
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Embedding Propagation over Heterogeneous Information
Networks

Paulo Ricardo Viviurka do Carmo
Dissertação de Mestrado do Programa de Pós-Graduação em Ciências
de Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Paulo Ricardo Viviurka do Carmo

Embedding Propagation over Heterogeneous Information
Networks

Dissertation submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Master in Science. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Ricardo Marcondes Marcacini

USP – São Carlos
December 2022

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

V858e
Viviurka do Carmo, Paulo Ricardo
 Embedding Propagation over Heterogeneous
Information Networks / Paulo Ricardo Viviurka do
Carmo; orientador Ricardo Marcondes Marcacini. --
São Carlos, 2022.
 103 p.

 Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2022.

 1. Embedding propagation. 2. Network embedding.
3. Heterogeneous information network. I. Marcondes
Marcacini, Ricardo, orient. II. Título.

Paulo Ricardo Viviurka do Carmo

Propagação de Embeddings em Redes Heterogêneas de
Informação

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Ricardo Marcondes Marcacini

USP – São Carlos
Dezembro de 2022

Dedico este trabalho a todas as pessoas que me quiseram bem,

principalmente àqueles que me apoiaram em algum momento da minha vida.

ACKNOWLEDGEMENTS

Agradeço primeiramente aos meus pais Roberto Aparecido do Carmo e Lucia Viviurka
do Carmo por me apoiarem e me proverem o privilégio de continuar os meus estudos;

Ao meu irmão Danilo Augusto Viviurka do Carmo por, ao crescer comigo, me ajudar a
me tornar quem eu sou.

Ao meu orientador Dr. Ricardo Marcondes Marcacini por todo o apoio durante o
mestrado, me orientando e me ajudando com tudo o que precisei durante o mestrado, sempre
prestativo e atencioso.

Aos meus colegas de laboratório Ivan Filho e ngelo Mendes pelas colaborações e parceria
nas disciplinas durante o mestrado.

Aos amigos Renan, André, Alex, Gabriel, João e Mariana que me ajudaram em algum
momento, seja me escutando falar animado do meu projeto ou desabafando.

Ao meu antigo orientador Sandro Rautenberg que me ensinou a apreciar a pesquisa e me
ajudou a iniciar essa jornada.

Aos meus supervisores do estágio internacional Edgard Marx e Prof. Dr. Thomas
Riechert por me proporcionarem essa oportunidade de pesquisar em um projeto interessante e de
conhecer um outro ambiente de pesquisa e me imergir em outra cultura.

A Capes (processo número 88887.513429/2020-00) pelo apoio financeiro, me proporcio-
nando ter dedicação exclusiva ao projeto de mestrado.

“Nós vivemos em uma ilha cercada por um mar de ignorância.

Conforme nosso conhecimento cresce, o mesmo acontece com a costa da nossa ignorância.”

(John Archibald Wheeler)

ABSTRACT

DO CARMO, P. R. V. Embedding Propagation over Heterogeneous Information Networks.
2022. 100 p. Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2022.

In order to use text data in machine learning tasks, they must be cleaned and transformed to a
structured representation. Recently, neural embeddings have been used to encode text data in low
dimensionality latent spaces. For example, BERT pre-trained neural language models can posi-
tion words, sentences, or documents with fixed dimension embedding vectors. Another way to
model text data is to use heterogeneous information networks. That structure models multi-typed
data respecting relations and characteristics. Heterogeneous information networks also have their
challenges for use with off-the-shelf machine learning methods. Network embedding methods
allow the extraction of embedding vectors for each node in an information network. However,
these methods usually use only network topology, and sometimes, metadata for the relationships.
Embedding propagation methods allow previously generated features with pre-trained methods
to be propagated through all network nodes. Information networks that contain some nodes with
textual information can use pre-trained neural language models features for propagation. This
master’s dissertation presents an embedding propagation method for heterogeneous information
networks with some textual nodes. The proposed method combines pre-trained neural language
models to the topology of heterogeneous information networks through a regularization function
to generate embedding for non-textual nodes. Three papers on use case experiments to evaluate
and validate the proposed method are presented, where one paper extends the experiments from
another: (1) Embedding Propagation over Heterogeneous Event Networks presents the results of
the proposed method for event analysis where it achieved the best performance by at least 3%
MRR@k in all scenarios; (2) TRENCHANT: TRENd prediCtion on Heterogeneous informAtion

NeTworks extends Commodities trend link prediction on heterogeneous information networks

where the proposed method is evaluated against network embeddings in the task of predicting
price trends for commodities, and it achieved the best performance in some scenarios, where
its best results 8% better F1 when predicting weekly soybean price trends; and (3) NatUKE:

Benchmark for Natural Product Knowledge Extraction from Academic Literature that evaluates
the use of network embedding methods for unsupervised knowledge extraction and the proposed
method achieved the best performance in most scenarios, more notably it achieved 43% more
Hits@1 than baselines when extraction the isolation process type to obtain a molecule from a
certain species. The presented papers show, in three different use cases and experiments, that
the proposed method achieves the research goals of propagating the initial embedding from
some textual nodes to the remaining nodes in a heterogeneous information network and allowing
dynamic insertion of new nodes in the embedding propagation process.

Keywords: Embedding propagation, Network embedding, Heterogeneous information network.

RESUMO

DO CARMO, P. R. V. Propagação de Embeddings em Redes Heterogêneas de Informação.
2022. 100 p. Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2022.

Dados textuais precisam ser limpos e transformados para representações estruturadas antes de
serem utilizados em cenários de aprendizado de máquina. Recentemente, embeddings estão
sendo utilizadas para representar dados textuais. Por exemplo, o modelo de linguagem neurais
pré-treinado BERT podem posicionar palavras, sentenças ou textos em embeddings dentro de
um espaço vetorial de dimensão fixa. Outra forma de modelar dados textuais é a utilização de
redes heterogêneas de informação. Essa estrutura permite a modelagem de relações complexas
por meio de nós e conexões de dados textuais de diferentes domínios com conexões explícitas.
Por outro lado, redes de informação possuem seus próprios desafios quanto a utilização direta
em métodos tradicionais de aprendizado de máquina. Métodos de network embedding podem ser
utilizados para gerarem embeddings de nós com relação a topologia da rede, tipos de relações
e até mesmo rótulos. Entretanto esses métodos normalmente exploram apenas a topologia, e
em alguns casos, metadados dos relacionamentos em uma rede. Métodos de propagação de
embeddings foram desenvolvidos com o objetivo de distribuir vetores de características gerados
a partir de outros modelos. Para redes de informação que possuem alguns nós com dados
textuais modelos de linguagem pré-treinados podem ser propagados respeitando a topologia e
outros dados das redes para a geração de uma embedding final. Esta dissertação de mestrado
apresenta um método de propagação de embeddings para redes heterogêneas de informação que
representam dados textuais. O método proposto propaga as embeddings de nós textuais por toda
a rede por meio de uma função de regularização. Três artigos de caso de uso que avaliam e
validam o método também são apresentados: (1) Embedding Propagation over Heterogeneous

Event Networks mostra o desempenho do método proposto para análise de eventos onde sua
performance supera a literatura por mais de 3% MRR@k em todos os cenários; (2) TRENCHANT:

TRENd prediCtion on Heterogeneous informAtion NeTworks que é uma extensão de Commodities

trend link prediction on heterogeneous information networks onde o método proposto é avaliado
em relação a métodos de network embedding da literatura na tarefa de predição de preços de
commodities e atinge performance superior a literatura em alguns cenários, onde obteve 8%
melhor F1 predizendo trends de preços semanais da soja; e (3) NatUKE: Benchmark for Natural

Product Knowledge Extraction from Academic Literature que avalia a utilização de métodos de
network embedding para a extração de conhecimento não-supervisionada e o método proposto
obteve a melhor performance na maior parte dos cenários, sendo que em sua melhor performance
obteve 43% mais Hits@1 que a literatura extraindo o tipo de isolamento necessário para obter
certa molécula de uma espécia de planta. Esses artigos mostram por meio de experimentos e

resultados que o método proposto, ao utilizar uma função de regularização para a propagação,
atinge os objetivos de pesquisa de propagar uma embedding inicial de alguns nós com dados
textuais para os nós restantes de uma rede heterogênea de informação e permitir a inserção
dinâmica de novos nós ao processo de propagação de embeddings.

