated with the non-
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Markvoainity can change the role of communities.

6.3.4 Difference in prevalence

In section 6.3.2 we presented the influence of the shape parameter and mixing parameter

in the prevalence of the epidemic in LFR networks. The results suggested that the mixing

parameter has a more significant role for higher values of α . To further explore this idea we will

present another way to study non-Markovian epidemic in modular networks. We can make a plot

of the epidemic size as a function of the shape parameter for different networks with different

community structures. We set λe f f = 0.5 and simulated SIR processes in two networks: one

with a strong community structure (µ = 0.05) and another with completely mixed communities

(µ = 1). The other parameters of the network are the same as the one described in previous

section 6.3.2. The results of this simulations are shown in figure 34.

Figure 34 – Two curves of prevalence values as a function of the shape parameter of SIR Weibull process
in LFR networks. The green curve are the ρ values of the simulation in an LFR network with
mixing parameter µ = 1, and the red curve on a network with µ = 0.05.

For small values of α the two curves are nearly identical. However, as we increase the

shape parameter, the gap between the curves gradually widens until it reaches a maximum, after

which it begins to contract. This compression is valuable because we are comparing epidemic

processes with the same characteristics, but one in a network with a strong community structure

while the other one is in a network with very weak community structure. This analysis might

help to identify when the community structure plays a pivotal role in the spreading process.

Inspired by this observation, we introduce an intuitive variable called the "difference in

prevalence". This variable quantifies the disparity in prevalence values between two epidemic
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processes with the same α parameter and λe f f but distinct mixing parameters, µ1 and µ2, where

the relationship holds that µ1 > µ2. The formal definition of this variable is presented in equation

(6.1).

∆ρ = ρ(α,λe f f ,µ1)−ρ(α,λe f f ,µ2) (6.1)

From this definition we can calculate the difference in prevalence for the curves in figure

34, which is shown in figure 35.

Figure 35 – Difference in prevalence of the curves of image 34.

It is essential to emphasize that the mixing parameter, µ , is a user-defined input for

the LFR algorithm, allowing us to set it to any desired value. For the purpose of the following

analyses in this subsection, we will keep µ1 fixed at 1 while varying µ2. This approach enables

us to compare networks with different community structures against networks with mixed

communities. With this consideration, we will call µ2 = µ and the difference in prevalence will

be: ∆ρ = ρ(α,λe f f ,1)−ρ(α,λe f f ,µ).

With the introduction of this new variable, our first objective is to comprehend how the

parameter α influences the "difference in prevalence." To achieve this, we conducted simulations

using various values of the effective transition rate while varying the shape parameter. The

difference was calculated different network structures. Figure 36 illustrates the results of these

simulations, where each color on the plot represents a distinct value of the mixing parameter µ .
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Figure 36 – Difference in prevalence as a function of the shape parameter α for different networks with
community structures. Each plot corresponds to a different effective rate: a) λe f f = 0.1,
b) λe f f = 0.2, c) λe f f = 0.5, d) λe f f = 0.6, e) λe f f = 0.7, and f) λe f f = 0.8. Each color
correspond to a different modular structure: red µ = 0.1, blue µ = 0.2, green µ = 0.3, orange
µ = 0.5, black µ = 0.7.

Within the considered range of α , we observe two discernible types of behavior depend-

ing on the value of λe f f . Figures 36a, 36b, 36c, and 36d, there exists a prominent peak in the

difference in prevalence for all community structures at a specific value of the shape parameter.

However, as the mixing parameter µ increases and we generate networks with weaker community

structures, this peak gradually diminishes. This observation aligns with our expectations, as we

approach µ closer to 1.

The presence of a peak in the difference in prevalence suggests that there is an optimal

value of the shape parameter, denoted as αpeak, at which the impact of the community structure

on prevalence differences is maximized.

