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RESUMO

GEBREZABHER, Z. H. Reconstrução da Dinâmica de Fase de Rede a partir de Dados. 2023.
123 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2023.

Muitos sistemas dinâmicos, tanto naturais quanto feitos pelo homem, são compostos de partes
que interagem. Sistemas dinâmicos isolados, como neurônios, células cardíacas e circuitos
elétricos, são de natureza periódica. Matematicamente, tais sistemas periódicos podem ser
descritos por um oscilador de ciclo limite, que pode ser parametrizado em termos de fases. Hoje
em dia é possível coletar e processar enormes quantidades de dados das unidades de muitos
osciladores de ciclo limite de interação. No entanto, não temos modelos suficientes de tais
sistemas para identificar e parametrizar as características cruciais que devem ser incorporadas ao
modelo.

O objetivo principal desta tese é reconstruir modelos de sistemas dinâmicos a partir de dados de
séries temporais disponíveis. Neste contexto, consideramos o caso em que os dados provêm de
uma rede de unidades oscilatórias que interagem fracamente. Para tanto, pretendemos reconstruir
a dinâmica de fases a partir de séries temporais em termos de fases. As fases podem ser
estimadas a partir de cada série temporal de tais sistemas oscilatórios. Teoricamente, a estrutura
de redução de fase é discutida para o caso de sistema dinâmico fracamente perturbado com um
ciclo limite exponencialmente estável quando não perturbado, onde este também foi estendido
para sistemas oscilatórios de interação fraca, usando o conceito de isócronas. A influência
que um sistema dinâmico exerce sobre outro é descrita por uma função de acoplamento, e as
funções de acoplamento extraídas das séries temporais de sistemas dinâmicos em interação são
frequentemente variáveis no tempo.

Motivados pela variabilidade temporal das interações biológicas, incluindo as funções de in-
teração cardiorrespiratória e neural delta-alfa que foram reconstruídas com base na inferência
Bayesiana, estudamos a existência de transições de sincronização causadas por funções de
acoplamento variantes no tempo, mesmo que o acoplamento líquido força é invariável. Também
estudamos o surgimento de hiperredes ao reconstruir modelos de osciladores acoplados não
linearmente a partir de dados. Em particular, quando os dados vêm de uma rede de osciladores
Stuart-Landau fracamente acoplados, mostramos que métodos de recuperação esparsos revelam
hiper-redes. Este resultado é verificado teoricamente usando a teoria de redução de fase de
segunda ordem através do método de perturbação.

Palavras-chave: Sistemas dinâmicos, Osciladores de fase acoplados, Reconstrução dinâmica de
rede, Funções de acoplamento, Redução de fase.





ABSTRACT

GEBREZABHER, Z. H. Reconstruction of Network Phase Dynamics from Data. 2023. 123
p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2023.

Many dynamical systems, both natural and man-made, are composed of interacting parts. Isolated
dynamical systems such as the spiking of neurons, cardiac cells, and electrical circuits are
periodic in nature. Mathematically, such periodic systems can be described by a limit cycle
oscillator, which can be parameterized in terms of phases. Nowadays it is possible to collect and
process enormous amounts of data from the units of many such interacting limit cycle oscillators.
However, we do not have enough models of such systems to identify and parameterize the crucial
features that must be incorporated into the model.

The main objective of this thesis is to reconstruct models of dynamical systems from available
time-series data. In this context, we considered the case where the data comes from a network
of oscillatory units that interact weakly. To this end, we aim to reconstruct phase dynamics
from time series in terms of phases. The phases can be estimated from each time series of such
oscillatory systems. Theoretically, the phase reduction framework is discussed for the case of a
weakly perturbed dynamical system with an exponentially stable limit cycle when unperturbed,
where this was also extended to weakly interacting oscillatory systems, using the concept of
isochrons. The influence that one dynamical system exerts on another is described by a coupling
function, and the coupling functions extracted from the time series of interacting dynamical
systems are often found to be time-varying.

Motivated by the time-variability of biological interactions, including neural delta-alpha interac-
tion functions which were reconstructed based on Bayesian inference, we studied the existence
of synchronization transitions caused by time-varying coupling functions, even though the net
coupling strength is invariant. We also studied the emergence of hypernetworks when recon-
structing models of nonlinearly coupled oscillators from data. In particular, when the data comes
from a network of weakly coupled Stuart-Landau oscillators, we showed that sparse recovery
methods reveal hypernetworks. This result is verified theoretically using second-order phase
reduction theory via the perturbation method.

Keywords: Dynamical systems, Coupled phase oscillators, Network dynamics reconstruction,
Coupling functions, Phase reduction.
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CHAPTER

1
INTRODUCTION

Many complex systems, in nature and man-made, are composed of interacting units.
Examples range from gene regulatory networks in the cell (DAVIDSON, 2010) and neural
circuits in the brain (TAKEMURA et al., 2013) to food webs in ecosystems (MCKANE et

al., 2003) and power grids (WITTHAUT; TIMME, 2012). Such systems can be described by
dynamical units oscillating on complex networks. Knowledge of the network dynamics of such
complex networked systems is essential to understanding and predicting sudden changes in
behavior and controlling their functionality. However, in many real problems, network dynamics
are often unknown but rather need to be reconstructed from available data.

Due to the advances in modern information technology, the availability of data that
capture the structure and behavior of complex networked systems has greatly increased in
recent years. Despite its increasing importance, reconstructing the governing equations of
complex network dynamics remains a challenging problem due to the large-scale, noisy, and
heterogeneous nature of the available data. Nonetheless, recent advances in computational and
statistical methods, particularly in machine learning methods and graph theory, have greatly
enhanced our capacity to reconstruct networks from various types of data, such as time series,
“functional magnetic resonance imaging” (fMRI), and social media.

In this thesis, we focus on reconstructing network dynamics from data that come from
networks of oscillatory dynamical systems. In particular, we consider data that come from
networks of weakly interacting periodic systems. By weakly interacting we mean the effect of
one dynamical system on another is small as compared to its own intrinsic dynamics. Dynamical
systems such as periodic spiking of neurons (IZHIKEVICH, 2000), and cardiac cells (GLASS;
MACKEY, 1988; WINFREE, 2001) when isolated are believed to exhibit stable rhythmic
behavior. Mathematically, such periodic systems can be described by a limit cycle oscillator,
which can be parameterized in terms of phases. A phase is a time-like variable bounded by the
period of the limit cycle.
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The notion of phases allows us to reduce the problem of studying the high-dimensional
dynamical system into a one-dimensional phase dynamics equation using the phase reduction
theory (PIETRAS; DAFFERTSHOFER, 2019), using the concept of “isochrons” (WINFREE,
1974). This can be extended to a system of weakly interacting dynamical systems (NAKAO,
2015). The impact that one dynamical system exerts on another can be described by its interaction
function. Examples include Josephson junctions (WIESENFELD; COLET; STROGATZ, 1996),
neuronal networks (CESSAC, 2010), the cardiorespiratory system (SCHÄFER et al., 1998),
cardiorespiratory-brain interactions (MORELLI et al., 2018).

The dynamics of such systems often have external influences leading to time-variability
in their mathematical description, e.g. time-varying frequency or a time-varying form of coupling
function (Lucas; Newman; Stefanovska, 2018). These can lead to the existence of a qualitative
change, such as synchronization transitions. By synchronization we mean the rhythmic adjust-
ment of limit cycle oscillators caused due to their weak interactions. This phenomenon is greatly
explored in (PIKOVSKY; ROSENBLUM; KURTHS, 2001), which is one of the hottest areas in
recent studies. One of the main goals of this thesis is to study the effects of time-varying forms of
coupling functions that induce a transition to synchronization. Coupling functions of interacting
dynamical systems can be reconstructed from data (STANKOVSKI et al., 2016).

Network of dynamical systems. Many of the networked dynamical systems examples mentioned
above can be described in a network with pairwise interactions. In this setting, we consider a
network of N pairwise coupled dynamical systems whose state equations can be described using
stochastic differential equations as:

d
dt

xi(t) = fi(xi(t))+α

N

∑
j=1

Ai jhi(xi(t),x j(t))+ξi(t), i = 1, . . . ,N, (1.1)

where xi(t) is the state variable of the ith node of the network at time t, possibly it could be higher-
dimensional, say xi ∈ Rm with m > 1; fi is the vector field describing the isolated dynamics of
node i; the coupling function hi dictates a pairwise coupling function (STANKOVSKI et al.,
2017) of the ith node; and the adjacency matrix Ai, j defines who is connected to whom: Ai, j = 1
if nodes i and j are connected and Ai, j = 0 otherwise. The constant α is the strength of the
coupling. The term ξi is the dynamical noise added into the system to better mimic real situations.
It can be seen that the system (1.1) is higher-dimensional and hence it might be challenging to
make some important features about the network dynamics from it. For this reason, we might
want to reduce the dynamics into phase equations. A straightforward question to ask would be:

Under what conditions can the network be effectively described using phase equations?

Before we give an adequate answer to this question, we consider the following assumptions on
the network dynamics (1.1):
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• When uncoupled (i.e. α = 0), each system fi exhibits an exponentially stable limit cycle γi

with similar natural frequencies ωi, and

• When coupled, we have a weak coupling, i.e., α ≪ 1.

Then the normally hyperbolic invariant manifolds (NHIMs) theory (HIRSCH; PUGH; SHUB,
1977; ELDERING, 2013a) guarantees that the network dynamics remain on an N-dimensional
torus TN . For N = 2, it is demonstrated on figure 1. It remains to find the network phase equations
on a manifold.

Figure 1 – The product of two isolated limit cycles γ1 and γ2 are confined in a torus T2 (middle), and if
we impose a weak coupling, the normally hyperbolic invariant manifolds guarantee that the
dynamics are on a torus (HIRSCH; PUGH; SHUB, 1977; ELDERING, 2013b), and we find
the dynamics on a manifold (right).

Source: Elaborated by the author.

The phase reduction theory states that the network dynamics in equation (1.1) can be
reduced to the phase equations:

d
dt

θi(t) = ωi +α

N

∑
j=1

Ai jqi(θi(t),θ j(t))+ξi(t), i = 1, . . . ,N, (1.2)

where θi is the phase of ith oscillator, and qi is the phase coupling function between the ith
oscillator and jthe oscillator. Equation (1.2) is the reduced phase dynamics of the network of N

nodes.

This project aims to

Reconstruct phase models of dynamical systems from available time-series data recorded

from a network of weakly coupled limit cycle oscillators.

In practice, we do not even have access to the time series in phases but we measure
each state variable of the network. We first need to estimate the corresponding phases from
the available data via e.g. Hilbert transform (ROSENBLUM; PIKOVSKY; KURTHS, 1996) or
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angle variable. Then use these estimated phases to recover their phase dynamics. A schematic
representation of the reconstruction problem is shown in figure 2.

Figure 2 – Schematic diagram of the recovering phase coupling functions from observed rhythmic time
series data. We assumed that we have access to multivariate time series of certain network
dynamics. We then extract the phase time series followed by reconstructing the underlying
phase dynamics. Finally, we deduce the underlying phenomenon, such as synchronization
and/or transition to chaos.

Source: Elaborated by the author.

More precisely, we have two main results:

① Characterized the effects of time variability in the coupling functions. More precisely,
we showed the existence of synchronization transitions caused by time-varying coupling
functions example while the net coupling strength is kept constant.

② We reconstructed phase models of dynamical systems from oscillatory data. In particular,
we showed the emergence of hypernetworks from ring networks of weakly coupled limit-
cycle oscillators. This result was also verified theoretically by applying phase reduction
followed by averaging theory. Also, we compared Bayesian inference and sparse recovery
methods against the following parameters: computational cost vs sparsity; robust against
noise vs not applicable. An insight is: by optimizing the phase of dynamical paths we may
be able to get rid of some observational noise and better compare sparse recovery and
Bayesian inference. These two reconstruction methods were applied to a network of three
coupled phase oscillators subject to additive Gaussian noise.

In the next section, we present the organization of the rest of this thesis.



1.1. Organization 25

1.1 Organization
Chapter 2 presents the theoretical background of the project. Theoretically, the phase

reduction framework is discussed for the case of a weakly perturbed dynamical system with an
exponentially stable limit cycle when unperturbed. This was also extended to weakly interact-
ing oscillatory systems. The phase coupling functions extracted from the time series of such
interacting dynamical systems are often found to be time-varying.

In Chapter 3 we discuss the dynamics of phases. Motivated by the time-variability
of biological interactions, including the cardio-respiratory and neural delta-alpha interaction
functions which were reconstructed based on Bayesian inference, we studied the existence of
synchronization transitions caused by time-varying coupling functions, even though the net
coupling strength is invariant1.

Chapter 4 is devoted to the reconstruction of phase models of coupled dynamical systems
from data recorded from networks of weakly interacting oscillators based on Bayesian inference
and sparse recovery methods. Moreover, we showed a case where although the dynamics in
the network are purely pairwise, due to the nonlinearity of the coupling functions, we reveal
hypernetworks – higher-order interaction terms. This result is verified theoretically using second-
order phase reduction theory via the perturbation method2.

Finally, Chapter 5 is devoted to the conclusions and future perspectives of our project.

1 This result was published on the journal of the Royal Society (Hagos et al., 2019)
2 Part of these results is in process for submission in a journal
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CHAPTER

2
THEORETICAL BACKGROUND

We review the dynamics of a weakly perturbed limit cycle.

2.1 Dynamics near a periodic orbit

Consider a system of ordinary differential equations

dx
dt

= f (x), (2.1)

where f : U → Rn is continuously differentiable and U ⊂ Rn is open. By the Picard theorem,
for every initial condition x ∈U , there exist a time interval Ix := (α(x),β (x)), for some α(x)< 0
and β (x)> 0, and a unique continuously differentiable solution ϕ : Ix →U such that

ϕ(0,x) = x,

dϕ(t,x)
dt

= f (ϕ(t,x)) ∀t ∈ (α,β ) =: Ix ⊂ R.
(2.2)

Thus, ϕ(t,x) is the solution of the Cauchy initial value problem of the curves passing
through the initial point x. We can construct a “local flow”. Consider the set

M :=
⋃

x∈U

Ix ×{x} ⊂ R×U. (2.3)

Then we can define the “local flow” ϕ : M →U such that

1. ϕ(0,x) = x,

2. For all x ∈U and s ∈ Ix

ϕ(t + s,x) = ϕ(t,ϕ(s,x)) ∀t ∈ Ix − s.
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The condition 2 is called the group property of the flow ϕ(t,x).

Recall that it is not always possible to extend the interval Ix to R. If there is a compact

set C such that ϕ(t,x) ∈ C for each t ∈ [0,β ), then one can extend the solution to an interval
[0,β + ε) for some ε > 0. Thus if the solution never leaves a compact set we can extend the
solution ϕ(t,x) to R+. Similar construction can be done for t < 0.

We assume that the system (2.1) has an exponentially stable limit cycle with period 1,
that is, γ(t +1) = γ(t) for all t ∈ R, that is, there exist constants K > 0 and λ > 0 such that, for
each initial point x sufficiently close to γ ,

d(ϕ(t,x),γ)≤ Ke−λ t , (2.4)

where d(x,γ) = infx0∈γ ∥x− x0∥ . Here ∥ · ∥ is the Euclidean norm. We can also consider the
largest set that is attracted to the orbit

B(γ) = {x ∈U | lim
t→∞

d (ϕ(t,x),γ) = 0}, (2.5)

known as the basin of attraction of γ (GUCKENHEIMER; HOLMES, 1983). It follows that
B(γ) is open.

We can introduce a parametrization on the limit cycle γ in terms of its phase θ ∈ [0,1].
Note that [0,1]/∼ is homeomorphic to S1 via the homeomorphism which sends the equivalence
class of x ∈ [0,1] to exp(2πix), so that S1 is identified with R/Z. Hence, θ has a unique
extension θ̄ to R which is called the lift of θ . For the sake of simplicity, we will not distinguish
the phase θ from its lift θ̄ .

Small perturbations of the system (2.1) deviate the dynamics away from the limit cycle
γ , hence the phase variable must be defined in some neighborhood of γ . This is accomplished
with the concepts of “asymptotic phase” (WINFREE, 1967).

Asymptotic phase. Assume that x ∈ γ and y ∈ B(γ), where ϕ,γ , and B(γ) are as defined above.
We say that y is in asymptotic phase with a point x ∈ γ if

lim
t→∞

∥ϕ(t,y)−ϕ(t,x)∥= 0. (2.6)

The phase θ ∈ S1 of the points x ∈ γ correspond to the symmetry t 7→ t +α , where α is
a shift. In other words, we choose the phase to increase uniformly in time. This can be seen by
introducing the normal coordinates. Using the normal coordinates (y,θ) ∈ Rn−1 ×S1 near the
cycle γ , the system ẋ = f (x) is equivalent to

ẏ = Ay+F(θ ,y)

θ̇ = 1
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with F(θ ,0) = 0,Fy(θ ,0) = 0.

Since γ is an exponentially stable limit cycle for each point y ∈ B(γ) and along the orbit
there is no contraction, there is a unique asymptotic phase, denoted by Θ(y) . Thus, we have a
function defined by

Θ : B(γ)−→ S1

y 7−→ Θ(y). (2.7)

such that

lim
t→∞

∥ϕ(t,y)− γ(t +Θ(y))∥= 0. (2.8)

This implies the solution starting from y ∈ B(γ) converges to γ and will have the same
asymptotic phase with points on γ . Next, we introduce the concept of “isochrons”.

2.2 Isochrons

Definition 2.2.1. The set of points x in B(γ) with constant asymptotic phase Θ with value θ are
called isochrons denoted as I (x0) . Mathematically,

I (x0) = {x ∈ B(γ) : Θ(x) = θ}.

This definition implies that an isochron is a level set of the asymptotic phase Θ(x) = θ .
The set of points where isochrons cannot be defined is called a “phaseless set” (GUCKEN-
HEIMER, 1975). We illustrate the isochrons and the asymptotic phase in Figure 3.

To characterize the isochrons we review some basic properties of the Poincaré map P

associated with the flow ϕ on the limit cycle.

Recall that a set Σ⊂Rn is called a submanifold of codimension one (that is, its dimension
is n−1), if it can be written as

Σ = {x ∈U | s(x) = 0}, (2.9)

where U ⊂ Rn is open, s ∈ Ck(U,R),k ≥ 1 , and the gradient ∇s(x) ̸= 0 for each x ∈ Σ. The
submanifold Σ is “transversal” to f if ∇s(x) · f (x) ̸= 0 for each x ∈ Σ. In other words, we say
that the vector f (x) is transverse to Σ at x if x ∈ Σ and f (x) ̸∈ TxΣ, where TxΣ denotes the the
tangent space to Σ at x. If f (x) is transverse to Σ at each x ∈ Σ, we say that Σ is a “cross-section”
for the flow ϕ(t,x) in U .

Assume that given x0 ∈U there is τ0 such that

ϕ(τ0,x0) ∈ Σ.
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Figure 3 – An asymptotic phase Θ : B(γ)→ S1 associates to the base points x0,x1 in the basin of attraction
B(γ), the asymptotic phases 0,θ ∈ S1, respectively. Shown are 2 isochrons I (x0) and I (x1)
of the base points x0 and x1 associated to the phases θ0,θ , respectively. An arbitrary chosen
reference point x0 ∈ γ uses as the initial phase θ = 0.

Source: Elaborated by the author.

Because the section Σ is transversal to f it follows from the implicit function theorem
that there exist a neighborhood V of x0 and a function τ : V → R such that for any x ∈ V

ϕ(τ(x),x) ∈ Σ. Let us take a point x0 ∈ γ and a transversal section Σ such that x0 belongs to Σ.
We define the “Poincaré map” on Σ as P : Σ → Σ by

P(x) := ϕ(τ(x),x), (2.10)

where τ : Σ →R is the “time of first return” of the orbit ϕ(t,x) to Σ and if x0 ∈ γ , then τ(x)→ 1
as x → x0. In that case x0 is a fixed point of the map P .

Let us define the time-1 map defined on Rn as

g := ϕ(1, ·) : Rn −→ Rn

x 7−→ g(x). (2.11)

By construction, g(γ) = γ .

The existence of isochrons is equivalent to the existence of cross-sections to the limit
cycle γ for which the time of first return is identically the period of γ (GUCKENHEIMER, 1975).
We seek a cross-section Σ of the limit cycle γ with {x}= Σ∩ γ such that ϕ(1,Σ)⊂ Σ.

If g is the time-1 map of the flow ϕ(t,x) of equation (2.1), then for each x0 ∈ γ , we have
that g(x0) = ϕ(1,x0) = x0. That is, x0 is a fixed point of g. By the assumption on γ , there is a
neighborhood V of γ such that g(V )⊂V and d(g(x),γ)< d(x,γ) for all x ∈V .
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We first present the definition of foliation. In the literature, there are several equivalent
definitions of foliations. In this context, we offer the one that suits our discussion.

Definition 2.2.2. Let M be an n-dimensional manifold of class C∞. An m-dimensional, class
Cr (r ≥ 1) foliation of M is a maximum atlas F of class Cr in M with the following properties:

a) If (U,β ) ∈ F , then β (U) =U1 ×U2 ⊂ Rm ×Rn−m, where U1 and U2 are open disks of
Rm and of Rn−m respectively.

b) If (U,β ) and (V,χ) ∈ F are such that U ∩V ̸= /0, then the change of coordinates χ ◦β−1 :
β (U ∩V )→ χ(U ∩V ) is of the form

χ ◦β
−1(u,v) = (h1(u,v),h2(v)), (u,v) ∈ Rm ×Rn−m.

In this case, we say that M is foliated by F .

Theorem 2.2.3. Consider the system (2.1), where f is Ck(Rn)- smooth (k ≥ 1). Assume that γ,g,
and ϕ are as defined above. For ε small enough through each x0 ∈ γ , there is a unique isochron

Iloc(x0) := {z ∈ Bε : |gm(z)− x0|<Ce−λm, λ > 0}. (2.12)

which is a graph of a function. Moreover, the union of isochrons forms an invariant foliation of a
small neighborhood V of γ . That is,

V =
⋃

x0∈γ

Iloc(x0) and Iloc(x0)∩Iloc(y0) = /0 for y0 ̸= x0 ∈ γ.

The foliation is invariant in the following sense: The isochrons are mapped to isochrons
under the action of the flow ϕ , that is, for any point x0 ∈ γ and t > 0 we have

ϕ(t,Iloc(x0))⊂ Iloc(ϕ(t,x0)).

For proof of this theorem, we refer the reader to Appendix A.

There are a few proofs in the literature about the isochrons. For example, in (GUCKEN-
HEIMER, 1975) they showed for exponentially stable periodic orbits, isochrons are codimension-
one stable submanifolds using the implicit function theorem. Moreover, the authors in (HIRSCH;
PUGH; SHUB, 1977) showed isochrons as the persistence of normally hyperbolic invariant
manifolds (NHIMs).

Remark 2.2.4. One can extend the local definition of the isochron to the basin of attraction.
Theorem 2.2.3 shows that the basin of attraction V := B(γ) of the limit cycle γ is partitioned
into stable manifolds of points Iloc(x0),x0 ∈ γ having the same asymptotic phase; which are
the isochrons. In this case, x0 is called the base point of the isochron through it. The foliation
depends continuously smoothly on the base point x0 ∈ γ .
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From theorem 2.2.3, we note that the isochrons exist and they are mapped to isochrons
under the flow ϕ , and they foliate V , each intersecting the limit cycle γ at x, which we call the
base point. Since the foliation is continuous and invariant, we can extend the definition of the
asymptotic phase Θ(x) to the small neighborhood V of γ .

Define

θ(t,x) := Θ(ϕ(t,x)).

By construction, all points x on an isochron Iloc(x0) have a constant phase θ , and hence we
establish the following proposition.

Proposition 2.2.5. Let ϕ(t,x) be the solution of the system (2.1) passing through x in B(γ).
Then the dynamics on the basin of attraction B(γ) of γ can be described by an asymptotic phase
θ(t) := Θ(ϕ(t,x)) in such a way that

dθ(t)
dt

= 1. (2.13)

Proof. From the result of theorem 2.2.3, we know that the asymptotic phase Θ(ϕ(t,x)) increases
uniformly in time t in such a way that

dΘ(ϕ(t,x))
dt

= 1, (2.14)

By the chain rule, we obtain the phase equation

dθ(t)
dt

= ∇Θ(ϕ(t,x)) · f (ϕ(t,x)) = 1 (2.15)

for all points x in the basin of attraction B(γ) of γ . The gradient ∇Θ(ϕ(t,x)) can be computed at
any x ∈ B(γ) for us of particular interest is the gradient along the limit cycle γ as ∇Θ(γ(t)).

Remark 2.2.6. The existence of isochrons allows us to use the phase reduction framework.

Example 2.2.7. Consider the dynamical system

ẋ = x− y− x(x2 + y2),

ẏ = x+ y− y(x2 + y2).
(2.16)

In polar coordinates with x = r cos(φ) and y = r sin(φ), we obtain

ṙ = r(1− r2); φ̇ = 1. (2.17)

This system has an attracting limit cycle γ with radius r = 1, and basin of attraction B(γ) =

R2 \{(0,0)}. An isochron is a curve that passes through x0 ∈ γ and moves at the same speed as
x0. Since the dynamics of φ does not depend on r, the isochrons are lines

Iloc(x0) := {φ = θ}
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(a) (b)

Figure 4 – Isochrons and a stable periodic orbit. (a) A unique stable periodic orbit (red), five isochrons
(blue) corresponding to phases φ = nT/5,n = 1,2,3,4,5, where T = 2π is the period of the
orbit, of the system (2.16) in Theorem 2.2.7, and neighboring trajectories (dotted) with different
initial conditions are attracted to the cycle. (b) Four isochrons (blue) of the periodic orbit (red)
corresponding to phases φ = 0,π/2,π,3π/2, of the system (2.18) in Theorem 2.2.8.

Source: Elaborated by the author.

which are shown in figure 4a for 5 values of θ .

Gradient of the asymptotic phase. The asymptotic phase is

Θ(r,φ) = φ = θ .