Palavras-chave: Propagação de embeddings, Network embedding, Redes heterogêneas.

LIST OF FIGURES

Figure 1 – Representation of a HIN that contains data related to events (event, date,
location, actor, and theme). Source: authors. 22

Figure 2 – Text mining organization cycle. Translated and adadpted from: (REZENDE,
2003). 28

Figure 3 – PCA reduction of word embeddings from capitals and countries. Adapted
from: (MIKOLOV et al., 2013). 30

Figure 4 – Example of a skip-gram model. Adapted from: (MIKOLOV et al., 2013). . 31

Figure 5 – Architecture encoder-decoder of a transformer. The encoder has N = 6
layers, where each sublayer has an attention head and a feedforward neural
network for maintaining embedding positioning. The decoder also has N = 6
layers, but each sublayer has an extra attention head, re-positioned to avoid
overfitting by learning word position. Adapted from: (VASWANI et al., 2017). 32

Figure 6 – Illustration of the pre-training and fine-tuning architectures of BERT. For pre-
training, a bi-direction transformer is initialized and trained. This transformer
is used to generate a general embedding for each input. Fine-tuning is
initialized with the pre-training values and adds layers according to the task
and necessities of the context training. Adapted from: (DEVLIN et al., 2018). 33

Figure 7 – Illustration of the pipeline of the proposed embedding propagation method,
EPHEN. Source: authors. 52

Figure 8 – A visualization of the start-up SBERT embedding insertion in the heteroge-
neous information network. Source: authors. 53

Figure 9 – A visualization of EPHEN’s execution. Each node type has a different
color, and the opaque BERT icon defines the start-up embedding. The final
embeddings are defined by a translucent BERT icon, which shows they were
adjusted by the network’s topology and types of relations. Source: authors. . 54

Figure 10 – Step by step demonstration of the regularization function used for embedding
propagation. Source: authors. 55

Figure 11 – Illustration of the fine-tuning using node similarity pipeline. Source: authors. 56

Figure 12 – Illustration of a graph completion task solved using node similarity on
EPHEN’s embeddings. Source: authors. 57

Figure 13 – An example of event analysis from heterogeneous networks. The network
maintains complex relationships between the different event components.
Network embeddings allow link prediction tasks and general queries to deter-
mine event predecessors of a target event. Source: (CARMO; MARCACINI,
2021). 62

Figure 14 – t-SNE plots for EPHEN and three other baselines representing different
network embedding approaches. Source: (CARMO; MARCACINI, 2021). . 66

Figure 15 – Visual representation of the proposal. The event components are extracted
from news headlines and metadata. The trend symbolizes the price trend
of a commodity at the end of the period the news was published. Source:
(CARMO; FILHO; MARCACINI, 2021; CARMO; FILHO; MARCACINI,
2022). 73

Figure 16 – Box plots for scenario #3 with the metrics: macro and class-specific F1,
precision, and recall. Source: (CARMO; FILHO; MARCACINI, 2022). . . 78

Figure 17 – Average execution times for all algorithms on all executions for each scenario
in seconds. Source: (CARMO; FILHO; MARCACINI, 2022). 79

Figure 18 – Example of the proposed structure for the KG. 84
Figure 19 – Dynamic evaluation stages for evaluation. Source: (CARMO et al., 2023). . 85

LIST OF TABLES

Table 1 – Overview of the heterogeneous event networks used throughout the experiments. 62

Table 2 – Average MRR@k score to the link prediction scenario event → event. The
best results are bold. 64

Table 3 – Average MRR@k score to the link prediction scenario event → location. The
best results are bold. 64

Table 4 – Average MRR@k score to the link prediction scenario event → actor. The best
results are bold. 65

Table 5 – The average execution times and standard deviation for network embedding
learning and link prediction tasks are in seconds. The lowest values are bold. 65

Table 6 – Average MRR@k score and standard deviation to the link prediction scenario
event → location, with dynamic insertion to the embedding propagation. The
highest average score and lowest standard deviation values are bold. 65

Table 7 – Average MRR@k score and standard deviation to the link prediction scenario
event → actor, with dynamic insertion to the embedding propagation. The
highest average score and lowest standard deviation values are bold. 66

Table 8 – Overview of heterogeneous event networks used in the experimental evaluation. 74

Table 9 – Overview of scenario configurations with train and test sizes. 75

Table 10 – Overview of class balance for each scenario on train/test splits. 75

Table 11 – Trend prediction performance for scenarios #1, #3, #5 and, #7 on three metrics
(macro F1, macro precision (pre) and, macro recall (rcl)). The highest scores
are in bold. 76

Table 12 – Trend prediction performance for scenarios #2, #4, #6 and, #8 on three metrics
(macro F1, macro precision (pre) and, macro recall (rcl)). The highest scores
are in bold. 76

Table 13 – Trend prediction performance for all scenarios on two metrics (big_down F1
(bd), big_up F1, (bu)). The highest scores are in bold. 77

Table 14 – Overview of the number of distinct values per property. 83

Table 15 – Results table for extracting: compound name (C), bioactivity (B), specie (S),
collection site (L), and isolation type (T). The results consider different final k

values corresponding to two different rules. The best results for each extraction
are bold. 86

Table 16 – Execution times table for extracting: compound name (C), bioactivity (B),
specie (S), collection site (L), and isolation type (T). All time executions were
measured in seconds. The lowest time executions for each extraction are bold. 87

CONTENTS

1 INTRODUCTION . 21
1.1 Context and initial remarks . 21
1.2 Research challenges . 23
1.3 Research goals . 23
1.4 Main contributions and results . 23
1.5 Dissertation organization . 25

2 THEORETICAL FOUNDATION AND RELATED WORKS 27
2.1 Text mining . 27
2.1.1 Pre-processing . 28
2.1.2 Pattern extraction . 34
2.1.3 Post-processing . 36
2.2 Information network representation learning 38
2.2.1 Regularization methods . 39
2.2.2 Network embedding methods . 43
2.3 Applications . 46
2.4 Concluding remarks . 50

3 EMBEDDING PROPAGATION OVER HETEROGENEOUS INFOR-
MATION NETWORKS . 51

3.1 Motivation . 51
3.2 Method: Embedding propagation over heterogeneous networks

(EPHEN) . 52
3.2.1 Initial text embedding using BERT . 52
3.2.2 Embedding propagation . 53
3.2.3 SSN-based BERT fine-tuning . 55
3.2.4 Evaluation criteria . 57

4 EMBEDDING PROPAGATION OVER HETEROGENEOUS EVENT
NETWORKS . 59

4.1 Initial remarks . 59
4.2 Embedding Propagation over Heterogeneous Event Networks . . . 61
4.3 Experiment evaluation . 62
4.3.1 Datasets . 62

4.3.2 Baselines . 62
4.3.3 Evaluation Criteria . 63
4.3.4 Results and discussions . 63
4.4 Concluding remarks . 67

5 COMMODITIES TREND PREDICTION ON HETEROGENEOUS
INFORMATION NETWORKS . 69

5.1 Initial remarks . 69
5.2 Related Work . 72
5.3 Trend prediction on heterogeneous information networks 72
5.3.1 Event Modeling with Heterogeneous Networks 72
5.3.2 Trend Prediction . 73
5.4 Experimental evaluation . 74
5.4.1 Datasets . 74
5.4.2 Evaluation criteria and experiment setup 75
5.4.3 Results and Discussion . 75
5.5 Concluding remarks . 79