We might explain the peak behavior as follows. For small shape parameter (indicating

very negative aging) infected nodes have a high probability of quickly infecting their neighbors

during the early stages of the infection. This rapid propagation reduces the impact of the

community structure, as the disease spreads rapidly across the network. As the shape parameter α

increases, the probability of infection at later times also increases. Consequently, the community

structure begins to play a more significant role in the spread of the epidemic. As discussed

in section 6.3.1, with higher shape parameters, it takes more time for the disease to escape a
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community and infect healthy nodes. Thus, the community boundaries act as barriers to the

epidemic’s propagation. However, it’s crucial to consider that as the shape parameter increases,

the critical rate λc, which separates the absorbing from the active state of the epidemic, also

rises [Mieghem and Bovenkamp 2013]. Larger shape parameters lead to a return to the absorbing

phase as the effective rate falls below the threshold. Consequently, after the peak in the difference

in prevalence, both networks, with and without community structure, revert to the absorbing

phase, where there is no outbreak in the first place. As a result of these two effects, there exists

a shape parameter that maximizes the difference in prevalence, indicating a stronger role for

community structure in the propagation. However, it is important to note that the existence of

a peak in the difference in prevalence does not solely arise from the relationship between the

community structure and the aging process.

Another scenario arises for larger effective rates, as depicted in figures (36e and 36f),

where the critical rates for all α values within this range fall below λe f f . In such circumstances,

increasing the shape parameter leads to a slower propagation of the epidemic due to the aging

process. As a result, community structures play a more significant role in reducing the prevalence

of the epidemic. The peak behavior might be observed in larger ranges of α , as at some point the

critical rate will be above the effective rate chosen.

Another thing that can be highlighted from figure 36 is that the difference in prevalence

of the higher mixing parameter (µ = 0.5,µ = 0.3 and µ = 0.7) have very similar values. On

the contrary the lower values of the mixing parameters are considerably larger. To have another

perspective on this behavior made a similar analysis as the one described in figure 36, but using

µ as the x-axes and choosing some values of α . The result of this analysis is presented in Figure

37, which shows curves of difference in prevalence as a function of µ with a logarithmic scale in

the x-axes to facilitate interpretation.

In all six plots, we observe a rapid decrease in the difference in prevalence, ∆ρ , for

mixing parameters greater than 0.1. In most cases, if µ > 0.3, the difference in prevalence

becomes close to zero, indicating that running the epidemic process in networks with and without

community structure yields similar final epidemic sizes. This effect is particularly evident for

larger values of effective transition rates, where the decline after µ = 0.1 is more pronounced.

This phenomenon can be interpreted as the communities becoming sufficiently mixed beyond

a certain value of µ , such that they no longer retain the epidemic. Beyond this point, further

increases in the mixing parameter do not significantly alter the resulting epidemic process.
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Figure 37 – Difference in prevalence as a function of the mixing parameter µ for different aging processes.
Each plot corresponds to a different effective rate: a) λe f f = 0.2, b) λe f f = 0.4, c) λe f f = 0.5,
d) λe f f = 0.6, e) λe f f = 0.7, and f) λe f f = 0.8

. Each color correspond to value of α associated with the aging process: red α = 0.25, blue
α = 0.5, black α = 0.75, orange α = 1, green α = 1.5, purple α = 2, pink α = 3, gray α = 5.

When µ < 0.1, we observe significant changes in the difference in prevalence for different

values of α . In case 37a, curves with higher shape parameters (1.5, 2, 3, and 5) show a difference

in prevalence of zero for all values of µ , it is essential to note that this result occurs because the

critical values associated with each shape parameter are higher than the chosen effective rate.

As a result, both networks remain in the absorbing phase, where the epidemic does not affect

a significant portion of individuals. The same phenomenon is observed in case 37b, but only

for α = 5. These cases are not informative as there is no epidemic occurrence in the first place.

These cases are not interesting as there is not an epidemic in the first place.