The gradient of the asymptotic phase Θ(r,φ) is given by

∇Θ = (
∂Θ

∂x
,
∂Θ

∂y
).

Using the relations r =
√

x2 + y2 and φ = arctan(y/x), we have

∂Θ

∂x
=−1

r
sin(θ),

∂θ

∂y
=

1
r

cos(θ).

Along the limit cycle γ , the gradient is

Z(θ) := ∇Θ = (−sin(θ),cos(θ)).

Example 2.2.8. Consider the system which is adapted from (STANKOVSKI et al., 2017)

ẋ = x+(y− x)(x2 + y2)

ẏ = y+(x− y)(x2 + y2).
(2.18)

In polar coordinates with x = r cos(φ) and y = r sin(φ), the system (2.18) becomes
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ṙ = r(1− r2), φ̇ = r2. (2.19)

There is attracting periodic orbit γ with radius r = 1. Note that the phase φ along the orbit γ

satisfies φ̇ = 1. The asymptotic phase Θ(r,φ) is a function of r and φ , and the isochrons of γ are
the level sets of Θ(r,φ).

Because r is independent of φ we use the ansatz

θ(t) := Θ(r,φ) = φ −η(r), (2.20)

where η(r) is unknown function of r to be determined.

Differentiating equation (2.20), we obtain

Θ̇ = φ̇ − dη

dr
dr
dt

. (2.21)

Note that for points x ∈ B(γ), θ̇ = 1. This implies from equation (2.19) above that

dη

dr
=−1

r
.

So that η(r) =− log(r)+C, where C is constant. Hence, choosing C = 0, the isochrons are the
set of points (r,φ) such that

Θ(r,φ) = φ + log(r) = θ .

For different values of the constant θ , we construct the isochrons as shown in figure 4b.

Gradient of the asymptotic phase. The asymptotic phase is

Θ(r,φ) = φ + log(r).

Thus
∂Θ

∂x
=

∂Θ

∂ r
∂ r
∂x

+
∂Θ

∂φ

∂φ

∂x

=
1
r
(cos(φ)− sin(φ))

and
∂Θ

∂y
=

∂Θ

∂ r
∂ r
∂y

+
∂Θ

∂φ

∂φ

∂y

=
1
r
(cos(φ)+ sin(φ)).

Along the limit cycle γ

Z(θ) := ∇Θ = (cos(θ)− sin(θ),cos(θ)+ sin(θ)).
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Having already defined the concept of isochrons, in the next section, we present a
reduction technique used to reduce higher-dimensional perturbed systems into phase models in
terms of isochrons.

2.3 Phase reduction method
We consider the system (2.1) being perturbed as

dx
dt

= f (x)+ ε p(x, t), x ∈ Rn, (2.22)

where p(x, t +T ) = p(x, t) for all t, and ε is a small parameter representing the intensity of the
perturbation. Assume T = 2π

Ω
, where Ω is the frequency of the perturbation.

When the function p is only a function of x, that is, p = p(x), the periodic orbit γ of f

persists by the implicit function theorem on the Poincaré map.

Under a weak perturbation ε p(x, t) , any solution of the perturbed system (2.22) that
starts in the neighborhood of an exponentially stable limit cycle γ stays in its neighborhood. To
see this, let us introduce a phase variable ϑ = Ωt. Then the system (2.22) can be transformed
into an autonomous system on the extended phase space Rn ×S1 as:

dx
dt

= f (x)+ ε p(x,ϑ)

dϑ

dt
= Ω

(2.23)

with p(x,ϑ +2π) = p(x,ϑ). Then the flow of the system (2.23) is represented as

(ϕε(ϑ ,x, t,ε),ϑ(t)).

A transversal cross-section can be defined as

Σ = {(x,ϑ) ∈ Rn ×S1 : ϑ = ϑ0}. (2.24)

Hence we define the Poincaré map on Σ. For the remainder of this section, we consider the
system (2.23) under the following assumptions:

(A1) The functions f and p are continuously differentiable functions in their arguments.

(A2) The unperturbed system of (2.22) (ε = 0):

dx
dt

= f (x), x ∈ Rn

has an exponentially stable limit cycle γ ⊂ Rn with period 1.

Then we have the following theorem.
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Theorem 2.3.1. Consider the system (2.23) satisfying the assumptions (A1) and (A2). Then
∃ε0 > 0 such that ∀ε < ε0, there is a neighborhood W :=W (z, 3ε

1−k)⊂ Rn of γ that is positively
invariant

gε(W )⊂W,

where gε is the time-one map of the perturbed system (2.23).

The proof of theorem 2.3.1 can be found in appendix A. Theorem 2.3.1 implies that
the perturbed orbit, denoted by γ̃ projected to Rn stays in a neighborhood of size O(ε) of the
unperturbed orbit, γ . This observation leads us to obtain an approximated equation of the orbit
under perturbation, which is demonstrated in figure 5.

Figure 5 – Projection of the perturbed solution, γ̃(t), to Rn stays in the neighborhood of the limit cycle, γ .

Source: Elaborated by the author.

Theorem 2.3.2. Consider the system (2.22) with γ̃,γ as defined above, and let γ(θ) be a point
on the limit cycle γ with the phase θ ∈ S1. Assume that γ(θ), θ ∈ S1, and ε ≪ 1. Then the
dynamics is reduced into a phase model

dθ

dt
= 1+ εΓ(θ , t)+ ε

2R(θ , t,ε), (2.25)

where the function Γ is defined using the inner product

Γ(θ , t) := ∇Θ|γ(θ) · p(γ(θ), t) (2.26)

and the function R is considered to be the remainder term.

Remark 2.3.3. In theorem 2.3.2, the equation of the phase dynamics (2.25) gives the result

dΘ

dt
(ϕε(ϑ ,x, t,ε)) = 1+ εΓ(Θ(ϕε(ϑ ,x, t,ε)), t)+ ε

2R(Θ(ϕε(ϑ ,x, t,ε)), t,ε). (2.27)
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Proof of Theorem 2.3.2. By construction, θ(t) = Θ(γ̃(t)) is already a phase in γ . Using equa-
tions (2.15) and (2.22), we obtain that the phase dynamics along the new orbit γ̃ is

dθ(t)
dt

= ∇Θ(γ̃(t)) · [ f (γ̃(t))+ ε p(γ̃(t), t)]

= 1+ ε∇Θ(γ̃(t)) · p(γ̃(t), t) (2.28)

where the gradient is evaluated along the new orbit γ̃ . Here we have used the fact from proposi-
tion 2.2.5 that ∇Θ(x) · f (x) = 1 in the basin of attraction of γ . Notice that there is no approxima-
tion in equation (2.28) as it depends explicitly on x, t, and θ . We want to reduce it to an equation
of θ only.

Since the isochrons Iloc(x) smoothly depend on the base point x, then the gradient
∇Θ(x) is differentiable for each x in a neighborhood of γ . We know that γ̃(t) is assumed to be
ε-close to the limit cycle γ , that is, |γ̃(t)− γ(t)|= O(ε). By the Taylor expansion of ∇Θ about
γ̃(t)− γ(t), we have

∇Θ(γ(t)+ γ̃(t)− γ(t)) = ∇Θ(γ(t))+O(ε). (2.29)

From assumption (A1) we know that p is differentiable, and hence by the Taylor expansion of p

about γ̃(t)− γ(t), we have

p(γ(t)+ γ̃(t)− γ(t), t) = p(γ(t), t)+O(ε). (2.30)

Hence, the first-order approximation phase dynamics of equation (2.28) along the orbit γ can be
written as

dθ(t)
dt

= 1+ ε∇Θ(γ(t)) · p(γ(t), t)+O(ε2) (2.31)

which is the reduced phase equation of the perturbed system (2.22).

Phase sensitivity function. The vector function

Z(θ) := ∇Θ(x)|x=γ(θ) (2.32)

is called the “phase sensitivity function” or “infinitesimal phase response curve” (NAKAO, 2015),
and it measures how sensitively the oscillator responds to external perturbations (WINFREE,
1967; KURAMOTO, 1984b). Z(θ) is the isochron defined in B(γ). In the infinitesimal perturba-
tions, we interpret the phase sensitivity function Z(θ) as a phase response curve that keeps track
of linear response in the phase to infinitesimal perturbations.

Remark 2.3.4. If Z(θ) is known, the oscillator dynamics are fully determined for any weak
perturbation.
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Effective coupling on slow scales. In equation (2.25), considering ϑ := Ωt as the phase of the
external influence, Ω ≈ 1.

The problem will have slow scales

ψ = θ −Ωt. (2.33)

Differentiating equation (2.33) with respect to t, we obtain that

dψ(t)
dt

= (1−Ω)+ εZ(ψ +Ωt) ·u(ψ +Ωt, t), (2.34)

where we have used u(ψ +Ωt, t) = p(γ(ψ +Ωt), t). Equation (2.34) is still a non-autonomous
differential equation, due to the explicit dependence on t, which is not easy to analyze in
general. By assumption, Ω ≈ 1, and hence 1−Ω = ε∆, where ∆ = O(1). Hence we have that
the dynamics of ψ is slow as compared to the dynamics of ϑ . That is, ψ̇ = O(ε), ϑ̇ = O(1). We
also assume that ψ(t) is much slower that p(t), allowing an approximation that replaces Γ(ψ, t)

by its average.

We now introduce the averaging theory to approximate and simplify the phase equation
(2.34) into an autonomous equation. Here, we restate the simplest version of the averaging
principle, called the periodic averaging.

Theorem 2.3.5 (Periodic Averaging, (SANDERS; VERHULST, 1985)). Consider a perturbed
system of the form

ẋ = ε f (x, t,ε); x ∈U ⊂ Rn, 0 ≤ ε ≪ 1, (2.35)

where f : Rn ×R×R+ → Rn is Ck,k ≥ 2, bounded on bounded set U , and of period T > 0 in t.
The associated “autonomous averaged system” is defined as

ẏ = ε
1
T

∫ T

0
f (y, t,0) dt =: ε f̄ (y). (2.36)

Then there exists a Ck change of coordinates x = y+ εw(y, t,ε) under which equation (2.35)
becomes

ẏ = ε f̄ (y)+ ε
2 f1(y, t,ε), (2.37)

where f1 is of period T in t. Moreover

(i) If x(t) and y(t) are solutions of equations (2.35) and (2.36) starting at x0 and y0, respectively,
at t = 0, and |x0 − y0|= O(ε), then |x(t)− y(t)|= O(ε) on a time scale t ∼ 1/ε .

(ii) If p0 is a hyperbolic fixed point of equation (2.36) then there exists ε0 > 0 such that, for all
0 < ε ≤ ε0, equation (2.35) possesses a unique hyperbolic periodic orbit γε(t) = p0+O(ε)

of the same stability type as p0.
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By theorem 2.3.5, one can approximate the right hand side of equation (2.25) by integrat-
ing it over one period of the fast external forcing p, assuming that ψ(t) does not vary within its
period T , which is precisely the principle of averaging. It turns out that

dψ(t)
dt

= ε∆+ εΓ̄(ψ), (2.38)

where the coupling function is

Γ̄(ψ) =
1
T

∫ T

0
Γ(ψ, t)dt

=
1
T

∫ T

0
Z(ψ +Ωt) ·u(ψ +Ωt, t)dt, (2.39)

where T = 2π is the period of p as a function of ϑ = Ωt. This is summarized in the following
theorem.

Theorem 2.3.6. Consider the reduced phase equation of the perturbed system (2.23)

dψ

dt
= ε∆+ εΓ(ψ, t)+O(ε2), ε ≪ 1, (2.40)

where Γ(ψ, t) = Z(ψ +Ωt) ·u(ψ +Ωt, t), and ψ = θ −Ωt is a slowly varying phase as com-
pared to the fast oscillation Ωt. Then, On a time scale of t ∼ 1/ε the equation (2.40) can be
approximated by the phase equation

dψ

dt
= ε∆+ εΓ̄(ψ), (2.41)

where

Γ̄(ψ) =
1
T

∫ T

0
Z(ψ +Ωt) ·u(ψ +Ωt, t)dt. (2.42)

Moreover, the solutions of the two equations are related by

|θ(t)−ψ(t)|= O(ε). (2.43)

The result of theorem 2.3.6 follows from the above assumptions on ψ , and using theo-
rem 2.3.5(i). We note that equation (2.41) is the required reduced phase equation in ψ , and it can
be analyzed graphically (see (NAKAO, 2015) for more discussion).

In summary, in the phase reduction approach, the dynamics of the oscillator is projected
onto a single phase equation describing neutral dynamics along a one-dimensional stable limit
cycle in the state space.

2.4 Examples of Phase Reduction
For a sufficiently small perturbation of a certain nonlinear oscillator or a network of

weakly coupled oscillators, we can compute the corresponding phase sensitivity function or
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infinitesimal PRC Z(θ). In this section, we consider three illustrative examples to compute Z(θ)

analytically.

Phase oscillator. Consider the phase oscillator (IZHIKEVICH; ERMENTROUT, 2008) of the
form

ẋ = f (x), x ∈ S1 (2.44)

where f : R → R such that f (x) > 0 is periodic. We note that the state variable x is a one-
dimensional, defined on S1. Let γ(t) be its periodic solution with some period T > 0. Let θ be
the phase on the limit cycle γ at a point γ(θ) such that θ̇ = 1. We follow Kuramoto’s approach
to compute the phase sensitivity function Z(θ). Consider the asymptotic phase Θ(x). Using the
rule for differentiating of inverse functions, the gradient of Θ along γ is given by

∇Θ =
1

f (γ(θ))
.

Saddle node infinite period (SNIPER). This bifurcation occurs when a saddle-node bifurcation
of fixed points takes place on an invariant circle. Motivated by the results in (ERMENTROUT,
1996), we ignore the direction transverse to the periodic orbit and consider the one dimensional
normal form

ẋ = µ + x2, x ∈ R. (2.45)

Here x may represent a local arc length along the invariant circle. Note that the general solution
to the equation is given by

x(t) =
√

µ tan[
√

µ(t + c)]

where c is an arbitrary constant. We can see that for µ ≤ 0, there are two fixed points: x =±
√
−µ ,

but for µ > 0 there is no fixed point. This shows that the solution will “blow up” in finite time.
Following (ERMENTROUT, 1996), the period T of the orbit can be approximated by computing
the total time required for the solution x(t) to send it from x =−∞ to x =+∞ and making the
solution periodic, we obtain that T = π√

µ
, and hence the frequency ω = 2

√
µ .

Next, we introduce the asymptotic phase Θ(x) =: θ(t) in such a way that it increases
uniformly in time, i.e., dθ

dt = ω , and we need to compute its gradient.

∇Θ =
∂Θ

∂x
=

ω

dx
dt |x(t)

=
ω

µ + x(t)2 ,

Using the periodic solution x(t) =
√

µ tan(
√

µt), we have that

∇Θ =
ω

µ(1+ tan2(
√

µt))
=

ω

µ
cos2(

√
µt) =

ω

2µ
[1+ cos(2

√
µt)] =

2
ω
[1+ cos(θ)].
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2.5 Networks of weakly coupled oscillators

In this section, we extend the phase reduction approach to a network of weakly coupled
oscillators. In doing this, we first introduce the definition of networks that will be used throughout
this thesis. For a comprehensive review of network theory we refer the reader to classical texts in
the field (see, for instance, (NEWMAN; BARABÁSI; WATTS, 2006)).

Networks can be modeled as a labeled graph G = (N ,E ), where N = {1, . . . ,N} is a
set of nodes and E ⊂ N ×N is a set of edges connecting the nodes. Vertex and link are terms
that are often used as synonyms for nodes and edges, respectively. Here N is the total number of
nodes, also known as the size of the network. The dynamics of such network G can be described
by a set of oscillatory systems attached on top of each node.

The network dynamics of N weakly coupled oscillators can be described by the following
system of differential equations

d
dt

xi(t) = fi(xi)+ ε

N

∑
j=1

Ai jhi(xi,x j), i = 1, . . . ,N (2.46)

where xi(t) ∈ Ui ⊂ Rn is the ith state variable of the underlying system at time t whose time
evolution is given by d

dt xi(t), fi : Ui → Rn represents the isolated dynamics of the ith oscillator,
and hi : Ui ×U j → RN is the pairwise coupling function of oscillator i. The network structure is
encoded by the adjacency matrix AAA = (Ai j)

N
i, j=1 , whose elements are defined as

Ai j =

1 if there is a connection between nodes i and j,

0 otherwise

The parameter ε is the overall coupling strength which is assumed to be sufficiently small.
Throughout this thesis, we assume that the functions fi and hi are smooth unless otherwise stated.
Equation (2.46) is a higher dimensional dynamical system which would be difficult to give a
detailed mathematical analysis. For this, we need to reduce it into a lower-dimensional model in
terms of phases. To do this, we require the following additional assumptions.

We assume that each fi is sufficiently close to some unknown function f , i.e., ∥ fi− f∥< ε ,
where f exhibits an exponentially stable limit cycle γ of period T ,. Applying the implicit function
theorem, we can show that the isolated dynamics fi has an exponentially stable limit cycle γi

with period Ti and frequency Ωi =
2π

Ti
, and Ti is ε-close to T .

For each limit cycle γi, we can introduce a phase θi ∈ S1. Let Θi(x) ∈ S1 be the corre-
sponding asymptotic phase for each fi such that Θi(ϕ(t,xi)) =: θi(t), and ∥Θi −Θ∥ < O(ε).
Using the notion of isochrons, the isolated dynamics can be written as

dθi

dt
= ∇Θi(xi) · fi(xi) = Ωi. (2.47)
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By the chain rule, we have

dθi

dt
= ∇Θi(xi) ·

[
fi(xi)+ ε

N

∑
j=1

Ai jhi(xi,x j)

]

= Ωi + ε

N

∑
j=1

Ai jZi(θi) ·hi(γi(θi),γ j(θ j))+O(ε2)

= Ωi + εZi(θi) ·
N

∑
j=1

Ai j pi j(θi,θ j)+O(ε2). (2.48)

Let us assume that the natural frequencies of the oscillators are close to each other, i.e.,
|Ωi −Ω j|= O(ε), for each i ̸= j. Then, we can introduce a new phase variable

ψi(t) = θi(t)−Ωt, i = 1, . . . ,N, (2.49)

where Ω is the mean frequency. Then we have |Ωi −Ω|= O(ε) =: ωi. Then we transform the
system (2.48) into the form

dψi

dt
= ωi + ε

N

∑
j=1

Ai jZi(ψi +Ωt) · pi j(ψi +Ωt,ψ j +Ωt). (2.50)

Applying the averaging theorem 2.3.5, we obtain

dψi

dt
= ωi + ε

N

∑
j=1

Ai jqi(ψ j −ψi), (2.51)

with the functions

qi(ψ j −ψi) =
1
T

∫ T

0
Zi(ψi +Ωt) · pi j(ψi +Ωt,ψ j +Ωt)dt

=
1

2π

∫ 2π

0
Zi(s) · pi j(s,ψ j −ψi)ds. (2.52)

describing the phase coupling function that measures the influence of the jth oscillator on the
ith oscillator.

In terms of the phases θi, equation (2.51) can be rewritten as

dθi

dt
= Ωi + ε

N

∑
j=1

Ai jqi(θi −θ j). (2.53)

Note that if we measure the phases θi(t) for each oscillator i, we can numerically reconstruct the
phase dynamics (2.53). In reality, however, we do not have access to the data θi(t) but rather we
need to estimate them from an available time series data of the state variables xi(t), where we
assumed that the data come from a system of weakly interacting oscillators. This problem is the
central of chapter 4 of this project.

Theorem 2.5.1. Consider a periodic forcing p(ϑ ,ψ) =: p(ϑ) of an isolated oscillator near a
Hopf bifurcation. Then the phase coupling function is given by

q(ψi −ψ j) = sin(ψi −ψ j +β ).
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Proof. From hypothesis, the corresponding phase sensitivity function can be written as

Z(θ) = (sinθ ,cosθ). (2.54)

We want to compute the coupling function. Then the coupling function, using the relation
p(ϑ ,ψ) =: p(ϑ = Ωt) and by equation (2.52), is given by

q(ψi −ψ j) =
1

2π

∫ 2π

0
sin(ψi −ψ j + s)p(s) ds

=
1

2π

∫ 2π

0
sin(∆ψ + s)p(s) ds

=
1

2π

∫ 2π

0
(sin(∆ψ)cos(s)+ cos(∆ψ)sin(s)) p(s) ds

= Asin(ψi −ψ j +β ) (2.55)

where A is the amplitude and β is a phase shift. This completes the proof.

2.6 Weakly coupled oscillators with noise
In this section we apply the phase reduction technique to a system of two weakly

coupled oscillators driven by additive noise. This result was discussed in details by the authors
in (KURAMOTO, 1984a; NAKAO, 2015). To this end, we consider a system of two weakly
coupled oscillators described by the following differential equations with additive noise

dxi

dt
= fi(xi)+ εhi(x j,xi)+

√
Diξi(t), i, j = 1,2; i ̸= j, (2.56)

where xi ∈ Rn is the state variable of oscillator i, fi is the isolated dynamics of the ith oscillator,
hi is the coupling function, and the coefficient ε ≪ 1 is the coupling strength. The constant√

D scales the noise term ξi(t) to ensure that it is O(ε). The noise term ξi(t) is assumed to be
Gaussian white noise satisfying

⟨ξi(t)⟩= 0, (2.57)

⟨ξi(t)ξ j(t ′)⟩= δi jδ (t − t ′), (2.58)

where ⟨·⟩ denotes an average. Assuming that each fi has an exponentially stable limit cycle γi

with period Ti and frequency Ωi and that ε is sufficiently small. By phase reduction, the reduced
phase equations can be written as

dθi

dt
= Ωi + εZi(γi(θi)) ·hi(γ j(θ j),γi(θi))+

√
DiZi(γi(θi))ξi(t)+O(ε2) (2.59)

=: Ωi + εZi(θi) ·hi(θ j,θi)+
√

DiZi(θi)ξi(t)+O(ε2), (2.60)

which can obtained applying the Ito formula (BJöRK, 2009, Theorem 4.16) to the asymptotic
phase Φi(xi) for each i = 1,2. Assuming |Ωi −Ω j|= O(ε) and introducing new phase variables
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ψi(t) = θi(t)−Ωt, where Ω is the mean frequency, and applying the averaging theorem, we can
arrive at the phase equations

dψi

dt
= εΩi + εqi(ψ j −ψi)+

√
Diσiξi(t), (2.61)

where σ comes from averaging the noisy phase equations (KURAMOTO, 1984a), and is defined
as

σi =

(
1
T

∫ T

0
[Zi(τ)]

2 dτ

)1/2

and the phase coupling functions

qi(ψ j −ψi) =
1
T

∫ T

0
Zi(τ) ·hi(ψ j −ψi,τ)dτ, i ̸= j = 1,2. (2.62)
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CHAPTER

3
TIME-VARYING COUPLING FUNCTIONS

This chapter presents the effects of time-varying phase equations in the transitions of
collective dynamics. Such time-varying phase equations can be derived from weakly interacting
limit cycle oscillators of higher-dimensional dynamical systems using the concept of phase
reduction, which we have discussed in the previous chapter. More precisely, we study the effect
of time-dependent interaction functions in phases.

3.1 Coupling functions: definition and examples

Complex systems are composed of many components or units which may interact with
each other. Examples include Earth’s global climate, organisms, the human brain, transportation
or communication systems, an ecosystem, a living cell, and ultimately the entire universe. The
interacting units of a complex system form a network, which can be modeled using networked
dynamical systems. Examples include neuronal networks (CESSAC, 2010), the cardiorespiratory
system (SCHÄFER et al., 1998), cardiorespiratory-brain interactions (MORELLI et al., 2018).
Such dynamical systems often have external influences leading to time-variability in their
mathematical description, e.g. time-varying form of coupling function (Stankovski, 2017).

Many of such networked dynamical systems described above are usually described using
a system of deterministic differential equations or stochastic differential equations. The interact-
ing components appearing in such equations are known as coupling functions. For instance, in
the Kuramoto-Sakaguchi phase model (SAKAGUCHI; KURAMOTO, 1986; OMEL’CHENKO;
WOLFRUM, 2012), a function of the form q(θi,θ j) = sin(θ j −θi −β ) is a coupling function of
oscillator i influenced by another oscillator j in the system of interest. Here, β denotes phase shift.
Such coupling functions are vastly applicable in numerous scientific disciplines (ACEBRÓN et

al., 2005; STANKOVSKI et al., 2017; SAKAGUCHI; KURAMOTO, 1986; OMEL’CHENKO;
WOLFRUM, 2012). If such function q is explicitly time-dependent, we call it a time-dependent
coupling function.
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The coupling function can be described by its net coupling strength, and its form

(STANKOVSKI et al., 2017). The net coupling strength is just the norm or magnitude of
the coupling function, and it quantifies only one aspect of the coupling function. On the other
hand, the form of coupling function defines the functional law specifying the interactions, and it
thereby introduces a new dimension and perspective (STANKOVSKI et al., 2017; STANKOVSKI
et al., 2017; TICCINELLI et al., 2017). Recent studies show that the effect of the net coupling
strength on the dynamics of interacting dynamical systems is explored extensively.

In this chapter, we study the effect of time-varying functional forms of coupling functions
on the collective dynamics of interacting systems. More precisely, we study the effects of time-
varying functions that exhibit a transition to synchronization, while keeping the net coupling
strength constant.

3.2 Motivation from biological interactions: the existence
of time-varying coupling functions

Time-dependent interacting components can describe many dynamical systems in biology.
For example, the coupling functions of cardiorespiratory interactions were found to vary in time
in (STANKOVSKI et al., 2012), where it was shown that the coupling strength and form of the
coupling function vary over time.

In illustrating, we consider an example of time-varying delta-alpha neural coupling
functions, calculated using simultaneous recordings from the same subject. More specifically,
the delta and alpha brainwaves were extracted from an electroencephalogram (EEG) signal,
measured in the resting state of the eyes opened. The data are drawn from an earlier study of
neural cross-frequency coupling functions (STANKOVSKI et al., 2017). The sampling frequency
is 200 Hz. After that, the data are filtered to obtain the delta and alpha signals, xi(t). Then we
aim to reconstruct the phase models of the delta-alpha neural brainwaves from it.