6 NATUKE: NATURAL PRODUCT KNOWLEDGE EXTRACTION
FROM ACADEMIC LITERATURE 81

6.1 Initial remarks . 81
6.2 Related works . 82
6.3 Problem definition . 83
6.3.1 Dataset curation . 83
6.3.2 Experimental setup & evaluation criteria 83
6.3.3 Models & Frameworks . 85
6.4 Experimental results . 86
6.5 Concluding remarks . 87

7 CONCLUSION . 89
7.1 Contributions and scientific innovations 89
7.2 Publications . 91
7.3 Limitations and future work . 91

BIBLIOGRAPHY . 93

21

CHAPTER

1
INTRODUCTION

1.1 Context and initial remarks

Machine accessible text data has been exponentially growing with the development of
the internet (REZENDE, 2003; AGGARWAL; ZHAI, 2012). However, text data is not structured,
because humans are able to consume information from unstructured data sources, meanwhile
machines can’t do the same automatically. For it to be used in real-world applications like
predicting who is involved with a certain event or extracting meaningful information from
technical texts, it must first be cleaned and transformed to a structured representation for machine
learning (ML) (AGGARWAL, 2018).

Usually, textual data is processed and mapped into vectors before ML is applied. The
most basic technique for processing text is called Bag of Words (BoW), and this representation
creates a vector with the count of tokens for each document in a textual dataset (AGGARWAL;
ZHAI, 2012). The BoW technique creates sparse vectors with the size of the lexicon, which is
inefficient when processing large textual datasets. In order to circumvent this challenge Mikolov
et al. (2013) proposed a method called Word2Vec that uses ML and the statistical knowledge of
embeddings to generate dense vectors that represent words. Even though Word2Vec is a powerful
representation method, pre-trained in billions of texts, its embedding vectors can not differentiate
words with more than one meaning in different contexts. To deal with this shortcoming Devlin et

al. (2018) proposed a method that uses bi-directional transformers networks to embed context
into the dense vectors.

Another way to model text in ML is to use heterogeneous information networks (HINs) or
knowledge graphs (KGs). These data structures allow complex multi-typed data to be organized
and stored with its relations. For example, the authors Rossi, Lopes and Rezende (2014) use a HIN
that connects each document to their tokens to model a bi-partite HIN. They also allow domain
data to be modeled with its relations. For example, events can be extracted from news texts,

22 Chapter 1. Introduction

and HINs can be used to model their structure, like names of places, people, and organizations
as objects from a HIN (SHI et al., 2016; CHEN; LI, 2020). Figure 1 presents a heterogeneous
information network of event data extracted from news text.

Figure 1 – Representation of a HIN that contains data related to events (event, date, location, actor, and
theme). Source: authors.

Although HINs allow different data types to be modeled explicitly, they also impose
challenges for use in ML tasks like clustering, classification and others. Network embedding
methods circumvent these difficulties by generating embedding vectors that represent the nodes
within a fixed dimension vector space while considering topology and even types of relations
from HINs (CHANG et al., 2015; HUANG; MAMOULIS, 2017; SETTY; HOSE, 2018; CUI et

al., 2018; WU et al., 2020). The embedding vectors then allow off-the-shelf ML methods to be
applied when considering HINs nodes directly.

Even though network embedding methods allow the generation of dense vectors, the
more complex structure of HINs limits the usage of pre-trained embedding algorithms, which
reduces performance on smaller networks. Embedding propagation methods can use pre-existing
embedding features available for some nodes in a HIN to generate embeddings for all nodes
(DURAN; NIEPERT, 2017; YANG; ZHANG; HAN, 2019; HAMILTON; YING; LESKOVEC,
2017). For textual data neural embedding propagation methods can be used as startup embedding
for propagation (MIKOLOV et al., 2013; DEVLIN et al., 2018). This way pre-trained language
models can be used to generate features that embed general knowledge from training in massive
corpora and maintain a constant vector space that enables dynamic updates within an ML-based
application.

This master’s dissertation proposes an embedding propagation method for HINs that
contain textual data in some objects. More specifically, the embedding propagation method
proposed is based on a regularization function that propagates a contextual text embedding
from a neural language model called Bidirectional Encoder Representations from Transformers
(BERT) (DEVLIN et al., 2018) to all nodes on the HIN. BERT’s contextual embeddings provide
both contextual positional embeddings and general knowledge from the pre-training. BERT’s

1.2. Research challenges 23

architecture also allows for model variations and fine-tunings that enable multilingual processing
and even more context recognition.

1.2 Research challenges
Despite its benefits, HINs do not solve all the challenges of processing text data. So,

before presenting the research goals of proposing an embedding propagation method it is
necessary to understand these challenges. They are summarized below:

• HINs complexity and flexibility for modeling data adds complexity to extracting informa-
tion from the relations and their metadata. This extra complexity brings high computational
costs and reduces the number of off-the-shelf methods that can be used. Personalized
methods also need much tuning to achieve good performance on different networks.

• Network embedding methods are usually tailored for homogeneous information networks,
thus ignoring crucial metadata when processing HINs. Network embedding methods
also require tuning hyperparameters, mainly when the method aims to extract metadata-
like types of relations from heterogeneous information networks. Traditional network
embedding methods also ignore text nodes that might hold complementary information.
They also do not allow updates to the embeddings on the fly, requiring the entire dataset to
be recalculated.

1.3 Research goals
This master’s dissertation presents an embedding propagation method that propagates

the initial embedding from some textual nodes to the remaining nodes in a HIN and allows the
dynamic insertion of new nodes in the embedding propagation process.

More specifically, the embedding propagation process must use initial textual embeddings
that will enrich topology embeddings and adapt to them. This method must also maintain a fixed
embedding space, allowing for dynamic updates whenever new data is collected and added to
the HIN.

The capability of propagation text embeddings to generate network embeddings should
allow better performance in comparison to network embedding methods. Also, the dynamic
insertion capability must ensure better real world usability by reducing execution times when
using the proposed method for inference.

1.4 Main contributions and results
The main contributions of this dissertation are:

24 Chapter 1. Introduction

• Embedding Propagation over Heterogeneous Event Networks (EPHEN) is the intro-
duced embedding propagation method based on a regularization function. The method was
published in Carmo and Marcacini (2021) with an evaluation setup compared to other net-
work embedding methods. An evaluation was conducted in an event dataset from GDELT
project1 that compared EPHEN’s embedding vectors to other network embedding methods
in a link prediction task. The paper also links the source code and the used datasets. In the
end, the published paper shows that EPHEN is dynamically updatable thanks to using a
BERT model to start the embedding propagation process.

• Commodities trend link prediction on heterogeneous information networks is a use
case paper published in Carmo, Filho and Marcacini (2021). The paper compares an
embedding propagation method called Trend Prediction in Heterogeneous Information
Networks (TPHIN) to other network embedding methods in a trend node prediction
scenario. Which is the proposed method’s name for this paper. The paper shows how
embedding propagation can perform well in a real-world scenario. The paper also provides
source code and the information networks used in the experiments.

• TRENCHANT: TRENd prediCtion on Heterogeneous informAtion NeTworks is
an extension of the previous paper, accepted but not yet published in Carmo, Filho and
Marcacini (2022). In this paper TPHIN is named TREHNCHANT and its structure is
refined and extended with a BERT fine-tuning pipeline. The fine-tuning pipeline proposed
uses the similarity between central event nodes within the network to regularize similarity
between phrases on the BERT model, adding knowledge from the HIN topology to the
language model. The results for fine-tuned TPHIN show different behavior than regular
TPHIN, indicating that fine-tuning the BERT model starting the embeddings can improve
the performance of the entire embedding propagation model in some cases. This work also
provides open source code and uses the same dataset as the previous paper in a different
experimental setup.

