
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Evaluating classification models for resource-constrained
hardware

Lucas Tsutsui da Silva
Dissertação de Mestrado do Programa de Pós-Graduação em Ciências
de Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Lucas Tsutsui da Silva

Evaluating classification models for resource-constrained
hardware

Dissertation submitted to the Institute of Mathematics
and Computer Sciences – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Master in Science. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Gustavo Enrique de Almeida Prado
Alves Batista

USP – São Carlos
November 2020

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

d111e
da Silva, Lucas Tsutsui
 Evaluating classification models for resource-
constrained hardware / Lucas Tsutsui da Silva;
orientador Gustavo Enrique de Almeida Prado Alves
Batista. -- São Carlos, 2020.
 141 p.

 Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2020.

 1. Machine learning. 2. Classification. 3.
Embedded classifier. 4. WEKA. 5. scikit-learn. I.
Batista, Gustavo Enrique de Almeida Prado Alves,
orient. II. Título.

Lucas Tsutsui da Silva

Avaliação de modelos de classificação para hardware com
limitação de recursos

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Gustavo Enrique de Almeida
Prado Alves Batista

USP – São Carlos
Novembro de 2020

ACKNOWLEDGEMENTS

Meu primeiro desejo nestes agradecimentos é que atinjam, de maneira geral, todas
as pessoas que compartilharam comigo alguns passos da jornada que me fez chegar até este
momento. Reconheço o privilégio de ter tido pessoas incríveis ao meu lado durante várias etapas
da vida e sou grato a todas elas por isso, uma vez que, como disse BoJack Horseman, “[...] in

this terrifying world, all we have are the connections that we make.”

Em especial, gostaria de dedicar o restante deste espaço para agradecer àqueles que
tiveram participação direta em minha vida, principalmente no período que dediquei ao mestrado.
Começo, portanto, agradecendo à minha mãe e ao meu pai, que investiram em minha educação,
sempre dedicaram todos seus esforços para me oferecer o melhor que podiam e me incentivam
a seguir em busca dos meus sonhos. Aos meus irmãos, pela amizade e parceria desde sempre
e por me apoiarem em minhas escolhas. À minha namorada, pela companhia diária em todas
situações, por auxiliar nas minhas decisões com sua sabedoria e sensatez, e por fazer minha vida
mais feliz. Também a todos demais familiares que, de alguma forma, estiveram presentes na
minha vida durante esse período.

Agradeço ao meu orientador, que me acolheu em seu grupo de pesquisa, me deu a
oportunidade de trabalhar em um relevante projeto e me possibilitou ter experiências que
agregaram importantes conquistas e aprendizados à minha carreira profissional. Além disso,
sou grato por sempre estar disponível para me atender e ter oferecido sua ajuda em diversos
momentos.

Agradeço ao Vinicius, que colaborou com este trabalho desde o início, revisando o
primeiro esboço de projeto, dando valiosas sugestões e ajudando na escrita dos artigos publicados.
Ao André e à Barbara, por terem me auxiliado na preparação e realização dos experimentos com
os mosquitos. Também, a todos integrantes do LABIC, professores e alunos, que se dedicam
para fortalecer o ambiente de aprendizado, amizade e colaboração.

Aos amigos Daniela e Raphael, que me fizeram companhia enquanto morei em São
Carlos. Também, às demais amizades que mantiveram o contato e o apreço nesse período, apesar
da vida ter inevitavelmente colocado muitos de nós em caminhos diferentes.

Ao ICMC-USP, seus docentes e demais servidores, pela estrutura oferecida e empenho
em construir um ambiente de excelência e reconhecimento internacional. Aos professores da
FACOM-UFMS, que me apresentaram a Computação e foram responsáveis por construir minha
base de conhecimento nessa área.

Finalmente, agradeço ao Conselho Nacional de Desenvolvimento Científico e Tec-
nológico (CNPq), processo 166919/2017-9, e à United States Agency for International De-

velopment (USAID), grant AID-OAA-F-16-00072, pelo suporte financeiro que possibilitou o
desenvolvimento deste trabalho.

“Para examinar a verdade é necessário,

pelo menos uma vez na vida, pôr todas as

coisas em dúvida, tanto quanto se puder.”

(René Descartes)

RESUMO

SILVA, L. T. Avaliação de modelos de classificação para hardware com limitação de recur-
sos. 2020. 141 p. Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2020.

Aprendizado de Máquina (AM) está se tornando uma tecnologia ubíqua empregada em muitas
aplicações do mundo real em diversas áreas, como agricultura, saúde, entomologia e enge-
nharia. Em algumas aplicações, sensores monitoram o ambiente, enquanto algoritmos de AM
supervisionado são responsáveis por interpretar os dados para tomar uma decisão automática.
Geralmente, esses dispositivos enfrentam três restrições principais: consumo de energia, custo e
falta de infraestrutura. A maioria desses desafios pode ser melhor resolvida com a implemen-
tação de classificadores de AM no hardware que monitora o ambiente. Portanto, precisamos
de classificadores altamente eficientes, adequados para serem executados em hardware com
poucos recursos. No entanto, esse cenário entra em conflito com o estado-da-prática de AM, no
qual os classificadores são frequentemente implementados em linguagens interpretadas de alto
nível (e.g., Java ou Python), fazem uso irrestrito de operações de ponto flutuante e assumem
muita disponibilidade de recursos, como memória, processamento e energia. Neste trabalho,
apresentamos uma ferramenta de software chamada Embedded Machine Learning (EmbML)

que implementa um pipeline para desenvolver classificadores para microcontroladores de baixa
potência. Esse pipeline começa com o aprendizado de um classificador em um computador
desktop ou servidor, utilizando pacotes ou bibliotecas de software populares como WEKA ou
scikit-learn. A ferramenta EmbML converte o classificador em um código C++ adaptado com
suporte para hardware com recursos limitados, como prevenção do uso desnecessário da memória
principal e implementação de operações de ponto fixo para números não-inteiros. Nossa avalia-
ção experimental com conjuntos de dados de benchmark e uma variedade de microcontroladores
mostra que os classificadores da ferramenta EmbML alcançam resultados competitivos em
termos de acurácia, tempo de classificação e custo de memória. Comparados aos classificadores
de algumas ferramentas relacionadas existentes, os nossos obtiveram o melhor desempenho de
tempo e memória em pelo menos 70% dos casos. Por fim, realizamos experimentos em uma
aplicação real para descrever o pipeline completo de uso da ferramenta EmbML e avaliar seus
classificadores com uma armadilha inteligente para classificar e capturar insetos alados.

Palavras-chave: Aprendizado de máquina, Classificação, Classificador embarcado, WEKA,
scikit-learn.

ABSTRACT

SILVA, L. T. Evaluating classification models for resource-constrained hardware. 2020. 141
p. Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática Computacional)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2020.

Machine Learning (ML) is becoming a ubiquitous technology employed in many real-world
applications in diverse areas such as agriculture, human health, entomology, and engineering.
In some applications, sensors measure the environment while supervised ML algorithms are
responsible for interpreting these data to make an automatic decision. Generally, these devices
face three main restrictions: power consumption, cost, and lack of infrastructure. Most of these
challenges can be better addressed by embedding ML classifiers in the hardware that senses
the environment. Thus, we need highly-efficient classifiers suitable to execute in unresourceful
hardware. However, this scenario conflicts with the state-of-practice of ML, in which classifiers
are frequently implemented in high-level interpreted languages (e.g., Java or Python), make
unrestricted use of floating-point operations and assume plenty of resources such as memory,
processing and energy. In this work, we present a software tool named Embedded Machine

Learning (EmbML) that implements a pipeline to develop classifiers for low-power microcon-
trollers. This pipeline starts with learning a classifier in a desktop or server computer using
popular software packages or libraries as WEKA or scikit-learn. EmbML converts the classifier
into a carefully crafted C++ code with support for resource-constrained hardware, such as the
avoidance of unnecessary use of main memory and implementation of fixed-point operations
for non-integer numbers. Our experimental evaluation on benchmark datasets and a variety of
microcontrollers shows that EmbML classifiers achieve competitive results in terms of accuracy,
classification time, and memory cost. Compared to classifiers from some existing related tools,
ours achieved the best time and memory performances in at least 70% of the cases. Lastly, we
conduct experiments in a real-world application to describe the complete pipeline for using
EmbML and assessing its classifiers with an intelligent trap to classify and capture flying insects.

Keywords: Machine learning, Classification, Embedded classifier, WEKA, scikit-learn.

LIST OF FIGURES

Figure 1 – An example of a decision tree model for playing tennis. 46

Figure 2 – An example of an MLP network. 47

Figure 3 – An example of hyperplane with hard-margin for a linearly separable problem. 50

Figure 4 – An example of hyperplane with soft-margin for a problem with noisy data. . 50

Figure 5 – Workflow for generating classifier source code using EmbML. 54

Figure 6 – Sigmoid function and its approximation. 60

Figure 7 – Sigmoid function and a 2-point PWL approximation. 61

Figure 8 – Sigmoid function and a 4-point PWL approximation. 62

Figure 9 – Arduino Uno. 89

Figure 10 – Arduino Mega 2560. 89

Figure 11 – Arduino Due. 89

Figure 12 – Teensy 3.2. 89

Figure 13 – Teensy 3.5. 89

Figure 14 – Teensy 3.6. 89

Figure 15 – Mean classification time for WEKA classifiers. 93

Figure 16 – Mean classification time for scikit-learn classifiers. 94

Figure 17 – Memory consumption for WEKA classifiers. 95

Figure 18 – Memory consumption for scikit-learn classifiers. 96

Figure 19 – Mean classification time for the MultilayerPerceptron WEKA classifiers. . . 99

Figure 20 – Mean classification time for the MLPClassifier scikit-learn classifiers. . . . 100

Figure 21 – Mean classification time for the J48 WEKA classifiers. 101

Figure 22 – Mean classification time for the DecisionTreeClassifier scikit-learn classifiers.102

Figure 23 – Mean classification time comparison between classifiers from EmbML and
related tools. 104

Figure 24 – Memory usage comparison between classifiers from EmbML and related tools.105

Figure 25 – The projected intelligent trap for flying insects. 110

Figure 26 – The developed optical sensor. 111

Figure 27 – The trap’s printed circuit board and its components. 113

Figure 28 – An example of an Aedes aegypti female input signal obtained by the optical
sensor. 114

Figure 29 – The flight activity of Aedes aegypti mosquitoes during the day. 114

Figure 30 – The impact of temperature on the WBF of Aedes aegypti female insects. . . 115

Figure 31 – An example of a Bombus impatiens signal captured by the optical sensor
(top), the signal converted to the frequency domain (middle), and the signal
cepstrum (bottom). 115

Figure 32 – The collector device produced to gather data from different flying insect species.116
Figure 33 – Chamber projected to control ambient conditions. 117
Figure 34 – Accuracy comparison. 121
Figure 35 – Classification time comparison. 121
Figure 36 – Collectors used in the experiment. The left one contains five female Aedes

aegypti mosquitoes and the right one contains five males. 122
Figure 37 – Front-view of the cage. 124
Figure 38 – Side-view of the cage. 124
Figure 39 – Arrangement of the trap and the release device inside the cage. 125
Figure 40 – Mosquito release device totally closed. 126
Figure 41 – Mosquito release device totally open. 126

LIST OF CHARTS

Chart 1 – Classifiers and programming languages supported by sklearn-porter (version
0.7.3). 34

Chart 2 – Comparison between related tools. 40
Chart 3 – Comparison between related applications. 41
Chart 4 – Examples of kernel functions. 49
Chart 5 – Arithmetic operations in Qn.m fixed-point representation. 58
Chart 6 – Code modifications supported by EmbML for each classifier class. 64
Chart 7 – Time and memory complexities for WEKA and scikit-learn classifiers. 82

LIST OF ALGORITHMS

Algorithm 1 – Iterative version of a decision tree classification algorithm. 63
Algorithm 2 – If-then-else statements for a decision tree classification algorithm. . . . 63
Algorithm 3 – Classification algorithm for the J48 WEKA model. 67
Algorithm 4 – Converting a J48 WEKA model into if-then-else statements. 67
Algorithm 5 – Classification algorithm for the Logistic WEKA model. 68
Algorithm 6 – Classification algorithm for the MultilayerPerceptron WEKA model. . 70
Algorithm 7 – Forward function for the MultilayerPerceptron WEKA model. 70
Algorithm 8 – Classification algorithm for the SMO WEKA model. 72
Algorithm 9 – SVMOutput function for the linear kernel. 73
Algorithm 10 – SVMOutput function for the polynomial kernel. 73
Algorithm 11 – SVMOutput function for the RBF kernel. 74
Algorithm 12 – Classification algorithm for the DecisionTreeClassifier scikit-learn

model. 75
Algorithm 13 – Converting a DecisionTreeClassifier scikit-learn model into if-then-else

statements. 76
Algorithm 14 – Classification algorithm for the LinearSVC and the LogisticRegression

scikit-learn models. 77
Algorithm 15 – Classification algorithm for the MLPClassifier scikit-learn model. . . 78
Algorithm 16 – Forward function for the MLPClassifier scikit-learn model. 79
Algorithm 17 – Classification algorithm for the SVC scikit-learn model. 81
Algorithm 18 – Kernel function for a polynomial model. 81
Algorithm 19 – Kernel function for a RBF model. 82

LIST OF TABLES

Table 1 – Characteristics of the evaluated datasets. 87
Table 2 – Characteristics of the evaluated embedded platforms. 90
Table 3 – Accuracy (%) for the WEKA classifiers. 91
Table 4 – Accuracy (%) for the scikit-learn classifiers. 92
Table 5 – Accuracy (%) for the MultilayerPerceptron WEKA models. 97
Table 6 – Accuracy (%) for the MLPClassifier scikit-learn models with sigmoid activa-

tion function. 98
Table 7 – An example of mean classification time results for the DecisionTreeClassifier

model, D2 dataset, and AT91SAM3X8E microcontroller. 106
Table 8 – Overall time and memory comparison of classifiers from EmbML and related

tools. 107
Table 9 – Searched values of hyperparameters for each classification algorithm. 118
Table 10 – Accuracies (%) for each classification model supported by EmbML. 119
Table 11 – Classification time (µs) for each classification model supported by EmbML. . 120
Table 12 – Memory consumption (kB) for each classification model supported by EmbML.121
Table 13 – Results gathered from the collector containing only female Aedes aegypti

mosquitoes. 123
Table 14 – Results gathered from the collector containing only male Aedes aegypti

mosquitoes. 123
Table 15 – Time results collected from the female Aedes aegypti mosquitoes. 123
Table 16 – Time results collected from the male Aedes aegypti mosquitoes. 123
Table 17 – Results from the trap experiment. 126
Table 18 – Temperature and relative humidity values gathered by the trap. 127
Table 19 – Time results collected in the experiment with the trap. 127

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

API Application Programming Interface

BSD Berkeley Software Distribution

CART Classification And Regression Tree

CMSIS Cortex Microcontroller Software Interface Standard

CO2 carbon dioxide

DFT Discrete Fourier Transform

DSP Digital Signal Processor

EmbML Embedded Machine Learning

FANN Fast Artificial Neural Network

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

GPU Graphics Processing Unit

GUI Graphical User Interface

ID3 Iterative Dichotomiser 3

IDFT Inverse Discrete Fourier Transform

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

JAR Java Archive

kNN k-Nearest Neighbors

LED light-emitting diode

LSB Least Significant Bit

MATLAB Matrix Laboratory

ML Machine Learning

MLP Multilayer Perceptron

NLLS Nonlinear Least-Squares

NN Neural Networks

PWL Piecewise Linear

RBF Radial Basis Fuction

ReLU Rectified Linear Unit

RTC real-time clock

SD standard deviation

SRAM Static Random-Access Memory

SVM Support Vector Machine

WBF Wingbeat Frequency

WEKA Waikato Environment for Knowledge Analysis

CONTENTS

1 INTRODUCTION . 27
1.1 Background . 27
1.2 Justification and Motivation . 27
1.3 Proposal . 29
1.4 Objectives and Contributions . 30
1.5 Dissertation Organization . 31
1.6 Publications . 31

2 RELATED WORK . 33
2.1 Initial Considerations . 33
2.2 Related Tools . 33
2.3 Related Applications . 37
2.3.1 Eye gesture classification . 37
2.3.2 Fall detection . 38
2.3.3 Low-cost autonomous vehicle . 38
2.3.4 Lung signals classification . 38
2.3.5 Ventricular tachycardia and fibrillation detection 39
2.3.6 White cane gesture classification . 39
2.3.7 Other applications . 39
2.4 Discussion . 40
2.5 Final Considerations . 41

3 CLASSIFICATION ALGORITHMS AND MODELS 43
3.1 Initial Considerations . 43
3.2 Machine Learning Overview . 43
3.3 Classification . 44
3.3.1 Decision Tree . 45
3.3.2 Multilayer Perceptron . 45
3.3.3 Logistic Regression . 48
3.3.4 Support Vector Machine . 48
3.4 Machine Learning Tools . 50
3.5 Final Considerations . 52

4 EMBML – EMBEDDED MACHINE LEARNING 53

4.1 Initial Considerations . 53
4.2 Pipeline Overview . 53
4.3 Serialization and Model Recovery . 55
4.4 Algorithms and Classes . 56
4.5 General Modifications . 57
4.5.1 Fixed-point Representation . 57
4.6 Sigmoid Function Approximations . 60
4.6.1 Piecewise Linear Approximation . 60
4.7 If-Then-Else Statements For Decision Trees 62
4.8 Final Considerations . 63

5 WEKA AND SCIKIT-LEARN MODELS 65
5.1 Initial Considerations . 65
5.2 WEKA classes . 65
5.2.1 J48 . 65
5.2.2 Logistic . 67
5.2.3 MultilayerPerceptron . 68
5.2.4 SMO . 71
5.3 Scikit-learn Classes . 74
5.3.1 DecisionTreeClassifier . 74
5.3.2 LinearSVC and LogisticRegression . 76
5.3.3 MLPClassifier . 77
5.3.4 SVC . 79
5.4 Discussion . 81
5.5 Final Considerations . 83

6 COMPARATIVE ANALYSIS . 85
6.1 Initial Considerations . 85
6.2 Experimental Setup . 85
6.2.1 Datasets . 86
6.2.2 Classifiers . 87
6.2.3 Microcontrollers . 88
6.3 Analysis of the EmbML Classifiers . 90
6.3.1 Accuracy . 90
6.3.2 Classification Time . 91
6.3.3 Memory Usage . 94
6.4 EmbML Code Modifications . 97
6.4.1 Approximations for Sigmoid Function in MLP 97
6.4.2 If-Then-Else Statements and Iterative Decision Trees 98
6.5 Comparing With Related Tools . 103

6.6 Final Considerations . 106

7 CASE STUDY: AN INTELLIGENT TRAP FOR FLYING INSECTS 109
7.1 Initial Considerations . 109
7.2 The Intelligent Trap . 109
7.2.1 Optical Sensor . 110
7.2.2 Developed Board . 112
7.3 Predictive Features And Data Preprocessing 112
7.4 Data Collection . 116
7.5 Classifier Analysis . 117
7.6 Experiments With Collectors . 120
7.7 Experiments With The Trap . 124
7.8 Limitations . 128
7.9 Final Considerations . 128

8 CONCLUSION . 129
8.1 Initial Considerations . 129
8.2 Dissertation Review . 129
8.3 Limitations . 130
8.4 Future Work . 131

BIBLIOGRAPHY . 133

27

CHAPTER

1
INTRODUCTION

1.1 Background
With the recent technological advancement, computational applications have been de-

veloped to solve problems existing in various areas in society. There has also been a growing
interest from the scientific community and industry in the development of practical applications
that use concepts related to Artificial Intelligence (AI), especially Machine Learning (ML), for
tasks involving, for instance, knowledge discovery in large databases or automatic classification.
As a result of this effort, ML is becoming a ubiquitous technology with applications in areas as
diverse as agriculture, human health, entomology, engineering, transportation, and sociology.
Many of these applications use ML algorithms as the primary approach to convert a series of
low-level signals sensed from the environment into a higher-level interpretation of the data.

For instance, in human health, classifiers convert accelerometer and gyroscope data into
different movements, allowing the detection of falls that constitute a significant problem in the
elderly population (CHEN et al., 2006; LUŠTREK; KALUŽA, 2009; CHOI; RALHAN; KO,
2011; CHELLI; PÄTZOLD, 2019). In agriculture, sensors support real-time soil management,
allowing a reduction in the use of material resources such as water (COOPERSMITH et al.,
2014). In transportation, autonomous vehicles use ML algorithms to interpret data collected from
several sensors and produce real-time driving decisions (FERNANDES et al., 2014; BOJARSKI
et al., 2016). In entomology, traps can capture and sort mosquitoes by species, providing valuable
information to plan control activities (BATISTA et al., 2011a; SOUZA; SILVA; BATISTA, 2013;
SILVA et al., 2015).

1.2 Justification and Motivation
In applications which we need to sense, measure, and gather information from the

environment, we frequently face three main restrictions (TUBAISHAT; MADRIA, 2003): power

28 Chapter 1. Introduction

consumption, cost, and lack of infrastructure. For example, sensors often have a battery as its
main power source, so efficient use of power allows them to run for more extended periods. Price
is a significant factor that hinders scaling in several areas, such as agriculture. Infrastructure
assumptions such as reliable internet connection or power supply frequently do not hold when,
for instance, surveying mosquitoes in low-income countries.

Most of these challenges can be better addressed by embedding ML classifiers in the
hardware that senses the environment, creating smart sensors able to interpret the low-level
input. These smart sensors are low-powered systems that usually include one or more sensors, a
processing unit, memory, a power supply, and a radio (YICK; MUKHERJEE; GHOSAL, 2008).
Since sensor devices have restricted memory capacity and can be deployed in difficult-to-access
areas, they often use radio for wireless communication to transfer the data to a base station or
to the cloud in case of Internet of Things (IoT) applications (ATZORI; IERA; MORABITO,
2010; BOTTA et al., 2016). Therefore, these smart sensors are more power-efficient since they
eliminate the need for communicating all the raw data. Instead, they can only report events
of interest, such as a dry soil crop area that needs watering or the capture of a disease-vector
mosquito.

However, for this approach to be cost-effective, we need highly-efficient classifiers
suitable to execute in unresourceful hardware, such as low-power microcontrollers. This scenario
conflicts with the state-of-practice of ML, in which developers frequently implement classifiers in
high-level interpreted languages such as Java or Python, make unrestricted use of floating-point
operations and assume plenty of resources such as memory, processing and energy. Moreover,
these classifiers usually execute on powerful computer servers that support intensive parallel
computing and contain specific hardware such as Graphics Processing Unit (GPU) to speed up
processing operations.

The problem of embedding ML models in hardware with severe restrictions in memory,
processing, and power also imposes a different perception of the classifier analysis. In this case,
metrics such as memory consumption and processing time become as important as the error rate
of the ML model. Evaluating those metrics are also extremely necessary to guarantee that the
classifier fits in the available memory and returns the results in a viable time, especially when the
application requires real-time processing – i.e., when the timing requirement of each task must
be individually satisfied (STANKOVIC, 1988). This is a common scenario in data stream mining
problems that demand to constantly process a high volume of data in limited time (KREMPL et

al., 2014).

In real-world solutions, there are several examples of sensing applications with a highly
restricted time between data gathering and acting. For instance, when a flying insect crosses the
optical sensor of the intelligent trap proposed by Batista et al. (2011a) and Silva et al. (2013),
the trap must be agile in deciding whether or not to capture the insect before it flies away. In Shi
et al. (2009), a wearable device must be able to recognize a human fall before it fully completes

1.3. Proposal 29

in order to activate an airbag system that will protect the individual from impact injuries.

Considering that critical applications may require immediate actions, it is not feasible
to rely on transmitting the data to an external system and receiving the response to make a
decision. Instead, local processing might be the best solution for these cases, since it decreases
the latency of computing a decision. This approach can also help increase the privacy of user data
for some applications because it prevents propagating the data to external devices. Therefore,
to achieve these benefits, we need to be able to implement the ML models directly in the
resource-constrained hardware.

1.3 Proposal

In order to help overcome the problems previously discussed, this work presents a
software tool named Embedded Machine Learning (EmbML) (SILVA; SOUZA; BATISTA,
2019a; SILVA; SOUZA; BATISTA, 2019b) that implements a pipeline to develop classifiers
for resource-constrained hardware. This pipeline starts with learning a classifier in a desktop or
server computer using popular software packages or libraries such as Waikato Environment for
Knowledge Analysis (WEKA) (HALL et al., 2009) and scikit-learn (PEDREGOSA et al., 2011).
Next, the proposed tool converts the trained classifier into a carefully crafted C++ code with
support for unresourceful hardware, such as the avoidance of unnecessary use of main memory
and implementation of fixed-point operations for non-integer numbers.

It is important to highlight that EmbML does not support the learning step in the
embedded hardware. We advocate that, for most of the learning algorithms, the search for the
model parameters is too expensive to execute in a low-power microcontroller. However, most ML
algorithms output classifiers that are highly efficient, including the ones supported in our tool:
Logistic Regression, Decision Tree, Multilayer Perceptron (MLP), and Support Vector Machine
(SVM). The choice of these approaches is also based on the literature that reports the successful
application of these methods with embedded hardware (FAROOQ et al., 2010; RÚA et al., 2012;
TOCCHETTO et al., 2014; SAMPAIO et al., 2017).

Due to the application purposes, the main focus of EmbML is to produce classifiers to
execute in low-power microcontroller-based systems, instead of more robust hardware solutions
such as GPU, Digital Signal Processor (DSP), and Field Programmable Gate Array (FPGA).
By doing that, we believe that it is possible to provide extensive support for a larger number of
embedded applications, once microcontrollers are usually cheaper and easier to program using
popular programming languages. Also, in many applications that include sensing, the classifier
represents only a piece of a more complex system that may involve more expensive subtasks,
such as signal and image processing, and define the requirement for powerful hardware.

This work also includes a case study in which we present and analyze the complete
pipeline for producing classifiers for a low-power hardware in an intelligent trap for flying

30 Chapter 1. Introduction

insects (BATISTA et al., 2011a; SOUZA; SILVA; BATISTA, 2013; SILVA et al., 2015). With
this practical case, we focus on explaining each step of this pipeline in detail and illustrating a
performance evaluation conducted using EmbML classifiers.

1.4 Objectives and Contributions
The main objective of this work is to provide a simple and open-source tool that can be

used by researchers and practitioners in the development of classifiers for low-power microcon-
trollers. In other words, EmbML objectives include:

• having its source code available to the ML community for free usage and improvement;

• generating microcontroller-tailored classifier code that implements specific modifications
to optimize its execution in resource-constrained hardware;

• and providing a variety of supported classification models, supplying options to the
end-user, given that no single ML classifier is optimal for all applications (FERNÁNDEZ-
DELGADO et al., 2014).

The overall contribution of this dissertation is to present a software tool that automates
the process of producing classifiers for low-power microcontroller-based embedded systems. We
assume that it is possible to adapt off-board-trained classification models trained in popular ML
tools for use on these systems.

A detailed presentation concerning implementation issues of the proposed tool, the anal-
ysis of results with benchmark datasets and different microcontrollers, as well as the comparison
against other similar software, also constitute an important contribution of this work since most
of the previously proposed and related tools are available without such scientific rigor. Thus, this
work aims to support both researchers and practitioners interested in embedding their supervised
learning models into resource-constrained hardware using open-source software.

The specific contributions are as follows:

• Assist the process of using classifiers in unresourceful embedded systems;

• Support the development of technological solutions that employ classification models in
low-power applications;

• Provide a range of options of classification models produced by different learning algo-
rithms to execute in microcontrollers;

• Enable the production of modified classifier codes that can decrease memory consumption
and processing time;

1.5. Dissertation Organization 31

• Produce a comparative analysis using accuracy, classification time, and memory usage to
evaluate the performance of EmbML classifiers against those produced by some similar
tools;

• In a practical application, present the detailed pipeline of using EmbML to embed a
classifier into resource-constrained hardware and evaluate its performance.

1.5 Dissertation Organization
The next chapters of this dissertation are organized as follows:

• Chapter 2 presents a literature review of related tools and possible applications;

• Chapter 3 discusses the relevant ML concepts, focusing on details of the supported
classification algorithms;

• Chapter 4 explains the pipeline process for using the implemented tool and describes its
features;

• Chapter 5 presents an in-depth study of the supported classifiers from WEKA and scikit-
learn;

• Chapter 6 shows a comparative analysis of the classifier performances using different
benchmark datasets and microcontrollers;

• Chapter 7 considers a real-world application to explain the pipeline for producing classifiers
using EmbML;

• Finally, Chapter 8 presents our conclusions as well as this work’s limitations. We also
discuss possible pathways for future work.