We first assumed that the phases φ1(t) and φ2(t) of the two interacting oscillators are
governed by a differential equation of the general form equation (3.2) with the addition of
Gaussian white noise, i.e.

d
dt

φi(t) = ωi +qi(φi(t),φ j(t))+ξi(t), i = 1,2,

where ωi is the natural frequency of oscillator i, ξi(t) is Gaussian white noise, and qi is the
coupling function describing the influence of oscillator j on the phase of oscillator i. Then, we
extracted coupling functions from the phase dynamics using the dynamical Bayesian inference
method (Luchinsky et al., 2005; STANKOVSKI et al., 2012; STANKOVSKI et al., 2014).
Reconstruction of phase models of non-time variable dynamical systems using the Bayesian
inference method is discussed in detail in section 4.2.1 of the next chapter.
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In our analysis, we aim in reconstructing the delta-alpha neural coupling function for the
influence of δ brainwaves on α brainwaves, denoted by qα(φδ ,φα), from the recorded time series
signals xi(t). In this case, we first estimate the corresponding phases of the delta brainwave φδ ,
and the alpha brainwave φα oscillations via the Hilbert transform followed by a transformation
“protophase” to phase (More information on this procedure can be found in (KRALEMANN et

al., 2008)). The results are depicted in figure 6.

Figure 6 – Time-variability of delta-alpha neural interactions. Top panel: show results of phase coupling
from delta brainwaves to alpha brainwaves. The four plots show the changes in the delta-alpha
neural coupling function at different times; the time of each is indicated by a small arrow
from the time axis in the bottom panel. Bottom panel: show plots of the time-variability of the
similarity of form of coupling function ρ(t) (orange line, right ordinate) and the net coupling
strength α(t) (blue line, left ordinate) for the delta-alpha neural interactions. The similarity
index ρ(t) is calculated with respect to the time-averaged coupling function.

Source: Elaborated by the author.

Figure 6 shows the time-variability of delta-alpha coupling functions. Such time-variability
are quantified using the “similarity index”, ρ(t), and the coupling strength, ε(t). The definitions
of these quantities are presented in section 3.4. This shows that the neural coupling changes
more between different time windows and that the coupling strength and the form of the function
often vary over time quite differently from each other. Hence, these characteristics can have
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correspondingly different effects on the outcome and the possible transitions caused by the
interactions – a phenomenon worth exploring further theoretically.

3.3 The model
In this section, we consider the dynamical system (2.46) for N = 2:

dxi

dt
= fi(xi)+ εhi(xi,x j), i ̸= j = 1,2,

Based on our discussion in section 2.5, the unperturbed system (i.e. ε = 0) can be reduced, on
the limit cycle γi, to a one-dimensional phase equation

dθi

dt
= ωi, i = 1,2, (3.1)

where ωi = 2π/Ti is the natural frequency of the ith oscillator.

Little outside disturbances to each oscillator xi, such as its interaction with the other
oscillator x j, may constrain xi off the limit cycle γi of fi. For this reason, we need to define the
phases θi off the limit cycle γi. Based on the “isochrons” (WINFREE, 1967; WINFREE, 1980;
KURAMOTO, 1984b), which is also discussed in more detail in chapter 2 of this thesis, one can
amplify the definitions of the phases θi of the oscillators to the whole basin of attractions B(γi)

of the limit cycles γi in such a way that they pivot consistently agreeing to equation (3.1), not as
it were on the cycle but moreover in their comparing neighborhoods. Thus, the reduced phase
equations of the two coupled limit-cycle oscillators can be written as

dθi

dt
= ωi + εqi(θi,θ j), i ̸= j = 1,2, (3.2)

where the phase coupling functions qi(θi,θ j) are 2π-periodic with respect to their arguments θ1

and θ2.

In our specific context where the isolated phase is uniform coupling function is just q

defined as a mapping

q : M×M → M, (3.3)

where M is the phase space. We assume that the coupling functions q1,2 in equation (3.2) are
smooth.

In (Hagos et al., 2019), we examined a model of unidirectional coupling of the form

dθ1

dt
= ω1,

dθ2

dt
= ω2 + εq2(θ2,θ1),

(3.4)

where q2 is the coupling function of oscillator 2 influenced by oscillator 1 and is assumed to be
time-dependent explicitly. To show an explicit time dependency, we write it as q2(θ1,θ2, t). We
introduce the concepts of net coupling strength, similarity index, and synchronization transitions.
After this, we carried out our numerical and theoretical analysis of the model.
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3.4 Basic concepts

3.4.1 Net coupling strength

From the previous subsection, the coupling functions q1(θ1,θ2) and q2(θ1,θ2) defined in
equation (3.2) are 2π-periodic in their arguments θi ∈ S1, for each i= 1,2. Hence, we can identify
them on a 2-dimensional torus of the form T2 = S1 ×S1, where S1 ∼= R/2πZ. Subsequently, the
torus T2 can be distinguished by the square [−π,π]2 or [0,2π]2. We define the inner product in
L2(T2,R) (RUDIN, 1987) by

⟨ f ,g⟩= 1
4π2

∫
π

−π

∫
π

−π

f (θ1,θ2)g(θ1,θ2) dθ1dθ2 and the norm ∥ f∥2
2 = ⟨ f , f ⟩.

If the coupling functions q1(θ1,θ2) and q2(θ1,θ2) defined in equation (3.2) are smooth, then we
can decompose qk into a Fourier series on the square [−π,π]2 as

qk(θ1,θ2) =
∞

∑
n,m=−∞

c(k)n,m ei2π(nθ1+mθ2), k = 1,2,

where i2 =−1, and {c(k)n,m | n,m ∈ Z;k = 1,2} are the Fourier coefficients.

In applications, the coupling functions can be well-approximated by employing a finite
number of Fourier terms. Each coupling function is regularly of the diffusive type (Hagos et al.,
2019)

q(θ1,θ2, t) = c1(t)sin(θ1 −θ2)+ c2(t)cos(θ1 −θ2)

= (c1(t)+ c2(t))sin(θ1)cos(θ2)+(c2(t)− c1(t))cos(θ1)sin(θ2),
(3.5)

where c1(t) and c2(t) are assumed time-varying parameters. Using the second expression for q

in equation (3.5) and by Parseval’s identity (RUDIN, 1987), we obtain that

∥q∥2 =
1√
2

√
c2

1(t)+ c2
2(t). (3.6)

The net coupling strength is analyzed quantitatively using the norm in equation (3.6). This
quantity is denoted by ε(t) in figure 6, which is shown to be a time-varying net coupling strength.
However, the main goal of this chapter is the case where this net coupling strength remains
constant in time, but of course with time-varying coupling functions.

3.4.2 Similarity index

Based on (Kralemann et al., 2013; STANKOVSKI et al., 2017), the similarity between
the coupling functions q1(θ1,θ2) and q2(θ1,θ2) defined in equation (3.2) can be quantified by
the correlation coefficient of their forms, irrespective of their amplitudes. The similarity index is
then defined by the correlation coefficient ρ as

ρ(q1,q2) =
⟨q̃1, q̃2⟩
∥q̃1∥∥q̃2∥

, (3.7)

where ⟨·⟩ denotes averaging over the two dimensional phase domain 0 ≤ θ1,θ2 ≤ 2π , q̃ is a
standard deviation defined by q̃ = q−⟨q⟩, and the norm ∥q∥= ⟨q,q⟩1/2.
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3.4.3 Synchronization transitions

An adjustment of rhythmic behavior due to weak interaction is known as synchronization
(PIKOVSKY; ROSENBLUM; KURTHS, 2001). The time variability of the coupling functions
can cause transitions into or out of synchronization. The existence of such transitions results
in the occurrence of epochs of synchrony – during which the phase difference remains nearly
constant, as well as the occurrence of phase slips – when the phase difference changes rapidly.
An example to illustrate these behaviors is shown in figures 7 and 8 plot the time series of the
phase difference between two coupled oscillators, which occurs due to the time-variability of the
form of the coupling function while keeping the net coupling strength constant.

3.5 Numerics
As introduced in section 3.3, we study a unidirectional coupling setting of the form

provided in equation (3.4), but allowing the coupling function q2 to be time-varying. More
precisely, we study the effect of the time-variability of the coupling function while the net
coupling strength is kept constant. We select this arrangement since it gives the clearest case
where time-varying coupling functions can lead to synchrony and phase slips, whereas the net
coupling strength remains steady.

We consider the master-slave configuration (Hagos et al., 2019)
dθ1

dt
= ω1,

dθ2

dt
= ω2 +q(θ1,θ2, t),

(3.8)

where ω1,ω2 are the natural frequencies of the oscillators, and the coupling function q(θ1,θ2, t)

is equal to the expression in equation (3.5). The presence of the coupling term q(θ1,θ2, t) could
cause the fundamental frequency of the driven oscillator (whose phase is represented by θ2) to
become different from its natural frequency ω2, and to become time-dependent as q := (θ1,θ2, t)

varies over time.

From equation (3.6), the net coupling strength of the master-slave configuration q in
equation (3.8) can be defined as

∥q∥2 = α(t) =
1√
2

√
c2

1(t)+ c2
2(t),

where c1(t) and c2(t) are the time-varying coupling parameters of the coupling functions
(Stankovski, 2017). Throughout the thesis unless otherwise stated α denotes the net coupling
strength.

Note that if the parameters c1(t) and c2(t) are constant in time, the two oscillators
synchronize if the condition

∥q∥2 = α >
1√
2
|ω1 −ω2| (3.9)
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is satisfied (Stankovski, 2017). This conclusion is not necessarily true if the parameters c1(t)

and c2(t) are time-dependent. This means that the oscillators in equation (3.8) might exhibit
transitions between synchronization and phase slips even if the inequality in (3.9) is satisfied.
This is one remark where a time-invariant net coupling strength does not give information about
the dynamics of phase oscillators.

We analyze the phase synchronization of the two oscillators in the master-slave configu-
ration (3.8) in terms of their phase difference

ψ(t) := θ1(t)−θ2(t).

Using equation (3.8) with q as in equation (3.5), the phase difference ψ(t) obeys the equation

dψ

dt
= Ω− c1(t)sin(ψ)− c2(t)cos(ψ), (3.10)

where Ω = ω1 −ω2 is the natural frequency difference (sometimes called the “frequency mis-
match”, or “detuning”) between the oscillators, and the time-varying coupling parameters c1(t)

and c2(t) are defined as (Hagos et al., 2019)

c1(t) =
√

2α cos( f (t)t) and c2(t) =
√

2α sin( f (t)t), (3.11)

where α is a constant parameter, and f (t) is a T -periodic function defined by

f (t) =



ε 0 ≤ t ≤ T1

ε(T/2−t)+k(t−T1)
T/2−T1

T1 ≤ t ≤ T/2

k T/2 ≤ t ≤ T2

k(T−t)+ε(t−T2)
T−T2

T2 ≤ t ≤ T

(3.12)

where ε,k,T1,T2 and T are constants with k > ε ≥ 0, and with the values of ε , T/2−T1
T and T−T2

T

being small. The expression for the function in equation (3.12) has been chosen to exhibit the
existence of synchrony epochs and phase slips in the dynamics of the phase difference (Hagos et

al., 2019). From equation (3.11) and the formula for the net coupling strength, we obtain

∥q∥2 = α,

showing that the net coupling strength is constant for all time.

We carried out two experiments. In both experiments, the phase dynamics equation (3.10)
via equation (3.13) is simulated with a sampling step of ∆t = 0.005, where the length of the
simulated time series is set to 6000 starting from an initial condition of ψ(0) = 0. In the first
experiment, the parameter values are set to be: Ω = 1.05,α = 1.8/

√
2,k = 100,ε = 0.01,T =

1500,T1 = 740, and T2 = 1490. In the second experiment, we consider varying the parameter
values of ε and k and set the tuple (ε,k) ∈ {(0.01,100),(0.0005,50),(0.0001,10),(0,5)}, and
all the remaining parameters are fixed as in the first experiment. The time series of the phase
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difference ψ(t) (red) and the T -periodic function f (t) (blue) of the first and second experiments
are displayed in figures 7 and 8, respectively. The inset figure in the first experiment shows the
transition to synchrony, even though the inequality (3.9) is satisfied as

√
2α > Ω = ω1 −ω2. For

the sake of clarity, in both plots, the time axis was scaled by 100.

Figure 7 – Synchronization transitions in the model (equation (3.8)), due to a time-varying coupling
function q in equation (3.5). Specifically, c1(t) =

√
2α cos( f (t)t) and c2(t) =

√
2α sin( f (t)t)

as in equation (3.11), where f (t) is the periodic function defined in equation (3.12). In red is
shown the time series of the phase difference ψ(t) = θ1(t)−θ2(t), and in blue is shown the
periodic function f (t). The parameters values were set to Ω = 1.05,α = 1.8/

√
2,k = 100,ε =

0.01,T = 1500,T1 = 740, and T2 = 1490. The inset shows the transition to synchronization.
The plot of ψ(t) is shown to alternate between synchrony states and phase slips, due to the
time-variability of the coupling function q in equation (3.5) via the parameters c1(t) and c2(t)
while the net coupling strength remains constant.

Source: Elaborated by the author.

In both experiments (figure 7 and figure 8(a)–(d)), we see transitions of synchronization,
phenomena similar to that observed experimentally and numerically in (STEFANOVSKA;
LUCHINSKY; MCCLINTOCK, 2001; Kenwright et al., 2008; STANKOVSKI et al., 2012;
Lucas; Newman; Stefanovska, 2018): there is an alternation between synchronized epochs
(plateaux) and phase slips (rapid increases) in the phase difference ψ(t). Note that the T -
periodic function f (t) is small on the intervals [nT,nT +T1], whereas it is large on the intervals
[(n+ 1

2)T,nT +T2]. In both cases, n ∈ Z+∪{0}. In both experiments, when the function f (t)t

is slowly varying we observe synchrony because the phase difference is bounded. On the other
hand, if f (t)t has rapid angular velocity, the dynamics of the phase oscillators in terms of the
phase difference ψ(t) has a sequence of rapid jumps (slips) separated by synchronous epochs
and hence we observe phase slips.
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Figure 8 – Synchronisation transitions due to a time-varying coupling function, like in figure (7), with
different values of the parameters ε and k for the function f (t) in equation (3.12). In all
four plots, in red is shown the time series of the phase difference ψ(t), and in blue is shown
the periodic function f (t). The parameters ε and k were set to (a) ε = 0.01,k = 100, (b)
ε = 0.0005,k = 50, (c) ε = 0.0001,k = 10, and (d) ε = 0,k = 5. In all four plots, the net
coupling strength was set to α = 1.8/

√
2. The plots of the phase difference ψ(t) are shown to

alternate between synchrony states and phase slips due to the time-variability of the coupling
function while the net coupling strength remains constant.

Source: Elaborated by the author.

In summary, given that the net coupling strength between the oscillators was invariant, it
is obvious that the proceeding variation between synchronization epochs and phase slips was just
due to time variability within the coupling function. This shows that the net coupling strength
does not in itself give us enough information to characterize the interactions of the oscillators. In
section 3.6, we extend the results to a general choice of the coefficients c1(t) and c2(t).

3.6 Main theorems: generalization of numerical findings
We consider the coupling parameters c1(t) and c2(t) defined in equation (3.11) with an

arbitrary function ϕ(t) in place of f (t)t to be of the form (Hagos et al., 2019)

c1(t) =
√

2α cos(ϑ(t)) and c2(t) =
√

2α sin(ϑ(t)),

for some C1 function ϑ : R→ S1 ∼=R//2πZ, and α is the net coupling strength. Thus, the phase
dynamics equation (3.10) can be written as

dψ

dt
= Ω−

√
2α sin(ψ +ϑ(t)). (3.13)
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This last equation is explicitly time-dependent and hence is a nonautonomous system. As shown
in the numerics, we need to study the effect of both slow and fast variations of ϑ(t). Introducing
a new variable φ(t) = ψ(t)+ϑ(t), the dynamics of equation (3.13) is then equivalent to the
dynamics of the equation

dφ

dt
= Ω+ ϑ̇(t)−

√
2α sin(φ) . (3.14)

If
√

2α > |Ω|, let φ∗ be the stable fixed point of the phase equation

dφ

dt
= Ω−

√
2α sin(φ). (3.15)

We then state and prove the main theorems of this study on the effect of the time-varying coupling
functions, while the net coupling strength is constant in time. In theorem 3.6.1 we consider the
case where synchronization is exhibited for slowly varying ϑ(t). That means the function ϑ

belongs to a set of the form:

Mε := {g : R→ R : ∥g∥C1 ≤ ε}.

Theorem 3.6.1. For all ε > 0 and ψ(0) ∈ R, there exist ε0 = ε0(ε,ψ(0))> 0,T0 = T0(ε,ψ(0))
such that for all t > T0, if ϑ ∈ Mε , then the solution ψ(t) of equation (3.13) with ψ(0) satisfies
ψ(t) ∈ Bε0(φ

∗−ϑ(0)) for all t > T0.

Proof. The proof consists of two steps.

Step I. We want to show that the solution ψ(t) enters a ball around the stable fixed point φ∗ in
finite time, that is, want to find an estimate

|ψ(t)−φ
∗| ≤ εT0 exp(

√
2αT 2

0 ), ∀t ∈ [0,T0].

Consider the phase dynamics

dη

dt
= Ω−

√
2α sin(η), (3.16)

which has a stable fixed point η∗ if
√

2|α|> |Ω| and Ω−
√

2α sin(η) = 0. Consequently,

η
∗(t) = arcsin

(
Ω√
2α

)
is a fixed point of the phase dynamics equation (3.16). Comparing equations (3.14)
and (3.16), we obtain

dφ

dt
− dη

dt
= ϑ̇(t)−

√
2α (sin(φ)− sin(η)) . (3.17)

Assume that there exists a ε1 > 0 such that

|φ(t)−η(t)|< ε1, (3.18)
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at the beginning of the interval t ∈ [0,T0]. Define a new function u(t) = φ(t)−η(t). Then
it follows that dφ

dt −
dη

dt = du
dt .

By the Mean Value Theorem, there exists ζ between φ and η such that equation (3.17) is
reduced to the equation

du
dt

= ϑ̇(t)−
√

2α cos(ζ )u. (3.19)

Integrating both sides of equation (3.19) over the interval [0, t], we get

u(t) =
∫ t

0
ϑ̇(s) ds−

√
2α

∫ t

0
cos(ζ (s))u(s) ds (3.20)

which implies that

|u(t)| ≤
∫ t

0
|ϑ̇(s)| ds+

√
2α

∫ t

0
|cos(ζ (s))||u(s)| ds ≤

∫ t

0
|ϑ̇(s)| ds+

√
2α

∫ t

0
|u(s)| ds.

(3.21)

Let v(t) = |u(t)|. Then Eq. (3.21) implies

v(t)≤ εT0 +
√

2α

∫ t

0
v(s) ds. (3.22)

By Gronwall’s inequality on (3.22), we obtain that

v(t)≤ εT1 exp(
∫ t

0

√
2α ds), ∀t ∈ [0,T0]

≤ εT1 exp(
√

2αT0), ∀t ∈ [0,T0].

Hence

|φ(t)−η(t)| ≤ εT0 exp(
√

2αT0), ∀t ∈ [0,T0].

Now we require

εT0 exp(
√

2αT0)≤ ε1.

Solving for T0 = T0(ε,α,ε1) we obtain the required finite time for which φ(t)−η(t) =

O(ε), for all t ∈ [0,T0].

Step II. Motivated by the result of the generalization of (PEREIRA et al., 2014, Lemma 8), we
want to show that the solution ψ(t) stays in the ball for all time t, that is, we want the
estimate

|ψ(t)−φ
∗| ≤ εK, ∀t ≥ 0.

Consider a ball Bε2(φ
∗) of radius ε2 around the equilibrium solution φ∗. Consider the

phase dynamics equation (3.14)

dφ

dt
= Ω−

√
2α sin(φ)+ ϑ̇(t) =: F(φ , t) (3.23)
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Linearizing equation (3.23) about the fixed point φ∗, we obtain

dφ

dt
= F(φ +φ

∗, t)

= F(φ∗, t)+Dφ F(φ∗, t)(φ −φ
∗)+R(φ , t)

≈ Dφ F(φ∗, t)(φ −φ
∗)+h(t).

Here h(t) := F(φ∗, t) and the remainder term R(φ , t) consists of higher order nonlinear
terms. But Dφ F(φ∗, t) =−

√
2α cos(φ∗), and setting µ = φ −φ∗, we get

dµ

dt
=−λ µ +h(t), (3.24)

where λ =
√

2α cos(φ∗).

By the Variation of Constants formula,

µ(t) = e−λ t
µ0 +

∫ t

0
e−λ (t−s)h(s) ds.

It turns out that

|µ(t)| ≤ |e−λ t ||µ0|+
∫ t

0
|e−λ (t−s)||h(s)| ds

= e−λ t |µ0|+
∫ t

0
e−λ (t−s)|h(s)| ds.

Multiplying both sides of the last inequality by e−λ t , we obtain

eλ t |µ(t)| ≤ |µ0|+
∫ t

0
eλ s|h(s)| ds ≤ |µ0|+

∫ t

0
eλ s|µ(s)||h(s)| ds.

Since h(t) = F(φ∗, t) = Ω−
√

2α sin(φ∗)+ ϑ̇(t), it follows that there exists a number
M > 0 such that |h(t)| ≤ M for all t ∈ [0,T0]. Let us choose M = λ/2. Then the last
inequality yields

eλ t |µ(t)| ≤ |µ0|+
λ

2

∫ t

0
eλ s|µ(s)| ds.

Applying Gronwall’s inequality to the last inequality, we obtain

eλ t |µ(t)| ≤ |µ0|e
λ

2 t ,

it follows that

|µ(t)| ≤ |µ0|e−
λ

2 t .

Hence |µ(t)| → 0 as t → ∞ for all t ≥ 0. It follows that

φ(t) ∈ Bε0(η
∗),

for all time t. Since ψ(t) = φ(t)−ϑ(t), it follows that ψ∗(t) = φ∗(t)−ϑ(t). Hence there
exists a finite time T0 > 0 such that the solution ψ(t) enters the ball of radius ε0.
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In a similar setup to theorem 3.6.1, a proof of the existence of synchronous states for the
slowly varying function ϑ is also provided in (Hagos et al., 2019, Theorem 6.1) followed by
(Hagos et al., 2019, Corollary 6.2).

Now in theorem 3.6.2 we consider the unbounded phase slips exhibited for fast-winding
ϑ . The following theorem may be regarded as a kind of nonautonomous averaging principle. For
a detailed exposition of averaging principles, it is presented in theorem 2.3.5, which was adapted
from (SANDERS; VERHULST, 1985).

Theorem 3.6.2. (Hagos et al., 2019) For all ε1,ε2 > 0 there exist β1,β2 > 0 such that if ϑ is

twice differentiable on an interval [0, t] with ϑ̇(s)> max(β1,β2

√
|ϑ̈(s)|) for all s ∈ [0, t], then

any solution ψ of equation (3.13) satisfies

|ψ(s)−ψ(0)−Ωs| ≤ ε1 + ε2s

for all s ∈ [0, t].

Proof. Let F(φ) := Ω−
√

2α sin(φ). First take arbitrary β1 > 0 and β2 >
√

2π , and suppose

that ϑ̇(s) > max(β1,β2

√
|ϑ̈(s)|) for all s ∈ [0, t]. Define recursively a sequence 0 = t0 < t1 <

.. . < tN < t by ti+1 = ti + 2π

ϑ̇(ti)
, with N being the largest possible such that tN < t. It follows in

particular that t − tN ≤ 2π

ϑ̇(tN)
. For each i < N, we have that

∫ ti+1

ti
F
(

ψ(ti)+ϑ(ti)+
2π(s− ti)
ti+1 − ti

)
ds =

∫ ti+1

ti

(
Ω−

√
2α sin

(
φ(ti)+

2π(s− ti)
ti+1 − ti

))
ds

= Ω(ti+1 − ti)−
2
√

2πα

ti+1 − ti

∫
φ(ti)+2π

φ(ti)
sinu du

= Ω(ti+1 − ti),

where we have used φ(ti) := ψ(ti)+ϑ(ti). Also, we have that∫ ti+1

ti
F(ψ(s)−ϑ(s)) ds =

∫ ti+1

ti

(
Ω−

√
2α sin(ψ(s)+ϑ(s))

)
ds =

∫ ti+1

ti
ψ̇(s) ds

= ψ(ti+1)−ψ(ti).

It follows that

|ψ(ti+1)−ψ(ti)−Ω(ti+1 − ti)| ≤
∫ ti+1

ti

∣∣∣∣F(ψ(s)+ϑ(s))−F
(

ψ(ti)+ϑ(ti)+
2π(s− ti)
ti+1 − ti

)∣∣∣∣ ds.

(3.25)
Now we fix any s ∈ (ti, ti+1). Then we have that s− ti < 2π

β1
and hence

|ψ(s)−ψ(ti)|<
2π(|Ω|+

√
2α)

β1
. (3.26)
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Also, by Taylor’s theorem, we have that∣∣∣∣ϑ(s)−
(

ϑ(ti)+
2π(s− ti)
ti+1 − ti

)∣∣∣∣= 1
2
|ϑ̈(ξ1(s))|(s− ti)2 ≤ 2π2|ϑ̈(ξ1(s))|

ϑ̇(ti)2

for some ξ1(s) ∈ (ti,s). But by the mean value theorem, we have that for some ξ2(s) ∈ (ti,ξ1(s)),

1
ϑ̇(ξ1(s))

=
1

ϑ̇(ti)
− (ξ1(s)− ti)ϑ̈(ξ2(s))

ϑ̇(ξ2(s))2
>

1
ϑ̇(ti)

(
1− 2π

β 2
2

)
,

and so∣∣∣∣ϑ(s)−
(

ϑ(ti)+
2π(s− ti)
ti+1 − ti

)∣∣∣∣≤ 2π2|ϑ̈(ξ1(s))|
ϑ̇(ξ1(s))2

(
1− 2π

β 2
2

)−2

≤ 2π2

β 2
2

(
1− 2π

β 2
2

)−2

. (3.27)

Combining equations (3.25), (3.26) and (3.27), we have that

|ψ(ti+1)−ψ(ti)−Ω(ti+1 − ti)| ≤
√

2α

(
2π(|Ω|+

√
2α)

β1
+

2π2

β 2
2

(
1− 2π

β 2
2

)−2
)

︸ ︷︷ ︸
=:κ(β1,β2)

(ti+1 − ti).