• NatUKE: Benchmark for Natural Product Knowledge Extraction from Academic
Literature compares EPHEN from the paper Carmo and Marcacini (2021) to other
network embedding methods in an information extraction task. This benchmark work
evaluates these methods for information extraction on academic papers and is accepted but
not yet published in Carmo et al. (2023). All the methods are compared in a dynamically
evolving knowledge graph completion scenario. The nodes of interest represent different
characteristics of chemical compounds like compound name or bioactivity, and their
automatic extraction is desired to update a chemical network in the future. EPHEN
achieved the best performance in most tasks meaning that the embedding propagation
method can be used for different domains and tasks.

1 Accessible at: <https://www.gdeltproject.org>.

https://www.gdeltproject.org

1.5. Dissertation organization 25

1.5 Dissertation organization
This master’s dissertation was organized as follows:

• Chapter 1 presents the context and motivation of this master’s dissertation. Research
challenges and goals are also presented to further contextualize the domain and objectives.
Main contributions and results are also shown to give further context to the dissertation’s
text.

• Chapter 2 presents basic concepts involving text mining and information network represen-
tation learning. The text mining concepts further explain pre-processing, pattern extraction,
and post-processing of machine learning techniques applied to text mining. In information
network representation, learning regularization methods and network embedding are ex-
plained. This chapter also presents related works in network embeddings, regularization
event analysis, and graph completion.

• The proposed method is presented in Chapter 3 together with the knowledge graph
completion techniques used to evaluate the method in different tasks.

• Chapter 4 presents the paper where the proposed embedding propagation method is applied
to event analysis tasks.

• Chapter 5 presents the extension of a paper that was the initial use case experiment. The
proposed embedding propagation method is applied to a trend prediction of commodities
prices. These works use event data related to commodities and the time series to their
prices.

• Chapter 6 presents the experiment and results of a benchmark of information extraction
of chemical compounds from academic data sources using network embedding methods,
including the proposed embedding propagation method. This chapter shows that the
proposed embedding propagation method is versatile. It also presents details of the three
month guest research work in the Hochschule für Technik Wirtschaft und Kultur (HTWK)
at Leipzig, Germany.

• Chapter 7 concludes this master’s dissertation by discussing the contributions and innova-
tions achieved throughout the research. It also presents publications and collaborations
realized during the master’s. And finally, it presents some limatations and possible future
work for this research.

27

CHAPTER

2
THEORETICAL FOUNDATION AND

RELATED WORKS

This Chapter presents the basic concepts of text mining, highlighting some use cases for
extracting different data types. It also presents some HIN representation learning techniques,
like regularization and network embedding. At last, it presents some related works using these
concepts and methods to position this dissertation within these research areas.

2.1 Text mining
Text data has grown exponentially with news and social networks on the internet

(REZENDE, 2003; AGGARWAL; ZHAI, 2012). Thanks to that growth, text mining techniques
and methods development have also been increasing. Rezende (2003) describes a text mining
organization cycle that allows the process to be implemented in different datasets. This cycle is
represented in Figure 2, and the steps can be described as:

• Domain Knowledge: it is the first step where the researcher is expected to conduct an
initial study of the text’s domain within the dataset as well as other sources and related
works. The obtained knowledge is then used for defining the objectives and validate the
obtained results according to these expectations;

• Pre-processing: in this second step, the researcher uses the obtained domain knowledge
to implement techniques like text cleaning and normalization as well as to choose a
representation model like information networks. This step is further explained in the
subsection 2.1.1;

• Pattern extraction: in the third step, the researcher applies methods like statistical analysis
and machine learning to extract patterns within the dataset. This step is further explained
in the subsection 2.1.2;

28 Chapter 2. Theoretical foundation and related works

Figure 2 – Text mining organization cycle. Translated and adadpted from: (REZENDE, 2003).

• Post-processing: in the fourth step, the research must validate the quality and performance
of the pattern extraction step. The researcher must use the correct sampling methods and
performance metrics for machine learning. This step is further explained in the subsection
2.1.3;

• Knowledge utilization: in this step, the validated information extracted is used by the
researcher and other stakeholders to utilize the knowledge obtained from the text. This
knowledge can be used for modeling new text mining experiments within this organization
cycle.

2.1.1 Pre-processing

In text mining, the pre-processing step aims to prepare and model the text data before
the pattern extraction step. This process is usually modeled and executed before the pattern
extraction as a whole since text data is sparse, increasing the computational costs from this step.

Early text mining works use modeling techniques like Bag of Words (BoW). More
recently, neural language models that generate text embeddings like Word2Vec (MIKOLOV
et al., 2013) have been used for text mining modeling since they allow text to be represented
within a fixed dimension representation space. Another way of generating text embeddings is by
using contextual neural language models like BERT (DEVLIN et al., 2018) since its structure
allows for dynamic context and multilingual models. This dissertation focuses primarily on the
use of information networks to add further contextual data to text data, which is discussed in

2.1. Text mining 29

Section 2.2.

BoW

The BoW representation creates a n×d matrix, where n is the size of the lexicon, and
d is how many documents make the dataset. Each document is then represented by a sparse
vector with the appearance count of each token in that document (AGGARWAL; ZHAI, 2012;
AGGARWAL, 2018; ZONG; XIA; ZHANG, 2021). This representation shows how sparse text
data is since each vector will have the dimension of the lexicon, and most tokens will not be
present in all documents.

Text mining operations, that may be used for other text mining scenarios, can be used to
deal with the shortcomings of a traditional BoW (AGGARWAL; ZHAI, 2012):

• punctuation and stopwords removal: this technique aims to reduce the lexicon by removing
unnecessary tokens from the vectors like punctuations, articles, and prepositions;

• stemming: is the technique of transforming all conjugations of the verbs to their radical,
thus reducing dimensions by unifying words;

• lemmatization: is the technique of transforming all conjugations of the verbs to their
infinitive form, thus reducing dimensions by unifying words;

• TF-IDF: instead of using the token frequency, the researcher must use the term frequency in
the document divided by the number of documents that contain said token. This technique
makes tokens that appear in many documents be penalized since they do not provide much
discriminatory context when appearing in many documents.

Within a BoW representation, these operations help to reduce the dimension size but
do not solve all the problems with the BoW representation. The vectors are still sparse, and
different datasets will have different dimension sizes. Word embeddings allow the generation of
fixed dimension dense vectors for each word (or document or sentence) (MIKOLOV et al., 2013;
GHAG; SHAH, 2015; DEVLIN et al., 2018).

Word embeddings

Word embeddings are dense vectors generated through neural models for textual data
representation. For example, Word2Vec generates dense vectors for each word in a phrase
(MIKOLOV et al., 2013). Figure 3 shows that these vectors allow each word to be positioned
within the same vector space. This capability also allows for vector operation with words like:
(king−man)+woman ≈ queen.

Word2Vec and some other word embedding models are pre-trained in massive corpora.
The structure Word2Vec pre-trains is called skip-gram. Figure 4 shows skip-gram’s structure.

30 Chapter 2. Theoretical foundation and related works

Figure 3 – PCA reduction of word embeddings from capitals and countries. Adapted from: (MIKOLOV
et al., 2013).

For example, skip-gram models learn by predicting the probability of a set of words w1, ...,wT

appearing when a specific word is an input. This training allows each word to receive a vector of
"context" related to the corpora used in pre-training. The probabilities are obtained by applying a
softmax activation function, as shown in Equation 2.1.

p(wO|wI) =
exp
(

v
′
wO

⊤vwI

)
∑

W
w=1 exp

(
v′

wO
⊤vwI

) , (2.1)

where vw is the input and v′w the output embedding for the word w. However, this version of the
skip-gram model is not scalable enough to be trained in billions of texts.