1.6 Publications
The intermediate results from this work produced two papers published at the 14º

Simpósio Brasileiro de Automação Inteligente (SILVA; SOUZA; BATISTA, 2019b) and the
2019 IEEE 31st International Conference on Tools with Artificial Intelligence (SILVA; SOUZA;
BATISTA, 2019a).

33

CHAPTER

2
RELATED WORK

2.1 Initial Considerations

In this chapter, we review the most related research in the literature to the proposal of this
work. First, we present existing tools that allow obtaining classifiers for microcontrollers using
models trained in popular ML tools. The main goals are to present the features of these related
tools – such as supported models, optimizations for unresourceful hardware, and programming
languages of the generated classifier source codes – and how they differ from EmbML. Then,
we examine works involving successful applications of ML models in resource-constrained
embedded systems. We later explain how similar projects can take advantage of using EmbML
in their analysis.

2.2 Related Tools

There is a good range of tools in the literature that converts classifiers into source
code. However, all these tools fail in, at least, one of the objectives of EmbML, presented in
Section 1.4. This section briefly summarizes the most relevant related tools in the literature.

Sklearn-porter1 is a popular tool to convert classification and regression models built off-
board using the Python ML library scikit-learn. This tool supports a wide range of programming
languages, including Java, JavaScript, C, Go, PHP, and Ruby, as well as several classifiers such
as SVM, Decision Trees, Random Forest, Naive Bayes, k-Nearest Neighbors (kNN), and MLP.
Chart 1 presents all classifiers and programming languages supported by this tool. Unfortunately,
the sklearn-porter does not provide any modification in the output classifier codes to support
unresourceful hardware. For instance, they do not offer an efficient usage of data memory or any
option to optimize operations with real numbers. Therefore, we assume this type of hardware is

1 <https://github.com/nok/sklearn-porter>

https://github.com/nok/sklearn-porter

34 Chapter 2. Related Work

not the focus of the tool.

Chart 1 – Classifiers and programming languages supported by sklearn-porter (version 0.7.3).

Scikit-learn classifier Java JavaScript C Go PHP Ruby
svm.SVC X X X X X
svm.NuSVC X X X X X
svm.LinearSVC X X X X X X
tree.DecisionTreeClassifier X X X X X X
ensemble.RandomForestClassifier X X X X X X
ensemble.ExtraTreesClassifier X X X X X
ensemble.AdaBoostClassifier X X X
neighbors.KNeighborsClassifier X X
naive_bayes.GaussianNB X X
naive_bayes.BernoulliNB X X
neural_network.MLPClassifier X X
neural_network.MLPRegressor X

Weka-porter2 is a similar, but a more restricted project focused on the popular WEKA
software package. This tool converts J48 decision tree classifiers into C, Java and JavaScript
codes. Although the author indicates that this tool can be used to implement embedded classifiers,
the lack of options for classification algorithms – such as SVM and Neural Networks (NN) –
restricts its applicability.

Similarly to weka-porter, there are a considerable number of tools that are specialized
in transforming decision tree models into C++ source code. Although the reasons for such
prevalence are not clear, it is reasonable to presume that it is due to the direct mapping of these
models into if-then-else statements. Some examples are:

• J48toCPP3 that supports J48 classifiers from WEKA;

• C4.5 decision tree generator4 that converts C4.5 models from WEKA;

• and DecisionTreeToCpp5 converts DecisionTreeClassifier models from scikit-learn.

SVM is another model that has a good number of conversion tools to C++. Two tools
based on the LIBSVM library (CHANG; LIN, 2011) and developed for microcontrollers are:

• mSVM6 that includes support to fixed-point arithmetic;

2 <https://github.com/nok/weka-porter>
3 <https://github.com/mru00/J48toCPP>
4 <https://github.com/hatc/C4.5-decision-tree-cpp>
5 <https://github.com/papkov/DecisionTreeToCpp>
6 <https://github.com/chenguangshen/mSVM>

https://github.com/nok/weka-porter
https://github.com/mru00/J48toCPP
https://github.com/hatc/C4.5-decision-tree-cpp
https://github.com/papkov/DecisionTreeToCpp
https://github.com/chenguangshen/mSVM

2.2. Related Tools 35

• and uLIBSVM7 that provides a simplified version of SVM-predict function from LIB-
SVM; however, without support for fixed-point representation.

Although both tools allow the conversion of SVM classifiers to run in microcontrollers,
an explicit limitation is the lack of support for a more diverse set of algorithms.

M2cgen8 is another option that can convert ML models, trained with scikit-learn, into
native code in Python, Java, C, JavaScript, PHP, R, Go, and others. It supports a variety of
classification and regression models such as Logistic Regression, SVM, Decision Tree, Random
Forest, XGBoost, and others. But, similar to sklearn-porter, this tool does not provide any
source code adaptation specific to run in a microcontroller environment.

Emlearn9 is one of the most similar tool to the one proposed in this work. It generates
source code in the C programming language from models built with scikit-learn or Keras. The
tool presents support to the following algorithms: Decision Trees, Naive Bayes, MLP, and
Random Forest. This tool is specifically designed to support embedded devices and has features
such as avoiding the usage of dynamic memory allocation and standard libraries such as stdlib,
as well as fixed-point representation for Naive Bayes classifiers. Despite those advantages, it has
little diversity of classification models, not supporting popular algorithms on embedded systems
such as SVM. Also, the Naive Bayes classifier is the only one currently able to use fixed-point
arithmetic.

The popular TensorFlow10 platform also provides support to run its models in embedded
microcontrollers. TensorFlow is an ML system that operates on a large scale and in heterogeneous
environments and supports a variety of applications, with a focus on training and inference on
deep neural networks (ABADI et al., 2016). A set of its tools, called TensorFlow Lite, enables
applying its models on mobile, embedded, and IoT devices. Particularly, TensorFlow Lite for
Microcontrollers is a library written in C++ programming language and designed to execute
TensorFlow ML models on 32-bit hardware such as microcontrollers and other devices with
memory constraints. As an option to decrease the model size and memory usage, it allows
applying a post-training quantization technique that reduces the precision of the numbers in the
model. Some limitations identified by the authors include: support for a limited subset of Tensor-
Flow operations, support for a limited set of devices, low-level C++ Application Programming
Interface (API) requiring manual memory management, and training is not supported. It is also
possible to recognize a restricted set of supported classifiers – only NNs – when compared to
EmbML.

EdgeML11 is a library written in Python using Tensorflow and PyTorch that generates

7 <https://github.com/PJayChen/uLIBSVM>
8 <https://github.com/BayesWitnesses/m2cgen>
9 <https://github.com/emlearn/emlearn>
10 <https://www.tensorflow.org/>
11 <https://github.com/Microsoft/EdgeML/>

https://github.com/PJayChen/uLIBSVM
https://github.com/BayesWitnesses/m2cgen
https://github.com/emlearn/emlearn
https://www.tensorflow.org/
https://github.com/Microsoft/EdgeML/

36 Chapter 2. Related Work

code from ML algorithms for resource-scarce devices, such as Arduino and Raspberry Pi. The
EdgeML library provides a set of efficient ML algorithms designed to work off the grid on
severely resource-constrained scenarios. This library allows the training, evaluation, and deploy-
ment of these algorithms onto various target devices and platforms. It contains implementations
of the following algorithms: Bonsai (KUMAR; GOYAL; VARMA, 2017), a shallow and strong
non-linear tree-based classifier; ProtoNN (GUPTA et al., 2017), a prototype based kNN clas-
sifier; and EMI-RNN (DENNIS et al., 2018), FastRNN, and FastGRNN (KUSUPATI et al.,
2018), techniques for training recurrent NN cells. These modified and original ML algorithms
focus on improving processing time and memory consumption of the models to execute them
in resource-constrained devices. EdgeML also supports generating fixed-point code for these
ML models that can run on microcontrollers through SeeDot (GOPINATH et al., 2019), an
original automatic quantization tool. Besides being a relatively complete solution, a possible
drawback of using this tool is the limitation of supporting ML models generated only by its
original algorithms, which demands particular expertise to manipulate them but is also a unique
characteristic compared to other related tools – including EmbML.

Cortex Microcontroller Software Interface Standard (CMSIS)12 offers a different ap-
proach to executing NN models in microcontrollers. This library is a hardware abstraction layer
that defines generic tool interfaces and enables device support for microcontrollers based on
Arm Cortex processors. One of its components is the CMSIS-NN which is a set of efficient
kernels developed to maximize the performance and minimize the memory footprint of NN
models on Arm Cortex-M processors targeted for IoT devices (LAI; SUDA; CHANDRA, 2018).
Note that CMSIS-NN does not support training the model, it consists of a collection of function
implementations for layers usually presented in NNs to help dump a trained NN in a microcon-
troller. It is the user’s responsibility to correctly combine function calls and upload the network
weights in the code. Also, this library only implements fixed-point operations and allows building
an NN with any of the following layers: fully connected, convolution, pooling, softmax, and
others. Some disadvantages of using this library include supporting only NN models and the
non-automatic process of producing a classifier code.

Fast Artificial Neural Network (FANN)13 is a free open-source NN library, which
implements multilayer artificial NN in C and supports execution in both fixed and floating point
formats. Derived from this library, FANN-on-MCU14 is an open-source framework for easy
deployment of NNs trained with FANN library on ARM Cortex-M cores and parallel ultra-low
power RISC-V-based processors. It offers automated code generation targeted to microcontrollers
with fixed or floating point formats and uses some optimized functions provided by CMSIS to
improve performance on ARM Cortex-M cores. Wang et al. (2020) present this framework in
detail and evaluate runtime and power consumption of its NNs in three different applications for

12 <https://github.com/ARM-software/CMSIS_5>
13 <https://github.com/libfann/fann>
14 <https://github.com/pulp-platform/fann-on-mcu>

https://github.com/ARM-software/CMSIS_5
https://github.com/libfann/fann
https://github.com/pulp-platform/fann-on-mcu

2.3. Related Applications 37

a wearable multi-sensor bracelet. Though this is a robust solution, the numbers of supported ML
models (only NNs) and microcontrollers are very restricted.

All the tools mentioned so far are open-source. An example of a proprietary tool is the
STM32Cube.AI which allows fast and automatic conversion of NN models into optimized code
that can run on STM32 ARM Cortex-M-based microcontrollers. It offers interoperability with
popular deep learning training tools, permitting to import their output models directly into the
STM32Cube.AI. Besides being a proprietary tool, another drawback is its lack of diversity in
ML models.

Furthermore, commercial tools are abundant, but beyond the scope of this work due to
the costs involved. However, considering the popularity in academia, it is valid to mention the
Matrix Laboratory (MATLAB) Coder, a tool that allows converting a MATLAB program –
including ML models – to produce C and C++ codes for a variety of hardware platforms, from
desktops to embedded hardware.

2.3 Related Applications

The following works report the use of ML models in resource-constrained systems. They
are some examples of applications that motivate the development of the tool presented in this
dissertation. The objective of showing them is to identify: successful experiences of embedding
ML models in low-power systems, different application scenarios that could take advantage
of using EmbML, characteristics of these problems, and the most commonly employed ML
models.

2.3.1 Eye gesture classification

O’Bard and George (2018) propose a low-cost assistive system for eye gesture classifica-
tion. Its main goal is to provide the ability to control speech devices using eye movements for
patients with quadriplegia, amyotrophic lateral sclerosis, or other neurodegenerative diseases.
The proposed system uses four electrodes placed around the user’s eyes to collect electroocu-
lography signals generated by eye movements. The authors evaluated kNN, SVM, and decision
tree models to predict gesture signals, which were recorded and divided into looking up, down,
left, and right as well as blink and idle. From this analysis, they selected the decision tree model
to implement on an ATMega328p microcontroller since it produced the smallest footprint of
MATLAB generated C code. In order to test on the embedded device in a real-time setup, they
decided to predict only blink and idle classes. Results show that the device was able to classify
blinks with 97.33% accuracy and filter out unintentional blinks with 100% accuracy.

38 Chapter 2. Related Work

2.3.2 Fall detection

A wearable device containing gyroscope sensors and accelerometers, proposed by Shi
et al. (2009), aims to reduce the force of the impact caused by falls in elderly people. The
system, containing an TMS3206713 DSP, preprocesses the signals gathered by the sensors, then
a classifier produced with the SVM algorithm is responsible for detecting a fall. Therefore,
this system must be able to identify falls before they complete in order to have sufficient time
to produce an intervention. The experiments performed in this work demonstrated that the
developed system successfully classified falls in real-time, enabling it to activate an airbag
system to reduce the impact. It is also important to note that, when analyzing the SVM classifier
with a linear kernel, the authors reported that despite the costly training process of the algorithm,
this model requires little computational effort to execute.

2.3.3 Low-cost autonomous vehicle

Farooq et al. (2010) present the development of a low-cost autonomous vehicle for
navigation and transportation of lightweight equipment. The system uses ultrasonic sensors,
whose data work as input to an NN model responsible for controlling the vehicle’s engines to
avoid obstacles. Also, the system includes a compass sensor, GPS receiver, and wheel encoder so
that it can determine and reach the desired destination. In order to reduce memory consumption
and processing time of the classifier implementation in the microcontroller (an AT89C52),
they used a piecewise linear approximation for the activation function of the NN neurons and
converted the network weights into integer format. The performed experiments obtained a success
rate of 80% for transporting computer accessories inside a university campus. In the end, the
authors suggest, as a possible application, the use of this system in wheelchair navigation for
individuals with physical disabilities.

2.3.4 Lung signals classification

A system for real-time monitoring and classification of lung signals, proposed by Toc-
chetto et al. (2014), aims to develop a portable device for clinical support. In this proposal,
the device captures lung sounds through a microphone placed in the patient’s thorax region,
processes the audio signals, and sends the information to a computer server that is available to the
attending doctor. Next, the authors trained an NN model with a dataset of lung sounds recorded
and classified into three classes, one normal and two pathological. Then, they implemented the
trained NN in a low-cost Atmel microcontroller with an Arm Cortex-M3 core, which obtained
classification results similar to those obtained with MATLAB in a desktop. Finally, they reported
that the classifier implementation in a low-cost microcontroller was a successful experience.

2.3. Related Applications 39

2.3.5 Ventricular tachycardia and fibrillation detection

Rúa et al. (2012) evaluate the performance of two classifiers when running on a Kinetis
K60 microcontroller – with an Arm Cortex-M4 core – for the task of real-time detecting ven-
tricular tachycardia and fibrillation. In this application, the authors focus on the importance of
analyzing the computational cost of the classifiers since they will run on ambulatory monitoring
devices. Thus, they trained SVM and NN classifiers with signals from an outpatient electrocar-
diogram dataset, implemented and tested it on a microcontroller using a dataset partition. Finally,
the authors report that they have achieved, in experiments, results close to studies that employ
off-line signal processing and conclude that the evaluated classifiers are suitable for detecting
tachycardia and ventricular fibrillation in microcontrollers.

2.3.6 White cane gesture classification

Patil et al. (2019) present a solution for people with visual impairment who use a white
cane for navigation. This solution is named GesturePod and consists of a plug-and-play device
that can be attached to any white cane to perform real-time gesture-based interactions to access
smartphones. According to the authors, the main technical challenge of this work is to develop a
solution that satisfies all the following restrictions: low-cost, lightweight, day-long operation,
and robust gesture recognition. Therefore, the proposal concentrates on an Arduino MKR1000
board (with an Arm Cortex-M0+ core) that reads and processes the data from accelerometer and
gyroscope sensors. Due to battery limitations, the ML gesture recognition classifier executes in
the microcontroller, so it communicates only recognized gestures to the smartphone through a
Bluetooth low-energy module.

For the classification algorithm, the authors decided to use the multiclass formulation
of ProtoNN (GUPTA et al., 2017), provided by EdgeML, to identify five gesture classes and
negative examples that represent the regular use of the cane. This approach was able to produce
a model with 6 KB in size and achieve an accuracy of 99.9% on the testing set. The authors
also conducted in-lab and in-wild user experiments, recruiting people with visual impairment to
evaluate the device. The results from these experiments confirmed that GesturePod is a robust
solution that can promote better access to specific smartphone tasks.

2.3.7 Other applications

In addition, other studies present ML applications that demonstrate high potential of
using ML models in low-power embedded systems with different objectives:

• face detection and recognition (HWANG et al., 2007);

• human movement classification (KARANTONIS et al., 2006);

• toxic gas detection (ALIPPI; PELOSI; ROVERI, 2006).

40 Chapter 2. Related Work

Since these works have a deficiency in reporting practical experiments evaluating ML
models in low-power hardware, this section does not deeply explore them.

2.4 Discussion
Chart 2 exhibits a summary of the main open-source tools described in this chapter as

examples related to EmbML. Although the description of each tool already includes some of
their disadvantages compared to EmbML, the differences are more explicit when analyzing this
table. For instance, EmbML is a solution that concomitantly offers:

• support to classification models trained with WEKA and scikit-learn, which are two of the
most popular ML tools;

• a range of efficient classifiers that includes decision tree, SVM, MLP, and logistic regres-
sion, and explores relatively diverse learning paradigms;

• fixed-point representation (for real number operations) and sigmoid approximations (for
MLP activation functions) to use as adaptations in the output classifier code and improve
its performance, especially in resource-constrained hardware.

Chart 2 – Comparison between related tools.

Tool ML training
tool Classifiers Adaptations

Programming
languages

of output code

EmbML WEKA and
scikit-learn

Decision tree,
SVM, MLP and

logistic regression

fixed-point
and sigmoid

approximations
C++

sklearn-porter scikit-learn
SVM, kNN,
decision tree,

MLP and others
-

Java, JavaScript,
C, Go, PHP and Ruby

weka-porter WEKA Decision tree -
C, Java and
JavaScript

m2cgen scikit-learn
Logistic regression,

decision tree,
SVM and others

-
Python, Java, JavaScript,

C, Go, R and others

emlearn scikit-learn
and Keras

Decision tree,
naive bayes,

MLP and others

fixed-point
for naive bayes C

TensorFlow Lite
for Microcontrollers TensorFlow NN quantization C++

EdgeML -
Modified versions of:

decision tree,
kNN, and recurrent NN

quantization C and C++

CMSIS-NN - NN fixed-point C and C++
FANN-on-MCU FANN NN fixed-point C

In this comparison, the only possible drawback of using EmbML is its limitation to
produce only C++ source code. However, this is intentional since C++ is a commonly used

2.5. Final Considerations 41

language for programming microcontrollers. EmbML aims to combine in one solution the best
features of the existing tools for producing microcontroller-tailored classifier code. Consequently,
these observations justify the need and relevance of developing a tool such as the one proposed
in this work to facilitate and popularize its use.

Chart 3 shows a comparison between the works examined in this chapter that employ
classifiers to execute in embedded hardware such as sensors and wearable devices. It also
includes the case study considered in this dissertation to evaluate EmbML classifiers in a
practical application, and thoroughly investigated in Chapter 7.

Chart 3 – Comparison between related applications.

Work Objective Processing
unit

Evaluated
classifiers

In this dissertation,
proposed by Batista et al. (2011a)

Flying insect
classification MK20DX256VLH7

MLP, SVM,
logistic regression,
and decision tree

O’Bard and George (2018)
Eye gesture

classification ATMega328p
kNN, SVM,

and decision tree
Shi et al. (2009) Fall detection TMS3206713 SVM

Farooq et al. (2010)
Low-cost autonomous

vehicle AT89C52 NN

Tocchetto et al. (2014)
Lung signals
classification

Atmel Arm
Cortex-M3 NN

Rúa et al. (2012)
Ventricular tachycardia and

fibrillation detection Kinetis K60 SVM and NN

Patil et al. (2019)
White cane gesture

classification MKR1000 modified kNN

Confronting these examples makes it possible to show different successful applications
that implement classifiers in unresourceful hardware, but also to establish a chronic lack of
variety in classification models employed in most of these works – except the one explored in this
dissertation. A point of view could argue that the authors preferred to analyze only high-efficient
classifiers since microcontrollers are the main choice for their processing unit. Nevertheless,
logistic regression and decision tree are also efficient classifiers – as we shall see in Chapter 6 –
but not properly investigated in these works, for example. In conclusion, EmbML offers different
alternatives for classifiers and adaptations, so developers of future low-power smart devices can
take advantage of them and produce a more extensive comparative analysis to choose the most
suitable option.

2.5 Final Considerations
This chapter presented an overview of some existing tools related to the one proposed

in this work. It described their characteristics and specific drawbacks that make EmbML an
attractive solution compared to them. We also examined some applications that relate to both the
case study later explored in this dissertation and experiences of using ML models in unresourceful

42 Chapter 2. Related Work

hardware. The main focus was to verify how EmbML features would be beneficial to produce
a comprehensive analysis of the classification models. In the next chapter, we will discuss the
essential points of the ML models supported by EmbML.

43

CHAPTER

3
CLASSIFICATION ALGORITHMS AND

MODELS

3.1 Initial Considerations

Before presenting the implementation details of EmbML, we review in this chapter the
theoretical concepts of ML with a focus on classification algorithms. Then, we study each of
the models supported by EmbML and describe their learning and inference processes as well as
other singularities. At the final, we provide a brief overview of some popular tools in ML for
running experiments, their main features, and the reasons to select WEKA and scikit-learn to
support in EmbML.

3.2 Machine Learning Overview

Machine Learning (ML) consists of developing programs that automatically improve
their performance from previous experiences (MITCHELL, 1997). An ML algorithm seeks to
extract knowledge from examples – which can also be called instances. Each example contains
a set of values for different attributes that describe its characteristics or aspects (MONARD;
BARANAUSKAS, 2003). For instance, words can be attributes of a text, the frequency spectrum
can represent a song, and the values from red, green and blue components of all pixels can be
attributes of an image.

Typically, the inductive learning process, accomplished by reasoning about available
instances, can be divided into supervised and unsupervised (MONARD; BARANAUSKAS,
2003). In supervised learning, each instance of the training set, used in the learning process,
has an associated class. Such class can be continuous, in regression problems, or discrete, in
classification problems. Also, since the class of each dataset example is known beforehand, it is
possible to perform tests that estimate the classification performance for the model produced

44 Chapter 3. Classification Algorithms And Models

by the algorithm. In the unsupervised case, however, the learning algorithm is responsible for
analyzing the given instances and identifying clusters (MONARD; BARANAUSKAS, 2003),
i.e., groups of similar examples. For this task, it is common to apply measures that define the
similarity between the examples (IRANI; PISE; PHATAK, 2016).

3.3 Classification

In classification problems, we aim to use the examples available in a training set to
produce a model that can correctly predict the discrete classes of unlabeled instances, using
only their attribute values. This model (or classifier) can also be understood as a function
learned during the training step that is responsible for mapping elements from the input space
(space of instances) into values from the output space (label space), producing as few error as
possible (LUXBURG; SCHÖLKOPF, 2011). In the training process, the classification algorithm
takes a set of instances (xi,yi) as input, in which xi = (xi,1, ...,xi,n) is an observed example and yi

is its corresponding class, and produces a classification model. During the test step, we evaluate
whether this classifier correctly predicts the yt classes for unseen xt inputs, i.e., examples that do
not belong to the training set (DOMINGOS, 2012).

Classification algorithms can present considerable distinctions, in part by how they
represent the candidate models (e.g., decision trees, hyperplanes, and NNs) and also by how they
search through the hypothesis space – the set of classifiers that it can learn (e.g., optimization al-
gorithms and evolutionary search methods) (JORDAN; MITCHELL, 2015; DOMINGOS, 2012).
Therefore, different algorithms can produce classifiers with distinct biases and characteristics,
such as structures, size (in terms of memory usage to store its parameters), and the number of
operations required to classify an instance. These peculiarities are some of the reasons why
we should explore a wide range of classification algorithms, with different learning paradigms,
in order to determine the most appropriate ones for an addressed problem, depending on the
objectives and limitations previously defined.

Among the variety of ML algorithms commonly employed in classification problems, the
remaining of this chapter focus on describing aspects from the four different classifiers supported
by the EmbML tool: Decision Tree, Multilayer Perceptron, Logistic Regression, and Support
Vector Machine. The selected algorithms are those whose classifiers tend to be simpler, commonly
used in low-power embedded applications, and that represent different learning paradigms.
Furthermore, while some techniques such as the ensemble of classifiers (DIETTERICH, 2000),
deep learning (SCHMIDHUBER, 2014), and instance-based algorithms (MARTIN, 1995) usually
achieve competitive classification performance in many real-world applications, their classifiers
are often computationally intensive and/or memory-consuming. For these reasons, they are
not suitable to execute in a computational environment with severe memory and processing
constraints.

3.3. Classification 45

3.3.1 Decision Tree

The decision tree is a classification algorithm that induces a set of if-then-else rules
organized into a tree structure. Therefore, it is a process that produces a rule-based classifier and
belongs to the symbolic learning paradigm.

A decision tree model contains zero or more internal nodes and one or more leaf nodes.
The classification process consists of traversing the trained tree, starting from the root, and
continuing until it reaches a leaf. Each leaf node assigns a class to an instance. Each internal
decision node has two or more child nodes and tests the value of an instance attribute, which
determines the edge – or branch – to follow to one of its children (MURTHY, 1998).

Learning a decision tree model involves two main problems: selecting the attribute to
test on each internal node of the tree, and determining when a node shall be a leaf. For instance,
one of the most common ways to solve the first task is by using the information gain measure
that indicates the expected entropy reduction after partitioning the remaining examples for a
given node using one of the attributes (MITCHELL, 1997). Also, we can consider a node as a
leaf when all the remaining examples for it belong to the same class, which becomes the class
assigned to this leaf. Some popular examples of decision tree induction algorithms are Iterative
Dichotomiser 3 (ID3) (QUINLAN, 1986), C4.5 (QUINLAN, 1993), and Classification And
Regression Tree (CART) (BREIMAN et al., 1984).

After the training process of a decision tree, it is common to occur overfitting, i.e., when
the produced model is very adjusted to the training set instances and does not perform well with
other examples. Some of the typical solutions to this problem involve pruning the tree, turning
internal nodes into leaf nodes, and stopping the training step before it creates a tree model that
perfectly fits the examples from the training set (KOTSIANTIS; ZAHARAKIS; PINTELAS,
2007).

Figure 1 illustrates an example of a decision tree model built for the problem of deciding
to play tennis, in which the possible classes are YES and NO, and the attributes are outlook,
humidity, and wind. By observing the tree structure, it is possible to note, for instance, that
there are three possible values for the attribute outlook: sunny, overcast and rain. Moreover,
this decision tree would classify the examples {outlook = sunny, humidity = normal, wind =

strong} and {outlook = rain, humidity = normal, wind = strong} as YES and NO, respectively.

3.3.2 Multilayer Perceptron

Multilayer Perceptron (MLP) is an NN model that represents a connectionist learning
paradigm and derives from the idea of the perceptron, a linear and binary classifier proposed
by Rosenblatt (1958). An MLP network consists of multiples of layers of neurons (or processing
elements) that interact using a weighted connection (PAL; MITRA, 1992). There are usually three
types of layers: input, hidden, and output. A common MLP design for classification problems

46 Chapter 3. Classification Algorithms And Models

Figure 1 – An example of a decision tree model for playing tennis.

Source: Adapted from Mitchell (1997).

is to set the number of input layer neurons as the number of attributes of the instances, and the
number of output layer neurons as the number of possible classes.

The input layer neurons usually do not perform any kind of processing, they just propagate
forward the input signal that represents the value of an instance attribute. A neuron k, belonging
to the hidden (or output) layer, applies an activation function f to the weighted sum vk of the
received signals yi from the previous layer neurons. Then, it produces the output yk presented
in Equation 3.1, in which m is the number of neurons in the layer before the neuron k layer,
wik is the weight associated with the connection between the neurons i and k, and θk is the bias
associated with the neuron k.

yk = f (vk) = f

((
m

∑
i=1

wik× yi

)
+θk

)
(3.1)

The most common activation functions to use in an MLP model are: the sigmoid,
presented in Equation 3.2; the Rectified Linear Unit (ReLU), presented in Equation 3.3; the
linear function, presented in Equation 3.4; and the hyperbolic tangent function, presented in
Equation 3.5 (BALDI; HORNIK, 1995; MAAS; HANNUN; NG, 2013).

f (x) =
1

1+ exp(−x)
(3.2)

f (x) = max(0,x) (3.3)

f (x) = x (3.4)

3.3. Classification 47

f (x) = tanh(x) (3.5)

The process of classifying an example in a trained MLP network starts with applying the
attribute values as input to the input layer neurons. Then, the signals propagate forward through
every layer until they reach the output layer neurons that will indicate the classification result.
Since each neuron in the output layer generally represents a possible class, the predicted class
is the one corresponding to the neuron that has the highest activation value at the end of this
process.