Now, shifting our focus to Figure 37c, we find interesting observations. For smaller shape

parameters (0.25, 0.5, 0.75, 1, and 1.5), increasing α enhances the role of the network structure,

with curves having higher shape parameters positioned above those with smaller α . However,

for shape parameters 2, 3, and 5, higher shape parameter curves are positioned below those with

smaller α . This may initially appear confusing, but it reflects the same phenomenon as depicted

in the previous section. For smaller effective rates, a peak behavior is observed concerning α ,

where curves with higher shape parameters are initially positioned above the other curves (α
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from 0.25 to 1.5). However, after passing the peak, curves with higher α appear below the others

(α from 2 to 5). This same behavior is also observed in curves a, b, and d in Figure 37, but the

specific values of α change as the peak position shifts, similar to what was observed in Figure

36.

In figures 37e and 37f, we find ourselves sufficiently distant from the critical transition

rate associated with each α value. As a result, increasing the shape parameter α significantly

magnifies the effect of the mixing parameter µ . In these cases, the curves consistently remain

positioned above the other curves with smaller shape parameter values.

These results, and those presented in the previous section were carried in networks with

different sizes and higher average degrees, and the results obtained are qualitatively the same as

in this case.

6.3.5 Effect of the Number o communities

So far we have just worked with networks with a number of communities close to M = 50.

The LFR algorithm does not allow us to predetermine the number of communities, but this

number can be altered by changing the smax and smin described in section 6.2.

The main goal of this project is not to study the effect of the number of communities.

However, we can make a quick observation about the number of communities, especially to

further support our choice of M = 50. In figure 38 we show some curves of prevalence as a

function of the shape parameter α for different values of M, in the range

[10,60]

in two structures: a weak one (µ = 0.7) and a strong one (µ = 0.05).

For figure 38 we see the prevalence curves for networks with weak community structure.

We observe that the number of communities does not affect the prevalence curves as there is no

particular tendency and curves appear to be very close to each other. However, for the strong

community structure (µ = 0.05), in figure 38b, as the number of communities M increases the

prevalence curves have lower values. This means that as the number of communities increases,

at least in this range of M, the community structure is more successful in containing the disease

spread. Another important detail from figure 38b is that all curves of prevalence with strong

community structure are below the prevalence of the weak community structure for M = 60

(black curve), independent on the number of communities.
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Figure 38 – Prevalence of the epidemic in log scale as a function of the shape parameters for LFR networks
with a different number of communities in the range [10,60]

An important consideration for this analysis is that it might change for a larger range

of M or other specifications of the network. However, it is an interesting result as it helps us

understand this specific case.

6.4 Simulations on real-world networks

To further support the behavior described in section 6.3.4, we conducted simulations of

SIR non-Markovian epidemic processes on networks derived from real databases. The objective

of this analysis was to verify if the observed properties can be seen in modular networks with

different characteristics, specifically those not generated by the LFR algorithm.

This analysis focused on three real-world networks with known modular structures,

obtained from diverse sources. The networks under consideration were:

∙ A Facebook network (F), represent social network interaction.

∙ A Contact network (C), derived from human interactions.

∙ An animal network (A) depicting voles’ interactions.

Table 6.4 provides more detail descriptions of these networks and highlights other

important properties associated with them.
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Network Description

N
(Num-
ber of
nodes)

V(Number
of
edged)

Average
degree
⟨k⟩

Mixing
param-
eter
µ

Facebook network(F)

Composed of social circles of Face-
book. Data was collected from a sur-
vey where Facebook users IDs where
change to new valus to preser pri-
vacy. The data was extracted from
the Stanford Network Analysis Plat-
form (SNAP) [Leskovec and Krevl
2014] and has been utilized in previ-
ous works on epidemics in modular
networks [Ghalmane et al. 2019].

4039 88234 43.69 0.04

Contact network (C)

This date describes face-to-face inter-
actions attendees of exhibition called
“INFECTIOUS: STAY AWAY” that
took place in at the Science Gallery
in Dublin in 2009. Nodes represent
visitors, and a link is established if the
visitor interacted for at least 20 sec-
onds. The original data has weighted
links depending how much time the
interaction lasted. However, for this
analysis we will leave this information
out, as we intend just to look for the
role of modular structure. The source
of this network was the SocioPatterns
data sets [Infectious network dataset –
KONECT 2017].