In order to allow scalability, the authors utilized a modified softmax equation called
hierarchical softmax (MORIN; BENGIO, 2005). Hierarchical softmax is an approximation of
the softmax through a binary tree. Each word w will have a path L(w) representing its softmax
value and n(w, j) is the j-th on this path. Meanwhile ch(n) represents a child node for any inner
node n. The equation is represented at 2.2, reducing the final complexity to L.

p(w|wI) = π
L(w)−1
j=1 µ

(
[n(w, j+1) = ch(n(w, j))].v

′
n(w, j)⊤vwI

)
(2.2)

The authors of Word2Vec also optimize the instance selection for training the model in a
smaller portion of the lexicon. In this version the probability of p(w|wI) finding the target word
wO gets exchanged for a fake distribution Pn(w) that represents k negative instances that the
model must discriminate (Equation 2.3). So the subequation P(wi) = 1−

√
t

f (wi)
defines how

many words are discarded in order to sample rare and frequent words into training, where f (wi)

is the word frequency and t the threshold.

2.1. Text mining 31

Figure 4 – Example of a skip-gram model. Adapted from: (MIKOLOV et al., 2013).

logσ(v
′
wO

⊤vwI)+
k

∑
i=1

Ewi∼Pn(w)[logσ(−v+wi
′
⊤vwI)] (2.3)

Although Word2Vec is pre-trained on most of the corpora, its embeddings are not
capable of representing context dynamically. The lack of context means that words with multiple
meanings might not be correctly represented in different scenarios. In order to overcome this
limitation, other models for word embeddings have been developed.

The authors developed a model called Embeddings from Language Model (ELMo)
(PETERS et al., 2018). This method uses two Long Short-Term Memory (LSTM) neural
networks to recognize the text sequentially. One LSTM "reads" the text from left to right and the
other from right to left. This technique allows the words to be recognized and have their vectors
positioned according to context.

ELMo’s capability of generating context-aware embeddings allowed it to outperform
other text embeddings in most text mining tasks. However, LSTMs are recurring neural networks,
which makes ELMo less efficient in parallel execution. So Devlin et al. (2018) proposed a
method called Bidirectional Encoder Representations from Transformers (BERT) that uses
Transformers in its neural architecture. Transformers is a neural network architecture that uses
attention mechanism and feedforward neural networks (Figure 5), developed by Vaswani et al.

32 Chapter 2. Theoretical foundation and related works

(2017). They allow for better parallelization and faster training than recurrent neural networks,
like LSTMs.

Figure 5 – Architecture encoder-decoder of a transformer. The encoder has N = 6 layers, where each
sublayer has an attention head and a feedforward neural network for maintaining embedding
positioning. The decoder also has N = 6 layers, but each sublayer has an extra attention head,
re-positioned to avoid overfitting by learning word position. Adapted from: (VASWANI et al.,
2017).

BERT’s transformers architecture allows for more extensive corpora on pre-training and
a deeper contextual embedding than ELMO’s. Transformers also allow another critical character-
istic of BERT: fine-tuning. Figure 6 shows BERT’s pre-training and fine-tuning architectures.
There are also variations on BERT’s basic architecture, allowing for more flexibility between
performance and fast execution. These variations change the number of layers L, the hidden
dimension H (which is also the resulting embedding vector dimension), and A, the amount of
bi-direction attention heads:

1. BERTBASE : L = 12,H = 768,A = 12;

2. BERTLARGE : L = 24,H = 1024,A = 16;

3. DistilBERT : L = 6,H = 512,A = 12.

2.1. Text mining 33

The architectures (1) and (2) are defined by Devlin et al. (2018) while architecture (3) is a
reduced variation modeled, pre-trained, and evaluated to have nearly the same performance by
Sanh et al. (2019).

Figure 6 – Illustration of the pre-training and fine-tuning architectures of BERT. For pre-training, a bi-
direction transformer is initialized and trained. This transformer is used to generate a general
embedding for each input. Fine-tuning is initialized with the pre-training values and adds layers
according to the task and necessities of the context training. Adapted from: (DEVLIN et al.,
2018).

BERT’s pre-training can be performed with two different strategies. The first one is
called, Masked-Language Modeling, where about 15% of the words from the corpora are hidden,
and BERT must learn the word distribution to predict them correctly. The second one is called,
Next Sentence Prediction, where selected phrases A are followed by others B and to every phrase
A′ BERT must find the following correct phrase B′.

Formally, for a token set ti = {t1, ..., tk} within each sequence s = {s1, ...,sn} of a corpora
n, the objective is finding the correct sequence si, as shown in Equation 2.4,

p(ē|ê) =
k

∑
j=1

m j p(t j,c j), (2.4)

where ê is a hidden token in the sequence si, and ē are the masked tokens. The variable m j is 1
when t j is masked, otherwise it is 0. The variable c j represents the context the token t j belongs.

The bi-directional transformers within BERT must learn the distribution p(t,c) of where
the hidden token belongs in the sequence. So, the main equation is a conditional distribution of a
token t in a context c, as shown in 3.1,

p(t|c) = exp(h⊤
c wt)

∑t ′ exp(h⊤
c wt ′)

, (2.5)

where hc is an embedding vector for the context c and wt an embedding vector for the token t. In

∑t ′ exp(h⊤
c wt ′) the context embedding is normalized by all tokens t ′. Finally, BERT outputs two

embedding vectors hc and wt .

34 Chapter 2. Theoretical foundation and related works

After choosing a text representation, the text mining process can advance to the pattern
extraction step.

2.1.2 Pattern extraction

Pattern extraction is critical for text mining. Within this step, the correct technique for
a dataset can learn how to cluster, classify or predict important information from the ever-
growing amount of text data. This dissertation focuses on machine learning (ML) for pattern
extraction since it can be used to find patterns within vector spaces like embeddings. ML takes
advantage of knowledge generalization but must be correctly implemented and maintained to
avoid underfitting and overfitting. Underfitting is when the model cannot learn a pattern due to a
lack of training data or model complexity. Overfitting is when the model learns the particularities
of the training and is not able to generalize to other examples (AGGARWAL, 2018).

ML can be divided into three learning techniques for the models: (1) unsupervised, which
usually clusters or identify patterns without additional data; (2) supervised, which makes use
of a label for each example in the data to classify or predict new data; and (3) semi-supervised,
which can learn patterns like supervised models but do not require the entire training data to be
labeled (AGGARWAL, 2018).

More specifically, this subsection of the dissertation discusses artificial neural networks,
which are used by methods and directly throughout the research. Neural networks are mostly
used for classification, prediction or regression (LI et al., 2018; YANG; ZHANG; HAN, 2019),
but can be also used as encoders or decoders (AGGARWAL, 2018; MIKOLOV et al., 2013;
DEVLIN et al., 2018), which enables their use for representation learning.

The perceptron (ROSENBLATT, 1958) is a neural network architecture for supervised
learning. It learns to generalize in training by correcting errors compared to the labels (ALPAY-
DIN, 2020). Different neural networks can implement different weights, activation functions and
error regularization functions (SATHYA; ABRAHAM, 2013). This subsection will elaborate on a
few functions that can be used to implement a feed-forward neural network known as multilayer
perceptron (MLP) and a recurring neural network known as long short-term memory (LSTM).