The learning step of an MLP network occurs by adjusting the connection weights between
neurons based on the training set knowledge so that the network produces the expected output for
a given input. The backpropagation is a widely known method to train an NN model (HECHT-
NIELSEN, 1992). It essentially consists of the following steps: the input signal propagates
through the network until it reaches the output layer; the comparison between the output result
and the expected one produces an error signal; and, finally, this error propagates in the opposite
direction (backward) to update the weights for every connection in the entire network (HAYKIN
et al., 2009). The algorithm performs several iterations of these steps, using the examples from
the training set, until the error decreases to a value below a defined threshold, when convergence
occurs, or until it reaches the maximum limit of iterations. Since training an MLP model involves
searching in large parameter space, it is usually a slow process (PAL; MITRA, 1992).

Figure 2 presents an MLP network for a problem with three attributes {X1, X2, X3} and
two classes represented by {Y1, Y2}. This model also has three neurons in a single hidden layer
and it is fully-connected – i.e., each neuron from a given layer is connected to every neuron from
the next layer.

Figure 2 – An example of an MLP network.

Source: Elaborated by the author.

48 Chapter 3. Classification Algorithms And Models

3.3.3 Logistic Regression

Logistic regression is a generalized linear model used for classification problems (PREGI-
BON et al., 1981; PENG; LEE; INGERSOLL, 2002). Considering binary classification problems,
the output produced by this model is an estimation of the probability for a class (+y, for instance)
and it is calculated using the sigmoid function defined in Equation 3.6, in which w is a vector
with the model parameters and x corresponds to an example of the problem, represented as an
attribute vector. The probability estimation for the complementary class of the problem (−y, for
instance) is calculated using Equation 3.7.

p(+y |x) = f (wT x) =
1

1+ exp(−wT x)
(3.6)

p(−y |x) = 1− p(+y |x) (3.7)

Therefore, the training process of a logistic regression model consists of determining
values for the parameter vector w that produces the expected outputs. Using the maximum
likelihood estimation method combined with an iterative numerical method, such as Gradient
descent or Newton-Raphson, is a common way to estimate the values for w (BISHOP, 2006).
Finally, the classification step in a logistic regression model only requires applying the input
x in the trained model and analyzing the output produced by the sigmoid function: the label
associated with the highest probability usually defines the predicted class.

In a multiclass classification problem, it is possible to use the one-against-all method,
which involves training m binary classifiers – as the one described above – for a problem with
m possible classes and each classifier separates one class from all the rest (POLAT; GÜNEŞ,
2009). Another approach comprises estimating the posterior probability for each class using the
generalization of the logistic function, i.e., the softmax function, given by the Equation 3.8, in
which m is the number of possible classes, yk represents one possible class, w is a matrix with
parameter values, and wi is the i-th column of w (BISHOP, 2006).

p(yk |x) =
exp(wT

k x)
∑

m
j=1 exp(wT

j x)
(3.8)

3.3.4 Support Vector Machine

Support Vector Machine (SVM) is an ML algorithm proposed by Cortes and Vapnik
(1995) to solve binary classification problems. In order to deal with multiclass problems, an SVM
model can combine a set of classifiers using one-against-one or one-against-all strategies, for
instance. The SVM algorithm aims to construct an optimal hyperplane that separates examples
from different classes, which allows the model to have a high generalization potential (CORTES;
VAPNIK, 1995). A common approach for SVM algorithms is to apply a nonlinear transformation

3.3. Classification 49

– called kernel function – in the input data in order to map the examples into a higher dimensional
space that may facilitate the class separation. Chart 4 presents examples of popular kernel
functions. In this chart, u and v are vectors from the input space, u · v represents the dot product
between vectors u and v, γ > 0 is a free kernel coefficient, d > 0 is the degree of the polynomial
function, ‖u− v‖2 represents the squared Euclidean distance between vectors u and v, and r ∈R
is an independent term.

Chart 4 – Examples of kernel functions.

Kernel functions
Linear
kernel K(u, v) = u · v

Homogeneous
polynomial kernel K(u, v) = (γ (u · v))d

Inhomogeneous
polynomial kernel K(u, v) = (γ (u · v) + 1)d

Radial Basis
Function kernel K(u, v) = exp(−γ ‖u − v‖2)

Sigmoid kernel K(u, v) = tanh(γ (u · v) + r)

Learning an SVM classifier means solving a quadratic programming problem that deter-
mines the hyperplane with a maximum margin of separation between examples from different
classes, i.e., this hyperplane must be as far as possible from the support vectors – examples
that limit the margins. Equation 3.9 shows the formulation provided by Vapnik (1999) for this
problem, in which m is the number of examples in the training set, xi is the i-th example in the
training set, yi is the label of xi, αi is the Lagrange multiplier for xi, and K is the kernel function.
The examples xi for which αi > 0 are the support vectors of the model (SCHÖLKOPF et al.,
2002).

max
α∈Rm

m

∑
i=1

αi −
1
2

m

∑
i=1

m

∑
j=1

αi α j yi y j K(xi, x j)

subject to
m

∑
i=1

αi yi = 0,

αi ≥ 0, for all i = 1, ...,m

(3.9)

Cortes and Vapnik (1995) present two ways to formulate this optimization problem.
The hard-margin approach assumes that the problem is linearly separable, and it is possible to
separate the training examples from each class without error. The soft-margin approach tolerates
some noisy examples or class overlap. In this last case, it is not possible to perfectly separate the
training data using a hyperplane, thus the method aims to find the hyperplane that performs the
minimal amount of error. Figure 3 and Figure 4 respectively illustrate examples of hard-margin
and soft-margin approaches, in which the dashed lines represent the margins, the separating

50 Chapter 3. Classification Algorithms And Models

hyperplanes are the lines between the margins, and the support vectors for each class are the
highlighted examples – over the margins.

Figure 3 – An example of hyperplane with hard-
margin for a linearly separable prob-
lem.

Figure 4 – An example of hyperplane with soft-
margin for a problem with noisy
data.

Source: Elaborated by the author.

The decision function presented in Equation 3.10 (VAPNIK, 1999) determines the
predicted class – positive or negative – of an input x, which corresponds to its position in relation
to the separating hyperplane. In this equation, n is the number of support vector of the model,
yi is the class associated with the support vector xi, αi is the Lagrange multiplier for xi, K is
the kernel function, and b is the hyperplane threshold that can be calculated, for instance, by
averaging the possible values from Equation 3.11 over all support vectors x j (SCHÖLKOPF et

al., 2002).

f (x) = sign

((
n

∑
i=1

yi αi K(xi, x)

)
− b

)
(3.10)

b = y j −

(
n

∑
i=1

yi αi K(xi, xj)

)
(3.11)

3.4 Machine Learning Tools
Software tools, libraries, and frameworks are quite popular and important in the ML

community for many reasons. For instance, they provide implementations for several traditional
ML algorithms and make it easier to run experiments. In addition, they can allow some features
to the users that help in most steps of the ML pipeline, such as:

• saving the trained model;

3.4. Machine Learning Tools 51

• using data preprocessing techniques;

• visualizing classes and attributes distributions for the dataset;

• applying and analyzing different attribute selection techniques;

• employing performance evaluation techniques such as k-fold cross-validation and holdout;

• choosing the set of hyperparameters for the algorithms;

• making use of small datasets provided by the tools;

• and treating different types of ML problems, such as classification, regression, and cluster-
ing.

Particularly due to the usability and popularity of these tools, the idea of using classifiers
trained with them represents a way to simplify their use in microcontroller-based embedded
systems.

Among all the existing tools, it is important to highlight some of the most popular
that are capable of performing most of the features mentioned: WEKA (HALL et al., 2009),
scikit-learn (PEDREGOSA et al., 2011), RapidMiner (HOFMANN; KLINKENBERG, 2013),
KNIME (BERTHOLD et al., 2007), and MOA (BIFET et al., 2010). Although all of these tools
have enough interesting features to explore in this work, this study focus on developing a tool
that supports only models generated with WEKA and scikit-learn. The main factors that justify
these choices are: the time limit for the development of this work; the availability of access to
the source code of these tools; and the fact that both provide easy-to-use implementations of the
main classification algorithms.

Scikit-learn provides state-of-the-art implementations of several popular ML algorithms,
including those intended for unsupervised and supervised problems. It has a friendly interface
using Python – a high-level and general-purpose programming language – which enables easy
access to non-experts. According to Pedregosa et al. (2011), the main benefits of scikit-learn
comparing to other ML toolboxes in Python – e.g., MDP (ZITO et al., 2009), PyBrain (SCHAUL
et al., 2010), and PyMVPA (HANKE et al., 2009) – are: the distribution under the simplified
Berkeley Software Distribution (BSD) license; the incorporation of compiled code for efficiency;
the dependency of only NumPy (OLIPHANT, 2006) and SciPy (Virtanen et al., 2020) modules
which facilitates its distribution; and the focus on imperative programming.

In the case of WEKA, it consists of an open-source workbench written in Java with
strong popularity in academia and business (HALL et al., 2009). It intends to be flexible
for examining different methods and facilitate the experimental process in data mining. To
achieve these objectives, WEKA incorporates, in a uniform interface, a diverse set of state-
of-the-art ML algorithms and solutions to several data mining tasks, including classification,

52 Chapter 3. Classification Algorithms And Models

regression, clustering, association rule mining, and attribute selection (WITTEN et al., 2016).
Data exploratory is also supported using preprocessing and visualization mechanisms. Moreover,
it provides easy access to all its features through a Graphical User Interface (GUI) that allows
using it without writing any line of code.

3.5 Final Considerations
In this chapter, we showed an overview of the ML theory for classification problems. We

then focused on studying the details for each of the classification models that EmbML supports.
The reasons to choose these models consider their efficiency and the restrictions imposed for
executing them in unresourceful hardware. At last, we introduced some ML tools and explained
the features of WEKA and scikit-learn that made them attractive to this work. Therefore, this
chapter constitutes an important step of this work since it allows establishing the foundations to
develop the examination of each WEKA and scikit-learn models in Chapter 5.

53

CHAPTER

4
EMBML – EMBEDDED MACHINE

LEARNING

4.1 Initial Considerations

This chapter, based on Silva, Souza and Batista (2019a) and Silva, Souza and Batista
(2019b), presents EmbML1 – a tool written in Python to automatically convert off-board-trained
models into C++ source code files that can be compiled and executed in microcontrollers. We
start by describing each step involving the pipeline process of using EmbML to produce a
classifier code. After that, we explain the input format and the classes of WEKA and scikit-learn
models supported by EmbML. Finally, we focus on explaining the implemented modifications
that enable the classifiers to reduce processing time and memory consumption for running in
resource-constrained hardware.

4.2 Pipeline Overview

The main goal of using EmbML is to produce classifier source codes for executing in
low-power microcontrollers. This process starts with creating a model using the WEKA package
or the scikit-learn library from a dataset at hand. As presented in the previous chapter, these are
popular and open-source tools that provide a wide range of classification algorithms and simplify
training and evaluating an ML model. After training the model using these tools in a desktop or
server computer, the user needs to save it as an object serialized file, which is capable of saving
all the object content – including the classifier parameters and data structures – for future use.

EmbML receives such a serialized file as input and uses specific libraries that implement
methods to deserialize the file. The deserialization process allows the tool to recover the classifier
data and extract the relevant information, such as the model parameters. Finally, EmbML fills a
1 Available online at: <https://github.com/lucastsutsui/EmbML> and <https://pypi.org/project/embml/>

https://github.com/lucastsutsui/EmbML
https://pypi.org/project/embml/

54 Chapter 4. EmbML – Embedded Machine Learning

template file – for a specific classifier – using the data retrieved in the previous step and generates
a C++ programming language file containing the model parameters, their initialization values,
and implementations of functions that use them for classifying an instance. This output file only
contains the functions related to the classification step, since it will later become part of a more
complex program for running on an embedded platform and may include other functionalities
according to the application such as feature extractor and preprocessing, and further actions on
the classifier output.

Figure 5 illustrates the operation workflow. The user employs one of the supported ML
tools to process a training dataset and produce a classification model. EmbML is responsible for
Step 2 in which it consumes the file containing the serialized model and creates the classifier
source code. In this step, the user should decide to apply any of the provided modifications in the
generated source code, such as using fixed-point or floating-point representations for processing
real number operations. As we will see in Chapter 6, such choice may impact both the accuracy
and efficiency of the classifier. Therefore, after evaluating the classifier in the desired hardware,
the user may return to Step 2 if they want to assess other numerical representations or even
to Step 1 if the classifier does not meet the time or memory requirements of the application.
Thus, the workflow is likely to have these feedback loops not illustrated in the figure. In Step
3, it is possible to compile the code and deploy it on the microcontroller, for instance, using a
combination of cross compilers – e.g., avr-gcc2 and gcc-arm-none-eabi3 – and firmware upload
protocols – e.g., avrdude4 and jlink5.

Figure 5 – Workflow for generating classifier source code using EmbML.

+++
-

+WEKA

Sci-kit	Learn
Training	data

STEP	1:
Classification model generation

Classification
model

STEP	2:
Model conversion

to C++

Classifier's
source-code

STEP	3:
Model's embedding
into the low-cost

system

0EmbML

Source: Silva, Souza and Batista (2019a).

2 <https://gcc.gnu.org/wiki/avr-gcc>
3 <https://developer.arm.com/tools-and-software/open-source-software/developer-tools/

gnu-toolchain/gnu-rm>
4 <https://www.nongnu.org/avrdude/>
5 <https://www.segger.com/products/debug-probes/j-link/>

https://gcc.gnu.org/wiki/avr-gcc
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm
https://www.nongnu.org/avrdude/
https://www.segger.com/products/debug-probes/j-link/

4.3. Serialization and Model Recovery 55

4.3 Serialization and Model Recovery

A significant piece of the described pipeline lies in understanding the format used to
provide off-board-trained classifiers as input to EmbML. This step is achievable by using the
method called serialization – i.e., the process of converting an object state into a format so that
the object can be stored in a file. Therefore, after training a classification model with WEKA
or scikit-learn, it is possible to save it in a file and later recover it from this same file through
serialization and deserialization processes, respectively.

The WEKA classifier object can be serialized to a file using the ObjectOutputStream and
FileOutputStream classes available in Java. This object can be retrieved from this file through the
ObjectInputStream and FileInputStream classes also available in Java. When working with the
WEKA GUI, it provides the options to save a trained model and load a serialized model that use
these classes in the underlying code. Otherwise, if the user writes a Java code to train a model,
using the WEKA Java Archive (JAR) package, they have to employ these classes manually.

However, the classes that implement the WEKA classifiers have most of their main
variables declared as private, which prevents obtaining their values from an external program.
The alternative explored in this work to access the contents of WEKA classifier objects is by
using the javaobj6 library – available for the Python language. This library allows retrieving a
Java serialized object from a file and producing a Python data structure, similar to the original
object, that contains all its variables and data. Since Python has no private attributes, we have
access to all variables of the trained classifier and can select the ones that are relevant to the
classification step.

When dealing with scikit-learn models, it is possible to use the pickle7 module that allows
serializing and deserializing a Python object. The approach accepted by EmbML for saving a
classification model consists of applying the function dump to serialize the model into a file.
After that, EmbML can recover the classifier object from this file using the load method and
access the object content without restriction.

After retrieving the variables and data structures of the trained model, EmbML produces a
C++ file that contains the initialized variables and structures, including function implementations
for the classification step – based on WEKA and scikit-learn source codes, with adjustments to
improve their performance on low-power microcontrollers such as replacing recursive functions
by their iterative implementations.

6 <https://pypi.org/project/javaobj-py3/>
7 <https://docs.python.org/3/library/pickle.html>

https://pypi.org/project/javaobj-py3/
https://docs.python.org/3/library/pickle.html

56 Chapter 4. EmbML – Embedded Machine Learning

4.4 Algorithms and Classes

The algorithms supported by EmbML are those suitable to execute in unresourceful
hardware. Therefore, they are simple models that generally require little processing time and
produce a small memory footprint. Thus, EmbML does not support some popular approaches
such as:

• kNN, due to its requirement of storing the training set in memory as well as its necessity
of searching such a set in classification time;

• ensemble methods since they require storing multiple classifiers in memory;

• and deep learning algorithms, considering that they often create large NN models with
several number of layers.

As discussed in the previous chapter, the EmbML supports representative models of
different learning paradigms: MLP networks, logistic regression, decision tree, and SVM – with
linear, polynomial, and Radial Basis Fuction (RBF) kernels. For WEKA, EmbML accepts the
models from the following classes:

• J48 generates decision tree classifier;

• Logistic trains logistic regression classifiers;

• MultilayerPerceptron produces MLP classifiers;

• and SMO creates SVM classifiers – with linear, polynomial, and RBF kernels.

As for the scikit-learn models, it allows the models from these classes:

• DecisionTreeClassifier produces decision tree models;

• LinearSVC builds SVM classifiers with linear kernel;

• LogisticRegression creates logistic regression classifiers;

• MLPClassifier generates MLP classifiers;

• and SVC trains SVM classifiers – with polynomial and RBF kernels.

4.5. General Modifications 57

4.5 General Modifications

EmbML implements some modifications in all produced source code as a way to improve
performance when running it in low-power microcontrollers. Yet, in all of them, EmbML does
not interfere with the training process, it only provides adjustments that affect the execution
of the classifier source code. The idea to develop one of these available modifications is that
the classifier parameters do not change during execution in a microcontroller, according to our
pipeline. Consequently, it is possible to store the model parameters – e.g., the weights of an
NN network – in the microcontroller’s program memory, once it is usually larger than its data
memory. To accomplish that, EmbML generates classifier source codes that declare these data in
const variables. This keyword expresses to the compiler that these data are read-only, and it is
reasonable to store them in the microcontroller’s flash memory.

Another modification lies in the fact that most microcontrollers have a limited processing
capacity such that they even lack a Floating-Point Unit (FPU). This unit consists of a hardware
system specifically designed to efficiently perform floating-point computations such as addition,
subtraction, division, and multiplication. When it is missing, executing operations with real
numbers becomes a challenging task. As described in Gopinath et al. (2019), there are two
alternatives to tackle the absence of floating-point support: emulating the floating-point operations
via software or converting real numbers to fixed-point representation. Software emulation usually
is processing-expensive and results in a loss of efficiency. On the other hand, the second approach
may reduce the range of represented values and also cause a loss of precision.

EmbML enables producing classifier source codes that use both floating-point and fixed-
point formats to store real number data. For the first option, the generated code can directly
proceed to the microcontroller’s compilers since most of them – e.g., the gcc-arm-none-eabi

compiler for 32-bit Arm Cortex processors – already provide configuration options that allow
emulating floating-point operations or using FPU instructions. For fixed-point representation,
the scenario is quite different since the compilers of different microcontrollers do not offer
a universal solution. Therefore, developers need to seek existing open-source libraries that
implement fixed-point operations or create their own.

4.5.1 Fixed-point Representation

As EmbML supports that its classifiers manipulate fixed-point representations instead
of floating-point, we implemented a library of fixed-point operations based on existing ones:
fixedptc8, libfixmath9 and AVRfix10. It includes the basic arithmetic operations – addition, sub-
traction, multiplication, and division – as well as other functions required by some classifiers –
such as exponential, power, and square root functions. This library supports storing real numbers

8 <https://sourceforge.net/projects/fixedptc/>
9 <https://code.google.com/archive/p/libfixmath/>
10 <https://sourceforge.net/projects/avrfix/>

https://sourceforge.net/projects/fixedptc/
https://code.google.com/archive/p/libfixmath/
https://sourceforge.net/projects/avrfix/

58 Chapter 4. EmbML – Embedded Machine Learning

in integer variables with 32, 16, or 8 bits and implements the Qn.m format in which n is the
number of bits in the integer part, and m is the number of bits in the fractional part (VLĂDUŢIU,
2012). For instance, let (xn−1, ...,x0, ...,x−m+1,x−m) be the fixed-point binary representation of
an unsigned number X and x−m is the Least Significant Bit (LSB), then its value is given by:

X =
n−1

∑
i=−m

xi 2i (4.1)

Using the two’s complement format, a signed number Y with fixed-point binary repre-
sentation (yn−1, ...,y0, ...,y−m+1,y−m) has the value obtained by:

Y =−yn−1 2n−1 +
n−2

∑
i=−m

yi 2i (4.2)

Now, consider the numbers A ∈ R and B ∈ R. Also, let FXP(X ,n,m) be the function,
shown in Equation 4.3, that transforms the number X ∈ R to its Qn.m fixed-point representation
and round(X) maps a real number X to the closest integer value. Thus, Chart 5 presents how to
perform the basic arithmetic operations in the fixed-point format11.

FXP(X ,n,m) = round(X×2m) mod 2n+m (4.3)

Chart 5 – Arithmetic operations in Qn.m fixed-point representation.

Operation Formula
Addition FXP(A+B,n,m) = FXP(A,n,m)+FXP(B,n,m)

Subtraction FXP(A−B,n,m) = FXP(A,n,m)−FXP(B,n,m)
Multiplication FXP(A×B,n,m) = FXP(A,n,m)×FXP(B,n,m)/FXP(1,n,m)

Division FXP(A/B,n,m) = FXP(A,n,m)×FXP(1,n,m)/FXP(B,n,m)

In order to calculate the exponential function with base e, used in MLP and logistic
regression classifiers, it is easier to first implement its version with base 2. To improve efficiency,
we implemented this function using the recurrent formula from Equation 4.4. This method
reduces (or increases) the exponent value k until it belongs to the interval [0,1] in which it
is possible to apply a two-degree polynomial approximation of the function to obtain the
corresponding value. We used an implementation12 of the Nonlinear Least-Squares (NLLS)
Marquardt-Levenberg algorithm (LEVENBERG, 1944; MARQUARDT, 1963) to find the values

11 From now on, consider that, for numbers in a fixed-point format, the operator / represents the integer
division.

12 Available in gnuplot <http://www.gnuplot.info/>

http://www.gnuplot.info/

4.5. General Modifications 59

for the coefficients: c2 = 0.342656, c1 = 0.649427, and c0 = 1.00376. Finally, Equation 4.5
demonstrates how we obtain the exponential function with base e.

FXP(2k,n,m) =

FXP(2k−1,n,m)×FXP(2,n,m)/FXP(1,n,m) k > 1

FXP(2k+1,n,m)×FXP(1,n,m)/FXP(2,n,m) k < 0

FXP(c2k2 + c1k+ c0,n,m) 0≤ k ≤ 1

(4.4)

FXP(ek,n,m) = FXP(2k×log2(e),n,m) (4.5)

Since EmbML supports SVM classifiers with the polynomial kernel, it also has to include
an implementation of the power function for the fixed-point format. In order to compute this
function, we use the idea presented in Equation 4.6 that consists of splitting the exponent number
into two parts: integer and decimal. Equation 4.7 shows how to calculate the power function with
an integer exponent applying the exponentiation by squaring method. For the other part, with a
decimal exponent, we compute it using the recurrent method presented in Equation 4.8. This
approach requires an implementation of the square root function, which is possible to conceive
using the recurrent formula from Equation 4.9. In this method, the value of x is divided (or
multiplied) by 4, until it belongs to the interval [1,4]. Then, we use a two-degree polynomial
approximation to calculate the resulting value of the function in this interval. We applied the
same NLLS method as before to obtain the coefficient values: d2 =−0.0352734, d1 = 0.502293,
and d0 = 0.546737.

FXP(xy,n,m) = FXP(xbyc,n,m)×FXP(xy−byc,n,m)/FXP(1,n,m) (4.6)

FXP(xi,n,m) =

FXP(x
i−1

2 ,n,m)×FXP(x
i−1

2 ,n,m)×FXP(x,n,m)

FXP(1,n,m)×FXP(1,n,m)
i is odd

FXP(x
i
2 ,n,m)×FXP(x

i
2 ,n,m)

FXP(1,n,m)
i is even

FXP(1,n,m) i = 0

(4.7)

FXP(x j,n,m) =

FXP(

√
x2 j,n,m) 0 < j < 1

FXP(x,n,m)×FXP(
√

x2(j−1),n,m)/FXP(1,n,m) j ≥ 1

FXP(1,n,m) j = 0

(4.8)

FXP(
√

x,n,m) =

FXP(

√
4x,n,m)×FXP(1,n,m)/FXP(2,n,m) x < 1

FXP(
√

x/4,n,m)×FXP(2,n,m)/FXP(1,n,m) x > 4

FXP(d2x2 +d1x+d0,n,m) 1≤ x≤ 4

(4.9)

60 Chapter 4. EmbML – Embedded Machine Learning

4.6 Sigmoid Function Approximations
Another modification, supported by EmbML but only for MLP classifiers, involves

providing different approximations for the sigmoid function since it requires the expensive
processing of an exponential function. The solution lies in examinating functions that have
similar behavior but perform simpler operations.

One of the alternatives consists of using the function given by Equation 4.10 that contains
only basic arithmetic operations. Figure 6 plots this function alongside with the sigmoid. The
analysis of these curves intuitively reveals that they have a strong correspondence which indeed
is accurate since the maximum difference between them is approximately 0.0822893 and occurs
at the points x≈ 3.77422 and x≈−3.77422.

f (x) = 0.5+
0.5x

1+ |x|
(4.10)

Figure 6 – Sigmoid function and its approximation.

Source: Elaborated by the author.

4.6.1 Piecewise Linear Approximation

The other approach implemented in EmbML to substitute the sigmoid function is the
Piecewise Linear (PWL) approximation. This method creates a series of linear segments to
approximate a nonlinear function. As described by Bradley, Hax and Magnanti (1977), we
obtain a PWL approximation by linearly connecting a set of selected points. The resulting set

4.6. Sigmoid Function Approximations 61

of segments can replace the original curve and produce better results as much as we add more
points to it. Since this technique reduces the sigmoid function to a group of linear functions, it
can consequently improve the effort necessary to compute a value.

In the case of the PWL method, EmbML allows employing it with two or four points to
replace the sigmoid function. Equation 4.11 presents the 2-point PWL approximation. In this
option, we used the previously presented NLLS algorithm to determine the interval points and
the function coefficients. Figure 7 compares the graphs of this approximation and the sigmoid
functions and reveals that it produces a simple but relatively precise replica of the original pattern,
even with just two points. The highest difference between them has a value close to 0.0690992
at the points x≈−2.60061 and x≈ 2.60061.

f (x) =

0 x≤−2.60061

0.19226x+0.5 −2.60061 < x≤ 2.60061

1 x > 2.60061

(4.11)

Figure 7 – Sigmoid function and a 2-point PWL approximation.

Source: Elaborated by the author.

For the 4-point PWL version of the sigmoid function, Equation 4.12 shows how EmbML
implements this approximation. Again, we applied the NLLS method to optimize the values for
the interval edges and the function coefficients. Figure 8 presents the graphs of the 4-point PWL
approximation and the sigmoid function. Comparing with the other options, it seems to be the
most well-fitted version. Also, to support this idea, the maximum difference between it and the

62 Chapter 4. EmbML – Embedded Machine Learning

sigmoid achieves the lowest value among the examined approaches. It is around 0.0260915 and
locates at the points x≈−1.63796 and x≈ 1.63796.

f (x) =

0 x≤−3.96049

0.05884x+0.23303 −3.96049 < x≤−1.63796

0.22183x+0.5 −1.63796 < x≤ 1.63796

0.05884x+0.76697 1.63796 < x≤ 3.96049

1 x > 3.96049

(4.12)

Figure 8 – Sigmoid function and a 4-point PWL approximation.

Source: Elaborated by the author.

4.7 If-Then-Else Statements For Decision Trees
Both WEKA and scikit-learn source codes implement the classification steps of their

decision tree models using iterative or recursive methods to traverse the tree. When EmbML
processes a decision tree classifier, its default option is to produce an output code that contains
the iterative version of tree traversal (recursive methods are converted to their corresponding
iterative form). For instance, an iterative decision tree model performs operations similar to those
illustrated in the generic example of Algorithm 1.