Hence, for each i ≤ N,

|ψ(ti)−ψ(0)−Ωti| ≤ κ(β1,β2)ti. (3.28)

Now for any s ∈ [0, t], taking the largest i with ti ≤ s, we have

|ψ̇(ζ )−Ω| ≤
√

2α ∀ζ ∈ [ti,s]

and so

|ψ(s)−ψ(ti)−Ω(s− ti)| ≤
√

2α(s− ti)<
2
√

2πα

β1︸ ︷︷ ︸
=:κ0(β1)

. (3.29)

Combining equations (3.28) and (3.29) gives that

|ψ(s)−ψ(0)−Ωs|< κ0(β1)+κ(β1,β2)s

for all s ∈ [0, t]. So now, given any ε0,ε > 0 choose β1,β2 sufficiently large that κ0(β1)≤ ε0 and
κ(β1,β2)≤ ε .

Combining theorems 3.6.1 and 3.6.2, we see that the two oscillators exhibit transitions
of synchronization. In this case, the function ϑ(t) has alternating epochs of slow variation and
rapid oscillation, while the net coupling strength is kept constant but with time-varying coupling
functions.
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3.7 Concluding remarks
A model of two coupled oscillators with time-evolving coupling functions has been shown

to exhibit transitions between synchronization states and phase slips while the net coupling
strength is kept constant.

In general, time-variability can enter a system in different ways in such a way that the
forms of the time-dependent driving oscillator lead to synchronization transitions. For example, it
can enter a system through “modulation” of the natural frequency of the driving oscillator (Jensen,
2002; SUPRUNENKO; CLEMSON; STEFANOVSKA, 2013; Lucas; Newman; Stefanovska,
2018). As shown in (Jensen, 2002; Lucas; Newman; Stefanovska, 2018), for fixed-frequency
driving, we have synchronization either all of the time or none of the time, but when the driving
frequency is allowed to vary then the system can exhibit synchronization transitions.

In (Lucas; Newman; Stefanovska, 2018), they studied the theoretical and numerical
considerations for a unidirectionally coupled pair of phase oscillators with time-variability of
the driving frequency and shown to exhibit synchronization transitions. They extended these
results to networks of phase oscillators (LUCAS; FANELLI; STEFANOVSKA, 2019). The
considerations of our study can also be generalized to networks such as those considered in
(PEREIRA et al., 2013): network structure can also have an impact on the dynamics exhibited,
such as synchronization (Pade; Poignard; Pereira, 2017; MAIA; MACAU; PEREIRA, 2016).
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CHAPTER

4
RECONSTRUCTION OF NETWORK PHASE

DYNAMICS FROM DATA

Complex systems such as ecological communities and neuron networks are essential to
our everyday lives. Many such systems can be modeled using networked dynamical systems
using systems of differential equations. Nowadays it is possible to collect and process enormous
amounts of data from the units of such systems. Reconstructing models of dynamical systems
from data is a crucial problem that has attracted a lot of attention.

This chapter deals with the reconstruction of network dynamics of oscillatory systems
from time series data based on Bayesian statistics and sparse recovery methods. Moreover, we
aim to show a case where although the dynamics in the network are purely pairwise, due to
the nonlinearity of the coupling functions, we reconstruct higher-order interaction terms, given
time-series data of networks of weakly interacting oscillators.

4.1 Reconstruction problem statement
We assume that we have access to an N- dimensional time series of observed oscillatory

data

Y := {yyym := yyy(tm) | tm = m∆t,m = 1, . . . ,M},

produced by M measurements performed at every sampling time interval ∆t. We also assume
that the data describes a system of N-dimensional stochastic process θθθ(t) = (θ1(t), . . . ,θN(t))T .
Assume that the underlying dynamics of the system is described by a set of N-dimensional
stochastic differential equations (SDEs) of the form:

d
dt

θθθ(t) = FFF(θθθ(t);ccc)+
√

DDDξξξ (t), (4.1)

where FFF = (F1, . . . ,FN)
T denotes the deterministic vector field of the system, ccc is assumed to be a

set of unknown model parameters that are embedded in FFF . Without loss of generality, let ccc ∈ RL.
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The vector ξξξ (t) = (ξ1(t), . . . ,ξN(t))T denotes an N-dimensional dynamical noise induced into
the system to better mimic real situations, and the constant matrix DDD ∈ RN×N represents the
noise intensity also known as the diffusion matrix. We assumed that the system is driven by
white Gaussian noise satisfying

⟨ξi(t)⟩= 0,

⟨ξi(t)ξ j(t ′)⟩= δi jδ (t − t ′) (i, j = 1, . . . ,N),

where ⟨·⟩ the expected value of a quantity. The phase model (4.1) may describe a network of N

coupled phase oscillators, with

d
dt

θi(t) = Ωi + ε

N

∑
j=1

Ai jqi(θi,θ j)+
√

Dξi(t), i = 1, . . . ,N, (4.2)

where Ωi is the natural frequency of node i, qi is the pairwise coupling function of the ith
oscillator with node j, and ε is the coupling strength. The adjacency matrix A defines who is
connected to whom: Ai, j = 1 if nodes i and j are connected and Ai, j = 0 otherwise. The coupling
function q may take the form q(θi,θ j) = sin(θ j −θi −β ) where the parameter β denotes a
phase shift. Phase equations with this form of coupling q are known as the Kuramoto-Sakaguchi
(SAKAGUCHI; KURAMOTO, 1986; OMEL’CHENKO; WOLFRUM, 2012) and are widely
applied across scientific disciplines (STANKOVSKI et al., 2017). In real-world systems, the
coupling may be heterogeneous (MORGAN; SOLTESZ, 2008). For simplicity, throughout this
discussion, we considered a uniform noise strength D.

The data Y may be altered by measurement noise due to, for example, inaccuracies in
measurements. In this thesis, however, we assume that there is no measurement noise imposed
in the data. That is, we assume that we measure each component θi(t) of the N-dimensional
process θθθ(t) = (θ1(t), . . . ,θN(t))T and obtain a multivariate time series data

ϒ := {θθθ m := θθθ(tm) | tm = m∆t,m = 1, . . . ,M} (4.3)

such that the measurements are performed over M distinct time points tm with the property
t1 < t2 < · · · < tM, where ∆t is the sampling time interval assumed to be uniform. If ∆t ≪ 1
we can compute the velocities of θθθ in equation (4.1) numerically using e.g. the forward finite
difference formula

θ̇θθ(tm)≈
θθθ m+1 −θθθ m

∆t

and if M ≫ 1 we have sufficiently large samples to perform relevant data analysis e.g. in
predicting future changes in the dynamics and critical transitions. Note that these conditions are
not always available.

In equation (4.1) all the components of FFF are unknown, ccc is unknown and the noise
matrix DDD is also unknown. Only the data (equation (4.3)) is available for analysis. The parameter
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vector ccc is assumed to parameterize the vector field FFF using appropriate known functions. Hence,
we can assume that the unknown parameters constitute the set

M := {ccc,DDD}.

The reconstruction problem can be recast as follows:

Given the available time series data ϒ, which exhibit a periodic behavior and interact
weakly, we aim to obtain the most probable parameters M̃ that accurately describe the
data.

Remark 4.1.1. In most practical problems, we do not even have access to the time series data in
phases. In this case, we first need to extract the corresponding phases ϑi(t) from the given multi-
variate time-series data Y via e.g. Hilbert transform (ROSENBLUM; PIKOVSKY; KURTHS,
1996) or angle variable. Note that the phase ϑ j(t) is not necessarily equal to θ j(t), which in-
creases uniformly in time (in the absence of coupling or noise), but all relevant information can
be obtained from it. Hence we try to reconstruct the model of the data ϑ j(t).

4.2 Review of reconstruction methods

In the literature there are a number of appropriate methods in reconstructing the underly-
ing model, given a time series data of weakly interacting oscillators. In this thesis, we review
some reconstruction techniques. In particular, we outline the Bayesian inference and sparse
recovery methods in reconstructing networks from the available data.

4.2.1 Bayesian inference method

In Bayesian inference, all unknown parameters in M are treated as stochastic variables
with certain probability distributions (BISHOP, 2006). In this section, we present the Bayesian
inference method for stochastic differential equations that was originally proposed in (Luchinsky
et al., 2005; STANKOVSKI et al., 2014) in reconstructing the phase dynamics (equation (4.1))
from the available data. This approach requires expert knowledge of the unknown parameters
M before observing the data ϒ. Based on Bayes’ probability theory, the posterior distribution of
the parameters M is updated via Bayes’ theorem (BAYES, 1763):

p(M |ϒ) = p(ϒ|M )p(M )∫
p(ϒ|M )p(M ) dM

, (4.4)

where p(ϒ|M ) is the likelihood function. The probabilities p(M ) and p(M |ϒ) are known as
the prior and posterior distributions, respectively, of the parameters M . Hence if we know the
likelihood p(ϒ|M ) and the prior distribution p(M ), then using Bayes’ theorem we obtain the
updates of the parameters and hence reconstruct the model. The likelihood function describes
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the process giving rise to the data ϒ in terms of M . In particular, the data ϒ is kept fixed while
reading the underlying information concerning the parameter values. We usually denote the
likelihood function by

ℓ(M ,ϒ) := p(ϒ|M ).

Note that the integral
∫

p(ϒ|M )p(M ) dM is not a function of M . Thus, we can rewrite
equation (4.4) in the simpler form

p(M |ϒ) ∝ ℓ(M ,ϒ)p(M ), (4.5)

that is, “the posterior is proportional to the prior times the likelihood.”

Based on the Bayesian probability theory (BROMILEY, 2013), we note that the following
statement holds.

Theorem 4.2.1. If the prior p(M ) and the likelihood ℓ(M ,ϒ) are Gaussian, then the posterior
p(M |ϒ) is also Gaussian.

This shows that the problem of computing the posterior distribution p(M |ϒ) reduces to
finding its two moments: the conditional mean and its covariance.

In formulating the Bayesian inference method, we assume that the prior distribution is
known a priori. The task is therefore to determine the likelihood function and then the optimiza-
tion of the posterior distribution with respect to M . To this end, we formulate the likelihood
function ℓ(M ,ϒ) analytically. Under regularity conditions on the drift (the deterministic part)
and diffusion (the stochastic part) coefficients of equation (4.1) (ØKSENDAL, 1992), assume
that the SDE (equation (4.1)) has a unique solution θθθ(t). However, an analytic solution θθθ(t) is
generally intractable. For this reason, the system is solved numerically, and hence the expression
of the likelihood function ℓ(M ,ϒ) will be constructed from it.

We first solve equation (4.1) numerically. To do this, we rewrite in the so-called Ito form
as

dθθθ(t) = FFF(θθθ(t);ccc)dt +
√

DDDdWWW (t) (4.6)

in which dWWW (t) = ξξξ (t)dt is the Wiener Process (ØKSENDAL, 1992). Let θθθ 0 = θθθ(0) be an
initial condition and [0,T ] the interval over which equation (4.1) must be integrated. The
numerical solution for a trajectory of equation (4.1) by the Euler-midpoint approximation is
then approximated by the Markov chain θθθ m, in which the index m denotes the time dependence,
defined recursively as

θθθ m+1 = θθθ m +∆tFFF(θθθ ∗
m;ccc)+

√
DDD∆WWW m, (4.7)
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for m = 0,1, . . . ,M, with ∆t = T
M , θθθ

∗
m = θθθ m+1+θθθ m

2 and the ∆WWW m are independent and identically
distributed normal random variables with mean 0 and variance ∆t . The explicit form of the term
∆WWW m is given by

∆WWW m =
√

∆tζζζ m (4.8)

where ζζζ m is a random variable, distributed according to a Gaussian distribution, satisfying

⟨ζi(tm)⟩= 0 and ⟨ζi(tm)ζ j(tn)⟩= δi jδmn

for different times. Notice that in the above approximation ∆t ≪ 1.

Based on the approach proposed in (LUCHINSKY et al., 2008) and the references
therein, we then present the likelihood function ℓ(M ,ϒ) in the form of a “path-integral” over
the random trajectories {θθθ m} of the system (Graham, 1977). Following the work of (Graham,
1977), we can write the likelihood function in the form of a path-integral over θθθ(t) as

ℓ(M ,ϒ) = p({θθθ m} | M ) = π(θθθ 0 | M )
M

∏
m=0

p(θθθ m | M ), (4.9)

where π(θθθ 0 | M ) represents the stationary probability distribution of equation (4.1), for sim-
plicity, π(θθθ 0 | M ) = 1. The probability p(θθθ | M ) is the “probability density functional” to have
given dynamical trajectory θθθ(t) conditioned on fixed values of the model parameters M (FUL-
LANA; ROSSI, 2002). Hence, it remains to compute p(θθθ m | M ). The form of the conditional
probability p(θθθ m | M ) can be determined using known distributions for the independent source
of white Gaussian noise {ζi(tm)} (DYKMAN, 1990) in equation (4.7). From equation (4.7), one
can see that the conditional probability p(θθθ m+1|θθθ m;M ) of fluctuational path {θθθ m} is related to
the probability p(ζζζ m) corresponding to random realization {ζζζ m} because

ζζζ m =
1√
∆t

[
√

DDD]−1 (θθθ m+1 −θθθ m −∆tFFF(θθθ ∗
m;ccc)) .

Notice that the probability of a single realization ζζζ m is given by

p(ζζζ m) =
dζζζ m√
(2π)N

exp

(
−ζζζ

T
mζζζ m
2

)

=
dζζζ m√
(2π)N

exp
(
− 1

2∆t
(θθθ m+1 −θθθ m −∆tFFF(θθθ ∗

m;ccc))T DDD−1 (θθθ m+1 −θθθ m −∆tFFF(θθθ ∗
m;ccc))

)
.

(4.10)

By assumption, ζζζ m are independent, white Gaussian noise at each time step, and hence the joint
probability of the realization {ζζζ m} as a product of the probabilities of each single realization ζζζ m

is given by

p({ζζζ m}) =
M−1

∏
m=0

p(ζζζ m). (4.11)
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We note that the stochastic trajectory {θθθ m} exhibits the Markov property, i.e., the probability of
having a particular value of the position at time t = tm+1 depends only on the state location at
time t = tm and not on the way it got to this location.

Thanks to the change of variables from ζζζ m to θθθ m+1(ζζζ m) and the Markov property of θθθ m

together with equations (4.7) and (4.11), we obtain the probability of realization of the whole
process {θθθ m}:

p({θθθ m+1}) =
M−1

∏
m=0

dθθθ m+1 det(JJJ(θθθ m))√
(2π∆t)N |DDD|

×

exp
(
− 1

2∆t
[θθθ m+1 −θθθ m −∆tFFF(θθθ ∗

m;ccc)]T DDD−1[θθθ m+1 −θθθ m −∆tFFF(θθθ ∗
m;ccc)]

)
, (4.12)

where JJJ(θθθ m) denotes the Jacobian of the transformation from noise variable ζζζ m to dynamical
variable θθθ m+1, defined as

JJJ(θθθ m) =
∂ (ζm,1, . . . ,ζm,N)

∂ (θm+1,1, . . . ,θm+1,N)
(4.13)

with entries of the Jacobian, Ji j, given by

Ji j := δi j −
∆t
2

∂ (FFF(θθθ ∗
m;ccc))i

∂ (θθθ ∗
m) j

.

Theorem 4.2.2. For a sufficiently small ∆t, the determinant of the Jacobian of transformation
JJJ(θθθ m) can be approximated as:

detJJJ(θθθ m)≈ exp
(
−∆t

2
(∇∇∇ ·FFF(θθθ ∗

m;ccc))
)

to leading order in ∆t.

Proof. For a sketch of the proof see appendix A.

Then, using equations (4.9) and (4.12) the required likelihood function can be written as

ℓ(M ,ϒ) =
M−1

∏
m=0

1√
(2π∆t)N |DDD|

exp
(
−∆t

2
[θ̇θθ m −FFF(θθθ ∗

m;ccc)]T DDD−1[θ̇θθ m −FFF(θθθ ∗
m;ccc)]

)
× exp

(
−∆t

2
∂FFF(θθθ ∗

m;ccc)
∂θθθ

∗
m

)
, (4.14)

where we have used

θ̇θθ m =
θθθ m+1 −θθθ m

∆t
.

Taking the natural logarithm of equation (4.14) (for convenience), we obtain the minus log-

likelihood function, S :=− lnℓ(M ,ϒ), given by

S =
N
2

ln |DDD|+ ∆t
2

M−1

∑
m=0

(
∂FFF(θθθ ∗

m;ccc)
∂θθθ

∗
m

+[θ̇θθ m −FFF(θθθ ∗
m;ccc)]T DDD−1[θ̇θθ m −FFF(θθθ ∗

m;ccc)]
)
+N ln(2π∆t).

(4.15)
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This log-likelihood is asymptotically exact in the limit ∆t → 0 and M → ∞ while T = M∆t

remains constant .

The next task is to maximize the posterior probability i.e. to fit the likelihood equa-
tion (4.15) to Bayes’ theorem, in order to find the optimal probability of the parameter set M

given the data ϒ.

We assume a prior distribution p(M ) that is Gaussian in ccc and uniform in DDD:

p(M ) =
1√

(2π)L|ΣΣΣpr|
exp
(
−1

2
(ccc− cccpr)

T
ΣΣΣ
−1
pr (ccc− cccpr)

)
(4.16)

where cccpr ∈ RL is a vector of a priori model parameters and ΣΣΣpr is its covariance matrix. It
turns out from equations (4.15) and (4.16) that we can update the parameters M by the posterior
distribution p(M |ϒ) via the Bayesian theorem.

Due to the highly non-linearity of the vector field FFF , it is not always easy to apply
Bayesian inference directly to equations (4.15) and (4.16). We assumed that we can rewrite the
vector field FFF as a linear combination of certain known basis functions. Since we are dealing
with phase equations, choosing K Fourier basis functions φφφ k(θθθ) :

L = {φφφ 1, . . . ,φφφ K} (4.17)

we can parametrize FFF as a linear combination of the basis functions as:

FFF(θθθ ;ccc) = ΦΦΦ(θθθ)ccc (4.18)

where ΦΦΦ := ΦΦΦ(θθθ) is defined as

ΦΦΦ :=




φφφ 1 . . . 0
... . . . ...
0 . . . φφφ 1

 . . .


φφφ K . . . 0

... . . . ...
0 . . . φφφ K


 (4.19)

which is a matrix of N ×N block matrices. Substituting this parametrization of FFF into equa-
tion (4.15) gives a quadratic log-likelihood function in respect of the parameters vector ccc. By
theorem 4.2.1, a multivariate normal distribution for the prior distribution p(M ) leads to a
multivariate normal distribution for the posterior p(M |ϒ) .

Finally, considering equations (4.15), (4.16) and (4.18), (4.16), the stationary point of the
log-likelihood (and thus the posterior) can be calculated recursively with the following equations:

DDD =
∆t
N

M−1

∑
m=0

[θ̇θθ m −ΦΦΦmccc]T [θ̇θθ m −ΦΦΦmccc] (4.20)

ccc = ΞΞΞ
−1(DDD)www(DDD), (4.21)
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where

www(DDD) := ΣΣΣ
−1
pr cccpr +∆t

M−1

∑
m=0

(
ΦΦΦmDDD−1

θ̇θθ m − 1
2

∂ΦΦΦ(θθθ ∗
m)

∂θθθ
∗
m

)
, (4.22)

ΞΞΞ(DDD) := ΣΣΣ
−1
pr +∆t

M−1

∑
m=0

ΦΦΦ
T
mDDD−1

ΦΦΦm, . (4.23)

Here, ΦΦΦm = ΦΦΦ(θθθ m), and ΞΞΞ is the inverse of the covariance matrix ΞΞΞ = ΣΣΣ
−1 (often called

concentration or precision matrix) of the parameters vector ccc.

Following the work in (LUCHINSKY et al., 2008; STANKOVSKI et al., 2014), we
can summarize the Bayesian inference algorithm as follows: starting from initial prior ΣΣΣ

−1
pr

and cccpr, the noise matrix DDD can be calculated using equation (4.20), then given this DDD, using
equations (4.21)–(4.23) the parameter vector ccc can be calculated. The same procedure should be
repeated recursively until ccc and DDD converge to stability. In the absence of any prior knowledge
about the system, a non-informative initial prior can be used: ΣΣΣ

−1
pr = 0 and cccpr = 0.

In summary: given a realization of ϒ = {θθθ m}, basis functions φφφ k, and quantities cccpr and
ΣΣΣpr of the prior distribution p(ccc), the posterior distribution of the model parameters ccc is given by

p(ccc|ϒ) =
√

|ΞΞΞpt |√
(2π)L

exp
(
−1

2
(ccc− cccpt)

T
ΞΞΞpt(ccc− cccpt)

)
, (4.24)

where cccpt and ΞΞΞpt are the mean and covariance of the posterior p(ccc|ϒ), respectively. If a new
sequential data block ϒ′ (obtained from the same dynamics) is given, we can use the posterior
quantities cccpt and ΞΞΞpt from the first data-block ϒ as the prior for the second one.

Remark 4.2.3. The Bayesian inference method presented here is to be implemented for re-
constructing a non-time-varying noisy dynamical system from data. But it can be extended
to a system with time variability. For the details of the procedure, the reader can refer to
(STANKOVSKI et al., 2014).

4.2.2 Sparse recovery methods

Given the data ϒ in equation (4.3), we aim to reconstruct the phase dynamics (equa-
tion (4.1)). Rewriting equation (4.1) as

d
dt

θθθ(t) = FFF(θθθ(t);ccc) (4.25)

where we have assumed no dynamical noise, i.e., we considered the deterministic dynamical
system. In the end, we will study the robustness of noise where the data comes from a stochastic
phase equation.

Since, typically, nonlinear functional forms can be expanded as sums of terms belonging
to a family of parameterized functions (see (LJUNG, 1999, Sec. 5.4) and (BILLINGS, 2013),
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a usual approach to reconstructing models of complex systems is to search amongst a set of
possible nonlinear terms (e.g., basis functions) for a parsimonious description coherent with the
available data (HABER; UNBEHAUEN, 1990). A few choices of basis functions are provided
by classical functional decomposition methods such as Taylor polynomial expansion or Fourier
series (LJUNG, 1999; BILLINGS, 2013; BARAHONA; POON, 1996).

We assume that there exists a finite set of candidate library functions whose linear
combination allows us to describe the dynamics of the system of interest. In particular, we
assume that the components Fi of the vector field F can be written as a linear combination of a
finite set L of candidate basis functions, defined as

Fi =
K

∑
k=1

ci,kφφφ k(θθθ(t)), (4.26)

where φφφ k(θθθ(t)) ∈ L for each k = 1, . . . ,K are the candidate basis functions of the ith oscillator,
and K is the maximum number of the candidate functions. The coefficients {ci,k | i= 1, . . . ,N; k =

1, . . . ,K} are the set of unknown parameters to be determined from available time-series data.
By inserting equation (4.26) into equation (4.25) we obtain the system

d
dt

θi(t) =
K

∑
k=1

ci,kφφφ k(θθθ(t)), (4.27)

where we have assumed that the time derivatives d
dt θi(t), for each i = 1, . . . ,N, are known.

However, in real-life applications, these assumptions might not be applicable. If the sampling
time interval ∆t is sufficiently small, we can approximate the time derivatives θ̇i(t) numerically
using, e.g., forward Euler difference as

θ̇i(tm)≈
θi(tm+1)−θi(tm)

∆t
, i = 1, . . . ,N; m = 1, . . . ,M−1.

The multivariate time-series data ϒ of the process θθθ(t) and their time derivatives θ̇θθ(t) are
arranged into M×N data matrices

Θ :=


θ1(t1) . . . θN(t1)

...
...

...
θ1(tM) . . . θN(tM)

 and Θ̇ :=


θ̇1(t1) . . . θ̇N(t1)

...
...

...
θ̇1(tM) . . . θ̇N(tM)

 . (4.28)

Similarly, the chosen basis functions φφφ k are evaluated at each time step to obtain an M ×K

library matrix ΦΦΦ := ΦΦΦ(Θ) defined as

ΦΦΦ =


φφφ 1(θθθ(t1)) . . . φφφ K(θθθ(t1))

... . . .
...

φφφ 1(θθθ(tM)) . . . φφφ K(θθθ(tM))

 . (4.29)

Using the matrices Θ,Θ̇, and ΦΦΦ , equation (4.27) becomes

Θ̇ ≈ ΦΦΦCCC. (4.30)
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In sparse recovery methods, we aim to estimate a sparse set of parameters CCC that accurately fits
the measured data in Θ̇. For each node i = 1, . . . ,N, we solve a linear system of the form

θ̇θθ i = ΦΦΦccci, for each i = 1, . . . ,N, (4.31)

where θ̇θθ i = (θ̇i(t1), . . . , θ̇i(tM))T ∈RM denotes the ith column of the time derivative data matrix
Θ̇, and ccci is the ith column of the matrix of unknown coefficients

CCC =


c1,1 c2,1 . . . cN,1

...
...