MLPs are formed by multiple layers of perceptrons, where each perceptron unit is
connected to all the units on the next layer. Essentially an MLP is formed by three types of layers:
(1) input layer; (2) hidden layers: layers in between that add complexity and the capabilities
to generalize knowledge; and (3) output layer: layer where the desired output is converted to
human-readable information (i.e., probability of a class, continuous number). Each unit contains
a weight and a bias (Equation 2.6), and for the hidden layers and the output layer, an activation
function that enables non-linear calculations (BOURLARD; KAMP, 1988):

unitc j(t) = ∑
u

wc juyu, (2.6)

where every j unity c has a weight w and a bias u for each received input y.

2.1. Text mining 35

• Sigmoid (Equation 2.7): is a non-linear function that generates values between 0 and 1
(HAN; MORAGA, 1995). It is usually used as an activation function in hidden layers for
smaller neural networks where all units must be active at all times. However, it can also be
used in output layers for binary classifications with only one output unit:

F(x) =
2√
π

∫ x

0
e−t2

dt; (2.7)

• ReLU (Equation 5.3): is an activation function that returns the unit value when it is higher
than 0 and 0 for everything else. This activation function is interesting when using deep
neural networks, where it might be more interesting to let it learn when units are not
necessary, meaning that it learns to turn units off (BROWNLEE, 2019):

F(x) = max(0,x); (2.8)

• SoftMax (Equation 2.9): is an activation function usually used in an output layer and it
outputs the probabilities for all units on the output layer (GOODFELLOW; BENGIO;
COURVILLE, 2016). Softmax manages this behavior by being a derivative that considers
the unit’s index:

∂

∂qk

σ(q, i) = σ(i,k)(δik −σ(q,k)) (2.9)

LSTM networks use recurrent structures to create "memory" of patterns within sequential
data inputs. Its memory control units allow the models to learn short and long sequences in
their memory. To achieve this capability LSTM use two gate units (Equation 2.10) together
with a common unit for every temporal step t − 1. These gate units control when a unit can
receive a signal controlin and when to output it controlout to the next layer or keep the value in
the re-currency. In short, an LSTM unit is composed of three smaller units and is then called a
memory cell (HOCHREITER; SCHMIDHUBER, 1997).

controlin j(t) = ∑u win juyu(t −1)
controeout j(t) = ∑u wout juyu(t −1)

(2.10)

These two neural networks make use of a learning technique called back-propagation.
Back-propagation is a supervised learning technique that updates the weights in the units by
applying a minimizing function between the output and the label value for each example or batch
of examples. Usually, the minimizing function is a type of gradient function. For an output ti of
an unit i and a real label oi it updates the unit weight wi j. For example a commonly used gradient
for LSTMs is presented in Equation 5.2 from Williams and Peng (1990) where the time steps
T,T ′ are also considered. However, this gradient function is based on Equation 2.12 and is a
commonly used gradient for MLPs.

∆wEtotal
(T ′,T) =

T

∑
t=T i+1

∆wE(t) → ∆wi j =−α
∂Etotal(T ′,T)

∂wi j
(2.11)

36 Chapter 2. Theoretical foundation and related works

δi = (ti −oi)→ δi =
n0

∑
j=i+1

δiw j,i → ∆wi, j = δio j (2.12)

As discussed in the subsection 2.1.1, LSTM networks are used in the ELMo model.
The BERT model uses transformers, a neural network architecture that contains a feed-forward
network and attention heads, which are simple recurrent networks.

2.1.3 Post-processing

The post-processing step is responsible for proposing and applying methods and tech-
niques to evaluate the pattern extraction step correctly. Different domains, methods, and results
need different techniques and metrics for a correct evaluation. For this dissertation, it is im-
portant to know and explain the sequential split, train-[validation]-test split, and the K-fold
cross-validation techniques (AGGARWAL, 2018):

• Sequential split: this partition technique is used when a temporal sequence is needed for
evaluating a model. For example, a time-series prediction task needs to be evaluated on
predicting data from a point in time further than the data a model was trained on;

• Train-[validation]-test split: in this split for evaluating supervised models, the labeled
data is divided into two or three splits: training, validation (optional), and test. All the data
must be partitioned before training on the model. The training partition is where the model
learns to generalize for a problem. The validation partition is only used if the problem is
very susceptible to overfitting and labeled data is abundant since it allows for a check-up
on new data performance at the end of every epoch. The test partition is where the final
performance metrics are obtained. Usually, this split method is executed multiple times
with different portions of the data on different splits to obtain performance metrics as an
average of multiple executions;

• K-fold cross-validation: this technique divides the data in k equal partitions. Then the
training test will be executed k times, with the training partition formed by k−1 smaller
partition and one partition at a time being the test. This allows an average result of the
performance metrics while testing with the entire dataset.

With the split technique selected, an appropriate performance metric must be chosen.
This dissertation will discuss some classic performance metrics derived from the confusion
matrix and ranking performance metrics used with recommendation systems:

• Confusion matrix: it is a structure that stores correct and wrong guesses within a set of
rules: t p = true positive; tn = true negative; f p = false positive; and f n = false negative
(POWERS, 2008);

2.1. Text mining 37

Positive
prediction

Negative
prediction

Positive
label

t p f n

Negative
label

f p tn

• Accuracy (Equation 2.13): it is simply the average between correct and wrong predictions
(POWERS, 2008):

acc =
t p+ tn

t p+ tn+ f p+ f n
(2.13)

• Precision (Equation 2.14): it is the ratio between positive correct predictions and all the
positive predictions of the model (POWERS, 2008):

pre =
t p

t p+ f p
(2.14)

• Recall (Equation 2.15): it is known as the sensibility metric. It is the ratio between correct
positive predictions and wrong negative predictions. So, recall measures examples that
were positive and wrongly predicted negative (POWERS, 2008):

rcl =
t p

t p+ f n
(2.15)

• F1 (Equation 2.16): it is the harmonic average between precision and recall. This metric is
upper limited by the accuracy, but it is less sensitive to unbalanced data (POWERS, 2008):

F1 = 2∗ precision∗ recall
precision+ recall

(2.16)

• MRR (Equation 2.17): mean reciprocal rank is a performance metric commonly used in
recommendation systems where the user has a single correct document it desires. So the
MRR metric averages the rankings for the correct document h for every recommendation
r ∈ R. The final score for the MRR metric averages all the scores. The MRR metric can
also be limited to score in the top k rankings and is known as MRR@k (CRASWELL,
2009):

MRR =
∑

1
h

R
(2.17)

• Hits@k (Equation 2.18): is another performance metric used in recommendation systems
where the user has a single correct document it desires. In the Hits@k metric, every correct
document within the top k rankings scores 1.00 and 0.00 for every other. The resulting
score for the metric is a mean average of all the recommendations (DOCS, 2019):

Hits@k = mean

({
1.00 h ≤ k

0.00 h > k

)
(2.18)

38 Chapter 2. Theoretical foundation and related works

2.2 Information network representation learning

Networks are graphs with the capability of adapting nodes and edges to the complexity
of the problem they are involved with (ROSSI, 2016; NEWMAN, 2010). For example, networks
can be used with the following characteristics (NEWMAN, 2010):

• Tech networks: these networks are formed by physical connections between electronic
equipments, like computer networks, telephone networks, and electrical grids;

• Social networks: these are networks where the nodes are profiles for people, businesses,
songs, movies, and others. The edges are friendships, followers, likes, comments, and
others. In particular, social networks tend to be sparse since most of the users do not
interact with each other;

• Biologic networks are biologic networks involving biologic (or natural) components. For
example, protein networks, metabolic reactions, and the food chain;

• Information networks: information networks or knowledge graphs are data networks.
Data and its relations can be modeled by nodes and edges, which makes them adaptable
for storing and indexing data. These networks are tightly integrated with the research in
this master’s dissertation.