411 2766 13.46 0.11

Animal (A)

In this case, the data is from vole in-
teractions. Each node is a vole and
an edge between two voles exists if
they were captured in in the same trap
at least ones during a trapping ses-
sion. This data was extracted from the
Network repository project [Rossi and
Ahmed 2015].

1189 3576 6.02 0.08

Table 1 – Table with the three real network data sets with the number of nodes (N), number of edges (V),
average degree (⟨k⟩), and mixing parameter (µ , of each network.)

A parameter of particular interest in our analysis is the mixing parameter µ , as it serves

as a crucial descriptor of the network’s community structure. In this context, calculating the

mixing parameter required several steps. First, we employed the Louvain algorithm for commu-

nity detection to identify the distinct communities within the network. Once the communities

were identified, we proceeded to compute the mixing parameter µ . This parameter was deter-

mined as the average was calculated as the average fraction of links between nodes of different

communities and total number of links6.2.

Furthermore, the degree distributions of these networks are depicted in figure 39. It is
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evident that both the Facebook network and the Animal network exhibit clear degree distributions

that approximate a power law. On the other hand, the contact network has a slightly more complex

degree distribution but still approximates better to a power-law distribution than the distributions

observed in regular networks.

Figure 39 – Degree distribution of the real networks used.

Also, we show a visual representation of the networks in figure 40.

Figure 40 – Visual representation of the three networks created by real data: Facebook network, a Contact
network and an Animal network.

Now if we would just compare the non-Markovian epidemic process in these three

networks the results would be difficult to analyses as the three cases present very different

properties. For instance the Facebook network has e much higher degree distribution compared

to the animal network, so choosing the adequate effective transition rate would be difficult.

To address the challenge of obtaining data sets with networks that have similar topological

properties but varying mixing parameters, performing a swapping process on existing networks
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proves to be a viable solution. The swapping process involves randomly selecting pairs of

links in the network and exchanging their connections. For example, if we have links (u1,v1)

and (u2,v2), the swapping process would entail removing these links and establishing new

connections (u1,u2) and (v1,v2). The swapping process effectively weakens the community

structure gradually without altering other essential properties of the system, such as average

degree and degree distribution. This is achieved by maintaining the same number of links and

only changing the connections between nodes. As many links are swapped, the probability of

choosing two links between the same communities becomes rare, leading to a gradual breakdown

of the community structure. A representation of this process can be observed in figure 41 where

a plot of the mixing parameter as a function of the number of swaps made in the Animal network

is shown.

Figure 41 – Mixing parameter calculated of the A network as function of the number of swaps made in
the network.Each color represents a different community.

Through the swapping process, it is observed that the mixing parameter increases as

more swaps are performed, indicating a progressive mixing of the communities in the network.

Additionally, it is worth noting that while the mixing parameter eventually reaches a plateau, it

does not necessarily converge to µ = 1.

For each network, using this swapping, we created four additional networks for each

case. We will called these new networks as “swapped networks”. We use the same letters as the

original networks with sub-index to identify each swapped networks, as the index increases more

swaps were performed. For example A1 and A2 are swapped networks created from A, and A2

suffered more swaps than A1. Table 2 presents the names and some information of the swapped

networks.
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New network Description µ

F1 F after 250 swaps 0.05
F2 F after 500 swaps 0.05
F3 F after 1259 swaps 0.06
F4 F after 2500 swaps 0.1
C1 C after 50 swaps 0.11
C2 C after 100 swaps 0.21
C3 C after 250 swaps 0.36
C4 C after 500 swaps 0.51
A1 A after 100 swaps 0.12
A2 A after 200 swaps 0.16
A3 A after 500 swaps 0.25
A4 A after 1000 swaps 0.35

Table 2 – Information and names of the new networks generated after executing swaps in the original real
networks F, C and A.

For each case different number of swaps was performed because the size of the network

influence the number of swaps required to have a meaningful change in the mixing parameter.