In addition, EmbML provides an alternative representation for this process, which
involves converting the binary tree structure into nested if-then-else statements. This approach

4.8. Final Considerations 63

Algorithm 1 – Iterative version of a decision tree classification algorithm.
1: procedure ITERATIVE_DECISION_TREE

2: currentNode← root
3: while currentNode 6= lea f do . Tests the end of loop
4: if conditions[i] then
5: i← rightChild[i] . Proceeds to the left child
6: else
7: i← le f tChild[i] . Proceeds to the right child
8: end if
9: end while

10: Processes the leaf node
11: end procedure

intends to optimize the classifier execution time at the expense of increasing its code size. As
a result, it shall achieve better time performance since it eliminates the loop overhead – e.g.,
instructions to increment the loop counter and test the end of the loop – of the iterative method.
But, it can consume more memory resources given that its machine code will possibly contain
more instructions – to reproduce the multiple comparisons from the if-then-else statements.
Algorithm 2 shows the steps for a generic decision tree classifier represented as nested if-then-
else statements.

Algorithm 2 – If-then-else statements for a decision tree classification algorithm.
1: procedure IF_THEN_ELSE_DECISION_TREE

2: if condition_0 then . Right child of node 0 (root)
3: if condition_1 then . Right child of node 1
4: Performs other comparisons and processes the leaf nodes
5: else . Left child of node 1
6: Performs other comparisons and processes the leaf nodes
7: end if
8: else . Left child of node 0 (root)
9: Performs other comparisons and processes the leaf nodes

10: end if
11: end procedure

4.8 Final Considerations
This chapter presented the details of the EmbML implementation. We described the

pipeline to employ this tool in the process of generating a C++ classifier source code to run in
low-power microcontrollers. Then, we examined some aspects of this pipeline: the format used
to accept off-board-trained classifiers as input to EmbML, and which classes of the training tools
EmbML supports. Finally, we discussed the options that enable EmbML to modify classifier
codes to optimize their performance in unresourceful hardware. It covered the analysis of how
EmbML incorporates the fixed-point format to process real numbers, approximation functions

64 Chapter 4. EmbML – Embedded Machine Learning

to substitute the sigmoid in MLP models, and different representations of decision tree models.
Chart 6 summarizes the available modifications for each classifier. In the next chapter, we focus
on reviewing the implementation of each supported classification model.

Chart 6 – Code modifications supported by EmbML for each classifier class.

Classifier classes Usage of const
variables

Fixed-point
representation

Sigmoid
approximations

If-then-else
statements

J48 WEKA X X X
Logistic WEKA X X

MultilayerPerceptron
WEKA X X X

SMO WEKA X X
DecisionTreeClassifier

scikit-learn X X X

LinearSVC scikit-learn X X
LogisticRegression

scikit-learn X X

MLPClassifier
scikit-learn X X X

SVC scikit-learn X X

65

CHAPTER

5
WEKA AND SCIKIT-LEARN MODELS

5.1 Initial Considerations

In this chapter, we perform a more extensive examination of the WEKA and scikit-learn
classes that implement the classification models supported by EmbML. For all models, we focus
on describing their working process and the specific features – variables and algorithms – from
them that are necessary for classifying an instance, according to their source code available in
WEKA or scikit-learn. We also provide an analysis of the computational complexity of these
models, concentrating on the time and memory resources needed only for the classification
process. This evaluation considers the worst-case scenario to motivate the discussion of their
practical performance.

5.2 WEKA classes

The next subsections address the WEKA classes that implement the ML models provided
by EmbML.

5.2.1 J48

The J48 class from WEKA implements the C4.5 decision tree learning algorithm. Some
hyperparameters of this class consist of deciding for a pruned or unpruned tree (the default
choice is for a pruned tree), setting the confidence threshold for pruning (the default value is
0.25), and the minimum number of instances per leaf (the default value is 2).

In the WEKA original implementation of the J48 decision tree, each leaf node stores its
probabilities for all classes, and the model computes the probabilities for each class given an
input instance. In the EmbML output code for a J48 model, each leaf node saves only the class
with the highest probability, and the classification function only has to return the predicted class,

66 Chapter 5. WEKA and Scikit-learn Models

which simplifies the process and reduces the amount of data to store. Therefore, the EmbML
output classifier for a J48 input model incorporates the following main variables:

• LEN_TREE is an integer value that represents the total number of nodes in the decision
tree.

• ATT_OFFSET is an integer value equals to the number of attributes in the model. This
variable indicates whether a node i is internal (m_attIndex[i]< AT T _OFFSET) or leaf
(m_attIndex[i]≥ AT T _OFFSET).

• m_attIndex is a one-dimensional integer array with O(LEN_T REE) space complex-
ity. This variable stores the attribute indices tested in each internal node or the corre-
sponding class of a leaf. For instance, the internal node i checks the attribute value
at index m_attIndex[i]. For leaf nodes, m_attIndex[i] has a value greater or equal to
AT T _OFFSET , and (m_attIndex[i]−AT T _OFFSET) is its corresponding class num-
ber.

• m_splitPoint is a one-dimensional array with real numbers and O(LEN_T REE) space
complexity. It saves the split point of each internal node. When executing a tree traversal
during classification, this value decides which child – left or right – to proceed.

• tree is a two-dimensional integer array with O(LEN_T REE) space complexity. This array
stores the tree structure such that the values tree[i][0] and tree[i][1] respectively specify
the left and right children of node i.

Algorithm 3 shows how to use these data structures in the classification step implemented
by EmbML for J48 decision trees. The process consists of traversing the binary tree, starting at
the root node. At each iteration of the loop, it checks if the current node is a leaf and proceeds to
the child nodes according to the attribute values. When it reaches a leaf node, it returns a value
that corresponds to the predicted class of the input instance. Thus, the time complexity of this
algorithm is O(LEN_T REE)1 since the maximum path from the root to a leaf can be in this
order of complexity.

Algorithm 4 presents the recursive method that EmbML uses to produce if-then-else state-
ments, in string format, for a J48 WEKA classifier. In this procedure, the method Create_Statement

creates a string statement using its argument. Given that the classifier produced by this approach
still executes the same amount of operations of the previous method, it has the same time
complexity.

1 This complexity is also proportional to the height of the tree.

5.2. WEKA classes 67

Algorithm 3 – Classification algorithm for the J48 WEKA model.
1: procedure J48_CLASSIFY(attributes)
2: i← root
3: while m_attIndex[i]< AT T _OFFSET do . Ends when it finds a leaf
4: if attributes[m_attIndex[i]]≤ m_splitPoint[i] then
5: i← tree[i][0] . Proceeds to the left child
6: else
7: i← tree[i][1] . Proceeds to the right child
8: end if
9: end while

10: return (m_attIndex[i]−AT T _OFFSET) . Returns the class number
11: end procedure

Algorithm 4 – Converting a J48 WEKA model into if-then-else statements.
1: procedure GENERATE_CONDITIONALS(node)
2: if m_attIndex[node]≥ AT T _OFFSET then . leaf node: creates return statement
3: return Create_Statement(“return”

+string(m_attIndex[node]−AT T _OFFSET))
4: else . internal node: creates if-then-else statement
5: return Create_Statement(“i f (attributes[”+ string(m_attIndex[node])

+“]≤ m_splitPoint[”+ string(m_attIndex[node])+ “])”)
+ Generate_Conditionals(tree[node][0]) . recursion to left child
+ Create_Statement(“else”)
+ Generate_Conditionals(tree[node][1]). recursion to right child

6: end if
7: end procedure

5.2.2 Logistic

To create multinomial logistic regression models in WEKA, we use the Logistic class.
Before training, this class allows the user to set the ridge in the log-likelihood (the default value
is 10−8) and the maximum number of iterations (by default, it waits until convergence) of the
model. EmbML uses the following parameters to represent a classifier trained with the Logistic
class:

• NUM_PREDICTORS is an integer variable that stores the number of attributes used in
the classification process.

• NUM_CLASSES is an integer value that describes the number of class labels.

• m_selectedAttributes is a one-dimensional integer array with space complexity in the
order of O(NUM_PREDICTORS). It saves the indices of attributes selected for the classi-
fication.

• m_Par is a two-dimensional array with real numbers and memory complexity in the
order of O(NUM_CLASSES×NUM_PREDICTORS). This array stores the optimized

68 Chapter 5. WEKA and Scikit-learn Models

coefficients of the model.

The steps described in Algorithm 5 correspond to the classification procedure used by
an EmbML output code for Logistic WEKA models. First, it selects the attributes used in the
classification. Then, it preprocesses the dot product between the attribute array and the coefficients
of each class to use in the softmax function. Finally, it uses these values to calculate the posterior
probability of the classes and returns the label associated with the maximum value. Overall, the
time complexity of this classification process is O(NUM_CLASSES×NUM_PREDICTORS),
intuitively defined by the pair of nested loops that determines the dot products.

Algorithm 5 – Classification algorithm for the Logistic WEKA model.
1: procedure LOGISTIC_CLASSIFY(attributes)
2: newInstance[0]← 1
3: for i← 1 to NUM_PREDICTORS do . Filters the used attributes
4: if m_SelectedAttributes[i]≤CLASS_INDEX then
5: newInstance[i]← attributes[m_SelectedAttributes[i−1]]
6: else
7: newInstance[i]← attributes[m_SelectedAttributes[i]]
8: end if
9: end for

10: v[NUM_CLASSES]←{0}
11: for i← 0 to (NUM_CLASSES−2) do . Preprocess the dot products
12: for j← 0 to NUM_PREDICTORS do
13: v[i]← v[i]+ (m_Par[i][j]×newInstance[i])
14: end for
15: end for
16: v[NUM_CLASSES−1]← 0
17: for i← 0 to (NUM_CLASSES−1) do . Calculates the posterior probability of each

class
18: acc← 0
19: for j← 0 to (NUM_CLASSES−2) do
20: acc← acc+ exp(v[j]− v[i])
21: end for
22: prob[i]← 1/(acc+ exp(−v[i]))
23: end for
24: return argmax(prob)
25: end procedure

5.2.3 MultilayerPerceptron

The MultilayerPerceptron is the WEKA class that trains fully-connected MLP networks
for classification and regression problems. In this class, we can define some hyperparameters
of the model, such as the learning rate for the backpropagation algorithm (the default value is
0.3), the number of epochs to train (the default value is 500), and the number of hidden layers

5.2. WEKA classes 69

in the network and their sizes (by default, it uses one hidden layer with b(a+ c)/2c neurons2).
EmbML adopts the following variables from a model built with this class:

• INPUT_SIZE is an integer value equals to the input size – i. e., the number of attributes
in the model.

• OUTPUT_SIZE is an integer value equals to the output size – i. e., the number of class
labels.

• FIRST_OUTPUT is an integer variable that stores the index of the first output neuron.

• NUMBER_OF_NEURONS is an integer number that represents the total number of
neurons in the MLP network.

• m_attributeBases is a one-dimensional array that contains real numbers with the ranges
for all the attributes. It occupies O(INPUT _SIZE) memory space and is used in the
normalization process.

• m_attributeRanges is a one-dimensional array that stores real numbers with the base
values for all the attributes. It consumes O(INPUT _SIZE) memory space and is used in
the normalization process.

• m_numberOfConnections is a one-dimensional integer array with space complexity in
the order of O(NUMBER_OF_NEURONS). It saves, for each neuron i, the number of
neurons that connect to i.

• m_connections is a two-dimensional array with integers numbers and space complexity
in the order of O(NUMBER_OF_NEURONS2). This array stores, for each neuron i, the
list of indices of other neurons that connect to i.

• m_weights is a two-dimensional array with real numbers and space complexity in the order
of O(NUMBER_OF_NEURONS2). If j ≥ 1, the value of m_weights[i][j] represents the
weight of the edge between neuron i and its j-th connection. The content of m_weights[i][0]
is the bias associated with neuron i.

Algorithm 6 describes the working process used by EmbML output codes for a Multi-
layerPerceptron WEKA classifier. Compared with the WEKA original source code, the main
differences are that the EmbML version uses iterative methods (instead of recursive) and pro-
cesses neurons according to the order of the layers, from input to output (instead of depth-first
search), which can reduce classification time and memory usage. This process includes normal-
izing the input attributes, propagating the values through the neurons, and returning the class
label related to the output neuron with the highest value.
2 In this context, a is the number of attributes and c is the number of classes.

70 Chapter 5. WEKA and Scikit-learn Models

Algorithm 6 – Classification algorithm for the MultilayerPerceptron WEKA model.
1: procedure MULTILAYERPERCEPTRON_CLASSIFY(attributes)
2: for i← 0 to (INPUT _SIZE−1) do . Normalizes the input
3: if m_attributeRanges[i] 6= 0 then
4: attributes[i]← (attributes[i]−m_attributeBases[i])/(m_attributeRanges[i])
5: else
6: attributes[i]← (attributes[i]−m_attributeBases[i])
7: end if
8: end for
9: m_value← f orward(attributes) . Forwards the input through the network

10: for i← 0 to (OUT PUT _SIZE−1) do . Gets the output values
11: theArray[i]← m_value[i+FIRST _OUT PUT]
12: end for
13: return argmax(theArray)
14: end procedure

In Algorithm 7, we present the procedure that forwards the input values until they reach
an output. Following a topological order of the layers, this algorithm computes the weighted
sum of all signals from the input connections of a neuron and produces its output value using an
activation function. In MultilayerPerceptron WEKA networks, the neurons can use sigmoid or
linear activation functions, but EmbML only supports the first one. At the final, the algorithm
returns an array with the output produced for each neuron.

Algorithm 7 – Forward function for the MultilayerPerceptron WEKA model.
1: procedure FORWARD(attributes)
2: for i← 0 to (INPUT _SIZE−1) do . Copies the input values to the first neurons
3: m_value[i]← attributes[i]
4: end for
5: for i← INPUT _SIZE to (NUMBER_OF_NEURONS−1) do
6: value← m_weights[i][0] . Adds the bias value
7: for j← 0 to (m_numberO fConnections[i]−1) do . Calculates the weighted sum
8: value← value+(m_weights[i][j+1]×m_value[m_connections[i][j]])
9: end for

10: m_value[i]← activationFunction(value) . Generates the output value
11: end for
12: return m_value
13: end procedure

Hence, the task of classifying an instance using these procedures has a time complexity
of O(NUMBER_OF_NEURONS2), because the maximum total number of neuron connections
lies in this order, regardless of the number of layers in the model.

5.2. WEKA classes 71

5.2.4 SMO

The SMO is a class from WEKA that produces binary SVM classifiers using the sequen-
tial minimal optimization algorithm (PLATT, 1998). For dealing with multiclass problems, this
class automatically builds a collection of binary classifiers using the one-versus-one approach.
The training configuration of an SMO model includes setting the complexity constant (the default
value is 1) and the kernel function to use (the polynomial is the default choice). In the polynomial
kernel, we can define the exponent value (the default is 1.0, which represents a linear kernel) and
choose to apply, or not, the inhomogeneous version (by default, the kernel does not use it). In the
RBF kernel, we can determine the gamma coefficient value (the default is 0.01). An EmbML
classifier code produced for the SMO class includes the following parameters:

• INPUT_SIZE is an integer value equals to the number of attributes in the input.

• NUM_CLASSES is an integer variable that contains the number of class labels.

• CLASS_INDEX is an integer number that stores the index of the class in the input array.

• M_EXPONENT is a variable with a real number that represents the exponent used in the
polynomial kernel.

• GAMMA is a variable with a real number that saves the gamma parameter used in the
RBF kernel.

• M_LOWERORDER is a boolean variable that indicates whether the model uses the
inhomogeneous version of the polynomial kernel.

• TOTAL_SV is an integer value equals to the total number of support vectors in an SMO
model with polynomial or RBF kernel, considering all binary classifiers.

• minArray is a one-dimensional array with real numbers and O(INPUT _SIZE) space
complexity. This variable contains the minimum values for each attribute used in the
normalization step.

• maxArray is a one-dimensional array with real numbers and O(INPUT _SIZE) space
complexity. This variable saves the maximum values for each attribute used in the normal-
ization step.

• m_b is a two-dimensional array with real numbers that denote the thresholds for each binary
classifier. The space complexity of this variable is in the order of O(NUM_CLASSES2).

• m_sparseWeights is a three-dimensional array with real numbers and demands a memory
space of O(NUM_CLASSES2× INPUT _SIZE). This variable is only available in models
with a linear kernel and stores, for each binary classifier, the weight associated with the
attributes.

72 Chapter 5. WEKA and Scikit-learn Models

• m_size is a two-dimensional integer array that contains the number of support vectors of
each binary classifier. This array consumes O(NUM_CLASSES2) memory space and is
available for all models, except those with a linear kernel.

• m_class_alpha is a three-dimensional array with real values and O(TOTAL_SV) memory
complexity. For each support vector, this array stores the precalculated product of its class
value (transformed to 1 or −1) and Lagrange multiplier.

• m_AttValues is a four-dimensional array consisting of real values that represent the
attributes of each support vector. The space complexity of this variable is in the order of
O(TOTAL_SV × INPUT _SIZE).

The procedure presented in Algorithm 8 describes how an EmbML output code imple-
ments the classification process for SMO WEKA classifiers. The first step consists of normalizing
the input data. Then, it iterates over each binary classifier to determine the prediction results.
Since this model applies the one-versus-one voting strategy, it produces k(k−1)/2 binary classi-
fiers for a problem with k labels. After collecting all intermediate results, it returns the index of
the class with more votes.

Algorithm 8 – Classification algorithm for the SMO WEKA model.
1: procedure SMO_CLASSIFY(attributes)
2: for i← 0 to INPUT _SIZE do . Normilizes the input
3: if maxArray[i] = minArray[i] or minArray[i] = NAN then
4: attributes[i]← 0
5: else
6: attributes[i]← (attributes[i]−minArray[i])/(maxArray[i]−minArray[i])
7: end if
8: end for
9: result[NUM_CLASSES]←{0}

10: for i← 1 to (NUM_CLASSES−1) do . Calculates the output of each binary classifier
11: for j← 0 to (i−1) do
12: out put← SV MOut put(i, j,attributes) . Produces one vote
13: if out put > 0 then
14: result[i]← result[i]+1
15: else
16: result[j]← result[j]+1
17: end if
18: end for
19: end for
20: return argmax(result) . Returns the index of the class with more votes
21: end procedure

The binary classification steps vary depending on the kernel function chosen for the
model. When using the linear kernel, Algorithm 9 defines this process, which consists of
comparing the input with the separating hyperplane.

5.2. WEKA classes 73

Algorithm 9 – SVMOutput function for the linear kernel.
1: procedure SVMOUTPUT(i, j,attributes)
2: result← 0
3: for p1← 0 to (INPUT _SIZE−1) do . Processes all attributes
4: if p1 6=CLASS_INDEX then
5: result← result +(attributes[p1]×m_sparseWeights[i][j][p1]) . Compares the

input with the hyperplane
6: end if
7: end for
8: result← result−m_b[i][j]
9: return result

10: end procedure

For the polynomial kernel, Algorithm 10 presents this procedure, which has to calculate
the dot product between all support vectors and the input, apply the kernel function to the result,
and multiply by the Lagrange and class coefficients.

Algorithm 10 – SVMOutput function for the polynomial kernel.
1: procedure SVMOUTPUT(i, j,attributes)
2: result← 0
3: for k← 0 to (m_size[i][j]−1) do . Processes all support vectors
4: resultAux← 0
5: for p1← 0 to INPUT _SIZE do
6: if p1 6=CLASS_INDEX then
7: resultAux← resultAux+(attributes[p1]×m_AttValues[i][j][k][p1]) .

Compares the input with each support vector
8: end if
9: end for

10: if M_LOWERORDER = T RUE then . For the inhomogeneous version
11: resultAux← resultAux+1.0
12: end if
13: resultAux← pow(resultAux,M_EXPONENT) . Applies the polynomial function
14: result← result +(m_class_al pha[i][j][k]× resultAux) . Multiplies by the

coefficients
15: end for
16: result← result−m_b[i][j]
17: return result
18: end procedure

The process for the RBF kernel is relatively similar to the polynomial kernel, except that
it applies a different method to determine the distance between the input and the support vectors,
and uses another kernel function, as described in Algorithm 11.

In contrast to the WEKA source code, the EmbML implementation for this model only
stores the precalculated multiplication of the class value and the Lagrange multiplier from each
support vector, instead of having both values separately, eliminates support vectors associated

74 Chapter 5. WEKA and Scikit-learn Models

Algorithm 11 – SVMOutput function for the RBF kernel.
1: procedure SVMOUTPUT(i, j,attributes)
2: result← 0
3: for k← 0 to (m_size[i][j]−1) do . Processes all support vectors
4: resultAux← 0
5: p1← 0
6: for p1← 0 to INPUT _SIZE do
7: if p1 6=CLASS_INDEX then
8: resultAux← resultAux+(attributes[p1]−m_AttValues[i][j][k][p1])2 .

Compares the input with each support vector
9: end if

10: end for
11: resultAux← exp(−GAMMA× resultAux) . Applies the RBF function
12: result← result +(m_class_al pha[i][j][k]× resultAux) . Multiplies by the

coefficients
13: end for
14: result← result−m_b[i][j]
15: return result
16: end procedure

with null coefficients, and iterates sequentially over the support vectors.

Finally, the time complexity for the entire classification step using the linear kernel
is O(NUM_CLASSES2× INPUT _SIZE), considering the loops involved in the procedures.
As for the models with the polynomial and RBF kernels, this complexity is in the order of
O(TOTAL_SV × INPUT _SIZE), since they compare the input with all support vectors from
every binary classifier.

5.3 Scikit-learn Classes

The subsequent classes correspond to the scikit-learn implementations of the classifiers
available in EmbML.

5.3.1 DecisionTreeClassifier

The DecisionTreeClassifier is a scikit-learn class that implements an optimized version
of the CART method to train a decision tree model. In the constructor method of this class,
the developer can set the function to measure the quality of a split (the default choice is the
Gini impurity), the strategy used to determine the split at each node (by default, it chooses the
best split), the maximum depth of the tree (by default, it is unlimited), the minimum number of
samples required to split an internal node (the default value is 2), and other hyperparameters.
Then, the EmbML classifier for this class contains the following variables:

5.3. Scikit-learn Classes 75

• LEN_TREE is an integer number equals to the size (i.e., number of nodes) of the decision
tree.

• NUM_CLASSES is an integer value that represents the number of class labels.

• attributeIndex is a one-dimensional integer array that occupies O(LEN_T REE) memory
space. This array stores the index of the attribute tested in each internal node of the tree.
For leaves, it saves its corresponding class index.

• threshold is a one-dimensional array with real numbers and O(LEN_T REE) space com-
plexity. For each internal node, this array saves its division point, determining the interval
values for the right and left children.

• children_left is a one-dimensional integer array that saves the left child indices of every
internal node. This array has a memory complexity in the order of O(LEN_T REE).

• children_right is a one-dimensional integer array with O(LEN_T REE) space complexity.
It contains the right child indices of each internal node.

• classes is a one-dimensional array with integer values that denote the class labels of the
model. It consumes O(NUM_CLASSES) memory space.

Algorithm 12 indicates the steps that EmbML classifier codes perform to process the
input and produce a classification result for a DecisionTreeClassifier model. The procedure is
similar to the J48 WEKA version: it starts at the root and traversals the tree until it reaches a
leaf node. The internal nodes test the attribute values and decide the path to follow next (right or
left children), and the leaf nodes designate the label for the input. The complete process has a
time complexity of O(LEN_T REE)3, justified by the same idea presented for the J48 WEKA
models in Subsection 5.2.1.

Algorithm 12 – Classification algorithm for the DecisionTreeClassifier scikit-learn model.
1: procedure DECISIONTREECLASSIFY_CLASSIFY(attributes)
2: i← root
3: while i 6=−1 and children_le f t[i] 6=−1

and children_right[i] 6=−1 do . Ends when it finds a leaf
4: if attributes[attributeIndex[i]]≤ threshold[i] then
5: i← children_le f t[i] . Proceeds to the left child
6: else
7: i← children_right[i] . Proceeds to the right child
8: end if
9: end while

10: return classes[attributeIndex[i]] . Returns the corresponding class
11: end procedure

3 This complexity is also proportional to the height of the tree.

76 Chapter 5. WEKA and Scikit-learn Models

It is also possible to transform the binary tree format into if-then-else statements, as
indicated in Algorithm 13. Compared to the previous strategy, time and memory complexities
remain the same.

Algorithm 13 – Converting a DecisionTreeClassifier scikit-learn model into if-then-else state-
ments.

1: procedure GENERATE_CONDITIONALS(node)
2: if node =−1 or children_le f t[node] =−1

or children_right[node] =−1 then . leaf node: creates return statement
3: return Create_Statement(“return”

+string(classes[attributeIndex[node]]))
4: else . internal node: creates if-then-else statement
5: return Create_Statement(“i f (attributes[”+ string(attributeIndex[node])

+“]≤ threshold[”+ string(node)+ “])”)
+ Generate_Conditionals(children_le f t[node]) . recursion to left child
+ Create_Statement(“else”)
+ Generate_Conditionals(children_right[node]). recursion to right child

6: end if
7: end procedure

5.3.2 LinearSVC and LogisticRegression

The scikit-learn implements the logistic regression and SVM (with linear kernel) mod-
els in the classes LogisticRegression and LinearSVC, respectively. Considering that they both
represent linear models, these classes have identical classification methods and variables. Also,
in multiclass problems, they automatically apply the one-versus-rest scheme. The set of hyper-
parameters of these models includes the regularization parameter (the default value is 1.0) and,
for the LogisticRegression, the algorithm to use in the optimization problem (by default, it ap-
plies an approximation of the Broyden–Fletcher–Goldfarb–Shanno algorithm (LIU; NOCEDAL,
1989)). The EmbML output codes for these models incorporate the following parameters:

• INPUT_SIZE is an integer value that corresponds to the number of attributes in the input.

• NUM_CLASSES is an integer value equals to the number of class labels.

• intercept is a one-dimensional array with real numbers representing the independent terms
of the linear model. This variable has O(NUM_CLASSES) memory complexity.

• coef is a two-dimensional array with real numbers and a space complexity in the order
of O(NUM_CLASSES× INPUT _SIZE). It saves the estimated coefficients of the linear
model.

• classes is a one-dimensional integer array with O(NUM_CLASSES) memory complexity
and stores the class labels.

5.3. Scikit-learn Classes 77

In Algorithm 14, we show the procedure employed by EmbML classifiers for the Lin-
earSVC and the LogisticRegression models to perform the classification of an instance. It
examines each class by calculating the linear combination of the model coefficients and the input
values. Finally, the predicted label is the one associated with the highest value resulting from the
previous step. As this model iterates over the complete input for each possible class, it spends
O(NUM_CLASSES× INPUT _SIZE) operations to finish the task.

Algorithm 14 – Classification algorithm for the LinearSVC and the LogisticRegression scikit-
learn models.

1: procedure LINEARSVC_LOGISTICREGRESSION_CLASSIFY(attributes)
2: for i← 0 to (NUM_CLASSES−1) do . Iterates over each class
3: scores[i]← intercept[i]
4: for j← 0 to (INPUT _SIZE−1) do
5: scores[i]← scores[i]+ (coe f [i][j]×attributes[j]) . Linear combination
6: end for
7: if NUM_CLASSES = 2 then . Binary classifier
8: if scores[i]> 0 then
9: return classes[1]

10: else
11: return classes[0]
12: end if
13: end if
14: end for
15: return classes[argmax(scores)] . Returns the class label
16: end procedure

5.3.3 MLPClassifier

The MLPClassifier class implements fully-connected MLP models in scikit-learn using
the backpropagation technique. This class enables to set some model configurations, such as the
number of hidden layers and their sizes (by default, it builds one hidden layer with 100 neurons),
the activation function for the hidden layer neurons (ReLU is the default choice), the solver for
weight optimization (the default method is the Adam, proposed by Kingma and Ba (2014)), and
the maximum number of iterations (the default value is 200). An EmbML output classifier for
this class has the parameters described below:

• INPUT_SIZE is an integer variable that has the number of attributes in the input.

• N_LAYERS is an integer value equals to the number of layers in the trained network.

• N_NEURONS is an integer value corresponding to the total number of neurons in the
model.

• sizes is a one-dimensional integer array that contains the number of neurons in each layer.
This array occupies O(N_LAY ERS) memory space.

78 Chapter 5. WEKA and Scikit-learn Models

• intercept is a two-dimensional array with real numbers and space complexity in the order
of O(N_LAY ERS×N_NEURONS). It stores the bias value of each neuron in the network.

• coef is a three-dimensional array with real values representing the weights of the network
neurons. The memory complexity of this variable is O(N_NEURONS2).

• classes is a one-dimensional integer array that saves the class labels and consumes
O(NUM_CLASSES) memory.

Algorithm 15 presents the strategy that EmbML adopts in its output codes from MLP-
Classifier models to classify an example. The whole process consists of dealing with two
variables: one array that saves the input of the current layer, and another array to store the
produced output. In the beginning, we copy the attribute values to the output array. Then, we
examine each layer by swapping the input and output arrays, forwarding the input to produce the
layer output, and applying the activation function to these values. In the end, the output array
stores the signals from the output layer neurons, so it just returns the label associated with the
neuron holding the highest value.

