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RESUMO

RANIERI, C. M. Reconhecimento de atividades e abordagens bioinspiradas para robótica
em ambientes inteligentes. 2021. 152 p. Tese (Doutorado em Ciências – Ciências de Computa-
ção e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Univer-
sidade de São Paulo, São Carlos – SP, 2021.

Projetos de automação residencial têm sido desenvolvidos há algum tempo, tendo evoluído
para os chamados ambientes inteligentes. Esses ambientes são caracterizados pela presença de
conjuntos de sensores e atuadores, conectados de forma a responder adequada e proativamente a
diferentes situações. A integração de ambientes inteligentes com robôs permite a introdução de
capacidades adicionais de sensoriamento, além da realização de tarefas com maior flexibilidade
e menor complexidade mecânica do que os robôs monolíticos tradicionais. Para dotar tais ambi-
entes de comportamentos verdadeiramente autônomos, algoritmos devem extrair informações
semanticamente significativas de quaisquer dados sensoriais disponíveis. Reconhecimento de
atividade humana é um dos campos de pesquisa mais ativos dentro deste contexto. Neste projeto,
foi abordado o projeto e avaliação de técnicas de aprendizado para reconhecimento da atividade
humana, considerando diferentes modalidades de sensores. Dois tipos de redes neurais, baseadas
em combinações de Redes Neurais Convolucionais com Redes Recorrentes com Memória de
Curto e Longo Prazo ou Redes Convolucionais Temporais, foram propostas e avaliadas em duas
bases de dados públicas para reconhecimento de atividade multimodal de vídeos e sensores
inerciais. A estrutura resultante foi então empregada a um novo conjunto de dados, o HWU-USP
activities dataset, coletado como parte deste trabalho, em um ambiente real dotado de vídeos,
unidades inerciais e sensores ambientais. Foi avaliada a influência dos sensores ambientais,
sincronizados aos dados inerciais e de vídeo, na acurácia dos resultados, tendo se mostrado
uma abordagem promissora. Além disso, o novo conjunto de dados foi provido de atividades
complexas com dependências de longo prazo, avaliadas por meio de classificadores baseados em
segmentos de comprimento limitado, simulando os resultados para aplicações de tempo real. Em
um segundo momento, foram desenvolvidos trabalhos sobre dados neurofisiológicos de primatas
induzidos à doença de Parkinson, indo de análises e classificação dos dados, com uso de redes
neurais, até a construção de um modelo computacional das estruturas acometidas dentro do
cérebro. Embora distinta dos estudos sobre reconhecimento de atividades e tecnologias assistivas,
focos desta tese, esses trabalhos foram relacionados na natureza das técnicas empregadas, e seus
resultados fizeram parte do cenário de aplicação desenvolvido em seguida. Por fim, foi projetado
e implementado um cenário de aplicação na forma de simulação robótica, de modo que o módulo
desenvolvido pudesse ser avaliado em situações práticas. Para o mecanismo de seleção de
comportamento, uma abordagem bioinspirada baseada em modelos computacionais do circuito
núcleos da base-tálamo-córtex foi avaliada e comparada a abordagens não bioinspiradas baseadas
em heurísticas simples.



Palavras-chave: reconhecimento de atividade humana, base de dados de atividades, aprendizado
profundo, modelo computacional bioinspirado, neurorrobótica.



ABSTRACT

RANIERI, C. M. Activity recognition and bioinspired approaches for robotics in intelligent
environments. 2021. 152 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemá-
tica Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2021.

Home automation projects have been developed for some time, having evolved into the so-
called smart environments. These environments are characterised by the presence of sets of
sensors and actuators, connected in order to respond appropriately and proactively to different
situations. The integration of intelligent environments with robots allows for the introduction
of additional sensing capabilities, besides performing tasks with greater flexibility and less
mechanical complexity than traditional monolithic robots. To endow such environments with
truly autonomous behaviours, algorithms must extract semantically meaningful information
from whichever sensor data is available. Human activity recognition is one of the most active
fields of research within this context. In this project, the design and evaluations of learning
techniques for human activity recognition was addressed, considering different sensor modalities.
Two types of neural networks, based on combinations of Convolutional Neural Networks to
Recurrent Networks with Long Short-Term Memory or Temporal Convolutional Networks,
were proposed and evaluated on two public datasets for multimodal activity recognition from
videos and inertial sensors. The resulting framework was then introduced to a new dataset, the
HWU-USP activities dataset, collected as part of this work, in an actual environment endowed
with videos, inertial units, and ambient sensors. This design allowed for assessing the influence
of ambient sensors, synchronised to the inertial and video data, to the accuracy of the results,
which has proven to be a promising approach. Also, the new dataset provided complex activities
with long-term dependencies, evaluated through segment-wise classifiers simulating the results
for real-time applications. In a second moment, works were developed on neurophysiological
data from primates induced to Parkinson’s disease. Those studies ranged from data analysis
and classification, using neural networks, to the construction of a computational model of the
affected structures within the brain. Although different from the studies on activity recognition
and assistive technologies, which were the focus of this thesis, these works were related in the
nature of the techniques used, and their results were part of the application scenario developed
next. Finally, an application scenario was designed and implemented as a robot simulation,
so that the developed module could be evaluated in practical situations. For the behaviour
selection mechanism, a bioinspired approach based on computational models of the basal
ganglia-thalamus-cortex circuit was evaluated and compared to non-bioinspired approaches
based on simple heuristics.

Keywords: human activity recognition, activities dataset, deep learning, bioinspired computa-



tional model, neurorobotics.
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CHAPTER

1
INTRODUCTION

It has been an established fact that the world population is ageing, with a progressively
larger proportion of elderly people with respect to younger demographic strata. According
to projections by the Department of Economic and Social Affairs of the United Nations, the
worldwide proportion of citizens aged between 15 and 64, with respect to those aged over 65
years old, is expected to drop from about 7:1 in 2020 to approximately 4:1 in 2050 (United
Nations, 2019). Different challenges have been addressed during this transition (MCCANN,
2017; MELO et al., 2017), one of them being the need for alternatives to assist the elderly in
face of a decreasing availability of workforce concurrent to an increasing demand for carers,
nurses, and other professionals (KHAN, 2019).

The research community on Ambient Assisted Living (AAL) have proposed and evalu-
ated different automatised solutions that address this challenge, with the objective to support
the elderly or people with special needs (CALVARESI et al., 2017). Sets of sensors and actua-
tors within an intelligent environment may help its inhabitants by providing services to assist
their daily activities (PATEL; SHAH, 2021) or monitoring their health status (SANDEEPA et

al., 2020). The field of Human-Robot Interaction (HRI) also presented contributions to these
environments. Robots may contribute either by introducing additional capabilities for actuating
in the ambient (GOMEZ-DONOSO et al., 2019), or presenting a friendly, more engaging social
interface that may increase the acceptance of the assistive technologies by the inhabitants of an
intelligent environment (IGLESIAS et al., 2020).

The design of sophisticated AAL solutions, especially when endowed with robotic
devices, requires a reasonable understanding, by the automated system, of the current context of
the environment with respect to its inhabitants, which might be inferred based on information
gathered by different types of sensors. To this aim, research has been performed within the field
of human activity recognition (MOJARAD et al., 2018).

According to Chaaraoui, Climent-Pérez and Flórez-Revuelta (2012), an activity is a
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sequence of semantically meaningful actions involving interactions between humans and envi-
ronment, composed of sequences of basic human motions, called action primitives. Different
modalities of data from a sensed environment may be used to provide automatic activity recogni-
tion. Most benchmarks provided for this task are based on regular videos (KUEHNE et al., 2011;
SOOMRO; ZAMIR; SHAH, 2012; CARREIRA et al., 2019), videos from RGB + depth (RGBD)
cameras (NI; WANG; MOULIN, 2011; LIU et al., 2019), inertial sensors (REISS; STRICKER,
2012; CHAVARRIAGA et al., 2013), or ambient sensors from smart environments (COOK et

al., 2013; BAKAR et al., 2016).

Of particular interest to the purposes of this thesis are the the multimodal benchmarks,
which provide more than one modality being recorded simultaneously (CHEN; JAFARI; KE-
HTARNAVAZ, 2015; SONG et al., 2016). Multimodal scenarios allow not only for the design of
more accurate methods (WEI; JAFARI; KEHTARNAVAZ, 2019), but also for the compensation
of missing information when a set of modalities is inaccessible. For example, in a situation in
which video data cannot be accessed because it relies on the camera of a robot that is not placed
at the same room as the user being monitored, information from wearables of ambient sensors
may be gathered and analysed to infer his activity.

Even though activity recognition has been a fertile field of research, approaches that
connected recognised activities to actual response behaviours from an artificial agent usually
consisted of direct associations (GEORGIEVSKI et al., 2017; LI et al., 2019b; LERA et al.,
2020), with few quantitative analyses on the quality of the responses. Even within the HRI
context, research is usually focused on enhancing the ability of the machine learning predictors
employed for classifying the activities under certain conditions (MANZI et al., 2018), rather
than evaluating the suitability of the response behaviours from the robot.

Besides providing suitable behaviours for HRI (PETRICK; FOSTER, 2020; FOSTER et

al., 2020), behaviour selection mechanisms for autonomous agents may integrate bioinspired
architectures. Different approaches have been proposed within this context, one of them being
the simulation of neurophysilogical properties of living beings. Li et al. (2019a) provided a
comprehensive survey on neurorobotics systems (NRS), and the different components that may
integrate them. According to the authors, a generalised framework can be depicted for most NRSs
in the literature, composed of a simulated brain, which is fed with sensory signals from a body
and turns them into control signals for a hierarchical controller, responsible for decoding these
signals into control commands for the body, which actuates and senses an external environment.

This thesis was centred in the possibilities for human activity recognition in intelligent
environments, which has shown to be of paramount importance in the context of AAL. Deep
neural networks, techniques that could provide accurate results for different modalities of data
(i.e., videos, inertial units or ambient sensors), were designed and evaluated in different scenarios.
Combinations of convolutional (CNN) and recurrent neural networks (RNN) were proposed,
including a novel combination between a regular CNN and temporal convolutional networks
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(TCN). A dataset for daily activities in a smart home was built, which allowed for experiments
in a different setting, resembling aspects that might be important for actual real-time systems,
and which has not been implemented previously in other datasets. An application scenario was
proposed, and decision-making mechanisms were designed to provide responses for a robotic
agent in such a home environment. The central hypothesis of this thesis, the research questions
addressed, and the contributions made are presented in the next section.

1.1 Hypothesis and Contributions
The central hypothesis of this thesis is as follows:

It is possible to enhance the understanding of human behaviour and facilitate human-
robot interaction that demands rapid and real-time responses by using deep neural
network models of human activity recognition in intelligent environments. These
deep learning models applied to a plethora of data from synchronised videos, inertial
units, and ambient sensors will produce accurate results based on limited-length
segments of data through time, hence generating outputs suitable for the fulfilment
of long-term robot tasks focused on time-localised decision-making.

In order to validate this hypothesis, three research questions were formulated, and each
of them led to one contribution.

These are enumerated as follows:

1. Are convolutional and recurrent neural networks suitable for human activity recognition
based on multimodal sensors, particularly videos and inertial units, and can late fusion and
feature-level fusion enhance the results, when compared to single-modality models?

2. Considering activities of daily living of different complexity levels, including long-term
dependencies between primitive actions, can a deep learning-based framework provide
accurate and consistent classification results by applying a multimodal framework which
relies on videos, inertial units, and ambient sensors?

3. Can the time-localised outputs of a multimodal activity recogniser be employed to different
decision-making mechanisms for social robots in a real-time application scenario, produc-
ing a reliable response for completing long-term tasks that rely on the human activities
being performed?

Research question 1 was addressed by the first contribution of this thesis: a set of
techniques for multimodal activity recognition were designed and evaluated in order to contribute
to the state-of-the-art, particularly based on videos and inertial sensors, the most ubiquitous type
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of data available currently (LIMA et al., 2019). To this aim, public available datasets (CHEN;
JAFARI; KEHTARNAVAZ, 2015; SONG et al., 2016) were gathered, preprocessed and employed
as inputs to a deep learning framework that provided feature extraction and classification for
each modality separately, which could be fused according to a proposed feature-level fusion or
to a late fusion based on the prediction vectors. More specifically, these techniques were based
on combinations between Convolutional Neural Networks (CNN) (ZEILER; FERGUS, 2014),
Long Short-Term Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997), and Temporal
Convolutional Networks (TCN) (BAI; KOLTER; KOLTUN, 2018).

Research question 2 was addressed by the second contribution of this thesis: the introduc-
tion of data from ambient sensors to this framework, which was made through the proposition
of a new dataset, the HWU-USP Activities dataset, collected in the Robotic Assisted Living
Testbed (RALT), at Heriot-Watt University (HWU), Edinburgh, Scotland, UK. The resulting
dataset was composed of data from: i) the RGBD camera of a social robot (i.e., the TIAGo robot
(PAL Robotics, 2017)), ii) inertial units attached to the users’ waist and wrist of the dominant
arm, and iii) ambient sensors from the smart home. The most successful methods observed for
video and inertial data were combined, and an additional model that took into account both
inertial and ambient sensors was proposed, with feature-level fusion within a neural network.

Research question 3 involved a multidisciplinary effort, which provided a more solid
framework for its assessment. The contributions of this thesis were enhanced by the results of
an approximately 10-months-long scholarship experienced by the author at Edinburgh Centre
for Robotics in Heriot-Watt University, under supervision of Professor Dr. Patrícia Amâncio
Vargas. In this participation, the author studied, designed and evaluated models in the field of
computational neuroscience in the context of Parkinson’s Disease (PD), as part of the Neuro4PD
project 1. PD is characterised by a dopaminergic neuronal loss within the substantia nigra pars
compacta (SNc), which leads to a dysfunction of the basal ganglia-thalamus-cortex (BG-T-C)
circuit. The BG-T-C circuit is a neuronal network with parallel loops that are involved in motor
control, cognition, and processing of rewards and emotions (OBESO et al., 2009). The research
carried out within this context focuses on studying and modelling such a circuit.

The first outcome of this participation was the assessment of a deep learning framework
based on CNN or LSTM, similar to the one employed for the activity recognition tasks reported
here, as a technique to distinguish between healthy or PD-induced individuals from a database
of marmoset monkeys, collected during a previous study (SANTANA et al., 2014). This dataset
consisted of recordings of Local Field Potentials (LFP) within the brain structures of the BG-T-C
circuit in marmoset monkeys, either healthy or with lesions provoked by 6-hydroxidopamine
(6-OHDA) and alpha-methyl-p-tyrosine (AMPT) injections, measured by electrodes surgically
implanted. Not only performance results were reported, but also an analysis based on explainable
features learned by the neural networks. More specifically, this study analysed the adherence to

1 <http://www.macs.hw.ac.uk/neuro4pd/>, Royal Society and Newton Fund (NAF\R2\180773)

http://www.macs.hw.ac.uk/neuro4pd/
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the spectral signature expected, for healthy and PD models, of the high-attribution segments of
the input signals and of the internal representations of the intermediate convolutional layers.

The second outcome was the design of computational models that resemble neurobiolog-
ical aspects found in primates, built upon a consolidated computational rat model of the BG-T-C
circuit (KUMARAVELU; BROCKER; GRILL, 2016), capable of mimicking both healthy and
PD conditions of primate models. To this aim, a data-driven approach was proposed, in which a
set of biologically constrained parameters was determined using differential evolution to optimise
a fitness function based on the LFP data of the marmosets’ dataset already mentioned. This
model was fully validated and it is capable of simulating the brain activity at the BG-T-C circuit
ehibited by the animal models, with respect to the spectral signature, to the spike dynamics and
to the coherence between spike trains in the different brain regions simulated.

Both of these outcomes were combined to a simulated environment to compose the third
contribution of this thesis, which addresses the research question 3: the design of an application
scenario for a mobile robot within a home environment, and the evaluation of behaviour selection
techniques in response to the predictions from the activity recognition framework applied to
the HWU-USP Activities dataset. A robot simulation, built in the Gazebo platform (KOENIG;
HOWARD, 2004) as part of the LARa framework (RANIERI et al., 2018), was adopted for a
scenario in which, according to the activity being performed by the user of the environment,
a particular response behaviour may be required from a mobile social robot (i.e., a simulated
Pioneer P3-DX platform). To accomplish this based on the predictions made by the activity
recogniser, two approaches were considered: the heuristics and the neurorobotics approaches.
The heuristics approach consisted of a couple simple heuristics that connected the predictions to
the response behaviours without any sophisticated reasoning. The neurorobotics approach was
built on the neuroscience-based computational models, given that the BG-T-C circuit is involved
in the process of decision-making in mammals (MARKOWITZ et al., 2018), and is commonly
adopted in neurorobotics systems to this aim (BARISELLI et al., 2019; BAHUGUNA; WEIDEL;
MORRISON, 2018; PRONIN et al., 2021). This was accomplished by introducing different
stimuli to different channels of the computational model, producing different response behaviours
associated to each of those channels (MULCAHY; ATWOOD; KUZNETSOV, 2020).

1.2 Objectives

Given the hypothesis and research questions presented on the previous section, the main
objective of this thesis is to design and evaluate an activity recognition framework based on deep
neural networks, fed by multiple modalities within a richly sensed scenario, in particular, videos,
inertial units and ambient sensors, and analyse behaviour selection strategies for a social robot
within such an environment.
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1.2.1 Specific Objectives

In order to address the this main objective four specific objectives were designed. The first
and second specific objectives relate to research questions 1 and 2, respectively. The remaining
specific objectives, i.e., the third and fourth, both address research question 3. The division of
research question 3 into two specific objectives was made to separate the implementation of the
application scenario and the design of the behaviour selection strategies, since these steps were
developed in different stages of the research.

∙ Employ publicly available datasets to implement, evaluate, and evolve machine learning
algorithms, particularly artificial neural networks, for activity recognition in videos and
inertial units, modalities that have been provided simultaneously in some datasets.

∙ Design and collect a dataset of activities with synchronised information not only from
videos and inertial units, but also from ambient sensors within a smart home, and adapt
the machine learning techniques explored to this new scenario.

∙ Implement a simulated scenario and application for a robot in a home environment,
allowing for the assessment of application scenarios based on quantitative metrics.

∙ Propose behaviour selection strategies, based on either simple heuristics or bioinspired
mechanisms, and implement them in the robot simulation, comparing the outcomes of
each approach for different classifiers and modalities employed for the activity recognition
module.

1.3 Organisation of the Work
This thesis is organised as a collection of five papers, organised to compose the next four

chapters. Three papers have been already peer-reviewed and published, and the reproduction of
all material respected the copyright rules of the publishers, as depicted at the beginning of each
chapter. The two other papers are preprints uploaded to arXiv. Upon publication of those papers
to peer-reviewed sources, the preprint metadata at arXiv will be updated with the identifier to the
published paper, without any infringement of copyright agreements.

Chapter 2 corresponds to the first research question. The results of experiments on
publicly available datasets are presented, as published in the proceedings of the 2020 International
Joint Conference on Neural Networks (IJCNN 2020). Different types of neural networks were
adapted to classify two datasets of videos and inertial sensors. A feature-level fusion approach
was presented and compared to a simpler late fusion method.

Chapter 3 corresponds to the second research question. The HWU-USP activities dataset,
designed and evaluated as part of this thesis, is presented, along with the techniques for classifying
it, derived from the experiments presented in the previous chapter. These results were published
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to Sensors, an open access journal by MDPI. This paper was reproduced in the chapter, providing
a thorough literature review on activities datasets from different modalities, the data collection
procedure, the algorithms applied for classifying the dataset, and different analyses regarding
the behaviour of the classifier in limited-length segments, important for real-time applications.
The documents required for ethics clearance of the data collection procedure are reproduced in
Appendix A.

Chapter 4 presents the most relevant outcomes in the context of computational neuro-
science, which were, later, introduced to the application scenario. This participation began with a
10-months scholarship at Heriot-Watt University, under supervision of professor Patrícia Amân-
cio Vargas, in which the author of this thesis participated on the Neuro4PD project, aimed at
studying the neurophysiological correlates of Parkinson’s Disease. Two papers were introduced
to this chapter. The first of them consisted of an analysis, based on neural networks, of data from
healthy and lesioned marmoset monkeys, published in the proceedings of the 2020 International
Joint Conference on Neural Networks (IJCNN 2020). The second one is a preprint uploaded to
arXiv, in which a computational model of Parkinson’s disease was calibrated to fit data from
these marmoset monkeys according to a data-driven approach based on differential evolution.
Although this research did not relate directly to the objectives of subsection 1.2.1, they were
integrated to the robot simulation, since the computational model of brain regions affected by
this disease could also be applied to behaviour selection, with the adequate adaptations.

Chapter 5 corresponds to the third research question. The paper reproduced is another
preprint at arXiv, describing the different modules that composed an application scenario in
HRI. This scenario relied on the outputs of the activity recognition framework, presented in the
previous chapter, to build behaviour selection strategies. Approaches based on simple heuristics
were presented and compared to a neurorobotics approach, significantly more complex, developed
based on results of research on computational neuroscience, presented in the previous chapter.

Chapter 6 presents the conclusions, with a contextualised presentation of the different
modules developed with respect to the integration between them and their role in evaluated the
hypothesis and research questions the thesis. Also, the activities developed by the candidate
during the PhD will be depicted, including other papers co-authored, participation in events and
summer schools, and teaching internships. Finally, directions for future research are suggested.
Papers published during the development of this thesis are listed in Appendix B. The summary of
the other activities performed in parallel to the completion of this thesis is shown in Appendix C.
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CHAPTER

2
MODELS FOR HUMAN ACTIVITY

RECOGNITION

In this chapter, the multimodal techniques for human activity recognition, designed with
deep neural networks and evaluated on public datasets, are presented. The achievement of this
part of the thesis, which corresponds to the first research question of section 1.1, are described in
the paper ”Uncovering Human Multimodal Activity Recognition with a Deep Learning Approach”
(RANIERI; VARGAS; ROMERO, 2020), published to the 2020 International Joint Conference
on Neural Networks (IJCNN), the IEEE conference on Neural Networks, with H5-index of 45
(Google Scholar) and qualified as A1 in the latest Qualis CC. This paper is reproduced in the
following pages.
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c○2020 IEEE. Reprinted, with permission, from Ranieri, C.M., Vargas, P.A. and Romero,
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Abstract—Recent breakthroughs on deep learning and com-
puter vision have encouraged the use of multimodal human
activity recognition aiming at applications in human-robot-
interaction. The wide availability of videos at online platforms
has made this modality one of the most promising for this task,
whereas some researchers have tried to enhance the video data
with wearable sensors attached to human subjects. However,
temporal information on both video and inertial sensors are
still under investigation. Most of the current work focusing on
daily activities do not present comparative studies considering
different temporal approaches. In this paper, we are proposing
a new model build upon a Two-Stream ConvNet for action
recognition, enhanced with Long Short-Term Memory (LSTM)
and a Temporal Convolution Networks (TCN) to investigate
the temporal information on videos and inertial sensors. A
feature-level fusion approach prior to temporal modelling is also
proposed and evaluated. Experiments have been conducted on the
egocentric multimodal dataset and on the UTD-MHAD. LSTM
and TCN showed competitive results, with the TCN performing
slightly better for most applications. The feature-level fusion
approach also performed well on the UTD-MHAD with some
overfitting on the egocentric multimodal dataset. Overall the
proposed model presented promising results on both datasets
compatible with the state-of-the-art, providing insights on the
use of deep learning for human-robot-interaction applications.

Index Terms—Deep learning, CNN, LSTM, TCN, RNN, human
activity recognition, human-robot-interaction.

I. INTRODUCTION

Current development on different research fields have risen
interest on applications of social robots as interactive tools to
assist humans, usually elderly people or people with special
needs. In real-world scenarios, roboticists may rely on human
activity recognition [1]. This consists in processing sensing
data from smartphones and wearable devices to identify se-
mantically understandable interactions amongst the user, the
environment and the robot. These technologies are important
for the development of automated solutions for human-robot
interaction applications that are still mostly based on Wizard
of Oz approaches [2].

São Paulo Research Foundation (FAPESP), grants 2017/02377-5,
2018/25902-0 and 2017/01687-0, and Brazilian National Council for Sci-
entific and Technological Development (CNPq), grant 306151/2018-9. This
research was carried out using the computational resources of the Center for
Mathematical Sciences Applied to Industry (CeMEAI) funded by FAPESP,
grant 2013/07375-0. Additional resources were provided by the Nvidia Grants
program.

Here we address this challenge by proposing a deep learning
model for human activity recognition from videos and inertial
sensors. Inertial data may be made available from smartphones
or wearable devices such as smartwatches. In situations in
which social robots are present, video data may also be ob-
tained from the robot’s camera(s). Regardless of the modality,
deep learning techniques have shown promising results on
activity recognition, although feature-based approaches are
still competitive in some cases [3]. Most advances on video
classification were built on the Two-Stream ConvNet [4],
whereas satisfactory results on inertial data have been provided
by the combination of Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM) [5]. Some other at-
tempts dealing with multimodal data, focused on fusing inertial
data with depth images [6].

In our investigation we have used two datasets for daily ac-
tivities: the egocentric dataset presented by Song et al. [1] and
the University of Texas at Dallas Multimodal Human Activity
Recognition Dataset (UTD-MHAD) [7]. Our proposed model
relied on RGB videos and inertial data, experimenting different
possibilities for modelling the temporal dependencies on both
modalities. In this regard, first, we are proposing to add Tem-
poral Convolutional Networks (TCN) [8], which consists on an
feasible alternative to Recurrent Neural Networks (RNN) on
sequence modelling. Second, a feature-level fusion approach
is considered as an alternative to the late fusion generally used
when dealing with video temporal streams.

II. HUMAN ACTIVITY RECOGNITION

Human activity recognition comprises of a wide research
field, involving different input modalities and classification
of activities on distinct levels of abstraction. In the case of
videos, this modality may rely not only on structured data
built on controlled environments, but also on unconstrained
videos obtained from the Internet [9]. The same has not
been true for raw sensors such as inertial measurement units
(IMU), which may aggregate, for instance, 3D accelerometer,
gyroscope and magnetometer [10]. For those, datasets are typ-
ically designed and recorded under controlled environments.
In this work, we address a multimodal approach, in which data
from inertial sensors has been applied to enhance video-based
activity recognition. Even though, single-modality approaches
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also influenced our research, providing guidelines on several
developments on our proposed methods.

The UCF101 dataset [11] is probably the most relevant
benchmark for video classification available. It is composed by
101 categories distributed into human-object interaction, body
movements, human-human interaction, musical instruments
playing and sports. More recently, large-scale datasets have
been deployed and the most relevant one is the Kinetics
dataset [12]. Since its volume of data may take several ter-
abytes, it is not always feasible to work directly with datasets
of such scale. As we discuss thoroughly on Section III, a
Convolutional Neural Network (CNN) trained from scratch on
data derived from the UCF-101 dataset has been adopted as a
building block for most of our proposed architectures.

A detailed literature review regarding methods for video
classification was presented by Herath et al. [13]. Most deep
learning approaches may be belong into two categories: mul-
tiple stream networks or spatio-temporal networks. The most
influential multiple stream network is the Two-Stream Con-
vNet proposed by Simonyan et al. [14]. It was composed by
a spatial CNN trained to classify RGB frames and a temporal
CNN trained on stacks of dense optical flows from sequential
frames. This approach have evolved and an important advance
was the Temporal Segment Network [15]. Spatio-temporal
networks are characterised by combinations between CNN
and LSTM, such as the Long-term Recurrent Convolutional
Networks (LRCN) [16], or 3D ConvNets (C3D), as presented
by Tran et al. [17]. Our approach is composed of multiple
streams. However, the video temporal streams were built with
similar basic principles as the LRCN.

For inertial sensors, a dataset often used in studies centred
on wearable devices is the PAMAP2 [18]. The OPPORTU-
NITY [10] dataset is also relevant, as it provides a large
set of sensors not only wearable, but also placed on objects
or distributed around an environment. The neural networks
architectures used to classify those datasets are almost always
based on combinations between CNN and LSTM. A system-
atical analysis of deep learning techniques for inertial data,
experimented in datasets such as the both mentioned, was
performed on Hammerla et al. [19], in which regular deep
neural networks (DNN) were compared to CNNs and three
LSTM-based architectures. In Rueda and Fink [20], features
extracted from CNNs were on the basis of three architectures:
a regular CNN, a variation called DeepConvLSTM, in which
LSTM layers would replace fully-connected layers, and the
CNN-IMU, composed of parallel convolutional blocks whose
outputs were concatenated and fed to fully-connected layers.
The InnoHAR architecture [21] consists of a stack of Inception
modules followed by two recurrent layers based on Gated
Recurrent Units (GRU), and led to improved results on both
PAMAP2 and OPPORTUNITY datasets. A detailed overview
of the literature regarding smartphone sensors was provided
on the recent work of Sousa Lima et al. [22], in which
different datasets and algorithms, including deep networks,
were broadly revised.

Regarding multimodal datasets with videos and inertial

sensors, most of them were recorded with depth cameras,
as discussed on the survey provided by Chen et al. [6].
Datasets such as the UTD-MHAD [7], adopted in the ex-
periments, and the 50 Salads [23] provide not only video
and inertial measurements, but also positioning of skeleton
joints, which are often used as an important input for the
proposed methods [24]. In Chen et al. [7], Depth Motion
Maps (DMM) were obtained from depth images, statistical
descriptors were adopted for the inertial data and the RGB
videos were not considered. Classification was performed
with Collaborative Representation Classifiers (CRC). Song et
al. [3], another object of our analysis, brought a different
approach, in which scripted actions were performed by 10
participants and recorded with a Google Glass. In a following
paper [1], the authors applied the two-stream ConvNet to
classify the videos from their dataset and a DeepConvLSTM
to classify the sensor data, performing fusion by averaging or
max-pooling their outputs.

III. PROPOSED MODEL

In this article, we propose to build on the Two-Stream
ConvNet [14] and extend it to the case in which another
modality composed by IMU sensor data is present. This
modality, comprised by multivariate 1D temporal series, has
been considered as an additional stream, called inertial, as
illustrated in Fig. 1. An Inception-V3 network [25], adapted
to take pairs of optical flow matrices (U, V ) as inputs, has been
previously trained on the UCF-101 dataset. Therefore, instead
of taking three input color channels of the RGB images, the
network would take the two optical flow channels: vertical
and horizontal. Further, its last layer was removed, in order
to provide a feature vector for each timestep of the video. In
other words, the penultimate layer of the Inception-V3 would
generate a feature vector of length 2048 of a given timestep,
and this network would be applied independently for each
timestep considered. A much simpler CNN was implemented
to extract features from the inertial stream, which could be
used as inputs to a LSTM or a TCN block. Those outputs
could be concatenated to the features obtained from other time-
dependent streams, particularly the video temporal stream.
In the later case, we are assuming that both of them are
related to the same amount of time on the sample, so that
c = ts × ωs, where ts is the number of timesteps of stream
s ∈ {video, inertial}, ωs is its frequency and c is the time
amount, in seconds, shared between the streams. Given such
assumption, discrepancies on the number of timesteps at the
time of the concatenation could be resolved by sampling from
the stream with more timesteps.

More precisely, the LSTM and TCN models for temporal
modelling were applied to the features extracted by CNNs,
and its outputs were fed to a softmax layer for classification.
Although LSTM was already applied for video classification
on previous literature [26], the suitability of TCN, which has
shown to lead to equivalent or even better results in sequence
modelling [8], has not been extensively applied to this context.
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CNN 2D

t x CNN 2D

RGB frame
dv x dv x 3

Flow stack
dv x dv x 2tv

Inertial
dm x tm

CNN 1D

TCN/LSTM

TCN/LSTM

Fig. 1: Proposed framework for multimodal activity recogni-
tion, where d refers to the number of features and t, to the
number of timesteps considered for a given stream. Fusion
may be performed at feature-level, by combining the features
from different modalities obtained from the CNNs. Both
LSTM and TCN layers were considered for modelling long-
term dependencies.

A. Temporal Convolutional Networks

The LSTM architecture is a classical approach for dealing
with long-term temporal dependencies in sequences [27].
Recently, it has led to several advances on deep learning,
especially regarding language and speech recognition [28].
The success of the LSTM and of its most famous variation,
the Gated Recurrent Unit (GRU) [29] turned recurrent neural
networks the standard starting point when dealing with deep
learning for sequence modelling. However, as Bai et al. [8]
argued, approaches based solely on convolutional networks
could provide results as good as recurrent approaches, and
therefore it may be worth to consider them as well. In this
context, the temporal convolutional network (TCN) comprises
of a neural architecture capable of dealing with long-term
dependencies.

The temporal information would be dealt in such networks
by stacks of dilated causal convolutions, which are illustrated
in Fig. 2a. The causal denomination is derived from the
connections between the layers. A filter of size k processes
a timestep t plus the k − 1 preceding timesteps, in order to
capture the idea of causality. The dilated denomination refers
to the inclusion of a dilation factor d, responsible for ampli-
fying exponentially the receptive field of the convolutions, as
more levels are added to the network. A regular convolution
is the particular case in which d = 1. Considering a 1D input
sequence x ∈ Rn and a filter f : {0, . . . , k − 1} → R, the
dilated convolution operator may be defined as in equation 1,
where s− d · i refers to the direction of the receptive field to
the past.

F (s) = (x ∗d f)(s) =
k−1∑

i=0

f(i) · xs−d·i (1)

Each convolutional stack would be followed by weight
normalisation, an activation function (e.g., ReLU) and spatial
dropout, composing residual blocks as shown in Fig. 2b. The
advantage of such blocks is the so-called skip connections,
which allow the input data to be fed directly not only to the
next block, but also to each of the following blocks. To fix the
differences of dimensions, 1× 1 convolutions may be applied

to adjust the previous inputs before they are combined to the
output of a block .

x4x3x1 x2x0 x6x5

d=2

d=1

x7

(a)

Stack k
Layer 0

- Conv. layer (d=20=1)
- Weight normalisation
- ReLU
- Dropout

Skip connection
- Conv. unit
- Kernel size: 1x1

Layer n
- Conv. layer (d=2n)
- Weight normalisation
- ReLU
- Dropout

...

(b)

Fig. 2: Elements of a TCN. (a) Stack of dilated causal
convolutions, with k = 3 and dilation factors d = {1, 2}.
The convolutional layers within each stack are comprised by
dilated causal convolutions. (b) Generic residual stack, with n
dilations, where the dilation factor is increased each layer as
a power of 2. Multiple stacks may be concatenated one after
another, as in a residual neural network.

B. Video Classification

The architecture for activity recognition on videos was
based on the Two-Stream ConvNet, in which the spatial
features are extracted by a CNN with RGB frames as input,
and temporal dependencies, by a CNN which takes optical
flow matrices. Before being fed to the correspondent neural
network, RGB frames or optical flow matrices were supposed
to be cropped to d × d. For both streams, the InceptionV3
network [25] was adopted as a base model. For the spatial
model, we applied a straightforward transfer learning from
a model previously trained on the ImageNet dataset [30], in
which only the softmax layer was replaced and further trained
with the weights of all other layers being fixed.

For the temporal stream, illustrated in Fig. 3, tv successive
pairs of optical flow with shape dv×dv×2, each corresponding
to a single timestep of a sequence, were fed independently to
the CNN. This approach is different from Simonyan et al. [14],
in which a CNN took as input a stack of optical flow matrices
related to successive timesteps, i.e., the architecture was com-
posed by a single CNN with input shape dv×dv×2tv . Here, a
determined CNN, trained from scratch to classify the UCF-101
dataset and deprived from its last softmax layer, would process
the pairs of optical flow matrices. The result would consist of
a feature vector with shape (av, tv), where a is the number of
features generated by the output of the CNN - in the case of the
network InceptionV3, av = 2048. In other words, this feature
vector would be a multivariate time series with av variables
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and tv timesteps. LSTM networks are commonly seen as a
good choice for modelling such one-dimensional signals, so as
TCNs, as discussed in subsection III-A. Therefore, LSTM and
TCN were both considered as candidate layers for this part of
the proposed architecture. Finally, the last output of whichever
network was used would be fed to the softmax layer for the
classification.

Features
av x tv

LSTM/TCN

CNN 2DFlow 1
dv x dv x 2

CNN 2DFlow 2
dv x dv x 2

...

CNN 2DFlow tv
dv x dv x 2

...

Softmax

Fig. 3: Network architecture for the temporal stream. The
inputs are the pairs of dense optical flows from a frame
sequence. Each pair with shape dv×dv×2, is processed by a
shared CNN, and the av features obtained from the last layer
of the CNN (prior to the softmax layer previously withdrawn)
are taken as timesteps for a LSTM or TCN.

C. Inertial Data Classification

In order to classify the inertial data, it has been adopted a
one-dimensional version of the same principle as that one for
video temporal stream: a CNN to extract features, followed by
a LSTM or TCN to model long-term temporal dependencies.
This approach has similarities to the work of Rueda and Fink
[20]. However, a network architecture was deployed having in
mind the particular issues that would arise when performing
a fusion with the video temporal stream. Particularly, since
the convolutions on the inertial data would be performed on
the time domain, and each pooling layer would reduce the
resolution at this given domain to the ratio of its kernel, we
had to be cautious with the increasing of the depth of this
CNN. With this aim, we have considered only two Conv1D
layers: the first one with kernel size 1, to increase the number
of feature maps, and the second, with size 3, to perform
feature extraction. Those layers were followed by a maximum
pooling of kernel size 2, which would reduce the number of
timesteps tm to its half, tn, while still representing the same
amount of time (i.e., the time resolution has dropped). The
CNN architecture is shown in Fig. 4a.