For example, the Facebook networks consist of 4039 nodes, necessitating a greater number of

swaps to achieve a significant change in the mixing parameter compared to the smaller contact

network.

Let X be a generic network that could be any of the original cases F , C, or A, and its

respecting swapped networks X1, X2, X3 and X4.

X and X4 exhibit highly similar characteristics as they share the same average degree

and degree distribution. However, the community structure of X4 is weaker due to the increased

mixing parameter. In this context, defining the same "difference in prevalence" as observed in

synthetic networks is not straightforward since the swapping process does not result in a network

with a mixing parameter equal to 1.

We will return to original definition of the difference in prevalence: ∆ρ = ρ(α,λe f f ,µ1)−

ρ(α,λe f f ,µ2). In this definition, µ1 and µ2 can be chosen as any mixing parameter of two net-

works. Accordingly, we will utilize µ1 from the equation as the mixing parameter of X4, as it

represents the network with the larger mixing parameter. Hence, the difference in prevalence

for real networks will be defined as ∆ρ = ρ(α,λe f f ,µX4)−ρ(α,λe f f ,µ). In this context, µX4

represents the mixing parameter of X4, and µ will be the mixing parameter of the original

network X or one of the three other swapped networks: X1, X2, or X3.
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6.4.0.1 Results of difference in prevalence for real networks

We conducted simulations the fifteen networks, consisting of the original network and

four swapped networks for each of the three cases. For each network, we calculated the prevalence

of X4 while considering both the original network and the three other swapped networks. We

performed these simulations across various values of the effective transition rate λe f f and by

varying the shape parameter of the Weibull infection. The results of these simulations are

presented in figure 42.

Figure 42 – Difference in prevalence as a function of the shape parameter α for the simulations performed
in real network data sets. In the first row (a,b and c) corresponds to Facebook networks F ,
with each plot featuring a distinct effective rate. The second row (d,e and f) have simulations
in the Contact networks C,while the last row (g, h, and i) illustrates plots based on the Animal
network A. In all plots each curve, with a different color, represents a different community
structures as described in the side boxes and following the notation in 2
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An essential aspect to note is that we employed distinct values of λe f f for each of the

three cases. This decision stems from the fact that the average degree of the Animal network is

significantly smaller than that of the other two networks. To compensate for this disparity and

ensure accurate results, we opted for higher values of λe f f for this case.

Across the three real networks we examined, we observed a behavior similar to that seen

in the synthetic networks. For smaller values of the effective rate in 42 a, 42 d, 42g, 42e, and 42h

there is a peak in the difference in prevalence. Lower shape parameters diminish the impact of

the community structure by causing infections to occur primarily during the early stages of the

outbreak. On the other hand, higher values of α lead to a change in the critical effective rate,

resulting in the epidemic entering an absorbing phase.

Furthermore, as we increased the effective transition rate, the process of swapping links

and consequently weakening community structures had a significant impact on reducing the

epidemic’s prevalence. This effect became more pronounced with an increase in the shape

parameter.

However, it is important to highlight that the impact of the swapping process on the

Facebook network was relatively lesser. This can be explained due to the Facebook network’s

significantly higher number of links compared to networks A and C. Despite performing a greater

number of link swaps in these networks, the change in µ was not substantial enough to induce a

significant shift in prevalence. Nevertheless, the prevalence still exhibited a maximum difference

of up to 7%.

6.5 Summary

In this chapter, we explored the problem of an epidemic SIR process with Weibull

infection in networks with community structure. The main goal was to understand how the

aging process and the community structure change the resulting epidemic and how these two

characteristics interact with each other. In section 6.3.2 we showed that larger values of the

shape parameter, which cause positive aging, can significantly reduce epidemic sizes and alter

the epidemic life. Also, strong community structures, for this case µ < 0.1, can also contain

the epidemic sizes. On the other hand for larger values of mixing parameter, in general, with

µ > 0.3, we generate networks with more connected communities, and a more limited impact of

the community structure in the resulting epidemics is observed.
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Furthermore, in section 6.3.4 we explored how the non-Markovian infection can alter

the role of the modularity in the propagation. To accomplish this, we defined the variable

called “difference in prevalence” which allows us to compare two epidemic processes in similar

networks but with different community structures. For small values of λe f f , near the critical rate,

there is a shape parameter that maximizes the difference in prevalence. This indicates that for

this value of α the community structure might play a central role in the epidemic. This is caused

because for small α quick infections happen and the communities can’t contain the disease, and,

for larger α the critical rate increases and the system may return to the absorbing phase. This

analysis was also carried on in real networks constructed from databases, and the same behavior

was observed.