Algorithm 15 – Classification algorithm for the MLPClassifier scikit-learn model.
1: procedure MLPCLASSIFIER_CLASSIFY(attributes)
2: for i← 0 to (INPUT _SIZE−1) do . Copies the input values
3: out put[i]← attributes[i]
4: end for
5: for i← 0 to (N_LAY ERS−2) do . Goes over the layers
6: swap(out put, input) . Last output becomes current input
7: out put← f orward(attributes, input, i,sizes[i],sizes[i+1]) . Forwards the input
8: for j← 0 to (sizes[i+1]−1) do
9: if i+1 6= N_LAY ERS−1 then . Hidden layer neuron

10: out put[j]← activation_hidden(out put[j])
11: else . Output layer neuron
12: out put[j]← activation_out put(out put[j])
13: end if
14: end for
15: end for
16: return classes[argmax(out put)] . Returns class label
17: end procedure

In Algorithm 16, we describe the procedure that takes an input array and generates the
output array for a given network layer. It simply iterates over the neurons of that layer, calculating
the weighted sum of their connection weights and the input array. In conclusion, the overall cost
of classification time using these procedures is O(N_NEURONS2), which is explained by the
argument previously presented for the MultilayerPerceptron WEKA model in Subsection 5.2.3.

5.3. Scikit-learn Classes 79

Algorithm 16 – Forward function for the MLPClassifier scikit-learn model.
1: procedure FORWARD(attributes, input, layer_index, input_size,out put_size)
2: for i← 0 to (out put_size−1) do . Process each neuron of the current layer
3: acc_sum← 0
4: for j← 0 to (input_size−1) do
5: acc_sum← acc_sum+(coe f [layer_index][i][j]× input[j]) . Weighted sum of

the input signals
6: end for
7: out put[i]← acc_sum+ intercept[layer_index][i] . Adds bias
8: end for
9: return out put . Returns the output for each neuron of the current layer

10: end procedure

5.3.4 SVC

The SVC class provides an implementation of the SVM classifier based on the LIBSVM
library (CHANG; LIN, 2011). When creating a model with this class, we can select some different
hyperparameters: the regularization parameter (the default value is 1.0), the kernel function
(RBF is the default choice), the degree of the polynomial kernel function (the default value is 3),
gamma coefficient (the default value is 1/(a× v))4, and the limit of iterations (by default, it is
unlimited). An SVC object handles multiclass problems employing the one-versus-one scheme,
and the EmbML output for this class includes the following parameters:

• INPUT_SIZE is an integer value that denotes the number of attributes in the input.

• MODEL_L is an integer value equals to the total number of support vectors of all binary
classifiers in the model.

• NR_CLASS is an integer variable containing the number of possible classes.

• GAMMA is a real number equals to the gamma coefficient of the polynomial and RBF
kernels.

• COEF0 is a real variable that represents the independent term of the polynomial kernel.

• DEGREE is a real number that saves the degree of the polynomial kernel function.

• support_vectors is a two-dimensional array with real values. This array contains the
support vectors of the model and requires an O(MODEL_L× INPUT _SIZE) memory
space.

• dual_coef is a two-dimensional array with real numbers and O(MODEL_L) space com-
plexity. It stores the trained coefficients of each support vector.

4 In this context, a is the number of attributes and v is the variance of all training data.

80 Chapter 5. WEKA and Scikit-learn Models

• intercept is a one-dimensional array with real values that denote the intercept points of
each binary classifier. This variable has O(NR_CLASS2) memory complexity.

• end is a two-dimensional integer array that occupies O(NR_CLASS2) memory space. To
understand its content, let us consider a combination of classes (i, j) in a one-versus-
one strategy. Then, we use the support vectors in the interval [end[i][j],end[i][j+1]) to
represent the class i, and the support vectors in the interval [end[j][i],end[j][i+ 1]) to
denote the class j. These intervals correspond to indices of elements in the index_sv[i] and
index_sv[j] arrays, respectively.

• index_sv is a two-dimensional array with integer values and has O(MODEL_L) memory
complexity. This variable stores indices of positions from the k_value array, which contains
the resulting values of the kernel function applied to the input and all support vectors of
the model. The array index_sv[i] has the indices of the support vectors from binary SVC
classifiers that involve class i. The elements of the array index_sv[i] are organized in the
intervals defined by the variable end[i]. For instance, the vectors in k_value at indices from
index_sv[i][end[i][j]] to index_sv[i][end[i][j+1]]−1 are those associated with the class i

in the binary model responsible for the combination (i, j).

• classes is a one-dimensional integer array that saves the class labels and consumes
O(NR_CLASS) space complexity.

In Algorithm 17, we exhibit the classification procedure implemented by EmbML output
codes for SVC models. The first task comprises precomputing the values of the kernel function
on the input example combined with all support vectors of the model. Next, it iterates over each
one-versus-one class combinations to produce the votes of the binary classifiers. With the support
vectors representing both classes, these votes are obtained by calculating the weighted sum of
the results of the kernel function and their corresponding coefficients. In the end, the procedure
returns the class that collected the highest number of votes.

As for the SVC kernel functions supported by EmbML, Algorithm 18 and Algorithm 19
describes the methods used to obtain the result of polynomial and RBF functions, respectively.
These processes are similar in the sense that they both include comparing the attribute values of
the input example and the support vector, and applying a transformation function to the resulting
value.

Using an equivalent thought as the one presented for the SMO WEKA models in Sub-
section 5.2.4, we can acknowledge that the entire classification process of this current case has
O(MODEL_L× INPUT _SIZE) time complexity.

5.4. Discussion 81

Algorithm 17 – Classification algorithm for the SVC scikit-learn model.
1: procedure SVC_CLASSIFY(attributes)
2: for i← 0 to (MODEL_L−1) do
3: k_value[i]← k_ f unction(attributes,support_vectors[i]) . Precalculates the kernel

function values for the input and each support vector
4: end for
5: vote[NR_CLASS−1]← 0
6: p← 0
7: for i← 0 to (NR_CLASS−2) do . Iterates over each class combination
8: for j← i+1 to (NR_CLASS−1) do
9: acc_sum← 0

10: for k← end[j][i] to (end[j][i+1]−1) do . Sums the values from support
vectors of class j

11: acc_sum← acc_sum+(dual_coe f [j][k]× k_value[index_sv[j][k]])
12: end for
13: for k← end[i][j] to (end[i][j+1]−1) do . Sums the values from support

vectors of class i
14: acc_sum← acc_sum+(dual_coe f [i][k]× k_value[index_sv[i][k]])
15: end for
16: acc_sum← acc_sum+ intercept[p] . Adds the intercept point
17: p← p+1
18: if acc_sum > 0 then . Saves the vote from the current binary classifier
19: vote[i]← vote[i]+1
20: else
21: vote[j]← vote[j]+1
22: end if
23: end for
24: end for
25: return classes[argmax(vote)] . Returns the class label
26: end procedure

Algorithm 18 – Kernel function for a polynomial model.
1: procedure K_FUNCTION(attributes,support_vectors)
2: sum← 0
3: for i← 0 to (INPUT _SIZE−1) do . Iterates over each attribute
4: sum← sum+(attributes[i]× support_vectors[i]) . Compares their values
5: end for
6: return pow((GAMMA× sum)+COEF0,DEGREE) . Applies the transformation

function
7: end procedure

5.4 Discussion

In Chart 7, we present the time and memory complexities for the EmbML implementa-
tions of WEKA and scikit-learn classifiers. First of all, note that WEKA and scikit-learn versions
of the same model are essentially asymptotic equivalents. This observation suggests that the
decision of the training tool to use will not extraordinarily impact the classifier performance.

82 Chapter 5. WEKA and Scikit-learn Models

Algorithm 19 – Kernel function for a RBF model.
1: procedure K_FUNCTION(attributes,support_vectors)
2: sum← 0
3: for i← 0 to (INPUT _SIZE−1) do . Iterates over each attribute
4: sum← sum+(attributes[i]− support_vectors[i])2 . Compares their values
5: end for
6: return exp(−GAMMA× sum) . Applies the transformation function
7: end procedure

Chart 7 – Time and memory complexities for WEKA and scikit-learn classifiers.

Model class Time complexity Memory complexity
J48 WEKA O(LEN_T REE) O(LEN_T REE)

Logistic WEKA O(NUM_CLASSES×
NUM_PREDICTORS)

O(NUM_CLASSES×
NUM_PREDICTORS)

MultilayerPerceptron
WEKA O(NUMBER_OF_NEURONS2) O(NUMBER_OF_NEURONS2)

SMO WEKA
(linear kernel)

O(NUM_CLASSES2×
INPUT _SIZE)

O(NUM_CLASSES2×
INPUT _SIZE)

SMO WEKA
(polynomial and

RBF kernels)

O(TOTAL_SV×
INPUT _SIZE)

O(TOTAL_SV×
INPUT _SIZE)

DecisionTreeClassifier
scikit-learn O(LEN_T REE) O(LEN_T REE)

LinearSVC and
LogisticRegression

scikit-learn

O(NUM_CLASSES×
INPUT _SIZE)

O(NUM_CLASSES×
INPUT _SIZE)

MLPClassifier
scikit-learn O(N_NEURONS2) O(N_NEURONS2)

SVC
scikit-learn

O(MODEL_L×
INPUT _SIZE)

O(MODEL_L×
INPUT _SIZE)

Furthermore, observe that we expressed most of their complexity functions in terms of
variables that are unique for the models. These variables, such as the length of a decision tree or
the total number of support vectors, are also intrinsically dependent on other factors, such as the
probability distribution of the addressed problem and the training hyperparameters. From the
theoretical perspective, establishing an adequate comparison of processing time and memory
consumption for these different models is a difficult task and may cause incorrect conclusions.
For instance, the memory complexity of the decision tree classifiers is linearly proportional to
the size of the tree, but this last value can grow exponentially in relation to the height of the tree.
The number of neurons and layers in the MLP models are hyperparameters defined by the user
in the training phase, and they can assume unpredictable values. Additionally, the number of
support vectors in the SVM models with polynomial and RBF kernels can be as large as the size
of the training set in a worst-case analysis. Consequently, the SVM classifiers would require
storing all training examples in memory and iterate through them during classification. For these
reasons, one solution that can promote a better comprehension and comparison of the time and

5.5. Final Considerations 83

memory behaviors of these classifiers is to use empirical evaluation.

5.5 Final Considerations
In this chapter, we explained the details of the WEKA and scikit-learn classes supported

by EmbML. We described the variables that store the parameters of the models and each classifi-
cation procedure. This study also included an asymptotic analysis of the storage consumption of
these variables and the classification processing time. Lastly, we compared the time and memory
complexities of these models and stated the limitations of only performing such an analysis.
As a complement of this chapter, we propose in the next chapter a comparative analysis of all
models supported by EmbML using benchmark datasets to help understand their performance in
a practical way.

85

CHAPTER

6
COMPARATIVE ANALYSIS

6.1 Initial Considerations

This chapter is an extension of the results presented in Silva, Souza and Batista (2019a)
and describes the experimental evaluation to assess the performance of the EmbML classifiers.
These assessments include six datasets of different real-world applications and six microcon-
trollers with diverse memory and processing specifications. First, we employ three metrics to
evaluate their performance and measure the impact of the proposed classifier modifications.
Then, we apply these same metrics to confront the performance of the classifiers generated by
EmbML with classifiers provided by some other tools in the literature.

6.2 Experimental Setup

The experiments presented in this chapter consider three primary metrics to assess the
performance of the classifiers generated with EmbML or related tools: accuracy rate, classifica-
tion time, and memory usage. The accuracy and classification time are estimated using examples
from a test set. The memory usage represents the total size of the compiled classifier code. In
the context of these experiments, a high accuracy indicates that the classifier correctly solves
the problem. Also, lowering the classification time and memory usage is advantageous, since it
may allow opting for simpler hardware, which reduces the costs and power requirements for the
system.

In the following sections, the values measured for the memory usage derives from the
GNU size utility1, which lists the section sizes and the total size for the input file. As for the
classification time, we collected the mean value per instance using the micros2 function, which
returns the number of microseconds since the microcontroller began running the current program.

1 <https://ftp.gnu.org/old-gnu/Manuals/binutils-2.12/html_node/binutils_8.html>
2 <https://www.arduino.cc/reference/en/language/functions/time/micros/>

https://ftp.gnu.org/old-gnu/Manuals/binutils-2.12/html_node/binutils_8.html
https://www.arduino.cc/reference/en/language/functions/time/micros/

86 Chapter 6. Comparative Analysis

Therefore, we call this function twice, before and after calling the classification function, and
use the difference between the collected values. To better estimate these values, we executed
each classifier ten times in the test set. In all experiments, the microcontrollers read the test
set examples from a microSD memory card. However, the results consider only the time spent
in the classification process, not incorporating the time for reading and preparing the input. In
some cases, the size of the classifiers surpassed the microcontroller’s storage capacity, so we
acknowledged them in the analysis.

The study of the classifiers produced by EmbML includes the performance comparison
of three representations for (signed) real numbers:

• floating-point with 32 bits (referred as FLT), defined by the Institute of Electrical and
Electronics Engineers (IEEE) 754 standard (KAHAN, 1996) and provided by the compiler;

• fixed-point with 32 bits (referred as FXP32), using the Q22.10 format provided by Em-
bML;

• and fixed-point with 16 bits (referred as FXP16), using the Q12.4 format provided by
EmbML.

6.2.1 Datasets

The study of each classifier performance considers six benchmark datasets from real-
world applications related to sensing. In general, sensors are embedded in low-power devices to
perform the data gathering task. Therefore, such problems represent a typical use-case scenario
for the EmbML classifiers. Follows a brief description of each dataset:

• Aedes aegypti-sex (REIS; MALETZKE; BATISTA, 2018). In this application, an optical
sensor measures the wingbeat frequency and other audio related features of flying insects
that cross through a sensor light. The classification task is to identify the sex of Aedes

aegypti mosquitoes;

• Asfault-streets (SOUZA; GIUSTI; BATISTA, 2018). The problem explored in this dataset
involves evaluating the pavement conditions of urban streets, using the data collected from
an accelerometer sensor installed in a car. The instances have the following categories
related to the pavement quality: good, average, fair, and poor, as well as the occurrence of
obstacles such as potholes or speed bumps;

• Asfault-roads (SOUZA; GIUSTI; BATISTA, 2018). This dataset represents the same
previously presented problem of pavement conditions evaluation but performed on high-
ways instead of urban streets. The main difference is the lack of the poor class. Also, the
difference in car speed during data collection imposes some significant variations on the
class patterns;

6.2. Experimental Setup 87

• GasSensorArray (VERGARA et al., 2012). This problem includes the data from a
gas delivery platform with 16 chemical sensors that measure six distinct pure gaseous
substances in the air: ammonia, acetaldehyde, acetone, ethylene, ethanol, and toluene. The
classification objective is to identify which gas constitutes each example;

• PenDigits (ALIMOGLU; ALPAYDIN, 1996). This dataset comprises the problem of
classifying handwritten digits (from 0 to 9) according to the coordinates (x,y) of a pen
writing them on a digital screen;

• HAR (ANGUITA et al., 2013). This application employs a waist-mounted smartphone
and uses its accelerometer and gyroscope sensors to obtain data for the following human
activities: walking, climbing stairs, downstairs, sitting, standing, and lying down.

Table 1 shows the main characteristics of these datasets. Note that they vary on the number
of classes and attributes – variables that directly affect the time and memory complexities of the
classifiers, as we saw in Section 5.4. The experimental evaluation references these datasets using
the identifiers in the first column.

Table 1 – Characteristics of the evaluated datasets.

Identifier Dataset Features Classes Instances
D1 Aedes aegypti-sex 42 2 42,000
D2 Asfault-roads 64 4 4,688
D3 Asfault-streets 64 5 3,878
D4 GasSensorArray 128 6 13,910
D5 PenDigits 8 10 10,992
D6 HAR 561 6 10,299

To evaluate the classifier performances, we applied a 70/30 holdout validation. This
method requires splitting each dataset into two stratified and mutually exclusive subsets, in which
the training part takes 70% of the original dataset instances, and the test set incorporates the 30%
remaining.

6.2.2 Classifiers

In the experiments described later in this chapter, we have not performed any search to
find the best set of hyperparameters for each combination of the classification model and dataset.
Instead, we trained most of the classifiers using their default hyperparameter values provided by
WEKA and scikit-learn. Given that we wanted to explore all possibilities supported by EmbML,
there were a few cases in which we had to manually set some hyperparameters:

• as the SMO WEKA class produces SVM models with a linear kernel by default, we
modified it to train the classifiers with polynomial (using degree = 2) and RBF kernels;

88 Chapter 6. Comparative Analysis

• in the case of SVC scikit-learn class, we adjusted it to produce SVM models with a
polynomial kernel (using degree = 2), since the RBF kernel is its default choice;

• and, for the MLPClassifier scikit-learn class, we changed it to also create MLP networks
that apply the sigmoid activation function, considering that the ReLU function is its default
option.

Therefore, the accuracy rates reported in these analyses may not represent the best
possible values for each dataset and classifiers. Keep in mind that the main concerns of these
assessments are to study the viability of embedded implementation of the classifiers, determine
whether the classifier execution in the microcontrollers maintain the same accuracy obtained in
the desktop version or not, and also optimize their time and memory behaviors.

6.2.3 Microcontrollers

Given the availability of a large number of microcontrollers suitable for low-power
hardware, this comparative evaluation considers six microcontrollers used in popular platforms
for prototype projects. The chosen platforms are representative examples that can be easily
sourced, such as Arduino and Teensy, which also improves the reproducibility of the experiments.
However, the EmbML is not restricted to maker platforms by any means. Any microcontroller
for which a C++ compiler is available can use the classifiers generated with the aid of EmbML.

Thus, the following microcontrollers were considered for the experimental evaluation:

i. ATmega328/P (ATMEL CORPORATION, 2016) available in the Arduino Uno (Figure 9)
and produced by Atmel. It is a low-power 8-bit microcontroller with simple characteristics
when compared to the other chosen models;

ii. ATmega2560 (ATMEL CORPORATION, 2014) available in the Arduino Mega 2560 (Fig-
ure 10). It is an 8-bit microcontroller manufactured by Atmel. Besides some improvement
to memory storage, it is very similar to the previous microcontroller;

iii. AT91SAM3X8E (ATMEL CORPORATION, 20145) available in the Arduino Due (Fig-
ure 11) and also developed by Atmel. It is a high-performance 32-bit microcontroller and
represents one of the most robust options available in Arduino platforms;

iv. MK20DX256VLH7 (FREESCALE SEMICONDUCTOR, INC., 2012a; FREESCALE
SEMICONDUCTOR, INC., 2012b) available in the Teensy 3.1 and Teensy 3.2 (Figure 12).
It is a 32-bit microcontroller produced by Freescale. It represents a class of processors
with intermediate processing and memory power;

v. MK64FX512VMD12 (NXP SEMICONDUCTORS, 2016; NXP SEMICONDUCTORS,
2017a) available in the Teensy 3.5 (Figure 13) and manufactured by Freescale. It has a

6.2. Experimental Setup 89

single-precision FPU. In addition, both the frequency of the clock and the memory storage
are better compared to the previous version;

vi. MK66FX1M0VMD18 (NXP SEMICONDUCTORS, 2017b; NXP SEMICONDUCTORS,
2015) available in the Teensy 3.6 (Figure 14), and also produced by Freescale. It is the
most powerful processor in these experiments. This unit operates with 32 bits and includes
a single-precision FPU.

The microcontrollers of the Teensy platform have an ARM Cortex-M4 core and the
Arduino Due platform has an ARM Cortex-M3 core. The Arduino Uno and Arduino Mega 2560
has a low-power microcontroller from the AVR family.

Figure 9 – Arduino Uno.

Source: <https://store.arduino.cc/usa/
arduino-uno-rev3>

Figure 10 – Arduino Mega 2560.

Source: <https://store.arduino.cc/usa/
mega-2560-r3>

Figure 11 – Arduino Due.

Source: <https://store.arduino.cc/usa/due>

Figure 12 – Teensy 3.2.

Source: <https://www.pjrc.com/store/teensy32.
html>

Figure 13 – Teensy 3.5.

Source: <https://www.pjrc.com/store/teensy35.
html>

Figure 14 – Teensy 3.6.

Source: <https://www.pjrc.com/store/teensy36.
html>

Table 2 shows some of the main specifications of the chosen embedded platforms, such as
microcontroller models, clock rate, and the amount of Static Random-Access Memory (SRAM)
and flash memory available.

https://store.arduino.cc/usa/arduino-uno-rev3
https://store.arduino.cc/usa/arduino-uno-rev3
https://store.arduino.cc/usa/mega-2560-r3
https://store.arduino.cc/usa/mega-2560-r3
https://store.arduino.cc/usa/due
https://www.pjrc.com/store/teensy32.html
https://www.pjrc.com/store/teensy32.html
https://www.pjrc.com/store/teensy35.html
https://www.pjrc.com/store/teensy35.html
https://www.pjrc.com/store/teensy36.html
https://www.pjrc.com/store/teensy36.html

90 Chapter 6. Comparative Analysis

Table 2 – Characteristics of the evaluated embedded platforms.

Platform Microcontroller Clock (MHz) SRAM (kB) Flash (kB)
Arduino Uno ATmega328/P 20 2 32
Arduino Mega 2560 ATmega2560 16 8 256
Arduino Due AT91SAM3X8E 84 96 512
Teensy 3.2 MK20DX256VLH7 72 64 256
Teensy 3.5 MK64FX512VMD12 120 256 512
Teensy 3.6 MK66FX1M0VMD18 180 256 1,024

6.3 Analysis of the EmbML Classifiers
The experiments described in this section consist of a sanity check and an analysis of

classification time and memory consumption. First, we compare the accuracy rates obtained by
the EmbML classifiers running on the embedded devices with the values obtained by scikit-learn
or WEKA on a desktop computer, using the same test sets and corresponding trained models.
Then, we estimate the time and memory results of the classifiers supported by EmbML as well
as the impact of the different real number representations.

6.3.1 Accuracy

Table 3 and Table 4 show the accuracy rates for the test examples of each dataset running
the models in a desktop and in a microcontroller with a classifier code produced by EmbML. It
does not mention the microcontroller model since all results are the same, independent of the
hardware. In these tables, the symbol “-” means that the produced code was too large and did not
fit in any microcontroller’s memory.

As expected, the classifiers using FLT obtain the same accuracy rates than their desktop
counterparts. These results imply that the EmbML classifiers correctly implement the trained
models. There are only some minor exceptions:

• in D2 with the MultilayerPerceptron WEKA from Table 3, the accuracy increases from
89.19% (in desktop) to 89.26% (with EmbML classifier using FLT);

• in D1 with the DecisionTreeClassifier scikit-learn from Table 4, the accuracy reduces from
98.54% (in desktop) to 98.53% (with EmbML classifier using FLT);

• and in D1, D4, and D5 with SVC (polynomial kernel) scikit-learn from Table 4, the
accuracies from EmbML classifiers (using FLT) are lower than those obtained in desktop.
In this specific case, this decrease mainly happens because the SVC scikit-learn employs
double-precision (64 bits) floating-point operations, and EmbML only supports single-
precision (32 bits).

Another important observation is that, in most cases, there is not a significant change in
accuracy when using the FXP32, comparing to FLT representation. It is reasonable to assume

6.3. Analysis of the EmbML Classifiers 91

Table 3 – Accuracy (%) for the WEKA classifiers.

Classifier Version D1 D2 D3 D4 D5 D6

J48

Desktop 99.00 88.48 84.28 97.41 84.71 94.34
EmbML/FLT 99.00 88.48 84.28 97.41 84.71 94.34

EmbML/FXP32 98.97 88.41 84.54 97.41 84.71 94.01
EmbML/FXP16 97.25 87.06 68.56 58.65 84.71 79.61

Logistic

Desktop 97.71 91.61 89.00 98.97 73.00 97.35
EmbML/FLT 97.71 91.61 89.00 98.97 73.00 97.35

EmbML/FXP32 97.65 91.54 87.97 98.35 72.72 97.35
EmbML/FXP16 50.06 67.57 17.96 34.86 40.81 94.40

MultilayerPerceptron

Desktop 98.67 89.19 90.29 92.84 80.46 93.62
EmbML/FLT 98.67 89.26 90.29 92.84 80.46 93.62

EmbML/FXP32 98.65 90.33 90.46 92.86 80.58 93.66
EmbML/FXP16 54.40 88.62 88.49 18.38 79.88 92.72

SMO
(linear kernel)

Desktop 98.39 91.96 91.75 97.13 80.67 98.38
EmbML/FLT 98.39 91.96 91.75 97.13 80.67 98.38

EmbML/FXP32 98.40 92.32 91.92 97.13 80.61 98.48
EmbML/FXP16 89.97 81.44 71.39 22.35 78.34 16.73

SMO
(polynomial kernel)

Desktop 98.76 92.39 91.15 99.40 89.11 98.96
EmbML/FLT 98.76 92.39 91.15 99.40 89.11 -

EmbML/FXP32 98.71 91.04 89.52 36.94 89.11 -
EmbML/FXP16 59.03 27.31 39.78 14.04 44.48 -

SMO
(RBF kernel)

Desktop 98.08 87.62 83.59 75.59 67.63 95.99
EmbML/FLT 98.08 87.62 - - - -

EmbML/FXP32 97.99 87.77 - - - -
EmbML/FXP16 50.00 20.70 35.22 - 9.59 -

that they are equivalent in this aspect, so the user can opt for the one that obtains the best time or
memory performance.

On the other hand, the FXP16 representation can cause a notable reduction in the accuracy
rate for most classifiers due to several reasons. For instance, its interval of representable numbers
is extremely limited (from−2048 to 2047.9375 in two’s complement format) and can commonly
be the reason for overflow in arithmetic operations. Also, underflow is very likely to happen
in operations with small numbers since all consecutive numbers in FXP16 have an absolute
difference of 0.0625 and, therefore, numbers in the interval]−0.0625

2 , 0.0625
2 [are rounded to 0 –

the closest representable number.

6.3.2 Classification Time

Next, we compare the average time that each model spent to classify an instance. Fig-
ure 15 and Figure 16 respectively show the executions of the EmbML codes derived from WEKA
and scikit-learn models. In these figures, each column of graphs describes a microcontroller, and
each row denotes a dataset. Then, for a given combination of dataset and microcontroller, these
graphs illustrate the time performance of different classifiers using the supported representations

92 Chapter 6. Comparative Analysis

Table 4 – Accuracy (%) for the scikit-learn classifiers.

Classifier Version D1 D2 D3 D4 D5 D6

DecisionTreeClassifier

Desktop 98.54 86.13 84.02 97.03 83.83 93.20
EmbML/FLT 98.53 86.13 84.02 97.03 83.83 93.20

EmbML/FXP32 98.49 85.78 84.28 97.03 83.83 92.85
EmbML/FXP16 70.46 81.37 63.06 61.00 83.83 75.18

LinearSVC

Desktop 90.51 92.11 88.83 80.02 36.74 98.58
EmbML/FLT 90.51 92.11 88.83 80.02 36.74 98.58

EmbML/FXP32 86.64 92.18 88.92 35.27 36.41 98.58
EmbML/FXP16 50.00 91.82 83.08 18.45 9.59 48.35

LogisticRegression

Desktop 98.18 90.97 84.19 98.06 71.51 98.25
EmbML/FLT 98.18 90.97 84.19 98.06 71.51 98.25

EmbML/FXP32 98.15 90.90 84.11 46.17 71.75 98.28
EmbML/FXP16 50.00 90.90 83.42 18.45 40.38 98.12

MLPClassifier
(ReLU)

Desktop 95.96 92.46 91.41 96.43 89.96 98.54
EmbML/FLT 95.96 92.46 91.41 96.43 89.96 98.54

EmbML/FXP32 96.12 92.60 91.84 96.26 89.87 98.38
EmbML/FXP16 56.44 5.12 64.09 16.67 57.77 38.32

SVC
(polynomial kernel)

Desktop 98.47 77.17 64.78 98.87 90.75 93.95
EmbML/FLT 51.56 77.17 64.78 97.03 71.51 -

EmbML/FXP32 50.22 77.17 64.78 18.45 9.19 -
EmbML/FXP16 50.00 76.81 35.22 18.45 10.13 -

SVC
(RBF kernel)

Desktop 58.53 88.62 86.51 21.63 18.69 95.28
EmbML/FLT - 88.62 86.51 - 18.69 -

EmbML/FXP32 - 88.76 86.08 - 18.33 -
EmbML/FXP16 50.00 20.70 35.22 21.63 9.89 18.87

for real numbers. The missing points are those that could not be determined because their
classifier code was larger than the microcontroller’s memory. In general, it is possible to verify
the following aspects:

• In the microcontrollers that lack an FPU, the fixed-point formats reduce the classification
time when compared to the FLT. In the other microcontrollers, it is not possible to notice
such an improvement.