The an features extracted from this CNN were, then, applied
as input to a LSTM or TCN block, whose last output was
connected to a softmax layer for classification (see Fig. 4b).
An important difference between this neural network and that
of the video temporal stream is that all the free parameters
of both CNN and LSTM/TCN were set to be trainable, i.e.,
training would be performed end-to-end.

D. Temporal Fusion

In most research on activity recognition based on multiple-
stream deep neural networks, fusion was performed at a
later stage. For instance, by averaging the outputs of the

CNN 1D

Conv1DInertial Conv1D

MaxPoll Features

(a)

Features

LSTM/TCN

CNN 1DInertial

Softmax

(b)

Fig. 4: Neural network applied for the classification of the
inertial stream. (a) CNN applied prior to the LSTM or TCN
module. Since the convolutions are performed in the time
domain, the maximum pooling with kernel size 2 reduces the
initial temporal resolution tm to tn = tm

2 . The number of
output features an was determined by the number of filters of
the second Conv1D layer. (b) For the inertial stream, the inputs
are one-dimensional sample sequences. The whole sequence
is processed by a CNN in the time domain, which reduces the
number of timesteps from di to dj .

last layer. Song et al. [1] adapted this approach to fuse
the video features to those extracted from the inertial data
of their egocentric multimodal dataset. Regarding video-only
classification, Feichtenhofer, Pinz and Zisserman [31] analysed
different methods for feature-level fusion in two-stream Con-
vNets. Most of the techniques they proposed rely on the spatial
dependencies shared by the video temporal and spatial streams.
Therefore, they are not suitable for fusion with the inertial
stream. However, we could adapt the concatenation of features
presented by them to build our feature-fusion approach, since
it does not make assumptions on the spatial dependencies
between features.

The proposed method here, shown in Fig 5, builds on two
assumptions: the numbers of timesteps tv on the videos and
tm on the inertial data are synchronised, referring to the same
period of the sample on both streams despite each modality
having a different temporal resolution; and that tv ≤ tn. Thus,
after applying each of the tv (dv×dv×2) optical flow matrices
to CNN 2D and stacking the outputs, and applying the dm×tm
inertial data sample to CNN 1D, two feature vectors would
be obtained, with shapes av × tv and an × tn. If tv 6= tn,
the inertial feature vector should be adjusted, what would be
done by sampling points that were equidistant in the time
domain. After such adjustment, both feature vectors would
have the same number of timesteps tv . Therefore, they may
be concatenated in this dimension, resulting in a feature vector
of shape (av + an)× tv . This feature vector would be fed to
a LSTM or TCN block, whose output would be connected to
a softmax layer. It is worth to remind that CNN 2D has fixed
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weights, already optimised in an ad-hoc manner.

Adjust
an x tv

LSTM/TCN

CNN 2DFlow
(dv x dv x 2) x tv

CNN 1DInertial
dm x tm

Features
av x tv

Features
an x tn

Concat
(av+an) x tv

Softmax

Fig. 5: Framework for feature-level temporal fusion. Features
extracted by the video CNN are concatenated to the features
extracted by the inertial CNN, composing a feature vector re-
lated to a single timestep. The frequencies at each modality are
different, thus adjustment by down-sampling is applied to the
inertial stream before concatenating, so that the timesteps at all
streams are synchronised. After concatenation, the multimodal
feature vectors at each timestep are fed to a temporal neural
network, be it a LSTM or a TCN module.)

IV. EXPERIMENTAL SETUP

All implementations were developed in Python language,
using the Keras framework with TensorFlow backend. Before
any preprocessing, all videos were proportionally resized so
that the smallest side would have size 256. Optical flow was
calculated with the TVL1 algorithm [32]. This algorithm has
shown, in exploratory experiments, to provide significantly
the best classification results among others, although being
significantly slower than the Farnebäck algorithm [33], which
may be relevant to real-time applications. The networks for
the video streams were set to get input frames with shape
224 × 224, which would be achieved by cropping. Split
1 of UCF101 dataset, suggested by the authors [11], was
used to train the CNN for feature extraction in the video
temporal stream. The following subsections will present the
datasets and the settings for each condition, allowing the
results to be reproduced. The code was made available at
https://github.com/cmranieri/Deep-Activity-Recognition.

A. Datasets

The experiments were performed on two multimodal
datasets: egocentric multimodal [1] and the UTD-MHAD [7].
Those datasets were chosen for their suitability to activities
of daily living. Both of them provide the same amount of
data from each subject and with respect to each activity.
Besides, as they are significantly different in nature, interesting
conclusions could be drawn from comparative results.

1) Egocentric Multimodal Dataset: This dataset was gen-
erated by a group of 10 participants. They performed a set of
20 activities wearing a Google Glass. Each session length was
about 10 seconds. These activities were recorded in different
and heterogeneous environments, which provides a lot of
visual information, in addition to the movement. Activities
were divided into four categories: ambulation, office work,
daily activities and exercises. The videos (RGB only) were
sampled at 30 Hz, while the sensor data was sampled at 15

Hz. The sensors provided 19 features: the 3D acceleration,
magnetic field, linear acceleration, gravity, rotation vector and
gyroscope. The data was preprocessed using the L2-norm.

2) UTD-MHAD: This dataset was recorded in a more
controlled condition, with 8 participants performing a set of
27 activities, 4 repetitions each. Recordings were performed
by a depth and RGB camera (only RGB video was considered
in this work) and by two 3D accelerometers. One placed at
a band on the user’s fist, and the other was placed at the
user’s waist. Each session lasted about 3 seconds, and the
recordings were performed in a controlled room, with the
subjects posed facing the camera, at a constant distance and
with constant background. The videos were sampled at 15 Hz,
and the sensor data, with 6 dimensions corresponding to the
two 3D accelerometers, were sampled at 50 Hz.

B. Network Setting

All conditions described in this subsection were experi-
mented on both datasets described in the previous section.
The datasets were split following the k-fold cross-validation
procedure, with k = 10 for the egocentric multimodal dataset
and k = 8 for the UTD-MHAD, so that data provided by
one subject was used for testing, and the remaining data,
for training. For the data stream, only one condition was
considered, in order to allow for late fusion: an InceptionV3
CNN. As previously stated, transfer learning was applied to a
model trained on Imagenet dataset, keeping all weights fixed
except for the softmax layer, replaced to match the number of
classes of the datasets considered.

The temporal and inertial streams were considered sepa-
rately and followed the fusion approach of Fig. 5. The CNN
applied to extract features of the inertial stream was composed
by 256 filters in the first convolutional layer and 512 in the
second. As the InceptionV3 ouputs 2048 features, the feature-
based fusion provides a vector with video and inertial features
in a ratio of 4:1. Both LSTM and TCN were experimented
as blocks for temporal modelling, with 128 units and output
dropout of 0.3. Regarding the TCN, the kernel size was set
to 3, dilations were set do d = {1, 2, 4}, and the number of
residual blocks (i.e., stacks) to 3.

1) Training: The training procedure was adapted from
Simonyan et al. [14] and Song et al. [3]. All models were
optimised using the softmax cross-entropy as loss function.
The pre-training of CNN for optical flow pairs performed on
the split 1 of UCF-101 dataset was ran with the Stochastic
Gradient Descent (SGD) optimiser, for 200, 000 steps. In the
videos of the goal datasets, data augmentation was performed
by random cropping and in the egocentric multimodal dataset,
random flipping. We decided not to flip the videos from
UTD-MHAD, since some of the activities on that dataset
were somewhat symmetric (e.g., wave left and wave right).
For the spatial stream, we used SGD with learning rate
10−2, momentum 0.9 and weight decay 10−4, and training
was also performed for 30, 000 steps, with batches of size
32. Optimisation on the temporal and inertial streams was

31



performed in batches of size 16, for 30, 000 training steps,
using the RMSProp optimiser [34] with learning rate 10−3.

The number of timesteps was selected so that each snippet
would represent 2 seconds of a trial. To reduce the number
of video frames, we sampled them so that tv = 15. With the
egocentric multimodal dataset, the model was sampled once
every 4 frames at the video stream, and the timesteps were set
to tm = 30 and tn = 15 for the inertial stream. We sampled
once every 2 frames with UTD-MHAD, the timesteps of the
inertial stream being set to tm = 100 and tn = 50. Therefore,
we had to apply the adjustment depicted in Fig. 5. The same
settings were kept when training the inertial stream alone,
except the adjustment by sampling in UTD-MHAD.

2) Evaluation: For testing we used the same procedure
adopted in the reference papers: a number snippets was con-
sidered, with equal time between them, and all of them were
submitted to cropping on their four corners and centre. For the
egocentric mutimodal dataset, 5 snippets were used to test each
video, and the videos from the resulting sequences were also
horizontally flipped. For the UTD-MHAD, we considered 2
snippets and no flipping. To make a prediction, output vectors
from all snippets of a given sample were averaged.

This procedure was adopted for all models that ran end-to-
end, i.e., the models for single-stream and feature-level fusion.
For late fusion, one model for each stream was run separately
and the output vectors were combined by weighted averaging.
The same was done when combining to the spatial stream.

V. RESULTS AND DISCUSSION

Fig. 6 shows the number of parameters of each model
built for each stream on the egocentric multimodal dataset
(UTD-MHAD was fairly alike), including the hybrid model for
feature-level fusion. Late fusion was not considered a model on
itself, since it consists on combining the spatial models outputs
with one of the temporal models. Therefore, at inference time,
its number of parameters equals the sum of those present on
the models adopted. The temporal or feature fusion models
embed a CNN similar to that of stream model. Therefore, their
complexity is dependent on the base CNN model adopted.

Since InceptionV3 (adopted on all of our models except
for the inertial ones) is expressively more complex than the
remaining parts of the architecture, variations on the number
of parameters are proportionally small. But yet relevant, since
the weights relative to this block are fixed during training. It is
noteworthy that TCN model was more complex than LSTM for
inertial stream, while the opposite happened for the temporal
and feature fusion models. Due to the fact that the temporal
block on the inertial stream has shape 512×tv , against 2048×
tv on the video stream, thus 2560 × tv in the feature-fusion
models, it may be inferred that the number of input features
of the temporal block impacts less the number of parameters
in TCN-based than in LSTM-based models. This is expected
due to the sparser connectivity of convolutional layers.

The InceptionV3 CNN, which was embedded on the tem-
poral and feature fusion models to extract features based on
single optical flow pairs, was trained separately, prior to the
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Fig. 6: Number of free parameters of each model analysed,
without the softmax layer. The substantially higher number
of parameters at the models that involve video processing is
given to the InceptionV3 neural network contained on it, which
consists of more than 21 million trainable parameters, as made
explicit by the number of parameters of the spatial stream.

TABLE I: Mean accuracy of each model for the temporal and
inertial streams, using 10 folds for the egocentric dataset and
eight for the UTD-MHAD, providing splits such that the test
set was composed by all recordings of one subject.

Dataset Stream Model
LSTM (%) TCN (%)

Egocentric

Inertial 45.50± 7.39 45.50± 8.50
Temporal 69.00± 10.68 72.50± 11.01
Feat. fusion 55.50± 9.60 53.00± 10.77
Late fusion 74.50± 8.20 72.50± 9.35

UTD-MHAD

Inertial 63.28± 5.71 65.36± 9.24
Temporal 80.02± 6.00 81.77± 6.49
Feat. fusion 82.58± 5.56 85.47± 5.56
Late fusion 84.90± 4.78 83.51± 6.25

experiments presented in this paper. It achieved accuracy of
75.15% on the split 1 of UCF-101, using the same training
and evaluation protocol as Simonyan et al. [14]. The resulting
layers were added as blocks of our architecture, as discussed in
section III, and its weights were kept fixed. This was different
for the inertial stream, whose features were extracted by a
simpler network randomly initialised to be optimised together
with following layers for temporal modelling. For all models
on both datasets, LSTM and TCN blocks were investigated.
The mean accuracy of each model for the temporal and inertial
streams is shown in Table I.

As some of the results in Table I are close to each other,
it may be convenient to compare the performances of each
model with respect to some additional aspects. In Fig. 7, we
also present the macro F1-score of the models, that is, the
average harmonic mean of precision and recall. By penalizing
both incompleteness and inconsistency, this measure is a trade-
off between type-I and type-II errors per class. The means
between the evaluations on each fold were presented in the
bars, with standard deviations proportional to the length of
the vertical traces on the top of it.

The spatial model was obtained by a procedure similar to
that of the base CNN block of the temporal models. However,
it took RGB frames as inputs, instead of pairs of optical flow
matrices; and was initialised with ImageNet weights, instead
of being trained from scratch. This model was used to build
classifications using the three mentioned streams, by fusing
it to the models presented in Table I by weighted averaging.
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Fig. 7: Macro F1-scores for each model.

TABLE II: Accuracy, for the egocentric multimodal dataset,
of the spatial stream models and late fusion by weighted aver-
aging with each of the fused temporal and inertial models. If
ws and wt are the weights for the spatial and temporal/hybrid
streams, the weights are shown using notation ws : wt.

Temporal model Weights Accuracy (%)
Spatial only 1:0 60.50± 8.50

LSTM
Video 1:1 72.50± 6.42
Feat. fus. 3:1 69.00± 9.69
Late fus. 1:6 78.50± 9.23

TCN
Video 1:2 78.00± 10.54
Feat. fus. 2:1 70.25± 9.16
Late fus. 1:6 80.62± 8.81

The fusion weights were selected so that the accuracy was
the largest obtained in our experiments. As UTD-MHAD
dataset was built on a controlled environment with constant
background and without significant differences on objects able
to distinguish between activities, the spatial stream was not
significantly informative, with accuracy of (6.74± 3.23)%,
only slightly above random choice (i.e., 3.70%, given that
there were 27 classes). For this reason, fusion between the
three streams were made only for the egocentric multimodal
dataset. Results are reported in Table II.

A. Discussion

Results from LSTM and TCN-based models were generally
quite close to each other, with a slight tendency in favor
of TCN models for most single-stream approaches and all
models combined with the spatial stream (Tables I and II).
The feature-level fusion approach was successful in the UDT-
MHAD, surpassing the accuracy of the late fusion when
coupled with a TCN block and achieving the best accuracy
for this dataset, of 85.47%. Since this dataset is endowed
with other modalities, skeleton joints and depth frames, it was
expected that the proposed model would perform below the
most accurate models on the literature. Still, our proposal may
be seen as competitive, since most of our results outperformed
those reported on the reference paper [7], which achieved, at
most, overall accuracy of 79.10%. It might be noticed that
our approach relies only on RGB and inertial data, which are

more widely available and may be included in different sorts
of systems. With a more complex model, in which LSTM
networks also modelled depth information, Li et al. [35]
achieved an accuracy as high as 95.31%.

On the egocentric multimodal dataset, feature-fusion ap-
proaches had suffered from overfitting, with fast optimisation
and very high training accuracy. However, average test accu-
racy is below the temporal stream alone, which has shown
lower accuracy during all the training procedure, and actually
was harder to optimise than the other models. Considering
inertial and temporal streams, the best accuracy was achieved
by the late fusion of LSTM-based models (74.50%). This
result was curiously different when the models were further
combined with the spatial stream, with the late fusion of TCN
models achieving the best overall accuracy for this dataset
among our models, e.g., 80.62%. Although this was only
compatible to the best multiple stream CNN model presented
by Song et al. [1] which reported 80.50%, it might be noticed
that our approach presents some advantages. As we relied on
a previously trained CNN to extract features from the optical
flow matrices, with a very reduced set of parameters left to be
optimised in a LSTM or TCN block, it provides the flexibility
to work with different and arbitrarily complex CNNs for this
aim. Moreover, since the number of parameters left to be
optimised is relatively low, with our approach one can work
with larger sequences of data even with a modest hardware.

The F1-scores shown in Fig. 7 were consistent with the ac-
curacy results, thus there were no issues regarding classes with
very high precision and low recall or the opposite. Besides,
models with higher accuracy have also shown higher F1-score,
i.e., both measures were suitable to make comparisons.

The proposed framework may contribute to further appli-
cations on human-robot interaction [36] [37], especially on
scenarios which demand social interaction between user and
robot [38] [39].

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, a new model for human activity recogni-
tion on videos and data from inertial sensors was proposed.
First, different neural networks were analysed as building
blocks for the temporal processing, particularly Long Short-
Term Memory (LSTM) and Temporal Convolutional Networks
(TCN). Second, fusion between the inertial and video temporal
streams were not only performed through late fusion of the
output layers, but also at feature-level. All those approaches
were analysed separately, for different sets of modalities, and
thorough comparisons were done.

Focus was given to modelling the temporal dependencies
in sequences of tuples of inertial data, features extracted
from optical flow and fusion between those approaches. For
the temporal feature extraction, we adopted Long Sort-Term
Memory (LSTM) units and Temporal Convolutional Networks
(TCN). A feature-fusion approach was also proposed and com-
pared to the more traditional late fusion approach, commonly
adopted on multiple stream CNNs. The RGB frames were
also contemplated, with output features from a spatial CNN
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further combined to the other models through weighted aver-
aging, achieving accuracies up to 80.62% for the egocentric
multimodal dataset, and 85.47% for the UTD-MHAD without
considering depth data.

Experiments were performed on the egocentric multimodal
dataset and UTD-MHAD. Models obtained with LSTM and
TCN blocks both led to excellent accuracies, with TCN,
which we have brought as a novelty to this application,
performing slightly better in many circumstances. The feature-
fusion approach led to good results in UTD-MHAD dataset.
However, it was unable to generalize well on the egocentric
multimodal. Overall, the proposed model presented promising
results on both datasets compatible with the state-of-the-art,
which provided further insights on the use of deep learning
for human-robot-interaction applications.

Future work will contemplate depth images as an additional
stream, since this may be introduced to social robots in several
circumstances. We have already built a multimodal dataset for
activities in domestic environments, with videos and inertial
data from smartwatches and smartphones, to be used on deep
learning models in human-robot interaction applications. This
dataset will be made publicly available once we finish the
anonymisation procedures.
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CHAPTER

3
HWU-USP DATASET AND FRAMEWORK

In this chapter, the HWU-USP activities dataset is presented, along with different methods
for its classification according to multimodal scenarios. This corresponds to the second research
question of section 1.1. The outcomes of the previous chapter were applied as the foundations of
such developments, published in the paper ”Activity Recognition for Ambient Assisted Living
with Videos, Inertial Units and Ambient Sensors” (RANIERI et al., 2021a), published to Sensors,
an open access journal by MDPI with impact factor 3.275 and qualified as A1 in the latest Qualis
for Computer Science journals. The dataset was made available at the Dryad Digital Repository
(RANIERI et al., 2021b). The documents for ethics clearance of the data collection, it is, the
information sheet presented to the participants, the example of the informed consent form, and
the confirmation of the ethical approval by the Heriot-Watt University committee, are reproduced
in Appendix A. The paper is reproduced in the following pages.
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Abstract: Worldwide demographic projections point to a progressively older population. This fact
has fostered research on Ambient Assisted Living, which includes developments on smart homes
and social robots. To endow such environments with truly autonomous behaviours, algorithms must
extract semantically meaningful information from whichever sensor data is available. Human activity
recognition is one of the most active fields of research within this context. Proposed approaches
vary according to the input modality and the environments considered. Different from others,
this paper addresses the problem of recognising heterogeneous activities of daily living centred in
home environments considering simultaneously data from videos, wearable IMUs and ambient
sensors. For this, two contributions are presented. The first is the creation of the Heriot-Watt
University/University of Sao Paulo (HWU-USP) activities dataset, which was recorded at the Robotic
Assisted Living Testbed at Heriot-Watt University. This dataset differs from other multimodal
datasets due to the fact that it consists of daily living activities with either periodical patterns or
long-term dependencies, which are captured in a very rich and heterogeneous sensing environment.
In particular, this dataset combines data from a humanoid robot’s RGBD (RGB + depth) camera,
with inertial sensors from wearable devices, and ambient sensors from a smart home. The second
contribution is the proposal of a Deep Learning (DL) framework, which provides multimodal activity
recognition based on videos, inertial sensors and ambient sensors from the smart home, on their
own or fused to each other. The classification DL framework has also validated on our dataset
and on the University of Texas at Dallas Multimodal Human Activities Dataset (UTD-MHAD), a
widely used benchmark for activity recognition based on videos and inertial sensors, providing a
comparative analysis between the results on the two datasets considered. Results demonstrate that
the introduction of data from ambient sensors expressively improved the accuracy results.

Keywords: human activity recognition; multimodal datasets; deep learning; video classification;
inertial sensors; human–robot interaction

1. Introduction

According to projections by the Department of Economic and Social Affairs of the
United Nations, the worldwide proportion of citizens aged between 15 and 64, with respect
to those aged over 65 years old, is expected to drop from about 7:1 in 2020 to approximately
4:1 in 2050 [1]. This may lead to a deficit in workforce numbers in the elderly care sector,
which has motivated the research on Ambient Assisted Living (AAL) [2]. The idea is to
support human carers, with the introduction of assistive technologies. These solutions may
help to address issues such as improving limitations of movements, monitoring chronic
diseases, minimising social isolation or controlling medicine administration by providing
integrated services that may be connected to the Internet of Things (IoT) [3].
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Technologies for AAL may be provided in the form of smart homes [4], equipped
with sensors, for monitoring different conditions of the environment and its inhabitants [5],
and actuators, to effectively help them in their daily activities [6]. To enhance those
environments and improve their acceptance towards the end users, the design can include
service or social robots [7], which may either introduce additional functionalities and
monitoring tools, or provide more natural human–robot interaction. One advantage
of introducing such robots to an AAL environment is the possibility to collect visual
information with less privacy concerns than those related to fixed cameras [8]. Besides,
robots may be endowed with behaviours to manage privacy-sensitive situations [9].

Human activity recognition, which consists of classifying human-centred data from
different sensors [10], is a key requirement for AAL applications, as it is essential for allow-
ing proactive behaviours or even basic cooperation between human and the environment.
The review provided in Chaaraoui et al. [11] presented a discussion on taxonomies for
Human Behaviour Analysis (HBA). According to the authors, an activity is a sequence of
semantically meaningful actions involving interactions between humans and their environ-
ment. The most widely adopted approach to HBA involves the classification of the activities
from sensor data capturing sequences of basic human motions, i.e., action primitives.

To date, most research on this field has focused on single modality approaches, which
may consist of either RGB [12] or RGB-D videos [13], wearables such as inertial sensors
(Inertial Measurement Units—IMUs) [14], or ambient sensors [15]. The scenarios in which
each of these modalities have been employed for activity recognition vary according to
the availability of data, which may be constrained by technical or ethical limitations. RGB
videos can be found on different online sources, which allows the gathering of different
large-scale, very heterogeneous datasets [16]. Depth videos and IMU data are usually
collected in more controlled environments, such as AAL research laboratories [17]. For all
of those modalities, deep learning (DL) approaches have shown to provide state-of-the-art
classification results [18–20]. In the case of ambient sensors, most datasets provides long-
term records of binary data, and the associated research effort usually focus on segmenting
and classifying human activities [21].

The availability of data from multimodal sources within a smart robotic environ-
ment [22] may help designing more robust methods for activity recognition. For instance,
although recent advances on DL approaches have made video-based activity recognition
a very powerful approach [23], this modality of data may be unavailable due to privacy
restrictions, or it may be compromised by technical issues such as occlusions. Besides, one
modality of data can perform better than another in certain conditions. Ambient sensors
may be quite informative on some well-defined scenarios in a smart home [24], while
wearable sensors can be more suitable for actions that rely on limb motions [25]. Therefore,
most recently, multimodal approaches for activity recognition have been investigated [20]
as more robust alternatives when compared to single-modality approaches.

To the best of our knowledge, there is no work in the literature that addressed the prob-
lem of recognising heterogeneous activities of daily living centred in home environments
by building modules that consider, simultaneously, data from videos, wearable IMUs, and
ambient sensors. One of the reasons is the lack of a representative dataset suitable for this
task, which would be a prerequisite to train and test any data-driven model. Nonetheless,
this configuration can be expected in smart AAL environments combining smart home and
robotic technology.

Driven by this motivation, our first contribution in this work is the design, collection
and curation of the Heriot-Watt University/University of Sao Paulo (HWU-USP) activities
dataset, which will be made public. This database was built based on an international
collaboration between researchers from the Heriot-Watt University (HWU) in the UK, and
the University of Sao Paulo (USP) in Brazil (the dataset is available at https://drive.google.
com/drive/folders/1Aq1kOcAxLhZl84R9qAdW_o0uL8s5b30E?usp=sharing). The dataset
was designed to capture a set of activities of daily living that took place in the Robotic
Assisted Living Testbed (RALT) at the Heriot-Watt University, in Edinburgh, Scotland.
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It includes not only activities that involve long-term dependencies, such as preparing a
sandwich, but also static activities, such as reading a newspaper. Videos were recorded
from the RGBD camera from a robot, positioned at a fixed location in the test kitchen.
Two wearable IMUs were placed at the dominant arm and at the waist of each participant,
exemplifying the inertial sensors usually found in smartwatches and a smartphones. The
ambient sensors from the smart home also have been integrated in the environment.

Besides presenting the dataset in detail, our second contribution is the development
of a framework based on Deep Learning (DL) networks for classifying multimodal data
not only from videos and inertial units, as performed on related work, but also on ambient
sensors. To the best of our knowledge, this is the first approach to consider those three
modalities altogether, which could not be done with the other datasets present on the
literature. The DL models for the different modalities were trained and evaluated with the
HWU-USP dataset. Our investigation included approaches for sensor fusion, a non-trivial
problem which drives research in different contexts [26], and has been explored in the field
of activity recognition [27]. On our case, fusion was performed mostly at decision-level,
though one feature-level approach was proposed for the inertial and ambient sensors.
A comparative analysis of the results, quantifying the improvements achieved by each
approach, was performed.

The classification framework was based on existing literature for each modality. Re-
garding the video modality, we have considered the two streams proposed by Simonyan
and Zisserman [28]: the spatial and temporal streams. As expected, due to the motion-
driven aspect of the datasets analysed, with few background information or objects that
could be discriminative regarding to the activity being performed, the appearance-based
approaches (i.e., the spatial stream) led to poor results, and hence were not considered on
the multimodal scenarios. Instead, our architecture focused on motion-based approaches
(i.e., the temporal stream), which led to the best accuracies observed for the single-modality
approaches. This consisted of combining CNN modules for feature extraction on dense
optical flow maps [29–31], previously computed on the video frames, and a LSTM layer for
temporal modelling [32].

With respect to the IMU, we introduced the raw, time-domain data to a DL architecture,
another common practice in related work [33,34]. The fusion between IMU data and
ambient sensors was performed internally as part of one of the DL architectures presented,
after both modalities were temporally aligned in a preprocessing stage, an approach that
we are proposing as part of this work. To perform fusion between the video-based models
and the models that processed IMU and ambient sensors’ data, the output vectors were
combined with the outputs of the other modalities, also an approach commonly adopted
in related research [35,36].

All predictions are performed on two-seconds-long segments. Following a widely
adopted approach in the literature in video-based activity recognition [18,28,35], we have
evaluated our models on 25 segments equally spaced between them. We did the same for
the other modalities as well, since this approach allows the classifiers to consider partial
observations of the activities, as expected for real-world scenarios. Results are presented
in terms of the accuracy obtained in each of the conditions analysed, corresponding to
different input modalities or fused models. The introduction of ambient sensors has shown
to provide significant improvements to the overall accuracy. The results presented here
provide a baseline for future work in human activity recognition using multi-modal sensor
data in smart robotic environments.

Besides the new HWU-USP dataset, we have also experimented our video and IMU
models with another popular public available dataset, the UTD-MHAD [37], providing
comparisons with the HWU-USP dataset regarding to the behaviour of the classifiers.
Moreover, the classification methods achieved competitive results for the UTD-MHAD.
The confidence in predicting the correct label on each segment was also analysed. As was
expected, this was quite different when comparing the HWU-USP dataset, consisting of
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both complex and simple activities, to a more homogeneous dataset, such as the UTD-
MHAD.

The remainder of this article is organised as it follows. Section 2 illustrates and
compares the most relevant datasets from the literature, and highlights their key differences
from the one presented in this paper. Section 3 provides an overview of sensor-based
human activity recognition, focused on techniques able to exploit different input modalities.
Section 4 presents a detailed description of the data in the proposed dataset and the
protocol used for its collection. Furthermore, it describes the DL methods considered for
the classification of data and also the protocols used for their training and evaluation.
The results are then presented and analysed in Section 5, and a discussion is presented in
Section 6. Finally, in Section 7, conclusions and possible directions for further research are
outlined.

2. Datasets of Human Activities

The HWU-USP dataset was built to provide a benchmark for studies on activity
recognition in indoor environments. For this reason, combinations of different modalities,
namely videos, wearable IMUs, and environmental sensors were considered. In this section,
previously developed datasets that includes sensor data from these modalities, regardless
of the context, will be presented, in order to contextualise the construction of the HWU-USP
dataset. The nature of available datasets and associated approaches for data collection vary
greatly for different sensor modalities considered in human activity recognition research.
For example, for RGB video datasets, there is a vast availability of data on the Internet, from
movies or other non-dedicated sources, which can be labelled and made available, resulting
in fairly large datasets. This is more difficult for depth videos, IMUs or environmental
sensors, hence this type of datasets are more often collected in controlled settings, usually in
research laboratories simulating domestic environments. In the next subsections, datasets
for each modality or set of modalities will be presented separately.

2.1. RGB Videos

As already mentioned, most commonly used benchmarks of regular RGB videos
can avail of amateur videos, movies or sports broadcasts. Most of these datasets are pre-
segmented, which means that each video is entirely associated to one category (e.g., “biking”
or “playing piano”), with a few exceptions. The categories in which the activities of these
datasets are usually labelled are generally at a comparatively high level of abstraction and
granularity, including activities such as playing basketball, instead of low-level, primitive
activities such as walking or running. A summary of representative RGB video datasets is
provided in Table 1.

Table 1. Video datasets made available and widely used in related works.

Dataset Number of Instances Categories Source Pre-Segmented

UCF101 [16] 13,320 101 YouTube Yes

HMDB51 [38] 6766 51 Movies, YouTube, etc. Yes

CCV [39] 9317 20 YouTube Yes

Hollywood2 [40] 1707 12 Movies Yes

Sports-1M [41] +1 M 487 YouTube Yes

Kinetics 700 [42] +600 K 700 Youtube Yes

THUMOS [43] +23,700 101 YouTube No

ActivityNet [44] 13,837 203 YouTube No
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The two most relevant benchmarks, on which the most renowned video-based HAR
techniques have been evaluated, are the UCF101 [16], from the University of Central Florida,
and the Human Motion Database (HMDB51) [38]. The Columbia Consumer Video Database
(CCV) [39] is also commonly referenced, as it presents similar properties, but longer videos.
The Hollywood2 [40] and the Sports-1M [41] datasets present an additional challenge,
as the videos contain editions and camera transitions. Although, as seen in Table 1, the
Sports-1M dataset is quite large, a newer dataset—the Kinetics dataset [42]—has been
preferred for testing DL architectures, requiring a large amount of data. Regarding datasets
that were not pre-segmented, some of the most relevant ones are the THUMOS [43] dataset,
provided with the same set of categories as the UCF101, and the ActivityNet [44], annotated
according to a semantic hierarchy of activities designed by the U.S. Department of Labour
to perform the American Time Use Survey (ATUS).

All of the above-mentioned datasets consist of heterogeneous and realistic sets of
videos, usually thanks to user-created content. This variety of data is not possible, at
least at present, for data from other modalities, such as RGB and depth videos, wearable
and environmental sensors. Consequently, multimodal datasets are usually collected in
controlled environments, mostly with static backgrounds, few variations in camera angles
and artefacts shared among the data samples. These limitations are inherent to any dataset
consisting of modalities that does not count on large amounts of user-created content,
which is the case for almost all multimodal datasets, including ours.

2.2. Depth Videos

With the popularisation of RGBD (RGB + depth) cameras, such as the Microsoft
Kinect [45], it became possible to provide not only RGB and depth videos, but also pre-
viously extracted skeleton joints from humans being observed. The categories within
these datasets are usually from levels of abstraction compatible with those that could be
acquired by RGBD devices, although less diverse, with several activities sharing the same
background, objects for manipulation and light conditions. In Table 2, a collection based
on the datasets adopted by Amir Shahroudy et al. [46] is shown. These datasets presented
were collected using a Microsoft Kinect device, except for the NTU RGB+D, which was
collected using a Microsoft Kinect v2. Both devices may collect data on either 15 Hz or
30 Hz.

Table 2. Selection of datasets for depth videos, adapted from the list by Amir Shahroudy et al. [46].

Dataset Classes Subjects Repetitions Instances

ORGBD [47] 7 24 2 336

MSR-DailyActivity3D [48] 16 10 2 320

3D Action Pairs [49] 12 10 3 360

RGBD HuDaAct [50] 13 30 - 1189

NTU RGB+D 120 [51] 120 106 - 114,480

The datasets listed at Table 2 share a lot of common points. The Online RGBD
Action dataset (ORGBD) [47] contains videos from different environments, allowing cross-
environment evaluation of HAR techniques. The MSR-DailyActivity3D [48] is characterised
by a higher intra-class variation. The 3D Action Pairs [49] was designed to include pairs of
opposite activities, such as pull a chair and push a chair. An initiative for providing a larger
dataset resulted on the RGBD HuDaAct [50]. Finally, the NTU RGB+D was extended and
formed the NTU RGB+D 120 dataset [51], with more than 100K videos distributed on 120
categories.
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2.3. Wearable and Ambient Sensors

In this subsection, we are addressing sensors that may be worn by the subjects (i.e.,
wearable sensors) or placed at predefined locations of the environment (i.e., ambient sen-
sors). We focused our review in inertial measurement units (IMU), since most multimodal
datasets address this modality. However, we also referenced setups including sensors
embedded in the environment, usually at fixed locations, because these can help to get very
discriminative information. This is the case of our own dataset, which includes data from
different sensors from a smart home, as discussed in Section 4.1. The data provided by these
devices usually consist of measurements from accelerometers, gyroscopes, and, sometimes,
magnetometers, all of them three-dimensional. All datasets examined in Table 3 were
collected under controlled conditions, with the sensors placed on the surfaces of objects or,
most commonly, as wearable devices.

Table 3. Datasets based on environmental or wearable sensors. Except for the OPPORTUNITY dataset, the IMUs were all
contained on wearable devices.

Dataset Sensors Rates Attributes Subjects Classes

OPPORTUNITY [52]

Wearable accelerometers: 12
Wearable IMUs: 7
Wearable tags: 4
Objects’ accelerometers: 12
Objects’ gyroscopes: 12
Environmental accelerometers: 8
Switches: 13

64 Hz
30 Hz
87 Hz
64 Hz
64 Hz
98 Hz
100 Hz

242 4 17

PAMAP2 [53] Colibri wireless IMUs: 3
Heart monitor: 1

100 Hz
9 Hz 52 9 18

REALDISP [54] Xsens IMUs: 9 50 Hz 120 17 33

SBHAR [17] Samsung Galaxy S2 IMU 50 Hz 561 30 12

Skoda [55] IMUs: 20 98 Hz 141 1 10

DG [56] IMUs: 3 64 Hz 9 10 2

The OPPORTUNITY [52] dataset has been widely used as benchmark in the literature
for activity recognition tasks involving wearable or environmental sensors, as it consists
not only of several inertial sensors placed in objects of daily living and worn by the subjects,
but also tags and switches positioned in different parts of the environment. Another
widely adopted dataset is the Physical Activity Monitoring for Aging People (PAMAP) and
its extension, the PAMAP2 [53], designed for identifying patterns in subjects performing
physical exercises. The Realistic Sensor Displacement Benchmark Dataset (REALDISP) [54] also
addresses physical activities. The positioning and availability of sensors are not usually
practical and intended for large-scale adoption, except when dealing with standardised
conditions, such as smartphones, as addressed on the Smartphone-Based Human Activity
Recognition dataset (SBHAR) [17]. Datasets for other scenarios have also been developed,
such the Skoda Mini Checkpoint dataset [55], composed of work activities in a car factory, and
the Daphnet Gait (DG) [56], composed of motion patterns of patients affected by Parkinson’s
Disease.

Bakar et al. [57] presented an extensive survey on sensing approaches for activity
recognition in smart homes. Besides cameras, microphones and wearables, these environ-
ments allow the introduction on fixed sensors such as temperature, pressure or motion
sensors. Binary sensors, such as switches at doors and wardrobes, are also usual, and these
categories were also included on our approach. The CASAS project [58] proposed different
testbeds that could be used for data collection and experiments in smart homes, based
mostly on environmental sensors. Differently from the datasets mentioned in Table 3, these
datasets usually result from long-term data collections. As detailed by Lesani et al. [59],
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the Twor2009, Tulum2009 and Tulum2010 datasets, from the CASAS project, were collected
in periods ranging from 3 to 6 months, in which information from motion, binary, door
and item sensors were recorded.

An intrinsic advantage of the above-mentioned modalities is that they can provide
additional data that are invariant to the positioning of externally placed observing devices,
contrary to when cameras or robots are used. Thus, they may provide valuable information
for an activity recognition framework. Besides, inertial and ambient sensors also have the
advantage of being less intrusive than video cameras. For this reason, multimodal datasets,
including video, IMUs and other modalities, have been proposed.