We also explored the relevance of the number of communities and found that, for this

mode, increasing the number of communities may help further contain the epidemic process

6.3.5.
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CHAPTER

7
CONCLUSIONS

From diseases that threaten society to information dissemination, the challenge of un-

derstanding the dynamics of propagation phenomena is one most relevant topics of modern

research. Nevertheless, the complexity of these systems is abysmal, so choosing which variables

or characteristics will we take into account for making mathematical models is a challenge in

itself. In this context, the use of network science has been a fundamental tool to conserve some

complexity while still allowing relatively simple approaches to study epidemic processes. The

use of Markovian assumption has been a pillar of some of the most used and studied models in

epidemics on networks. This is a simplification that has been challenged, as shown in chapter

4.3, as real systems are rarely Moravian, especially those associated with human interaction and

biological processes.

It is well known that considering non-Markovian characteristics can drastically change

the outcome of an epidemic. For example, the works of Piet Van Mieghem and colleagues [Cator,

Bovenkamp and Mieghem 2013, Mieghem and Liu 2019, Mieghem and Bovenkamp 2013] have

shown that considering a SIS non-Markovian infection characterized by a Weibull distribution

can change the critical transition rate λc and epidemic size, which are fundamental metrics used in

the epidemic process in complex networks. However, despite the increase in research that focuses

on non-Markovian epidemics, this is still a relatively unexplored topic that has many answered

questions. This dissertation had the main goal of contributing to some of these unexplored

challenges, focusing on two problems related to SIS and SIR non-Markovian epidemics with the

Weibull infection process and a Markovian recovery.
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The first problem developed in this research, described in chapter 5, was characterizing

and comparing SIS and SIR non-Markovian epidemics with Weibull infection in three different

network models: a random regular networks described by the Erdős and Rényi model (ER), a

heterogeneous scale-free networks described by the Barabási Albert model (BA), and a network

with small world characteristic described by the Watts Strogatz model (WS). The SIS non-

Markovian epidemic with Weibull infection is one of the most studied models in the literature of

non-Markovian epidemics. Some of our funding further support the behavior described in the

literature. The SIR model has been less explored and some of our findings for this model are

new.

From a general point of view, for both the SIS and SIR non-Markovian epidemic process

with Weibull infection and for all three network models, the shape parameter of the Weibull

distribution can dramatically change the total size of the epidemic and the critical effective

transition rate (λc). When we consider a negative aging (α < 1), as the disease ages in the

infected node the probability of having smaller inter-event infection times increases, and as a

consequence, there is a quick spreading increasing the size of the epidemic and decreasing the

λc, almost vanishing for small values of α . On the other hand, when α > 1, there is a positive

aging, and as time goes by there is a higher chance of larger inter-event times, with a localized

maximum, and so epidemics with smaller sizes are observed with larger values of λc.

Besides that, for the SIS model, a susceptibility analysis was made to find the critical

rate for different network sizes for the three models. As N increases for the WS and ER models,

the critical rate does not suffer major changes, which was the expected behavior as they are

homogeneous networks. On the contrary, for the BA model which generates heterogeneous

networks, the critical rates decrease with the system size, indicating a vanishing threshold in the

thermodynamic limit. With these results, we conclude that the vanishing threshold associated

with heterogeneity also occurs for this kind of non-Markovian epidemic.