Information networks can be formally represented as a triple N =< O,R,W > where:
O is the set of objects; R is the set of relations, or connections, between objects; and W is
the set of weights for each relation. There are different types of information networks. These
different characteristics might coexist, for example, a network can be undirected, weighted and
homogeneous at the same time defined by different rules for the set of triples, like (ROSSI,
2016):

• Undirected networks: in these networks whenever there is a relation roi,o j , a relation ro j,oi

automatically exists, meaning that every connection comes and goes;

• Directed networks: unlike undirected networks, whenever a relation roi,o j , a relation
ro j,oi does not automatically exists, meaning that a specific flow must be followed when
navigating and structuring the network;

• Unweighted networks: in these networks, all the relations roi,o j have the same weight
woi,o j , meaning that they do not have this differentiating factor between them;

• Weighted networks: unlike unweighted networks these networks have different weights
woi,o j for different relations. This metadata can differentiate types of objects in their
relations or even by relation, depending on the complexity.

2.2. Information network representation learning 39

• Homogeneous networks: in these networks, all objects o ∈ O have only one type of data.
This structure is easier to treat in machine learning scenarios, but it is also more limited in
regards to the complexity of the data it can model;

• Heterogeneous networks: unlike homogeneous networks in these networks, objects o ∈ O

have more than one type of data. These networks are more flexible when modeling real-
world data but more complex to generalize in machine learning models. This type of
information network is the method’s focus in this master’s dissertation.

Heterogeneous networks also have different known configurations that can not coexist
and might allow for standards ways of processing, like:

• Bipartite networks: these heterogeneous networks are composed by two types of objects
o ∈ O and its relations roi,o j are only possible when oi,o j have different types of data;

• k-partite networks: these heterogeneous networks are like an extension of bipartite where
the objects o ∈ O have k different types of data and the relations roi,o j are only possible
when oi,o j have different types of data;

• Star networks: in these heterogeneous networks, a particular typed object o ∈ O is the
only data type that can connect to the rest and between each other. For example, a network
of papers where each can be related to others, but only a paper can have characteristics
like authors, published date, publisher, and others.

Although heterogeneous networks allow for modeling text data, they also need processing
before applying to text mining ML methods and techniques. The following subsections will
explain methods and techniques essential for this master’s dissertation: regularization methods
and network embedding.

2.2.1 Regularization methods

Usually, regularization methods for information networks are designed as semi-supervised
classification methods. These methods use the regularization technique to transfer labels from
neighboring objects in search of a local and/or global equilibrium (ENGELEN; HOOS, 2020).
These methods consider that objects with the same label will be connected somehow. This sub-
section will discuss some regularization methods for homogeneous and heterogeneous networks.

Semi-supervised Learning Using Gaussian Fields and Harmonic Functions

The Semi-supervised Learning Using Gaussian Fields and Harmonic Functions (GFHF)
method uses harmonic functions to minimize a regularization function in homogeneous infor-
mation networks. This was designed for semi-supervised classification and was evaluated and
validated in gaussian fields (ZHU; GHAHRAMANI; LAFFERTY, 2003).

40 Chapter 2. Theoretical foundation and related works

GFHF’s aims to correctly classify nodes with unknown labels u (u = x1,x2, ...,xu) from
labeled nodes l (l = (x1,y1),(x2,y2), ...,(xl,yl)), where the total number of nodes n, n = l +u,
and usually l < u in a binary classification problem where each label y ∈ {0,1}. GFHF uses a
symmetric matrix W that stores all weights from the relations of a homogeneous information
network after going through the Equation 2.19, where m is the number of characteristics and σ

the gaussian opening.

wi j = exp

(
−

m

∑
d=1

(xid − x jd)
2

σ2
d

)
(2.19)

A quadratic energy function f : V → R generates a continuous number for regularizing
throughout the network. The function f is described in Equation 2.20:

E(f) =
1
2 ∑

i, j
wi j(f (i)− f (j))2 (2.20)

With the continuous number outputted by function f is used to generate the probabilities
of a label for each node pβ (f) = e−βE(f)

zβ
, where β is the inverse of a temperature value and Zβ is

the partition function Zβ =
∫

f |L= fl exp(−βE(f))d f to normalize previous labeled nodes fl values.
In short, GFHF (Equation 2.21) is composed by the minimization of the harmonic functions:

f (j) =
1
d j

∑
i∼ j

wi j f (i), para j = l +1, ..., l +u (2.21)

Learning with Local and Global Consistency

The Learning with Local and Global Consistency (LLGC) method was inspired by
GFHF. The authors Zhou et al. (2004) propose a method that considers a set of nodes X =

{x1, ...,xl, ...,xu, ...,xn} where the labeled nodes y ∈ Y , Y = {y1, ...,yl} and u ∈U , U = {} and
usually y ≤ u ≤ n. LLGC is an iterative method structured as follows:

1. a weight matrix W is generated with the edges relations with the equation Wi j = exp
(
− ||xi−x j||2

2σ2

)
if i ̸= j and Wii = 0;

2. using the matrix W , S = D−1/2WD−1/2 is extracted where D is a diagonal matrix and the
element (i, i) is equal to the i-eth line;

3. the results are then iterated over F(t + 1) = αSF(t)+ (1−α)Y and α is a parameter
between (0,1) that determines the amount of regularization from the neighboring nodes;

4. after all that F∗ is the ceilling from the sequence {F(t)}, allowing the distribution of a
probability of a label yi = argmax j≤cF∗

i j for each node xi.

2.2. Information network representation learning 41

The iterative portion from LLGC can be seen activating values throughout the network.
This allows the method to search for a global equilibrium between labeled nodes and the relations
from the network. The final regularization function F , which is minimized by this process, can
be seen in Equation 2.22:

Q(F) =
1
2

(
n

∑
i, j=1

Wi j||
1√
Dii

Fi −
1√
D j j

Fj||2 +µ

n

∑
i=1

||Fi −Yi||2
)
, (2.22)

where the first portion calculates the distances from connected nodes and their regularized labels,
while the second portion normalizes the results with the existing labels values.

Graph Regularized Transductive Classification on Heterogeneous Information Networks

The authors Ji et al. (2010) proposed a regularization method for HINs called Graph
Regularized Transductive Classification on Heterogeneous Information Networks (GNetMine).
HINs are more challenging to generalize in ML methods, namely: (1) the complexity of having
different types of data and using this metadata; (2) the difficulty of prioritizing these different
types in the generalization process; and (3) the difficulty to find labeled data to use in supervised
models. So GNetMine focuses on solving (1) and (2), while (3) is covered by it being a semi-
supervised model.

An HIN N =<O,R,W > has t > 1 different types of nodes. GNetMine uses sub-networks
that contain relations of different types N′ ⊆ N for its equations, where N′ =< O′,R′,W ′ >, O′ ⊆
O, R′ ⊆ R and W ′ ⊆W . It regularizes to classify unknown labels through a connections matrix
Ci j of size ni ×n j that corresponds to a graph of relations Gi j where oi and o j, i, j ∈ {1, ..., t}.
Since i and j can have the same size, the weights in this matrix are defined as Ci j,pq, representing
the relations < xip,x jq >. This matrix receives the weights W when xip and x jq are connected.
The labels from k dimensions are codified in a vector y(k)i = [y(k)i1 , ...,y(k)ini

]T ∈ Rni for each xip

previously labeled.

Through the different connection matrix Ci j is defined a diagonal matrix Di j of size
ni ×ni, where the element type (p, p) is the sum of the the p-eth line of Ci j. This ensures the
function f (k)i has consistency with the types of the relations and the existing labels. For this
regularization method the relations matrix and their diagonals are separated, where Di j,pp and
D ji,qq are respectively the (p, p)-eth of Di j and the (q,q)-eth of D ji. The relation matrix and the
diagonals are simplified as a regularization expression Si j = D(

i j
−1
2)Ri jD

(
ji
−1
2), i, j ∈ {1, ..., t}.