2.4. Multimodal: Video and IMU

Multimodal datasets with videos and other sensors, especially IMUs, have been
proposed in different contexts. Most of these datasets report data from combinations of
different sensors and depth videos, which may be accompanied by the RGB videos. A
survey on the subject was provided by Chen et al. [27], considering only datasets that
provided depth videos and IMU data. In Table 4, we present a collection of the most
relevant datasets for any kind of video collected along with data from other sensors.

Table 4. Multimodal datasets, provided with videos, IMU sensors, and possibly others.

Dataset Sensors Rate Subjects Classes Instances

CMU-MMAC [60]

Cameras: 5
Microphones: 5
Wired IMUs: 5
Wireless IMUs: 4
Motion capture: 1
eWatch (accelerometer)

30 Hz or 60 Hz
-
120 Hz
60 Hz
120 Hz
-

18 5 90

Berkeley-MHAD [61]

Motion capture: 8
Stereo cameras: 2
Quad cameras: 2
Microsoft Kinect: 2
Shimmer IMUs: 6
Microphones: 4

480 Hz
22 Hz
22 Hz
30 Hz
30 Hz
48k Hz

12 11 660

UTD-MHAD [37] Microsoft Kinect: 1
IMU: 2

30 Hz
50 Hz 8 27 861

C-MHAD [62] Webcam: 1
Shimmer3 IMU: 2

15Hz
50Hz 12 12 240

50 Salads [63] Microsoft Kinect: 1
Accelerometers: 11

30 Hz
50 Hz 25 51 966

JIGSAWS [64] da Vinci (kinematic data): 1
Stereo camera: 1

30 Hz
30 Hz 8 15 103

ChAirGest [65] Microsoft Kinect: 1
Xsens IMUs: 4

30 Hz
50 Hz 10 10 1200

UR Fall Detection [66] Microsoft Kinect: 1
x-IMU: 1

30 Hz
256 Hz 5 5 70

TST Fall Detection V2 [67] Microsoft Kinect: 1
Shimmer IMUs: 2

30 Hz
50 Hz 11 8 264

The Carnegie Mellon University Multimodal Activity (CMU-MMAC) Database [60]
records data from RGB cameras, microphones and wearable sensors worn by a set of
subjects performing food in a kitchen environment. The Berkeley Multimodal Human Action
Database (Berkeley-MHAD) [61] and the University of Texas at Dallas Multimodal Human
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Action Database (UTD-MHAD) [37] have a similar structure based on short actions recorded
with RGBD cameras, IMUs and a variety of other sensors. The recently deployed Continu-
ous Multimodal Human Action Dataset [62] was collected in an environment similar to that
of the UTD-MHAD, although without the RGBD camera, containing activities related to
smart TV gestures (5 activities) and transitions (7 activities) in continuous, non-segmented
recording sessions. The 50 Salads dataset [63] captures people preparing several salad
recipes being recorded by RGBD cameras, and IMUs placed in the utensils used for the
food preparation. The ChAirGest [65] dataset focuses on gesture recognition with the
aim to be applied in human–computer interfaces. The University of Rzeszow Fall Detection
Dataset [66] and the Telecommunications System Team (TST) Fall Detection Dataset [67] were
built with data on regular daily activities and falls, which can be used to train models for
fall detection, an important field of research with applications as part of AAL solutions for
the elderly.

Although the above-mentioned datasets cover a range of applications for multimodal
activity recognition, none of them focused generically on activities of daily living in AAL
environments. Moreover, none of them are provided simultaneously with data from videos,
inertial units and ambient sensors. Our approach aims to alleviate this gap by providing a
dataset captured in a heterogeneous, sensory rich environment comprised of a smart home
system, a wearable sensor kit, and a domestic robot equipped with an RGBD camera.

3. Human Activity Recognition

Different algorithms can be suitable for the task of human activity recognition, depend-
ing on the nature of the data being addressed [68]. For RGB videos, although strategies
based on classic feature extraction techniques still provide competitive results [69–71],
Deep Learning (DL) architectures have led to increasingly accurate, state-of-the-art results,
representing a very active field of research, as discussed by Zhang et al. [72]. Among the
most influential studies on this subject is Simonyan and Zisserman [28], which presented
the Tow-Stream ConvNets, characterised by a spatial and a temporal stream. The spatial
stream consists of a Convolutional Neural Network (CNN) that classifies individual RGB
frames from a video, while the temporal stream is a similar CNN which, instead of an
individual image, processes a sequence of dense optical flow maps (horizontal and vertical),
computed on a preprocessing step using a suitable algorithm [29–31], from a predefined
number of frames. The scores obtained by both streams are then fused, in order to obtain
a prediction. Most of the works found in literature built on the basic structure of the
Two-Stream ConvNets, including the Temporal Segment Networks [18]. Recent literature
has proposed different multiple-stream approaches that could include other input modali-
ties [12]. Our work was based on the multiple stream paradigm, in which the temporal
stream was extended to work with a combination of CNN and Long Short-Term Memory
(LSTM), as proposed by Donahue et al. [32]. It is worth to notice that spatio-temporal
approaches, usually based on 3D CNNs, have been a popular alternative to multiple-stream
approaches such as ours [73–75]. In this paper, the approaches implemented for video
classification consisted of combining multiple stream principles using optical flow maps,
with feature extraction with a CNN and temporal modelling with LSTM.

With respect to depth videos, state-of-the-art results have been obtained from different
approaches. Motion from depth images, including optical flow features computed over
depth human silhouettes, along with features exracted from human joints, are usually
employed to compose Hidden Markov Models (HMM) [76–81], or other representations
such as Self-Organising Maps (SOM) [82]. The most successful approaches are based on
features extracted from geometrical relationships on skeleton joints [83]. In the context
of DL, some researchers investigated the introduction of preprocessing steps such as the
computation of depth motions maps [84], or the computation of action maps from scene
flow representations [19]. We did not include the depth videos as a modality for computing
the temporal stream because there is not a direct correspondence between the preprocessing
steps of the most successful approaches on this context and the algorithms that we have
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analysed for the other modalities. The three-dimensional version of the optical flow, the
scene flow, could be computed based on RGB-D images [85], but led to poor results on
exploratory experiments and, hence, were unconsidered. Nonetheless, we included the
raw depth images as an additional condition for analysing the spatial stream.

Considering sensors other than video cameras, the survey by Wang et al. [86] defined
four modalities: body-worn (i.e., wearable sensors such as smartphones or watches), object
(i.e., sensors attached to objects, such as RFID or IMUs attached to utensils), ambient (i.e.,
sensors attached to to environment, such as door sensors or Bluetooth beacons), and hybrid
(i.e., combinations of modalities, typical for smart environments). Here, we are interested
on body-worn (specifically IMUs) and ambient sensors, which composed a hybrid setting
for our experiments.

Regarding activity recognition based on IMUs, research has addressed scenarios that
resemble devices that are expected to be actually worn by the users, such as smartphones
and smartwatches [87]. Feature extraction methods include combinations between se-
quential minimal optimization (SMO) and Random Forest [25], statistical features feeding
genetic algorithms [88], and Markov models [89]. DL architectures, such as Deep Neural
Networks (DNN), Convolutional Neural Networks (CNN), autoencoders, Restricted Boltz-
mann Machines (RBM), and Recurrent Neural Networks (RNN) have also been successfully
applied to this modality [33]. In this paper, we designed a module for inertial sensors that
resembled the DeepConvLSTM by Rueda and Fink [90], in which a convolutional module
would perform feature extraction and feed it to an LSTM layer.

Considering ambient sensors, approaches can be divided into two major categories;
data driven and knowledge driven. Domain Knowledge based systems use ontology’s
and semantic reasoning to aid in recognition. Chen et al. [91] and Liciotti et al. [92]
used a knowledge driven approach, including a Partially Observable Markov Decision
Process (POMDP) and exploited the task information, while the location is combined
with the sensor events in the smart home. Data-driven is mainly focused on use of feature
extraction, temporal clustering, and activity recognition. Medina-Quero et al. [93] proposed
a method using fuzzy time windows (FTW) to segment the data set, followed by Long
Short-Term Memory (LSTM) for activity recognition. Gochoo et al. [94] extracted fixed-
length sliding windows into a sparse two-dimensional time matrix to use Convolutional
Neural Networks (CNN) for activity recognition. Guo et al. [15] provided a data-driven
framework for activity recognition from multiple residents using time clustering.

Although different possibilities for fusion of multimodal data using DL methods have
been proposed, especially regarding to different inputs from multiple video streams [95],
the most popular approach for dealing with heterogeneous data is to process each modality
separately and fuse the obtained scores at a later stage [35,36], which we refer as late fusion.
This was the approach adopted on all experiments performed in this paper. Considering
neural networks, variation of this method that has been adopted is to fuse the outputs of the
modules respective to each modality using a fully-connected layer [75]. Other approaches
have also been proposed, such as the Correlational Recurrent Neural Network (CorrRNN)
presented by Yang et al. [96].

4. Methods

The experiments were performed in order to evaluate the improvements that could be
achieved by combining motion information from videos and inertial sensors with static,
contextual information from ambient sensors at a smart home. The task was to classify
high-level activities, possibly composed by complex sequences of actions, using time-
localised data, which is certainly a requirement for a real-time decision-making system. In
the literature review, summarised in Section 2, we did not find a dataset suitable for such
analyses. Hence, we designed a data collection procedure and collected the HWU-USP
dataset, presented in the next subsection. This dataset captures a set of daily activities
performed in the simulated kitchen at the Robotic Assisted Living Testbed (RALT), part of
the Edinburgh Centre for Robotics in Edinburgh [97]. It was recorded with ambient sensors
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such as switches installed on wardrobes and drawers, inertial sensors attached to the wrist
of the dominant arm and to the waist of the participants, and videos recorded from the
RGBD camera of a domestic robot placed in a fixed observing location.

Besides the construction of the HWU-USP database, we have also performed experi-
ments with the UTD-MHAD [37], already mentioned on Section 2.4, one of the most widely
used benchmarks for multimodal activity recognition from videos and IMU. This known
dataset differs from ours on its granularity, with actions composed of short movements
such as clap, all of them with approximately the same length of very few seconds. It
also provides more homogeneous data, with the subjects cautiously positioned facing
the camera, always in full face (on the HWU-USP dataset, images in profile and in full
face are presented on different frames of the videos). Although this is suitable for work
on gesture-based interfaces, it is realistic for daily activities such as the ones that we are
interested in. Moreover, it is focused on motion information and does not provide data
from ambient sensors, which limits our analyses. Another difference is that, whereas
the HWU-USP dataset is provided with two inertial units placed on the subjects’ waist
and dominant wrist, the UTD-MHAD provides inertial data from only one unit, worn
on the subject’s right wrist. Nevertheless, it may provide an alternative benchmark for
our evaluations, besides allowing comparisons with our dataset on the performance of
successive predictions over time using the same classifiers. Those analyses will be better
described on Section 4.3.

As for the classifiers, we built on DL architectures for data from video and inertial
sensors, presented on our previous work [36]. The most relevant contributions of this
paper are the models trained not only on data from those modalities, but also considering
ambient sensors from the smart home. This data was pre-processed to compose tuples
of structured, categorical data which could be introduced as an additional stream to be
introduced on the top of the neural network originally implemented for classifying IMU
data. The design of the resulting neural network will be depicted on Section 4.2.

4.1. The HWU-USP Activities Dataset

The multimodal datasets presented in Section 2 provide data from different kinds
of videos and inertial sensors, but they did not include data from ambient sensors. The
main contribution of our dataset is introducing the data from the smart home devices
synchronously with videos and inertial sensors. Moreover, we provided videos of either
activities made of repetitive patterns, such as reading a newspaper, and more complex
activities with long-term dependencies, such as preparing a sandwich. This makes our
dataset more realistic regarding the set activities, with respect to what could be expected
on an actual AAL scenario, when compared to the others.

As already mentioned, the data collection was performed at the RALT laboratory [97].
The RALT is a 60 m2 (square meters), fully sensorised space designed to resemble a typical
single level home comprising an open-plan living, dining and kitchen area and a bathroom
and bedroom, and hosting a number of smart home, assistive technologies and domestic
robots, such as the TIAGo robot, manufactured by Pal Robotics [98]. Besides collecting data
from the smart home, people being recorded were asked to wear a wearable kit comprising
of a smart watch and a sensor device to be installed on the belt, both equipped with IMUs.
Furthermore, a Tiago robot was placed at a fixed location, to record data from its RGBD
camera.

The data collection procedure received ethics approval from the Heriot-Watt Univer-
sity ethics committee on the 17th of November, 2019. A set of 16 volunteers participated
on this study over the period of 2 weeks, performing a single repetition of each of the
nine activities included in our protocol. This was to ensure to capture a degree of vari-
ability in the performance of each activity being recorded, including different timings for
primitive actions and overall activities performed by different people. The participants,
healthy volunteers with neither functional nor cognitive impairments, signed a consent
form and the data collected did not include their identity (participants’ faces were also
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made anonymous by blurring the recorded image). Each participant was brought into the
lab and the activities were explained and the participants were set up with the IMU’s in
the kitchen. The following subsections will provide more information about the sensors
and protocols used for data collection.

4.1.1. Sensors and Modalities

The RALT is a ”Living-Lab” home-like environment designed to facilitate user-driven
design and testing of innovative information and communications technologies (ICT)
and robotic solutions for healthy ageing and independent living. In Figure 1, the whole
environment is illustrated.

This environment is equipped with ambient sensors to perceive, monitor and un-
derstand occupancy’s daily activities. The sensors are positioned around the household
with uniquely identified identity (ID), together with timestamp to indicate and record of
occupancy’s activity. In our dataset, we recorded the sensors that were available in the
kitchen and that would be meaningful for our purposes. Specifically, we considered four
binary switches, two of which were positioned at the doors of two cupboards, respectively
containing mugs and dishes, one at the door of the fridge, and one at a drawer used to
store cutlery. We also considered the PIR sensor present in the kitchen, and the power
measurements by the kettle, used for preparing tea.

Figure 1. Environment in which the data collection was performed, with the TIAGo robot positioned
on the corner of the kitchen (on the right side) during the recording sessions.

The TIAGo robot is a mobile service robot designed to work in indoor environments.
It has an extendable torso and a manipulator arm to grab tools and objects. Its sensor suite
allows it to perform a wide range of perception, manipulation, and navigation tasks and is
used for assisted living research in the RALT. For our data collection, we considered only
data from its RGBD camera, an Orbbec Astra [99] device installed in its head. According
to the manufacturer’s specifications, the range of this depth sensor lies within 0.6 and
8 meters. We positioned the robot in such a way that all activities and objects of interest
were within this range. The colour VGA 640 × 480 at 25 fps and depth stream mode VGA
640 × 480 at 15 fps were used for the HWU-USP dataset. The TIAGo robot was placed
in the environment with a clear view of the participants, at a fixed viewpoint across all
recording sessions (see Figure 1).

As an wearable device for providing IMU measurements, we adopted the MetaMo-
tionR, by MbientLab [100], a commercial device equipped with inertial, temperature, light
and humidity sensors. The participants were asked to wear two MetaMotionR units, one
of which placed at a wristband worn at the subject’s dominant arm, and the another placed
at a clip worn at the subjects waist. These devices and placements are shown in Figure 2.
We recorded data from the accelerometers and gyroscopes, synchronised using the robot’s
internal clock. A sample from the dataset, considering the different modalities present in
the dataset, is shown in Figure 3.
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(a) (b)

Figure 2. Inertial sensors attached to (a) a waist clip; and (b) a wrist band.

(a)

(b) (c)

(d)

Figure 3. Sample of the dataset collected, consisted of (a) an RGB and (b) a depth image, both related to one timestep;
(c) raw data from the inertial sensors, related to a whole sequence; (d) raw data from the ambient sensors (binary), where Sk
correspond to one of the k sensors available.

4.1.2. Activities List

The activity list was based on the types of activities usually performed in kitchen
environments. These were activities of daily living (ADL), tasks that require a level of
functional capability and are completed in everyday independent living, such as cooking
and cleaning. The activities also required that the participants manipulated a variety of
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objects and furniture in the kitchen, especially the cupboards, the simulated fridge and
the drawer for cutlery, all of them equipped with binary switches. The participants were
also asked to complete the list of activities in their own time. Intervals between recording
each activity were implemented, such that the participants could look over the activity list
and solve any doubts. The tasks were explained to the participants prior to completing
the task, in which they were given a specific order and scripts to complete each of the
tasks, such as the location of the items they were instructed to use, and relevant locations
where they needed to carry out different actions. Since we were not recording sound,
we gave instructions during the completion of the activities as well, so that the participants
were not required to necessarily memorise all details respective to each activity. The data
collection lasted approximately 20 min per participant as they completed the following set
of activities, as illustrated in Figure 4. Notice that those activities have variable lengths,
ranging from about 30 s to almost 2 min.

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 4. Sample frames of the activities considered for the dataset. (a) making a cup of tea;
(b) preparing a sandwich; (c) preparing a bowl with cereals; (d) setting up the table; (e) using a
laptop; (f) manipulating the cell phone; (g) reading a newspaper; (h) washing the dishes; (i) cleaning
the kitchen.

• Making a cup of tea: taking the kettle to the sink filling the kettle, turning it on, collecting
a mug and teabags from separate cupboards before combining and filling with water.

• Making a sandwich: collecting of a plate, bread, ham and cheese from the respective
cupboards and fridge, and assembling with all the ingredients on the worktop.

• Making a bowl of cereals: collecting of the spoon at the cutlery drawer, the bowl and the
cereal from separate cupboards, and the milk and honey from the simulated fridge,
placing everything on the worktop and assembling.

• Setting the table: moving the prepared sandwich, tea and cereal from the worktop to
the place mat on the kitchen table.
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• Using a laptop: using a laptop while sat at the kitchen table, complicated with the
cluttered environment from the previous activities.

• Using a phone: similar to “using a laptop”, but with a phone device instead, with both
the laptop and the meal at the table.

• Reading a newspaper: similar to “using a phone”, but with the participant reading the
newspaper.

• Cleaning the dishes: taking the bowl of cereals to the waste bin, dispose it from its
content using the spoon, then pretend to wash it in the sink using a sponge. Due to
the position of the sink respective to the robot’s positioning, the participant partially
obscures this activity.

• Tidying the kitchen: returning the items to the cupboards and moving throughout the
kitchen environment.

Each activity was performed from the same starting point to avoid classification due
to starting configuration alone. The participants would walk into the kitchen environment
and begin the activity. Once the activity was completed then the recording of the data was
stopped. The starting positions of the objects in the smart kitchen environment was kept
constant through the course of the data collection, to ensure consistency of the dataset.

The statistics regarding the lengths of the recordings, for each activity considered, are
shown in Figure 5. The resulting dataset was composed of a total of 144 instances (i.e.,
16 subjects performing a set of nine activities), which summed about 116 min. As shown in
the figure, the average length of of the activities was around 48 s, which is considerably
larger than the recordings of most other datasets (see Section 2). An important observation
is that the proposed activities were designed at a high level of abstraction, so that most
of them were composed by complex sequences of shorter-term actions. For example, to
prepare a sandwich, the participant had to place a plate on the board, take the ingredients
from the fridge, take the bread from the cupboard, assemble the sandwich, and so on. Based
on the timestamps of the videos, fine-grained annotations may be provided as needed, so
that each of those actions could be treated as a separate label. This could provide a different,
more challenging scenario to be addressed on future research. In this paper, however, we
are interested on the presentation of the data collection procedure, the dataset, and the
multimodal framework for classification, which operates on high-level activities.
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Figure 5. Statistics regarding the lengths of the recordings for each of the activities in the dataset.

50 Chapter 3. HWU-USP dataset and framework



Sensors 2021, 21, 768 15 of 32

4.2. Classification Framework

For feature extraction and classification of activities recorded with videos and inertial
data, we have proposed different DL architectures and compared the resulting models and
their accuracies on a previous work [36]. Based on the results obtained in this previous
paper, we chose the CNN and LSTM models as basis for our experiments. As it already
mentioned, our main contribution was the introduction of contextual data from the ambient
sensors of the smart home as an additional stream, specifically by including an additional
input stream at the neural networks aimed at the inertial data. The different scenarios
considered will be presented on the next subsections.

4.2.1. Segment-Wise Classification and AAL Applications

Before presenting the methods proposed for multimodal activity recognition, it may
be worth to discuss the type of applications that could benefit from either the HWU-USP
activities dataset or the classification framework to be presented in Section 4.2. An AAL
application that could be addressed is shown in Figure 6, which summarises scenarios
proposed on related work [101]. The sensors made available on the data collection pre-
sented in Section 4.1.1, illustrated in the figure, provide inputs for the activity recogniser
module, which is the focus of this paper. In an actual AAL environment, data would be
gathered continuously from the available sensors, and predictions would be provided
at each instant t. These predictions, referred in the figure as pred(t), consist of the out-
puts of the framework presented in Section 4.2, which will be evaluated and discussed in
Sections 5 and 6.

Activity 
recogniser

Behaviour 
scheduler

Video 
camera

Inertial 
units

Ambient 
sensors

Pred(t)

Ambient 
actuators

Artificial 
agents

Figure 6. Example of an AAL scenario expected to be addressed by the proposed framework.

The next module that would be part of such an application would be the behaviour
scheduler, a possible direction for future research. This module would be responsible for
orchestrating the different ambient actuators and artificial agents (e.g., social robots or
mobile applications), providing useful services or proactive behaviours for the inhabitants
of the environment. For a real-time application, these behaviours are expected to be
continuously adapted according to the predictions of the activity recogniser at each instant t.

State-of-the-art methods for multimodal activity recognition have been achieved
remarkable results by processing previously segmented activities on its whole length [75].
Although this approach makes sense in the case of fine-grained activities, it would be of
little use in contexts such as the scenario of Figure 6. There are two reasons for it. First, it
requires that the activities have been previously segmented, which is not realistic for real-
world applications. Second, it would require the activity to be finished before providing a
reliable prediction, which could take more than a minute in the case of the activities of the
HWU-USP dataset (see Figure 5). In this case, it is possible that the proactive behaviour of
the AAL environment is no longer required, or does not make sense to be performed after
the human activity is finished. For example, a robot may need to bring the user’s glasses
while he is reading the news—it would make little sense to do so after the user has stopped
this activity.

Therefore, we designed our framework so that the DL architectures process two-
seconds-long segments, and the predictions over a longer sequence could be enhanced
at decision-level, by averaging the output vectors at each segment. This is an approach
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commonly used for video-based activity recognition [28,35], and we extended it to the
other modalities to provide a framework that is able to work with partial data.

4.2.2. Data Preprocessing

Regarding the video modalities, following the proposal by Simonyan and Zisserman [28],
we considered multiple streams. Videos were resized to 320× 240 before any other prepro-
cessing step. For data augmentation, we implemented random cropping for training, and
cropping of all corners and the centre for testing, resulting in frames of size 224× 224.

The spatial stream could be composed by individual RGB frames obtained from the
videos, as on the original framework. We also adopted a similar approach for taking the
depth frames as inputs. To do so, the depth frames had been converted to 3-channel, 8-bit
RGB inputs with the same intensity on all channels, composing grayscale samples which
could be employed in transfer learning scenarios.

Two approaches were considered for the temporal stream. The first was to feed the
learning architectures with pairs of dense optical flow maps, as in the original two-stream
ConvNets [28]. Those maps were generated with OpenCV implementation of the TVL1
algorithm [31] on each pair of successive frames on the RGB videos previously converted
to grayscale images. The outputs of those algorithms consist of the horizontal and vertical
estimations of the displacements of each point from one frame to another, assuming their
intensities are preserved on both images. In the case of dense optical flow, all pixels on the
image might be considered.

In relation to the inertial and ambient sensors, the recordings were made asyn-
chronously. The alignment was performed independently for each of the 144 recording
sessions of the dataset, so far referenced as instances. Regarding the inertial sensors, con-
sider that, for a given instance, there is a set of Psk rows of data from a sensor sk, k ∈ {1, 2},
with s1 being the inertial unit of fixed to the user’s waist, s2 the inertial unit fixed to the
user’s wrist (more sensors could be added to this framework, as needed). Let xsk(p) be
a vector correspondent to the p-th row of data registered by sensor sk, correspondent
to a timestamp tsk(p) obtained from a global clock during the data collection procedure.
The alignment procedure intends to obtain an aligned file composed by Q rows, equally
sampled at a desired sampling rate r, starting from the highest timestamp registered by
any of the sensors. The vector y(q) is the q-th row of data aligned from both sensors (i.e.,
the output data). The timestamp correspondent to this row of data is ty(q), computed
as in Equation (1). For each index q, the method consisted of composing a concatenated
aligned row y(q), composed of data from both sensors, by appending the tuple of data
xsk(i), i ∈ [1, P], from each sensor sk, so that tsk(i) is the lowest value among the P rows in
the instance that satisfies tsk(p) > ty(q).

{
ty(0) = max {ts1(0), ts2(0)}
ty(q) = ty(0) + q · (1/r) , q = 1, 2, . . . , Q

(1)

For preprocessing the smart home data, the same alignment procedure was used
to provide one tuple for each timestamp, allowing a one-to-one correspondence with
each tuple of the inertial data. Apart from implementation details, this is equivalent to
including a sensor s3 to the above-mentioned alignment procedure, correspondent to the
set of ambient sensors from the smart home. An inertial input to the DL architecture would
consist of a sub-sequence of a recording session of length Nraw

t . The data from the ambient
sensors were introduced to an additional preprocessing step before feeding the DL models:
the attributes of the Nraw

t correspondent samples on the ambient sensors were averaged,
composing a feature vector. Finally, the data from inertial sensors and from the smart home
ambient sensors were L2-normalised, in order to compensate the scales of each variable.

All experiments performed were based on classifiers being applied to two-seconds
long data segments, regardless of the modality. One example of input, with all the different
modalities represented on the HWU-USP dataset, is shown in Figure 7. For the UTD-
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MHAD, although data from ambient sensors is absent, the remaining modalities were
arranged on the same structure.
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Figure 7. Example of two-seconds long segment fed to the architectures that process each modality.

4.2.3. Deep Learning Architectures

Our multimodal strategy for video and inertial data was based on late fusion of the
output vectors of each single-modality model. This approach is also known as decision-
level fusion [75]. Indeed, we implemented independent neural networks for videos and
IMUs, and, at a later stage, performed weighted averaging of the scores at the outputs of
the softmax layers of each network. Data from ambient sensors of the smart home were
introduced as an additional input vector on the same neural network used for classifying
the IMU data, so that the resulting output vector could also be combined to the video
output to provide a classification framework with all modalities considered.

In Table 5, the DL architectures employed for each modality are summarised. We
began our analyses by considering two baseline architectures resembling the spatial stream
of Simonyan and Zisserman [28]. A consolidated CNN model, the InceptionV3 [102], was
employed to train two models for each dataset: one for processing RGB frames, and another
for depth frames. We named these modalities RGB and Depth, respectively. The models
were pre-trained on the ImageNet dataset [103], and had all their layers fine-tuned for
training the activity recognition datasets under analysis.

Table 5. Summary of the DL architectures employed for each architecture.

Model Input Description Structure

Spatial RGB frame InceptionV3 [102]
Depth Grayscale frame InceptionV3

Optical flow
(single frame) Optical flow pair InceptionV3 with two input channels

Optical flow
(sequence) Sequence of optical flow pairs See Figure 8a

IMU Sequence of raw data See Figure 8b
Ambient (shallow) Average vector from sequence of tuples Fully-connected NN with two hidden layers
IMU+ambient Two inputs (IMU and ambient) See Figure 8c

For the video-based temporal stream, which processes optical flow maps, we imple-
mented the neural network of Figure 8a. This consisted of a CNN, which was trained and
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evaluated previously for performing the same classification task. Their inputs were a set
of flow maps respective to a single pair of frames. This input consisted of two-channels,
which comprises the optical flow previously computed. The InceptionV3 architecture was
adopted for this aim. We refer to the classification models composed by this CNN alone,
without temporal modelling of a sequence of frames, as optical flow (single frame).

To model sequences of optical flow pairs (i.e., the optical flow (sequence) condition), the
2048 features, extracted right before the softmax layer of the InceptionV3 architecture, were
considered. The CNN was applied Nvideo

t times, each to the optical flow input respective
to one timestep of a sequence of timesteps, generating a set of Nvideo

t feature vectors.
Those were fed to an LSTM module, whose outputs were the input of a softmax layer for
classification. The LSTM module was composed of 128 units and dropout of 50%, with
sigmoid activation. L2-normalisation was employed for regularisation.

Pre-trained
2D CNN

Pre-trained
2D CNN

Pre-trained
2D CNN

t=1 t=2 t=N
t

LSTM

Softmax layer
(predictions)

(a) (b)

1D CNN

LSTM

Softmax layer
(predictions)

(c)
1D CNN LSTM

Softmax layer
(predictions)

0 1 0 1

1 0 0 1
FC layer Concatenate

Figure 8. DL Architectures considered for each input modality. (a) Video inputs preprocessed
by optical flow (i.e., two-channels input maps) algorithms. (b) IMU inputs, with a custom one-
dimensional CNN as a feature extraction step before feeding a LSTM layer. (c) Multimodal scenario
with fusion between inertial and ambient sensors within the modules of the neural network.

The same structure was designed for the IMU data, as shown in Figure 8b, with
the difference that, instead of an InceptionV3, we used a 1D CNN for feature extraction,
which performed convolution and pooling operations on the time domain. Let the length
of these sequences be Nraw

t . We implemented this CNN with three convolutional layers
with kernel size 11 and ReLU activations, interspersed with max-pooling layers of kernel
size 2. The convolutional layers were composed by 128, 256 and 378 units, respectively.
Batch normalisation was introduced before the first and the last convolutional layers. This
convolutional block, referred as 1D CNN in Figure 8b, was followed by an LSTM layer
with 128 units, ReLU activation, and dropout of 50%.

Regarding the machine learning aspect, the most noticeable novelty in this work
was the introduction of data from ambient sensors of the smart home on the learning
framework, which could be done with the new HWU-USP dataset, but not with the UTD-
MHAD. An additional input vector, composed by structured data from binary sensors and
voltage measurements from the kettle, was added to the same network designed to learn
features and classify the IMU data. One condition was included to process this input vector
with a shallow neural network: a fully-connected neural network with two hidden layers
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composed of 512 and 256 units, respectively, with ReLU activation and dropout of 50%
after each layer, and a softmax redout layer.

A feature-level fusion architecture between the IMU and ambient data was also pro-
posed. The approach, as shown in Figure 8c, was to process the input of the ambient sensors
in parallel to the convolutional and recurrent layers of the IMU architecture (Figure 8b),
this time using a single fully-connected layer with ReLU activation function and dropout
of 50%. The outputs of this layer would be concatenated to the features learnt by the
convolutional module of the inertial data, and then classified with a softmax layer.

Skeleton joints, which may be extracted by RGBD cameras, were not considered on
our framework. When designing our dataset, we were interested in providing a framework
based on DL techniques, which have shown to provide good results for video classification
on highly unstructured scenarios, closer to real-world applications. However, the proposed
architectures could not be employed directly to data from skeleton joints without a feature
extraction stage. To properly consider data from skeleton joints for our dataset, we would
have to process it with unrelated techniques, which we understand to be out of the scope
of this work.

4.3. Experimental Setup

For the implementations of the models presented in the previous subsection, we
adopted the TensorFlow library, particularly the Keras module, which provides support
for GPU training and evaluation. The models were trained on different hardware devices:
the cluster Euler, at the Centre for Mathematical Sciences Applied to Industry (CeMEAI)
at ICMC-USP, with GPU nodes provided with a Nvidia Tesla P100; a research computer
at the Robots Learning Laboratory (LAR), at ICMC-USP, provided with a Nvidia Titan V
GPU; and an ASUS TUF Gaming laptop, provided with a Nvidia Geforce RTX2060 GPU.

All architectures were fed with sequences which correspond to two-seconds-long
segments of the recordings. For the case of the video modalities, the inputs were sequences
of length Nvideo

t = 15 with period T = 2 (i.e., the frames were downsampled on the
temporal dimension to half of its original frequency) for the UTD-MHAD dataset, and
Nvideo

t = 25 with T = 1 for the HWU-USP dataset. For the inertial and ambient modalities,
the length of the sequences were Nraw

t = 100 for both datasets, as the two of them were
converted to a r = 50 Hz sampling rate. The optimisation algorithm was Stochastic
Gradient Descent (SGD) with learning rate 10−2, momentum 0.9 and decay 10−4. For the
video models, training was performed for 40,000 steps, and, for the others, for 20,000 steps.

The evaluation protocol consisted of cross-subject training and testing, with a leave-
one-out-approach. That means recordings from one subject were used for testing, while all
others were used for training. Consequently, for each input modality, we have trained eight
models, and reported the mean and standard deviations of their performance in the test
sets. The predictions were obtained using the same principle as recommended in Simonyan
and Zisserman [28]. They consisted of evaluating 25 segments on each session recorded,
equally spaced between them, and the resulting scores of all outputs were averaged before
to produce a prediction. This was done on all modalities. Although this could negatively
affect our overall accuracy, this setting is more consistent to real-world applications in
which an agent must take actions based on limited, time-localised information. Analyses of
the confidence of the predictions through time could be performed, which allowed to better
understand the behaviour of the classifiers on the activities of different levels of complexity
of the HWU-USP-MHAD dataset, and to compare these results to those obtained with the
simpler and shorter activities of the UTD-MHAD.

Fusion of the video streams and the other modalities was performed ad-hoc, after the
predictions were already obtained and recorded. The procedure consisted of averaging the
outputs of the modalities that were being combined, with different weights for different
modalities. The accuracies on different multimodal scenarios were computed on the output
vectors respective to this average. For HWU-USP dataset, the weights were set to 1 and 6
for the IMU and video modalities, respectively. For UTD-MHAD, they were set to 1 and
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2. On both cases, the weights were chosen in order to maximise the accuracy obtained on
each fusion approach.

5. Results

In this section, results of the experiments with respect to each modality are presented,
along with multimodal approaches, in Table 6. The RGB and Depth modalities were
computed by feeding an InceptionV3 newtwork with regular 3-channels frames extracted
from the videos. In the case of the RGB frames, these consisted of the colour channels of the
image, as usual in CNNs. In relation to the depth frames, the 16-bit inputs were converted
to 8-bit maps, which were repeated on the three channels, composing grayscale images,
already mentioned in Section 4.2.2.

The modality optical flow (single frame) refers to a modification of InceptionV3 network
to receive a 2-channels input, which was fed with one pair of dense optical flow (see
Section 4.2.2), hence considering only one pair of timesteps on the sequence. On the other
hand, the optical flow (sequence) models refer to LSTM modules processing the features
extracted by CNNs for two-seconds long segments of the recordings (see Section 4.2.3
and Figure 8a). The ambient (shallow) modality refers to a shallow fully-connected neural
network applied directly to the subsequence (see Section 4.2.3), whereas the IMU modality
refers to the one-dimensional CNN-LSTM models applied to the data from inertial sensors,
also computed on two-seconds long subsequences (Figure 8b), the IMU + ambient com-
prises one multimodal setting with both modalities combined within the neural network
(Figure 8c). Finally, the Optical flow + IMU and Optical flow + IMU + ambient multimodal
conditions refer to the late fusion approach presented in Section 4.3, consisted of combining
the output vectors of each modality before making a final prediction.

It is important to emphasise that all results were computed with predictions from
the average output vector from 25 segments on the test data of each modality, and that
the train and test partitioning followed a cross-subject approach with eight folds (see
Section 4.3), hence the table shows the mean and standard deviation over these eight folds.
In Table 6, we presented results on both the HWU-USP and UTD-MHAD datasets, despite
the important differences existing between them (see Section 4).

Table 6. Accuracy Measures (%) for each input modalities, for UTD-MHAD and HWU-USP datasets.
Models for a single input modality and multimodal models are listed. The accuracy shown is the
mean value of 8 cross-subject folds (i.e., leave-one-out cross-subject evaluation protocol), with inputs
from a single subject being left for testing, a costly, yet rigorous evaluation protocol.

UTD-MHAD HWU-USP

RGB (single frame) 6.39± 2.16 19.57± 6.76
Depth (single frame) 5.46± 2.29 36.36± 7.28

Optical flow (single frame) 82.47± 5.42 86.72± 6.74
Optical flow (sequence) 84.79± 5.25 93.75± 3.33

IMU 82.23± 6.55 65.56± 13.16
Ambient (shallow) - 51.39± 4.61
IMU + ambient - 74.30± 11.09

Optical flow + IMU 92.33± 5.40 96.53± 3.87
Optical flow + IMU + ambient - 98.61± 2.41

The confusion matrices for part of the above-mentioned models, for both datasets,
were computed in order to allow a more in-depth discussion on the behaviour of each
model. For the HWU-USP dataet, these matrices are shown in Figure 9, and, for the
UTD-MHAD, in Figure 10.
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Figure 9. Confusion matrices of different input modalities and architectures for classifying the HWU-USP dataset. The values
consist of the summed number of predictions over all folds.
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We have provided another analysis to evaluate how each model performs across
the different segments used to compute the final prediction. These results may lead to
important discussions when considering which approach will be adopted for a real-time
application, in which partial results computed on a limited range of time might be used
in decision-making systems. Figures 11 and 12 present, respectively, for the HWU-USP
and UTD-MHAD datasets, the maximum score on the output vectors correspondent to
the actual class, across each of the 25 segments used for prediction. For example, taken
an input that belongs to the laptop class, if the output vector of the first sequence fed to a
given classifier gives a 25% confidence for predicting the correctly, and the first sequence
of another instance from the same class gives a 32% confidence, the value considered for
the figure will be 32%.
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Figure 11. Confidence of predicting the correct label for the HWU-USP dataset, at each of the 25 segments evaluated, equally
spaced between them.
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Figure 12. Confidence of predicting the correct label fot the UTD-MHAD, at each of the 25 segments
evaluated, equally spaced between them.