...
...

c1,K c2,K . . . cN,K

=


| | |

ccc1 ccc2
... cccN

| | |

 .
One can see that if M < K, the system (4.31) is known as underdetermined, i.e. there are fewer
equations than unknowns, so that the system has infinitely many solutions, and we need a
criterion to choose an optimal solution. On the other hand, if M > K, the system (4.31) is called
overdetermined, i.e. there are more equations than unknowns, usually such a system has no
exact solution since the data θ̇θθ i must be an element of the rank of the library matrix ΦΦΦ, a proper
subspace of RM. In both cases, it requires an optimization problem; in particular, it suggests the
introduction of minimization problems. In our context, we assume that we have a long enough
time series, i.e. K ≪ M. In solving such problems, e.g. using the ℓp-norm the least-squares
solution of system (4.31) is obtained by solving the following ℓ2-norm minimization problem:

ĉcci = argmin
ccci∈RK

∥θ̇θθ i −ΦΦΦccci∥2. (4.32)

By the singular value decomposition (SVD) (GOLUB; LOAN, 1996), the minimization problem
(4.32) has an explicit solution

ccci = ΦΦΦ
†
θ̇θθ i

where ΦΦΦ
† = (ΦΦΦT

ΦΦΦ)−1ΦΦΦ
T is called the Moore-penrose pseudo-inverse of ΦΦΦ. By assumption,

the column vectors ccci of CCC are sparse, containing mostly zero entries, and the nonzero entries
highlight the active terms in the dynamics of the Fi row of the dynamics. However, the least-
squares solutions of Eq. (4.94) do not give satisfactory results. To this end, we need to impose a
sparsity constraint on the least-squares solutions. In this case, we solve the following ℓ0-norm:

∥ccci∥0

for each oscillator, which is defined as the number of non-zero elements in ccci. Solving such a
ℓ0 problem is a combinatorial NP-hard problem. In this case, we try the ℓ1-norm which also
imposes sparsity. Another reconstruction technique that imposes sparsity is the least absolute
shrinkage and selection operator (LASSO)(TIBSHIRANI, 1996). In LASSO, we solve the
following problem:

argmin
ccci∈RK

∥θ̇θθ i −ΦΦΦccci∥2 subject to ∥ccci∥1 ≤ β (4.33)

where β is a prespecified free parameter that determines the sparsity.
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Definition 4.2.4. A vector is said to be s-sparse if it has at most s nonzero entries

∥x∥0 ≤ s. (4.34)

In this context, we implement one of the recently developed sparse recovery methods
known as Sparse identification of nonlinear dynamics (SINDy) (BRUNTON; PROCTOR; KUTZ,
2016), which is central to this section. In the SINDy algorithm, we attempt to obtain sparse
solutions using regression techniques such as the sequentially thresholded least squares (STLSQ)
with a thresholding parameter λ > 0. In this algorithm, we iteratively apply the least-squares
method for the problem (4.31) with a hard thresholding parameter λ > 0 . In particular, a sparse
solution vector ccci, for each i = 1, . . . ,N, which approximately solves equation (4.31) is generated
by the following iterative scheme:

ccc(0)i = ΦΦΦ
†
θ̇θθ i, (4.35a)

S(n) = {1 ≤ k ≤ K | |c(n)i,k | ≥ λ}, n ≥ 0, (4.35b)

ccc(n+1)
i = argmin

ccci∈RK : supp(ccci)⊂S(n)
∥θ̇θθ i −ΦΦΦccci∥2, n ≥ 0, (4.35c)

where supp(ccci) is the support set of ccci, defined as the set of indices corresponding to its nonzero
elements, c(n)i,k is the kth component of the nth iteration ccc(n)i . The procedure in equation (4.35)
is iteratively repeated, for each oscillator i ∈ {1, . . . ,N}, until convergence or the maximum
iteration is required. We denote the inferred sparse vector by ĉcci, for each i. In implementing the
SINDy algorithm, we use PySINDy– an open-source software package that has been developed
in Python (SILVA et al., 2020).

Remark 4.2.5. It can be shown that the iterative scheme in equation (4.35) converges to a local
minimum ĉcci for each i = 1, . . . ,N (BRUNTON; PROCTOR; KUTZ, 2016).

Model selection: the choice of the thresholding parameter. Note that the estimated sparse
vector ĉcci depends on the choice of the thresholding parameter λ . At each iteration, all the
coefficients with |ci,k|< λ are set to zero. Hence, the parameter λ is important because if λ is
too small, the SINDy recovery model contains many nonzero coefficients and hence the sparsity
fails. Conversely, if λ is large then basis functions required to emulate the dynamics of the
system may be removed, resulting in a model that does not resemble the data. Hence we need to
select an appropriate value of λ .

We investigate the effects of the SINDy recovery for different values of λ . We use one of
the statistical metrics, known as the root-mean-squared error (RMSE) in the predicted models.
The approach is summarized below.

We first select a priori a set of r possible candidates λλλ = {λ1, . . . ,λr} of the thresholding
parameter λ . For each oscillator i ∈ {1, . . . ,N}, let ĉcci(λ ) denotes the inferred coefficient vector
in search of the true coefficient vector ccci in equation (4.31) for a pre-chosen threshold value
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Figure 9 – Schematic of the SINDy algorithm. The active terms in the dynamics are identified by the
nonzero elements in CCC.

Source: Elaborated by the author.

λ ∈ λλλ , and let ˆ̇
θθθ i(λ ) denotes the corresponding predicted value of the corresponding SINDy

model MMM(λ ). Hence, we have

ˆ̇
θθθ i(λ )≈ ΦΦΦĉcci(λ ) for each λ ∈ λλλ .

Then the “best” thresholding parameter λ is the value such that the error between ˆ̇
θθθ i(λ ) and θ̇θθ i

is minimum. To accomplish this, we split the time-series data into a training set for inferring the
parameters and a test set for evaluating the predictions. Then, for each oscillator i, the RMSE of
predicted values ˆ̇

θθθ i(λ ) can be defined as

RMSE(v̂vvi,m(λ ),vvvi,m) :=

√√√√ 1
Mt

Mt

∑
m=1

(v̂vvi,m(λ )− vvvi,m)
2, (4.36)

where vvvi,m := θ̇i(tm) is the time derivative of θi at time tm for each m ∈ {1, . . . ,Mt} and each
i = 1, . . . ,N, where Mt is the number of data points in the validation set.

The “best” thresholding parameter λ ∈ λλλ is then the solution to the following minimiza-
tion problem:

λopt := argmin
λ∈λλλ

1
N

N

∑
i=1

RMSE(v̂vvi,m(λ ),vvvi,m). (4.37)
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4.3 Comparisons of Bayesian inference and sparse recov-
ery methods

In this section, we will present a few examples to illustrate the reconstruction methods
under consideration, from measurements or simulated data. We first consider the phase model
driven by additive Gaussian noise and then we consider coupled Van der Pol oscillators driven
by additive Gaussian noise.

4.3.1 Reconstruction from a network of three oscillators

We consider a model of three interacting phase oscillators of the form:

θ̇1 = F1(θ1,θ2,θ3)+
√

D1ξ1(t), F1 = ω1 +α sin(θ3 −θ1)

θ̇2 = F2(θ1,θ2,θ3)+
√

D2ξ2(t), F2 = ω2 +α sin(θ3 −θ2)

θ̇3 = F3(θ1,θ2,θ3)+
√

D3ξ3(t),F3 = ω3 +β sin(θ3),

(4.38)

where θi is the phase of the ith oscillator with natural frequency ωi, and α is the coupling
strength. The noise term ξi(t) is assumed to be white Gaussian noise with zero-mean and
⟨ξ j(t)ξi(t ′)⟩= δi jδ (t − t ′) and Di is the noise intensity. Equation (4.38) can describe a network
of three nodes, where each node i is represented by θ̇i. The system shows that oscillator 3
influences the other two oscillators 1 and 2 without being influenced by any of the two oscillators,
and such a system is also known as a master-slave configuration, as shown in figure 10. Such
configurations are widely found in biology (JOSHI; SEN; KAR, 2020), physics (AHMAD et al.,
2015) and engineering applications (RIGATOS, 2014). In the absence of coupling and noise, the
oscillators move with their own frequencies ωi. We aim to reconstruct the phase dynamics of

ω3

ω1 ω2
Figure 10 – Schematic diagram showing a master-slave configuration of three oscillators where oscillator

3 directly influences oscillators 1 and 2 with a coupling function of the form qi(θ3,θi) :=
α sin(θ3 −θi) for i = 1,2 and q3 = β sinθ3.

Source: Elaborated by the author.

these three oscillators from the data. In this problem, the model is known a priori, and we have
access to the time series of all the three oscillators θi, which can be obtained from simulating the
system.

Generating input data from a stochastic phase model. We first obtain synthetic test data
by simulating the system (4.38) using the Euler-Maruyama method from t = 0 to t = 2000
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with a uniform time step ∆t = 0.001 starting from initial conditions θi(0), which are uniformly
distributed random numbers in the interval [0,2π], forming M = 2× 106 data points. In our
simulations, we choose the parameter values ω1 = 1−δ ,ω2 = 1+δ ,ω3 = 1.0,α = 0.03, and
β = 0.91, with δ = 0.1, and a noise intensity Di = D = 0.0005. To simulate the influence of
Gaussian white noises ξi, we use the generator of pseudo random numbers. We need a sample of
independent random variables ξi(tm) at each of the values of the time tm = mh(m = 1, . . . ,M)

in the discretization, distributed as
√

∆tN (0,1). Hence, we obtain a numerical multivariate
time series ϒ = {θi(tm)}2000

tm=1 that represents the network dynamics (4.38), which are depicted in
figure 11.
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Figure 11 – The time series of the three oscillators described by the master-slave configuration (equation
(4.38)). Parameter values are ω1 = 1− δ ,ω2 = 1+ δ ,ω3 = 1.0,β = 0.91, and α = 0.03,
where δ = 0.1. The system was simulated from time t = 0 to t = 2000 with a uniform time-
step ∆t = 0.001 using the Euler-Maruyama scheme, starting from initial conditions θi(0),
which were uniformly distributed random numbers in the interval [0,2π].

Source: Elaborated by the author.

Reconstruction of the phase dynamics. Using the data obtained in the previous section, we
aim to reconstruct the phase dynamics from it. In doing this, we first choose appropriate base
functions. Because of their oscillatory nature and periodic solutions, we use Fourier basis
functions. We choose the following 13 basis functions φφφ k(θθθ):

L = {1,sin(θi),cos(θi),sin(θi −θ j),cos(θi −θ j)}, (4.39)

for each i, j ∈ {1,2,3} and i ̸= j. This counts for K = 1+2(3)+3(3−1) = 13 basis functions.

In reconstructing the phase equations from data, we assume that the time derivatives θ̇i(t),
which can be obtained numerically, can be written as a linear combination of the pre-chosen
basis functions as

d
dt

θi(t) =
13

∑
k=1

ci,kφφφ k(θθθ(t))+
√

Diξi(t) (4.40)

where ccci := {ci,1, . . . ,ci,13} are the unknown coefficients to be estimated from a 3-dimensional
time series data {θi(tm)}M

m=1 of M discrete time points tm = m∆t, where ∆t is the sampling
interval.
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In reconstructing the phase dynamics, we implement Bayesian inference. The phase time
series {θi(t)} and the pre-chosen basis set L will be used as input for Bayesian inference to
infer the set of parameters M = {ci,k,Di}, for each i = 1,2,3 and k = 1, . . . ,13, over a single
block of data of size M = 2×106.

Moreover, we will compare the inferred mean values of the parameters {ci,k} obtained
using Bayesian inference with that of sparse recovery methods. To this end, we solve a sparse
linear regression problem

θ̇θθ i = ΦΦΦccci +ννν i, (4.41)

for each oscillator i, using SINDy algorithm with a thresholding parameter λ > 0. Here, θ̇θθ i ∈RM

denotes the numerical derivatives of the time series of the ith oscillator, ΦΦΦ ∈ RM×K denotes
the matrix of basis functions evaluated at each time series, known as the library matrix, and is
defined as

ΦΦΦ =


1 sin(θ1(t1)) . . . cos(θ1(t1)) . . . sin(θ1(t1)−θ2(t1)) . . . cos(θ2(t1)−θ3(t1))

1 sin(θ1(t2)) . . . cos(θ1(t2)) . . . sin(θ1(t2)−θ2(t2)) . . . cos(θ2(t2)−θ3(t2))
...

... . . .
... . . .

... . . .
...

1 sin(θ1(tM)) . . . cos(θ1(tM)) . . . sin(θ1(tM)−θ2(tM)) . . . cos(θ2(tM)−θ3(tM))


and ccci ∈ RK is the vector of constant coefficients to be estimated. The vector ννν ∈ RM is a noise
term, assumed to be white and Gaussian. In SINDy, we heuristically consider a thresholding
parameter λ = α

10 , where α is the coupling parameter of oscillators 1 and 2.

The recovered coefficients from a single block of data are presented in table 1. Table 1
shows that Bayesian inference is accurate with an error of 0.0163%. Both methods predict well.

Effect of the length of the time series on model reconstruction. Here we discuss the accuracy
of the model reconstruction on the number of data points M = T/∆t. What is the minimum time
required to obtain an accurate model reconstruction?

In such network reconstruction problems, typically, there are two types of errors: true
connections might be absent in the reconstruction or non-existing connections may present in
the reconstruction. We quantify such binary classification into two types of errors:

• False positives – non-existing connections that are nevertheless present in the reconstruc-
tion

• False negatives – existing connections that are not present in the reconstruction

Let P denote the set of indices of the interactions in the library L . By reconstruction, we have

P := {1 ≤ k ≤ 12 : φφφ k ∈ L }.



76 Chapter 4. Reconstruction of Network Phase Dynamics from Data

Table 1 – Model reconstruction from a 3-dimensional time series data of length M = 2×106 obtained by
simulating system (4.38) with model parameter values ω1 = 0.9,ω2 = 1.1,ω3 = 1.0,α = 0.03,
and β = 0.91 and noise intensity D = 5×10−4. Bayesian inference is implemented for a single
block of data of time t = 2000 s to obtain the inferred mean values of the coefficients {ci,k}.
SINDy is implemented with a thresholding parameter of λ = α

10 . In both case, we considered
K = 13 basis functions φφφ kkk ∈ L .

index φφφ k ∈ L
Bayesian Inference Sparse recovery
θ̇1 θ̇2 θ̇3 θ̇1 θ̇2 θ̇3

0 1 0.900 1.10 1.00 0.900 1.101 1.000
1 sinθ1 0 0 0 0 0 0
2 sinθ2 0 0.001 0 0. 0. 0.
3 sinθ3 0 0.001 0.911 0. 0. 0.911
4 cosθ1 0 0 0 0. 0. 0.
5 cosθ2 0.002 0 0 0. 0. 0.
6 cosθ3 0 0 0.001 0. 0. 0.
7 sin(θ1 −θ2) 0 0 0 0. 0. 0.
8 sin(θ1 −θ3) -0.03 0 0 -0.03 0. 0.
9 sin(θ2 −θ3) -0.001 -0.03 0 0. -0.03 0.

10 cos(θ1 −θ2) 0 0 0 0. 0. 0.
11 cos(θ1 −θ3) 0 0 0 0. 0. 0.
12 cos(θ2 −θ3) 0 0 0 0. 0. 0.

Source: Elaborated by the author.

For each oscillator i, let Pi denote the set of indices of active interaction functions of node i of
the original network. Then we have

Pi := {k ∈ P : φφφ k is an active basis element in the dynamics of node i}.

From the given phase equations, we see that sin(θ3 −θ1),sin(θ3 −θ2), and sinθ3, respectively,
are the corresponding active basis elements of oscillators 1,2, and 3.

Let P̂i denote the set of indices of the reconstructed basis elements of node i ∈ {1,2,3},
respectively, using the SINDy and Bayesian inference methods. Let the estimated links of the
reconstruction for node i be denoted by wi,k ∈ {|ĉi,k| |k ∈ P̂i}. Then we define the weighted
fractions of false positives, wFP , and the weighted fractions of false negatives, wFN, in the
reconstruction for each node i as:

wFPi :=
∑k∈P wi,k1P̂i∩Pc

i
(k)

∑k∈P

(
wi,k1P̂i∩(Pi)c(k)+1(P̂i)c∩(Pi)c(k)

) , (4.42)

wFNi :=
∑k∈P 1(P̂i)c∩Pi

(k)

∑k∈P 1Pi(k)
, (4.43)

where 1A is the indicator function of the set A, defined as

1A(k) =

1 if k ∈ A

0 if k /∈ A.
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Figure 12 – Bayesian inference and SINDy are compared against the effects of varying the length of the
time series. We plotted weighted fractions of false positive links vs. length of time series. The
length of the time series varied from T = 50 to T = 1000. At all times, the noise level was set
to be Di = 5×10−4.

Figure 12 shows that Bayesian inference predicts better when the time series is relatively
short. We also observe that both methods are accurate as the length of the time series increases.

Robustness to noise. We study the robustness of the techniques by plotting the false positive
links of the reconstruction against the noise intensity D. The results are illustrated in figure 13. It
shows that both methods give accurate results when the noise intensity is small enough. Bayesian
inference predicts better when the noise intensity is relatively large.

4.3.2 Reconstruction from coupled Van der Pol oscillators

In practice, we do not observe phases directly but rather some variables from which we
need to calculate phases. To this end, we consider two weakly coupled Van der Pol oscillators
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Figure 13 – Bayesian inference and SINDy are compared against the effects of noise. We plotted weighted
fractions of false positive links vs. the noise level D. The noise levels were varying on the
interval [10−5,0.006] in steps of 5×10−4. In all cases, the length of the time series was fixed
to be T = 1000 with time step 0.001.

with additive noise, defined as:

d2x1

dt2 = µ(1− x2
1)

dx1

dt
−ω

2
1 x1 +α(x2 − x1)+

√
D1ξ1(t),

d2x2

dt2 = µ(1− x2
2)

dx2

dt
−ω

2
2 x2 +α(x1 − x2)+

√
D2ξ2(t),

(4.44)

where xi(t) is the state variable of the ith oscillator at time t, µ is a constant parameter, α is
the coupling strength, and ωi is the natural frequency of the ith oscillator. The noise term ξi

is assumed Gaussian white noise with ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξ j(t ′)⟩ = δi jδ (t − t ′), and Di ∈ R
represents the strength of the noise term assumed to be O(α).

When the oscillators are uncoupled and in the absence of noise, the system (4.44) is
reduced to

dui

dt
= fi(ui), i = 1,2, (4.45)

where ui = [xi, ẋi]
T represents the state of the ith Van der Pol oscillator, and the vector field

fi = [ẋi,µ(1− x2
i )ẋi −ω2

1 xi]
T denotes the isolated dynamics of the ith oscillator. It can be shown

that fi has an exponentially stable limit cycle γi with period Ti =
2π

ωi
.

In this context, we assume that the coupling strength α is sufficiently small. Then, we can
introduce a phase θi ∈ S1 and define the corresponding asymptotic phase Θi(u) ∈ S1 for each fi
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such that Θi(u) = θi(t). Therefore, by virtue of the phase reduction method and equation (2.59),
the system (4.44) can be reduced into the following first-order phase equations of the form

dθi

dt
= ωi +αqi(θi,θ j)+ηi(t)+O(α2), (4.46)

where θi is the phase of the ith oscillator which increases uniformly in the absence of coupling
and noise, and qi the phase coupling function of the ith oscillator, and takes the form

qi(θi,θ j) = Zi(θi) ·hi(θ j,θi) (4.47)

and the noise induced in the dynamics ηi(t) takes the form

ηi(t) =
√

DiZi(θi)ξi(t), (4.48)

where Zi(θi) = ∇Θi(ui)|ui=γi(θi) is the phase sensitivity function.

We aim to reconstruct the phase dynamics of the two coupled Van der Pol oscillators
when only the variables xi are observable.

Phase dynamics reconstruction. The first ingredient is to obtain time-series data. To do this, we
first simulate the system (4.44) using the Euler-Maruyama method with time step ∆t = 0.01 and
use M = 105 data points each starting from initial conditions [xi(0), ẋi(0)]T . In our simulations,
we set the parameter values ω1 = 1.02,ω2 = 0.98, and α = 0.01. We consider noise levels
D1 = D2 = D = 0.0005. To simulate the influence of Gaussian white noises ξi, we use the
generator of pseudo random numbers. We need a sample of independent random variables ξi(tm)

at each of the values of the time tm = m∆t (m = 1, . . . ,M) in the discretization, distributed as√
∆tN (0,1). Hence, we obtain the data set

Y := {[xi(tm), ẋi(tm)]T : tm = m∆t,m = 1, . . . ,M; i = 1,2}.

The next step is to estimate the phases from each time series. There are a number of techniques. In
this section, we obtain the time series of the oscillations’ unwrapped phases {ϑi(t1), . . . ,ϑi(tM)}
from the time series of xi(t) and ẋi(t) using the formula

ϑi(t) =−arctan
(

ẋi(t)
xi(t)

)
, i = 1,2, (4.49)

where the arctan is defined as a four-quadrant operation. This phase ϑi(t) is a surrogate and not
necessarily equal to the true phase θi(t), but all relevant information can be obtained from it. In
figure 14, we show the trajectories of the state variables xi(t) and the time series of the phases
ϑi(t). The resulting phase time series {ϑi(tm) : tm = m∆t,m = 1, . . . ,M; i = 1,2} of M = 105 data
points are used as the input for reconstructing the phase dynamics equations of each oscillator.
This number of data points corresponds to approximately 160 periods of each oscillator as
ωi ≈ 1, i = 1,2.
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Figure 14 – Simulations of the coupled Van der Pol oscillators (Eq. (4.44). (a) Trajectories of the state
variables xi(t). (b) Time series of the unwrapped phases ϑi(t). The parameter values are
ω1 = 1.02,ω2 = 0.98, and α = 0.01. The system was integrated using the Euler-Maruyama
method with a time step ∆t = 0.01 and M = 105 data points each starting from initial
conditions [xi(0), ẋi(0)]T = [1,0].

Source: Elaborated by the author.

In reconstructing the phase equations, the next step is to compute numerically the
derivatives of all phases ϑi(t), and we aim to fit the unknown coefficients of the phase model of
each oscillator which can be described by the following stochastic differential equations

dϑi

dt
= Fi(ϑi,ϑ j)+ηi(t), i = 1,2, (4.50)

from the data ϑ̇i(t). In practice, we assume that the function Fi can be written as a linear
combination of a finite set L of candidate functions as

Fi(ϑi,ϑ j) =
K

∑
k=1

ci,kφφφ k(ϑϑϑ(t)) (4.51)

where φφφ k(ϑϑϑ(t)) ∈ L are K pre-chosen basis functions, and the coefficients {ci,k} are unknown
parameters to be determined from the data. In this case, we choose the following trigonometric
basis functions:

L = {1,sin(ϑi),cos(ϑi),sin(ϑi −ϑ j),cos(ϑi −ϑ j)}, (4.52)

for each i, j = 1,2 and i ̸= j. This counts for K = 7 basis functions.

The results obtained using Bayesian inference and SINDy are displayed in table 2. The
results in table 2 show that the only terms that survive in the dynamics of ϑi are the natural
frequencies ωi and the diffusive coupling cos(ϑ1 −ϑ2) with coupling parameter ∼ 0.005, correct
to three decimal places. This conclusion agrees with both methods. In Bayesian inference, the
noise terms ηi(t) are also estimated.
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Table 2 – Model reconstruction from a 2-dimensional time series data of length M = 105 obtained by
simulating system (4.44) with model parameter values ω1 = 0.1.02,ω2 = 0.98, and α = 0.01
and noise intensity D = 5× 10−4. Bayesian inference is implemented for a single block of
data of time t = 1000 s to obtain the inferred mean values of the coefficients {ci,k}. SINDy is
implemented with a thresholding parameter of λ = α

10 . In both case, we considered K = 7 basis
functions φφφ kkk ∈ L .

index φφφ k ∈ L
Bayesian Inference SINDy

θ̇1 θ̇2 θ̇1 θ̇2

0 1 1.022 0.982 1.0216 0.9816
1 sinθ1 0. 0. 0. 0.
2 sinθ2 0. 0. 0. 0.
3 cosθ1 0. 0. 0. 0.
4 cosθ2 0. 0. 0. 0.
5 sin(θ1 −θ2) 0. 0. 0. 0.
6 cos(θ1 −θ2) −0.0055 −0.004487 −0.0055 −0.0045

Source: Elaborated by the author.

4.4 Emergence of hypernetworks from networks of weakly
coupled oscillators

4.4.1 Introduction

Many natural systems ranging from biology (ASHRAF et al., 2016), physics (NIXON
et al., 2013; MATHENY et al., 2014), and chemistry (SEBEK; TÖNJES; KISS, 2016) to
neuroscience (ERMENTROUT; TERMAN, 2012) are rhythmical in nature and can be well
modeled using networks of coupled limit-cycle oscillators. The collective dynamics of such
systems can be studied and derived from the interactions of such networks (OMEL’CHENKO;
WOLFRUM, 2012). Moreover, other emergent phenomena of such systems can be derived from
the pairwise interactions of such networks. The phase reduction theory (NAKAO, 2015) can
be used to analyze such networks of coupled oscillators by explicitly introducing the phases
to reduce the dynamics. Phase reduction of first-order approximation is usually valid for small
coupling. Derivation of higher-order corrections would extend the validity of the phase reduction
beyond small coupling strength. This would help us understand complex networks’ dynamics
and other emergent phenomena.

In this section, we aim to show a case where although the dynamics in the network
are purely pairwise, due to the nonlinearity of the coupling functions, we reveal higher-order
interaction terms (hypernetworks). We first employ the perturbative theory to explicitly obtain
phase equations with higher-order interaction terms. We demonstrate this by deriving the second-
order phase equations followed by the averaging approach for a ring network of four weakly
coupled limit cycle oscillators. Finally, we verify the result using sparse model recovery from
simulated data.
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4.4.2 Network dynamics of coupled limit-cycle oscillators

We consider a network of N coupled oscillators, where the governing equations of each
oscillator j ∈ {1, . . . ,N} is given by

ż j = f j(z j)+α

N

∑
k=1

A jkh j(z j,zk), (4.53)

where z j ∈C is the state of the jth oscillator, f j :C→C is its isolated vector field, h j :C×C→C
is the pairwise coupling function, AAA = (A jk)

N
j,k=1 is the adjacent matrix describing the network

structure, and α > 0 is the coupling strength. We assume that the isolated dynamics of the
oscillators are described by

f j(z j) = (γ + iω j)z j +β j|z j|2z j (4.54)

where i2 =−1, the parameter λ ∈ R, and ω j ∈ R are the natural frequency of the ith oscillator.
Throughout we fix β j =−1, but this value is immaterial.