• The decision tree models deliver the lowest classification time in all cases that they can
run.

• The logistic regression and SVM (linear kernel) models have similar performances, reach-
ing the second-best results in most situations. Particularly for the scikit-learn models, it
is not possible to see the LinearSVC results in some graphs since they coincide with the
LogisticRegression results. These overlaps happen considering that these models have
equivalent classification algorithms, as we saw in Subsection 5.3.2.

6.3. Analysis of the EmbML Classifiers 93

• The SVM models with the polynomial and RBF kernels are the classifiers that execute in
the lowest number of cases and perform the worst results.

• The MLP models achieve an intermediate performance. They are faster than the SVM
with polynomial and RBF kernels, but usually slower than the others.

Figure 15 – Mean classification time for WEKA classifiers.

Source: Elaborated by the author.

94 Chapter 6. Comparative Analysis

Figure 16 – Mean classification time for scikit-learn classifiers.

Source: Elaborated by the author.

6.3.3 Memory Usage

The last metric evaluated from the classifier performances is memory consumption. We
compare the sum of the data (SRAM) and program (flash) memories among the supported
classifiers in Figure 17 (for WEKA models) and Figure 18 (for scikit-learn models). The graphs
presented in these figures are combined in rows and columns, as explained previously. An

6.3. Analysis of the EmbML Classifiers 95

examination of these graphs enables us to identify some common characteristics:

Figure 17 – Memory consumption for WEKA classifiers.

Source: Elaborated by the author.

• Comparing to the FLT representation, there is no advantage of employing the FXP32 in
terms of this analysis. However, FXP16 representation is able to decrease memory usage.

• The source codes produced for the decision tree, logistic regression, and SVM (linear
kernel) models are those that alternate as the best memory performance. Also, they are

96 Chapter 6. Comparative Analysis

Figure 18 – Memory consumption for scikit-learn classifiers.

Source: Elaborated by the author.

the classifiers most capable of executing in the two less robust microcontrollers. In the
scikit-learn comparison, the LogisticRegression and LinearSVC results coincide since they
have identical variables, presented in Subsection 5.3.2.

• On the other hand, the SVM classifiers with the polynomial and RBF kernels achieve the
highest memory consumptions. In many situations, their variables are extremely large that

6.4. EmbML Code Modifications 97

they can not fit in the available microcontroller’s memory. This fact is even more evident
for the SVM model with the RBF kernel.

• As for the MLP models, they again have an intermediate performance in most of the cases,
comparing to the two previously defined groups.

6.4 EmbML Code Modifications
In order to understand if they positively affect the classification time performance and do

not cause a negative effect on the accuracy rates, we compare in this section the modifications
provided by EmbML to its output classifier source codes. It includes the analysis of approxima-
tions for sigmoid function in MLP models and the option to transform a decision tree model from
an iterative structure, which is the default, to if-then-else statements. Also, since the previous
section already assessed the impact of using fixed-point representations, this modification is not
explicitly analyzed here as an independent case.

6.4.1 Approximations for Sigmoid Function in MLP

Table 5 and Table 6 present the accuracies estimated in each test set through applying the
approximation functions – provided by EmbML and discussed in Section 4.6 – for substituting
the sigmoid in MLP models of WEKA and scikit-learn, respectively. These tables contain the
accuracy rates for the different real numbers representations and also the accuracy obtained by
MLP models using the original sigmoid function for comparison.

Table 5 – Accuracy (%) for the MultilayerPerceptron WEKA models.

Classifier Version D1 D2 D3 D4 D5 D6

Original
sigmoid

Desktop 98.67 89.19 90.29 92.84 80.46 93.62
EmbML/FLT 98.67 89.26 90.29 92.84 80.46 93.62

EmbML/FXP32 98.65 90.33 90.46 92.86 80.58 93.66
EmbML/FXP16 54.40 88.62 88.49 18.38 79.88 92.72

0.5+0.5x/(1+ |x|)
function

EmbML/FLT 98.67 89.19 90.38 92.91 80.46 93.69
EmbML/FXP32 98.65 89.19 90.46 92.98 80.49 93.72
EmbML/FXP16 54.35 87.27 88.49 18.66 79.52 93.43

2-point PWL
EmbML/FLT 98.67 90.90 90.21 92.72 80.19 93.69

EmbML/FXP32 98.65 91.04 90.12 92.76 80.22 93.69
EmbML/FXP16 54.39 88.69 88.14 18.52 79.98 92.69

4-point PWL
EmbML/FLT 98.67 90.97 90.55 92.86 80.40 93.69

EmbML/FXP32 98.65 90.97 90.38 92.86 80.37 93.66
EmbML/FXP16 54.39 88.41 88.66 18.28 80.16 92.69

Contrasting with employing the original sigmoid, the highest difference in accuracy
for the MultilayerPerceptron WEKA models (with an alternative modification) occurs in D2
using the 4-point PWL approximation and FLT. In this case, the accuracy rate increases from

98 Chapter 6. Comparative Analysis

Table 6 – Accuracy (%) for the MLPClassifier scikit-learn models with sigmoid activation function.

Classifier Version D1 D2 D3 D4 D5 D6

Original
sigmoid

Desktop 98.39 92.25 90.72 74.58 91.78 98.64
EmbML/FLT 98.39 92.25 90.72 74.58 91.78 98.64

EmbML/FXP32 98.22 92.18 90.72 74.39 91.84 98.71
EmbML/FXP16 81.21 89.83 79.73 17.61 87.80 40.81

0.5+0.5x/(1+ |x|)
function

EmbML/FLT 98.39 91.32 90.29 74.51 91.60 98.80
EmbML/FXP32 98.26 91.32 90.21 74.39 91.54 98.71
EmbML/FXP16 86.82 90.18 82.56 17.32 86.50 59.09

2-point PWL
EmbML/FLT 98.36 92.53 90.38 74.58 91.75 98.58

EmbML/FXP32 98.18 92.46 90.64 74.39 91.87 98.58
EmbML/FXP16 81.89 89.62 81.01 17.56 87.92 39.13

4-point PWL
EmbML/FLT 98.40 92.03 90.98 74.58 91.81 98.58

EmbML/FXP32 98.19 92.11 91.24 74.39 91.87 98.64
EmbML/FXP16 81.61 88.12 76.63 17.61 88.20 41.72

89.26% (with the sigmoid function) to 90.97% (with the 4-point PWL). As for the MLPClassifier

scikit-learn classifiers, the maximum difference happens in D6 using the 0.5+ 0.5x/(1+ |x|)
function and FXP16. The accuracy increases from 40.81% (with the sigmoid version) to 59.09%
(with the approximation function) in this situation. As a general rule, the accuracy values from
the modified models are relatively close to the original models and can be acceptable in practice.

In Figure 19 and Figure 20, we exhibit the mean classification time comparison of
the WEKA and scikit-learn MLP models, respectively, using the provided options for the
sigmoid activation function. They do not contain the column corresponding to the ATmega328/P
microcontroller, because there was not an MLP version able to execute in it. From these graphs,
we can identify that these options produce similar time results in most of the cases. However,
comparing among them, the use of PWL approximations can predominantly decrease the
classification time of MLP models, whereas not causing expressive changes in the accuracy rates.
Consequently, these versions are attractive options to help improve the performance of MLP
classifiers.

Although we collected the values for the memory usage analysis, we decided not to
include them here, since the difference in this metric for using or not the modified classifiers
is relatively inexpressive. This is also intuitively explained considering that the sigmoid ap-
proximations do not affect the size of the classifier variables, which usually define the memory
bottleneck.

6.4.2 If-Then-Else Statements and Iterative Decision Trees

Now, we examine the source code modification provided by EmbML for decision tree
models. The only specific option for this classifier consists of deciding to use the iterative
structure (as in the original WEKA and scikit-learn implementations) or converting it into if-

6.4. EmbML Code Modifications 99

Figure 19 – Mean classification time for the MultilayerPerceptron WEKA classifiers.

Source: Elaborated by the author.

then-else statements. In this analysis, the only difference between these options is structural,
which did not influence the accuracy results. As for memory usage, the amount of data to

100 Chapter 6. Comparative Analysis

Figure 20 – Mean classification time for the MLPClassifier scikit-learn classifiers.

Source: Elaborated by the author.

store is not affected, but code size may increase using if-then-else statements (as discussed in
Section 4.7). However, these two options achieved quite similar values in our experiments for

6.4. EmbML Code Modifications 101

memory comparison: in the worst case, a classifier using if-then-else statements consumed only
2.55 kB more memory than its iterative version – a maximum increase of 6.04%. Therefore, we
exclusively focus on comparing the mean classification time results, as displayed in Figure 21
and Figure 22 for WEKA and scikit-learn decision tree models, respectively.

Figure 21 – Mean classification time for the J48 WEKA classifiers.

Source: Elaborated by the author.

These graphs help to recognize that the if-then-else versions of the decision tree models
always obtain better time results than the iterative option, as we expected from the arguments
presented in Section 4.7. For this reason, it is highly recommended to choose the if-then-else
version when generating a decision tree classifier with EmbML. Another important observation

102 Chapter 6. Comparative Analysis

Figure 22 – Mean classification time for the DecisionTreeClassifier scikit-learn classifiers.

Source: Elaborated by the author.

is that there are situations in which the iterative classifier is not able to execute, but the other
option is. For instance, only the classifiers composed of if-then-else statements can execute in the
ATmega328/P microcontroller. To explain these distinct behaviors, we have to include memory
consumption in this analysis. Although these versions have a similar overall memory usage,
converting the classifier to an if-then-else structure enabled the compiler, in some cases, to use
less of the microcontroller’s data memory and more of its programming memory, compared to
the iterative version. Since the data memory is very restricted in most microcontrollers, it can be
a bottleneck to the classifier code.

6.5. Comparing With Related Tools 103

6.5 Comparing With Related Tools

In order to show that EmbML produces competitive classifiers, this section evaluates
their performance against classifiers generated by other related tools preseted in Section 2.2:
emlearn (version 0.10.1), m2cgen (version 0.5.0), sklearn-porter (version 0.7.4) and weka-porter
(version 0.1.0). To make a consistent comparison, we selected only models from other tools that
have a direct correspondent in EmbML. For example, we consider the MLPClassifier scikit-learn
model since both EmbML and emlearn support it. The chosen models, their identifiers and tools
that support them are listed below.

• J48 WEKA (referred as C1) is supported by EmbML and weka-porter. For this experiment,
we used the if-then-else version of EmbML.

• SVC (polynomial kernel) scikit-learn (referred as C2) is supported by EmbML, m2cgen,
and sklearn-porter.

• SVC (RBF kernel) scikit-learn (referred as C3) is supported by EmbML, m2cgen, and
sklearn-porter.

• LinearSVC scikit-learn (referred as C4) is supported by EmbML, m2cgen, and sklearn-
porter.

• DecisionTreeClassifier scikit-learn (referred as C5) is supported by EmbML, emlearn,
m2cgen, and sklearn-porter. In this experiment, we selected the if-then-else version of
EmbML.

• MLPClassifier (ReLU) scikit-learn (referred as C6) is supported by EmbML and em-
learn.

• LogisticRegression scikit-learn (referred as C7) is supported by EmbML and m2cgen.

Also, we generated and evaluated the classifier versions with the same off-board-trained
model and test set. For each classifier, we used the different datasets and microcontrollers to
compare mean classification time, shown in Figure 23, and memory consumption (SRAM +
flash), shown in Figure 24.

In these figures, each graph contains the results corresponding to a specific dataset. The
graphs incorporate only the time or memory values associated with a high accuracy rate to
prevent including poor solutions – e.g., the FXP16 versions of EmbML classifiers are faster but
usually achieve lower accuracy rate than their corresponding FLT version. Therefore, for each
combination of microcontroller, dataset, and classifier, we used the following steps to decide the
values to plot:

104 Chapter 6. Comparative Analysis

Figure 23 – Mean classification time comparison between classifiers from EmbML and related tools.

Source: Elaborated by the author.

1) unite the outcomes of the given combination produced by classifiers from EmbML and
other tools;

6.5. Comparing With Related Tools 105

Figure 24 – Memory usage comparison between classifiers from EmbML and related tools.

Source: Elaborated by the author.

2) determine the mean accuracy value of these results;

3) eliminate the results that achieve an accuracy lower than the mean value;

106 Chapter 6. Comparative Analysis

4) sort the remaining data in ascending order of classification time (or memory usage);

5) choose, at most, the three first results from the sorted list.

For instance, considering the mean classification time comparison for the Decision-

TreeClassifier model, created using D2, and running on the AT91SAM3X8E microcontroller,
Table 7 presents the values estimated using the test set during the experiments. Since the average
accuracy rate is 80.54%, we exclude the EmbML/FXP16 version. Then, we sort the remain-
ing results in ascending order of mean classification time and select the first three, which are:
EmbML/FLT, EmbML/FXP32, and emlearn. Finally, the time results of these versions are the
chosen points included in the D2 graph. This process repeats for each dataset, microcontroller,
and classifier.

Table 7 – An example of mean classification time results for the DecisionTreeClassifier model, D2 dataset,
and AT91SAM3X8E microcontroller.

Classifier version Accuracy rate Mean classification time
EmbML/FLT 84.02% 23.47 µs

EmbML/FXP32 84.28% 3.15 µs
EmbML/FXP16 63.06% 2.82 µs

emlearn 83.93% 20.85 µs
m2cgen 83.93% 27.13 µs

sklearn-porter 84.02% 36.93 µs

In the graphs, the large markers represent the lowest values for a specific combination
of dataset, microcontroller, and classifier. Thus, for the example shown in Table 7, the EmbM-
L/FXP32 point is larger than the EmbML/FLT and emlearn points in the D2 graph of Figure 23.
Similarly, in many other cases, the EmbML classifiers are those that reach the best results for both
classification time and memory consumption. In fact, Table 8 shows a comparison using these
two metrics to evaluate, for each dataset, the number of cases that EmbML classifiers accomplish
the best result and the total number of cases – i.e., combinations of microcontroller and classifier
– that at least one classifier code was able to execute. Therefore, the proposed method to compare
the time and memory performances indicates that the EmbML classifiers were able to produce
the best mean classification time in at least 70.97% of the cases, and the smallest memory
consumption in at least 77.14%. These results reveal that EmbML classifiers frequently perform
better than the other solutions, which is evidence that EmbML is an advantageous alternative.

6.6 Final Considerations

This chapter exhibited a comprehensive evaluation of the classifier source codes gen-
erated by EmbML. First, we presented the experimental setup, which contemplates a variety
of datasets and microcontrollers with distinct features. Then, we analyzed the performance of

6.6. Final Considerations 107

Table 8 – Overall time and memory comparison of classifiers from EmbML and related tools.

Dataset
Cases which EmbML
classifiers achieve the

lowest time results

Cases which EmbML
classifiers achieve the

smallest memory results

Total number
of cases

D1 25 (71.43%) 27 (77.14%) 35
D2 27 (75.00%) 30 (83.33%) 36
D3 27 (77.14%) 30 (85.71%) 35
D4 22 (70.97%) 27 (87.10%) 31
D5 28 (77.78%) 35 (97.22%) 36
D6 23 (85.19%) 21 (77.78%) 27

the EmbML classifiers based on three metrics: accuracy, classification time, and memory usage.
This section also focused on identifying the trade-offs about using the different representations
for real numbers supported by EmbML. Next, we evaluated the impact of employing code
modifications implemented and available for MLP and decision tree models. And finally, this
chapter incorporated experiments to confront the performance of some classifiers produced by
EmbML against others created by some related tools. The results demonstrated that EmbML
was capable of generating competitive classifier codes.

109

CHAPTER

7
CASE STUDY: AN INTELLIGENT TRAP FOR

FLYING INSECTS

7.1 Initial Considerations

This chapter presents an example of an application to employ the EmbML pipeline for
developing an embedded classifier. We discuss this process using the case of an intelligent trap
for automatic classification and selective capture of flying insects. In order to clearly understand
the whole process, we present some of the work that has already been done by our research
group. Next, we focus on the experimental analysis of performance using classification models
provided by EmbML, to choose the most appropriate to deploy in the trap’s resource-constrained
hardware. It also considers practical experiments in two different setups to assess the behavior of
the EmbML classifier.

7.2 The Intelligent Trap

The problem presented in this chapter consists of a real-world ML application for
predicting flying insect species. Our research group has developed an intelligent trap (shown
in Figure 25) able to classify and capture mosquitoes, according to their species (BATISTA et

al., 2011a; BATISTA et al., 2011b; SOUZA; SILVA; BATISTA, 2013; CHEN et al., 2014; QI
et al., 2015; SILVA et al., 2015; SOUZA et al., 2020). These previous studies also resulted in
the development of a low-cost optical sensor to gather data from flying insects and data mining
techniques to process them and distinguish the species.

The immediate importance of such a solution includes monitoring the population of
specific disease-vector mosquitoes – e.g., Aedes aegypti, a vector for transmitting dengue fever,
chikungunya, Zika fever, yellow fever, and other diseases – and agricultural pests – e.g., Diapho-

rina citri, a vector of the citrus greening disease. Collecting information about the spatial and

110 Chapter 7. Case Study: An Intelligent Trap For Flying Insects

Figure 25 – The projected intelligent trap for flying insects.

Source: Souza et al. (2020).

temporal distribution of these insects allows local and customized actions, reducing the impact
of some insect control methods to the ecological balance – such as insecticides eliminating
insect pollinators – and improving their efficiency. In the context of classifying flying insects
and estimating their population, the developed trap provides an automatic, faster, and cheaper
option compared to existing solutions such as sticky traps, used in crop fields, that require the
manual work of experts (SOUZA et al., 2020).

In this chapter, we particularly consider the problem of separating the Aedes aegypti

mosquitoes into two classes: female and male. We understand that it is a relevant task for two
reasons. First, we know that Aedes aegypti is a vector to many diseases, but only the female
mosquitoes bite humans (HARRIS et al., 2011; MAINS et al., 2016) and, then, are the main
responsible for spreading diseases. Second, since they belong to the same species and may
share most physiological characteristics (such as flight behavior), we assume that accurately
recognizing these classes is as challenging as distinguishing Aedes aegypti female from most of
the other flying insects. In this scenario, the trap work to capture female Aedes aegypti and expel
male mosquitoes.

7.2.1 Optical Sensor

As described in Souza et al. (2020), the main component of the developed trap is a
low-cost optical sensor that remotely gathers data from flying insects. The developed sensor,
illustrated in Figure 26, is a result from previous work (BATISTA et al., 2011a; BATISTA et al.,
2011b) and contains an infrared light-emitting diode (LED) pointed to a structure of two parallel
mirrors, creating a light curtain that is captured by an infrared phototransistor. When a flying

7.2. The Intelligent Trap 111

insect crosses this curtain, the movements of its wings partially occlude the light, producing small
variations captured by the phototransistor (BATISTA et al., 2011a). Then, the sensor hardware is
responsible for filtering, amplifying, and processing this input signal to generate the features
used in the classification step. Compared to regular microphones, this sensor is a more robust
solution because it is able to exclusively capture vibrations that affect the infrared light, ignoring
the ambient noise or other acoustic waves.

Figure 26 – The developed optical sensor.

Mirrors

Infrared
LED

Infrared
phototransistor

Infrared
light

(a) Side-view.

Infrared
LED

Infrared
phototransistor

Parallel
mirror

Parallel
mirror

Infrared
light

(b) Top-view.

Source: Souza et al. (2020).

112 Chapter 7. Case Study: An Intelligent Trap For Flying Insects

7.2.2 Developed Board

The trap system also includes a custom low-cost and low-power hardware board to
interface with the sensors, processing the input data, and controlling the trap fan – that only
activates to expel or capture an insect that crosses the infrared light. Some of the principal
components of the hardware solution designed for this application are:

• an MK20DX256VLH7 microcontroller – the same used in the Teensy 3.2 platform – that
performs the trap processing operations of capturing the input signal, preprocessing it,
executing the predictive model, and activating the fan to capture (or expel) the flying
insect;

• a digital filter circuit to amplify and remove noise from the input signal;

• an SGTL5000, which is a low-power stereo codec chip responsible for encoding the input
analog signal as digital signal;

• an nRF51822 ultra-low-power System-on-a-Chip used for Bluetooth Low Energy commu-
nication to communicate with external systems;

• a microSD card interface to store relevant and large data, such as the recorded signals;

• and connections for the optical and ambient (light, temperature, and humidity) sensors.

Figure 27 displays an annotated photograph of the developed hardware board and its
components. This hardware was also developed in previous work parallel to the optical sensor.

7.3 Predictive Features And Data Preprocessing
A continuous perturbation on the optical sensor generates an input signal representing the

event, as illustrated in Figure 28a. The process of recording this signal starts when its amplitude
stays higher than a predefined threshold for a determined amount of time, indicating that a flying
insect is crossing the sensor light. It ends when the input signal amplitude stays lower than the
threshold for the same amount of time, suggesting that the insect is not blocking the light curtain
anymore. After this period, the collected input is processed and transformed into a feature vector,
which contains several attributes extracted from the event data.

Some previous research studied features for this problem (BATISTA et al., 2011b; QI et

al., 2015; SILVA et al., 2015). A brief description of currently used attributes is presented below:

1) Hour: the microcontroller’s real-time clock (RTC) records the hour that the event occurred.
As illustrated in Figure 29, the insect flight activity varies in specific hours of the day.
Thus, this feature is important to distinct species that may present different circadian
rhythms (BATISTA et al., 2011b);

7.3. Predictive Features And Data Preprocessing 113

Figure 27 – The trap’s printed circuit board and its components.

Source: Elaborated by Dr. Gustavo E. A. P. A. Batista.

2) Temperature: a BME280 digital sensor measures the ambient temperature in Celsius de-
gree. Temperature is a factor that influences the insect’s metabolism (MELLANBY, 1936;
TAYLOR, 1963) and can directly affect the flight performance of an insect (ROWLEY;
GRAHAM, 1968), as shown in Figure 30;

3) Wingbeat Frequency (WBF): the wingbeat frequency is estimated using the highest peak
from the signal cepstrum between 100Hz and 1200Hz1 (BATISTA et al., 2011b). Since
the harmonics are periodic in the spectrum, the cepstrum peak represents them in a single
value, which defines the fundamental frequency – i.e., the WBF. In Figure 31, we give an
example of these representations for an input signal and show its fundamental frequency;

4) Frequency Peaks (1-6): the values in Hertz of the six highest peaks directly obtained
from the signal spectrum. As presented in Figure 28b, these peaks usually describe the
fundamental frequency and other harmonics;

5) Inharmonicity: calculated as the standard deviation of the values from the previous six
frequency peaks;

6) Energy of Harmonics (1-26): the sums of magnitudes from the first four harmonics,
considering 26 possible values of fundamental frequency between 100Hz and 1200Hz.

1 Since most insects have a WBF in this range.

114 Chapter 7. Case Study: An Intelligent Trap For Flying Insects

Figure 28 – An example of an Aedes aegypti female input signal obtained by the optical sensor.

0 2000 4000 6000 8000 10000 12000 14000 16000
Time (seconds)

-0.5

0

0.5
Am

pl
itu

de
Insect begins to fly
across the sensor

Insect ends to fly
across the sensor

Background	
noise

0.12 0.25 0.37 0.5 0.62 0.75 0.87 1

(a) Representation of a captured signal in the time domain.

0 500 1000 1500 2000 2500
Frequency (Hz)

0

20

40

M
ag

ni
tu

de

Fundamental	
frequency (402	Hz)

Harmonics
Aedes	aegypti	♀

(b) Representation of a captured signal in the frequency domain.

Source: Souza et al. (2020).

Figure 29 – The flight activity of Aedes aegypti mosquitoes during the day.

Source: Batista et al. (2011b).

The microcontroller, used in the designed board, is responsible for processing the input
data of an event and producing the described features. For the first two features (hour and
temperature), it simply uses the values provided by the RTC and the ambient sensor. But, for
generating the other attributes, it has to perform some digital signal processing operations using
the data gathered from the optical sensor. Considering that features 4, 5, and 6 derive from the
signal spectrum, we apply the Welch’s method (WELCH, 1967) to estimate it, using the steps
described below.

1) Divide the signal data2 into several intervals, each one contains 1024 points, and adjacent
segments have a 50% overlap.

2 Sampled at 44,100Hz.

7.3. Predictive Features And Data Preprocessing 115

Figure 30 – The impact of temperature on the WBF of Aedes aegypti female insects.

Source: Souza et al. (2020).

Figure 31 – An example of a Bombus impatiens signal captured by the optical sensor (top), the signal
converted to the frequency domain (middle), and the signal cepstrum (bottom).

Source: Batista et al. (2011b).

2) Apply the Hanning window function to every interval.

3) Calculate the Discrete Fourier Transform (DFT) of each segment, using the Fast Fourier
Transform (FFT) algorithm (NUSSBAUMER, 1981). In order to perform this step in the
microcontroller, we used the FFT implementation provided by the CMSIS library.

4) Compute the squared magnitude of all FFT results.

116 Chapter 7. Case Study: An Intelligent Trap For Flying Insects

5) Finally, combine the results of every segment by averaging them to obtain an array of
energy versus frequency bins that represents the estimated spectrum of the whole signal
data.

This method requires fewer processing operations than other methods because it divides
the whole signal into shorter sequences. Moreover, it is an advantageous approach to generate
the signal spectrum on hardware with limited memory (WELCH, 1967).

To obtain the signal cepstrum, needed in feature 3, we have to apply the Inverse Discrete
Fourier Transform (IDFT) in the signal spectrum, using an adapted version of the FFT algorithm.
For this step, we also employ the FFT implementation from CMSIS to produce the IDFT in the
microcontroller, taking the estimated spectrum as input.

7.4 Data Collection

Souza et al. (2020) describe the created dataset that includes instances gathered from
different species of flying insects using the developed optical sensor. This step required the
development of a collector device, shown in Figure 32, that includes the ambient and optical
sensors. Such apparatus was designed to easily get the correct label of the gathered data,
considering that it allows having specimens of only one insect species per collector.

Figure 32 – The collector device produced to gather data from different flying insect species.

Source: Elaborated by Dr. Gustavo E. A. P. A. Batista.

7.5. Classifier Analysis 117

Given that ambient conditions may affect the flight performance of insects, they collected
data putting the collectors inside custom chambers (illustrated in Figure 33) that enable regulating
temperature and humidity. These chambers allowed gathering data that combine different values
of temperature (from 20°C to 40°C) and relative humidity (from 20% to 90%). In total, Souza
et al. (2020) obtained approximately one million examples of 17 distinct flying insect species,
including mosquitoes, houseflies, bees, and wasps. In some cases, it was possible to divide data
of the same species into different sexes.

Figure 33 – Chamber projected to control ambient conditions.

Source: Elaborated by Dr. Gustavo E. A. P. A. Batista.

Finally, note that the described steps of data collection included recording the signal
generated by the optical sensor as an audio file in an microSD card. Later, the signal processing
operations were executed off-board, on a server computer, to construct the dataset. Therefore,
implementing the data preprocessing operations in the trap microcontroller – to allow running
the classifier on it – is an exclusive contribution of this dissertation.

7.5 Classifier Analysis
The experiments presented in this chapter required data from female and male Aedes

aegypti mosquitoes. Thus, we used the Aedes aegypti-sex dataset presented in Chapter 6 with the
set of features described in Section 7.3. This dataset, prepared by our research group, consists of
a subset of the collected examples previously described and contains data that contemplate a
diverse range of temperatures.

To decide which classifier to implement in the trap hardware, we first assess the accuracies
of all classification models supported by EmbML. For this reason, we applied the holdout method
for dividing the dataset examples into two mutually exclusive and stratified subsets: 70% for
training and 30% for testing.

118 Chapter 7. Case Study: An Intelligent Trap For Flying Insects

We start by performing a grid search to determine the best set of hyperparameters for
each algorithm. In this case, we divided the training examples in 80% for creating the models
and 20% to validate them. The values of hyperparameters explored in this search are presented
in Table 9.

Table 9 – Searched values of hyperparameters for each classification algorithm.