Comparison with the State-of-the-Art

HWU-USP database is being presented for the first time in this paper, hence the
above-mentioned results are the first to be ever published. For this reason, there is still no
literature to compare it with. On the other hand, UTD-MHAD dataset is a widely used
benchmark which we can use to evaluate our multimodal approach with only videos and
IMU, since this dataset does not provide data from ambient sensors. In Table 7, a collection
of results from the literature was put along with the best result that we achieved. To select
those studies, we followed the criteria that videos and IMU data were both employed,
preferably without skeleton data, so that the comparison with our approach would be
as fair as possible. Besides, we only considered studies in which it was explicitly stated
that the evaluation protocol was cross-subject. However, it is hold to note, that only
Wei et al. [75] adopted a leave-one-out approach, similar to ours, while the others followed
the protocol by Chen et al. [37], which used a hold-out approach with half of the data being
used for testing.
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Table 7. Comparison between our model and others in the literature that deal with similar modalities,
for the UTD-MHAD dataset. All of those evaluations adopted a cross-subject protocol.

Method Modalities Accuracy (%)

Chen et al. [37] Depth + IMU 79.10
El Din El Madany et al. [104] Depth + IMU + skeleton 93.26
Wei et al. [75] RGB-only 76.00
Wei et al. [75] Inertial-only 90.30
Wei et al. [75] RGB + inertial 95.60
Imran and Raman [105] RGB + inertial 92.32
Ours RGB + inertial 92.33

6. Discussion

The RGB frames (i.e., the spatial stream by Simonyan and Zisserman [28]) led to
accuracy measures slightly above random choice for both datasets (i.e., 6.39% for 27 classes
on the UTD-MHAD, and 19.57% for 9 classes on the HWU-USP dataset). The depth
frames did not led to better results for UTD-MHAD (i.e., 5.46%), but led to an important
improvement for HWU-USP dataset (i.e., 36.36%). Still, both approaches led to poor results,
if compared to the other models. These results differ from those obtained for video datasets
in the literature of multiple stream classification methods [18,28], in which the spatial
stream alone led to competitive performances.

Even though, the low accuracy obtained in our experiments was expected due to
the nature of the datasets analysed. Applied directly to RGB, or even depth images,
a CNN is able to distinguish between the objects, backgrounds and other appearance-
based aspects within a scene. Thus, it may be effective when comparing videos from
heterogeneous datasets with large inter-class variability regarding those aspects. This may
lead to comparatively high accuracy even if motion information was disregarded. The
datasets considered in this study present constant background and a limited variability
regarding other appearance aspects. Different from the UTD-MHAD, the HWU-USP
dataset was recorded from a perspective in which the subjects changed their position
constantly with respect to the depth dimension, which may explain the improvements
that happened only for this dataset when compared the depth to the spatial models.
Nevertheless, for both datasets and any other that shares these characteristics possibly
inherent to home environments, a reliable classification method might be based on motion
information.

Motion information contained in dense optical flow maps (i.e., the temporal stream)
led to expressive improvements, even on the single frame scenarios. These models were,
by far, the ones that led to the highest accuracy on the HWU-USP dataset, which points
to the relevance of motion information from computer vision on the scenario analysed.
The results were also the bests for the UTD-MHAD, however the IMU condition was still
competitive.

When comparing the single frame to the sequence optical flow architectures, HWU-USP
dataset was characterised by a greater increase in accuracy (i.e., 86.72% to 93.75%) than the
UTD-MHAD (i.e., 82.47% to 84.79%). This was probably because the HWU-USP dataset
is composed of longer recordings with longer-time dependencies. This illustrates how
the LSTM-based module is effective in modelling the long-term dependencies that were
introduced.

Compared to the video modalities, especially the optical flow (sequence), IMU-based
models performed better on the UTD-MHAD, in which the 82.23% accuracy was even
competitive when compared to the optical flow models, than in the HWU-USP dataset,
which appeared to be favourable for computer-vision approaches. This was probably
because the actions on the UTD-MHAD dataset are shorter and more well-defined, so that
the most discriminative features were present on most snippets of the inertial data. For the
HWU-USP dataset, some of the activities are complex, composed of sequences of actions
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that may, isolated, be part of different activities. The visual information contained on
videos may be more informative than the IMU data with respect to these more challenging
dependencies.

Analyses involving the binary data from the ambient sensors of the smart home
could be made only on the HWU-USP dataset, and led to promising results. On its own,
feeding a shallow fully-connected network with minimum preprocessing, this modality
led to an accuracy of 51.39%, which is expressively below the 65.56% obtained by the
one-dimensional CNN-LSTM applied to the IMU data alone. However, when combined,
the model hit the accuracy of 74.30%, the best performance obtained without the use of
optical flow data.

When combined, the models in which the optical flow models were fused to the other
modalities led to the best accuracies. For the UTD-MHAD, this approach led to 92.33%.
For the HWU-USP dataset, two conditions were considered: combining the optical flow
and the IMU models, as with the UTD-MHAD, and combining the optical flow model to
the IMU + ambient model (see neural architecture on Figure 8c). For the first condition, the
accuracy was 96.53%, an increment of almost three percent points when compared to the
optical flow model on its own. For the second condition, which was possible only because
we had made available data from the smart home sensors on the HWU-USP dataset, the
accuracy was 98.61%, which may be seen as a remarkable result.

It may be worth discussing some aspects regarding the confusion matrices shown
in Figures 9 and 10. Considering the models for the HWU-USP dataset, the most solid
observation is that the cereals and tidy activities are the most sources of wrong predictions
on the models with higher accuracy, for either the computer-vision or IMU models. The
introduction of the ambient sensors caused an important impact on the recognition of these
classes, bringing the error down to zero, which may explain its relevance of the accuracy
results of Table 6. Multimodal models provided basically a reduction on the mistakes made
in some classes, when compared to the predictions made by each single-modality model.
The UTD-MHAD models performed more uniformly across the different modalities, which
may explain why the results did not vary too much for the single-modality approaches.
For the multimodal scenario, the classes with less precision on each modality seem to have
been compensated, causing the observed increment of accuracy.

The confidence scores through time, shown in Figures 11 and 12, seem to have been
expressively improved on the UTD-MHAD when comparing the single frame to the
sequence approaches. However, these accuracy improvements were more prominent on
the HWU-USP dataset, even though the differences of the confidence scores through time
seemed to be smaller on these figures. This was because the activities from the UTD-MHAD
dataset were all short and made of simple gestures, hence a small snippet on the middle
of a video recording could be more informative of the actual activity, providing a correct
prediction with high confidence. The same is usually not true for the HWU-USP dataset.

For the UTD-MHAD, the confidence over segments (Figure 12) also presented impor-
tant differences between the conditions. The optical flow (sequence) model provided high
confidence scores on the segments closer to the middle of the recordings, in which it differs
from the optical flow (sequence), with confidence scores approximately uniform on the whole
sequences. For several classes, the IMU model provided high confidence scores only for
the first half segments of each modality. The multimodal IMU + optical flow provided an
improved version of the optical flow (sequence) model, except for activity 22, which appears
to have its confidence degraded by the IMU scores.

On the other hand, for the HWU-USP activities dataset (Figure 11), a diverse behaviour
of the classifiers on each modality was observed. Regarding the optical flow conditions,
the sequence approach is less uniform across segments than the single frame, but seems to
provide higher confidence on certain parts of the activities. The activities performed with
participants sitting down and performing repetitive movements (i.e., laptop, smartphone and
newspaper) led to higher confidence scores for the IMU modality. The combination between
IMU and ambient sensors increased drastically the confidence of the cereals class across
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all segments. The tea activity led to high confidence scores on its ending, especially when
considering the optical flow (sequence) model. An increment on this same region may also
be seen when combining the ambient sensors to the IMU, which may be due to the power
measurements, which change only during the final moments of the tea activity, when the
participant turns on the kettle. Few differences may be seen when comparing the IMU +
optical flow and the IMU + smart home + optical flow conditions, however the final segments
of the cereals activity seems to reflect the most noticeable increment.

By analysing the confusion matrices in Figure 9 and the heat maps in Figure 11, it
becomes clear that the predictions on the cereals class were the most benefited, which
explained the expressive improvements aggregated to the IMU + ambient and the optical
flow + IMU + ambient models with respect to the conditions without this modality. The
increment of the confidence on the last segments of the tea activity (Figure 11) is also worth
a mention, since it was probably due to the power measurements of the kettle, which was
turned on at the end of all recording sessions of this activity. In any case, the improvements
provided by the multimodal models give additional confirmation on the usefulness of
combining videos and IMU modalities whenever they are both available, corroborating to
other results from related work [35,75,106].

Comparisons with the state-of-the-art datasets, made only with the UTD-MHAD,
pointed that, with respect to videos and inertial sensors, our methods led to results that
were compatible. Our best approach led to an accuracy of 92.33%. The reference results,
79.10% for the multimodal condition, provided on the presentation paper of the UTD-
MHAD dataset, were successively surpassed on the following years. Models that consider
skeleton data led to the higher accuracies, such as in El Din El Madany et al. [104], which
hit 93.26%. Nonetheless, these results are not comparable to ours, since this approach
considered information extracted from skeleton joints, an additional, rich data input.

Different approaches restricted to the IMU and the video data have also been proposed.
Imran and Raman [105] performed experiments with different sets of modalities, and hit
92.32% using RGB videos and inertial sensors, a result which is very close to ours. The
most successful approach restricted to these modalities, nonetheless, was provided by Wei
et al. [75], which hit 95.60%. This was the only result on the literature that surpassed ours
without the use of skeleton information. We have included the RGB-only and inertial-only
results in order to situate their results with respect to ours. It is important to note that
the video-based method presented by them actually performed less accurate than ours
(76.0%, against 84.8% of our approach), which means that the overall accuracy on their
work benefited especially from the inertial-only model, which hit 90.3%, against 82.2% of
ours.

However, the IMU architecture was based on a two-dimensional matrix representation
of the input data, which required the whole sequence to provide a representation. This
would not allow a segment-wise classification such as the approach proposed by us, in
which the neural network processed two-seconds long data segments, and therefore its
application would not be possible in scenarios with partial data, such as the real-time
decision-making systems that would be expected on AAL environments.

7. Conclusions

In this paper, we presented the HWU-USP activities dataset, collected at the RALT lab
in Edinburgh at Heriot-Watt University. More specifically, the dataset was composed of
RGB and depth videos from the camera of a TIAGo robot, data from IMU sensors attached
to the users’ wrist and waist, and a set of ambient sensors (i.e., switches at the doors of
wardrobes and drawers, motion sensors and power measurements) from a smart home.
The objective was to build and study a multimodal dataset composed of RGB and depth
videos, inertial and ambient sensors from a smart home in the context of activities of daily
living, all of them sharing a kitchen environment and performed in the context of a regular
breakfast. A set of 16 participants performed 9 activities, resulting in a total of 144 instances
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that composed 116 min of recordings in total. All data were stored, made anonymous and
will be available to the research community.

This dataset allowed the proposal of multimodal approaches involving not only videos
and data from inertial sensors, but also ambient sensors. To the best of our knowledge,
this is the first public multimodal activities dataset that provides these three modalities
altogether and synchronously. We also proposed a deep learning framework to perform
experiments on a multimodal approach. It is based on two-dimensional CNN modules
for feature extraction on RGB frames, depth images and optical flow pairs, and LSTM
layers for temporal modelling, when applicable. Data from inertial sensors were fed to a
similar architecture, with a one-dimensional CNN being applied to extract features to be
modelled by a LSTM module. For these modalities, we performed the same experiments
on both the HWU-USP and the UTD-MHAD datasets. Results varied from one modality
to another, especially for the HWU-USP, in which the architectures based on computer
vision, specifically after computing dense optical flow, performed significantly better. These
differences were smaller for the UTD-MHAD dataset.

The data from the ambient sensors, present only on the new HWU-USP, were intro-
duced as an additional channel of information on the neural network that processed the
inertial data, with no feature extraction: the binary variables were fed to a fully-connected
layer whose output was concatenated to the IMU features extracted by the CNN-LSTM
modules. The presentation of this fusion architecture is another contribution of our work
As expected, the introduction of this modality led to expressive improvements in accuracy.
The best multimodal model led to a very high accuracy, which points to the relevance of
considering different sources of data to perform activity recognition tasks.

Future work will apply the models trained with this dataset to experiments in the
smart home, allowing interventions to be made based on the predictions provided. This
may be promising for application scenarios involving human–robot interaction (HRI). For
example, a robot may use the successive predictions of an activity recognition framework
to decide whether it might remember an user to take his medicines when he is having a
meal, or bring an used glass from the living room to the kitchen when the user is washing
the dishes. This may be important for designing Ambient Assisted Living solutions with
automated technologies, such as robot carers, for monitoring the inhabitants of a smart
environment. Moreover, fine-grained annotations may be provided for training models
that suit most of those application scenarios and in accordance with the necessities that
may arise during those experiments.

To react proactively to the users’ needs, this type of applications requires a framework
able to provide reliable predictions in real-time, before the user finishes his current activ-
ity. This requirement was addressed by our approach, which relied on two-seconds-long
segments, whose predictions may be combined to provide better results. In this sense,
another direction for future research is to analyse how these predictions may be employed
in real-world scenarios in order to complete the most adequate proactive behaviours in
a timely manner. We provided an analysis of the confidence of the predictions across
segments, which may give a hint on the performance of the framework in real-time appli-
cations. For other applications, in which those requirements are absent, experiments with
longer segment lengths may be designed, which may foster research on novel learning
architectures.

Although the classification methods provided excellent results when the video modal-
ity was present, there is still room for improvements regarding the other modalities. Such
developments are important because, for real AAL environments, the video data may
be frequently unavailable. This may be due to privacy issues or technical limitations,
for example if the videos can only be registered by the camera of a social robot, which
may not always be accompanying all the inhabitants of the environment. Yet, the very
high accuracies provided by the video methods may serve to provide labels on a semi-
supervised scenario for new data collections, which may rely on more cameras and more
visual perspectives.
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CHAPTER

4
APPROACHES ON COMPUTATIONAL

NEUROSCIENCE

Two papers related to developments on computational neuroscience, which influenced the
application scenarios presented later on, were reproduced in this chapter. The first paper, named
”Unveiling Parkinson’s Disease Features from a Primate Model with Deep Neural Networks”
(RANIERI et al., 2020), was published to the 2020 International Joint Conference on Neural
Networks (IJCNN), the IEEE conference on Neural Networks, with H5-index of 45 (Google
Scholar) and qualified as A1 in the latest Qualis CC. It consisted of, based on the marmosets
dataset, devising and testing a machine learning framework comprised of deep neural networks
to identify features in neural dynamics related to healthy and PD states that could contribute to
early-stage diagnosis, and to inform novel computational models, as well as generate testable
hypotheses on the mechanisms of the disease.

The second paper, a preprint at arXiv, is named ”A data-driven biophysical computational
model of Parkinson’s Disease based on marmoset monkeys” (RANIERI et al., 2021). It consisted
of deriving a computational model of Parkinson’s Disease by calibrating a previously developed
model of the basal ganglia-thalamus-cortex circuit (KUMARAVELU; BROCKER; GRILL, 2016)
to fit data from marmoset monkeys according to a data-driven approach based on differential
evolution.

These papers correspond to the developments of the Neuro4PD project that counted with
most participation of the author of this thesis. This collaboration began to contribute during
the scholarship period at Heriot-Watt University, Edinburgh, Scotland, under supervision of
professor Patrícia Amâncio Vargas, and continued after this was finished. Based on a recent
marmoset monkey database (SANTANA et al., 2014), the Neuro4PD project alleviates gap on
the lack of early diagnosis of Parkinson’s Disease (PD), by implementing machine learning
(ML) methods to help to unveil its neural correlates. Based on the knowledge to be unveiled
about the neural structures of PD, the project aims to reproduce the underlying behaviour in
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humanoid robots. Such idea follows the paradigm of neurorobotics, the intersection of robotics
and neuroscience with focus on implementing neurobiological structures underlying animal
behaviour in robots.
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Abstract—Parkinson’s Disease (PD) is a neurodegenerative
disorder with increasing prevalence in the world population and
is Characterised by motor and cognitive symptoms. Although
cortical EEG readings from PD-affected humans have being
commonly used to feed different machine learning frameworks,
the directly affected areas are concentrated in a group of sub-
cortical nuclei and related areas, the so-called motor loop. As
those areas may only be directly accessed through invasive
procedures, such as Local Field Potential (LFP) measurements,
most data collection must rely on animal models. To the best
of our knowledge, no neural networks-based analysis centred
on LFP data from the motor loop was reported so far. In this
work, we trained and evaluated a set of deep neural networks
on a dataset recorded from marmoset monkeys, with LFP
readings from healthy and parkinsonian subjects. We analysed
each trained neural network with respect to its inputs and
representations from intermediate layers. CNN and ConvLSTM
classifiers were applied, reaching accuracies up to 99.80%, as well
as a CNN-based autoencoder, which has also shown to learn PD-
related representations. The results and analysis provided further
insights and foster research on the correlates of Parkinson’s
Disease.

Index Terms—Parkinson’s disease, LFP analysis, deep learn-
ing, attribution methods, computational neuroscience.

I. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder and estimates indicate a prevalence between 1 and
2 per 1,000 individuals. Age is the most relevant factor to
influence such incidence [1]. The most common symptoms
are motor deficits, such as bradykinesia, rigidity, and resting
tremors, although cognitive symptoms, especially dementia,
may occur in later stages [2]. PD diagnosis is clinical (there

This work was funded by the Neuro4PD project-Royal Society and Newton
Fund (NAF\R2\180773), and São Paulo Research Foundation (FAPESP),
grants 2017/02377-5 and 2018/25902-0. Moioli, Araujo, and Santana ac-
knowledge the support from the brazillian institutions: INCT INCEMAQ of
the CNPq/MCTI, FAPERN, CAPES, FINEP, and MEC. This research was
carried out using the computational resources from the CeMEAI funded by
FAPESP, grant 2013/07375-0. Additional resources were provided by the
Robotics Lab within the ECR, and by the Nvidia Grants program.

is no feasible biomarker), and current treatments provide
symptomatic relief, but do not stop, revert, or slow disease pro-
gression [3]. In this context, machine learning techniques are
being used to characterise the neurophysiological correlates
of PD, which can contribute to unveil disease mechanisms as
well as non-trivial features that are present on neural data.
Ultimately, this may facilitate early diagnoses and support
novel therapies.

With few exceptions, human datasets are comprised of
non-invasive electroencephalography (EEG) recordings, which
capture the neural dynamics from cortex superficial layers.
However, the neural circuits directly associated with PD may
only be sampled by invasive electrodes, limiting the avail-
ability of human studies. Nevertheless, there are consolidated
animal models of PD, in which disease symptoms can be
elicited by administering neurotoxins [4]. From implanted
electrodes, Local Field Potential (LFP) signals are obtained
and these have a close relationship with EEG signals [5].
Furthermore, the basic anatomy and structure of the neural
circuitry relevant to PD are conserved across most vertebrate
species [6], thus supporting the use of such animal models.

In this paper, we designed a set of deep neural networks
able to learn explainable features from raw time-domain LFP
data with minimum preprocessing. The trained models were
evaluated for their ability to classify structured data segments
as belonging to healthy or PD animal subjects. Then, we
highlighted which properties of the segments contributed most
to the networks’ classifications. To accomplish that, we used
a marmoset monkey database [7] of simultaneous LFP record-
ings from PD-related brain regions, namely the basal ganglia-
thalamus-cortex (BG-T-C) system, known as the motor loop).
The network architectures include a fully-connected (FC)
network, used as a baseline method, a Convolutional Neural
Network (CNN), and an hybrid CNN with Long Short-Term
Memory (ConvLSTM). We also employ an autoencoder-based
unsupervised framework to analyse not only the consistency

72 Chapter 4. Approaches on computational neuroscience



of the lower-dimension representation (i.e., embedding) with
respect to the two conditions - healthy or PD - but also the
suitability of the learnt features in regular classification.

Our deep learning models trained on LFP readings reached
accuracy above 99% and the learnt features resemble those
that were previously associated to PD. As the acquisition of
LFP data depends on inserting electrodes directly inside the
subject’s brain, the methods proposed are not directly suitable
for diagnosis, but rather to provide an additional framework
for better understanding of the underlying mechanisms of the
disease. To the best of our knowledge, this paper is the first
attempt to apply deep neural networks to better understand PD
features extracted from simultaneous multi-region LFP.

II. RELATED WORK

Recent research has shown that deep neural networks may
be promising machine learning algorithms for studying bio-
logical systems. In [8], classification of Alzheimer’s disease
was performed based on magnetic resonance brain images fed
into a CNN. In [9], the intention to perform certain movements
was detected from EEG signals, by generating time-frequency
maps through wavelet transforms and feeding them to a CNN.

Regarding PD, in [10], EEG data was collected from 15
patients in early stages of PD, ranging from Hoehn and Yahr
(H&Y) [11] stages 1 to 2, and 15 healthy subjects with a
similar age profile. They applied the autoregressive Burg and
the Wavelet Packet Entropy (WPE) methods to characterise the
resulting signals in terms of frequency bands and to identify
cortical patterns that may be indicative of PD at its early
stages, and found significant differences between the affected
patients and the control subjects.

Yuvaraj, Acharya, and Hagiwara [12] provided a machine
learning (ML) framework to diagnose the disease in an EEG
dataset produced by 20 affected patients with H&Y stage
ranging from 1 to 3, though most of them were in stages 2 or
3, and a control group of 20 other subjects with no history
of mental illness. They extracted the Higher-Order Spectra
(HOS), a well-established technique for feature extraction
from biomedical data, and introduced a feature ranking method
before applying several classical classifiers, obtaining a state-
of-the-art diagnosis with Support Vector Machines (SVM).

An important development in the Brain-Computer Interfaces
(BCI) domain was the EEGNet [13], based on the application
of a compact CNN in diverse motor tasks. Besides providing
a classification framework, the authors explored the interpre-
tation of features by analysing filter outputs, convolutional
kernel weights, and single-trial relevance. The SyncNet [14]
was another CNN-based deep network capable of handling not
only EEG, but also LFP signals from public datasets. When
processing EEG data, the framework generated visualisations
of the spatial patterns recognised by the network filters with
heat maps representing learnt amplitude and phase in different
bands of the frequency spectrum. Their work did not describe
a visualisation approach for features learnt from LFP data.

In [15], different CNN architectures were employed in order
to classify public EEG datasets focused on commands for

initiating movement. For visualisation, two types of correlation
maps were considered: input-feature unit-output, consisted of
bandpass-filtering the input signal to each frequency band
of interest and checking the outputs of each unit of the
network, and input-perturbation network-prediction, based on
perturbations on the network inputs. A paradigm derived from
research on video classification was proposed in [16], in which
the spatially-coherent readings of the EEG electrodes at a
given timestep were represented as a regular 2D image, and
stacks of such images were interpreted as sequential frames
in a video. The data was collected during a working memory
experiment, and different architectures were considered for
feature extraction and classification, especially neural net-
works.

Regarding research aimed at PD diagnosis, [17] presented
a thirteen-layer CNN that was applied directly to EEG data
from 20 PD patients and 20 healthy subjects from similar age
groups for classification. The accuracy obtained was lower
than that reported in related work with handcrafted features,
though direct comparisons are difficult to make due to the lack
of standardised datasets. A different technique was presented
on [18], which applied Echo State Networks (ESN) to classify
data collected from patients with REM-sleep Behaviour Dis-
order (RBD), a risk factor for PD, and healthy controls, with
promising results. Both papers focused on classification, with
few considerations regarding the representations learnt.

Research on learning feature representations from brain
signals through unsupervised techniques presented two autoen-
coder architectures to learn short-time features from EEG data
from a public dataset [19]. Each trial was represented as a 2D
image whose pixel intensities were related to the power of
different EEG frequency bands at the spatial location of each
particular electrode in the scalp surface, and channel-wise, in
which each EEG electrode was treated as a different channel.
The embeddings learnt were fed to fully-connected layers to
perform classification tasks, leading to state-of-the-art results
in the cross-subject experiments. Another autoencoder-based
framework was proposed by Wen and Zhang [20], designed
to learn representations related to epilepsy with the so-called
AE-CDNN model.

The above-mentioned literature focused on learning repre-
sentations based on EEG signals from humans by applying
different sorts of neural networks, with accurate results in
comparison to other approaches. PD-related work was also
relied on this modality of data, however work on this subject
did not provide an in-depth analysis on the interpratability
of the features learnt. Also, LFP data has not been a focus
of ML efforts in understanding PD, though we have found
research addressing this modality for other purposes. This
paper attempts to fulfil those gaps by providing a comparative
study via a set of deep networks that learned from a PD-related
dataset of marmosets’ LFP measurements, in both supervised
and unsupervised manners.
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III. THE MOTOR LOOP

The motor loop of the mammals’ brain is formed by the
motor cortex (M1), the thalamus (TH), and the basal ganglia
(BG), the latter composed of a subset of structures: the
striatum, which itself includes the putamen (PUT) and the
caudate nucleus, the globus pallidus, divided into pars interna
(GPi) and pars externa (GPe), the subthalamic nucleus (STN),
and the substantia nigra, divided into pars compacta (SNc)
and pars reticulata (SNr). McGregor and Nelson [21] provided
a discussion about the mechanisms of this loop and presented
models to describe it. The most useful model to explain the
connections affected by PD is the so-called classic model,
illustrated in Fig. 1, which highlights the relationships between
the projections of neurons from the SNc to the BG structures,
mainly striatum, where dopamine is released.

Striatum

GPi GPe

SNc

STN

Motor cortex

dMSN iMSN

THVL, VPL, etc.

PUT, etc.

Fig. 1: Excitatory (blue) and inhibitory (red) connections from
the circuitry of the motor loop. PD is caused by the loss of
neurons of the substantia nigra pars compacta (SNc), which
weakens the connections represented by the dashed lines. This
causes malfunction on both the direct and indirect pathways.

The pathways begin with an excitatory connection from
the cortex to the striatum, which projects its output neurons,
named medium spiny neurons (MSN), to other structures inside
the BG. In the direct pathway, the direct MSN (dMSN) inhibits
the GPi, which reduces its inhibition to the TH, which then
excites the motor cortex. In the indirect pathway, the indirect
MSN (iMSN) inhibits the GPe, which reduces its inhibition to
the STN, which excites the GPi. Thus resulting on inhibition of
the TH and absence of excitatory outputs to the motor cortex.
Hence, in summary, the direct pathway excites the cortex (i.e.,
positive feedback loop), while the indirect pathway inhibits
it (i.e., negative feedback loop). PD is characterised by the
progressive loss of dopaminergic neurons, especially in the
SNc, which causes malfunctions to both pathways.

IV. METHODS

This work consists of applying deep neural networks to LFP
data collected from marmoset monkeys. We have considered
networks for classification, trained to distinguish between
healthy and PD-induced individuals, and autoencoders, trained
in an unsupervised manner. To explore the representations
learnt by each model, we applied attribution methods to
segment the input sequences and to look for the most relevant
features. All implementations were developed using the Ten-
sorFlow/Keras framework. The experiments were performed

on a desktop equipped with an Intel Core i7-7700 CPU and a
NVidia Titan-V GPU.

A. Datasets

Four adult males and one adult female common marmosets
(i.e., Callithrix jacchus), weighing 300–550 g, were used in
the study performed on [7]. The animals were housed in
pairs in a vivarium with a natural light cycle (12/12 hr)
and outdoor temperature. All animal procedures followed ap-
proved ethics committee protocols (CEUA-AASDAP 08/2011,
11/2011, 02/2015, and 03/2015) strictly in accordance with
the NIH Guide for the Care and Use of Laboratory Animals.
PD symptoms were elicited in all four male animals with
injections of 6-OHDA toxin under deep anesthesia. LFPs were
sampled at 1000 Hz and recorded using a 64 multi-channel
recording system (Plexon) with fully-awaken animals behaving
freely. Electrode coordinates and dopaminergic lesions were
verified in all animals.

B. Data Preprocessing

The only healthy individual had recordings from the M1,
PUT, GPe, and GPi regions, thus we limited our analysis
to those regions. In total, 14 and 16 recording sessions
were obtained for the healthy and for the PD conditions,
respectively, considering hemispheres independent from each
other. Each recording session was segmented in 2-second
data segments. As multiple electrodes were recorded for each
region, a preprocessing pipeline was required before providing
a standardised data structure, as with other approaches in the
literature [22]. For each channel, our pipeline began with
a low-pass filter (cutoff frequency of 250 Hz), a high-pass
filter (cutoff frequency of 0.5 Hz) and a hum notch filter at
60 Hz, 120 Hz, and 180 Hz frequencies. Each signal was then
scaled according to a z-score normalisation. The next step was
to compute the cross-correlation matrix of each region and
discard channels with mean correlation coefficient below the
threshold of 0.7. Finally, all channels within a brain region
were averaged, which provided a matrix with dimensions
4× 2000.

After that, to reduce the amount of noisy or non-meaningful
data, we imposed additional criteria to decide whether to
keep or discard each resulting instance. An upper threshold
of 0.2 was set for the module of the mean of the signal over
time at each region, and a lower threshold of 0.1, for the
standard deviation. Also, each window was required to show
a minimum of 10 peaks.

C. Network Architectures

We considered the classification task of distinguishing be-
tween healthy and PD-induced individuals and elaborating
embedding representations through an autoencoder [23], which
could be analysed on its own or coupled with supervised
techniques to check its ability to enhance the classification pro-
cedure. The different architectures considered are illustrated
in Fig. 2. The number of layers and its numbers of neurons
were chosen based on literature on EEG classification and
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exploratory experiments. The complexity of each model is
shown in Fig. 3.

Fully-connected
Layers: 2
Dropout rate: 50%
Units: {1024, 256}

Softmax

(a) Fully-connected architecture. The two fully-connected lay-
ers, both provided with dropout, are followed directly by the
softmax layer.

Conv1D + MaxPool
Layers: 4
Kernel size: 11x1 (pool. 2x1)
Units: {128, 192, 256, 378}

Global Avg. 
Pooling

Softmax

(b) CNN architecture. All convolutional layers within a Conv1d
+ MaxPool block were set to the same kernel size, with one
convolutional layer being interspersed with a max-pooling layer.
At the top, the features map are processed through global
average pooling and fed to a softmax layer.

Conv1D + MaxPool
Layers: 4
Kernel size: 11x1 (pool. 2x1)
Units: {128, 192, 256, 378}

LSTM layer
Units: 128

Softmax

(c) ConvLSTM architecture. The Conv1D + MaxPool block is
similar to that of the CNN architecture, however its output is
fed to a LSTM layer, whose output is fed to the softmax layer.

Conv1D + MaxPool
Layers: 4
Kernel size: 11x1 (pool. 2x1)
Units: {128, 192, 256, 378}

Global Avg. 
Pooling

Embedding

Conv1D + Upsampling
Layers: 4
Kernel size: 11x1 (up. 2x1)
Units: {378, 256, 192, 128}

Conv1D
K. size: 11x1
Units: 4

(d) Autoencoder architecture. The convolution/upsampling
block and the top convolutional layer with the output with
the same dimension as the input signal, used for training the
autoencoder, is removed and replaced by a global average
polling for providing the embeddings.

Fig. 2: Network architectures. The input signals are processed
by the intermediate layers, which would be a stack of fully-
connected, convolutional, pooling or upsampling, depending
on the architecture (icon by Freepic, from www.flaticon.com).

1) Classification Networks: Three different architectures
were considered for classification. All of them were endowed
with a readout layer made of two neurons, each related to
one of the two possible classifications - healthy or PD -
and softmax activation function. The baseline, Fig. 2a, was
a shallow, fully-connected (FC) neural network, consisted of
two intermediate layers with dropout set to 50%. We also
considered a 4-layered CNN, Fig. 2b, with the convolutional
layers composed of 1-dimensional filters with receptive field

Number of parameters (M)

FC
CNN

ConvLSTM
Autoencoder

0 2.5 5 7.5 10

Fig. 3: Complexity of each model, given by the number of
parameters, in millions.

of size 11 and interspersed with max-pooling layers with filter
size 2, and a ConvLSTM, Fig. 2c, inspired by literature on
activity recognition from inertial sensors [24], which consisted
of the CNN architecture provided with an additional LSTM
layer at the top, right before the softmax layer. The number
of units at each layer is depicted in Fig. IV-C1.

2) Autoencoder: The autoencoder, Fig. 2d, reproduced the
CNN architecture and endowed it with a reconstruction block.
At training time, four convolutional-upsampling pairs were
introduced to reverse the encoding produced, followed by a
convolutional readout layer to reconstruct the input shape. At
test time, the 378 × 125 encoding following the last max-
pooling layer would be processed by global average pooling
and turned into a flat feature vector composed of 378 units,
which we call embedding.

This embedding was employed in two other classification
settings. The first consisted of simply feeding the embedding
to a fully-connected network, just like the one illustrated in
Fig. 2a, and training the fully-connected network regardless of
the original CNN that generated the embedding. The second
consisted of inserting a softmax layer at the top of the global
average pooling layer, resulting in an architecture identical to
that of the CNN depicted in Fig. 2b, and fine-tuning all its
weights.

D. Attribution Methods

Algorithms to assign a value to the contribution of each
input to a given output of a neural network may be called
attribution methods. A comprehensive summary of differ-
ent methods was presented on [25]. Formally, given an in-
put X = [x1, . . . , xN ] ∈ RN and an output S(X) =
[S1(X), . . . , SC(X)], where N is the number of input neurons
and C is the number of output neurons, the problem consists
of assigning an attribution RC = [RC

1 , . . . , R
C
N ] ∈ RN of

each input feature x ∈ X with respect to a given output
Sk(X) ∈ S(X). The Integrated Gradients method [26],
adopted in this work, is based on the gradients obtained
through a single backward pass through the network.

Here, we applied the DeepExplain framework [25] to the
outputs for computing the attributions of each instance with
respect to the input signals and to all intermediate layers. The
outcome, in the case of the inputs, may be represented by
the example in Fig. 4, which presents the attribution of each
timestep of the input channels as colour maps. It is worth
mentioning that negative attributions, represented in blue, are
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also present, and might be interpreted as evidence against the
output analysed.
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Fig. 4: Example of attributions at the input layer with respect
to a given output. Contributions of each timestep are repre-
sented in a colour map, with red points corresponding to pos-
itive attributions, and the blue points, to negative attributions.
In other words, red (blue) points relate to increased (decreased)
probability of correct classification.

V. RESULTS AND ANALYSIS

After preprocessing, 14 sessions from the healthy condition
and 11 sessions from the PD condition were kept. Based on
that, the data was split following the rule that segments that
belonged to the same recording session would always belong
to the same fold. This policy allowed the data to be split into
11 folds, each consisting of one healthy and one PD recording
session, preventing the ML algorithms from achieving high
accuracy by simply learning session-specific artifacts. The
classification networks were trained to optimise the softmax
cross-entropy loss, while the autoencoder was trained to opti-
mise the mean squared error (MSE). All neural networks were
trained using stochastic gradient descent (SGD), with learning
rate 10−2 and decay 10−4, for 30 epochs. We have chosen
to apply SGD without momentum because this was the most
stable training algorithm, generally leading to convergence on
both train and test sets. The number of epochs was actually
overestimated, since convergence appeared to happen around
epoch 10, though it was kept for safety, since the loss remained
stable after achieving an optimal set of parameters. The
trained models were evaluated with regular evaluation metrics,
but they were also analysed with respect to its features, as
presented in the next subsections.

A. Performance Evaluation

The classification results are presented in Table I, including
the shallow FC network applied to the autoencoder embedding
and the pre-trained CNN, which is actually a fine-tuned

autoencoder. Accuracy and macro F1-score (i.e., the harmonic
mean between macro precision and recall) were close for
all models, which suggest an equilibrium between true and
false classifications across both classes. The results show that
the CNN performed expressively better than the baseline FC
network, with a 5.98% accuracy rise from 93.65% to 99.63%
and standard deviation an order of magnitude lower. The
ConvLSTM presented a perceptible improvement towards the
CNN: the error rate, the opposite of accuracy, dropped from
0.37% to 0.20%, with even lower standard deviation. The
FC applied to the autoencoder’s embedding presented a slight
improvement when compared to the baseline FC, despite an
increase at the standard deviation, especially regarding the
F1-score, which may suggest worse performance at certain
circumstances. Pre-training the CNN had little effect on the
classification metrics, as the accuracy of the CNN and the
pre-trained CNN changed only 0.02%.

TABLE I: Classification metrics for each network architecture,
with window size t = 2, 000 points. Means and standard
deviations between all folds.

Accuracy (%) F1-score (%)

Fully-connected 93.65± 6.03 93.39± 6.14
CNN 99.63± 0.78 99.61± 0.83
ConvLSTM 99.80± 0.40 99.79± 0.45

AE / FC 95.76± 7.93 94.49± 10.57
Pre-trained CNN 99.65± 0.68 99.63± 0.75

The dataset in which we performed the experiments is not
public, thus there are no related work to which we can directly
compare these results. Also, PD-related LFP data is not readily
available for most research on the issue, even considering data
from rodents. If compared to EEG datasets, collected under
more controlled circumstances, our results would be consistent
with the state-of-the-art, in which accuracy of up to 99.62%
can be found with HOS features and SVM-RBF classifier [12].
Regarding deep neural networks, the CNN of [17] hit an
accuracy of 88.25%, while [18] reported an accuracy around
85% with ESN classifiers.