Assumptions on ω j and α . The frequencies ω j satisfy the resonance condition:

ω1 +ω3 −ω2 ≈ 0 and ω1 +ω3 −ω4 ≈ 0

and the coupling is assumed small, i.e., α ≪ 1.

The network structure is a 4-node ring. We consider a 4-node ring network (figure 15a) with a
coupling function of the form

h(z,w) = (z+ z2)w̄. (4.55)

In rectangular coordinates zk = xk + iyk, we may re-express the dynamics (4.53) in a 2N-
dimensional Euclidean space, via

ẋk = γxk −ωkyk +β (x2
k + y2

k)xk +α

N

∑
l=1

Akl
[
((xk +(x2

k − y2
k))xl +(yk +2xkyk)yl

]
ẏk = γyk +ωkxk +β (x2

k + y2
k)yk +α

N

∑
l=1

Akl
[
(yk +2xkyk)xl − (xk +(x2

k − y2
k))yl

]
.

(4.56)

In the absence of coupling (i.e. α = 0), using polar coordinates zk = rkeiθk , the equations for the
amplitude rk and the angle variable θk can be decoupled into:

ṙk = rk(γ − r2
k),

θ̇k = ωk

for each k = 1,2,3,4. Hence for γ > 0 and α = 0 there is an exponentially limit cycle {u(t)}
with a radius rk = r∗(γ) =

√
γ , and with angular frequency ωk. So, when the oscillators are

uncoupled, there is an attracting 4-torus T4.
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(a) The original network (b) Emergent hypernetwork

Figure 15 – (a) The emergent hypernwtwork from the original ring network with a coupling function of the
form h(z,w) = (z+z2)w̄. The frequencies ωk satisfy resonance conditions ω2 ≈ω1+ω3 ≈ω4.
We also observe the emergence of diffusive coupling of oscillators 2 and 4.

Source: Elaborated by the author.

For small coupling, the 4-torus is persistent, due to the exponentially stable limit cycle
(HIRSCH; PUGH; SHUB, 1977; ELDERING, 2013b). In this case, the phase reduction method
guarantees us that the network dynamics can be reduced to phase equations (KURAMOTO,
1984b; NAKAO, 2015), and the most relevant information about the system can be obtained
from it.

4.4.3 Phase dynamics via phase reduction

Introducing the amplitudes and the phase variables according to zk = rk exp(iθk), we
obtain a system of equations in the form:

ṙ1 = γr1 − r3
1 +α

[
r1r4 cos(θ4)+ r1r2 cos(θ2)+ r2

1r4 cos(θ1 −θ4)+ r2
1r2 cos(θ1 −θ2)

]
(4.57)

ṙ2 = γr2 − r3
2 +α

[
r2r1 cos(θ1)+ r2r3 cos(θ3)+ r2

2r1 cos(θ2 −θ1)+ r2
2r3 cos(θ2 −θ3)

]
(4.58)

ṙ3 = γr3 − r3
3 +α

[
r3r2 cos(θ2)+ r3r4 cos(θ4)+ r2

3r2 cos(θ3 −θ2)+ r2
3r4 cos(θ3 −θ4)

]
(4.59)

ṙ4 = γr4 − r3
4 +α

[
r4r3 cos(θ3)+ r4r1 cos(θ1)+ r2

4r3 cos(θ4 −θ3)+ r2
4r1 cos(θ4 −θ1)

]
(4.60)

θ̇1 = ω1 +α [−r4 sin(θ4)− r2 sin(θ2)+ r1r4 sin(θ1 −θ4)+ r1r2 sin(θ1 −θ2)] (4.61)

θ̇2 = ω2 +α [−r1 sin(θ1)− r3 sin(θ3)+ r2r1 sin(θ2 −θ1)+ r2r3 sin(θ2 −θ3)] (4.62)

θ̇3 = ω3 +α [−r2 sin(θ2)− r4 sin(θ4)+ r3r2 sin(θ3 −θ2)+ r3r4 sin(θ3 −θ4)] (4.63)

θ̇4 = ω4 +α [−r3 sin(θ3)− r1 sin(θ1)+ r4r3 sin(θ4 −θ3)+ r4r1 sin(θ4 −θ1)] (4.64)

In the zero-order of α , the amplitude dynamics, equations (4.57)–(4.60), become

rk =
√

γ +O(α), (4.65)
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Substituting these expressions of rk in the expressions of θ̇k, equations (4.61)–(4.64), we obtain
the phase equations in the leading order of α as:

θ̇1 = ω1 −α
√

γ[sinθ2 + sinθ4]+αγ[sin(θ1 −θ2)+ sin(θ1 −θ4)]+O(α2),

θ̇2 = ω2 −α
√

γ[sinθ1 + sinθ3]+αγ[sin(θ2 −θ1)+ sin(θ2 −θ3)]+O(α2),

θ̇3 = ω3 −α
√

γ[sinθ2 + sinθ4]+αγ[sin(θ3 −θ2)+ sin(θ3 −θ4)]+O(α2),

θ̇4 = ω4 −α
√

γ[sinθ1 + sinθ3]+αγ[sin(θ4 −θ1)+ sin(θ4 −θ3)]+O(α2).

(4.66)

In the first order in α , we see that the coupling structure of the original network is preserved.
However, we aim to recover hypernetworks from data. To this end, we introduce new phase
variables as

ϑk(t) := θk(t)−Ωkt, k ∈ {1, . . . ,N}, (4.67)

where each frequency Ωk satisfies the resonance condition

Ω1 −Ω2 +Ω3 = 0 and Ω1 −Ω4 +Ω3 = 0. (4.68)

In terms of the new phases ϑk(t), the phase equations (4.66) are reduced into:

ϑ̇1 = δ1 −α (
√

γ[sin(ϑ2 +Ω2t)+ sin(ϑ4 +Ω4t)]− γ[sin(ϑ1 −ϑ2 −Ω3t)+ sin(ϑ1 −ϑ4 −Ω3t)])

+O(α2),

ϑ̇2 = δ2 −α (
√

γ[sin(ϑ1 +Ω1t)+ sin(ϑ3 +Ω3t)]− γ[sin(ϑ2 −ϑ1 +Ω3t)+ sin(ϑ2 −ϑ3 +Ω1t)])

+O(α2),

ϑ̇3 = δ3 −α (
√

γ[sin(ϑ2 +Ω2t)+ sin(ϑ4 +Ω4t)]− γ[sin(ϑ3 −ϑ2 −Ω1t)+ sin(ϑ3 −ϑ4 −Ω1t)])

+O(α2),

ϑ̇4 = δ4 −α (
√

γ[sin(ϑ1 +Ω1t)+ sin(ϑ3 +Ω3t)]− γ[sin(ϑ4 −ϑ1 +Ω3t)+ sin(ϑ4 −ϑ3 +Ω1t)])

+O(α2),

(4.69)

where δk := ωk −Ωk ≈ O(α), for each k. It can be easily seen that each ϑ̇k is O(α). Then, ϑk(t)

is a slowly varying variable, while Ωkt varies rapidly. Thus, we may approximate the right-hand
side of the last equation by integrating it over one period T of the fast oscillation, assuming that
ϑk(t) does not vary within T .

The last equations can be rewritten as

ϑ̇k = δk +αΓk(ϑϑϑ , t)+O(α2), k ∈ {1,2,3,4}, (4.70)

where Γk is the phase coupling function of oscillator k. The idea is to apply the averaging theorem
(SANDERS; VERHULST; MURDOCK, 2007, Theorem 4.3.6) on equation (4.70). We notice
that Γk is a sum of periodic functions in t, and hence is almost periodic in t. In particular, we can
apply (SANDERS; VERHULST; MURDOCK, 2007, Lemma 4.6.5) which corresponds to our
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case, in which the vector field is decomposed as a finite sum of periodic vector fields. Without
loss of generality, we can decompose Γ1 as a finite sum of m periodic vector fields

Γ1(ϑϑϑ , t) =
m

∑
k=1

Γ
k
1(ϑϑϑ , t).

It follows that the averaged vector field is given by

Γ̄1(ϑϑϑ) := lim
T→0

1
T

∫ T

0
Γ1(ϑϑϑ , t) dt = lim

T→0

1
T

∫ T

0

m

∑
k=1

Γ
k
1(ϑϑϑ , t) dt

= lim
T→0

m

∑
k=1

1
Tk

∫ Tk

0
Γ

k
1(ϑϑϑ , t) dt.

In particular, we see that the first two terms in the sum are of period T = 2π

Ω2
, whereas the last

two terms in the sum are of period 2π

Ω3
. Let us introduce new phase variables

ϕ1 = ϑ2 +Ω2t,ϕ2 = ϑ4 +Ω4t,ϕ3 = ϑ1 −ϑ2 −Ω3t,ϕ4 = ϑ1 −ϑ4 −Ω3t.

So, we apply the averaging theorem as follows:

Γ̄1(ϑϑϑ) :=
√

γ

2π

{∫ 2π

0
sin(ϕ1)dϕ1 +

∫ 2π

0
sin(ϕ2)dϕ2

}
+

γ

2π

{∫ 2π

0
sin(ϕ3)dϕ3 +

∫ 2π

0
sin(ϕ4)dϕ4

}
= 0.

We see that the whole interaction terms which are linear in α vanish. This shows that the phase
reduction in the leading order of α is not enough to analyze the network dynamics. And hence
we require higher-order phase reduction. In this context, we only focus on the second-order
phase reduction. In doing this, instead of the amplitude dynamics given in equation (4.65) where
the amplitudes rk are assumed constant and equal to the amplitude of the stable limit cycle, we
assume that the amplitudes rk is a function of the phases (GENGEL et al., 2020), where they
studied theoretical analysis of higher-order phase reduction in networks of coupled oscillators.

Second-order phase reduction. Applying the perturbation method (KURAMOTO, 1984a;
GENGEL et al., 2020), we assume that the amplitude rk is a function of the phases:

rk =
√

γ +αR(1)
k (θ1,θ2, . . .)+α

2R(2)
k (θ1,θ2, . . .)+ . . . , k = 1,2,3,4, (4.71)

where R(1)
k ,R(2)

k , . . . are unknown functions of the phases to be determined. Since we are limiting
our discussion to second-order phase approximations, obtaining R(1)

k for each k = 1,2,3,4 would
be enough in this context. We see that

rmrk = γ +α
√

γ

(
R(1)

m +R(1)
k

)
+ . . . ;

r2
mrk = γ

3/2 +αγ

(
R(1)

k +2R(1)
m

)
+ . . . , m,k = 1,2,3,4.
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Substituting the last expressions of rk in equations (4.61)–(4.64), we obtain the following
expressions for the dynamics of the phases, up to the order α2:

θ̇1 = ω1 −α
√

γ(sin(θ4)+ sin(θ2))+αγ(sin(θ1 −θ4)+ sin(θ1 −θ2))−α
2(R(1)

4 sinθ4 +R(1)
2 sinθ2)

+α
2√

γ(R(1)
1 +R(1)

4 )sin(θ1 −θ4)+α
2√

γ(R(1)
1 +R(1)

2 )sin(θ1 −θ2)+ . . . ,

θ̇2 = ω2 −α
√

γ(sin(θ1)+ sin(θ3))+αγ(sin(θ2 −θ1)+ sin(θ2 −θ3))−α
2(R(1)

1 sinθ1 +R(1)
3 sinθ3)

+α
2√

γ(R(1)
1 +R(1)

2 )sin(θ2 −θ1)+α
2√

γ(R(1)
3 +R(1)

2 )sin(θ2 −θ3)+ . . . ,

θ̇3 = ω3 −α
√

γ(sin(θ2)+ sin(θ4))+αγ(sin(θ3 −θ2)+ sin(θ3 −θ4))−α
2(R(1)

2 sinθ2 +R(1)
4 sinθ4)

+α
2√

γ(R(1)
2 +R(1)

3 )sin(θ3 −θ2)+α
2√

γ(R(1)
4 +R(1)

3 )sin(θ3 −θ4)+ . . . ,

θ̇4 = ω4 −α
√

γ(sin(θ3)+ sin(θ1))+αγ(sin(θ4 −θ3)+ sin(θ4 −θ1))−α
2(R(1)

3 sinθ3 +R(1)
1 sinθ1)

+α
2√

γ(R(1)
3 +R(1)

4 )sin(θ4 −θ3)+α
2√

γ(R(1)
1 +R(1)

4 )sin(θ4 −θ1)+ . . . .

(4.72)

Next, we have to evaluate the function R(1)
k . This is accomplished by substituting expressions

(4.71) in the equations for the amplitudes in equations (4.57)–(4.59) and (4.60). To this end, we
get

α
dR(1)

1
dt

+ · · ·= α

{
(−2γ)R(1)

1 + γ(cos(θ4)+ cos(θ2))+ γ
3/2(cos(θ1 −θ4)+ cos(θ1 −θ2))

}
+ . . . .

Equating the terms of powers of α , we obtain that

dR(1)
1

dt
=−2γR(1)

1 + γ(cos(θ4)+ cos(θ2))+ γ
3/2(cos(θ1 −θ4)+ cos(θ1 −θ2)), (4.73)

and so on. Here the time derivatives are calculated according to the chain rule, as the function
R(1)

k is assumed to be a function of phases θk.

dR(1)
1

dt
=

∂R(1)
1

∂θ1
θ̇1 +

∂R(1)
1

∂θ2
θ̇2 +

∂R(1)
1

∂θ3
θ̇3 +

∂R(1)
1

∂θ4
θ̇4 ≈

∂R(1)
1

∂θ1
ω1 +

∂R(1)
1

∂θ2
ω2 +

∂R(1)
1

∂θ3
ω3 +

∂R(1)
1

∂θ4
ω4,

(4.74)

we have used the zero-order expressions for the derivatives θ̇k, i.e. we assumed θ̇k ≈ ωk.

We can rewrite equation (4.73) as:

∂R(1)
1

∂θ1
ω1 +

∂R(1)
1

∂θ2
ω2 +

∂R(1)
1

∂θ3
ω3 +

∂R(1)
1

∂θ4
ω4 +2γR(1)

1 = G1(θ1, . . . ,θ4), (4.75)

where

G1(θ1, . . . ,θ4) := γ(cos(θ4)+ cos(θ2))+ γ
3/2(cos(θ1 −θ4)+ cos(θ1 −θ2)) (4.76)

We notice that the problem of determining the function R(1)
1 is reduced to solving a partial

differential equation (PDE).
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Notice that G1(θ1, . . . ,θ4) is 2π-periodic in its arguments θ1 . . . ,θ4, and hence can be
expressed using Fourier series as

G1(θ1, . . . ,θ4) = ∑
m1,...,m4

gm1,...,m4ei(m1θ1+···+m4θ4).

This implies the right-hand side of the amplitude dynamics rk can be expressed using the Fourier
series.

We consider the following ansatz for the function R(1)
1 as:

R(1)
1 = ∑

m1,...,m4

ρm1,...,m4ei(m1θ1+···+m4θ4).

where the Fourier coefficients ρm1,...,m4 are unknown to be determined. Then, the partial deriva-
tives of R(1)

1 with respect to the phases θk are

∂R(1)
1

∂θ1
= im1 ∑

m1,...,m4

ρm1,...,m4ei(m1θ1+···+m4θ4) = im1R(1)
1 ,

∂R(1)
1

∂θ2
= im2 ∑

m1,...,m4

ρm1,...,m4ei(m1θ1+···+m4θ4) = im2R(1)
1 ,

∂R(1)
1

∂θ3
= im3 ∑

m1,...,m4

ρm1,...,m4ei(m1θ1+···+m4θ4) = im3R(1)
1 ,

∂R(1)
1

∂θ4
= im4 ∑

m1,...,m4

ρm1,...,m4ei(m1θ1+···+m4θ4) = im4R(1)
1 .

Substituting these last expressions into equation (4.75) and equating the coefficients of the
Fourier terms, we obtain the Fourier coefficients of R(1)

1 . It follows that the Fourier coefficients
of R(1)

1 are given by

ρm1,...,m4 =
gm1,...,m4

2γ + i(ω1m1 +ω2m2 +ω3m3 +ω4m4)
. (4.77)

Using this last expression and equation (4.75), we obtain that

R(1)
1 = a′4 cos(θ4)+b′4 sin(θ4)+a′2 cos(θ2)+b′2 sin(θ2)+ c′1,4 cos(θ1 −θ4)+d′

1,4 sin(θ1 −θ4)

+ c′1,2 cos(θ1 −θ2)+d′
1,2 sin(θ1 −θ2), (4.78)

R(1)
2 = a′1 cos(θ1)+b′1 sin(θ1)+a′3 cos(θ3)+b′3 sin(θ3)+ c′2,1 cos(θ2 −θ1)+d′

2,1 sin(θ2 −θ1)

+ c′2,3 cos(θ2 −θ3)+d′
2,3 sin(θ2 −θ3), (4.79)

R(1)
3 = a′2 cos(θ2)+b′2 sin(θ2)+a′4 cos(θ4)+b′4 sin(θ4)+ c′3,2 cos(θ3 −θ2)+d′

3,2 sin(θ3 −θ2)

+ c′3,4 cos(θ3 −θ4)+d′
3,4 sin(θ3 −θ4), (4.80)

R(1)
4 = a′3 cos(θ3)+b′3 sin(θ3)+a′1 cos(θ1)+b′1 sin(θ1)+ c′4,3 cos(θ4 −θ3)+d′

4,3 sin(θ4 −θ3)

+ c′4,1 cos(θ4 −θ1)+d′
4,1 sin(θ4 −θ1), (4.81)
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where we have used the definitions

a′m =
2γ2

4γ2 +ω2
m
, b′m =

ωmγ

4γ2 +ω2
m
,

c′m,k =
2γ2

4γ2 +(ωm −ωk)2 , d′
m,k =

(ωm −ωk)γ
3/2

4γ2 +(ωm −ωk)2 . (4.82)

Substitution of the expressions R(1)
1 ,R(1)

2 ,R(1)
3 , and R(1)

4 in equation (4.72) completes the second-
order phase reduction and yields closed equations for θ̇k for each k = 1,2,3,4. In this case, we
obtain the phase equations

θ̇1 = ω1 −α
√

γ (sin(θ4)+ sin(θ2))+αγ (sin(θ1 −θ4)+ sin(θ1 −θ2))+α
2
Γ

2
1(θ1,θ2,θ3,θ4),

(4.83)

θ̇2 = ω2 −α
√

γ (sin(θ1)+ sin(θ3))+αγ (sin(θ2 −θ1)+ sin(θ2 −θ3))+α
2
Γ

2
2(θ1,θ2,θ3,θ4),

(4.84)

θ̇3 = ω3 −α
√

γ (sin(θ2)+ sin(θ4))+αγ (sin(θ3 −θ2)+ sin(θ3 −θ4))+α
2
Γ

2
3(θ1,θ2,θ3,θ4),

(4.85)

θ̇4 = ω4 −α
√

γ (sin(θ3)+ sin(θ1))+αγ (sin(θ4 −θ3)+ sin(θ4 −θ1))+α
2
Γ

2
4(θ1,θ2,θ3,θ4)

(4.86)

in order of α2.

The expressions of the functions Γ2
k(·) are given in the appendix B in equations (B.1)–(B.3)

and (B.4). From these expressions, we now explain the terms that appear in the second order of
α .

Considering the dynamics of θ̇1, for example, we observe that in the second order
approximation; there are constant terms and terms containing the second harmonics of the
phase difference, e.g. ∼ cos(2θ1 −2θ2). These terms do not arise from the interaction within
the network. Moreover, there are higher-order interactions such as ∼ sin(θ1 +θ3 −θ4) and
∼ cos(2θ2 −θ3 −θ1) appear in the dynamics. This shows the emergence of hypernetworks from
only pairwise couplings. The goal is to recover hypernetworks from data.

Introducing new phase variables

ϑk(t) = θk(t)−Ωkt, k ∈ {1, . . . ,N}, (4.87)

where each frequency Ωk satisfies the resonance conditions in equation (4.68). In terms of the
new phases, we have

ϑ̇k = δk +αΓ
1
k(ϑ1,ϑ2,ϑ3,ϑ4; t)+α

2
Γ

2
k(ϑ1,ϑ2,ϑ3,ϑ4; t)+O(α3), k ∈ {1,2,3,4}, (4.88)

where δk = ωk −Ωk ≈ O(α), and the phase coupling functions Γ1
k(·) and Γ2

k(·), respectively,
are of order ∼ α and ∼ α2 terms in equations (4.83)–(4.86), which are periodic functions in
t. In particular, the functions Γ1

k(·) and Γ2
k(·) can be decomposed as a finite sum of periodic
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functions in t. Hence, we can apply the results of (SANDERS; VERHULST; MURDOCK,
2007, Lemma 4.6.5) as in the previous discussion. In doing so, in the averaging sense, Γ1

k

vanishes for each k = 1,2,3,4. Notice that θ2 −θ4 = ϑ2 −ϑ4,θ1 +θ3 −θ2 = ϑ1 +ϑ3 +ϑ2, and
θ1 +θ3 −θ4 = ϑ1 +ϑ3 −ϑ4. Hence, the only terms which survive in the function Γ2

k are the
constant terms, diffusive terms with pairwise resonant ∼ ϑ2 −ϑ4, and the triplet interactions
with triplet resonants ∼ ϑ1 +ϑ3 −ϑ2 and ∼ ϑ1 +ϑ3 −ϑ4. That means all non-resonant terms in
α2 are discarded. Setting

φ1 := ϑ1 +ϑ3 −ϑ2,

φ2 := ϑ1 +ϑ3 −ϑ4.

we obtain the reduced second-order phase equation in order of α2 as:

ϑ̇1 = ε1 −α
2
γ

3/2 {B3 [cos(φ1)+ cos(φ2)]−A3 [sin(φ1)+ sin(φ2)]}+α
2
γ

2(D1,2 +D1,4)cos(ϑ2 −ϑ4)

ϑ̇2 = ε2 −α
2
γ

3/2 {(A1 +A3)sin(φ1)− (B1 +B3)cos(φ1)}+α
2
γ

2(C1,4 +C3,4)sin(ϑ2 −ϑ4)

+α
2
γ

2(D1,4 +D3,4)cos(ϑ2 −ϑ4)

ϑ̇3 = ε3 −α
2
γ

3/2 {B1 [cos(φ1)+ cos(φ2)]−A1 [sin(φ1)+ sin(φ2)]}+α
2
γ

2(D3,2 +D3,4)cos(ϑ2 −ϑ4)

ϑ̇4 = ε4 −α
2
γ

3/2 {(A1 +A3)sin(φ2)− (B1 +B3)cos(φ2)}+α
2
γ

2(C3,2 +C1,2)sin(ϑ2 −ϑ4)

+α
2
γ

2(D3,2 +D1,2)cos(ϑ2 −ϑ4)

(4.89)

where the constant coefficients Am,Bm,Cm,k, and Dm,k are defined by

Am =
1
2

2γ

4γ2 +ω2
m

; Bm =
1
2

ωm

4γ2 +ω2
m
, for m = 1,3;

Cm,k =
1
2

2γ

4γ2 +(ωm −ωk)2 ; Dm,k =
1
2

ωm −ωk

4γ2 +(ωm −ωk)2 , for m,k ∈ {1,2,3,4}.

The constants εm in equation (4.89) are given by

εm =
(

δm +α
2
γ

2B(m)
0

)
, m ∈ {1,2,3,4},

where

B(m)
0 =

2(Dm,2 +Dm,4), for m = 1,3

−2(D1,m +D3,m), for m = 2,4.

The phase dynamics equations (4.89) show the emergence of hypernetworks while the interaction
of oscillators in the original 4-ring network is pairwise. The dynamics of oscillators 1 and 3 are
impacted by both triplet interactions: φ1 and φ2, however, the dynamics of oscillators 2 and 4
are impacted by triplet interactions φ1 and φ2, respectively. All the oscillators are impacted by
the pairwise interaction ϑ2 −ϑ4. Therefore, we can conclude that the phase dynamics of the
oscillators coupled in a ring can be described by a hypernetwork shown in figure 15b.
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Note that if γ ≪ 1, then we see that γ2 ≪ γ3/2. Hence, we can approximate the phase
equations (4.89) and get rid of the diffusive coupling term containing ϑ2 −ϑ4 to obtain

ϑ̇1 = ε1 −α
2
γ

3/2 {B3 [cos(φ1)+ cos(φ2)]−A3 [sin(φ1)+ sin(φ2)]}

ϑ̇2 = ε2 −α
2
γ

3/2 {(A1 +A3)sin(φ1)− (B1 +B3)cos(φ1)}

ϑ̇3 = ε3 −α
2
γ

3/2 {B1 [cos(φ1)+ cos(φ2)]−A1 [sin(φ1)+ sin(φ2)]}

ϑ̇4 = ε4 −α
2
γ

3/2 {(A1 +A3)sin(φ2)− (B1 +B3)cos(φ2)} .

(4.90)

These last expressions of the phase equations agree with the results in (NIJHOLT et al., 2022),
where they obtained only hypernetworks when the isolated dynamics are close to a Hopf
bifurcation using normal forms.

In the next section, we aim at reconstructing the phase equations, given multivariate time
series data ϑk(t), and compare the results with the theoretical findings.

4.4.4 Reconstruction of phase dynamics from data

The first ingredient is to obtain multivariate time-series data from the units of the ring.
To do this, we first simulate the system (4.56) using the Runge-Kutta method of order 4 or 5
(RK45) with a uniform time step ∆t = 0.01 and use M = 1×105 data points each starting from
the initial conditions zk(0) = xk(0)+ iyk(0) = rk(0)eiθk(0) with rk(0) = 1 and the initial phases
θk(0) are uniformly distributed and randomly chosen in the interval [0,2π]. In our simulations,
we fix the parameter values ω1 = 1.01,ω2 = 2.5,ω3 = 1.5,ω4 = 2.49,β = −1,α = 0.18, and
γ = 1. Hence, we obtain a multivariate time series data

Y := {zm
k := zk(tm) : tm = m∆t,m = 1, . . . ,M′;k = 1, . . . ,N}.