Classification Models Hyperparameters Searched Values
(initial:step:final)

J48 WEKA
pruning confidence 0.05 : 0.05 : 0.5

minimum number of instances 2i, i = 0 : 1 : 7
Logistic WEKA ridge 10i, i =−10 : 1 :−4

MultilayerPerceptron
WEKA

learning rate 0.1 : 0.1 : 0.8
momentum 0.1 : 0.1 : 0.8

hidden layer size 2i, i = 2 : 1 : 7
SMO (linear kernel) WEKA complexity constant 2i, i =−4 : 1 : 4
SMO (polynomial kernel)

WEKA
complexity constant 2i, i =−4 : 1 : 4

kernel exponent 2i, i =−4 : 1 : 4
SMO (RBF kernel)

WEKA
complexity constant 2i, i =−4 : 1 : 4
gamma coefficient 2i, i =−4 : 1 : 4

DecisionTreeClassifier
scikit-learn

criterion {gini, entropy}
splitter {best, random}

maximum depth 2i, i = 2 : 1 : 6
minimum samples split 2i, i = 1 : 1 : 5

LinearSVC scikit-learn regularization parameter 2i, i =−4 : 1 : 4
LogisticRegression scikit-learn regularization parameter 2i, i =−4 : 1 : 4

MLPClassifier
scikit-learn

hidden layer size 2i, i = 2 : 1 : 7
activation function {logistic, relu}

solver {lbfgs, sgd, adam}
SVC (polynomial kernel)

scikit-learn
regularization parameter 2i, i =−4 : 1 : 4

kernel degree 2i, i =−4 : 1 : 4
SVC (RBF kernel)

scikit-learn
regularization parameter 2i, i =−4 : 1 : 4

gamma coefficient 2i, i =−4 : 1 : 4

After finding the best combination of hyperparameters for each algorithm, we built the
models using the entire training set. Then, we employed EmbML to produce their C++ corre-
sponding codes, measured their memory usage, and estimated their accuracy and classification
time (per instance) on the trap microcontroller with the testing examples. Table 10 shows the
accuracy results and highlights the five highest values of each column. In this table, the symbol “-”
represents the cases in which the produced code did not execute because it was larger than the mi-
crocontroller’s memory. We compare the accuracy rates achieved from executing the models on a
desktop and the trap microcontroller, using the same representations for real numbers described
in Section 6.2. Disregarding SVC models (with polynomial and RBF kernels) and considering
only FLT and FXP32 versions, all classifiers delivered a relatively high accuracy (≥ 96%),
especially the J48, MultilayerPerceptron, SMO (RBF kernel) and DecisionTreeClassifier models.

In Table 11, we compare, for each model and real number representation, the mean

7.5. Classifier Analysis 119

Table 10 – Accuracies (%) for each classification model supported by EmbML.

Classifier Desktop MK20DX256VLH7
EmbML/FLT EmbML/FXP32 EmbML/FXP16

J48 WEKA 98.92 98.92 98.92 98.57
Logistic WEKA 97.85 97.85 97.85 50.17

MultilayerPerceptron
WEKA 98.64 98.65 98.65 82.14

SMO (linear kernel)
WEKA 98.35 98.35 98.35 82.64

SMO (polynomial kernel)
WEKA 98.67 98.67 97.32 66.89

SMO (RBF kernel)
WEKA 98.74 98.74 98.68 50.00

DecisionTreeClassifier
scikit-learn 98.67 98.67 98.68 96.63

LinearSVC scikit-learn 97.86 97.86 98.46 50.00
LogisticRegression

scikit-learn 98.33 98.33 96.00 50.00

MLPClassifier
scikit-learn 98.51 98.57 98.44 58.74

SVC (polynomial kernel)
scikit-learn 98.53 55.18 52.04 50.00

SVC (RBF kernel)
scikit-learn 50.68 - - -

and maximum time to classify an instance. As in Chapter 6, we estimated these numbers from
running a classifier ten times through the whole testing set. We also highlighted the five lowest
values of each column and eliminated the row corresponding to the SVC (RBF kernel) classifier
because the trap microcontroller was not able to execute any of its versions. Using these metrics,
the best results were achieved by the J48, Logistic, DecisionTreeClassifier, LinearSVC, and
LogisticRegression classifiers. On the other hand, the SMO (polynomial and RBF), MLPClassifier,
and SVC (polynomial) delivered the slowest performances (> 1 ms).

Next, Table 12 presents the memory usage of the evaluated classifiers. We separated
the results into data memory (SRAM) and program memory (flash) to perform a more detailed
analysis. As before, we highlighted the five (or more, in case of a tie) lowest values of each
column. The J48, Logistic, DecisionTreeClassifier, LinearSVC, and LogisticRegression models
have the smallest data memory consumption: at most 7% of the total SRAM capacity of the trap
microcontroller. As for the program memory, the J48, SMO (linear), DecisionTreeClassifier,
LinearSVC, and LogisticRegression models have the best performance and occupy less than
14% of its flash memory. In contrast, the SMO (polynomial and RBF) and SVC (polynomial)
models are impractical to employ in our solution due to their high cost of program memory and
considering that we also need memory space available to implement other methods, such as the
signal processing operations.

120 Chapter 7. Case Study: An Intelligent Trap For Flying Insects

Table 11 – Classification time (µs) for each classification model supported by EmbML.

Classifier EmbML/FLT EmbML/FXP32 EmbML/FXP16
Mean Max. Mean Max. Mean Max.

J48 WEKA 4.41 14 1.26 6 1.17 6
Logistic WEKA 159.56 170 47.09 56 36.14 47

MultilayerPerceptron
WEKA 947.01 971 218.38 227 138.68 148

SMO (linear kernel)
WEKA 288.51 298 99.96 109 26.69 36

SMO (polynomial kernel)
WEKA 66,328.53 66,449 13,300.14 13,322 12,735.14 13,079

SMO (RBF kernel)
WEKA 172,527.96 173,693 25,459.76 25,469 19,657.88 19,825

DecisionTreeClassifier
scikit-learn 7.75 16 1.81 7 1.74 7

LinearSVC scikit-learn 124.72 134 20.26 29 19.72 29
LogisticRegression

scikit-learn 124.74 133 20.29 29 20.07 29

MLPClassifier
scikit-learn 8,479.30 8,668 1,295.58 1,303 1,344.36 1,360

SVC (polynomial kernel)
scikit-learn 78,454.07 89,210 17,905.48 17,918 2,681.04 2,686

By analyzing these three metrics, we decided to implement the J48 (FXP32) in our
solution because it achieves the best accuracy rate, the second-best time performance, and
demands a relatively low memory consumption.

Finally, as a further step supported by EmbML, we assessed different fixed-point formats
with 32 bits for the selected model. Basically, we explored different values (from 2 to 30) to
use as the number of bits in the fractional part, and evaluated the effects on time and accuracy
using the testing instances – since memory usage has not modified. Figure 34 presents the results
of accuracy for several sizes of the fractional part. We can observe that the values are close to
100%, from 2 to 20 bits, and equal to 50% after 22 bits, indicating loss of precision. As for the
classification time, Figure 35 shows the maximum and mean values for each format. First, we
note that the results are very similar. But, considering only the numbers of bits in the fractional
part that maintain high accuracy (i.e., from 2 to 20), we see that using 2 bits achieves the lowest
value for maximum classification time. Therefore, we decided to implement the J48 model with
the Q30.2 fixed-point format in the trap microcontroller.

7.6 Experiments With Collectors

Our first practical evaluation of the classifier performance using Aedes aegypti mosquitoes
included using two collectors (shown in Figure 36): one containing five female mosquitoes, and
the other having five male mosquitoes. The main focus of this experiment was to validate the

7.6. Experiments With Collectors 121

Table 12 – Memory consumption (kB) for each classification model supported by EmbML.

Classifier EmbML/FLT EmbML/FXP32 EmbML/FXP16
Data

Memory
Program
Memory

Data
Memory

Program
Memory

Data
Memory

Program
Memory

J48 WEKA 4.20 32.10 4.20 32.60 4.13 32.60
Logistic WEKA 4.21 34.24 4.20 34.09 4.13 33.13

MultilayerPerceptron
WEKA 4.39 35.33 4.39 35.58 4.23 33.87

SMO (linear kernel)
WEKA 4.22 33.66 4.22 33.98 4.15 32.88

SMO (polynomial kernel)
WEKA 4.23 149.21 4.23 149.65 4.16 90.88

SMO (RBF kernel)
WEKA 4.24 204.77 4.23 204.42 4.16 118.27

DecisionTreeClassifier
scikit-learn 4.20 32.91 4.20 33.04 4.13 33.10

LinearSVC scikit-learn 4.20 33.39 4.20 32.84 4.13 32.69
LogisticRegression

scikit-learn 4.20 33.39 4.20 32.84 4.13 32.69

MLPClassifier
scikit-learn 4.86 52.49 4.86 51.80 4.47 42.30

SVC (polynomial kernel)
scikit-learn 4.21 250.09 4.21 249.66 4.14 142.64

Figure 34 – Accuracy comparison.

Source: Elaborated by the author.

Figure 35 – Classification time comparison.

Source: Elaborated by the author.

classifier combined with the optical sensor before implementing it on the trap. We also wanted
to verify the impact of a possible loss of precision, considering that we trained the model using
a dataset in which the feature values were obtained from processing the recorded signals in a
server computer. Thus, for this phase, we programmed the microcontroller for collecting the
data, preprocessing the input signal to produce the predictive features, classifying the event, and
storing the results in the microSD card.

122 Chapter 7. Case Study: An Intelligent Trap For Flying Insects

Figure 36 – Collectors used in the experiment. The left one contains five female Aedes aegypti mosquitoes
and the right one contains five males.

Source: Elaborated by the author.

We ran this experiment for a total of three rounds. They happened on different consecutive
days, starting at dusk and ending after approximately 24 hours. At the end of a round, we replaced
all mosquitoes in the both collectors (given that some could have died), saved the produced data
(e.g., recorded signals, counted events and classification results), cleaned microSD data, and
restarted the microcontrollers. Specialists helped us by providing adult Aedes aegypti mosquitoes
bred on appropriate laboratory-controlled conditions and already separated into male and female.
We also performed the rounds in a closed room with a heater and humidifier to keep proper
ambient conditions (around 28°C and 50% relative humidity) that preserve the mosquitoes during
the experiments.

Table 13 and Table 14 present the results gathered during this experiment from the
collectors with only female mosquitoes and with only males, respectively. In these tables, we
expose, for each round, the number of events classified as female and male, and the rate of
corrected classified events – since we know the true label of every instance. We also present other
metrics obtained from the recorded data: the mean temperature and relative humidity during the
events and their standard deviation (SD); and the mean and maximum time for (only) classifying
an event.

7.6. Experiments With Collectors 123

Table 13 – Results gathered from the collector containing only female Aedes aegypti mosquitoes.

Counts Classification Time (µs) Temperature (°C) Humidity (%)
Female Male Rate (%) Mean Max. Mean SD Mean SD

Day 1 71 3 95.95 1.43 2 29.55 0.25 56.94 6.10
Day 2 353 17 95.41 1.46 3 28.74 0.34 55.61 2.43
Day 3 322 14 95.83 1.45 2 31.69 0.79 42.35 3.03

Table 14 – Results gathered from the collector containing only male Aedes aegypti mosquitoes.

Counts Classification Time (µs) Temperature (°C) Humidity (%)
Female Male Rate (%) Mean Max. Mean SD Mean SD

Day 1 3 145 97.97 1.82 2 28.98 0.41 52.91 2.34
Day 2 3 411 99.28 1.76 2 28.63 0.34 59.98 3.19
Day 3 3 183 98.39 1.76 2 30.82 1.11 49.42 3.02

Interpreting the results from Table 13 and Table 14, we can notice that the embedded
model was able to maintain its classification efficiency estimated on test, with rates of correctly
labeled events of over 95%. Therefore, training with off-board preprocessed data seems to cause
an inexpressive loss in these results. Also, we had little variation in temperature and humidity.
But, as we previously stated, it was intentional because we wanted to keep the mosquitoes
alive (on friendly ambient conditions) to be able to continuously gather data during each round.
Finally, we mention that the mean and maximum classification times are relatively close to those
estimated using the testing set in the previous section.

Now, we examine the overall time, i.e., the time interval between the moment when the
mosquito started crossing the optical sensor light and when the classifier returned the predicted
label. Note that this value includes the time spent to preprocess the data and record it. Table 15
and Table 16 show – respectively for the female and male collectors – the mean and maximum
values for this metric and the recorded signal length.

Table 15 – Time results collected from the female Aedes aegypti mosquitoes.

Overall Time (ms) Signal Length (ms)
Mean Max. Mean Max. SD

Day 1 211.30 528 160.37 462.54 60.28
Day 2 230.10 601 173.39 532.20 56.87
Day 3 217.03 504 161.18 445.12 49.72

Table 16 – Time results collected from the male Aedes aegypti mosquitoes.

Overall Time (ms) Signal Length (ms)
Mean Max. Mean Max. SD

Day 1 179.66 307 129.50 253.56 23.62
Day 2 185.64 368 131.52 311.61 25.53
Day 3 175.53 323 125.48 270.98 16.63

Let us assume that the signal length is equal to the amount of time that the mosquito
stayed occluding the optical sensor light. Thus, the difference between the overall time and signal

124 Chapter 7. Case Study: An Intelligent Trap For Flying Insects

length shall be equivalent to the microcontroller delay in producing a label after the mosquito
flew away from the sensor light. In these results, the highest difference of their mean values is
56.71 ms and occurred on day 2 of the female mosquito data. If we had decided to use the SMO
(polynomial kernel) classifier with FLT representation, for instance, this amount of time would
probably have been twice as much.

7.7 Experiments With The Trap

The last experiment with Aedes aegypti mosquitoes consists of using the developed trap
in a laboratory simulated ambient. The focus of this phase is to investigate the consequences
of embedding the classifier on the intelligent trap to actually accomplish its main objective:
selectively capture the desired class(es) of flying insects. Therefore, it required the construction
of a cage, illustrated in Figure 37 and Figure 38, that allows releasing only female and male
mosquitoes inside and analyzing the trap performance in capturing or expelling them. The
designed cage has approximately 1.8 m×1.8 m×1.8 m (length×width×height) dimensions
and includes a double protection of mosquito netting fabric connected to a plastic pipe structure
that creates an internal space isolated from external insects. We placed this cage in the same
room used for the previous experiment – with controlled ambient conditions.

Figure 37 – Front-view of the cage.

Source: Elaborated by the author.

Figure 38 – Side-view of the cage.

Source: Elaborated by the author.

To prepare the setup, we placed the trap in the center of the cage, on top of a plastic stool,
keeping it approximately 45 cm from the ground. During the experiment, we also had a mosquito
release device inside the cage, as shown in Figure 39. This device, shown in Figure 40 and

7.7. Experiments With The Trap 125

Figure 41, contains 10 separated compartments and automatically opens one of them, releasing
the mosquitoes inside it, after each hour completed. This method is useful for distributing the
mosquitoes over time and preventing them from going directly and simultaneously to the trap.

Figure 39 – Arrangement of the trap and the release device inside the cage.

Source: Elaborated by the author.

In order to attract the mosquitoes to the trap, we chose carbon dioxide (CO2) since it is
an attractant to many mosquito biting species (KLINE et al., 1990). We used a pipe connected to
a CO2 cylinder (placed outside the cage) to conduct the gas to the trap entrance, near the optical
sensor.

As in the previous experiment, we performed this experiment in three rounds of approxi-
mately 24 hours each, distributed in consecutive days, and starting at dusk. For each round, we
used 30 mosquitoes (15 females and 15 males) and divided them on the first three boxes of the
release device, putting five females and five males in each of these containers. Therefore, after
three hours from the round beginning, we should have 30 mosquitoes either flying freely in the
cage or captured by the trap.

At the beginning of a round, we inserted the mosquitoes in the release device, prepared
the apparatus on their positions, and started them. At the end of every round, we performed the
following tasks: stopped the trap execution; manually captured, counted, and classified the insects

126 Chapter 7. Case Study: An Intelligent Trap For Flying Insects

Figure 40 – Mosquito release device totally
closed.

Source: Elaborated by the author.

Figure 41 – Mosquito release device totally open.

Source: Elaborated by the author.

outside and inside the trap; copied the produced data from the events; cleaned the microSD
card; and reset the trap microcontroller. A specialist also assisted us in the process of manually
capturing and classifying the mosquitoes.

The trap microcontroller was programmed using a modified version of the previous
experiment firmware. The updated version includes all the previous tasks – collecting, prepro-
cessing, classifying and storing the input data – and additionally can activate the trap fan, after
getting the predicted label, to capture a female mosquito or expel a male. Once the mosquito is
inside the trap, it is very unlikely to escape.

Table 17 exhibits the results obtained at the end of each round of this experiment. For
both classes, we divided the numbers of counted mosquitoes inside and outside the trap. It also
includes other relevant information: the number of events classified as female, i.e., in which the
trap activated the fan to capture a mosquito; the real value of counted mosquitoes inside the cage;
and the total number of events registered by the trap during the rounds.

Table 17 – Results from the trap experiment.

Inside Outside Classified
as Female

Total
Captured

Total
EventsFemale Male Female Male

Day 1 15 (100%) 3 (20%) 0 (0%) 12 (80%) 17 18 56
Day 2 15 (100%) 5 (33%) 0 (0%) 10 (67%) 17 20 34
Day 3 15 (100%) 7 (47%) 0 (0%) 8 (53%) 23 22 73

These results reveal that the trap was very effective in capturing female Aedes aegypti

mosquitoes. In the three rounds, it could catch all the released female mosquitoes. On the
other hand, it also wrongly captured at least 20% of the males. This value is quite higher than

7.7. Experiments With The Trap 127

expected from previous results (Section 7.6), in which it was possible to classify correctly over
95% of the events. One explanation is that, when capturing a female mosquito, the trap could
have caught some nearby males, since males are attracted to the sound produced by female
mosquitoes (BELTON; COSTELLO, 1979; BELTON, 1994). However, the fact that the total
number of mosquitoes inside the trap was relatively close to the number of events classified as
female suggests that the trap capture mechanism is considerably robust and it was able to catch
approximately only one mosquito at a time.

Another hypothesis consists of observing that the trap mechanism to expel mosquitoes
is strong enough to kill them after some attempts. Therefore, we consider the possibility that it
may cause injury to the expelled mosquitoes and affect their flight behavior. Another evidence of
this thought is that a male Aedes aegypti usually has a higher WBF than a female. Assuming
a mosquito gets injured from the expelling movement, its WBF may change to a lower value,
which directly affects the classification process.

In Table 18, we show the mean and SD values for temperature and relative humidity
gathered during the events of a round. As desired, we were able to maintain these conditions at
an adequate level to preserve mosquito activity, close to 28°C and 50%, respectively.

Table 18 – Temperature and relative humidity values gathered by the trap.

Temperature (°C) Humidity (%)
Mean SD Mean SD

Day 1 28.37 0.63 53.23 3.71
Day 2 29.95 0.95 49.50 3.72
Day 3 30.88 0.99 45.27 3.56

Finally, we present in Table 19 the time results of these rounds. First, we provide the
values for the time consumed in the classification step. Observe that they are consistent with
the results estimated in Section 7.5 and collected in Section 7.6. Next, in the table, we show
the overall time and recorded signal length. Considering the same evaluation performed in the
previous section, the highest difference between their mean values is 48.47 ms and occurred on
day 3. The results from Table 17 suggest that this value is acceptable for our application. Yet, we
still lack an analytical evaluation that demonstrates it.

Table 19 – Time results collected in the experiment with the trap.

Classification Time (µs) Overall Time (ms) Signal Length (ms)
Mean Max. Mean Max. Mean Max. SD

Day 1 1.61 3 201.79 410 153.94 358.05 46.63
Day 2 1.56 2 197.38 333 150.09 282.59 43.57
Day 3 1.47 2 196.03 334 147.56 282.59 38.04

128 Chapter 7. Case Study: An Intelligent Trap For Flying Insects

7.8 Limitations
The experiments presented in this chapter achieve successful results, but there are a few

limitations to our analysis. First of all, three rounds are not an ideal number to get a realistic
estimation of the trap performance. However, the main restrictive factors are mosquito availability
and their life span. Breeding mosquitoes in the laboratory is a laborious process that demands
the manual effort of specialists, has to follow a protocol to keep proper conditions, and it takes
several days for them to reach adult age. Other factors, such as the seasons, also have a significant
impact on this process. Nevertheless, we were able to get a considerable number of mosquitoes
that allowed us to repeat different experiments and analyze the classifier performance in more
realistic scenarios.

Besides, this study lacks defining real-time requirements and proving the solution meets
them. The main reasons for it are the additional steps involved to carry out such evaluation
since we should estimate the flying speed of the target insects and calculate the amount of time
they take to escape the trap’s reach. Then, we would be able to modify the trap design or its
firmware, considering these steps and the total time it takes to produce a classification result. As
we used a previously designed trap, we had restrictions in physically adjusting it to meet those
requirements. Also, we understand that it is a cyclical process, and the results presented in this
chapter will enable to adapt the trap and its software components for future work.

At final, the experiments have not explored different values of temperature, which is
a variable with strong potential to affect the results. However, previously in this chapter, we
presented the reasons that guided our chosen approach.

7.9 Final Considerations
In this chapter, we considered a real-world application to employ the EmbML in the

process of developing and evaluating classifiers to it. First, we described the problem and some
of the previous work involved in proposing an intelligent trap for selectively capture flying
insects. Then, we investigated the classifiers supported by EmbML to solve the stated problem
and constructed an extensive analysis that explored all the provided options. This step helped to
get a better sense of their performance and be able to choose the most appropriate alternative.
After embedding the classifier into the trap microcontroller, we evaluated the projected solution
in two realistic situations. They consisted of experiments that employed the developed devices to
classify and capture Aedes aegypti mosquitoes automatically, according to their sex. Finally, we
presented the achieved results and discussed their limitations.

129

CHAPTER

8
CONCLUSION

8.1 Initial Considerations

In this chapter, we review some of the subjects presented throughout this dissertation.
It starts highlighting its achieved objectives and contributions to the ML community. From
a general perspective, we examine how it may positively impact the development of future
technological projects. Particularly, we also consider its importance in completing the pipeline
of the project that has been developed by our research group in the past years. Lastly, we discuss
the limitations of this study and offer a few suggestions for extending the presented work.

8.2 Dissertation Review

The main objective of the work presented in this dissertation is to introduce an alternative
solution to facilitate the process of using classification models in low-power microcontrollers.
To achieve this goal, we proposed a tool named EmbML, which takes as input a model trained
in popular ML frameworks. The output of our solution is a classifier source code specifically
designed to execute in low-power microcontrollers, allowing modifications in its implementations
such as an optimized usage of the data memory and support to a fixed-point format for real
number operations.

Compared to the existing related tools described in Chapter 2, EmbML offers a few
advantages, such as:

• it is an open-source solution;

• it takes models trained with popular ML frameworks as input, which simplify this process;

• it supports a variety of classification models representing different learning paradigms;

130 Chapter 8. Conclusion

• and it generates classifier codes specifically designed to execute in low-power hardware.

Overall, EmbML consists of a robust solution for evaluating and employing classifiers to
resource-constrained hardware. Thus, we understand that it is a valuable contribution, especially
for offering support aimed at the development of technological applications, as those presented
in Section 2.3.

Besides introducing this solution, this work also developed a comparative analysis of
EmbML classifiers in Chapter 6. We evaluated them using different metrics (accuracy, classifi-
cation time, and memory consumption), benchmark datasets, and microcontrollers. This step
provided a better comprehension of the behavior of the classifiers in diverse situations and the
benefits achieved by the provided modifications. In Section 6.5, we compared classifiers from
EmbML and some related tools. In at least 70% of the cases, our classifiers achieved the best
time and memory results, demonstrating their efficiency.

In Chapter 7, we considered an application to demonstrate the complete EmbML pipeline:
from training and choosing the ML model, to deploying and assessing it in a microcontroller.
The evaluated case consisted of a research project aiming to produce an intelligent trap that
selectively captures flying insects using ML models. With the achievements of this dissertation,
we were able to leverage the trap development process to a stage in which it can now operate
effectively in a realistic scenario, as presented in Section 7.7.

8.3 Limitations

In this section, we complement the discussion of Section 7.8, presenting the following
limitations of this work:

1) In the comparative analysis from Chapter 6, we examined the EmbML classifiers using
two families of microcontrollers: ARM and AVR. Although they are representative options,
we still need to certify that these classifiers obtain comparable results in other popular chip
families, such as PIC and 8051.

2) When comparing classifier performance in Section 6.5, we examined models from related
tools that have a corresponding in EmbML. The main intention of this strategy was to
perform a fair comparison since we used the same trained model in the different tools to
generate the compared classifier codes. Yet, this approach led us to ignore some robust
solutions presented in Section 2.2, such as EdgeML and FANN-on-MCU. As a result, we
are not able to claim that our solution outperforms the state-of-the-art, but it produces
competitive results compared to the options available.

8.4. Future Work 131

3) In the experiments from Chapter 6, we defined two versions of fixed-point formats (FXP32
and FXP16). As shown in Section 7.5, we could have explored many other formats with
32 or 16 bits, but we chose to employ only two of them to report concise results.

4) For our experiments in Chapter 7, we considered an ambient with controlled values of
temperature and humidity. Furthermore, we exposed the trap only to insect classes that
belong to the training set. These situations are different from a natural setting, in which
ambient conditions fluctuate regularly, the classifier may confront examples of unknown
labels, and the correct label of each event is not available, especially for expelled insects.
Also, the insect population may be small in an open environment compared to laboratory
experiments, which implies a fewer number of events and less confidence in the results.

8.4 Future Work
Finally, we describe some topics that can be explored as extensions of this work:

1) Deep NNs are currently popular algorithms for classification problems due to their out-
standing performance. Since they usually produce large models, using them on low-power
microcontrollers is impractical. However, we understand it would be interesting to use
the experience with EmbML to investigate techniques (HAN; MAO; DALLY, 2015;
HOWARD et al., 2017; ZHANG et al., 2018) that adapt these models to execute in embed-
ded hardware with support for graphical operations – such as NVIDIA Jetson Series, Intel
Movidius Neural Compute Stick, and Google Coral.

2) Most of the work involved in evaluating and testing the EmbML classifiers in microcon-
trollers still depend on manual efforts. For this reason, adjusting EmbML to generate a
complete report of the classifier analysis automatically is a natural next step.

3) EmbML could directly interact with scikit-learn and WEKA to facilitate the pipeline
of using it. One option consists of allowing EmbML to call the functions that train the
classification models. Therefore, the process would be simplified since the user would
need to deal with only one tool to produce a classifier source code.

4) In Section 7.6, we estimated that the trap microcontroller took around 56.71 ms to produce
a label for an event. Since the deployed classifier took only 3 µs to process an example in
the worst case, we assume that the most time-consuming task is preprocessing the input
data. Consequently, optimizing it is a critical step to allow reacting faster to events and
meeting the real-time requirements of the problem.

5) In the current approach, the feature preprocessing step only begins after the insect stopped
occluding the optical sensor light. Future studies should address the impact of limiting
the length of the signal to start preprocessing it. In other words, we should investigate if a

132 Chapter 8. Conclusion

smaller sample of the input signal would be enough to classify it correctly. Hence, this
method might reduce the overall processing time and define an upper bound to the latency
for reacting to an event.

133

BIBLIOGRAPHY

ABADI, M.; BARHAM, P.; CHEN, J.; CHEN, Z.; DAVIS, A.; DEAN, J.; DEVIN, M.; GHE-
MAWAT, S.; IRVING, G.; ISARD, M. et al. Tensorflow: A system for large-scale machine
learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 16). [S.l.: s.n.], 2016. p. 265–283. Citation on page 35.

ALIMOGLU, F.; ALPAYDIN, E. Methods of combining multiple classifiers based on differ-
ent representations for pen-based handwritten digit recognition. In: TAINN. [S.l.: s.n.], 1996.
Citation on page 87.

ALIPPI, C.; PELOSI, G.; ROVERI, M. Computational intelligence techniques to detect toxic gas
presence. In: IEEE. Computational Intelligence for Measurement Systems and Applications,
Proceedings of 2006 IEEE International Conference on. [S.l.], 2006. p. 40–44. Citation on
page 39.

ANGUITA, D.; GHIO, A.; ONETO, L.; PARRA, X.; REYES-ORTIZ, J. A public domain dataset
for human activity recognition using smartphones. In: CIACO. 21th European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN).
[S.l.], 2013. p. 437–442. Citation on page 87.

ATMEL CORPORATION. Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V
DATASHEET. [S.l.], 2014. Rev. 2549Q-02/2014. Citation on page 88.