The autoencoder’s embedding went through an additional
performance evaluation. Three clustering methods were ap-
plied to the feature vector - K-means, agglomerative hierarchi-
cal clustering and DBSCAN - and the clusters were evaluated
according to entropy-based evaluation metrics [27], which take
into account the labels of the instances assigned to each cluster.
Those metrics were the Homogeneity of the clusters, according
to which each cluster contains only instances of a single class,
the completeness, according to which all instances of a given
class are assigned to the same cluster, and the V-measure, the
harmonic mean between the other two. The results, shown in
Table II, give a measurement of whether the features learnt
by the autoencoder and grouped by the clustering algorithms,
both without considering the annotations, were informative of
whether the instance corresponded to a healthy or PD subject.

K-means and agglomerative clustering performed better
when the number of clusters was set to n = 4. In particular
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TABLE II: Entropy-based metrics on clustering methods ap-
plied to the autoencoder’s embedding. The number associated
with the K-means and agglomerative clustering rows refer to
the number of clusters n, set as a hyper-parameter of the
algorithm.

Homogeneity (%) Completeness (%) V-Measure (%)

K-means 2 53.00± 25.84 54.79± 24.66 53.63± 25.53
K-means 4 86.54± 14.19 56.15± 9.81 67.91± 10.99
Aggl. 2 48.84± 30.27 51.99± 28.07 49.98± 29.58
Aggl. 4 91.27± 14.22 59.85± 12.36 72.05± 12.87
DBSCAN 69.64± 41.65 53.83± 27.42 59.42± 34.87

considering the proportionally high standard deviations of the
other approaches, which indicates that, for some folds, the
embedding was not informative with respect to the labels. Even
the completeness measurement, which could be expected to be
lower when the number of clusters is higher than the number
of classes, has actually improved. The homogeneity reached
91.27% with agglomerative clustering, an evidence in favour
of the autoencoder’s features as discriminative towards detec-
tion of PD. The density-based DBSCAN showed intermediate
results, though with the highest standard deviations.

B. Feature Analysis

Features learnt by each model were analysed based on the
attribution methods (Section IV-D) and spectral analysis. We
have considered the input features and the internal representa-
tions at the intermediate layers of the convolutional networks.

1) Input Features: The attributions with respect to the
input channels (i.e., regions of the motor loop) were used
to determine the 1-second segments that show the highest
accumulated attributions at each instance (i.e., the highest sum
of 1,000 subsequent elements within a given channel of a given
input), with the constraint that only segments whose sum of
attributions is above a threshold of 1.0 were considered. The
power spectral density (PSD) of those segments was computed
using the Welsh method [28], and the mean µPSD of the spectra
of each class C = {H,PD}, where H means ”healthy” and
PD, ”parkinsonian”, was considered to calculate the ratio R
of Equation 1. The rationale is that a peak at the beta frequency
band (13-30 Hz) is a relevant marker of PD brain signals [29].

R =
µPSD(C = PD)

µPSD(C = H)
(1)

Results for each model are presented in Fig. 5, alongside
a baseline spectrum corresponding to random segments of
each instance. The beta frequency peak can be clearly seen in
random segments, and was enhanced on all models except for
the autoencoder without fine-tuning. The autoencoder situation
was expected, since the gradients were not updated with
respect to the inputs of the network, but only to the encoding
produced after the convolutions. The M1 and GPi ratios were
close to zero because few segments of PD individuals with
relevant attributions were present in the analysis.

As expected, the CNN and pre-trained CNN elicited high
attributions to segments with similar spectral densities. The
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Fig. 5: Ratio between the mean PD and healthy PSD of the
1-second snippets with the highest accumulated attribution per
input segment, above a given threshold of 1.0.

FC network was also consistent with the literature, with even
a more acute beta peak in GPi. In the ConvLSTM spectrum,
this peak was very high in M1, though less prominent in GPe
and GPi. These differences in spectra show that each model
make predictions based on different input features, however
all of them were in consonance with previous PD literature.

To verify the contribution of each region for the models’
performance, we evaluated the total number of regions with
at least one 1-second segment whose sum of attributions was
above the threshold of 1.0, across all folds. In Fig. 6, this
evaluation is shown in terms of the proportion of segments
above such threshold with respect to the total number of
segments within each given region.

This evaluation suggests that the PUT and GPe regions were
generally more relevant for recognising the healthy condition
for all models, and also for recognising the PD condition for
the ConvLSTM and the autoencoder-based network. There-
fore, the particularly high frequencies for the GPi spectrum at
the baseline FC and for the M1 spectrum at the ConvLSTM,
previously shown in Fig. 5, does not imply that those regions
have given the highest contributions for the classifications.

2) Intermediate Convolutional Layers: We also evaluated
the features at the intermediate convolutional layers. Given the
internal representation that followed each max-pooling layer,
our analysis computed the spectral power at the delta (1-3 Hz),

77



FC CNN ConvLSTM AE-CNN AE
Model

0.00

0.25

0.50

0.75

1.00

Se
gm

en
ts

Healthy
M1
PUT
GPe
GPi

FC CNN ConvLSTM AE-CNN AE
Model

0.0

0.2

0.4

0.6

0.8

Se
gm

en
ts

PD
M1
PUT
GPe
GPi

Fig. 6: Proportion of segments above threshold for each
classification model (mean between all folds). In the graph,
the pretrained CNN was named AE-CNN.

theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma
(30-100 Hz) bands of the LFP. We considered feature maps
whose sum of attributions is above a threshold of 0.5 for the
pre-trained CNN and 0.7 for the other models. The average
spectral power of those representations is shown in Fig. 7.

Differences on the features learnt at each layer were also
verified at a given power band. As the number of samples
is massive in all of the considered cases, the outcome of a
significance test would provide a very low p-value even if the
effect of the significance detected was only trivial [30]. In fact,
we got p ≈ 0.00 for all ANOVA tests applied. Hence, in order
to understand the effect size of this statistical significance, we
measured the η2 measure [31], also reported in Fig. 7. A small
effect size is determined by η2 ∈ [0.01, 0.09], a medium one,
by η2 ∈ [0.09, 0.25], and a large one, by η2 > 0.25.

Except for the autoencoder, the evaluations of all models
shared most of its properties. Regarding the sub-alpha waves
(i.e., delta and theta), CNN, ConvLSTM, and pre-trained CNN
produced feature maps with higher amplitudes the deeper the
layer was, with medium to large effect sizes. This pattern
started to reverse at the alpha band, with layer 4 producing less
power at such frequency interval than layer 3. At the beta band,
the pattern was less uniform across models, though relevant
(i.e., large effect size for CNN and ConvLSTM). At the gamma
frequency, the tendency of the lower bands was reverted, with
first layers producing less of those waves. The high effect size
was possibly due to the lower resolution at layer 4, which
penalises spectral analysis of higher frequencies.

The autoencoder model was considerably different than
other models, as one may expect due to its different, unsu-
pervised optimisation strategy. It produced the same pattern at
all sub-gamma frequency bands, with a higher prevalence of
those frequencies the lower down was the layer. We highlight
that only small effect sizes were detected at the delta and
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Fig. 7: Average frequency power bands over the spectrum of
each max-pooling layer and η2 effect size over all pairs of
layers with summed attributions above a given threshold of
0.5 for the pre-trained CNN or 0.7 for the other models.

theta bands, and medium effects, at the alpha and beta ones.
The layers were less specialised regarding the gamma waves.
In common with the other models, the autoencoder has also
shown a sharp drop of gamma waves at layer 4.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a deep framework to extract
features related to Parkinson’s Disease (PD) from Local Field
Potential (LFP) brain signals of a marmoset monkey dataset.
Different neural networks were applied as machine learning
techniques, both as classifiers and autoencoders, and results
were reported in terms of accuracy and properties of the
representations learnt by each model.

The deep networks presented classification metrics higher
than the shallow networks, with accuracy up to 99.80% for the
ConvLSTM model. The autoencoder embedding has shown
to be informative of the PD-related features, with clustering
approaches reaching homogeneity up to 91.27%, and higher
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classification metrics when fed to a fully-connected network,
in comparison to the raw input (e.g., 95.76% accuracy, against
93.65%). Pre-training the CNN, on the other hand, had little
effect compared to training from scratch.

Even though the convolutional networks extract features in
the time domain, the input segments with higher attributions
presented an enhanced peak at the beta frequency range of
the average spectrum of the PD individuals when compared
to the healthy ones. Regarding the intermediate representations
of the convolutional layers, we have analysed the average
power spectra at five frequency bands of feature maps with the
highest attributions. Although LFP readings are not a feasible
source of data for diagnosing PD, the proposed methods and
analysis may contribute for a better understanding of the
mechanisms underlying Parkinson’s disease.

Future work includes the use of the same deep learning
approach to simulated data originated from computational
models of PD. This will assist on the validation of artificial
models of the motor loop, apart form enhancing our current
understanding of the PD neurophisiology. We will also embed
such models into a robot, given rise to a neurorobotics model
which could simulate the symptoms of this disease and provide
a platform to perform preliminary experiments on proposed
new therapies. A better understanding of the BG-T-C cir-
cuitry might give further insights on related systems regarding
decision-making, homeostasis and learning [32]–[35], which
are of particular interest to the field of robotics.
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ABSTRACT

In this work we propose a new biophysical computational model of brain regions relevant to Parkin-
son’s Disease (PD) based on local field potential data collected from the brain of marmoset monkeys.
Parkinson’s disease is a neurodegenerative disorder, linked to the death of dopaminergic neurons at
the substantia nigra pars compacta, which affects the normal dynamics of the basal ganglia-thalamus-
cortex (BG-T-C) neuronal circuit of the brain. Although there are multiple mechanisms underlying the
disease, a complete description of those mechanisms and molecular pathogenesis are still missing, and
there is still no cure. To address this gap, computational models that resemble neurobiological aspects
found in animal models have been proposed. In our model, we performed a data-driven approach in
which a set of biologically constrained parameters is optimised using differential evolution. Evolved
models successfully resembled single-neuron mean firing rates and spectral signatures of local field
potentials from healthy and parkinsonian marmoset brain data. As far as we are concerned, this is
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the first computational model of Parkinson’s Disease based on simultaneous electrophysiological
recordings from seven brain regions of Marmoset monkeys. Results show that the proposed model
could facilitate the investigation of the mechanisms of PD and support the development of techniques
that can indicate new therapies. It could also be applied to other computational neuroscience problems
in which biological data could be used to fit multi-scale models of brain circuits.

Keywords basal ganglia · brain modelling · computational modelling · evolutionary computation · neural engineering ·
Parkinson’s Disease · 6-OHDA lesioned marmoset model

1 Introduction

Parkinson’s disease (PD) affects more than 3% of people over 65 years old, with figures set to double in the next 15
years [67]. It is a neurodegenerative disease, whose symptoms include cognitive and motor deficits. In late stages, it can
possibly also lead to depression and dementia [89]. There is still no cure, and current therapies are only able to provide
symptomatic relief.

PD is characterised by a dopaminergic neuronal loss within the substantia nigra pars compacta (SNc), which leads to a
dysfunction of the basal ganglia-thalamus-cortex (BG-T-C) circuit. The BG-T-C circuit is a neuronal network with
parallel loops that are involved in motor control, cognition, and processing of rewards and emotions [61, 74]. There are
also links between the degeneration of dopamine neurons within those brain regions and changes on electrophysiological
behaviour [22].

A commonly used model to explain how PD affects the neural connections within this circuit, also known as the motor
loop, is the so-called classic model, illustrated in Figure 1a. It consists of projections from primary motor (M1) and
somatosensory cortical areas to BG input structures, specifically the putamen (PUT) and the subthalamic nucleus (STN).
In PUT, the cortical projections establish excitatory glutamatergic synapses with medium spiny neurons (MSNs).

The MSNs establish two distinct pathways to the BG output nuclei (globus pallidus pars interna – GPi and substantia
nigra pars reticulata – SNr). The MSNs from the direct pathway (dMSN) directly project to the GPi/SNr, while
the MSNs from the indirect pathway (iMSN) project to the globus pallidus pars externa (GPe), which in turn send
projections to the GPi/SNr directly or indirectly via the STN (for reviews, see Obeso et al. [61], Lanciego et al. [42],
and McGregor and Nelson [49]).

The cortical projection to the STN establish a third pathway, often called the hyperdirect pathway [58]. Activation of
the direct pathway facilitates movement by inhibiting the activity of GPi/SNr, thus reducing the inhibition of the ventral
anterior nucleus (VA) and the ventral lateral nucleus (VL) and increasing the excitatory thalamic input to the motor
cortex. Activation of the indirect and hyperdirect pathways, on the other hand, inhibit movement by increasing the
inhibitory activity of the GPi/SNr over the VA/VL, hence decreasing the excitatory thalamic input to the motor cortex.

The activity of the motor loop is modulated by dopaminergic projections from SNc to PUT. The main effect of dopamine
(DA) release in PUT is movement facilitation, since DA increases the excitability of the dMSNs and decreases the
excitability of the iMSNs.

In PD, the depletion of striatal DA leads to an enhanced activation of the indirect pathway and a decreased activation of
the direct pathway, resulting in the characteristic motor symptoms of this neural disorder [93]. In addition to changes in
firing rates, the functional imbalance within the motor loop in PD also disrupts the firing patterns within each nucleus
and amongst the structures of the BG-T-C circuit, increasing neuronal synchronisation, neuronal bursting, and enhancing
the oscillatory activity at the beta frequency band [21].

Brain regions linked to PD present complex interactions, with mutual excitatory and inhibitory feedback loops, which
limit a comprehensive understanding of the physiopathology of the disease. Studies aiming at investigating the mecha-
nisms underlying PD often use animal models. In classic animal models of PD, symptoms are elicited by delivering
neurotoxins that damage the SNc dopaminergic neurons, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
and 6-hydroxidopamine (6-OHDA), or chemicals that transiently inhibit dopamine production, such as alpha-methyl-
p-tyrosine (AMPT) [38]. Also, antipsychotics like haloperidol have side effects that may promote dystonia and
parkinsonism [35].

Bilateral 6-OHDA lesions in the marmoset medial forebrain bundle induce several PD motor symptoms, including
impairments in fine motor skills, limb rigidity, bradykinesia, hypokinesia, and gait impairments. Alpha-methyl-p-
tyrosine (AMPT) administration to 6-OHDA lesioned marmosets can transiently increase the severity of these symptoms.
However, like MPTP macaques, these animals do not exhibit resting tremor. Santana et al. [83] provides an extensive
characterisation of these symptoms, that were quantified through manual scoring (adapted version of the unified PD
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Figure 1: Models of the basal ganglia-thalamus-cortex (BG-T-C) circuit, central to the underlying mechanisms of
Parkinson’s Disease (PD), including excitatory (blue) and inhibitory (red) connections between the regions involved.
(a) Classical model of BG-T-C circuit. The motor loop in the mammalian brain is formed by the motor cortex (M1),
the thalamus (TH) - composed of structures such as the ventral anterior nucleus (VA), the ventral lateral nucleus
(VL), and the ventral posterolateral nucleus (VPL) -, and the basal ganglia (BG), the latter composed of a subset
of structures: the striatum, which itself includes the putamen (PUT) and the caudate nucleus, the globus pallidus,
divided into pars interna (GPi) and pars externa (GPe), the subthalamic nucleus (STN), and the substantia nigra,
divided into pars compacta (SNc) and pars reticulata (SNr). PD is caused by the loss of dopaminergic neurons in
the SNc, which weakens the connections represented by dashed lines and leads to malfunctioning of both direct and
indirect pathways. (b) BG-T-C network used in this work, based on [40]. The cortex is represented by regular spiking
(CtxRS) excitatory neurons and fast spiking (CtxFSI) inhibitory interneurons. The direct and indirect pathways in
the striatum were modelled separately, representing the medium spiny neurons (MSNs) modulation by D1 and D2
dopamine receptors, respectively.

rating scale for marmosets), automated assessments of spontaneous motor activity in their home cages (using actimeters),
and automated motion tracking while the animals explored two experimental apparatuses.

To date, no animal model of PD fully reproduces human features of the disease. In addition, due to experimental
limitations, animal data often include only a limited set of PD-related brain regions, with subjects engaged in different
behavioural settings. In this context, computational models, with biologically informed constraints that can be selectively
altered, are a promising, complementary approach to advance our knowledge about PD beyond that obtained from
anatomical and physiological studies [33, 59]. Some PD-related anomalies observed in animal models, and efforts to
reproduce those in computational models, are presented by Rubin et al. [79].

Computational models are established tools to facilitate understanding of neural disorders [65,82,86] and, in the context
of PD, accommodate several levels of description and range from focusing on disease mechanisms to understanding
anomalous neuronal synchronisation [33].

For instance, Pavlides et al. [63] conducted a detailed study to help unveiling the mechanisms underlying beta-band
oscillations in PD and compared computational model predictions with experimental data. Muddapu et al. [55] studied
loss of dopaminergic cells in the SNc due to neural dynamics between SNc and STN, shedding light on the relevance of
ongoing neural activity and neural loss. Gurney et al. [24] described mounting evidence relating the BG-T-C network
and action selection mechanisms; actually, computational models showed a close relationship between action selection
and BG-T-C oscillatory activity [30, 31, 50].

Moren et al. [54] proposed a model of the spiking neurons within the BG-T-C circuit, in order to observe the
asynchronous firing rates around the 15 Hz beta-range oscillations, as well as on lower frequency bands. Terman et
al. [96] developed a conductance-based computational network model which shed light on the mechanisms underlying
the neural dynamics of STN and GPe, a model which was further developed by Rubin et al. [78] to investigate the
effects of deep brain stimulation (DBS) to eliminate anomalous synchronisation within the BG-T-C network in PD
condition. In fact, one of the key areas in which computational models serve as an invaluable tool for developing novel
therapies is that related to predicting the effects of DBS [32, 46].

Finally, based on a collection of previously published studies, Kumaravelu et al. [40] developed a computational model
of the BG-T-C network tuned for the 6-OHDA rat model of PD (Fig. 1b). Compared to other computational models [33],
it was the first to specifically consider 6-OHDA and a single species.

Most computational models related to BG-T-C dynamics rely on rodent data [31, 37, 45], with only a handful focusing
on primate data [44, 98]. The research by Shouno et al. [88], for instance, provided a spiking neuron model of the
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recurrent STN-GPe circuit for studying dysfunctions in oscillations within the 8-15 Hz frequency band for PD primate
models.

All mammals have a similar set of BG structures that are similarly connected with thalamic and cortical structures.
Nevertheless, recent studies suggest subtle differences between species [7,27,44,101], also in the neuropathophysiology
of PD [16, 38], with primates (including marmosets) being more similar to humans than rodents. For example, there are
differences in the distribution of dopaminergic neurons in substantia nigra of rats and primates, and the subthalamic
nucleus and internal globus pallidus of rats have less neurons containing parvalbumin than primates [27]. Thus, a
primate computational model of PD is of paramount relevance.

In this work, we developed a new computational model of PD based on published data from the BG-T-C brain circuit of
marmoset monkeys [15]. We built upon the neuronal computational model of rat models of PD [40], and adjusted its
parameters to match the electrophysiology data from 6-OHDA+AMPT marmoset model of PD [83, 84].

It is important to highlight that, in our work, we are using the LFP signal data to tune and validate our model, not spikes
or other biosignals, thus the whole optimisation framework relates to LFP-based metrics. We are aware that there are
several simplifications in our computational model, nevertheless results were shown that LFP power spectral densities at
frequencies of interest, firing frequency dynamics, and spike coherence resemble those from healthy and PD marmosets.

The main contributions of this paper are: (i) the first computational model of PD validated on simultaneous, multi-site
electrophysiological recordings (e.g., LFP recordings) from a marmoset monkey model of the disease, and (ii) an
optimisation framework that can easily include novel biophysical parameters as soon as they become available.

This paper is organised as follows. In Section 2, the building blocks of the computational model are depicted, as well
as the free parameters that were optimised, the algorithm to update those parameters, the experimental setup, and
the evaluation protocol. In Section 3, the results are presented regarding the optimisation process, the parameters
learnt by the machine learning algorithms, and the metrics observed on the simulations of the computational models
provided, considering spectral densities from simulated LFP, dynamics of the firing rates from simulated neurons, and
coherence analyses. In Section 4, a discussion is presented in order to contextualise our results and compare them with
the expectations from the data from animal models, and knowledge from the literature. In Section 5, a conclusion is
presented with a brief summary of what was presented.

2 Methods

To provide a computational model of the BG-T-C circuit for PD-related features in primates, we began by re-writing the
code by Kumaravelu et al. [40], originally implemented in Matlab. We have ported the original code to the Python
programming language, with the NetPyNE framework and the libraries from the NEURON simulator [18, 28]. Then,
we performed a series of adaptations and employed a data-driven approach to calibrate a set of parameters, in order to
derive a model that resembles local field potentials from marmoset data [83, 84]. More specifically, we employed an
optimisation technique called differential evolution (DE), an algorithm based on evolutionary computation [2]. This
approach consists of optimising a predefined set of parameters (i.e., genotype) by gradually adapting them through
successive steps (i.e., generations), providing variability and selection of the best solutions (i.e., individuals) through
mechanisms analogous to biological evolution.

In the model by Kumaravelu et al. [40], no noise was introduced in the simulations. Neuronal connectivity and
membrane initial conditions can be stochastic, and neuronal models include synaptic transmission delay. The dataset
employed in our work was suitable to calibrate such a model, since it was collected from marmoset monkeys that were
not engaged in any particular task, that is, they were moving freely, without any time-marked events such as sensory or
artificial stimuli.

After having calibrated our marmoset model, different analyses were performed in order to enhance and validate it.
The dataset used as ground-truth for adjusting the parameters of the computational model is not publicly available
due to legal restriction, but it is available from the corresponding author on reasonable request. The next subsections
will provide a detailed description of the methods employed. The code to reproduce the results from this paper,
including the machine learning framework and the analyses of the results, is publicly available at https://github.
com/cmranieri/MarmosetModel.

2.1 Computational Model

The computational model was based on Kumaravelu et al. [40]. Their model was build to reproduce the neurophysio-
logical behaviour from rats based on data from healthy and 6-OHDA-lesioned individuals. As an initial step, we did an
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alternative implementation for their model within the NetPyNE framework, and we validated this implementation by
comparing its outputs with those reported in [40].

Briefly, eight brain structures were modelled and connected based on a simplified version of the classic model (Figure 1b).
In particular, the direct and indirect pathway in the striatum were modelled separately representing the MSN modulation
by D1 and D2 dopamine receptors, respectively [49]. The cortex is represented by regular spiking (RS) excitatory
neurons and fast spiking (FSI) inhibitory interneurons. Neurons from all but cortical regions were modelled using
a biophysically based Hodgkin–Huxley [29] single-compartment model, whereas cortical neurons were constructed
based on the computationally efficient Izhikevich’s model [34]. The reasoning for different neuronal models lies
on the fact that PD effects are captured by altering specific conductances in selected structures (see below), thus a
conductance-based model is more suitable at these locations. Finally, a bias current was added in the TH, GPe, and
GPi, accounting for the inputs not explicitly modelled. Remarkably, even though no oscillatory inputs are present in
the model, synaptic delays and network interactions by means of recurrent connections promote sustained firing rate
oscillations. For a detailed description of connectivity schemes and other implementation details, the reader is referred
to Kumaravelu et al. [40].

The computational model described above can shift from the simulations of the healthy to the PD conditions by altering
three conductances [40]: decreasing the maximal M-type potassium conductance in direct and indirect MSN neurons
(MSN firing disfunction) from 2.6 to 1.5 mS/cm2; decreasing the maximal corticostriatal synaptic conductance
(reduced sensitivity of direct MSN to cortical inputs) from 0.07 to 0.026 mS/cm2; and increasing the maximal
GPe axonal collaterals synaptic conductance from 0.125 to 0.5 mS/cm2 (increase of GPe neuronal firing). This is
implemented in the model with a control flag.

One major addition to the model developed here is the simulation of local field potentials (LFP). These measurements
are related to the extracellular activity produced by action potentials of the neurons within a brain region [23]. A
discussion on the behaviour of LFP signals within the basal ganglia and its consequences to humans, especially
regarding conditions such as PD, was presented by Brown and Williams [9]. The NetPyNE function for LFP calculation
is based on the work of Parasuram et al. [62]. The LFP amplitude in each simulated electrode is obtained by summing
the extracellular potential contributed by each neuronal segment, calculated using the line source approximation and
assuming an Ohmic medium with conductivity 0.3 mS/mm. Thus, the electrical activity of neurons from each brain
region contributes to the peaks and valleys recorded at each electrode (subject to extracellular medium attenuation).

In our work, first, each simulated brain region is assigned to a spatial 3D coordinate that matches that used in the
stereotaxic surgery where electrodes were placed in the real marmoset monkeys [64, 84]. Then, a simulated electrode
is placed at the centre of each region. In our model, each neuron is represented as a single cylindrical compartment
with a membrane area of 100 µm2. For each electrode, NetPyNE estimates the simulated LFP by summing the
extracellular potential contributed by each neuronal segment (based on the transmembrane current generated from the
single cylindrical source neuron), calculated using the “line source approximation” method and assuming an Ohmic
extracellular medium with conductivity σ = 0.30 mS/mm [62].

2.2 Dataset and preprocessing procedures

The dataset we used in the present work is based on a previous study by Santana et al. [84]. Our dataset includes
data from three adult males and one adult female common marmosets (i.e., Callithrix jacchus). Data from two males
were part of the aforementioned study; data from one male and one female are novel and followed exactly the same
experimental procedures. A short summary is presented in the next subsection, followed by the preprocessing steps.

2.2.1 Dataset

The animals, weighing 300–550 g, were housed in a vivarium with natural light cycle (12/12 hr) and outdoor temperature.
All animal procedures followed approved ethics committee protocols (CEUA-AASDAP 08/2011, 11/2011 and 03/2015)
strictly in accordance with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals.
PD symptoms were elicited in all three male animals with injections of 6-OHDA toxin in the medial forebrain bundle
under deep anaesthesia [83, 84]. Prior to neural recordings, animals that received 6-OHDA were subjected to acute
pharmacological inhibition of dopamine synthesis (subcutaneous injections of AMPT 2 × 3240 mg/kg) to further
exacerbate PD motor symptoms, mimicking a more severe stage of the disease. Although 6-OHDA lesions impact on
both behavioural and electrophysiological features in all animals [83, 84], there are individual differences at earlier
stages of dopaminergic depletion that could hinder our model development considering the relatively low number of
subjects.

Both healthy and PD animals were implanted each with two custom-made microelectrode arrays composed of 32
microwires (one array in each hemisphere). The wires were 50 µm in diameter and were organised in bundles aimed to
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Figure 2: Data acquisition and preprocessing steps implemented in out method. Depending on the monkey condition,
different regions of the brain were recorded. The input data was composed of a whole recording session, with variable
lengths and numbers of channels (i.e., electrodes) per region. After preprocessing, the data was transformed into
2-seconds-long segments with seven channels, each related to one of the regions analysed.

reach distinct areas of the BG-T-C system. Before the surgery, the animals were sedated with ketamine (10-20 mg/kg
i.m.) and atropine (0.05 mg/kg i.m.), followed by deep anesthesia with isoflurane 1-5% in oxygen at 1-1.5 L/min. The
arrays were then implanted using a stereotaxic manipulator to position electrodes at the targeted BG-T-C coordinates,
which were determined using Stephan et al. [92] and Paxinos et al. [64] stereotaxic atlas. The microelectrode array and
the implant procedures were thoroughly described in Budoff et al. [10].

Once the animals recovered from the surgery, recording sessions were performed in fully awaken animals behaving
freely. LFPs were sampled at 1,000 Hz and recorded using a 64 multi-channel recording system (Plexon). The position
of the recording microelectrodes were verified postmortem through either tyrosine hydroxylase (TH) staining or Nissl
staining. Similarly, the extent of dopaminergic lesions were verified through the quantification of striatal fiber density
and dopaminergic midbrain cells in TH-stained sections. Further experimental details are described in Santana et
al. [84].

2.2.2 Preprocessing

For our study, in total, 14 and 16 recording sessions were taken for the healthy and PD conditions, respectively,
considering the brain hemispheres independent from each other. For the PD condition, we recorded from M1, PUT,
GPe, GPi, ventral lateral (VL) and ventral posterolateral (VPL) thalamic nuclei, and STN, whereas for the healthy
animal regions M1, PUT, GPe, and GPi were recorded. The raw data was organised so that, for each recording session,
a data structure with Nelec ×NT was provided, where Nelec is the number of electrodes recorded and NT is the number
of samples of the recording session (variable but typically lasting for several minutes).

In Figure 2, are illustratrated the preprocessing steps adopted after data acquisition. For each channel, the pipeline
began with a zero-lag low-pass filter (cutoff frequency of 250 Hz) and a high-pass filter (cutoff frequency of 0.50 Hz),
to eliminate frequencies that are outside the LFP scope and may relate to electrical or mechanical interference. Then,
we minimised power grid interference (hum) with a notch filter centred at 60 Hz and its harmonics (120 Hz and 180
Hz). Each resulting signal was then scaled according to a z-score normalisation, to account for the possible differences
in signal amplitude due to different electrode impedance.

In the next step, we computed the cross-correlation matrix Q according to Equation 1, where Cij is the covariance
matrix of the filtered and z-scored signals from electrodes i and j, which are located exclusively within a brain region.
Channels within each region with mean correlation coefficient below the threshold of 0.70 were discarded. This
procedure was employed because electrodes in each recorded region are placed very close to each other (see electrode
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and surgical procedures above), thus we expect LFP signals to be highly correlated (if they are not, it may relate to a
noisy electrode signal) [12].

Qij =
Cij√
Cii · Cjj

(1)

All remaining LFP channels within a brain region were averaged, which provided one data matrix for each recording
session with dimensions NR ×NT , where NR is the number of brain regions recorded. These average LFP values were
computed based solely on channels within each region. Next, we segmented each time-series in 2-second segments,
which was the same length of the computational model simulations (Section 2.3 will bring the details). Considering the
data sampling rate (1,000 Hz) and frequencies of interest (up to 50 Hz), 2-second segments provide enough data for our
analyses. Prohibitively noisy segments were discarded using two criteria: first, segments with abnormal amplitudes,
detected using an upper threshold of 0.20 for the absolute value of the mean of the signal over time; second, segments
with limited (abnormal) oscillatory patterns, detected using a lower threshold of 0.10 for the amplitude standard
deviation and a minimum threshold of 10 amplitude peaks. For each recording session, our preprocessed dataset had a
final shape of NR × 2000×Nseg, where Nseg is the resulting number of segments.

In the dataset adopted for this work, whether animals were still or moving could have a profound effect on brain
oscillatory activity and synchronisation metrics, because all animals were behaving freely and were not engaged in
any particular behavioural task during the recording sessions. In fact, especially in motor and pre-motor regions,
modulations in neural oscillatory dynamics linked to motor activity are well characterised (see Armstrong et al. [1] for
a review), and recent studies show that even breathing can modulate neural oscillations [99]. However, we understand
that action initiation, movement, or breathing have low influence on averaged LFP amplitude values computed, given
that the 2-second window segments were randomly selected without time alignment to any specific movement or action.

2.3 Evolutionary Algorithm

Evolutionary algorithms are optimisation techniques in which a set of parameters, called genotypes, are gradually
combined and changed according to mechanisms analogous to those of biological evolution, in order to maximise
a fitness function dependent of those parameters [2]. Differential evolution (DE) [71] was employed to fit the
computational model parameters so that it matches the LFP beta-band power spectrum observed in the marmoset data.

The overall structure of the model was preserved from Kumaravelu et al. [40], while a set of conductances, background
currents and synaptic modulations, as well as the numbers of neurons in each region of the BG-T-C circuit, were
calibrated through the evolutionary algorithm. The connectivity, the delays, the synaptic mechanisms, the remaining
conductances, and all other parameters were kept as in the original model (see Section 3 from the Supplementary
Material).

More specifically, fourteen parameters compose the set of parameters to be optimised (i.e., the genotype). Parameter
ITH (µA/cm2) relates to cerebellar input currents to the thalamus, which are linked to sensorimotor inputs [47].
Parameters IGPe (µA/cm2) and IGPi (µA/cm2) relate to currents at GPe and GPi, respectively, from all sources that
were not explicitly modelled. The next two parameters, gSTN_KCA (nS/cm2) and gGP _AHP (nS/cm2), refer to the
maximum slow potassium conductance yielding afterhyperpolarization (AHP) at the STN and the calcium-activated
potassium conductance at GPe and GPi, respectively. The sixth parameter, gsyn_CTX_STR (nS/cm2), modifies the
synaptic conductance from cortex (CTX) to striatum (STR). Finally, parameters seven to 14 map to the number of
neurons in each modelled region. All of the aforementioned parameters were chosen because they have a direct influence
on the firing rates of neurons within each region, which in turn affect the LFP [62]. Also, comparing marmoset with
rodent literature, there is very limited quantitative work on the anatomical and neurophysiological parameters of the
BG-T-C neuronal network.

In the DE, each individual from the population was a model M(G) that consisted of an adaptation of the model of
Kumaravelu et al. [40], in which the parameters of Table 1 were set to the values defined by genotype G. Each model
M(G) was simulated for tsim = 2000 milliseconds, and the spike trains from each neuron and LFPs from each virtual
electrode were recorded. The LFP recordings were applied to calculate the fitness function f(M) as follows.

Given a categorical set R containing NR brain regions, the mean power spectral density (PSD) of the LFP from the
electrode placed in region r ∈ R is denoted by Sr and defined in Equation 2, where [ωa, ωb] is the frequency interval of
interest and P̂r(ω) is the periodogram computed with the Welch’s method [73].

Sr(ωa, ωb) =

∫ ωb

ωa

P̂r(ω)dω (2)
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Table 1: Free parameters of the computational model, optimised by DE to fit the marmoset data.

ID Parameter Range Description

1 ITH [0.6, 1.8] Background currents at TH (µA/cm2)
2 IGPe [1.5, 4.5] Background currents at GPe (µA/cm2)
3 IGPi [1.5, 4.5] Background currents at GPi (µA/cm2)
4 ¯gSTN_KCa [2.5, 7.5] Ca2+–dependent AHP K+ conductance

at STN (mS/cm2)
5 gGP_AHP [5.0, 15.0] Ca2+–dependent AHP K+ conductance

at GPe and GPi (mS/cm2)
6 gsyn_ctx_str [0.8, 1.2] Synaptic modulation from cortex to

striatum (mS/cm2)
7 nGPe [10, 30] Number of GPe neurons
8 nGPi [10, 30] Number of GPi neurons
9 nTH [10, 30] Number of TH neurons
10 nStrD1 [10, 30] Number of StrD1 neurons
11 nStrD2 [10, 30] Number of StrD2 neurons
12 nCTX_RS [10, 30] Number of CTX_RS neurons
13 nCTX_FSI [10, 30] Number of CTX_FSI neurons
14 nSTN [10, 30] Number of STN neurons

According to the literature on the electrophysiology of PD [67,97], a noticeable abnormality is observed typically at the
centre of the beta frequency band of LFP recordings from the basal ganglia of PD individuals. This frequency band
corresponds approximately to the interval [13,30] Hz, although this range varies within human patients and animal
model species. For the formulation of the fitness function, let a coefficient yr be the summation of the beta-band
mean PSD plus the mean PSD of adjacent bands, composing the interval [8,50] Hz, normalised by the mean PSD of
all frequencies up to 50 Hz, as stated in Equation 3. This broader interval was defined to account for possible wider
spectrum modulations in adjacent bands.

yr =
Sr(8, 50)

Sr(0.5, 50)
(3)

The fitness function f(M) is defined in Equation 4, where yr(target) is the average value of Equation 3 calculated from
the preprocessed data of all marmosets of PD condition, and yr(M) is calculated considering the simulated LFP of a
computational model M . Notice that the healthy marmoset condition lacks readings from TH and STN regions (i.e., no
electrodes were implanted in these regions). In addition, the dataset includes three PD model animals. For this reason,
DE optimised parameters for mimicking the PD condition. Fitness values vary from 0, if simulated and marmoset data
LFP in all brain regions substantially differ, to NR, if they match.

f(M) = NR −
∑

r∈R
min

{
1,

∣∣∣∣
yr(M)− yr(target)

yr(target)

∣∣∣∣
}

(4)

Eight brain regions are simulated, thus NR = 8. PSD target values for the simulated regions StrD1 and StrD2 are drawn
from marmoset LFP PSD values for PUT. Simulated TH is tuned based on the average PSD from marmoset VL and
VPL, and simulated CtxRS and CTxFSI are tuned based on marmoset M1. Simulated GPe, GPi, and STN LFP PSDs
are matched to the respective marmoset LFP PSDs.