We compared the critical rate found through the susceptibility analysis with the mean-

field approximations described in [Cator, Bovenkamp and Mieghem 2013, Mieghem and Liu

2019]. For the ER and BA models, there was a good agreement between the NIMFA approx-

imation and the numerical values, especially for larger network sizes. In the case of the WS

models the numerical values of λc were slightly above the mean-field approximation, which is

probably attributed to the clustering effect of these networks, which are not taken into account in

the NIMFA approximation. The upper bound λUB
c = 1/ln(λ +1) described in [Barabási 2005],
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also works well for the three models. For all cases, higher values of α appeared to divert more

from the mean-field approximations.

For the SIR epidemic processes, the critical effective rate was numerically calculated

using the vulnerability analysis [Shu et al. 2015]. We found that this method, originally used for

the Markovian case, also works well for the non-Markovian dynamics. The same general results

of the SIS model were found for the SIR model. The scaling of the system indicates a vanishing

threshold for the heterogeneous BA networks, as the critical value consistently shrank as N

increases. As expected, for the homogeneous models WS and ER this behavior was not observed,

from which we can conclude that the vanishing threshold associated with heterogeneity also

applies to this non-Markovian SIR process. Despite not having a mean-field approach for the

SIR model, the NIMFA critical rate for the SIS model serves well as a lower bound, as stated

in [Cator, Bovenkamp and Mieghem 2013], and the upper bound λUB
c can be used for smaller

values of α .

Finally, for both the SIS and SIR models, we compared the critical rates for the three

network models. We found that the BA network, with finite size, has lower values of critical

rate. The WS model has the highest critical rates, even compared with ER models with the same

largest eigenvalue and average degree. This higher value of λc can be attributed to the clustering

effect that has been observed to inhibit the spread of epidemics in homogeneous networks.

The second main problem discussed in this dissertation, developed in chapter 6, was

the study of a non-Markovian SIR process with Weibull infection in networks with modular

structure. To accomplish this, we studied the effect of the shape parameter in LFR benchmark

networks, which present community structure, and have the mixing parameter µ , which is the

average fraction of inter-community links, and is a way to measure how strong is the community

structure. The general behavior observed was that the prevalence, or size of the epidemic has

larger values when the shape parameter decreases. This is consistent with previous works in other

types of network structures [Mieghem and Bovenkamp 2013]. Strong community structures can

also reduce epidemic sizes. For larger values of mixing parameters, in general, with µ > 0.3, we

generate networks with more connected communities. In this case, small changes in prevalence

are observed when increasing µ , which indicates a limited impact of the modular structure on

the total number of infected individuals.

Additionally, we investigated how non-Markovian infection can affect the role of modu-
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larity in disease propagation. First, in section 6.3.1 we made an analysis of the time TM, defined

as the time for which the disease has reached at least one individual of each community. This

quantity consistently increases with α indicating that the aging process delays the passage of the

disease between communities.

The effect of this phenomenon was further supported by the study of “difference in

prevalence” defined as the difference between the epidemic sizes of two epidemic processes

with the same infection characteristics (λe f f and α) but different community structure. For small

values of λe f f , near the critical rate, there is a shape parameter that maximizes the difference in

prevalence. This indicates that for this value of α the community structure plays a more important

role. This is caused because for small α quick infections are common, and the communities can’t

contain the infection. On the contrary, for larger α there is an increase in the critical rate, and if

this increase is enough λe f f falls below λc, causing the system to return to the absorbing state.

For larger values of λe f f this is less evident in a small range of α , however, if a large enough

range is chosen the maximum behavior will probably persist.

The more important conclusion from this part of the project is that community structure

can significantly reduce the fraction of individuals infected, but this effect is reduced when

dealing with negative aging processes (α < 1), which prioritize infections in early age times.