. Atmel SAM3X / SAM3A Series DATASHEET. [S.l.], 20145. Rev. 11057C. Citation
on page 88.

. Atmel ATmega328/P DATASHEET. [S.l.], 2016. Rev. B. Citation on page 88.

ATZORI, L.; IERA, A.; MORABITO, G. The internet of things: A survey. Computer networks,
v. 54, n. 15, p. 2787–2805, 2010. Citation on page 28.

BALDI, P. F.; HORNIK, K. Learning in linear neural networks: A survey. IEEE Transactions
on neural networks, IEEE, v. 6, n. 4, p. 837–858, 1995. Citation on page 46.

BATISTA, G. E.; KEOGH, E. J.; MAFRA-NETO, A.; ROWTON, E. Sigkdd demo: sensors and
software to allow computational entomology, an emerging application of data mining. In: ACM.
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining. [S.l.], 2011. p. 761–764. Citations on pages 27, 28, 30, 41, 109, 110, and 111.

BATISTA, G. E. A. P. A.; HAO, Y.; KEOGH, E.; MAFRA-NETO, A. Towards automatic
classification on flying insects using inexpensive sensors. In: IEEE. 2011 10th International
Conference on Machine Learning and Applications and Workshops. [S.l.], 2011. v. 1, p.
364–369. Citations on pages 109, 110, 112, 113, 114, and 115.

BELTON, P. Attractton of male mosquitoes to sound. J Am Mosq Control Assoc, v. 10, p.
297–301, 1994. Citation on page 127.

134 Bibliography

BELTON, P.; COSTELLO, R. A. Flight sounds of the females of some mosquitoes of western
canada. Entomologia experimentalis et applicata, Wiley Online Library, v. 26, n. 1, p. 105–
114, 1979. Citation on page 127.

BERTHOLD, M. R.; CEBRON, N.; DILL, F.; GABRIEL, T. R.; oTTER, T. K.; MEINL, T.;
OHL, P.; SIEB, C.; THIEL, K.; WISWEDEL, B. KNIME: The Konstanz Information Miner.
In: Studies in Classification, Data Analysis, and Knowledge Organization. [S.l.: s.n.], 2007.
Citation on page 51.

BIFET, A.; HOLMES, G.; KIRKBY, R.; PFAHRINGER, B. MOA: massive online analysis.
Journal of Machine Learning Research, v. 11, p. 1601–1604, 2010. Citation on page 51.

BISHOP, C. Pattern Recognition and Machine Learning. [S.l.]: Springer-Verlag New York,
2006. Citation on page 48.

BOJARSKI, M.; TESTA, D. D.; DWORAKOWSKI, D.; FIRNER, B.; FLEPP, B.; GOYAL,
P.; JACKEL, L. D.; MONFORT, M.; MULLER, U.; ZHANG, J. et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316, 2016. Citation on page 27.

BOTTA, A.; DONATO, W. D.; PERSICO, V.; PESCAPÉ, A. Integration of cloud computing and
internet of things: a survey. Future generation computer systems, Elsevier, v. 56, p. 684–700,
2016. Citation on page 28.

BRADLEY, S. P.; HAX, A. C.; MAGNANTI, T. L. Applied mathematical programming.
[S.l.]: Addison-Wesley, 1977. Citation on page 60.

BREIMAN, L.; FRIEDMAN, J. H.; OLSHEN, R. A.; STONE, C. J. Classification and regres-
sion trees. [S.l.]: Routledge, 1984. Citation on page 45.

CHANG, C.-C.; LIN, C.-J. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, v. 2, p. 27:1–27:27, 2011. Citations on pages 34
and 79.

CHELLI, A.; PÄTZOLD, M. A machine learning approach for fall detection and daily living
activity recognition. IEEE Access, IEEE, v. 7, p. 38670–38687, 2019. Citation on page 27.

CHEN, J.; KWONG, K.; CHANG, D.; LUK, J.; BAJCSY, R. Wearable sensors for reliable
fall detection. In: IEEE. 2005 IEEE Engineering in Medicine and Biology 27th Annual
Conference. [S.l.], 2006. p. 3551–3554. Citation on page 27.

CHEN, Y.; WHY, A.; BATISTA, G.; MAFRA-NETO, A.; KEOGH, E. Flying insect classification
with inexpensive sensors. Journal of insect behavior, Springer, v. 27, n. 5, p. 657–677, 2014.
Citation on page 109.

CHOI, Y.; RALHAN, A.; KO, S. A study on machine learning algorithms for fall detection and
movement classification. In: IEEE. 2011 International Conference on Information Science
and Applications. [S.l.], 2011. p. 1–8. Citation on page 27.

COOPERSMITH, E. J.; MINSKER, B. S.; WENZEL, C. E.; GILMORE, B. J. Machine learning
assessments of soil drying for agricultural planning. Computers and electronics in agriculture,
v. 104, p. 93–104, 2014. Citation on page 27.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine learning, Springer, v. 20, n. 3, p.
273–297, 1995. Citations on pages 48 and 49.

Bibliography 135

DENNIS, D.; PABBARAJU, C.; SIMHADRI, H. V.; JAIN, P. Multiple instance learning for
efficient sequential data classification on resource-constrained devices. In: Advances in Neural
Information Processing Systems. [S.l.: s.n.], 2018. p. 10953–10964. Citation on page 36.

DIETTERICH, T. G. Ensemble methods in machine learning. In: SPRINGER. International
workshop on multiple classifier systems. [S.l.], 2000. p. 1–15. Citation on page 44.

DOMINGOS, P. A few useful things to know about machine learning. Communications of the
ACM, ACM New York, NY, USA, v. 55, n. 10, p. 78–87, 2012. Citation on page 44.

FAROOQ, U.; AMAR, M.; HAQ, E. ul; ASAD, M. U.; ATIQ, H. M. Microcontroller based
neural network controlled low cost autonomous vehicle. In: ICMLC. [S.l.: s.n.], 2010. p. 96–100.
Citations on pages 29, 38, and 41.

FERNANDES, L. C.; SOUZA, J. R.; PESSIN, G.; SHINZATO, P. Y.; SALES, D.; MENDES,
C.; PRADO, M.; KLASER, R.; MAGALHAES, A. C.; HATA, A. et al. Carina intelligent robotic
car: architectural design and applications. Journal of Systems Architecture, Elsevier, v. 60,
n. 4, p. 372–392, 2014. Citation on page 27.

FERNÁNDEZ-DELGADO, M.; CERNADAS, E.; BARRO, S.; AMORIM, D. Do we need
hundreds of classifiers to solve real world classification problems? The Journal of Machine
Learning Research, v. 15, n. 1, p. 3133–3181, 2014. Citation on page 30.

FREESCALE SEMICONDUCTOR, INC. K20 Sub-Family Data Sheet. [S.l.], 2012. Rev. 3.
Citation on page 88.

. K20 Sub-Family Reference Manual. [S.l.], 2012. Rev. 1.1. Citation on page 88.

GOPINATH, S.; GHANATHE, N.; SESHADRI, V.; SHARMA, R. Compiling kb-sized machine
learning models to tiny iot devices. In: Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. [S.l.: s.n.], 2019. p. 79–95.
Citations on pages 36 and 57.

GUPTA, C.; SUGGALA, A. S.; GOYAL, A.; SIMHADRI, H. V.; PARANJAPE, B.; KUMAR,
A.; GOYAL, S.; UDUPA, R.; VARMA, M.; JAIN, P. Protonn: Compressed and accurate knn for
resource-scarce devices. In: JMLR. ORG. Proceedings of the 34th International Conference
on Machine Learning-Volume 70. [S.l.], 2017. p. 1331–1340. Citations on pages 36 and 39.

HALL, M.; FRANK, E.; HOLMES, G.; PFAHRINGER, B.; REUTEMANN, P.; WITTEN, I. H.
The weka data mining software: an update. ACM SIGKDD explorations newsletter, v. 11,
n. 1, p. 10–18, 2009. Citations on pages 29 and 51.

HAN, S.; MAO, H.; DALLY, W. J. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.
Citation on page 131.

HANKE, M.; HALCHENKO, Y. O.; SEDERBERG, P. B.; HANSON, S. J.; HAXBY, J. V.;
POLLMANN, S. Pymvpa: A python toolbox for multivariate pattern analysis of fmri data.
Neuroinformatics, Springer, v. 7, n. 1, p. 37–53, 2009. Citation on page 51.

HARRIS, A. F.; NIMMO, D.; MCKEMEY, A. R.; KELLY, N.; SCAIFE, S.; DONNELLY, C. A.;
BEECH, C.; PETRIE, W. D.; ALPHEY, L. Field performance of engineered male mosquitoes.
Nature biotechnology, Nature Publishing Group, v. 29, n. 11, p. 1034–1037, 2011. Citation on
page 110.

136 Bibliography

HAYKIN, S. S.; HAYKIN, S. S.; HAYKIN, S. S.; HAYKIN, S. S. Neural networks and
learning machines. [S.l.]: Pearson Upper Saddle River, 2009. Citation on page 47.

HECHT-NIELSEN, R. Theory of the backpropagation neural network. In: Neural networks for
perception. [S.l.]: Elsevier, 1992. p. 65–93. Citation on page 47.

HOFMANN, M.; KLINKENBERG, R. RapidMiner: Data mining use cases and business
analytics applications. [S.l.]: CRC Press, 2013. Citation on page 51.

HOWARD, A. G.; ZHU, M.; CHEN, B.; KALENICHENKO, D.; WANG, W.; WEYAND, T.;
ANDREETTO, M.; ADAM, H. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861, 2017. Citation on page 131.

HWANG, M.-C.; KIM, N.-h.; PARK, C.-S.; KO, S.-J. et al. Person identification system for
future digital tv with intelligence. IEEE Transactions on Consumer Electronics, IEEE, v. 53,
n. 1, 2007. Citation on page 39.

IRANI, J.; PISE, N.; PHATAK, M. Clustering techniques and the similarity measures used in
clustering: A survey. International Journal of Computer Applications, Citeseer, v. 134, n. 7,
p. 9–14, 2016. Citation on page 44.

JORDAN, M. I.; MITCHELL, T. M. Machine learning: Trends, perspectives, and prospects.
Science, American Association for the Advancement of Science, v. 349, n. 6245, p. 255–260,
2015. Citation on page 44.

KAHAN, W. Ieee standard 754 for binary floating-point arithmetic. Lecture Notes on the Status
of IEEE, v. 754, n. 94720-1776, p. 11, 1996. Citation on page 86.

KARANTONIS, D. M.; NARAYANAN, M. R.; MATHIE, M.; LOVELL, N. H.; CELLER, B. G.
Implementation of a real-time human movement classifier using a triaxial accelerometer for
ambulatory monitoring. IEEE transactions on information technology in biomedicine, IEEE,
v. 10, n. 1, p. 156–167, 2006. Citation on page 39.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. Citation on page 77.

KLINE, D.; TAKKEN, W.; WOOD, J.; CARLSON, D. Field studies on the potential of butanone,
carbon dioxide, honey extract, l-octen-3-ol, l-lactic acid and phenols as attractants for mosquitoes.
Medical and veterinary entomology, Wiley Online Library, v. 4, n. 4, p. 383–391, 1990.
Citation on page 125.

KOTSIANTIS, S. B.; ZAHARAKIS, I.; PINTELAS, P. Supervised machine learning: A re-
view of classification techniques. Emerging artificial intelligence applications in computer
engineering, Amsterdam, v. 160, p. 3–24, 2007. Citation on page 45.

KREMPL, G.; ŽLIOBAITE, I.; BRZEZIŃSKI, D.; HÜLLERMEIER, E.; LAST, M.; LEMAIRE,
V.; NOACK, T.; SHAKER, A.; SIEVI, S.; SPILIOPOULOU, M. et al. Open challenges for data
stream mining research. ACM SIGKDD explorations newsletter, ACM New York, NY, USA,
v. 16, n. 1, p. 1–10, 2014. Citation on page 28.

KUMAR, A.; GOYAL, S.; VARMA, M. Resource-efficient machine learning in 2 kb ram for
the internet of things. In: JMLR. ORG. Proceedings of the 34th International Conference on
Machine Learning-Volume 70. [S.l.], 2017. p. 1935–1944. Citation on page 36.

Bibliography 137

KUSUPATI, A.; SINGH, M.; BHATIA, K.; KUMAR, A.; JAIN, P.; VARMA, M. Fastgrnn: A
fast, accurate, stable and tiny kilobyte sized gated recurrent neural network. In: Advances in
Neural Information Processing Systems. [S.l.: s.n.], 2018. p. 9017–9028. Citation on page
36.

LAI, L.; SUDA, N.; CHANDRA, V. Cmsis-nn: Efficient neural network kernels for arm cortex-m
cpus. arXiv preprint arXiv:1801.06601, 2018. Citation on page 36.

LEVENBERG, K. A method for the solution of certain non-linear problems in least squares.
Quarterly of applied mathematics, v. 2, n. 2, p. 164–168, 1944. Citation on page 58.

LIU, D. C.; NOCEDAL, J. On the limited memory bfgs method for large scale optimization.
Mathematical programming, Springer, v. 45, n. 1-3, p. 503–528, 1989. Citation on page 76.

LUŠTREK, M.; KALUŽA, B. Fall detection and activity recognition with machine learning.
Informatica, v. 33, n. 2, 2009. Citation on page 27.

LUXBURG, U. V.; SCHÖLKOPF, B. Statistical learning theory: Models, concepts, and results.
In: Handbook of the History of Logic. [S.l.]: Elsevier, 2011. v. 10, p. 651–706. Citation on
page 44.

MAAS, A. L.; HANNUN, A. Y.; NG, A. Y. Rectifier nonlinearities improve neural network
acoustic models. In: Proc. icml. [S.l.: s.n.], 2013. v. 30, n. 1, p. 3. Citation on page 46.

MAINS, J. W.; BRELSFOARD, C. L.; ROSE, R. I.; DOBSON, S. L. Female adult aedes
albopictus suppression by wolbachia-infected male mosquitoes. Scientific reports, Nature
Publishing Group, v. 6, p. 33846, 2016. Citation on page 110.

MARQUARDT, D. W. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the society for Industrial and Applied Mathematics, SIAM, v. 11, n. 2, p. 431–
441, 1963. Citation on page 58.

MARTIN, B. Instance-based learning: nearest neighbour with generalisation. University of
Waikato, Department of Computer Science, 1995. Citation on page 44.

MELLANBY, K. Humidity and insect metabolism. Nature, Nature Publishing Group, v. 138,
n. 3481, p. 124–125, 1936. Citation on page 113.

MITCHELL, T. M. Machine Learning. 1. ed. [S.l.]: McGraw-Hill, 1997. Citations on pages
43, 45, and 46.

MONARD, M. C.; BARANAUSKAS, J. A. Conceitos sobre aprendizado de máquina. Sistemas
Inteligentes-Fundamentos e Aplicações, v. 1, n. 1, p. 32, 2003. Citations on pages 43 and 44.

MURTHY, S. K. Automatic construction of decision trees from data: A multi-disciplinary survey.
Data mining and knowledge discovery, Springer, v. 2, n. 4, p. 345–389, 1998. Citation on
page 45.

NUSSBAUMER, H. J. The fast fourier transform. In: Fast Fourier Transform and Convolu-
tion Algorithms. [S.l.]: Springer, 1981. p. 80–111. Citation on page 115.

NXP SEMICONDUCTORS. K66 Sub-Family Reference Manual. [S.l.], 2015. Rev. 2. Cita-
tion on page 89.

138 Bibliography

. Kinetis K64F Sub-Family Data Sheet. [S.l.], 2016. Rev. 7. Citation on page 88.

. K64 Sub-Family Reference Manual. [S.l.], 2017. Rev. 3. Citation on page 88.

. Kinetis K66 Sub-Family. [S.l.], 2017. Rev. 4. Citation on page 89.

O’BARD, B.; GEORGE, K. Classification of eye gestures using machine learning for use
in embedded switch controller. In: IEEE. 2018 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC). [S.l.], 2018. p. 1–6. Citations on pages 37
and 41.

OLIPHANT, T. E. A guide to NumPy. [S.l.]: Trelgol Publishing USA, 2006. Citation on page
51.

PAL, S. K.; MITRA, S. Multilayer perceptron, fuzzy sets, and classification. IEEE Transactions
on Neural Networks, IEEE Press Piscataway, NJ, USA, v. 3, n. 5, p. 683–697, 1992. Citations
on pages 45 and 47.

PATIL, S. G.; DENNIS, D. K.; PABBARAJU, C.; SHAHEER, N.; SIMHADRI, H. V.; SE-
SHADRI, V.; VARMA, M.; JAIN, P. Gesturepod: Enabling on-device gesture-based interaction
for white cane users. In: Proceedings of the 32nd Annual ACM Symposium on User Inter-
face Software and Technology. [S.l.: s.n.], 2019. p. 403–415. Citations on pages 39 and 41.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL,
O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.; VANDERPLAS, J.;
PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, v. 12, p. 2825–
2830, 2011. Citations on pages 29 and 51.

PENG, C.-Y. J.; LEE, K. L.; INGERSOLL, G. M. An introduction to logistic regression analysis
and reporting. The journal of educational research, Taylor & Francis, v. 96, n. 1, p. 3–14,
2002. Citation on page 48.

PLATT, J. Fast training of support vector machines using sequential minimal optimization.
In: SCHOELKOPF, B.; BURGES, C.; SMOLA, A. (Ed.). Advances in Kernel Methods -
Support Vector Learning. MIT Press, 1998. Available: <http://research.microsoft.com/~jplatt/
smo.html>. Citation on page 71.

POLAT, K.; GÜNEŞ, S. A novel hybrid intelligent method based on c4. 5 decision tree classifier
and one-against-all approach for multi-class classification problems. Expert Systems with
Applications, Elsevier, v. 36, n. 2, p. 1587–1592, 2009. Citation on page 48.

PREGIBON, D. et al. Logistic regression diagnostics. The Annals of Statistics, Institute of
Mathematical Statistics, v. 9, n. 4, p. 705–724, 1981. Citation on page 48.

QI, Y.; CINAR, G. T.; SOUZA, V. M. A.; BATISTA, G. E. A. P. A.; WANG, Y.; PRINCIPE, J. C.
Effective insect recognition using a stacked autoencoder with maximum correntropy criterion.
In: IEEE. 2015 International Joint Conference on Neural Networks (IJCNN). [S.l.], 2015.
p. 1–7. Citations on pages 109 and 112.

QUINLAN, J. R. Induction of decision trees. Machine learning, Springer, v. 1, n. 1, p. 81–106,
1986. Citation on page 45.

http://research.microsoft.com/~jplatt/smo.html
http://research.microsoft.com/~jplatt/smo.html

Bibliography 139

QUINLAN, R. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann
Publishers, 1993. Citation on page 45.

REIS, D. M. dos; MALETZKE, A. G.; BATISTA, G. E. A. P. A. Unsupervised context switch
for classification tasks on data streams with recurrent concepts. In: ACM SAC. [S.l.: s.n.], 2018.
p. 518–524. Citation on page 86.

ROSENBLATT, F. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, American Psychological Association, v. 65, n. 6, p. 386,
1958. Citation on page 45.

ROWLEY, W. A.; GRAHAM, C. L. The effect of temperature and relative humidity on the flight
performance of female aedes aegypti. Journal of Insect Physiology, Elsevier, v. 14, n. 9, p.
1251–1257, 1968. Citation on page 113.

RÚA, S.; ZULUAGA, S. A.; REDONDO, A.; OROZCO-DUQUE, A.; RESTREPO, J. V.;
BUSTAMANTE, J. Machine learning algorithms for real time arrhythmias detection in portable
cardiac devices: microcontroller implementation and comparative analysis. In: STSIVA. [S.l.:
s.n.], 2012. p. 50–55. Citations on pages 29, 39, and 41.

SAMPAIO, F.; SILVA, L. C. da; FILHO, P. P. R.; SILVA, E. T. da. Reducing computational costs
of an embedded classifier to determine leather quality. In: SBESC. [S.l.: s.n.], 2017. p. 211–216.
Citation on page 29.

SCHAUL, T.; BAYER, J.; WIERSTRA, D.; SUN, Y.; FELDER, M.; SEHNKE, F.; RÜCK-
STIESS, T.; SCHMIDHUBER, J. Pybrain. Journal of Machine Learning Research, Mas-
sachusetts Institute of Technology Press, v. 11, n. ARTICLE, p. 743–746, 2010. Citation on
page 51.

SCHMIDHUBER, J. Deep learning in neural networks: An overview. CoRR, abs/1404.7828,
2014. Available: <http://arxiv.org/abs/1404.7828>. Citation on page 44.

SCHÖLKOPF, B.; SMOLA, A. J.; BACH, F. et al. Learning with kernels: support vector
machines, regularization, optimization, and beyond. [S.l.]: MIT press, 2002. Citations on
pages 49 and 50.

SHI, G.; CHAN, C. S.; LI, W. J.; LEUNG, K.-S.; ZOU, Y.; JIN, Y. Mobile human airbag system
for fall protection using mems sensors and embedded svm classifier. IEEE Sensors Journal,
v. 9, n. 5, p. 495–503, 2009. Citations on pages 28, 38, and 41.

SILVA, D. F.; SOUZA, V. M. A.; ELLIS, D. P.; KEOGH, E. J.; BATISTA, G. E. A. P. A.
Exploring low cost laser sensors to identify flying insect species. Journal of Intelligent &
Robotic Systems, Springer, v. 80, n. 1, p. 313–330, 2015. Citations on pages 27, 30, 109,
and 112.

SILVA, D. F.; SOUZA, V. M. A. D.; BATISTA, G. E. A. P. A.; KEOGH, E.; ELLIS, D. P. W.
Applying machine learning and audio analysis techniques to insect recognition in intelligent
traps. In: ICMLA. [S.l.: s.n.], 2013. p. 99–104. Citation on page 28.

SILVA, L. T. da; SOUZA, V. M. A.; BATISTA, G. E. A. P. A. EmbML tool: supporting the
use of supervised learning algorithms in low-cost embedded systems. In: IEEE. 2019 IEEE
31st International Conference on Tools with Artificial Intelligence (ICTAI). [S.l.], 2019. p.
1633–1637. Citations on pages 29, 31, 53, 54, and 85.

http://arxiv.org/abs/1404.7828

140 Bibliography

. Uma ferramenta de suporte ao uso de classificadores em sistemas embarcados. In: Anais do
14º Simpósio Brasileiro de Automação Inteligente. [S.l.: s.n.], 2019. p. 2901–2907. Citations
on pages 29, 31, and 53.

SOUZA, V. M. A.; GIUSTI, R.; BATISTA, A. J. L. Asfault: A low-cost system to evaluate
pavement conditions in real-time using smartphones and machine learning. Pervasive and
Mobile Computing, v. 51, p. 121–137, 2018. Citation on page 86.

SOUZA, V. M. A.; REIS, D. M.; MALETZKE, A. G.; BATISTA, G. E. A. P. A. Challenges in
benchmarking stream learning algorithms with real-world data. Data Mining and Knowledge
Discovery, p. 1–54, 2020. Citations on pages 109, 110, 111, 114, 115, 116, and 117.

SOUZA, V. M. A.; SILVA, D. F.; BATISTA, G. E. A. P. A. Classification of data streams applied
to insect recognition: Initial results. In: BRACIS. [S.l.: s.n.], 2013. p. 76–81. Citations on pages
27, 30, and 109.

STANKOVIC, J. A. Misconceptions about real-time computing: A serious problem for next-
generation systems. Computer, v. 21, n. 10, p. 10–19, 1988. Citation on page 28.

TAYLOR, L. Analysis of the effect of temperature on insects in flight. The Journal of Animal
Ecology, JSTOR, p. 99–117, 1963. Citation on page 113.

TOCCHETTO, M. A.; BAZANELLA, A. S.; GUIMARAES, L.; FRAGOSO, J.; PARRAGA, A.
An embedded classifier of lung sounds based on the wavelet packet transform and ann. IFAC
Proceedings Volumes, v. 47, n. 3, p. 2975–2980, 2014. Citations on pages 29, 38, and 41.

TUBAISHAT, M.; MADRIA, S. Sensor networks: an overview. IEEE potentials, v. 22, n. 2, p.
20–23, 2003. Citation on page 27.

VAPNIK, V. The Nature of Statistical Learning Theory. [S.l.]: Springer Science & Business
Media, 1999. Citations on pages 49 and 50.

VERGARA, A.; VEMBU, S.; AYHAN, T.; RYAN, M. A.; HOMER, M. L.; HUERTA, R.
Chemical gas sensor drift compensation using classifier ensembles. Sensors and Actuators B:
Chemical, v. 166, p. 320–329, 2012. Citation on page 87.

Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski,
E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Jarrod
Millman, K.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C.; Polat, İ.;
Feng, Y.; Moore, E. W.; Vand erPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.;
Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt,
P.; Contributors, S. . . SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, v. 17, p. 261–272, 2020. Citation on page 51.

VLĂDUŢIU, M. Computer arithmetic: algorithms and hardware implementations. [S.l.]:
Springer Science & Business Media, 2012. Citation on page 58.

Wang, X.; Magno, M.; Cavigelli, L.; Benini, L. Fann-on-mcu: An open-source toolkit for energy-
efficient neural network inference at the edge of the internet of things. IEEE Internet of Things
Journal, 2020. Citation on page 36.

WELCH, P. The use of fast fourier transform for the estimation of power spectra: a method
based on time averaging over short, modified periodograms. IEEE Transactions on audio and
electroacoustics, IEEE, v. 15, n. 2, p. 70–73, 1967. Citations on pages 114 and 116.

Bibliography 141

WITTEN, I. H.; FRANK, E.; HALL, M. A.; PAL, C. J. Data Mining: Practical Machine
Learning Tools and Techniques. [S.l.]: Morgan Kaufmann, 2016. Citation on page 52.

YICK, J.; MUKHERJEE, B.; GHOSAL, D. Wireless sensor network survey. Computer net-
works, Elsevier, v. 52, n. 12, p. 2292–2330, 2008. Citation on page 28.

ZHANG, X.; ZHOU, X.; LIN, M.; SUN, J. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. [S.l.: s.n.], 2018. p. 6848–6856. Citation on page 131.

ZITO, T.; WILBERT, N.; WISKOTT, L.; BERKES, P. Modular toolkit for data processing (mdp):
a python data processing framework. Frontiers in neuroinformatics, Frontiers, v. 2, p. 8, 2009.
Citation on page 51.

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of charts
	List of algorithms
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Background
	Justification and Motivation
	Proposal
	Objectives and Contributions
	Dissertation Organization
	Publications

	Related Work
	Initial Considerations
	Related Tools
	Related Applications
	Eye gesture classification
	Fall detection
	Low-cost autonomous vehicle
	Lung signals classification
	Ventricular tachycardia and fibrillation detection
	White cane gesture classification
	Other applications

	Discussion
	Final Considerations

	Classification Algorithms And Models
	Initial Considerations
	Machine Learning Overview
	Classification
	Decision Tree
	Multilayer Perceptron
	Logistic Regression
	Support Vector Machine

	Machine Learning Tools
	Final Considerations

	EmbML – Embedded Machine Learning
	Initial Considerations
	Pipeline Overview
	Serialization and Model Recovery
	Algorithms and Classes
	General Modifications
	Fixed-point Representation

	Sigmoid Function Approximations
	Piecewise Linear Approximation

	If-Then-Else Statements For Decision Trees
	Final Considerations

	WEKA and Scikit-learn Models
	Initial Considerations
	WEKA classes
	J48
	Logistic
	MultilayerPerceptron
	SMO

	Scikit-learn Classes
	DecisionTreeClassifier
	LinearSVC and LogisticRegression
	MLPClassifier
	SVC

	Discussion
	Final Considerations

	Comparative Analysis
	Initial Considerations
	Experimental Setup
	Datasets
	Classifiers
	Microcontrollers

	Analysis of the EmbML Classifiers
	Accuracy
	Classification Time
	Memory Usage

	EmbML Code Modifications
	Approximations for Sigmoid Function in MLP
	If-Then-Else Statements and Iterative Decision Trees

	Comparing With Related Tools
	Final Considerations

	Case Study: An Intelligent Trap For Flying Insects
	Initial Considerations
	The Intelligent Trap
	Optical Sensor
	Developed Board

	Predictive Features And Data Preprocessing
	Data Collection
	Classifier Analysis
	Experiments With Collectors
	Experiments With The Trap
	Limitations
	Final Considerations

	Conclusion
	Initial Considerations
	Dissertation Review
	Limitations
	Future Work

	Bibliography