The DE initial population was set to 200 individuals, whose initial parameters were drawn from a random uniform
distribution in the interval [0, 1]. Parameters were normalised to the ranges listed in Table 1 (i.e., the actual values set in
the computational model) only at simulation time. In each DE generation, a set of 20 individuals were selected through
tournaments of size two. Pairs of those selected individuals were randomly chosen, in order to generate two offspring
by applying uniform crossover. This led to a child population of size 20. The mutation rate was set to 10% and followed
a normal distribution N (µ = 0.0, σ = 0.3). The DE implements generational replacement with elitism, with only one
elite individual of the parent population being kept, resulting in a population size of 21 individuals. Each model M(Gk),
where k ∈ {1, . . . , NM}, was evolved for Ngen = 60 generations. We have performed 150 evolutionary runs, so that
the highest fitness individual of each run was selected to compose the set G = {G1, . . . , GNM

} of evolved genotypes.
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2.4 Clustering

Upon completion of parameter optimisation by the DE, we investigated whether high fitness individuals had different
genotypes. The rationale is that different parameter sets, even if biologically plausible, could lead to incompatible
healthy and PD network dynamics [4]. Considering that the fitness function was computed based on LFP values of the
PD condition only, and that the healthy condition was obtained by changing the same parameters listed by Kumaravelu
et al. [40], there was no guarantee that the genotypes evolved would lead necessarily to models that resemble the
healthy and PD conditions of the animal models. For this reason, we performed a clustering analysis [102] to the set
G of evolved genotypes, which we could then evaluate separately based on their spectral densities. This validation
step is based on the fact that PD individuals present a peak at the beta band (13-30 Hz) when compared to healthy
individuals [97].

Let C = {C1, . . . , Cnc
} be a set of clusters, with Cp = {G1, . . . , Gnp

}, where nc is the number of clusters, p ∈
{1, . . . , np}, and np is the total number of genotypes within cluster p. Considering sp(Gk) to be the sample silhouette
[77] of genotype Gk with respect to Cp ∈ C, consider sp(Gk) ≥ sp(Gk+1) for all k ∈ [1, P ], it is, each cluster is
ordered from highest to lowest silhouette. In exploratory experiments (not shown), we investigated different clustering
paradigms, namely K-means, density-based spatial clustering of applications with noise (DBSCAN), and agglomerative
clustering. Based on these experiments, we opted for the K-means algorithm with two centroids (i.e., p = 2), because
this configuration led to the highest mean silhouette score. Hence, the K-means algorithm was fed with all the individuals
with the highest fitness per evolutionary run (i.e., set G), and the euclidean distances for the algorithm were computed
on the 14 normalised parameters of the genotype.

2.5 Computational model spike and LFP analysis

The different clusters of genotypes were compared with respect to their parameter values, spike firing rates and LFP
power spectra. For each cluster, the 50 highest fitness genotypes were chosen for the following analyses. Spectral
analysis was performed by simulating Cp[1, . . . , 50], for tsim = 2000 milliseconds, in both healthy and PD conditions.
Thus, for each condition, 50 simulated LFP recordings were analysed per cluster for each condition. Since we simulated
the same individuals (i.e., sets of parameters), with the same seeds for generation of random numbers, in each of the
conditions (healthy and PD), the samples across these conditions were considered to be dependent. The PSDs were
computed and evaluated with respect to the mean of the density spectrum per cluster, and the average power at the beta
band.

For PSD analyses on the LFP of either the animal and computational models, to highlight the presence of a peak in the
beta band in the PD condition, a ratio R was defined as in Equation 5, where P̂PD

r (ω) and P̂H
r (ω) are the mean spectral

power across the PD and healthy models, respectively, for frequency ω. A lower threshold value ε was defined because,
for denominators too close to zero, the ratio may lead to high values that actually has little meaning for interpretation.
For the analyses with the animal models, ε was defined as the median power across the mean spectrum of the healthy
condition. For the computational models, it was set to the percentile 80 of the healthy spectrum.

R(ω) =

{
P̂PD

r (ω)

P̂H
r (ω)

, P̂H
r (ω) > ε

0 , otherwise
(5)

Regarding spike dynamics, the models within each cluster were simulated for tsim = 2000 milliseconds with time step
size dt = 0.10 milliseconds, always with the same seed for random number generation, and the firing frequency of all
neurons was calculated in 50 time bins, each corresponding to 20 milliseconds.

2.6 Computational model validation

Considering that different currents, conductances, and numbers of neurons may influence the firing rate in each simulated
brain region, which in turn modulates the LFP power spectra, one may conclude that even if there are different clusters,
their neural dynamics are comparable because both clusters are formed by high fitness individuals. However, even if
our computational model was optimised to replicate the LFP power spectra from marmoset animal models of PD, it
should also mimic the power spectra from healthy marmosets (by changing selected conductances, see Section 2.1). In
other words, if the computational model accurately captures the physiological phenomena responsible for the different
beta-band centred LFP power spectra from PD marmoset monkeys, it should also replicate the healthy spectra (a
scenario in which it was not evolved).

Therefore, we first confirmed that our marmoset animal model of PD presented frequency spectra in accordance with
previous works, following Section 2.2. Then, we investigated whether the computational model would also capture this
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phenomena. For that, for each genotype cluster found (Section 2.4), we compared the LFP power spectra from the
evolved PD computational model with that from the healthy model. This was performed by modifying a predefined set
of conductances in the simulation (Section 2.1). To highlight the differences, we first analysed the ratios between the
mean PSD of the PD and healthy simulated individuals from each cluster.

During evolution, fitness is given by LFP PSD in the vicinity of the beta band calculated in the whole tsim = 2000ms
sequence, hence it is possible that the same spectra relate to different LFP rhythms over shorter time scales. Thus,
different neuronal spiking dynamics may lead to similar LFP dynamics over time. Moreover, spikes from single neurons
are noisy and vary considerably over time and over repeated simulations. With large recordings, joint neuronal averages
over time may hinder comprehension of neural population dynamics. Finally, one of the advantages of computational
models such as the one used here is the direct access of each neuron state at any given time, but it is not trivial to
interpret the dynamics of large populations of neurons over time. To clarify these issues, we studied low-dimensional
neuronal trajectories for both healthy and PD computational model conditions [14].

To compute the neuronal trajectories, we first calculated the firing frequencies for all neurons from each simulated
model in a particular cluster and condition (i.e., healthy and PD), based on the mean firing rates (MFR) taken from
bins of size 50 ms. Since the number of neurons within each region varies from 10 to 30 (see Table 1), and there are
eight regions considered for the computational model, this procedure generates time series with high dimensionality,
ranging from 80 to 240, which would be difficult to visualise and analyse. To reduce the dimensionality, we employed
principal component analysis (PCA) [105], that is, we analysed neural trajectories by projecting high-dimensional
neural population activity in a 3D space using PCA of the spike MFR time series.

However, what if, instead of clearly occupying different regions in the state space, neuronal responses from the same
conditions result in similar paths in the reduced dimensional space? To address this hypothesis and to compare PCA
trajectories, we used Dynamic Time Warping (DTW) with Euclidean distance [57]. DTW finds the optimum non-linear
alignment between two time series, hence it can estimate whether neuronal trajectories share a similar path, regardless
of initial conditions. In the analysis performed, we employed the fastdtw Python package, which implements the method
proposed by Salvador and Chan [81]. Each pair of three-dimensional time series, computed from the MFR signals and
dimensionally reduced with PCA, was fed to the algorithm, which provided, as output, a scalar proportional to the
dissimilarity between the two time series being compared.

More specifically, we compared the similarity of all possible pairs of neural trajectories considering all individuals
within the clusters (healthy and PD dynamics). We compared all pairs of trajectories generated by individuals within
the same condition (healthy or PD), which gave a measurement of how different the healthy or PD individuals are
compared to each other (i.e., within-group comparison), and we compared pairs of trajectories between healthy and PD
conditions (i.e., between-groups comparison).

Finally, one of the hallmarks of PD is the anomalous widespread synchronisation in the BG-T-C network. To validate
our model in that aspect, we calculated the magnitude-squared coherence between nuclei and intranucleus. Based on
a similar analysis performed in healthy and PD marmosets reported in Santana et al. [84], we expect a widespread
increase in this metric. The magnitude-squared coherence was calculated from the spike trains of neurons of each
nucleus using Welch’s method with Hanning windowing without overlap and with spectral resolution of 1 Hz. The
average was taken as recommended by Bendat and Piersol [5]: the squared value of the average of the cross spectra
divided by the product of the mean values of the auto spectra of each nucleus.

The value of the magnitude-squared coherence between brain regions rA and rB , defined as C(rA, rB), was computed
as in Equation 6, where NA is the number of neurons in region rA, and NB is the number of neurons in region rB , and
S(rmx , r

n
y ) is the cross spectrum between the spike trains from the m-th neuron from region rx and the n-th neuron

from region ry .

C(rA, rB) =

[
1

NA·NB

NA∑
i=1

NB∑
j=1

S(riA, r
j
B)

]2

[
1

NA

NA∑
i=1

S(riA, r
i
A)

]
·
[

1
NB

NB∑
i=1

S(riB , r
i
B)

] (6)

Then, we considered the peak of the coherence in the 7-30 Hz band to highlight PD-related effects [84]. The significance
level for coherence was defined as 1− (1− α)1/(L−1) [76], with α = 0.95 and L = 100, because the windowing was
done with 100 segments and we adopted as 95% the significance level. As the computational models have eight nuclei,
an 8× 8 matrix was constructed, representing the coherence between each pairs of nuclei. The median of this matrix
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was considered as the global coupling metric between nuclei in each simulation, because it is less sensitive to outliers
than the mean.

3 Results

Based on two-seconds-long segments, computed according to the data preprocessing steps described in Section 2.2,
(see Figure 3a for a sample), the PSDs of LFPs from healthy and PD marmosets were computed (see Figure 3b for the
average spectrum). In all regions of the PD subjects, an increased PSD magnitude from 5 Hz to 25 Hz was observed,
which is in accordance with the reported electrophysiological signatures of PD [97].
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Figure 3: Animal data from marmoset monkeys, collected through electrodes implanted to each region of the BG-T-C
circuit in a previous study [84], and made available for our research. (a) Example of a two-second time-window of
the preprocessed LFP of a PD-induced (i.e., 6-OHDA lesioned) marmoset. For a clearer visualisation, signals were
bandpass filtered to the [8,50] Hz interval, only for this panel. (b) Top two panels show the mean power density
spectra (PSD) over all segments for the healthy (blue) and PD (red) marmosets (data for each individual marmoset
is included as supplementary material). For thalamic regions (i.e., VL and VPL) and STN, only 6-OHDA lesioned
hemispheres are represented, since these regions were not recorded in the healthy marmoset. PSDs were normalised by
the maximum PSD value for each time-window. The bottom panel shows the ratio (R) between PD and healthy PSD for
each frequency (see Equation 5). To improve visualisation, ε is set to the median of the healthy spectrum. a.u.: arbitrary
units.

From the estimated LFP power spectra from PD marmosets, the target LFP power spectra values for the computational
marmoset model were computed as in Equation 3. The results, presented in Table 2, were fed to the DE fitness function
(Equation 4).
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Table 2: Target values obtained from the marmoset LFP data from the animal model, PD condition.

yStrD1 yStrD2 yTH yGPi yGPe yCtxRS yCtxFSI ySTN

0.44 0.44 0.38 0.46 0.42 0.39 0.39 0.37

3.1 Evolutionary algorithm successfully found high fitness genotypes

After running the DE NM = 150 times, the resulting set of high fitness individuals G (i.e., the highest fitness individual
in the population at the end of each of the 60 generations at each evolutionary run) was analysed. The fitness values of
all individuals were recorded at all generations of each evolution.

Figure 4 reports the best and mean individual fitness across generations, and the distribution of those values at the end
of the evolutionary runs. Concretely, the best individual in a given generation is the set of parameters that led to the
highest fitness value according to Equation 4. The mean individual fitness across generations refers to the average
fitness of all individuals achieved at each generation.

Regarding the best individual fitness curve, results show that, at every evolutionary run, the initial population contained
at least one individual with fitness value close to 6, and that value improved by approximately 1 at the end of evolution
(the maximum fitness value possible is 8.0, see Equation 4). Considering the whole population, the initial average
fitness was low (approximately 4.5), reaching a plateau close to 5.75 as evolution progressed. The mean fitness across
individuals and the best individuals fitness have marginal improvement after generation 40, thus the DE was stopped at
Ngen = 60 generations.
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Figure 4: Fitness values f(M) (Equation 4) per generation of the evolutionary algorithm (box-plots regarding the
k = 150 runs at each generation). The genotypes (i.e., parameter sets for the free parameters elicited in Table 1) were
meant to maximise f , which, by definition, would be upper bounded at 8.0. The upper panel refers to the highest fitness
individuals at each evolutionary run, and the lower panel, to the mean fitness values of all individuals. (a) Box-plots of
the best (upper panel) and mean (lower panel) fitness values at each generation. Outliers were represented by black
diamonds. (b) Probability distribution of the best (upper panel) and mean (lower panel) fitness.
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For all G ∈ G, we looked at the distribution of parameter values for clusters C1 and C2, represented in Figure 5. Both
clusters present similar distributions for most of the parameters, either with small variance (e.g., the numbers of neurons
at the cortex populations) or more uniform distributions with high variance (e.g., the number of neurons at the striatum).
Other parameters, such as ITH and IGPe, had a clear mean peak and reduced variance in the distribution for C2, but a
large variance for C1.
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Figure 5: Violin plots showing the distribution of each free parameter (see Table 1) across the best individuals found
at each run of the evolutionary algorithm employed for optimising this set of parameters (i.e., genotype). Although
scales vary across parameters (see Table 1), all parameters were linearly scaled (i.e., normalised) to the interval [0, 1] at
evolution time. For example, for parameters 7-14 (i.e., the numbers of neurons), a value of zero corresponds to the
lower bound of the parameter interval, that is, 10 neurons. a.u.: arbitrary units.

3.2 High fitness genotypes form two clusters

A set of 150 high fitness individuals was generated by repeatedly running the evolutionary algorithm with different
seeds. It is possible that high fitness individuals do not have a unique parameter distribution, and diverse parameter
settings could lead to high fitness values. To investigate this issue, we performed a clustering analysis based on the
evolved individuals.

Following the methods from Section 2.4, the K-means algorithm was employed to determine p = 2 clusters. Figure 6
provides a radar plot representation of genotypes learnt for each cluster, and the correspondence between the mean
value of each parameter and those of the rat computational model by Kumaravelu et al. [40].

Figure 6a shows 4 representative genotypes cp[1, . . . , 4], chosen based on the highest silhouettes with respect to each
cluster. For comparison, the parameters from the rat model [40] are superposed with the mean values between all
individuals from both clusters in Figure 6b. This representation highlights substantial differences between clusters. For
instance, the IGPe is at its maximum value in C2, while it shows a much lower value for C1. On the other hand, the
number of neurons at the GPe is higher in C1 than in C2.

3.3 Healthy and PD spectral signatures from computational model resembles those from marmoset monkeys

Regarding the spectral analyses of simulated sessions of the computational model, we employed the same procedure for
normalisation as we did for the spectra of the animal model (see Figure 3), that is, we normalised each data segment by
the maximum value. The sample signals of Figure 7a, shown as an example, were bandpass-filtered to the same range
as in Figure 3a to the interval [8-50] Hz. The mean spectral power and the ratio R are shown for the healthy and PD
conditions for each cluster in Figure 7b (see Equation 5).

In C1, results show higher magnitudes of most frequencies up to 50 Hz for PD models, a fact that is less visible for C2.
The mean PSD ratio from genotypes G ∈ C2 is close to 1 regardless of frequency range and brain region, whereas
genotypes G ∈ C1 show prominent peaks in beta frequencies. A detailed analysis of box-plots (Figure 7c) confirm
the significant differences in the beta band for cluster C1 only. Considering the animal spectra (Figure 3b), in which
we observe a significant difference in the beta band of the LFP, results displayed in Figure 7c confirm that spectral
signatures from genotypes in C1 resembles those from marmoset monkeys. Notice that the LFP mean PSDs from the
computational model (Figure 7b) has a different shape compared to that from the animal LFP (Figure 3b), but the
spectral signature is similar in both healthy and PD conditions and resemble those from marmoset monkeys. This can
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Figure 6: Radar representations of the genotypes (i.e., sets of parameters, see Table 1) from individuals at each
cluster obtained by applying the K-means algorithm, applying these parameters as features for the clustering technique.
Although scales vary across parameters (see Table 1), all parameters were linearly scaled (i.e., normalised) to the interval
[0, 1] at evolution time. For example, for parameters 7-14 (i.e., the numbers of neurons), a value of zero corresponds to
the lower bound of the parameter interval, that is, 10 neurons. The first row represents cluster C1 and the second row
cluster C2. (a) Four individuals with the highest silhouettes with respect to each cluster. Data at the left refers to the
fitness f computed as in Equation 4. (b) Comparison between the parameters of the rat model and the mean values
from each cluster. As in Figure 5, parameter values were scaled to the ranges shown in Table 1, except parameter 4
( ¯gSTN_KCa) of the rat model, whose original value is 1.0 mS/cm2.

be explained by the relatively small number of neurons simulated in the computational model [62]. Therefore, for the
forthcoming analyses, only G ∈ C1 will be considered.

3.4 Spike activity from healthy models are significantly different from those of PD models

Regarding spike activity, the marmosets’ dataset was not provided with a representative set of spike trains from all
regions of the circuit, hence they were not a suitable ground-truth for validating the activity from the computational
model. For this reason, the spikes synthesised by the computational model were analysed based on evidence from the
literature [69].

First, we assessed the differences in mean firing rates (MFR) between the healthy and PD conditions for the marmoset-
based computational models in cluster C1. Figure 8a shows the simulated MFR in each brain region for tsim = 2000
ms, considering the 50 models in C1 with the highest silhouette with respect to the cluster. Results indicate a counter-
intuitive relationship between the MFR and the LFP power spectra observed in Figure 7c. Consider, for instance, the
GPe and GPi. Both regions show a higher beta-band LFP magnitude in PD condition, but while GPi MFR in PD
condition is higher than that from healthy condition, GPe MFR is the opposite.

From Figure 8b and Figure 8c, we observe that neuronal trajectories are intertwined, with no clear difference in the
reduced-dimension state space. This is justified by the relatively mild, though statistically significant, differences in
MFR (Figure 8a). As described in Section 2.5, neuronal trajectories were compared with DTW in three scenarios:
healthy vs healthy models (HxH), PD vs PD models (PDxPD), and healthy vs PD models (HxPD). As len(C1) = 53,
the number of pairs from which the DTW was computed was len(DTWC1) =

(
53
2

)
= 1378 for each scenario. The

results from this analysis are shown in Figure 8d, in which the scalar outputs of the DTW algorithm are considered for
all possible pairs within groups, for the HxH and PDxPD comparisons, or between groups, for the HxPD comparisons.
Since two trajectories generated by the same individual were not compared on any of the analyses, we have computed
statistical significance using unpaired tests, differently from the remaining analyses in the paper.

Trajectories from the HxH scenario were statistically more similar than trajectories from the other conditions. Thus, the
intertwined trajectories observed in PCA (Figure 8b and Figure 8c) in fact relate to significant differences between
healthy and PD neuronal dynamics. Interestingly, PDxPD trajectories differ more than those from HxH, which can be
interpreted as a less homogeneous, regarding neuronal dynamics, genotype to phenotype mapping.
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Figure 7: Extracellular activity simulated by the computational models resulting from the parameters optimised (i.e.,
genotypes computed with the evolutionary algorithm), modelled as local field potentials (LFP) at the centre of the
regions involved in the BG-T-C circuit. The clusters C1 and C2 were computed by applying the K-means technique
directly to the genotypes, hence were not influenced by the neurophysiological activity simulated. (a) Example of
simulated LFPs for the highest silhouette evolved individual from cluster C1, PD condition. For a clearer visualisation,
signals were bandpass filtered to the [8,50] Hz interval, only for this panel. Compare with Figure 3a. (b) Mean PSD
for healthy (blue) and PD (red) conditions from the 50 models with the highest silhouette of each cluster, normalised
by maximum PSD value for each time-window, followed by the ratio R between PD and healthy PSD for each
frequency (see Equation 5). To improve visualisation, ε is set to the percentile 80 of the healthy spectrum. (c) Box-plot
regarding the beta band (13-30 Hz) of the LFP from the 50 models with the highest silhouette of clusters 1 (left) and 2
(right). Outliers were represented by black diamonds. Unpaired t-tests were applied to evaluate statistical significance
against the null hypothesis that H and PD values are drawn from the same underlying distribution (p-value notation:
p > 0.05 → ns; p ∈ [0.01, 0.05] → *; p ∈ [0.01, 0.001] → **; p ∈ [0.001, 0.0001] → ***; p < 0.0001 → ****).
a.u.: arbitrary units.

3.5 Healthy and PD spike coherence from the computational model resembles that from marmoset monkeys

To conclude our model validation, we selected the top five genotypes with highest silhouette from cluster C1 and
calculated the magnitude-squared coherence (MSC) within and between each simulated brain region (Section 3.5)
for healthy and PD conditions. Results revealed that computational models ran in the healthy condition provided a
lower peak MSC in the 13-30 Hz band when compared to that from the PD condition (Figure 9a), with two important
observations: genotype I has higher peak MSC when compared to the other 4 genotypes in the healthy condition,
and genotypes II and III have a lower widespread peak MSC when in the PD condition compared to that from other
genotypes in the same condition. Statistical analysis confirmed the significant differences in all five genotypes when
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Figure 8: Firing rates and dynamics regarding the spike activity simulated with the computational models derived by
the parameter sets from cluster C1. Simulations were ran for tsim = 2000ms. (a) Mean firing rates for each region
in cluster (means and standard deviations). (b) Projection of three principal components of the most representative
individual (i.e., highest silhouette) of cluster C1, where Z1, Z2 and Z3 are the principal components with the highest
variance. (c) Representation of those components using contour lines. (d) Box-plot of the DTW between the dynamics
of one simulation of all genotypes belonging to cluster C1. All simulations were performed with the same seed for
the generation of random numbers. Higher DTW values mean that the pairs of trajectories being compared are less
similar to each other. Unpaired t-tests were applied to evaluate statistical significance in (a), against the null hypothesis
that H and PD MFR values at each region are drawn from the same underlying distribution, and in (d), against the null
hypothesis that a given pair of DTW vectors is drawn from the same distribution as each of the others (p-value notation:
p > 0.05→ ns; p ∈ [0.01, 0.05]→ *; p ∈ [0.001, 0.0001]→ ***; p < 0.0001→ ****). a.u.: arbitrary units.

comparing the global coupling metric (see Section 2.6 and Equation 6) between healthy and PD conditions (Figure 9b),
that is, PD models present a higher widespread coherence in the 13-30 Hz band than that observed in healthy models.

4 Discussion

Marmoset monkeys are prominent in neuroscience research [15, 36, 51, 53]. Although there are anatomical and
physiological differences between BG-T-C circuit in rodents and primates, neurophysiological data from rodents are far
more available than from primates. Considering that the structure of the BG-T-C circuit presents similar characteristics
among all vertebrates [38], we assumed that the rat model presented by Kumaravelu et al. [40] was a suitable starting
point to build a computational model of those structures in primates. The core hypothesis was that, by keeping the same
brain regions and connectivity patterns of the rat model and modifying a set of parameters, the computational model
could reproduce neural dynamics of healthy and PD marmoset conditions.

Our dataset comprised simultaneous LFP recordings from regions of the BG-T-C network and power density spectra
(PSD) analysis revealed significantly higher 13 to 30 Hz LFP PSD magnitudes for PD marmosets on all regions. This
result might be interpreted cautiously, given that one healthy marmoset is being compared to three PD marmosets. Also,
results refer to a broad range of frequencies, hence different interval choices may influence the analysis. Nonetheless,
one would expect a widespread significant increase in LFP power centred in (but not limited to) the beta band in PD
affected brains [84, 97].

Regarding the MFR results from the computational model (Figure 8a), there are significant differences between the
healthy and PD conditions. Single-neuron firing rates vary considerably depending on animal species, whether the
animal is fully awaken, engaged in behavioural tasks, or anaesthetised [27, 49, 101]). Data from human subjects,
even though scarce, are in line with animal results [17]. Moreover, there is a great neuronal diversity within the
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Figure 9: Coherence analyses computed for the spike activity of the five parameter sets, optimised through the
evolutionary algorithm, with the highest silhouettes with respect to cluster C1. These parameter sets could were
employed to derive the healthy and PD computational models employed to these analyses. (a) Peak magnitude-squared
coherence (MSC) in the 13-30 Hz band within and between each simulated brain region for the top five genotypes with
highest silhouette from cluster C1. Only connections whose peak MSC values are above significance level are shown.
(b) Global coupling metric (median value of the MSC matrix) between brain regions for healthy and PD conditions (see
Section 2.6 and Equation 6). (p–value notation: p < 0.0001→ ****)

BG-T-C network, both in terms of neuronal physiology and connectivity, which have been shown to have a non-trivial
relationship with field potentials [6, 8, 30, 87]. Our model partially takes into account this diversity, nevertheless the
reported MFR are in agreement with the literature: comparing PD with H conditions, a higher MFR in GPi, STN, and
Str, and a lower MFR in GPe, TH, and CTX.

The data-driven modelling strategy adopted in this paper is consolidated in computational neuroscience literature [60],
but often leads to multiple models fitting a particular data set [4]. Therefore, model optimisation should be followed
by a model selection phase. We clustered high fitness solutions with respect to evolved parameters and obtained two
clusters, and found two clear sets of parameters that reproduce the increased beta-band oscillations observed in PD
marmosets [84]. However, when perturbing the model to shift from PD to healthy dynamics, only one of the clusters
fitted the marmoset data. Notably, we evolved solutions based on LFP data but computational model firing rates
resemble those reported in previous works [17, 43, 101]. Nevertheless, as data becomes available, future works should
explore different fitness functions based on single-neuron activities or other features of LFP. Lastly, in this context, our
simulated neurons are formed by a single cylindrical compartment, thus future works should consider using neurons
with more and more complex compartments and connections, possibly including multiple dendritic branches and active
ionic channels. This would lead to more realistic simulated LFP signals [62], but at the expense of heavier computing
resources.

One of the great challenges in neuroscience is to link the activity of large neural populations to motor and cognitive
behaviours. One strategy is to study the intrinsic high-dimensional dynamics of neural populations from its low-
dimensional dynamics given by time-varying trajectories [14, 95], thus emphasising circuit over single-neuron function.
For example, Humphries et al. [33] showed that neural low-dimensional dynamics given by PCA of neuronal activity
can explain Aplysia rhythmic movement control and propose that only the low-dimensional dynamics are consistent
within and between nervous systems. Also, the shape and amplitude of neural trajectories can explain different
behavioural outcomes [25]. Combining PCA and DTW, we found that neural trajectories from high-fitness models
are more similar in healthy conditions than in PD conditions. This is in line with results from Russo et al. [80], who
demonstrated, using computer simulations, later confirmed by data from the supplementary motor area in monkeys, that
low trajectory divergence is essential in neural circuits involved in action control. PCA is a simple, established method
for dimensionality reduction, but other computational tools tailored to neuronal data, such as Gaussian-Process Factor
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Analysis (GPFA) [106] and jPCA [13], should be considered in further analyses. Another possible approach is to use
more advanced machine learning methods to identify PD-related features from neural data, likewise Ranieri et al. [72],
who employed a deep learning framework to unveil PD features from marmoset data.

Finally, as part of our model validation, we assessed functional coupling within and between simulated brain regions
by means of coherence between spike trains. In contrast to structural coupling, characterised by physical neuronal
connections, functional connectivity is an emergent phenomenon commonly linked to synchronisation in neural rhythms
in diverse spatiotemporal scales and is the basis of neural communication and cognitive processing [11, 20, 41, 90].
Several neural disorders, including PD, present a disruption in functional connectivity [26, 48, 100]. In particular,
Santana et al. [84] showed that 6-OHDA marmoset models of PD have a widespread coherence peak in the beta band
when compared to healthy individuals. Our computational model is in line with this result, which is relevant not
only as further evidence of its biological plausibility, but also because one of the established therapies to alleviate PD
motor symptoms is the use of deep brain stimulation (DBS) [67]. Thus, we believe that the work presented here can
be used to test hypotheses that employ DBS. For instance, Romano et al. [75] performed a comprehensive analysis
of frequency-dependent effects of DBS on the same model that we used here, tuned for rodent data [40], and found
that neural oscillatory modulations were similar to those observed in electrical brain and spinal cord stimulation of
primates [84, 103].

Certain simplifications inherent to our approach may be worth a mention, as they may serve as inspiration for
improvements in future research. In our work, LFP generation followed the method described in Parasuram et al. [62],
and implemented in NetPyNE, which does not consider the influence of sinks. Despite being a simplification, the
method has been able to reproduce features of real LFP data, and is computationally feasible. In this approach, LFP
peaks and valleys are directly related to transmembrane ionic currents from each neuronal source, which in turn relate to
neuronal firing rates, and electrode position. As we have assigned coordinates to the simulated electrodes corresponding
to the centre of each simulated region, we can assume that simulated LFP dynamics is due to altered spiking activity in
multiple neuronal sources from different brain regions.

In our work, likewise Kumaravelu et al. [40] and previous seminal BG-T-C modelling works such as Humphries et
al. [31], and van Albada and Robinson [101], we did not model any structural synaptic plasticity mechanisms. Our
synapses were modelled as bi-exponential and alpha synapses, including transmission delays. Nevertheless, as model
dynamics unfold, functional plasticity mechanisms may take place in the sense that the closed-loop, recursive network
architecture could lead to single neurons and brain regions whose electrical activity are sensitive to past network states.
In fact, the depletion of dopamine, one of the hallmarks of PD, affects structural and functional plasticity. Our model
considers the loss of dopaminergic neurons (see Section 2.1, for a complete description), thus we believe that the model
is suited for the investigation of functional plasticity phenomena. This analysis is beyond the scope of our work, but the
reader can relate the change in oscillatory neural dynamics we described to different functional states. For instance,
Humphries et al. [31] show that action selection in the BG is closely linked to oscillatory activity. In future works, we
plan to use this model in a neurorobotics context, in which sensory inputs and motor responses can be used to highlight
functional plasticity mechanisms differences between healthy and PD states.

5 Conclusion

Computational models are invaluable tools for advancing our knowledge on the neural dynamics of our brain, either
under healthy conditions or with neurological disorders. In this work, we created the first computational model of
PD based on data from Marmoset monkeys both in healthy and parkinsonian conditions. Our data-driven approach
used simultaneous, multisite electrophysiological recordings from healthy and 6-OHDA+AMPT marmoset models of
PD. Even though the physiopathology underlying PD share similarities across vertebrate species, there are important,
species-specific differences in the anatomy and neural dynamics of the BG-T-C circuit. Hence, the design of a primate
computational model of PD is of paramount importance.

Electrophysiological datasets from animal models often do not include comprehensive biophysical data such as single-
neuron membrane conductances and neuronal cell densities. These parameters are central for building a biophysical
computational model. Thus, to address this gap, we implemented a DE to search the multidimensional model parameter
space for solutions that could reproduce features of the animal LFP recordings. Our model was based on a well
known rat model of PD [40]. The main novelty aspects of our model are: 1) we use a marmoset monkey BG-T-C
electrophysiological database; 2) we added LFP simulations to the model, in addition to spike dynamics; and 3) we
developed a DE-based optimisation to search for unknown parameters. With this framework, we were able to reproduce
several of the previously reported PD electrophysiological biomarkers observed and recorded from the Marmoset
monkeys.
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Our computational model present beta-band LFP power spectra differences between the healthy and the PD conditions,
which Wang et al. [104] also found in human patients with dystonia. This is in line with a body of literature that
shows that beta-band LFP modulations are not a PD-specific biomarker (see Poewe et al. [67] and references therein).
Although our model is focused on PD, the electrophysiological features we use are known to be related to other neural
disorders and thus should not be considered as exclusive to PD. Also, based on the study of Wang et al. [104], we
suggest as future work to conduct the phase amplitude coupling in the STN experiment in our computational model.

Most PD computational models do not consider brain-body-environment interactions. Embodied cognitive science
studies have provided solid evidence that neural activity is shaped by such interactions [3, 19, 56, 66]. In PD and
other neural disorders, body-environment interactions influences motor control [85, 91], but its impact on neural
dynamics remains unclear. Moreover, the BG-T-C neuronal network is clearly related to action selection and decision
making [31, 52, 94]. Therefore, we believe that our marmoset-based computational model associated with robotics
may offer an alternative approach to elucidate the mechanisms underlying brain-body-environment interactions in
PD [24, 39, 68, 70]. A possible approach would be to employ this computational model in a sensorimotor loop based on
visual inputs from video cameras and motor outputs to actuators such as the robot’s motors. In this scenario, computer
vision algorithms would transform the images into stimuli for the computational model, so that the resulting currents
and action potentials would be used to generate perturbations that would govern the behaviours of the actuators. The
resulting framework could become a new tool for studying the underlying mechanisms of PD and the effects of different
interventions regarding the simulated circuit.
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CHAPTER

5
APPLICATION SCENARIO

In this chapter, a robot simulation is presented, which integrates the activity recognition
framework with heuristics-based and neurorobotics approaches for behaviour selection. The
activity recognition module, presented in Chapter 2 and Chapter 3, was employed to feed a
behaviour selection mechanism of a simulated robot, which resembles the LARa robot (RANIERI
et al., 2018), in a home environment. A mechanism based on simple heuristics was implemented,
and compared to a more sophisticated architecture based on the neurophysiological advances
presented in Chapter 4 (i.e., the neurorobotics approach). This chapter presents the third research
question of section 1.1. A paper on these developments was written, in which the robot simulation
and the strategies for behaviour selection are presented in detail, along with the results. This
paper, attached to the following pages, was uploaded to arXiv.
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ABSTRACT

Behaviour selection has been an active research topic for robotics, in particular in the field of
human-robot interaction. For a robot to interact effectively and autonomously with humans, the
coupling between techniques for human activity recognition, based on sensing information, and robot
behaviour selection, based on decision-making mechanisms, is of paramount importance. However,
most approaches to date consist of deterministic associations between the recognised activities
and the robot behaviours, neglecting the uncertainty inherent to sequential predictions in real-time
applications. In this paper, we address this gap by presenting a neurorobotics approach based on
computational models that resemble neurophysiological aspects of living beings. This neurorobotics
approach was compared to a non-bioinspired, heuristics-based approach. To evaluate both approaches,
a robot simulation is developed, in which a mobile robot has to accomplish tasks according to the
activity being performed by the inhabitant of an intelligent home. The outcomes of each approach
were evaluated according to the number of correct outcomes provided by the robot. Results revealed
that the neurorobotics approach is advantageous, especially considering the computational models
based on more complex animals.

Keywords Behaviour selection · Human activity recognition · Robot simulation · Neurorobotics · Bioinspired
computational model

1 Introduction

Truly autonomous behaviour is still not the norm for robots designed to interact socially with humans [6]. In general,
behaviour selection has been an active research topic for robotics in general, and human-robot interaction in particular
[19]. In this context, the need for a real-time understanding of human actions is of paramount importance for the robotic
agent to behave proactively and effectively. Such a requirement could be achieved with techniques for human activity
recognition [32].

When dealing with complex modalities (e.g., videos or data from inertial units), activity recognition approaches often
rely on machine learning. For instance, video-based activity recognition have been approached by architectures based
on convolutional and recurrent neural networks [15, 29]. For inertial data, similar architectures have been proposed,
processing either raw data [35, 10] or descriptors obtained through feature extraction methods [47, 1]. To provide a

ar
X

iv
:2

10
7.

12
54

0v
1 

 [
cs

.R
O

] 
 2

7 
Ju

l 2
02

1

107



A PREPRINT - JULY 28, 2021

wider range of possibilities, robots may act symbiotically with other pervasive devices, such as wearable technologies or
ambient sensors in intelligent environments, which may provide additional capabilities for sensing and acting based on
application-specific components [2]. When synchronised data from different sensors are available, activity recognition
techniques may rely on multiple sensor modalities to provide more accurate results, giving rise to techniques for
multimodal activity recognition [28, 17, 43].

Although human activity recognition has been a quite fertile field of research, few approaches have been developed to
link the outputs from those algorithms into actual response behaviours from a robot. Related works usually consist of
direct associations between the recognised activities and the response behaviours [11, 25, 44]. One of the possibilities
consist of combining computational neuroscience to the robotics scenarios, characterising the field of neurorobotics [51],
which may build upon different biological aspects that influence the behaviour of living beings.

Li et al. [24] provided a comprehensive survey on neurorobotics systems (NRS) and the different components that may
integrate them. According to the authors, a generalised framework can be depicted for most NRSs in the literature,
composed of a simulated brain, which is fed with sensory signals from a body and turns them into control signals for a
hierarchical controller, responsible for decoding these signals into control commands for the body, which actuates
and senses an external environment. Bioinspired strategies may be introduced to different aspects of the framework,
according to the required task of a particular study.

The basal ganglia, a group of subcortical nuclei present in the vertebrate’s brain, is known to have an important role
in action selection mechanisms, especially regarding striatal circuits [30]. The so-called direct and indirect pathways
are characterised by competitive or complementary functions that mediate the excitation of the motor system based
on inputs from the motivational system of an individual, deciding whether to ”go” or to ”stop” performing a certain
behaviour [4]. The potential roles of such a mechanism in robotic frameworks have also been evaluated, including
simulations in which bioinspired networks receiving different stimuli are expected to respond with different behaviours,
resulting in cooperative interactions that produce robot behaviours [3].