We only store M′ data points by discarding the first 5000 points as a transient time. The trajecto-
ries of the state variables zk(t) are displayed in the left panel of figure 16(a).

The next step is to estimate the phases from each time series. There are several techniques
in the literature. In this subsection, we extract the unwrapped phases θk(t) of each oscillator
from the time series of the state variables zk using the polar decomposition zk(t) = rk(t)eiθk(t),
where θk(t) = arctan(yk(t)/xk(t)). The time series of the phases θk(t) are depicted on the right
panel of figure 16(b). Figure 16(b) shows that each phase θk has a frequency close to ωk, which
shows that the phases increase almost linearly in time with a small coupling α .

Since the coupling is assumed small, we won’t be able to recover the coupling terms
from the data θk, or either we require a sufficiently long time series. For this reason, we need
to subtract the linear trends from θk(t) to obtain a new data set. To this end, we introduce new
phases

ϑk(t) := θk(t)−Ωkt, k ∈ {1, . . . ,N},
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Figure 16 – Simulations of the system (4.53). a) Trajectories of the state variables zk. All trajectories tend
to a stable limit cycle with radius r =

√
γ . b) Time series of the unwrapped phases θk(t) of

each oscillator k. c) The time series of the slow phases ϑk(t) = θk(t)−Ωkt of each oscillator
k. The parameter values are ωk ∈ {1.01,2.5,1.5,2.49},β =−1,α = 0.18, and γ = 1.0. The
system was simulated from time t = 0 to t = 10000 with a uniform time-step ∆t = 0.01.
We discard the first 5000 points as transient. A randomly chosen initial condition zk(0) was
evolved using RK45.

Source: Elaborated by the author.

where each frequency Ωk satisfies the resonance condition Ω1 −Ω2 +Ω3 = 0 and Ω1 −Ω4 +

Ω3 = 0. Hence, we obtain a phase model from the data ϑk(t). The resulting phase time series
{ϑk(tm) : tm =m∆t,m= 1, . . . ,M;k = 1,2,3,4} of M = 2.5×106 data points are used as the input
for reconstructing the phase dynamics equations of each oscillator. This number of data points
corresponds to approximately 4018 periods of the slowest oscillator 1 and to approximately 9948
periods of the fastest oscillators 2 and 4.

In reconstructing the phase equations, the next step is to compute numerically the time
derivatives of all phases ϑk(t), and we aim to fit the unknown coefficients of the phase model
of each oscillator. To this end, we assume that time derivatives ϑ̇i(t) can be written as linear
combinations of a few subsets of a suitably chosen set of basis functions L = {φφφ 1, . . . ,φφφ K},
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with φφφ i : RN → R, as

ϑ̇i(t) =
K

∑
k=1

ci,kφφφ k(ϑϑϑ(t)), i = 1,2,3,4. (4.91)

The choice of base functions for the inference needs to be determined so that the dynamics of
the phases ϑ̇i(t) can be reconstructed effectively. Here, we choose the following K trigonometric
basis functions φφφ k:

L = {1,sin(ϑp),cos(ϑp),sin(ϑp −ϑq),cos(ϑp −ϑq),sin(ϑp +ϑq −ϑs),cos(ϑp +ϑq −ϑs)},
(4.92)

for each p,q,s ∈ {1, . . . ,N} and p ̸= q ̸= s for each basis function φφφ k ∈ L . One can see that
the number of basis functions counts to K = N3 −2N2 +3N +1, where N = 4. In counting the
number of basis functions, we use the variations without repetition formula:

Vm(N) :=
N!

(N −m)!
,

which represents an ordered m-element group formed from a set of N elements. For example,
V2(N) = N(N −1) corresponds to the total number of pairwise couplings without repetition.

Given the data set {ϑϑϑ(ttt)}, the derivative data {ϑ̇ϑϑ(ttt)}, where ϑϑϑ(t) = (ϑ1(t), . . . ,ϑN(t))

and ttt := {t1, . . . , tM}, and a set of library of functions L , we attempt to solve the following linear
problem

Θ̇ = ΦΦΦ(Θ)CCC (4.93)

for the matrix of unknown coefficients CCC ∈ RK×4, defined as

CCC =


c1,1 c2,1 c3,1 c4,1

...
...

...
...

c1,K c2,K c3,K c4,K

=

 | | | |
ccc1 ccc2 ccc3 ccc4

| | | |

 .
The matrices Θ and Θ̇ are M by 4 data and its time derivative data, defined as

Θ :=


ϑ1(t1) ϑ2(t1) ϑ3(t1) ϑ4(t1)

ϑ1(t2) ϑ2(t2) ϑ3(t2) ϑ4(t2)
...

...
...

...
ϑ1(tM) ϑ2(tM) ϑ3(tM) ϑ4(tM)

 and Θ̇ =


ϑ̇1(t1) ϑ̇2(t1) ϑ̇3(t1) ϑ̇4(t1)

ϑ̇1(t2) ϑ̇2(t2) ϑ̇3(t2) ϑ̇4(t2)
...

...
...

...
ϑ̇1(tM) ϑ̇2(tM) ϑ̇3(tM) ϑ̇4(tM)

 ,
and ΦΦΦ := ΦΦΦ(Θ) ∈ RM×K denotes the matrix of basis functions evaluated at each time point,
where each column represents the K basis functions φφφ k whereas each row represents evaluations
of the basis functions at each phase vector ϑϑϑ

T (tm) for each time step, and is known as the library

matrix or dictionary matrix. Here M denotes the number of data points. We assume that we have
sufficiently long enough time-series data, that is, M ≫ K. Hence, we solve an overdetermined
linear system (4.93).
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In solving such inverse problems, e.g. using the ℓp-norm the least-squares solution of
system (4.93) is obtained by solving the following ℓ2-norm minimization problem:

ĉcci = argmin
ccci∈RK

∥θ̇θθ i −ΦΦΦccci∥2, (4.94)

where ccci and θθθ i are columns of the matrices CCC and Θ, respectively, for each i ∈ {1, . . . ,N}. By
the singular value decomposition (SVD), the problem (4.94) has an explicit solution

ccci = ΦΦΦ
†
θ̇θθ i

where ΦΦΦ
† = (ΦΦΦT

ΦΦΦ)−1ΦΦΦ
T is called the Moore-penrose pseudo-inverse of ΦΦΦ. By assumption,

the column vectors ccci of CCC are sparse, containing mostly zero entries, and the nonzero entries
highlight the active terms in the dynamics of the ith oscillator.

As elaborated in section 4.2.2, we implement the SINDy algorithm (BRUNTON; PROC-
TOR; KUTZ, 2016). To this end, we attempt to obtain sparse solutions using regression tech-
niques such as the sequentially thresholded least squares (STLSQ) with a thresholding parameter
λ > 0. More precisely, we iteratively apply the least-squares method for the problem (4.93) with
thresholding parameter λ > 0. In particular, a sparse vector ccci, for each column i = 1, . . . ,N,
which approximately solves Eq. (4.93) is generated by the following iterative scheme:

ccc(0)i = ΦΦΦ
†
θ̇θθ i, (4.95a)

S(n) = {1 ≤ k ≤ K | |c(n)i,k | ≥ λ}, n ≥ 0, (4.95b)

ccc(n+1)
i = argmin

ccci∈RK : supp(ccci)⊂S(n)
∥θ̇θθ i −ΦΦΦccci∥2, n ≥ 0, (4.95c)

where supp(ccci) is the support set of ccci, defined as the set of indices corresponding to its nonzero
elements. Here c(n)i,k is the kth component of the nth iteration ccc(n)i . The procedure in Eq.(4.95)
is iteratively repeated, for each oscillator i ∈ {1, . . . ,N}, until convergence or the maximum
iteration is required. We denote the inferred sparse vector by ĉcci, for each i. In implementing the
SINDy algorithm, we use PySINDy– an open-source software package that has been developed
in Python (SILVA et al., 2020).

Model selection: the choice of the thresholding parameter. Note that the estimated sparse
vector ĉcci depends on the choice of the thresholding parameter λ . At each iteration, all the
coefficients with |ci,k|< λ are set to zero. Hence, the parameter λ is important because if λ is
too small, the SINDy recovery model contains many nonzero coefficients and hence the sparsity
fails. Conversely, if λ is large then basis functions required to emulate the dynamics of the
system may be removed, resulting in a model that does not resemble the data. Hence we need to
select an appropriate value of λ .

We first select a priori a set of 50 evenly spaced possible candidates of the thresholding
parameter λ in the interval [10−5,5 × 10−3]. Each recovered coefficient vector ĉcci := ĉcci(λ )

produces an inferred phase model of varying accuracy and sparsity. From these models, we
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calculate a Pareto front and select the most parsimonious model, as shown in figure 17. A Pareto
front is calculated by plotting the number of terms on the x-axis vs an error indicating how
well ĉcci satisfies our equation (θ̇θθ i = ΦΦΦccci), on the y-axis. The most parsimonious model is readily
identifiable at the sharp drop-off in error. As we will show, this method succeeds at identifying
the correct basis terms and coefficients.

Figure 17 – Left panel: Increasing the sparsity parameter λ creates coefficient matrix ĈCC, with monoton-
ically decreasing number of terms. Right panel: For each SINDy recovery ĈCC we calculate
RMSE and produce the Pareto front. The most parsimonious model is identified at the
sharp drop-off in error, which is shown in the red spade. The parameter values are set to be
ω1 = 1.01,ω2 = 2.5,ω3 = 1.5,ω4 = 2.49,β =−1,α = 0.18, and γ = 1.0.

Source: Elaborated by the author.

In determining the accuracy of the recovered coefficients ĉcci, we choose an error metric
known as root-mean-squared error (RMSE) on the test data. To accomplish this, we split the
time-series data Θ ∈ RM×N into a training set Θt ∈ RMt×N for inferring the parameters and a
test set Θv ∈ RMv×N for evaluating the predictions. Here, Mt and Mv denote the number of data
points in the training and test sets respectively. Then, for each oscillator i, the RMSE of predicted
values ˆ̇

θθθ i := ˆ̇
θθθ i(λ ) = ΦΦΦĉcci(λ ) can be defined as

RMSE( ˙̂
θθθ i) :=

√
E(( ˙̂

θθθ i − θ̇θθ i))2, (4.96)

where E(·) denotes the mean value. If the number of data points in the validation set is denoted
by Mt , then we have

E(( ˙̂
θθθ i − θ̇θθ i))

2 =
1

Mv

Mv

∑
m=1

(
˙̂

ϑi(tm)− ϑ̇i(tm)
)2

where ˙̂
ϑi(tm) and ϑ̇i(tm) are the time derivatives and predicted values of the test data, respectively,

at time tm for each m ∈ {1, . . . ,Mv}.
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The recovered phase equations with thresholding λ = λopt = 0.00398 are given by

ϑ̇1 = 0.543+0.058sin(ϑ2 −ϑ4)+0.550cos(ϑ2 −ϑ4)+0.175sin(φ2)−0.170cos(φ2)

+0.155sin(φ1)−0.185cos(φ1),

ϑ̇2 =−0.138+0.054sin(ϑ2 −ϑ4)−0.088cos(ϑ2 −ϑ4)+0.027sin(φ2)+0.140cos(φ2)

−0.021sin(φ1)+0.221cos(φ1),

ϑ̇3 = 0.759+0.091sin(ϑ2 −ϑ4)+0.779cos(ϑ2 −ϑ4)+0.240sin(φ2)−0.231cos(φ2)

+0.216sin(φ1)−0.247cos(φ1),

ϑ̇4 = 0.147+0.309sin(ϑ2 −ϑ4)+0.104cos(ϑ2 −ϑ4)+0.083sin(φ2)+0.021cos(φ2)

+0.258sin(φ1)+0.202cos(φ1),

(4.97)

where φ1 and φ2 are given by the triplet interactions

φ1 := ϑ1 +ϑ3 −ϑ2,

φ2 := ϑ1 +ϑ3 −ϑ4.

The recovered phase equations (4.97) show that although the data were generated from a network
of pairwise couplings depicted on a ring topology (figure 15a), we recover triplet interactions
and pairwise coupling as shown in figure 15b. Comparing equations (4.89) and (4.97) we see
that the only mistake in the phase model reconstruction for γ = 1 is the existence of the pairwise
coupling term cos(ϑ2 −ϑ4) in the dynamics of oscillator 1 and 3. Such reconstruction errors
might result due to the SINDy algorithm, due to the choice of the basis functions φφφ k, due to
the length M of time series, or due to the choice of the model parameter values and so on. The
predicted time series of ϑ1(t) is displayed in figure 18.

In this subsection, we study the effect of varying the parameter γ on the length of the time
series, and hence on the reconstruction using SINDy. To do this, we, hypothetically, consider the
following values of γ:

γ = {0.1,0.15,0.2,0.25,0.3,0.4,0.45,0.65,0.7,0.8,0.9,1}.

For each parameter γ , we construct the library matrix ΦΦΦ := ΦΦΦ(Θ;T (γ)) ∈ RM(γ)×K , where
M(γ) := T (γ)/∆t is the number of data points which depends on the choice of the parameter γ .
To this end, we compute the time T (γ), for each γ , for achieving the minimum singular value of
the library matrix, denoted σmin(ΦΦΦ) satisfying the condition

σmin(ΦΦΦ)≥ σ
∗ (4.98)

for some threshold value σ∗. Heuristically, we choose σ∗ = 0.5, for each given parameter γ . The
T (γ) results are depicted in Table 3. Having the minimum values T (γ) for each γ , we perform
the mapping T (γ) 7→ 50T (γ) so that we get sufficient enough time-series for the reconstruction
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Figure 18 – Comparison of the predicted time series of ϑ1(t) of a reconstructed phase model using the
candidate functions library φφφ k ∈ L defined in (4.92) with a hard thresholding parameter
λ = 0.0038. The inset shows there is a reconstruction error.

γ 0.1 0.15 0.2 0.25 0.3 0.4 0.45 0.65 0.7 0.8 0.9 1.0
T (γ) 4400 1750 1300 1050 1000 950 950 600 550 500 450 250

Table 3 – Minimum time T (γ) versus γ . The times T (γ) satisfying condition (4.98) is shown in the
second column. The starting test time was 100 with an increment of 50. A single random initial
condition was considered.

Source: Elaborated by the author.

problem to be carried out for each choice of γ . Considering the new set of time T (γ), we generate
multiple data sets Θγ ∈ RM(γ)×N for each parameter γ . Here, M(γ) := T (γ)

∆t is the number of data
points. Next, we build the corresponding library matrices ΦΦΦ

γ(Θγ) for each value of γ .

Next, we apply the SINDy algorithm with a thresholding λ := λ (γ) separately for each
data set Θγ to reconstruct the dynamics for each γ . To this end, we attempt to solve a sparse
linear problem

Θ̇
γ = ΦΦΦ

γ(Θγ)CCC

for the coefficient matrix CCC. We determine an optimal thresholding parameter λ corresponding
to each parameter γ in estimating the coefficient matrix CCC(γ). In doing this we use the metric we
introduced in this section. Based on this the “best” thresholding parameter values λopt(γ) are
displayed in table 4.

Table 4 shows that to effectively reconstruct the phase model from data with varying
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γ 0.1 0.15 0.2 0.25 0.3 0.4 0.45 0.65 0.7 0.8 0.9 1.0
λopt(γ)×10−4 4.95 1.72 1.28 10.4 4.17 9.1 21.3 27.8 10.3 32.7 28.6 39.8

Table 4 – Optimal thresholding parameter value λ (γ) for varying γ . We considered 50 evenly spaced
values of λ (γ) between 10−5 and 0.003.

Source: Elaborated by the author.

parameter γ we need to choose different thresholding parameters λ . In the next subsection, we
study the effects of varying γ in the phase model reconstruction using the SINDy algorithm.

4.4.5 Quantifying model reconstruction errors

In this subsection, we quantify the network and/or hypernetwork reconstructions, in
particular, we identify the pairwise connections (links or edges) and/or triplet connections
(hyperlinks or hyperedges), respectively. In this setting, typically there are two types of errors:

• False positives links or hyperlinks – are non-existing links or hyperlinks that are neverthe-
less present in the reconstructed network or hypernetwork, respectively

• False negatives links or hyperlinks – are existing links or hyperlinks that are not present in
the reconstructed network or hypernetwork.

Let ĉcci(γ) := [ĉi,1, . . . , ĉi,K] ∈ RK denote the reconstructed coefficient vector of the K-basis func-
tions φφφ k(ϑϑϑ) of oscillator i ∈ {1, . . . ,N}, obtained using SINDy algorithm with a given threshold-
ing λ := λ (γ), for each parameter γ . We see that ĉi,k ̸= 0 if ĉi,k > λ , and ĉi,k = 0 if ĉi,k < λ . The
vector ĉcci is expected to be sparse. Let P and T denote the set of indices of the pairwise and
triplet interactions, respectively, in the library L . By reconstruction, we have

P := {9 ≤ k ≤ 20 : φφφ k(ϑp −ϑq) is a pairwise basis element in L },

T := {21 ≤ k ≤ 44 : φφφ k(ϑp +ϑq −ϑr) is a triplet basis element in L }

For each oscillator i, let Pi and Ti, respectively, denote the sets of indices of active pairwise
interactions and triplet interactions of node i of the original network. Then we have

Pi := {k ∈ P : φφφ k(ϑp −ϑq) is an active pairwise coupling term in the dynamics of node i}, and

Ti := {k ∈ T : φφφ k(ϑp +ϑq −ϑr) is an active triplet coupling term in the dynamics of node i}.

From equation (4.89), we read the index sets of the true basis functions φφφ k in the dynamics of ϑ̇k

for each oscillator i.

Let P̂i and T̂i denote the set of indices of the reconstructed links and hyperlinks
associated with node i ∈ {1, . . . ,N}, respectively, using the SINDy algorithm with a given
thresholding λ . Let the strength of the estimated links and hyperlinks of the reconstruction for
node i be denoted by wp

i,k ∈ {|ĉi,k| |k ∈ P̂i} and wt
i,k := {|ĉi,k| |k ∈ T̂i}. Then we define the
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Figure 19 – The fractions of the false positive and false negative hyperlinks in the SINDy model re-
construction as a function of the parameter γ . For each parameter, γ , a maximum time of
T = 50T (γ), where T (γ) is as provided in Table 3, was used to generate our time-series from
the ring network. The choice of the thresholding parameter λ is provided in Table 4.

Source: Elaborated by the author.

weighted fractions of false positive links, wFP, and the weighted fractions of false negative links,
wFN, in the reconstruction for each node i as:

wFPi :=
∑k∈P wi,k1P̂i∩Pc

i
(k)

∑k∈P

(
wik1P̂i∩(Pi)c(k)+1(P̂i)c∩(Pi)c(k)

) , (4.99)

wFNi :=
∑k∈P 1(P̂i)c∩Pi

(k)

∑k∈P 1Pi(k)
, (4.100)

where we have omitted the superscript p in the coefficient wp
i for the sake of simplicity, and 1A

is the indicator function of the set A, defined as

1A(k) =

1 if k ∈ A

0 if k /∈ A

Similarly, the weighted fractions of false positive hyperlinks and the weighted fractions of false
negative hyperlinks of each node i can be defined by replacing the sets Pi and P̂i by Ti and T̂i,
respectively.

The fractions of weighted false positives and false negatives in the reconstruction against
varying the parameter γ are shown in figures 19 and 20.

The results in figure 19 show that there are missing true hyperlinks in the reconstructions
of oscillators 1 and 3 when γ = 0.1 and γ = 0.15. This could be a result of the choice of the
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Figure 20 – The fractions of the false positive and false negative links in the SINDy model reconstruction
as a function of the parameter γ . For each parameter, γ , a maximum time of T = 50T (γ),
where T (γ) is as provided in Table 3, was used to generate our time-series from the ring
network. The choice of the thresholding parameter λ is provided in Table 4.

Source: Elaborated by the author.

thresholding parameter. The results in figure 20 show that there is a missing true link in the
reconstructions of oscillators 2 and 4, mainly for γ = 0.15.
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CHAPTER

5
CONCLUSION

Many dynamical systems, both natural and man-made, are composed of interacting parts.
Isolated dynamical systems such as the spiking of neurons, cardiac cells, and electrical circuits
are periodic in nature. Mathematically, such periodic systems can be described by a limit cycle
oscillator, which can be parameterized in terms of phases. In this thesis, we discussed the phase
reduction approach in reducing high-dimensional, weakly interacting limit cycle oscillators
theoretically.

Nowadays it is possible to collect and process enormous amounts of data from the units
of many such interacting limit cycle oscillators. However, we do not have enough models of
such systems to identify and parameterize the crucial features that must be incorporated into the
model. To this end, in this thesis we aimed at reconstructing models of dynamical systems from
available time-series data, using Bayesian inference and sparse recovery methods. Moreover, we
studied the emergence of hypernetworks when reconstructing models of nonlinearly coupled
oscillators from data. In particular, when the data comes from a network of weakly coupled
Stuart-Landau oscillators, we showed that sparse recovery methods reveal hypernetworks. This
result is verified theoretically using second-order phase reduction theory via the perturbation
method.

Motivated by the time-variability of biological interactions, including neural delta-alpha
interaction functions which were reconstructed based on Bayesian inference, a model of two
coupled oscillators with time-evolving coupling functions has been shown to exhibit transitions
to/from synchronization even when the net coupling strength remains constant. The analysis was
carried out in terms of the phase difference between the oscillators. The corresponding numerical
simulations show that, in the case of time-varying coupling functions, one can have sequential
epochs of synchrony and asynchrony while the net coupling strength remains unchanged. Thus, by
itself, the net coupling strength does not provide enough information to describe the dynamics of
the interacting systems. To generalize the results, based on the model considered, we discussed
three main ideas arising from the periodic function f (t). The first of these was that, when
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ϕ(t) := f (t)t varies slowly with time, the dynamics of the two coupled oscillators induce
synchrony over the slow timescale. The second was that when, by contrast, ϕ(t) has rapid angular
velocity, the oscillators do not synchronize. The third observation was the combined effect:
the oscillators can exhibit sudden changes between synchrony and drifting phase differences
occurring at transitions between slow variation and fast winding of ϕ(t). So we have transitions
in exhibited behavior due to the time-variability of the coupling functions despite constant net
coupling strength. This confirms that, in the time-variable setting, the net coupling strength does
not give sufficient information about the interaction of the oscillators to predict their behavior.
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APPENDIX

A
PROOFS OF THEOREMS

Proof of Theorem 2.2.3. By construction, for each x0 ∈ γ , x0 is a fixed point of g. Note that
x0 has both a transversal direction (i.e. stable) and a direction tangent to the limit cycle at x0

(see Figure 21). We can introduce a suitable local coordinate systems z = (u,v) ∈ R×R, where
u ∈R and v ∈R, to a point z in the neighborhood Bε(x0) for some small ε > 0. Assume the point
x0 corresponds to the origin. Using the coordinate system, the time-1 map can be redefined as

Figure 21 – The coordinate transformation near a limit cycle γ . The point x0 is the base point of the
transversal vector.

Source: Elaborated by the author.

g : R×R−→ R2 such that

ū = Au+R(u,v)

v̄ = v+S(u,v) (A.1)
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where u ∈ R,v ∈ R,A ∈ (−1,1), R : R×R→ R,S : R×R→ R are at least C1 with

R(0,0) = 0 = S(0,0) and DR(0,0) = 0 = DS(0,0).

Moreover, let us introduce a map H : R×R→ R such that

H(u,v) := v+S(u,v)

where S is as defined above. So that H(0,0)= 0 and DH(0,0)= 0. By construction, R(·, ·) : Bε(0,0)→
R2 is continuously differentiable. By the mean value theorem,

|R(u,v)| ≤ sup
(u,v)∈Bε (0,0)

|DR(u,v)||(u,v)|.

Note that |DR(0,0)|= 0. Then by continuity, given a δ > 0, there is ε = ε(δ )> 0 such that if
(u,v) ∈ Bε(0,0) then |DR(u,v)|< δ . This implies that

|R(u,v)| ≤ δ |(u,v)|.

So that we can make δ ≪ 1 and Lip(R)< δ . Similarly, one can show that Lip(H)< µ ≪ 1.

Using the local coordinate systems, we consider the set

Iloc(x0) = {(u,v) ∈ Bε(x0) : |gm(u,v)− x0|< Ke−λm} (A.2)

in the neighborhood of γ (see Figure 21). Here K and λ are positive constants.

We want to show that there is a function α : R→ R which depends on the base point x0

such that

Iloc(x0) = {(u,v) : v = α(u)}= graph(α) (A.3)

which is invariant under the action of g. We have shown that Lip(A−1)Lip(H)< 1 and Lip(R)<

δ . At this stage, we note that all the hypothesis of the graph transform theorem are satis-
fied. Hence we draw the conclusions of the graph transform. Thus, there is a unique function
αx0 : Bε(x0)→ R with αx0(0) = 0 and Lip(αx0)≤ δ ≪ 1 such that

graph(αx0) = g(graph(αx0)).

Hence, for each x0 ∈ γ the set Iloc(x0) is represented in some local coordinates as the graph
of a function v = αx0(u). That is, Iloc(x0) =: graph(αx0) which depends on the base point x0.
Thus, through each point of the orbit γ there is a unique isochron Iloc(x0) which is locally a
graph of a function. The dependence on the base point x0 ∈ γ is continuous, but it may or may
not be smooth.

Next, we want to show that isochrons are mapped to isochrons under the flow ϕ . To do
this, let us assume that a base point x0 ∈ Iloc(x0) is mapped to another base point y0 ∈ Iloc(y0)
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under the flow ϕ , i.e., there is time t such that ϕ(t,x0) = y0. It remains to show that every
x ∈ Iloc(x0) is mapped to y0 ∈ Iloc(y0) under the flow ϕ . Let x ∈ Iloc(x0) be arbitrary. By
construction, gn(x)→ x0 exponentially fast. By the group property of the flow ϕ

gm(ϕ(t,x)) = ϕ(m+ t,x) = ϕ(t,ϕ(m,x)) = ϕ(t,gm(x)).

By the continuity of the flow ϕ in x, we have

ϕ(t,gm(x)) = ϕ(t,x0) = y0.