However, positive aging (α > 1), as long as the critical transition rate is below the effective rate

chosen, can boost the effect of the community structure delaying the spread of the disease to

healthy communities. In other words, if the infection process favors late infection times, the

presence of communities can help contain the disease in the network.
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7.1 Limitations and future woks

Despite having many interesting results concerning the effect of the non-Markovian

epidemic process with Weibull infection in different network typologies, there are still some

limitations of the results studied. In this subsection, we will highlight some of these limitations

and propose possible solutions that could be implemented in the future. These limitations are

enumerated and described as follows:

1. Implement a better algorithm to calculate the susceptibility and vulnerability: We

mentioned in section 3.2.2.2 that the standard approach for calculating the susceptibility

and vulnerability of a Markovian epidemic process is the Quasi-stationary state analysis

[Shu et al. 2015]. This technique is very efficient and results in a better approximation

for the critical values than other “brute force” approaches. Although there are some more

refined methods than the one used in this project [Cator, Bovenkamp and Mieghem 2013],

there still needs more research to optimize the calculation of the susceptibility/vulnerability.

A possible solution could be to make an adaptation of the Quasi-stationary state analysis

used in the Markovian case, or if this ends up unfeasible just applying a more refined

approach to obtain better approximations for the critical rates would be a big improvement

for the results presented in 5.3.1 and 5.4.1.

2. Make a critical exponent analysis: The susceptibility/variability analysis to find a critical

effective transition rate is just a part a more complete analysis of phase transitions. Critical

exponents are calculated to completely characterize the phase transition of the system.

This kind of analysis has been made for the SIS non-Markovian model [Starnini, Gleeson

and ná 2017], and it would be interesting to extend these results to the SIR process.

3. NIMFA Mean field approach for the SIR non-Markovian model: Although there is

pairwise mien field approximation for the SIR non-Markovian process, there has not been

developed an N-intertwined approximation for this model. This could be interesting to

compare an eventual critical rate with the one found for the SIS model and with the values

found through the vulnerability analysis.

4. Explore different modular network structures: Although the LFR algorithm is very

versatile to generate networks with different topological characteristics, and in particular

different community structures. It would be interesting to analyze the behavior of non-
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Markovian epidemics in LFR networks with different characteristics. For instance, the

influence of the power law exponents for generating the community sizes and degrees,

which in this work were held constant.

5. Calculate the critical transition rate for the SIR non-Markovian epidemic model:

We mentioned trough out chapter 6 that many times the systems return to the absorbing

phase for some values of α . These observations where made by the fact that the average

prevalence values for these cases where near zero. However, it would be interesting to

calculate the critical rate and its dependence on α and possibly µ , to further support the

behavior described.

Besides these limitations, there are also some interesting topics not covered in this text

that would be valuable for future works. We can highlight the followings:

1. Explore other compartmental model: It would be valuable to study compartmental

models with more compartments like the SIRS model or SEIR model.

2. Explore other distributions for the inter-event times: The focus of this project, and

the majority of the literature is on the non-Markovian epidemic with Weibull infection.

Despite exiting some results on general distributions [Mieghem and Liu 2019], there has

been little exploration for other distributions that might have a more biological-inspired

characteristics.

3. Dynamic-sensitive methods to detect vital nodes on networks: This is a technique

where epidemic processes are performed to find which nodes have a bigger influence in the

propagation processes, this has been studied for Markovian processes [Lü et al. 2016], but

as we saw in the preliminary results considering a non-Markovian transmission process

can drastically change the outcome of an epidemic, so a natural follow up would be to

verify if dynamic-sensitive methods with non-Markovian processes have similarities or

differences with the traditional method.

4. Explore rumor spreading models with non-Markovian characteristic: The Maki Thomp-

son model, which uses a variation of the SIR model to describe rumor-spreading phenom-

ena, is a very popular model for rumor-spreading. For instance, there have been works

with multilayer networks where a rumor dynamic spread in one layer and an epidemic
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process in another one, with the goal to model real epidemics that can be altered by public

knowledge and information dissemination.

5. Use the renewal approach for non-Markovian dynamics in other dynamical prob-

lems: Applying this approach based on renewal processes to model non-Markovian pro-

cesses in problems from other research field like: ecological problems, as in the predator

pray models, or social behavior problems, as in the voting models.

Finally, we hope this work inspires new debates and works on the topic of memory

effects in spreading phenomena.
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