In this paper, we present a neurorobotics model which embeds computational models of the basal ganglia-thalamus-
cortex (BG-T-C) circuit [22, 40] to provide a decision-making mechanism for a robot - in this context, we may call
it a neurorobot. The neurorobotics approach has been proposed for enhancing the decision-making mechanism, as
suggested by related researches in neurorobotics [26, 33]. It consisted of simulating neurophysiological aspects within
a cognitive framework, in which different stimuli was introduced to certain brain structures within the circuit, according
to real-time outputs of the activity recognition module. The resulting spike trains from the neurorobotics model were
then converted to neural firing frequencies across brain regions, which would be further decoded using convolutional
neural networks, in order to infer the most suitable response behaviour for the robot.

The application scenario is a simulated smart home, in which an activity recognition model, presented in [41] for the
HWU-USP activities dataset [38], was employed in human-robot interaction tasks, using a mobile robot. In summary,
the robot needs to produce response behaviours according to the contextual information inferred by the user (i.e., the
recognised activity).

The neurorobotics approach, which is the central contribution of this work, was compared to a heuristics approach, in
which a deterministic behaviour selection mechanism was considered using simple heuristics that associate recognised
activities to robot behaviours. This neurorobotics approach embedded two computational models, one that resembled
neurophysiological data of rodents (i.e., the rat model), and one that resembled data from marmoset monkeys (i.e., the
primate model).

The different factors considered for this study were evaluated according to the relative number of correct outcomes of
the robot simulation. Considering the activity recognition framework, the results have confirmed that more accurate
classifiers for the activity recognition module led to a greater number of robot tasks successfully completed. Although
the performances of the heuristic and neurorobotics approaches varied according to the computational model embedded,
the study confirmed that the most complex neurorobotics model (i.e., the marmoset-based model of the BG-T-C circuit)
led to an increased performance in relation to the heuristic approaches when a more accurate activity recogniser was
considered (i.e., the video-based classifier).

The remainder of this paper is organised as follows. The brain structures considered for this neurorobotics approach and
the computational modelling adopted are presented in Section 2. In Section 3, are presented the general aspects of the
robotic system, and the integration between each of its modules. In Section 4, the neurorobotics approach is detailed. In
Section 5, the methods and implementations are depicted. The corresponding results are presented in Section 6 and
discussed in Section 7. Finally, the concluding remarks and directions for future research are provided in Section 8.
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2 The BG-T-C Circuit and Original Computational Models

In this section, we present the basic concepts on the brain structures present in the basal ganglia-thalamus-cortex
(BG-T-C) circuit, and the original computational modelling. The BG-T-C circuit, illustrated in Figure 1, is formed by
the motor cortex (M1), the thalamus (TH), and the basal ganglia (BG), the latter composed of a subset of structures:
the striatum (Str), the globus pallidus, divided into pars interna (GPi) and pars externa (GPe), the subthalamic nucleus
(STN), and the substantia nigra, divided into pars compacta (SNc) and pars reticulata (SNr).

In [31], is provided a discussion about the mechanisms of this circuit and presented models to describe it. The most
useful model to explain the connections within this circuit, especially those affected by PD, is the so-called classic
model, illustrated in Figure 1a.

Striatum

GPi GPe

SNc

STN

Motor cortex

dMSN iMSN

TH

(a) Classic model, as described by [31].

GPi GPe

StrD1

STNTH

CtxRS CtxFSI

IGPE
IGPI

ITH

StrD2

(b) Computational model, as designed by [22] for rodent
data, and adapted by [40] for primate data.

Figure 1: Schematic representations of the classic and computational models of the BG-T-C circuit. In the connections,
excitatory synapses are shown as blue arrows, and inhibitory synapses, as red squares.

The pathways start with an excitatory connection from the cortex to the striatum, which projects its output neurons,
named medium spiny neurons (MSN), to other structures inside the BG. In the direct pathway, the direct MSN (dMSN)
inhibits the GPi, which reduces its inhibition to the TH. Then, it excites the motor cortex. In the indirect pathway, the
indirect MSN (iMSN) inhibits the GPe, which reduces its inhibition to the STN, which excites the GPi. Thus, this
results on inhibition of the TH and absence of excitatory outputs to the motor cortex. In other words, the direct pathway
excites the cortex (i.e., positive feedback loop), while the indirect pathway inhibits it (i.e., negative feedback loop).

In [22], a computational model of the BG-C-T circuit, originaly developed to study the underlying mechanisms of
Parkinson’s Disease (PD), was proposed and implemented based on neural data from healthy and PD-induced (i.e.,
6-OHDA lesioned) rats [18]. Eight brain structures were modelled and connected based on a simplified version of the
classic model (see Figure 1b). In particular, the direct and indirect pathways were modelled separately representing the
MSN modulation by D1 and D2 dopamine receptors in the striatum (i.e., StrD1 and StrD2, respectively). The cortex
is represented by regular spiking (RS) excitatory neurons and fast spiking (FSI) inhibitory interneurons (i.e., CtxRS
and CtxFSI, respectively). A bias current was added in the TH, GPe, and GPi, accounting for the inputs not explicitly
modelled. This model was designed with the ability to shift from the simulation of healthy to the PD status, which is
done by altering certain conductances.

Although all mammals have a similar set of BG structures that are similarly connected with thalamic and cortical
structures, subtle differences between species may be found, with primates being more similar to humans than rodents
[27, 21, 7]. A data-driven approach was proposed in [40] to obtain a primate-based computational model of the BG-T-C
circuit and the mechanisms of PD. The resulting marmoset computational model was evaluated based on the differences
between healthy and PD individuals, with respect to the spectral signature of the brain activity [49], the dynamics of the
firing rates of neurons across brain regions [50], and the coherence between spike trains [14].

The implementation used in [40] built on a Python translation of the original computational model of [22], originally
made by [46] using the NetPyNE framework and the libraries from the NEURON simulator [8]. Based on the results
of the machine learning framework, a practical setup of either the rat or marmoset computational models was made
available. The adaptations performed in this work to the original computational models (see Subsection 4.1) were based
on the code made available by the authors. For all neurorobotics model evaluations, we considered both the rat and
primate computational models, always with the healthy state set on.
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(a) Heuristics approach: the predictions from the activity recognition module are fed directly to the mobile robot.
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(b) Neurorobotics approach: the predictions are used as stimuli for the embedded, bioinspired computational model of the BG-T-C
circuit, which simulates neural activity that is further interpreted by a CNN-based decoder, responsible for deciding the behaviour to
be performed by the robot. Both the bioinspired computational model and the CNN-based decoder compose the neurorobotics model
presented in this research.

Figure 2: Interaction between modules for the application scenario proposed.

3 Integrated System

The modules of the application scenario, and the interactions between them, are illustrated in Figure 2. In this scenario,
the human activities are inferred by a machine learning algorithm, and the supporting behaviours are performed by a
mobile robot placed in a simulated environment, composing an ambient assisted living (AAL) application [5].

The general information flow was: given the multimodal data provided by a set of sensors within a sensed environment,
apply an activity recognition module to classify such data into a set of predefined human activities, and produce
correspondent response behaviours for a mobile robot.

The neurorobotics approach was compared to a heuristics approach. The heuristics approach (Figure 2a) consisted
of associating the predictions of the activity recognition module to response behaviours based on simple heuristics,
presented in Subsection 5.4. In the neurorobotics approach (Figure 2b), the predictions from the activity recognition
module were employed to stimulate a bioinspired computational model, whose outputs (i.e., neural firing frequencies of
brain simulated regions) were decoded by a CNN-based decoder, which provided the decisions for the mobile robot.

More specifically, a sensed environment consisted of a previously collected dataset [38], composed by a set of recording
sessions X , with each x ∈ X associated to an activity a ∈ A = {a1, . . . , aNA

}, where NA is the number of classes
(i.e., labels) considered for this dataset. The function describing these associations is given by Equation 1.

fA : X → A⇐⇒ fA(x) = a,

x ∈ X, a ∈ A (1)

Each data tuple x(t) comprises a segment, with a previously defined length, of a recording session x starting at timestep
t ∈ Tx = {1, . . . , NTX

}, equally spaced among them, to be segmented from x. The activity recognition module is
a machine learning classifier g ∈ G, which might associate a recording session x ∈ X at timestep t ∈ TX to an
activity a ∈ A, through a prediction vector ytx ∈ Y (see Equation 2). In other words, considering that a is unknown at
inference time, the inference model g, learned from labelled samples, provides a prediction vector ytx, where ytx(a) is
the probability that a given input x(t) corresponds to activity a.

g : X × T → Y ⇐⇒ g(x, t) = ytx,

x ∈ X, t ∈ T, ytx ∈ Y
(2)

The application scenario was designed so that each activity in A was associated to a desired response for the mobile
robot. We defined a set of response behaviours B = {b1, . . . , bNB

}, so that each human activity a ∈ A can be, but not
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necessarily is, associated to a response behaviour of the robot. The ”no action” behaviour is denoted as b∅. Hence, the
function that associates recognised activities to response behaviours is given by Equation 3.

fB : A→ B ∪ {b∅} ⇐⇒ fB(a) = b,

a ∈ A, b ∈ B ∪ {b∅}
(3)

The robot simulation would be considered successfully completed if:

• For an activity a being performed in the environment in a session x, the robot completed an expected response
behaviour b ∈ B before x was finished; or

• No response behaviour was expected (i.e., fB(a) = b∅) and the robot did not complete any of the behaviours
in B.

It is worth to notice that, according to this evaluation policy, besides an accuracy requirement (i.e., the correct behaviour
must be given in response to a human activity), there was also a time constraint that must be satisfied (i.e., if required,
the response behaviour must be completed while the human is still performing the given activity).

Since, by definition, fA(x) = a is not known at runtime, and can only be inferred by a classifier g ∈ G as successive
prediction vectors ytx are provided, a decision-making mechanism was needed to perform adaptive decisions based
on partial, time-localised predictions. To this aim, we proposed the neurorobotics model presented in Section 4, and
compared it to a simple heuristics-based approach as described in Section 5.

4 The Neurorobotics Model

The neurorobotics model embeds the bioinspired computational model and the CNN-based decoder (see Figure 2). It
consists of simulating and decoding the neurophysiological mechanisms of the basal ganglia-thalamus-cortex (BG-T-C)
circuit in mammals (see Section 2), responsible for abilities such as motor control, decision-making, and learning
[12, 26, 33]. As already stated in Section 2, both the rat-based [22] and the marmoset-based [40] computational models
were evaluated as a decision-making mechanism of the neurorobotics model.

4.1 Bioinspired Computational Model

Motivated by the work of [33], two key modifications were introduced to the computational models of the BG-T-C
circuit adopted in this work [22, 40]. First, an additional structure, called prefrontal cortex (PFC), was included as a
variable source of excitatory stimuli towards the striatum (see Figure 3a). Second, NC = NB populations of neurons
were implemented as independent channels c ∈ C, each associated to exactly one response behaviour b ∈ B (see
Figure 3b), as defined in Equation 4.

fC : B → C ⇐⇒ fC(c) = b,

b ∈ B, c ∈ C (4)

At each timestep, the channels c ∈ C received a stimulus s ∈ S = {s1, . . . , sNC
}, whose intensity was based on the

linear combination between a prediction vector ytx and a weight function fW , given by Equation 5. The actual value of
s is given by function fS , defined as in Equation 6.

fW : C ×A→ {0, 1} ⇐⇒ fW (c, a) =

{
1, if fB(a) = fC(c)

0, otherwise

c ∈ C, a ∈ A
(5)

fS : C ×A→ S ⇐⇒ fS(c, a) = s =
∑

a∈A
fW (c, a) · ytx(a)

c ∈ C, a ∈ A, s ∈ S
(6)
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(a) Schematic representation of the computational model as
adapted in this work. In the connections, excitatory synapses
are shown as blue or green arrows, and inhibitory synapses,
as red squares. The blue arrows and red squares correspond
to the original synapses as designed by [22] and adapted by
[40], while the green arrows are the adaptations provided
in this work to allow the stimulation of the circuit in the
context of the application scenario proposed.

PFC BG-C-T circuit

(b) Predictions from the activity recognition module are
interpreted as stimulation originated on the prefrontal cortex
(PFC), which selectively stimulates different populations of
the computational model, each associated to one response
behaviour of the robot.

Figure 3: Adapted version of the computational model of the BG-T-C circuit.

Considering that, as ensured by the softmax activation on the classifiers,
∑

a∈A y
t
x(a) = 1, then s ∈ [0, 1]µA/cm2,

which has shown to be a stable, biologically plausible interval. For a recording sequence x, the set of prediction vectors
yx is employed to update periodically each stimulus s ∈ S, during the course of a corresponding simulation of the
computational model (not to be confused with the robot simulation). For each simulation, NTsim subsequent updates
would be done for all s ∈ S, computed for the timesteps in yx.

A simulation, after finished, produced a spike train for each of the brain regions modelled, contemplating all its length
(i.e., all NTsim updates were considered). The neural firing frequencies were computed according to [23], with the
parameters detailed in Subsection 5.3, and summed across each region of each channel, resulting in NR ·NC output
signals for each simulation, each with length LU , where NR = 8 is the number of regions (see Figure 1b).

Formally, let ug,mx ∈ U be defined as the output for a given simulation, where x ∈ X is a recording session, g ∈ G is
the classifier employed for activity recognition, and m ∈M , a computational model. Therefore, let a simulation be
defined as fU (see Equation 7), whose output is as a multivariate time-series with NR ·NC variables and LU timesteps.

fU : X ×G×M → U ⇐⇒ fU (x, g,m) = ug,mx

(x, g,m) ∈ X ×G×M, u ∈ U (7)

After the simulations were completed, the spike trains at the cortex populations were converted into temporal signals
(i.e., neural firing frequencies) based on the mean firing rates across brain regions [23]. The resulting signals were
segmented in smaller windows and applied to train and evaluate a convolutional neural network (CNN), which would be
employed to determine the decision of the robot at each timestep of the robot simulation (i.e., the CNN-based decoder).
More details on the implementation of the CNN-based decoder are presented in the next section.

4.2 CNN-Based Decoder

Each simulation of the computational model provided the summed neural firing frequencies of each channel and brain
region, generating a data structure ug,mx , associated to the whole recording session that generated it. As a requirement
to provide a realistic scenario for the robot simulation, time-localised decisions were required, which must be taken
based only in past events. In other words, at a timestep trobot = i of the robot simulation, only predictions obtained on
timesteps tj , j < i could be taken into account when providing a response behaviour to the robot.

To fulfil this requirement, each instance ug,mx , correspondent to the recording session x ∈ X in the set of conditions
g ∈ G and m ∈M (see Equation 7), was segmented in windows of NV timesteps, with partial superposition, producing
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Nsegs segments. Considering NX recording sessions in a given set of conditions, the function fv would generate a total
of NX ·Nsegs instances v ∈ V , as defined in Equation 8.

fv : U × T → V ⇐⇒ fv(u
g,m
x , t) = v = ug,mx [t, t+NV ]

ug,mx ∈ U, t ∈ T | t+NV < LU , v ∈ V (8)

The resulting segments were employed to train a machine learning decoder (i.e., the CNN-based decoder). We
considered only the cortex regions to compose the input tuples for the decoder, aiming to preserve biological plausibility
regarding this aspect. Given that each channel of the computational model has two cortex regions (i.e., cortex RS and
FSI), and that the experiments were performed with NC channels, associated to the response behaviours b ∈ B, the
resulting instances v had shape NV × 2NC . The decoder fQ might be trained to provide a decision vector qtx, which
corresponds to the probability that a given segment of cortex firing frequencies, given byv = fv(u

g,m
x , t), might be

associated to a behaviour in B ∪ {b∅}. This decoding function may be defined as in Equation 9.

fQ : V → Q⇐⇒ fQ(v) = qtx,

v ∈ V, qtx ∈ Q
(9)

We have adopted a one-dimensional convolutional neural network (CNN) as decoder, which has shown to provide
state-of-the-art results in related work [42] (for the architectural choices and hyperparameter settings, see Subsection
5.3). Classification metrics were provided considering that the categorical output is chosen according to Equation 10,
where dQ corresponds to a response behaviour.

dQ : Q→ B ⇐⇒ dQ(q
t
x) = argmax(qtx) (10)

Finally, the decisions decoded would be fed to the robot simulation and turned into commands, as discussed in
Subsection 5.4.

5 Methods

In Figure 4, the different factors assessed in this work, already mentioned, are illustrated. Both the heuristics and the
neurorobotics approaches were evaluated with two different models of the activity recognition module: the IMU +
ambient and the video-based (see Subsection 5.1). For the heuristics approach, a couple heuristics was considered and
compared: the window and the exponential (see Subsection 5.4). For the neurorobotics approach, the rat and marmoset
computational models were assessed (see Subsections 4.1 and 4.2).

Neurorobotics

Heuristics

Computational model

Rat Marmoset

Activity classifier

IMU + 
ambient Video

Activity classifier

IMU + 
ambient Video

Heuristics

Window Exponential

Figure 4: Factors and conditions analysed for the heuristics and neurorobotics approaches. For both approaches,
two models for the activity recognition module were considered: the IMU + ambient and the video-based. For the
heuristics approach, two approaches were analysed for the decision-making mechanism: window or exponential (see
Subsection 5.4). For the neurorobotics approach, two computational models of the BG-T-C circuit were considered: the
rat-based and the marmoset-based.

All code was developed in Python language. The machine learning techniques presented for the activity recognition and
the CNN-based decoder were implemented with the Tensorflow/Keras framework. The computational models were
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implemented using the NetPyNE platform [8]. The robot simulation was implemented in the Gazebo simulator [20]
with the Robot Operating System (ROS) [37] as a middleware. The next subsections will provide the implementation
details of this work.

5.1 Dataset and Classifiers

We have adopted the HWU-USP activities dataset [38], a multimodal and heterogeneous dataset of human activities
recorded in the Robotic Assisted Living Testbed (RALT), at Heriot-Watt University (UK). It is composed by readings
of ambient sensors (e.g., switches at wardrobes and drawers, presence detectors, power measurements), inertial units
attached to the waist and to the dominant wrist of the subjects, and videos. A set of nine well-defined, pre-segmented
activities of daily living was performed by the 16 participants of the data collection. A total of NX = 144 recording
sessions were provided, all of them pre-segmented and labelled (i.e., X , A and fA were provided). The length of
the recording sessions varied from less than 25 to over 100 seconds, with high variance either between-classes and
between-subjects.

As the activity recognition module, we have employed the framework presented and evaluated in [41]. This was
composed by different time-localised classifiers based on artificial neural networks, each focused on a particular
modality (i.e., set of similar sensors) or set of modalities. We adopted a couple pre-trained classifiers (i.e., the IMU +
ambient and the video-based classifiers) from the framework to provide the prediction vectors, respecting the between-
subjects 8-fold approach for training and evaluating. Let those classifiers be denoted by gI+A ∈ G and gvideo ∈ G,
respectively. Although both classifiers were described in [41], we give a brief presentation of their architectures in the
next paragraphs, for the sake of completeness.

Classifier gI+A was fed with two parallel inputs: a two-seconds-long (i.e., 100 timesteps-long) time-window with the
raw signals from the inertial sensors, and the mean values of the ambient sensors in the correspondent timestamps.
The inertial data was processed by a one-dimensional Convolutional Neural Network (CNN) [53], composed of two
convolutional layers interspersed with pooling layers, followed by a Long Short-Term Memory (LSTM) recurrent layer
[16], generating the feature vector v1. The ambient data was processed by a single fully-connected layer, generating the
feature vector v2. Both v1 and v2 were concatenated and sent to a softmax output layer.

Classifier gvideo has taken, as input, a sequence of 25 optical flow pairs, correspondent to two seconds of video, computed
with the TVL1 algorithm [52]. The InceptionV3 CNN architecture [48] was trained to classify each optical flow pair
individually. The CNN-LSTM architecture, adopted by the authors, consisted of feeding each optical flow pair within
a sequence to this pre-trained InceptionV3 module, and feeding the resulting features as inputs to each timestep of a
LSTM layer, whose outputs were connected to a softmax output layer.

Both above-mentioned classifiers were endowed with softmax activation in their outputs, which ensured that the
prediction vector respects a valid probability distribution. To provide the prediction vectors, we split each recording
session in NT = 140 timesteps, regardless to its original length, and used the referred framework to provide the
predictions on each of those timesteps. The effect is to assume that all activities have similar length, a simplification
that allowed the design of more uniform and comparable experiments related to the bioinspired computational models
(Subsection 4.1), and the robot simulation (Subsection 5.4).

The output of the activity recognition module is, for a whole recording session x processed by a classifier g, a total
of NX = 144 sets of prediction vectors yx = {y1x, . . . , yNT

x }, with NT = 140. Outputs from both classifiers gI+A and
gvideo were applied to all simulations, as described in the following subsections.

5.2 Heuristics Model Implementation

Two policies H were considered for the heuristics model, named window or exponential, that is, H =
{hwindow, hexponential}. This experimental setup resulted in a total of four conditions for evaluation in the neurorobotics
approach, given by the space G×H .

The window policy consisted of deriving a wider prediction vector ytw, correspondent to Nrw timesteps. This was
done by averaging the Nrw most recent prediction vectors in yx, from the activity recognition module, as in Equation
11. We have set Nrw = 8, which corresponds to windows of four seconds from the recording sessions, because this
was the length of the segments considered for the neurorobotics approach (see Subsection 4.2). On the other hand,
the exponential policy consisted of deriving a prediction vector yte that considered the whole sequence of previous
prediction vectors in yx, with an exponential decay across iterations, as in Equation 12. If R = {rw, re} is the set of the
functions to compute ytw and yte, then the decision dr of the heuristics approach, for either the window or exponential
policies, is given by Equation 13. It is important to note that, for the window policy of the heuristics approach, as in the
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neurorobotics approach, the robot can only begin to move after the first four seconds of each simulation, in which it is
gathering the number of prediction vectors necessary to compute the first decision.

rw : Y × T → Y ⇐⇒ ytw = rw(yx, t) =

∑Nrw−1
i=0 yt−ix

Nrw

yx ∈ Y, t ∈ TX |t > Nrw ,

(11)

re : Y × T → Y ⇐⇒ yte =

{
re(yx, t = 0) = ytx
re(yx, t > 0) = 0.9 · re(yx, t− 1) + ytx

yx ∈ Y, t ∈ TX
(12)

dR : Y × T ×R→ B ⇐⇒ dR(yx, t, r) = fB(argmax[r(yx, t)])

yx ∈ Y, t ∈ TX , r ∈ R (13)

As a reference, we introduced an additional approach, a control condition in which the ground truth labels are directly
fed to the robot simulation, providing a unique decision dGT every timestep, as shown by Equation 14.

dGT : X → B ⇐⇒ dGT (x) = fB(fA(x)),

x ∈ X (14)

5.3 Neurorobotics Model Implementation

Let M be the bioinspired computational model, which can be rat-based or marmoset-based, that is, M =
{mrat,mmarmoset}. This experimental setup resulted in a total of four conditions for evaluation in the neurorobotics
approach, given by the space G×M . Each independent simulation of the computational model (not to be confused
with the robot simulation) was ran for each of the NX = 144 recording sessions under each condition being evaluated,
that is, the simulations of the computational models were required to contemplate all instances in the space X ×G×M .
Hence, a total of 576 simulations of the computational model was performed.

Each of those simulations ran for 70 seconds with sampling rate of 1, 000 Hz. The stimuli set S was updated every 0.5
second (i.e., update frequency of 2 Hz). This led to an adaptive dynamic that would respond to successive prediction
vectors ytx, tsim ∈ {1, . . . , NTsim}, with NTsim = 140, according to the confidence of each response behaviour. The
resulting spike trains in each neuron population were converted to neural firing frequencies (for details, see [23]), with
bins of size 20, which resulted in sequences of length NU = 3, 500. As stated in Subsection 5.1, for the experiments
reported in this work, NB = 2, hence NC = 2. Considering that NR = 8, the multivariate time-series ug,mx ∈ U had
NR ·NC = 16 variables and LU = 3, 500 timesteps, composing a data structure with dimensions 3, 500× 16,

The segments for the decoder we set to NV = 200 timesteps (i.e., four-seconds-long) with 75% superposition (i.e.,
a one-second-long step between the beginning of each segment), resulting in 66 segments. Considering the each
condition was composed of Nx = 144 recording sessions, these simulations of the computational models led to a total
of 144 · 66 = 9, 504 instances v ∈ V , for each (g,m) ∈ G×M .

The CNN architecture for decoding these time-series into response behaviours is depicted in Table 1. It was composed
of two convolutional layers, with 128 and 256 filters, respectively, interspersed with max-pooling layers. A global
average pooling operation preceded the softmax output layer, which produced the decision vector qtx.

For each set of conditions, the CNN was trained in a cross-subject 8-fold cross-validation scheme, similar to the one
adopted for the activity recognition module [41]. The input data was linearly normalised to the range [0, 1], and the
classification models were trained for 40 epochs with batch size 32. The ADAM algorithm was employed, with learning
rate 10−3, to optimise the categorical cross-entropy loss function. The outputs of the evaluations were stored and
organised, in order to serve as inputs to the next steps. The resulting sequences ug,mx were then introduced to the
decision-making mechanism.

5.4 Robot Behaviours

The behaviours b ∈ B consisted of transporting an object o ∈ O, from a starting position z ∈ Z to a fixed destination
zdest. This task was adopted because it comprises a basic and generic functionality for a mobile robot in a home
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Table 1: Layers in the CNN-based decoder. The inputs to the neural network are windows of 200 timesteps from the
four cortex channels of the output signals (i.e., neural firing frequencies) of the simulations under a given condition.
The output is a decision vector qtx with the confidences for each response behaviour.

Layer Type Output shape Free parameters

1 Input 200× 4 -
2 Conv1D 200× 128 3, 712
3 MaxPool1D 100× 128 -
4 Conv1D 100× 256 229, 632
5 MaxPool1D 50× 256 -
6 Global Average Pooling 256 -
7 Softmax 3 -

environment. The associations between the behaviours and the objects are given by Equation 15, while the associations
between the objects and their starting positions in the map are given by Equation 16.

fO : B → O ⇐⇒ fO(b) = o, b ∈ B, o ∈ O (15)
fZ : O → Z ⇐⇒ fZ(o) = z, o ∈ O, z ∈ Z (16)

At each timestep trobot, a decision d ∈ B ∪ {b∅} (i.e., a response for each recording session x ∈ X of the activity
recognition module) was sent to the robot simulation, composed of a mobile social robot in a home environment (for
details on the platforms and implementations employed, see Subsection 5.5). For the neurorobotics approach, this
decision is given by Equation 10, already presented in Subsection 4.2. For the heuristics approach, the two policies
mentioned (i.e., window and exponential) were evaluated.

The decisions were turned into commands to the robot following a table of rules, depicted in Table 2. A decision d is
sent to the robot at each timestep. This decision can be one of the behaviours in b ∈ B or the ”no action” behaviour
b∅. Let oc be the object being carried by the robot at a certain timestep. Two types of situations might be considered:
d ∈ B or d = b∅.

Table 2: Table of rules associating a response behaviour f(d) = b to an output command at each timestep trobot of the
robot simulation, considering the object being carried and the current robot position.

Decision Object carried Robot position Output command

b ∈ B oc = ∅ z 6= fZ [fO(b)] Move towards fZ [fO(b)]
b ∈ B oc = ∅ z = fZ [fO(b)] Set oc = fO(b)
b ∈ B oc = fO(b) z 6= zdest Move towards zdest
b ∈ B oc = fO(b) z = zdest Finish behaviour
b ∈ B oc = ok ∈ O | ok 6= fO(b) z 6= fZ [ok] Move towards fZ [ok]
b ∈ B oc = ok ∈ O | ok 6= fO(b) z = fZ [ok] Set oc = ∅
b∅ oc = ok ∈ O z 6= fZ [ok] Move towards fZ [ok]
b∅ oc = ok ∈ O z = fZ [ok] Set oc = ∅
b∅ oc = ∅ ∀z ∈ Z Wait

The first type of situation is characterised by d = b∅, in which the robot must return any object that it may be carrying
to the corresponding position, and then stand still, waiting for any further commands. Otherwise, d = b ∈ B, the
second type of situation, in which the robot is supposed to grab an object oc = fO(b) ∈ O from position fZ [fO(b)] to a
destination zdest. If the robot is not carrying any object, that is, oc = ∅, then it must move to fZ [fO(b)] and take the
object. If it is already carrying the correct object, then it must move towards the destination zdest. If it is carrying the
wrong object, it is, oc = ok ∈ O | ok 6= fO(b), then it must return it to fZ [ok].

5.5 Robot Simulator

The simulator adopted for the robotics experiments was previously made available as part of the LARa framework
[39], consisted of a robot and a software library. The LARa robot was a mobile social robot built on the top of a
Pioneer P3-DX platform, endowed with a Hokuyo laser, a mini computer, a Microsoft Kinect sensor, a microphone,
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a screen, and a speaker. The LARa library was a set of functionalities implemented to control the robot based on
high-level software interfaces, integrated within the Robot Operating System (ROS) [37]. Besides navigation skills and
a framework for human-robot interaction, this included a platform for simulation, under conditions that resembled those
of the actual robot, deployed to allow offline experiments. The Gazebo simulator [20] was employed, and a map of a
typical home environment was designed, as reproduced in Figure 5a. The simulated robot - a simplified version of the
LARa robot - is shown in Figure 5b, while the pieces of furniture employed in the experiments are shown in Figure 5c.

(a) Map of the whole home environment employed for the
experiments.

(b) Simulated mobile robot.

(c) In a different camera angle, the section of the map in which the robot behaviours were performed, with the indications of the
robot and the pieces of furniture involved in the tasks (i.e., shelf 1, shelf 2 and table).

Figure 5: Virtual environment for the robot simulation, using the Gazebo platform.

This setting comprised a realistic environment, which provided several challenging aspects resembling those of a
real-world scenario, such as sensors’ noise, communication delays and mechanical issues. The ROS platform was
employed to connect this simulated environment to a navigation stack, which provided a 2D occupancy grid in which
each position (i.e., cell) might be considered empty, navigable or obstacle. This representation was generated previously
to the robot simulations reported here, via the GMapping algorithm [13] for Simultaneous Localisation and Mapping
(SLAM). The mapping algorithm ran while the robot was teleoperated through the whole environment, with the laser
readings and the wheels’ encoders combined to gradually compose the occupancy grid. Once the grid was created, the
Augmented Monte Carlo Localisation (AMCL) and A* algorithms could be employed as a global planner to perform
autonomous navigation. The navigation package was also endowed with a local planner, responsible for creating
adaptable short-term paths for obstacle avoidance and environmental changes.

For this work, a set of two response behaviours was defined as B = {b1, b2}. In Table 3, are shown the set of daily
activities from the dataset (i.e., ap ∈ A, p ∈ {1, . . . , NA}), and the expected response behaviours associated to each of
those activities (i.e., fB(ap)). These were chosen respecting semantic relationships between the activities (i.e., b1 is the
desired response when the user is preparing meals, and b2, when he is quietly consuming or exchanging information).

These behaviours were based on the assumption that the user is located in the kitchen, and that the human activities
are being monitored by sensors that are not affected by the robot actions. The starting position for only the first robot
simulation in a battery of experiments is given in Figure 5. However, it had negligible effect in the overall results, since
this position was not reset for each simulation, as we discuss later in this subsection.

As shown in Figure 5c, three pieces of furniture are considered. These are shelf 1, associated to the robot position
zs1 = fZ(o1), o1 ∈ O; shelf 2, associated to the robot position zs2 = fZ(o2), o2 ∈ O; and table, the destination,
associated to the robot position zdest. The two specific behaviours considered for the experiments performed, b1 and
b2, consist, respectively, of transporting object o1 from z1 (i.e., shelf 1) to zdest (i.e., the table), and transporting object
o2 from z2 (i.e., shelf 2) to zdest (i.e., the table). Considering that shelf 2 is closer to the table than shelf 1, then the
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Table 3: List of activities provided by the HWU-USP activities dataset, and expected response behaviours in the
application scenario.

Activity a Description Response behaviour b

a1 making a cup of tea b1
a2 making a sandwich b1
a3 making a bowl of cereals b1
a4 using a laptop b2
a5 using a phone b2
a6 reading a newspaper b2
a7 setting the table b∅
a8 cleaning the dishes b∅
a9 tidying the kitchen b∅

distances required for b1 are larger than those for b2. As a consequence, it was expected that, on average, b1 required
more time to be completed than b2.

The maximum robot simulation time was set to NTrobot = 140 seconds, with each timestep trobot ∈ {1, . . . , NTrobot}
corresponding to one second in the simulation. Consequently, an expected response behaviour had to be finished
within NTrobot seconds to be considered successfully completed. We configured NTrobot = 140, which in exploratory
experiments has shown to give a reasonable margin for the robot simulations.

A total of NX = 144 robot simulations was performed for each condition analysed. The first simulation for each
approach began with the robot positioned as in Figure 5c. All the next simulations began without resetting the robot
position after the ending of the previous one, with only the object flag, corresponding to the object oc being carried by
the robot, being cleared. In this scenario, each simulation could be started with the robot in any of the positions in Z, or
in locations belonging to the path between them.

6 Results

Concerning the activity recognition module, its classification results are presented in [41]. The overall accuracy
registered for the classifiers were computed by taking a set of 25 prediction vectors obtained for a recording session and
averaging it. A categorical classification was provided by returning the argmax element in the averaged vector. A
cross-validation approach, following the same cross-subject partitioning adopted for evaluating the CNN-based decoder
in this work, have been performed. The accuracy reported for the modalities considered for the experiments reported
here was 74.30% for gI+A, and 93.75% for gvideo.

The other modules in this work relied on important adaptations to frameworks previously implemented in related work,
as happened to the computational models and the robot simulation, or to components developed from scratch, case of the
CNN-based decoder. The corresponding results are shown in the following subsections. The classification metrics from
the neural firing frequencies synthesised with the bioinspired computational models are presented in Subsection 6.1.
The outcomes of the robot simulations, in all conditions analysed, are presented in Subsection 6.2.

6.1 Simulated Neural Firing Frequencies

A sample of the segments v ∈ V , provided in the simulations of the computational models, is shown in Figure 6. This
was generated from a rat model, being stimulated according to an IMU + ambient classifier as the activity recognition
module. A larger stimulus introduced to the striatum is expected to increase neural firing rates in the BG-T-C circuit,
which might be propagated to the cortex.

The overall accuracy and F1-score of the decoder, trained and evaluated according to the 8-fold cross-subject approach
described, are shown in the bars plot of Figure 7. The classifier used in the activity recognition module and the
computational model employed are shown side-by-side.

The decoder was applied as a part of the decision-making mechanism, responsible for providing decision vectors for
the robot simulation. Hence, its results might be correlated to the correct outcomes of the decisions made during
the robot simulation. In other words, a good accuracy of the decoder might result in more correct decisions of the
robot, which may more often complete the tasks with the correct outcome. The next subsection will present the
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Figure 6: Sample output from the bioinspired computational model of the BG-C-T circuit. For the motor cortex of each
channel, RS and FSI, we considered the overall mean firing rates computed with time bins of size 20 milliseconds, and
evaluated on two-seconds-long time windows. This data was used as input for the CNN-based decoder, in the next step
of the bioinspired pipeline.
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Figure 7: Accuracy and F1-score for the CNN-based decoder in classifying a MFR signal into a set of three possible
decisions: B1, B2 or "no action". On choosing the models for evaluation, two factors were analysed: the modalities and
models employed for activity recognition (IMU + ambient sensors or video-based) [41], and the computational model
considered (rat-based or marmoset-based) [22, 40].

experiments performed to validate this statement. These are the outcomes of the robot simulation not only for each of
those conditions, but also for each policy employed for the heuristics approach.

6.2 Outcomes of the Robot Simulations

As it was mentioned before, three possible outcomes were considered for the robot simulations, with fA(x) = a being
the activity associated to a recording session x ∈ X:

• Correct, if fB(a) ∈ B and the activity was completed before the end of the simulation, or if fB(a) = b∅ and
no behaviour was completed;

• Incorrect, if the robot completed a behaviour brobot ∈ B different from fB(a), i.e., brobot 6= fB(a);

• Unfinished, if a response behaviour b ∈ B was expected from the robot, but no behaviour was completed
before the end of the simulation.

In Subsection 5.5, a control condition was introduced, with ground truth decisions being sent for the robot. For this
approach, as it was expected, all robot simulations let to the correct outcome. In Figure 8a, the outcomes for the
heuristics approach are presented, with each of the policies analysed (i.e., window and exponential) being represented
in different plots, each illustrating the outcomes for each classifier considered for the activity recognition module. The
outcomes for the neurorobotics approach are shown in Figure 8a, with the classifiers for activity recognition (IMU +
ambient or video) and the computational models (rat or marmoset) being represented.
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(a) Outcomes for the robot simulations performed with the heuristics approach. Four batteries of simulations were performed,
considering two factors: the classifiers employed for activity recognition (IMU + ambient sensors and video-based) and the policy
for the decision-making mechanism (window or exponential) (see Figure 4a).
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(b) Outcomes for the robot simulations performed with the neurorobotics approach. Four batteries of simulations were performed,
related to two factors analysed: the modalities and models employed for activity recognition (IMU + ambient sensors or video-
based) [41], the computational model considered (rat-based or marmoset-based) [40] (see Figure 4b).

Figure 8: Outcomes for the robot simulations. Three possible outcomes were considered: the robot completed the
expected (correct) behaviour; the robot concluded the incorrect behaviour; no behaviour was completed (unfinished),
although an action was required from the robot.