Thus, we can conclude that ϕ(t,Iloc(x0)) = Iloc(ϕ(t,x0)) =: Iloc(y0), that is, the isochrons
are mapped to isochrons under the flow ϕ .

Consider two distinct base points x0 and y0. We can conclude that their corresponding
isochrons Iloc(x0) and Iloc(y0) are distinct. For if there is a point x in common, the asymptotic
phase Θ(x) = Θ(x0) = Θ(y0) which is a contradiction to the assumption on x0 and y0. This
implies that Iloc(x0)∩Iloc(y0) = /0 for x0,y0 ∈ γ, x0 ̸= y0, where /0 is the empty set. This
implies that locally the isochrons form a foliation of the small neighborhood V of γ . This
completes the proof of the theorem.

Proof of Theorem 2.3.1. Assume that ε ≪ 1. By construction, ϕε(t,x,ϑ)= (ϕε(ϑ ,x, t,ε),ϑ(t))

is the flow of the perturbed system (2.23). Let us define the corresponding time-one map as the
mapping

gε := ϕε(1, ·, ·) : Rn ×S1 −→ Rn ×S1

(x,ϑ) 7−→
(
gε(x,ϑ), ϑ̄

)
. (A.4)

For ε = 0, the time-one map g0(x,ϑ) = g(x,ϑ), where g : Rn → Rn is the time-one map for the
unperturbed system. By construction g is a contraction, i.e. ∃k ∈ (0,1) Lipschitz constant and a
unique fixed point z. Indeed, g(γ) = γ . Let us introduce the composition

gn
ε(·,ϑϑϑ) = gε(·,ϑn)◦gε(·,ϑn−1)◦ . . .gε(·,ϑ1)

of transformations, and assume that the transformations satisfy

sup
x∈Rn

∥g(x)−gε(x,θ)∥ ≤ ε. (A.5)

Consider a fixed ϑ and let G = gε , then note that

∥G(x)−G(y)∥ ≤ ∥G(x)−g(x)∥+∥g(y)−G(y)∥+∥g(x)−g(y)∥

≤ 2ε + k∥x− y∥

and,

∥G(x)−g(y)∥ ≤ ∥G(x)−G(y)∥+∥g(y)−G(y)∥

≤ 3ε + k∥x− y∥.
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Now, consider a ball x ∈ W (z,δ ). We claim that if δ = 3ε

1−k then gn
ε(x,ϑ) ∈ W (z,δ ). Indeed,

consider the action of a generic element G

∥G(x)− z∥ = ∥G(x)−g(z)∥

≤ 3ε + k∥x− z∥ ≤ δ

but since x ∈W (z,δ ) we have the following bound δ ≥ 3ε/(1− k), and by induction the claim
follows. This shows that for each gε(x,θ) is contraction on W .

Proof of Theorem 4.2.2. By definition, the Jacobian of transformation is given by

J(θθθ m) =
∂ (ζm,1, . . . ,ζm,N)

∂ (θm+1,1, . . . ,θm+1,N)
=


∂ζm,1

∂θm+1,1
· · · ∂ζm,1

∂θm+1,N
... . . . ...

∂ζm,N
∂θm+1,1

· · · ∂ζm,N
∂θm+1,N

 . (A.6)

For sake of simplicity, we proof for the case N = 2, and generalize the result for an arbitrary N.
In this case, Equation (4.7) leads us to the following two equations:

ζm,1 = θm+1,1 −θm,1 −∆tF1(θθθ
∗
m;ccc)

ζm,2 = θm+1,2 −θm,2 −∆tF2(θθθ
∗
m;ccc). (A.7)

It follows that

JJJ(θθθ m) =

 ∂ζm,1
∂θm+1,1

∂ζm,1
∂θm+1,2

∂ζm,2
∂θm+1,1

∂ζm,2
∂θm+1,2

=

1− ∆t
2

∂F1(θθθ
∗
m;ccc)

∂θm+1,1
−∆t

2
∂F1(θθθ

∗
m;ccc)

∂θm+1,2

−∆t
2

∂F2(θθθ
∗
m;ccc)

∂θm+1,1
1− ∆t

2
∂F2(θθθ

∗
m;ccc)

∂θm+1,2

 (A.8)

If ∆t is sufficiently small, then the determinant of JJJ({θθθ m}) can be approximated by the product
of the elements of the diagonal, that is,

detJJJ(θθθ m)≈
(

1− ∆t
2

∂F1(θθθ
∗
m;ccc)

∂θm+1,1

)(
1− ∆t

2
∂F2(θθθ

∗
m;ccc)

∂θm+1,2

)
(A.9)

=
2

∏
i=1

(
1− ∆t

2
∂Fi(θθθ

∗
m;ccc)

∂θm,i

)
(A.10)

= exp−∆t
2

2

∑
i=1

(
∂Fi(θθθ

∗
m;ccc)

∂θm,i

)
(A.11)

where we have used the fact from Taylor expansion that

1− ∆t
2

∂Fi(θθθ
∗
m;ccc)

∂θm,i
≈ exp

(
−∆t

2
∂Fi(θθθ

∗
m;ccc)

∂θm,i

)
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to the first-order approximation in ∆t. This result can be generalized for an arbitrary N. And
hence, for a sufficiently small ∆t, we have that

detJJJ({θθθ m})≈
N

∏
i=1

(
1− ∆t

2
∂Fi(θθθ

∗
m;ccc)

∂θm,i

)
≈ exp

(
−∆t

2

N

∑
i=1

∂Fi(θθθ
∗
m;ccc)

∂θm,i

)
= exp−∆t

2
(∇∇∇ ·FFF(θθθ ∗

m;ccc))





117

APPENDIX

B
DEFINITIONS OF COUPLING FUNCTIONS

OF THE SECOND-ORDER PHASE
APPROXIMATION

In this section, we define the explicit expressions of the coupling functions in the second-
order phase reduction of the four weakly coupled Stuart-Landau oscillators. In this case, the
functions Γ2

k in equations (4.83)–(4.86) are given by the following expressions.

Γ
2
1 = B(1)

0,0,0,0 +A(1)
1,0,0,0 sinθ1 +B(1)

1,0,0,0 cosθ1 +A(1)
0,1,0,0 sinθ2 +

√
γb1 cosθ2 +A(1)

0,0,1,0 sinθ3

+B(1)
0,0,1,0 cosθ3 +A0,0,0,1 sinθ4 +

√
γb1 cosθ4 +A(1)

1,−1,0,0 sin(θ1 −θ2)−b1 cos(θ1 −θ2)

+A(1)
1,0,−1,0 sin(θ1 −θ3)+B(1)

1,0,−1,0 cos(θ1 −θ3)+A(1)
1,0,0,−1 sin(θ1 −θ4)−b1 cos(θ1 −θ4)

−b3 cos(θ3 −θ2)+A(1)
0,1,0,−1 sin(θ2 −θ4)+B(1)

0,1,0,−1 cos(θ2 −θ4)+a3 sin(θ3 −θ4)

−a1 sin(θ1 +θ2)+b1 cos(θ1 +θ2)−a3 sin(θ2 −θ3)+b3 cos(θ2 +θ3)−a3 sin(θ3 +θ4)

+b3 cos(θ3 +θ4)−a1 sin(θ1 +θ4)+b1 cos(θ1 +θ4)+A(1)
−1,2,0,0 sin(2θ2 −θ1)

+A(1)
−1,0,0,2 sin(2θ4 −θ1)+B(1)

−1,0,0,2 cos(2θ4 −θ1)− c2,3 sin(2θ2 −θ3)+d2,3 cos(2θ2 −θ3)

+
√

γa1 sin(2θ1 −θ4)−
√

γb1 cos(2θ1 −θ4)+
√

γa1 sin(2θ1 −θ2)−
√

γb1 cos(2θ1 −θ2)

−2
√

γ[d1,2 cos(2θ1 −2θ2)+d1,4 cos(2θ1 −2θ4)]− c4,3 sin(2θ4 −θ3)+d4,3 cos(2θ4 −θ3)

+A(1)
2,−1,0,−1 sin(2θ1 −θ2 −θ4)+B(1)

2,−1,0,−1 cos(2θ1 −θ2 −θ4)+A(1)
1,−1,0,−1 sin(θ2 −θ1 +θ4)

+
√

γa3 [sin(θ1 +θ3 −θ4)+ sin(θ1 +θ3 −θ2)]−
√

γb3 [cos(θ1 +θ3 −θ4)+ cos(θ1 +θ3 −θ2)]

+B(1)
1,−1,0,−1 cos(θ2 −θ1 +θ4)+

√
γb3 cos(θ3 −θ1 +θ2)−

√
γb2 cos(θ2 +θ1 −θ4)

+
√

γa2 sin(θ2 +θ1 −θ4)+
√

γa3 sin(θ1 −θ3 −θ4)+
√

γb3 cos(θ1 −θ3 −θ4)+a3 sin(θ3 −θ2)

+
√

γd4,3 cos(2θ4 −θ3 −θ1)−
√

γc2,3 sin(2θ2 −θ3 −θ1)+
√

γd2,3 cos(2θ2 −θ3 −θ1)

−b3 cos(θ3 −θ4)+B(1)
−1,2,0,0 cos(2θ2 −θ1)−

√
γc4,3 sin(2θ4 −θ3 −θ1)+

√
γa3 sin(θ1 −θ3 −θ2)

(B.1)
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Γ
2
2 = B(2)

0,0,0,0 +A(2)
1,0,0,0 sinθ1 +

√
γb2 cosθ1 +A(2)

0,1,0,0 sinθ2 +B(2)
0,1,0,0 cosθ2 +A(2)

0,0,1,0 sinθ3

+
√

γb2 cosθ3 +A(2)
0,0,0,1 sinθ4 +B(2)

0,0,0,1 cosθ4 +A(2)
1,−1,0,0 sin(θ1 −θ2)−b2 cos(θ1 −θ2)

+B(2)
1,0,−1,0 cos(θ1 −θ3)−a4 sin(θ1 −θ4)−b4 cos(θ1 −θ4)+A(2)

0,1,−1,0 sin(θ2 −θ3)

+A(2)
0,1,0,−1 sin(θ2 −θ4)+B(2)

0,1,0,−1 cos(θ2 −θ4)−a4 sin(θ3 −θ4)−b4 cos(θ3 −θ4)

+A(2)
2,−1,0,0 sin(2θ1 −θ2)+B(2)

2,−1,0,0 cos(2θ1 −θ2)+A(2)
0,−1,2,0 sin(2θ3 −θ2)+d3,2 cos(2θ2 −2θ3))

− c3,4 sin(2θ3 −θ4)+d3,4 cos(2θ3 −θ4)− c1,4 sin(2θ1 −θ4)+d1,4 cos(2θ1 −θ4)

−b2 cos(θ2 −θ3)+
√

γa2 sin(2θ2 −θ1)−
√

γb2 cos(2θ2 −θ1)+2(d1,2 cos(2θ1 −2θ2)

−a2 sin(θ1 +θ2)+b2 cos(θ1 +θ2)−a4 sin(θ1 +θ4)+b4 cos(θ1 +θ4)−a2 sin(θ2 +θ3)

+A(2)
1,−1,1,0 sin(θ1 −θ2 +θ3)+B(2)

1,−1,1,0 cos(θ1 −θ2 +θ3)−a4 sin(θ3 +θ4)+b4 cos(θ3 +θ4)

+A(2)
−1,2,−1,0 sin(2θ2 −θ1 −θ3)+B(2)

−1,2,−1,0 cos(2θ2 −θ1 −θ3)−
√

γa4 sin(θ1 −θ2 −θ4)

+
√

γb4 [cos(θ1 −θ2 +θ4)− cos(θ1 −θ2 −θ4)− cos(θ2 −θ3 −θ4)+ cos(θ2 −θ3 −θ4)]

+
√

γa4 [sin(θ2 −θ3 +θ4)− sin(θ1 −θ2 +θ4)+ sin(θ2 −θ3 −θ4)]− c3,4 sin(2θ3 −θ2 −θ4)

+
√

γd3,4 cos(2θ3 −θ2 −θ4)+
√

γa2 sin(2θ2 −θ3)+A(2)
1,0,−1,0 sin(θ1 −θ3)

+B(2)
0,−1,2,0 cos(2θ3 −θ2)+

√
γb2 cos(2θ2 −θ3)+b2 cos(θ2 +θ3),

(B.2)

Γ
2
3 = B(3)

0,0,0,0 +A(3)
1,0,0,0 sin(θ1)+B(3)

1,0,0,0 cos(θ1)+A(3)
0,1,0,0 sinθ2 +

√
γb3 cosθ2 +A(3)

0,0,1,0 sinθ3

+B(3)
0,0,1,0 cosθ3 +A(3)

0,0,0,1 sinθ4 +
√

γb3 cosθ4 +A(3)
0,1,0,−1 sin(θ2 −θ4)+B(3)

0,1,0,−1 cos(θ2 −θ4)

+B(3)
0,2,−1,0 cos(2θ2 −θ3)−A(3)

0,0,−1,2 sin(2θ4 −θ3)+B(3)
0,0,−1,2 cos(2θ4 −θ3)−b1 cos(θ1 −θ2)

+a1 sin(θ1 −θ2)+A(3)
1,0,−1,0 sin(θ1 −θ3)+B(3)

1,0,−1,0 cos(θ1 −θ3)+a1 sin(θ1 −θ4)

+A(4)
0,0,1,−1 sin(θ3 −θ4)−b3 cos(θ3 −θ4)+A(3)

0,1,−1,0 sin(θ2 −θ3)−b3 cos(θ2 −θ3)

+b1 cos(θ1 +θ2)−a3 sin(θ2 +θ3)+b3 cos(θ2 +θ3)− c2,1 sin(2θ2 −θ1)+d2,1 cos(2θ2 −θ1)

−a3 sin(θ3 +θ4)+b3 cos(θ3 +θ4)−a1 sin(θ1 +θ4)+b1 cos(θ1 +θ4)− c4,1 sin(2θ4 −θ1)

+d4,1 cos(2θ4 −θ1)+
√

γa3 sin(2θ3 −θ2)−
√

γb3 cos(2θ3 −θ2)+
√

γa3 sin(2θ3 −θ4)

+2
√

γd2,3 cos(2θ2 −2θ3)−
√

γb3 cos(2θ3 −θ4)−2
√

γd3,4 cos(2θ3 −2θ4)

+
√

γa1 [sin(θ1 +θ3 −θ2)+ sin(θ1 +θ3 −θ4)]−
√

γb1 [cos(θ1 +θ3 −θ2)+ cos(θ1 +θ3 −θ4)]

+B(3)
0,1,−1,1 cos(θ2 −θ3 +θ4)+A(3)

0,1,−1,1 sin(θ2 −θ3 +θ4)+A(3)
0,−1,2,−1 sin(2θ3 −θ2 −θ4)

+
√

γb1 [cos(θ1 −θ3 +θ2)+ cos(θ1 −θ3 +θ4)]−
√

γa1 [sin(θ1 −θ3 +θ2)+ sin(θ1 −θ3 +θ4)]

+
√

γa2 sin(θ2 +θ3 −θ4)−
√

γb2 cos(θ2 +θ3 −θ4)+
√

γa4 sin(θ4 +θ3 −θ2)

+
√

γd2,1 cos(2θ2 −θ1 −θ3)+B(3)
0,−1,2,−1 cos(2θ3 −θ2 −θ4)−

√
γc2,1 sin(2θ2 −θ1 −θ3)

+
√

γd4,1 cos(2θ4 −θ1 −θ3)−
√

γb4 cos(θ4 +θ3 −θ2)−
√

γc4,1 sin(2θ4 −θ1 −θ3)

−A(3)
0,2,−1,0 sin(2θ2 −θ3)−b1 cos(θ1 −θ4)−a1 sin(θ1 +θ2)

(B.3)
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Γ
2
4 = B(4)

0,0,0,0 +A(4)
1,0,0,0 sinθ1 +

√
γb4 cosθ1 +A(4)

0,1,0,0 sinθ2 +B(4)
0,1,0,0 cosθ2 −

√
γa4 sinθ3)

+A(4)
0,0,0,1 sinθ4 +B(4)

0,0,0,1 cosθ4 −b2 cos(θ1 −θ2)+A(4)
1,0,−1,0 sin(θ1 −θ3)

+A(4)
1,0,0,−1 sin(θ1 −θ4)−b4 cos(θ1 −θ4)+a2 sin(θ2 −θ3)−b2 cos(θ2 −θ3)

+A(4)
0,1,0,−1 sin(θ2 −θ4)+B(4)

0,1,0,−1 cos(θ2 −θ4)+A(4)
0,0,1,−1 sin(θ3 −θ4)−b4 cos(θ3 +θ4)

+b2 cos(θ1 +θ2)−a4 [sin(θ1 +θ4)+ sin(θ3 +θ4)]+b4 [cos(θ1 +θ4)+ cos(θ3 +θ4)]

+b2 cos(θ2 +θ3)− c3,2 sin(2θ3 −θ2)+d3,2 cos(2θ3 −θ2)+
√

γa4 sin(2θ4 −θ3)

+A(4)
0,0,2,−1 sin(2θ3 −θ4)+B(4)

0,0,2,−1 cos(2θ3 −θ4)+2
√

γd3,4 cos(2θ3 −2θ4)

+
√

γa4 sin(2θ4 −θ1)−
√

γb4 cos(2θ4 −θ1)+A(4)
1,0,1,−1 sin(θ1 +θ3 −θ4)

+A(4)
−1,0,−1,2 sin(2θ4 −θ1 −θ3)+B(4)

−1,0,−1,2 cos(2θ4 −θ1 −θ3)−
√

γc1,2 sin(2θ1 −θ2 −θ4)

+
√

γa2(sin(θ2 +θ4 −θ3)− sin(θ2 −θ4 +θ3))−
√

γa2(sin(θ1 −θ2 −θ4)− sin(θ1 +θ2 −θ4))

+
√

γb2(cos(θ2 −θ4 +θ3)− cos(θ2 +θ4 −θ3))−
√

γb2(cos(θ1 −θ2 −θ4)+ cos(θ1 +θ2 −θ4))

+
√

γd3,2 cos(2θ3 −θ2 −θ4)−
√

γc3,2 sin(2θ3 −θ2 −θ4)+
√

γa1 sin(θ1 −θ3 +θ4)

+
√

γd1,2 cos(2θ1 −θ2 −θ4)−
√

γa3 sin(θ1 −θ3 −θ4)−
√

γb3 cos(θ1 −θ3 −θ4)

+
√

γb4 cosθ3 −a2 sin(θ1 −θ2)+B(4)
1,0,−1,0 cos(θ1 −θ3)−a4 sin(θ3 −θ4)−a2 sin(θ1 +θ2)

−a2 sin(θ2 +θ3)−
√

γb4 cos(2θ4 −θ3)+2
√

γd1,4 cos(2θ1 −2θ4)+B(4)
1,0,1,−1 cos(θ1 +θ3 −θ4)

−
√

γb1 cos(θ1 −θ3 +θ4)

(B.4)

The coefficients A(m)
lll ,B(m)

lll in equations (B.1)–(B.4) are listed in tables 5–7 and 8. Here the
four-component vector lll = (l1, l2, l3, l4) is used to signify the term with the combination of the
phases l1θ1 + l2θ2 + l3θ3 + l4θ4. Moreover, we used notations

am =
a′m
2
, bm =

b′m
2
, cm,k =

c′m,k

2
, and dm,k =

d′
m,k

2
,

where a′m,b
′
m,c

′
m,k, and d′

m,k are defined as

a′m =
2γ2

4γ2 +ω2
m
, b′m =

ωmγ

4γ2 +ω2
m
,

c′m,k =
2γ2

4γ2 +(ωm −ωk)2 , d′
m,k =

(ωm −ωk)γ
3/2

4γ2 +(ωm −ωk)2 .
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Table 5 – Definitions of the coupling coefficients A(1)
lll ,B(1)

lll in equation (B.1) of the first oscillator.

A(1)
1,0,0,0 −c4,1 − c2,1 +

√
γa4 +

√
γa2

B(1)
1,0,0,0 −d4,1 −d2,1 −

√
γb4 −

√
γb2

A(1)
0,0,1,0 −c4,3 − c2,3

B(1)
0,0,1,0 −d4,3 −d2,3

A(1)
0,0,0,1 −c0 −

√
γa1

A(1)
1,−1,0,0 a1 +2

√
γc0

A(1)
1,0,−1,0 c4,3 + c2,3

B(1)
1,0,−1,0 −d4,3 −d2,3

A(1)
1,0,0,−1 a1 +2

√
γc0

A(1)
0,1,0,−1

√
γ(c1,2 − c1,4)

B(1)
0,1,0,−1

√
γ(d1,2 +d1,4)

A(1)
−1,0,0,2 −c4,1 −

√
γa4

B(1)
−1,0,0,2 d4,1 +

√
γb4

A(1)
−1,2,0,0 −c2,1 −

√
γa2

B(1)
−1,2,0,0 d2,1 +

√
γb2

A(1)
2,−1,0,−1

√
γ(c1,2 + c1,4)

B(1)
2,−1,0,−1 −√

γ(d1,2 +d1,4

A(1)
1,−1,0,−1

√
γ(a2 +a4)

B(1)
1,−1,0,−1

√
γ(b2 +b4)

B(1)
0,0,0,0 2

√
γ(d1,4 +d1,2)

Source: Elaborated by the author.
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Table 6 – Definitions of the coupling coefficients A(2)
lll ,B(2)

lll in equation (B.2) of the second oscillator.

A(2)
1,0,0,0 −c0 −

√
γa2

A(2)
0,1,0,0 −c1,2 − c3,2 +

√
γa1 +

√
γa3

B(2)
0,1,0,0 −d1,2 −d3,2 −

√
γb1 −

√
γb3

A(2)
0,0,1,0 −c0 −

√
γa2

A(2)
0,0,0,1 −(c1,4 + c3,4)

B(2)
0,0,0,1 −(d1,4 +d3,4)

A(2)
1,0,−1,0 c2,1 − c2,3

B(2)
1,0,−1,0 d2,3 +d2,1

A(2)
0,1,−1,0 a2 +2

√
γc0

A(2)
0,1,0,−1

√
γ(c1,4 + c3,4)

B(2)
0,1,0,−1 −√

γ(d1,4 +d3,4)

A(2)
2,−1,0,0 −c1,2 −

√
γa1

B(2)
2,−1,0,0 d1,2 +

√
γb1

A(2)
0,−1,2,0 −c3,2 −

√
γa3

B(2)
0,−1,2,0 d3,2 +

√
γb3

B(2)
0,0,0,0 −2

√
γ(d1,2 +d3,2)

A(2)
−1,2,−1,0

√
γ(c2,3 + c2,1)

B(2)
−1,2,−1,0 −√

γ(d2,3 +d2,1)

A(2)
1,−1,1,0 −√

γ(a3 +a1)

B(2)
1,−1,1,0

√
γ(b3 +b1)

Source: Elaborated by the author.
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Table 7 – Definitions of the coupling coefficients A(3)
lll ,B(3)

lll in equation (B.3) of the third oscillator.

A(3)
1,0,0,0 −c2,1 − c4,1

B(3)
1,0,0,0 −d2,1 −d4,1

A(3)
0,1,0,0 −c0 −

√
γa3

A(3)
0,0,1,0 −c2,3 − c4,3 +

√
γa2 +

√
γa4

B(3)
0,0,1,0 −d2,3 −d4,3 −

√
γb2 −

√
γb4

A(3)
0,0,0,1 −c0 −

√
γa3

A(3)
1,0,−1,0 −√

γ(c2,1 + c4,1)

B(3)
1,0,−1,0 −√

γ(d2,1 +d4,1)

A(3)
0,1,−1,0 −a3 −2

√
γc0

A(3)
0,0,1,−1 a3 +2

√
γc0

A(3)
0,1,0,−1

√
γ(c3,2 − c3,4)

B(3)
0,1,0,−1

√
γ(d3,2 +d3,4)

A(3)
0,2,−1,0 −c2,3 −

√
γa2

B(3)
0,2,−1,0 d2,3 +

√
γb2

A(3)
0,0,−1,2 −c4,3

√
γa4

B(3)
0,0,−1,2 d4,3 +

√
γb4

B(3)
0,0,0,0

√
γ(2d3,2 +2d3,4)

A(3)
0,1,−1,1 −√

γ(a4 +a2)

B(3)
0,1,−1,1

√
γ(b4 +b2)

A(3)
0,−1,2,−1

√
γ(c3,4 + c3,2)

B(3)
0,−1,2,−1 −√

γ(d3,4 +d3,2)

Source: Elaborated by the author.
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Table 8 – Definitions of the coupling coefficients A(4)
lll ,B(4)

lll in equation (B.4) of the fourth oscillator.

A(4)
1,0,0,0 −c0 −

√
γa4

A(4)
0,1,0,0 −c3,2 − c1,2

B(4)
0,1,0,0 −d3,2 −d1,2

A(4)
0,0,0,1 −c3,4 − c1,4 +

√
γa3 +

√
γa1

B(4)
0,0,0,1 −d3,4 −

√
γd1,4 +b3 +

√
γb1

A(4)
1,0,−1,0 c4,1 − c4,3

B(4)
1,0,−1,0 d4,1 +d4,3

A(4)
1,0,0,−1 −a4 −2

√
γc0

A(4)
0,1,0,−1 −√

γ(c3,2 + c1,2)

B(4)
0,1,0,−1 −√

γ(d3,2 +d1,2)

A(4)
0,0,2,−1 −c3,4 −

√
γa3

B(4)
0,0,2,−1 d3,4 +

√
γb3

A(4)
2,0,0,−1 −c1,4 −

√
γa1

B(4)
2,0,0,−1 d1,4 +

√
γb3

A(4)
1,0,1,−1 −√

γ(a1 +a3)

B(4)
1,0,1,−1

√
γ(b1 +b3)

A(4)
−1,0,−1,2

√
γ(c4,1 + c4,3)

B(4)
−1,0,−1,2

√
γ(d4,1 +d4,3)

B(4)
0,0,0,0 −2

√
γ(d3,4 +d1,4)

Source: Elaborated by the author.
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