The times elapsed for providing the correct outcome, when a response behaviour was expected from the robot, were
also recorded. The mean and standard deviations, within all simulations performed for each condition, are represented
in Figure 9. Two separate plots were provided, separating the classifiers employed for the activity recognition module.
The ground truth approach was reproduced in both of them, since it does not depend on prediction vectors, but in the
ground truth activities.

This metric considers only the outcomes completed successfully. An approach that provides a fast response with poor
accuracy would provide a low time response, though it would not necessarily provide the correct response behaviours
very often. Hence, the fact that the heuristics approach with the window policy led to a faster average response than the
ground-truth condition is consistent. Since incorrect and unfinished outcomes were not considered for the computation
of this mean value, this result only shows that, for this model, the correct outcomes were mostly associated to activities
that could be completed in less time (e.g., the behaviour b2).
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Figure 9: Average times elapsed across the 144 sequences on each simulation in which the correct behaviour was
performed. Incorrect and unfinished outcomes, as well as correct outcomes when no action was required from the robot,
were not considered in this evaluation. All simulated models, basend on either heuristics or neurorobotics, are shown.
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7 Discussion

The results from the CNN-based decoder, shown in Figure 7, confirmed some expectations regarding the output signals
produced by the simulations of the computational models according to the stimuli provided: it performed better for the
the video-based classifier than for the IMU + ambient, and for the marmoset-based model, compared to the rat-based.
The accuracy and F1-score metrics were very close, which considering a strictly balanced dataset, points that the results
were not affected by any serious issues regarding the trade-off between precision and recall.

All evaluations led to an accuracy measure of over 70% for three classes (i.e., response behaviours b1, b2 or b∅). It
is important to consider that the stimuli came from noisy prediction vectors from activity recognition algorithms,
whose accuracy is variable across successive segments [41], with overall accuracy values of 74.30%, for gI+A, and
93.75%, for gvideo. These results show that the neural activity provided by the computational models could be reliably
interpreted by the proposed decoder, even considering segments of limited length (i.e., four-seconds-long segments
within a 70-seconds-long sequence). Hence, this particular technique for brain signals, analysed in previous studies
for processing related neuronal data of the BG-T-C circuit [34, 42], has shown to be suitable for the decision-making
approach proposed.

Since the accuracy measure of the classifier for activity recognition was significantly higher for the video-based
classifier than for the IMU + ambient, it was expected that it could be more easily decoded by the neural network,
which was confirmed by the decoder results (see Figure 7). Also, the marmoset-based model led to better decoding
performances than the rat-based model, which also meets the expectations, considering a more sophisticated morphology
and dynamics in the underlying brain structures in primates than in rodents [27].

Regarding the robot simulations, heuristics approaches were evaluated in parallel to the neurorobotics approaches.
In most experiments performed in this work, better performances were found for the models fed by the video-based
classifier than those fed by the IMU + ambient classifier, which was expected, since the video classifier is expressively
more accurate [41]. As shown in Figure 8a, the window policy led to a lower number of successfully completed
response behaviours, especially when fed with prediction vectors coming from the IMU + ambient classifier (less
accurate). This condition may be the fairest comparison to the neurorobotics approach since it limits its decisions to
data from the four-seconds-long segment that precedes a given decision, the same constraint applied to the CNN-based
decoder.

In this context, the neurorobotics approach has shown to provide more accurate outcomes in most conditions, especially
for the marmoset model. For the IMU+ambient modality of the activity recogniser, the window policy of the heuristics
approach led to 79.9% of correct outcomes, which was surpassed by the 84.7% result for either the rat or marmoset
models. For the video modality, the window policy of the heuristics approach led to 86.0% of correct outcomes, which
was only slightly above the rat model, which hit 85.3%, and expressively below the marmoset model, which hit 93.7%.
These results point that the proposed neurorobotics approach, in the conditions analysed in this study, may lead to better
outcomes than a simple heuristics for a real-time task of an autonomous robot.

For the exponential policy of the heuristics approach, a particularity was found: it led to similar results for either
the video and IMU + ambient conditions (i.e., 88.2% and 88.8% of correct outcomes, respectively), both with more
correct outcomes than those of the window policy. This result is relevant, since it reveals that, by performing a
long-term aggregation of prediction vectors obtained subsequently from a single recording session, it may be possible
to compensate lower accuracy values provided by certain classifiers that work with different sets of sensors. This
possibility might be considered in practical applications, in which more informative modalities that usually lead to high
accuracy, such as videos, may be either difficult to be obtained, due to privacy concerns [9], or unfeasible to provide
real-time outputs, due to the high computational cost inherent to the operations required for processing them [45].

Regarding the different conditions considered for the neurorobotics approach (i.e., the activity recogniser and the
computational model), the expectation was that, when applied to the robot simulation, the number of correct outcomes
would be comparatively proportional to the accuracy measures of the decoder (see Figure 7). As shown in Figure 8b,
this expectation was met for most conditions, although some exceptions were found.

Better results for the marmoset model were expected, since the number of neurons and the connectivity are larger
[36, 21]. The results of the decoder, previously discussed, corroborate to this hypothesis. For the robot simulations,
considering the video modality, the marmoset model led to the best results found among all of the simulations, with
93.7% of correct outcomes, against 85.3% achieved by the rat model. However, for the IMU + ambient modality, the
results were similar for both models. A possible explanation for this result is that such an increased capacity could
compensate the mistakes for a more accurate activity recognise. In other words, the prediction vectors across successive
segments could assign higher confidence values (i.e., probabilities) to the expected label (i.e., the ground-truth activity)
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for the video-based classifier than for the IMU + ambient, and the marmoset-based model, more sophisticated, was able
to take more advantage on it than the rat-based.

By measuring the time elapsed in the robot simulations with correct outcomes, we can see only modest variations across
conditions. An important observation regarding this metric is that a fast response is not necessarily an indication of a
good performance, since this result is affected not only for the assertiveness of the correct outcomes (i.e., few changes
of decision within a simulation), but also to the accuracy of the simulations in a given set of conditions. For instance, a
given condition may lead to fast response when it provides the correct outcome, but most simulations may lead to an
incorrect or unfinished outcome.

For the neurorobotics approach, the times were approximately similar between both classifiers, except for the marmoset
model, which took significantly longer to finish, on average, when fed with the video-based classifier. Considering
the heuristics approach, the video-based classifier led to clearly longer times for completing the behaviours, which
was probably because some of the changes in decisions (i.e., the robot is performing behaviour b1, but the decision-
making mechanism changes it to b2 after receiving new, updated prediction vectors) within the simulations allowed for
completing more simulations with the correct outcome. The same reason explains why the correct outcomes of the
window policy for the IMU + ambient classifier led to a faster response, on average, than the ground-truth value.

8 Conclusions and Future Work

In this paper, we employed a neurorobotics approach based on the embodiment of validated computational models of
brain structures for creating a decision-making mechanism to provide effective response behaviours to a mobile robot in
a simulated environment.

The chosen application scenario was a simulated smart home where data from the sensed environment was processed
with a previously designed activity recognition framework. The neurorobotics approach was compared to some
heuristics. For this, two simple heuristics were proposed and evaluated to provide real-time decisions based on the
outputs from an activity recognition classifier.

The neurorobotics model used computational models (CM) of the basal ganglia-thalamus-cortex (BG-T-C) circuit,
originally designed to study the underlying mechanisms of Parkinson’s Disease. The CM were adapted, so that the
outputs from the activity recognition module were applied as stimuli to the striatum of the circuit, and spike activity
at the cortex was decoded with a convolutional neural network (CNN) to provide decisions to the robot simulation.
Different conditions were analysed, including whether the computational models were based on rodent or primate
models.

Results were reported with respect to the accuracy obtained for the CNN-based decoder in each condition for the
computational model, and to the outcomes of the robot simulations, considering the neurorobotics and the heuristics
approaches. The expectations were met for most of the different conditions regarding the neurorobotics approaches.
The primate-based computational model led to the best outcomes between the simulations analysed.

Hence, one can conclude that the proposed neurorobotics approach is promising not only as an embedded tool for
understanding the neurophysiological aspects of animal behaviour, but also as a practical component to integrate
decision-making mechanisms for action selection in mobile robots engaged in human-robot-interaction scenarios.

Future work may consist of providing a real-time simulation of the proposed application scenario, with a robot placed
in a physical environment in which human participants may be performing activities. This would require the integration
among the different modules shown in the pipelines presented, thus ensuring that all of them can work in real-time.
Such an experiment may validate our approach in even more challenging conditions and scenarios, which may foster a
wide range of applications.
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CHAPTER

6
CONCLUSION

This thesis aimed at contributing to the design of intelligent environments, by providing
a contextualised framework of multimodal techniques for human activity recognition and em-
ploying them to an application scenario. The techniques for activity recognition were designed
based on different types of sensors within an environment (i.e., videos, inertial units and ambient
sensors), with multiple deep leaning techniques and datasets. In parallel, developments on the
field of computational neuroscience, specifically regarding the neurophysiological aspects of
Parkinson’s Disease and its underlying mechanisms, were performed during the course of the
research, and integrated to a decision-making framework as a neurorobotics approach. The
application scenario consisted of a robot simulation in which a mobile social robot might provide
responses to human activities, which could be done based on heuristic approaches, consisting of
simple heuristics, or neurorobotics approaches, consisting of adaptations of brain simulations.

The objectives were met, initially by a comparative work involving different deep
learning techniques for activity recognition, based on videos and inertial sensors. This was
done by adopting the UTD-MHAD and Egocentric Multimodal datasets, and applying them
to train CNN, LSTM and TCN-based models. Despite important architectural differences, the
LSTM and TCN methods led to compatible results for most conditions analysed. The method for
feature-level fusion performed well for the UTD-MHAD dataset, though it led to overfitting for
the Egocentric Multimodal dataset, which may indicate that this technique require more precise
synchronisation to provide good generalisation.

Methods implemented during these analyses were employed in a second set of exper-
iments. This time, a new dataset was collected in the Robotic Assisted Living Testbed, at
Heriot-Watt University, which provided daily activities with variable length that could include
long-term dependencies, similar to what could be expected in an actual home environment. Also,
ambient sensors were recorded and synchronised to the inertial and video data. The deep learning
techniques were adapted to this new dataset, and evaluations have shown increased performances
when the ambient sensor data was combined to the inertial units. The best results, nonetheless,
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were obtained when the video modality was present.

The application scenario was designed as a simulation environment with the Gazebo
platform. The home environment and robot are in line with the developments that have been
taken place in the Robots Learning Laboratory (LAR), at ICMC-USP, especially regarding the
LARa framework. The decision-making strategies were enhanced due to the introduction of the
neurorobotics approach, based on the computational models implemented and adapted during the
scholarship developed in the Robotics Laboratory at Heriot-Watt University, under supervision of
professor Patricia Amancio Vargas. This was based on partial results provided by the Neuro4PD
project, also addressed in a dedicated chapter of this thesis. The neurorobotic models behaved
as expected for most conditions, with video-based classifiers performing better than IMU +
ambient classifiers, and primate models performing better than rodent models. An interesting
result was that the marmoset models based on video classifiers performed significantly better
than the heuristic approaches.

6.1 Final Considerations

Regarding activity recognition, the objectives were met, initially, by a comparative
research involving different deep learning techniques for activity recognition, based on videos
and inertial sensors. This was presented in Chapter 2. Focus was given to modelling the temporal
dependencies either in sequences of inertial data, in features extracted from optical flow (i.e.,
video data), and in fusion between those approaches. To this aim, LSTM and TCN were designed
and evaluated in parallel. The use of LSTM modules in this type of application has been quite
common. The TCN architecture was also considered, because, when this stage of the thesis was
being developed, its introduction to the domain of video-based human activity recognition was
still a novelty. The experiments have confirmed a compatibility between LSTM and TCN as
modules of the neural networks applied for temporal modelling in both modalities considered
(i.e., videos and inertial units). Besides the comparison between LSTM and TCN for activity
recognition, the study also considered two approaches for fusion, it is, late fusion and feature-
level fusion, the latter depending on time-synchronised snippets across modalities to provide
accurate results.

Two public datasets were adopted for evaluations: the egocentic multimodal dataset, and
the UTD-MHAD. A CNN-based model for individual RGB frames was also considered, with
output features from a spatial CNN combined to the other models through weighted averaging
(i.e., fusion between a model for inertial data, a model for videos based on sequences of previously
computed optical flow maps, and a model for RGB frames extracted from videos), achieving
accuracies up to 80.62% for the egocentric multimodal dataset, and 85.47% for the UTD-MHAD
without considering depth data. This result for the UTD-MHAD was below state-of-the-art for
these modalities, and was improved in the next step of the research presented in this thesis (see
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Chapter 3). Nevertheless, it was constrained to reproduce the same architecture for both the late
fusion and feature-fusion approaches, and also across datasets (i.e., to allow a fair collection of
results, the same architectures and hyperparameters were used for all model calibrations and
evaluations). Rather than improving the overall accuracy for a particular dataset, the aim of
this study was to provide a comparison between the different conditions analysed, and it was
successful in this regard, in which similar architectures endowed with either LSTM or TCN
modules for temporal modelling led to compatible results for a couple representative datasets.

Two other limitations of the above-mentioned developments might be pointed. First, the
temporal video-based models, which led to the best results, have the drawback of being heavily
resource-consuming, and depending of the computation of optical flow maps as a preprocessing
step, which makes it difficult to implement on real-time scenarios. In these situations, the less
expensive approaches analysed, such as the inertial-based models, may be preferred despite
of its lower accuracy. Second, the fusion approaches rely on synchronised data from multiple
modalities, which is not always trivial to implement for real-time scenarios.

Part of the methods implemented during these analyses were employed in the next
experiments, considering also data from ambient sensors. This step of the work was described
in Chapter 3. This time, a new dataset was built from scratch as part of this work: the HWU-
USP activities dataset, collected at the RALT lab in Edinburgh at Heriot-Watt University. More
specifically, the dataset was composed of RGB and depth videos from the camera of a TIAGo
robot, data from IMU sensors attached to the users’ wrist and waist, and a set of ambient sensors
(i.e., switches at the doors of wardrobes and drawers, motion sensors and power measurements)
from a smart home. The objective was to build and study a multimodal dataset composed of
RGB and depth videos, inertial units and ambient sensors from a smart home in the context of
activities of daily living, all of them sharing a kitchen environment and performed in the context
of a regular breakfast. A set of 16 participants performed 9 activities, resulting in a total of 144
instances that composed 116 min of recordings in total. All data were stored, made anonymous,
and made available to the research community.

This dataset allowed for the proposal of multimodal approaches involving not only videos
and data from inertial sensors, but also ambient sensors. To the best of our knowledge, this
was the first public multimodal activities dataset that provides these three modalities altogether
and synchronously. A deep learning framework was also proposed to perform experiments
in such a multimodal scenario. It was based on two-dimensional CNN modules for feature
extraction on RGB frames, depth images and optical flow pairs, and LSTM layers for temporal
modelling, when applicable. Data from inertial sensors were fed to a similar architecture, with
a one-dimensional CNN being applied to extract features to be modelled by a LSTM module.
For these modalities, the same experiments were performed on both the HWU-USP and the
UTD-MHAD datasets. Results varied from one modality to another, especially for the HWU-USP,
in which the architectures based on computer vision, specifically after computing dense optical
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flow, performed significantly better. These differences were smaller for the UTD-MHAD dataset.

The data from the ambient sensors, present only on the new HWU-USP, were introduced
as an additional channel of information on the neural network that processed the inertial data,
with no feature extraction: the binary variables were fed to a fully-connected layer whose output
was concatenated to the IMU features extracted by the CNN-LSTM modules. As expected, the
introduction of this modality led to expressive improvements in accuracy. The best multimodal
model led to a very high accuracy, which points to the relevance of considering different sources
of data to perform activity recognition tasks.

As already mentioned, the real-time acquisition of synchronised data across modalities
is often challenging. Hence, all scenarios might be considered as valid approaches, even those
with lower accuracy. For instance, it may be feasible to implement a model based only on inertial
and ambient sensors, however the introduction of the video modality, which could expressively
enhance the classification accuracy and confidence, may be out of question. This means that
the accuracies achieved for the IMU-only and IMU + ambient scenarios are important even if
they are below those of the video-based models, since they can be easily introduced to real-time
applications in the future.

Another aspect of these results that need to be interpreted cautiously is that the HWU-
USP dataset was constrained to a single, specific environment. Therefore, the models trained
and evaluated using this dataset would not necessarily generalise to other environments, with
different layout, furniture, and appearance. This is particularly critical for the video modality,
based on recordings made from the same point of view. However, the other modalities may also
be affected. For instance, for the inertial sensors, the displacements made by the participants
were dependent on the positions of the furniture and objects present in the environment, and
different motion patterns may arise in other scenarios. Nonetheless, if fed by a larger dataset or
retrained to other specific environments, the architectures presented here are likely to provide
results compatible to those presented here, an hypothesis that is reinforced by the results with
the other datasets analysed (see Chapter 2).

The already mentioned studies in computational neuroscience were performed during
the internship of the candidate at the Heriot-Watt University, Edinburgh, Scotland, leading to
two outcomes in this context. A detailed description of the motivations, methods and results
coming from this part of the work is present in Chapter 4. First, a deep framework was proposed
to extract features related to Parkinson’s Disease (PD) from Local Field Potential (LFP) brain
signals of a marmoset monkey dataset. Different neural networks were applied as machine
learning techniques, both as classifiers and autoencoders, and results were reported in terms
of accuracy and properties of the representations learnt by each model. The deep networks
presented classification metrics higher than the shallow networks, with accuracy up to 99.80%
for the ConvLSTM model. The autoencoder embedding has shown to be informative of the
PD-related features, with clustering approaches reaching homogeneity up to 91.27%, and higher
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classification metrics when fed to a fully-connected network, in comparison to the raw input (e.g.,
95.76% accuracy, against 93.65%). Pre-training the CNN, on the other hand, had little effect
compared to training from scratch. Even though the convolutional networks extract features in
the time domain, the input segments with higher attributions presented an enhanced peak at
the beta frequency range of the average spectrum of the PD individuals when compared to the
healthy ones. Regarding the intermediate representations of the convolutional layers, we have
analysed the average power spectra at five frequency bands of feature maps with the highest
attributions. The proposed methods and analysis may contribute for a better understanding of the
mechanisms underlying Parkinson’s disease.

Second, a realistic biophysical computational model was presented to resemble data from
the basal ganglia-thalamus-cortex circuit from the marmoset monkey brain in both healthy and
Parkinson’s Disease (PD) conditions. To this aim, a data-driven strategy was designed based
on the local field potential (LFP) dataset previously collected (the same data employed for the
deep learning framework) from five adult marmosets, including healthy and 6-OHDA models of
PD. Model optimisation and validation was accomplished with evolutionary algorithms. The
proposed modelling strategy produced computational models that resembled both single-neuron
mean firing rates and spectral LFP characteristics found in healthy and PD marmosets models. To
the best of our knowledge, this was the first computational model of PD based on simultaneous,
multisite electrophysiological recordings from a primate model of the disease. This work can
facilitate the investigation of the mechanisms of PD and support the development of techniques
that can inform new PD therapies. Also, the approach proposed can be potentially applied to
other neural engineering problems where biological data can be used to fit multiscale models of
brain circuits.

After this stage was completed, involving computational neuroscience developments,
an application scenario was presented in the context of human-robot interaction. As presented
and discussed in Chapter 5, data from a sensed environment (i.e., the HWU-USP activities
dataset), processed with the activity recognition framework, was employed in a decision-making
mechanism to provide response behaviours in a robot simulation. Two approaches were consid-
ered: a heuristics-based approach, in which two simple heuristics were proposed and evaluated
to provide real-time decisions based on outputs from an activity recognition classifier, and a
neurorobotics approach. The computational model of the BG-T-C circuit, originally designed
to study the underlying mechanisms of PD, was adapted, so that the outputs from the activity
recognition module were applied as stimuli to the striatum of the circuit, and spike activity at
the cortex was decoded with a convolutional neural network (CNN) to provide decisions to the
robot simulation. Within this bioinspired setting, an additional factor was analysed: whether the
computational model was based on a primate or rodent model.

Results were reported with respect to the accuracy obtained for the CNN-based decoder
in each condition for the computational model, and to the outcomes of the robot simulations,
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considering both approaches proposed (i.e., the heuristics and the neurorobotics approaches).
The expectations were met for most of the different conditions regarding the neurorobotics
approaches. The marmoset-based computational model led to the best outcomes between the
simulations analysed, which points that the proposed approaches are promising not only as
computational models for understanding the neurophysiological aspects of animal behaviour,
but also as practical components that may integrate decision-making mechanisms for action
selection.

The fact that the application scenarios were implemented on a simulated environment
allowed for separate executions of each of its steps. The activity recognition module ran on its
own, generated its predictions, which were stored and, only in a future step, fed to the following
modules. In the case of the heuristics approaches, these prediction vectors were directly fed to
the robot simulation. For the neurorobotics approach, the computational model took these stored
outputs as stimuli for the simulation of the brain activity, and, again its results were stored. The
decoder was trained and evaluated upon the activity generated from the computational model,
and its predictions were stored. Finally, the robot simulation ran using the prediction vectors
stored from the decoder.

This step-by-step approach is unfeasible for real-time systems, which would be the case
for a real-world application. In this case, the integration between those components would be
challenged by bottlenecks on the execution time of several modules, especially the activity
recognition. Such an integration effort would be far from trivial. It was not analysed in the
present work because, with the introduction of the neurorobotics aspects to the simulation, the
scope of this thesis was delineated to the reasoning aspect of the scenario. This includes the steps
between the data gathering and the decision-making approach, but not the integration aspects
needed for an actual end-to-end implementation. Such a development may be explored in future
research.

6.2 Future Research

Following the results directly provided in this thesis, two directions may be depicted for
future work. The first direction refers to the enhancement of the multimodal activity recognition
methods, and the second one, to application scenarios that may be developed based on the results
from this thesis. The next subsections discuss these possibilities.

6.2.1 Activity Recognition Methods

Regarding the activity recognition methods, the models explored in this thesis were
focused on deep neural networks. This approach was in line with most recent advances on the
literature. Nevertheless, more accurate techniques may be considered for each modality, and lead
to other fusion approaches. Although the video modality has already provided accurate results,
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close to 100% in some cases, there is still room for improvement regarding the modalities other
than the videos, which is important for actual AAL applications, since video data might not
always be available due to privacy issues. If those videos will be gathered by a robot’s camera,
the positioning of the robot, which may not always be facing the inhabitants of the environment,
may be another limitation.

The neural networks employed for the inertial modality consisted of introducing the
raw data, with minimum preprocessing, to combinations of one-dimensional convolutional or
recurrent networks, for feature extraction and temporal modelling. Other types of preprocessing,
however, may turn sequences of raw data into other representations, as provided in related work.
This would be compatible to what has been done for the videos, which were classified by models
that required the previous computation of optical flow maps.

As already stated, the field of human activity recognition has been fertile, giving rise to
different, accurate approaches for each modality. The HWU-USP activities dataset allowed for
the development of techniques that process sequences with long-term dependencies, differently
from most work on the literature. This new benchmark may be employed to evaluate techniques
that model explicitly these longer-term dependencies. Some activities have a sequence of more
fine-grained actions (e.g., to prepare a sandwich, the participant had to place a plate on the board,
take the ingredients from the fridge, take the bread from the cupboard, assemble the sandwich,
and so on). Although such fine-grained annotations were not provided in the dataset, they may
be introduced based on the videos, without the need of more data collection.

A new session of data collection could also be targeted. An aspect that may be improved
is the introduction of additional points of view for the camera within an environment. Besides,
other environments, with different background, furniture and objects may be considered, resulting
in a more heterogeneous dataset that can be actually employed to train generalised models for
activity recognition.

6.2.2 Application Scenarios

The scenarios considered for this thesis were implemented in a simulated environment,
with each module processing its inputs separately, without concerns about real-time constraints.
A challenging scenario for future research consists of the implementation of all the modules
described in a real-time application, which could recognise activities online, based on human
users within the same environment as a physical robot is present. In this scenario, the robot
behaviours could affect the environment, closing the loop for a complete neurorobotics approach
focused on human-robot interaction.

The real-time constraints would have to be considered when choosing between frame-
works for activity recognition, models for behaviour selection, and other functions eventually
introduced. Such an end-to-end approach would require participants performing activities in
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an experimental setup, computers processing sensors inputs and algorithms for both activity
recognition and behaviour selection. The physical robot, which could be any mobile robot, would
then perform actual tasks in response to the users’ actions. Besides evaluations based on the
performance of the system, the participant’s perceptions on the robot behaviour may also be
applied to measure the social acceptability of the approach.

The LARa robot, or other mobile social robot, may be introduced not only as an actuator
to accomplish tasks based on classification results, but also as an additional source of data,
considering for example its own camera, microphone, and other sensors. To allow for such
an experiment, an additional data collection procedure could be designed, beginning with a
teleoperated robot in an inhabited environment (i.e., Wizard-of-Oz approach). Such a dataset
would contemplate limitations regarding the availability of data, which are expected in real-world
scenarios, and could lead to a challenging benchmark for human activity recognition in home
environments.

6.2.3 Neurorobotics

Within the context of the the computational neurascience developments, future research
may be directed to the evaluation of machine-learning methods to brain signals, in tasks such
as diagnosis based on different sensing information, or on the replication of neurophysiology
aspects, such as the computational model presented. New advances on computational models
that resemble brain regions related to movement or decision-making may lead to neurorobotics
models that can be employed to study different biological phenomena, or even to provide more
biologically plausible robot behaviours.

Neurorobotics approaches focused on studying the underlying mechanisms of Parkinson’s
Disease may also be devised based on the bioinspired models proposed and assessed here. In
this work, the role of the basal ganglia-thalamus-cortex circuit in decision-making processes was
assumed as a mediator for behaviour selection. Research focused on Parkinson’s Disease may
build on the outcomes of this work to connect firing frequencies of a computational model to
movements in robotic models, composing a synthetic testbed for studies on motor symptoms.
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1. GENERAL INFORMATION 
This experiment consists of a data collection based on multimodal data from individuals             

performing activities of daily living. It will consider inertial data from wearable devices, RGB and               

depth videos, as well as data from environmental sensors. All participants are expected to be               

adults without incapacitant physical or cognitive disabilities. 

The data recorded is intended to be used in action recognition tasks using data-driven              

approaches, specifically machine learning. In order to provide our further experiments with this             

data with transparency and reproductivity, as well as to allow other research groups to come with                

different approaches for dealing with the same problem, we intend that our dataset will be made                

publicly available. 

2. PREPARATION 
Experiments will be performed at the ambient assisted living laboratory, Lyell Centre,            

Heriot-Watt University, Edinburgh Campus. The data collection for which you are being invited             

includes sensing inertial information using a device that will be attached to your waist using the clip                 

shown in Figure 1. To allow it to be placed correctly, we kindly ask that you come to the session                    

wearing trousers that allow such placement. 

 

Figure 1. Waist clip with the inertial sensor. 

When you arrive at the ambient assisted laboratory, you will be asked to wear the wristband                

shown in Figure 2, equipped with an inertial measurement unit, in your dominant arm. After that,                



 

you will be asked to wear the waist clip shown in Figure 1, equipped with a similar device than the                    

one in the wristband. If you feel any kind of discomfort or uneasiness due to the use of those                   

devices, please tell any member of the staff, so that the referred device may be removed, or the                  

experimental session may be canceled. 

 

Figure 2. Wristband with the inertial sensor. 

3. DATA ACQUISITION 
Besides the inertial sensors presented in the previous sessions, RGB and depth videos will              

also be collected using a Microsoft Kinect sensor. Environmental sensors present at the laboratory,              

such as presence detectors, switches, and pressure sensors, may also be considered. Audio data              

will not be kept on the records. All data will be anonymized so that no records of your name or                    

other data that may allow your identification will be kept. Regarding the RGB videos, all human                

faces will be blurred. The resulting dataset will be made available for the research community. 

4. EXPERIMENTAL PROCEDURE 
Once you are ready, the recording procedures will be prepared by the staff. You will be                

asked to perform a set of predefined activities. Each activity should be recorded twice, providing               

two samples of 10 seconds. The positions of the participant or the camera will be changed for each                  

record. Each sample may be recorded more than once, in order to ensure the quality of the data                  

collected. For each participant, the recording session may last up to 1h30. The activities will be the                 

following: 

a) Searching object: walk randomly around the house, as you were searching for a lost object.               

The position of the Kinect sensor will vary on each recording. 



 

b) Talking on the phone: pretend to talk on a wireless phone (e.g., a cell phone), both while                 

standing/wandering and sitting. 

c) Using a laptop: you will be given a laptop to perform random tasks on a laptop, such as                  
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h) Washing the dishes: pretend you are washing the dishes, which will be performed without              

neither water or cleaning products. 

i) Preparing a meal: pretend to prepare a meal, with non-harmful utensils and fake             

ingredients. 

j) Having a meal: pretend you are having a meal, without actually eating. 

Please note that other activities could be amended during the trial to comply with the data                
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directed to any of these researchers. 

6. FUNDING 
This project is being funded by the Sao Paulo Research Foundation (FAPESP), grants             

2018/25902-0 and 2017/02377-5. 
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time without giving any reason. My legal rights are not going to be affected. 

I understand that the data collected during the study may be looked at by individuals               

from the Heriot-Watt University and the University of Sao Paulo, and will be further              

made publicly available. I give permission for my records to be made available on              

these terms. 

The procedures regarding confidentiality have been clearly explained (e.g. use of           
names, anonymization of data, etc.) to me. 

The use of the data in research, publications, sharing and archiving has been             
explained to me. 

I agree to take part in the above study. 
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B
PUBLICATIONS

During the development of PhD project, besides the papers included in the collection
that composed this thesis, other papers were published by the candidate, either as main author or
co-author. The conference papers published are the following (the list includes the two papers
published at IJCNN 2020 and reproduced in Chapter 2 and Chapter 4.

∙ TOZADORE, DANIEL C. ; PINTO, ADAM H. M. ; RANIERI, CAETANO M. ; BATISTA,
MURILLO R. ; ROMERO, ROSELI A. F. . ”Tablets and humanoid robots as engaging
platforms for teaching languages”. In: 2017 Latin American Robotics Symposium (LARS)
and 2017 Brazilian Symposium on Robotics (SBR), 2017, Curitiba. 2017 Latin American
Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), 2017.
p. 1.

∙ MOREIRA PINTO, ADAM HENRIQUE ; MAZZONI RANIERI, CAETANO ; VIN-
CENTIN NARDARI, GUILHERME ; CARNIETO TOZADORE, DANIEL ; FRANCELIN
ROMERO, ROSELI APARECIDA . ”Users’ Perception Variance in Emotional Embodied
Robots for Domestic Tasks”. In: 2018 Latin American Robotic Symposium, 2018 Brazilian
Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE),
2018, Joao Pessoa. 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium
on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), 2018. p. 476.

∙ MAZZONI RANIERI, CAETANO; VICENTIM NARDARI, GUILHERME ; MOREIRA
PINTO, ADAM HENRIQUE ; CARNIETO TOZADORE, DANIEL ; FRANCELIN
ROMERO, ROSELI APARECIDA . ”LARa: A Robotic Framework for Human-Robot
Interaction on Indoor Environments”. In: 2018 Latin American Robotic Symposium, 2018
Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education
(WRE), 2018, Joao Pessoa. 2018 Latin American Robotic Symposium, 2018 Brazilian
Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE),
2018. p. 376.
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∙ TOZADORE, DANIEL ; RANIERI, CAETANO ; NARDARI, GUILHERME ; GUIZILINI,
VITOR ; ROMERO, ROSELI . ”Effects of Emotion Grouping for Recognition in Human-
Robot Interactions”. In: 2018 7th Brazilian Conference on Intelligent Systems (BRACIS),
2018, Sao Paulo. 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), 2018.
p. 438.

∙ APARECIDO GARCIA, FELIPE ; MAZZONI RANIERI, CAETANO ; APARECIDA
FRANCELIN ROMERO, ROSELI . ”Temporal Approaches for Human Activity Recogni-
tion Using Inertial Sensors”. In: 2019 Latin American Robotics Symposium (LARS), 2019
Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education
(WRE), 2019, Rio Grande. 2019 Latin American Robotics Symposium (LARS), 2019
Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education
(WRE), 2019. p. 121.

∙ RANIERI, CAETANO M.; VARGAS, PATRICIA A. ; ROMERO, ROSELI A. F. . ”Un-
covering Human Multimodal Activity Recognition with a Deep Learning Approach”. In:
2020 International Joint Conference on Neural Networks (IJCNN), 2020, Glasgow. 2020
International Joint Conference on Neural Networks (IJCNN), 2020. p. 1.

∙ RANIERI, CAETANO M.; MOIOLI, RENAN C. ; ROMERO, ROSELI A. F. ; DE
ARAUJO, MARIANA F. P. ; DE SANTANA, MAXWELL BARBOSA ; PIMENTEL,
JHIELSON M. ; VARGAS, PATRICIA A. . ”Unveiling Parkinson’s Disease Features from
a Primate Model with Deep Neural Networks”. In: 2020 International Joint Conference on
Neural Networks (IJCNN), 2020, Glasgow. 2020 International Joint Conference on Neural
Networks (IJCNN), 2020. p. 1.

Two papers were accepted and published at peer-reviewed journals. The first of them,
which described an important part of the work developed here and is reproduced in Chapter 3, was
published to the Sensors journal by MDPI. The second one, co-authored during the scholarchip
period at Heriot-Watt University, was published to Frontiers in Neurorobotics. The references
are reproduced as follows.

∙ RANIERI, CAETANO MAZZONI; MACLEOD, SCOTT ; DRAGONE, MAURO ; VAR-
GAS, PATRICIA AMANCIO ; ROMERO , ROSELI APARECIDA FRANCELIN . ”Ac-
tivity Recognition for Ambient Assisted Living with Videos, Inertial Units and Ambient
Sensors”. SENSORS, v. 21, p. 768, 2021.

∙ PIMENTEL, JHIELSON M.; MOIOLI, RENAN C.; DE ARAÚDO, MARIANA F. P.;
RANIERI, CAETANO M.; ROMERO, ROSELI A. F.; BROZ, FRANK; VARGAS, PA-
TRICIA A. . ”Neuro4PD: An Initial Neurorobotics Model of Parkinson’s Disease”. FRON-
TIERS IN NEUROROBOTICS, 2021.
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Two preprints have been uploaded to arXiv, and are currently being submitted to peer-
reviewed journals. Both of them have been included to the collection of papers provided in this
thesis (see Chapter 4 and Chapter 5). The references are listed as follows.

∙ RANIERI, CAETANO M.; PIMENTEL, JHIELSON M.; ROMANO, MARCELO R.;
ELIAS, LEONARDO A.; ROMERO, ROSELI A. F.; LONES, MICHAEL; DE ARAUJO,
MARIANA F. P.; VARGAS, PATRICIA A.; MOIOLI, RENAN C. . ”A Data-Driven
Biophysical Computational Model of Parkinson’s Disease based on Marmoset Monkeys”.
arXiv preprint arXiv:2107.12536, 2021.

∙ RANIERI, CAETANO M.; MOIOLI, RENAN C.; VARGAS, PATRICIA A.; ROMERO,
ROSELI A. F. . ”A Neurorobotics Approach to Behaviour Selection based on Human
Activity Recognition”. arXiv preprint arXiv:2107.12540, 2021.
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C
OTHER ACTIVITIES

During the development of the project described in this thesis, the author participated on
the following academic events:

∙ XXI Congresso Brasileiro de Automatica (CBA), by 3rd to 7th of October 2016, at the
Federal University of Espirito Santo, Vitoria, ES, Brazil.

∙ Data Analysis in HRI Experiments, by 24th of October 2016, lectured by Gabriele Trovato,
at the University of Sao Paulo, Sao Carlos campus.

∙ III Workshop do Centro de Robótica de Sao Carlos, by 27th of October 2016, at the
University of Sao Paulo, Sao Carlos campus.

∙ Sao Paulo School of Advanced Science on Smart Cities, by 24th of July to 4th of August
2017, at the University of Sao Paulo, Sao Paulo campus.

∙ VII Brazilian Conference on Intelligent Systems (BRACIS), by 22nd to 25th of October
2018, at IBM Brasil, Sao Paulo, SP.

∙ XV IEEE Latin America Robotics Symposium, by 6th to 10th of November 2018, at Joao
Pessoa, PB, Brazil.

∙ The Robotics Lab Research Open Day 2019, by 21st of June 2019, at Heriot-Watt Univer-
sity, Edinburgh campus.

∙ The Ambient Assisted Living (AAL) Summer School, sponsored by the Scottish Informat-
ics and Computer Science Alliance (SICSA), by 6th to 8th of August 2019, at Heriot Watt
University, Edinburgh campus.

∙ Tutorial on "Cellular-Automata (CA) Models in Autonomous Robotics: Development and
Trends", by 7th and 8th of August 2019, lectured by professor Gina Oliveira, at Heriot-Watt
University, Edinburgh campus.
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∙ IEEE World Congress on Computational Intelligence (WCCI) 2020, by 19th to 24th of
June 2020, in Glasgow, Scotland, with online participation due to the COVID-19 pandemic.

The author participated to the Teaching Improvement Program (PAE), actuating as a
teaching assistant of the subject "Neural Networks" ministred by professor Roseli A. F. Romero,
to both undergraduate and graduate students, at ICMC-USP. This participation was performed in
the second semester of 2017, 2018, and 2020.
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