This regularization expression allows the normalization of labels considering the different types
of relations to apply the Equation 2.23.

J(f (k)1 , ..., f (k)m) =
m

∑
i, j=1

λi j((f (k)i)T f (k)i +(f (k)j)T −2(f (k)i)T Si j f (k)j)

+
m

∑
i=1

αi(f (k)i − y(k)i)T (f (k)i − y(k)i).

(2.23)

42 Chapter 2. Theoretical foundation and related works

Allied to the regularization the parameters λi j and αi control respectively, the amount
of value to the relation between different types and the confidence on existing values, where
0 ≤ {λi j,αi}< 1. GNetMine can also be applied as an iterative method, described as follows:

1. for ∀k ∈ {1,K},∀i ∈ {1, ..., t} the confidence parameters f (k)i (0) = y(k)i and iter = 0 are
initialized;

2. for each f (k)i (iter) is calculated: f (k)i (iter+1) =
∑

m
j=1, j ̸=1 λi jSi j f (k)i (iter)+αiy

(k)
i

∑
m
j=1, j ̸=1 λi j+2λii+αi

;

3. repeat step 2 for each iter = iter + 1 until f (k)∗i = f (k)i (iter) achieves a value below a
threshold for each i;

4. for the p-eth label associated to the type Xi for each i∈{1, ..., t}, through cip = argmax1≤k≤K f (k)∗ip ,

where f (k)∗i = [f (k)∗i1 , ..., f (k)∗ini
].

Label Propagation on Heterogeneous Information Networks

Based on LLGC (ZHOU et al., 2004) the authors Rossi, Lopes and Rezende (2014)
modeled a regularization method for semi-supervised classification in text HINs called Label
Propagation on Heterogeneous Information Networks (LPHIN). More specifically LPHIN was
first modeled to be executed in bipartite HINs where the two types of nodes correspond to
documents D = {d1, ...,dm} and tokens T = {t1, ..., tm} to represent relations D → T .

LPHIN is an iterative method that converges through the equation F = PF , where F

is a matrix of label information and P is a matrix of relation probabilities between tokens and
documents. The probability matrix P is calculated in two different ways: the probability of a
document di to be connected to a token t j (Equation 2.24); and the probability of a token t j to be
connected to a document di (Equation 2.25).

pdi,t j −
wdi,t j

∑dk∈D,wdk ,t j∈W wdk,ti
(2.24)

pt j,di −
wdi,t j

∑tk∈T,wdi,tk∈W wdi,tk
(2.25)

Then the matrixes are divided into labeled documents (DL), unlabeled documents (DU),
and tokens (T). Then the equivalent matrix of labels F and connection probability P are used as
multipliers to regularize the network (Equation 2.26):

FDL

FDU

FT

=

PDLDL PDLDU PDLT

PDU DL PDLDL PDU T

PT DL PT DU PT T

FDL

FDU

FT

 (2.26)

2.2. Information network representation learning 43

The regularization process propagates the labels (FDL) to unlabeled objects (FT ,FDU)
iteratively through the equations 2.27 and 2.28:

F(n)
T =

n−1

∑
i=0

(PDU T PT DU)iPT DLY L +(PT DU PDU T)
n−1PT DU F(0)

DU (2.27)

F(n)
DU =

n−1

∑
i=0

(PDU T PT DU)iPDU T PT DUY L +(PDU T PT DU)nF(0)
DU (2.28)

The matrix is normalized line by line, and the sum operations return a γ between 0 and 1.
As LPHIN converges, γ tends to 0. At the end of the process a final label cl for each document di

is outputted as the highest probable Pr[cl] by Equation 2.29:

class(di) = arg max
1≤l≤|c|

Pr[cl].
fi,l(DU)

∑d j∈D f j,l(D)
(2.29)

2.2.2 Network embedding methods

Network embedding methods aim to translate topology, types, and other data contained
within information networks to dense vectors. They also aim to overcome the following chal-
lenges (CUI et al., 2018):

• Computational cost: networks stores local and global relations within the data, but the
computational cost of processing the structure for pattern extraction is very high therefore,
it is not scalable; and

• Difficult to parallelize: in order to extract patterns from information networks, sequential
access is usually necessary, which limits the steps in which parallel execution is possible.

This subsection presents some network embedding methods for information networks:
DeepWalk, Node2Vec, Struc2Vec, Metapath2Vec, Large-scale Information Network Embedding
(LINE), and Graph Convolutional Network (GCN).

DeepWalk, Node2Vec, Struc2Vec and Metapath2Vec

This subsection explains the basics of the network embeddings methods derived from
Word2Vec. The methods DeepWalk, Node2Vec, Struc2Vec and Metapath2Vec, are used as
baselines in this dissertation. All these methods use random or biased walks through the network
to sample "phrases" and train a skip-gram model. It will be mentioned and explained whenever a
method changes these fundamentals to obtain more information and add complexity.

DeepWalk (PEROZZI; AL-RFOU; SKIENA, 2014) is the classical adaptation of Word2Vec
to network embedding and uses random walks and a skip-gram model. It aims to embed the

44 Chapter 2. Theoretical foundation and related works

network’s topology in dense R vectors. It accepts walk length and final dimensions of the vectors
as hyperparameters.

The authors Grover and Leskovec (2016) adapted the classic DeepWalk to accept two
extra hyperparameters, p and q, and created a method called Node2Vec. These hyperparameters
modify the random walk in each step. The hyperparameter p modifies the probability of re-
visiting a node. Furthermore, the hyperparameter q modifies the probability of choosing a
neighbor or a neighbor from a neighbor.

Metapath2Vec (DONG; CHAWLA; SWAMI, 2017) adapts the classic DeepWalk to use
the edge type metadata in HINs. For that, the authors transformed the classic random walk into a
metapath-based random walk. A metapath is formally defined as a cyclic sequence of edge types
that must be followed when exploring a HIN. For example, when using the metapath EAE to
explore a HIN, where E extends for event nodes and A for actor nodes, a metapath-based random
walk would have to choose a random E node, and from there, a random A node and so on. These
metapaths allow domain knowledge about the dataset relation types to be incorporated into the
network embedding generation process. There are also automatic metapath generation algorithms
when the dataset is too complex or there is insufficient domain knowledge for defining one at the
beginning of the process.

The Struc2Vec (RIBEIRO; SAVERESE; FIGUEIREDO, 2017) adapts the classic Deep-
Walk to embed communities of nodes within the networks. Unlike Node2Vec and Metapath2Vec,
which modify existing structures from DeepWalk, Struc2Vec adds another step to the pipeline.
Before applying the random walk, it constructs a multi-layered graph, where each layer represents
a level on the graph concerning a random node. This allows Struc2Vec to recognize communities
of nodes connected to a single one within the same level.

One of the most defining techniques for these methods is random walks. A random walk
Wvi starts on the node vi and proceeds in the following edges creating a path W 1

vi
, ...,W k

vi
that

contains context from neighboring nodes as shown in Equation 2.30.

P(ci = x|ci−1 = v) =

{
πv,r
Z if(v,x) ∈ R

0 if(v,x) /∈ R
(2.30)

Random walks are sensitive to the local context in information networks. They also allow
for parallel execution since the walkers can be executed independently. This behavior allows for
information to be retrieved from massive information networks. DeepWalk and Struc2Vec use
the classic random walk technique, while Node2Vec and Metapath2Vec add some constraints to
try and retrieve more data from the network.

Node2Vec uses the concepts of depth and breadth search to insert a bias on the network.
When the random walk tends to breadth, search nodes on the same level will be explored
first, which helps to extract local neighborhoods. However, when the random walk tends to

2.2. Information network representation learning 45

depth, search nodes on other levels will be explored first, helping the method better map global
neighborhoods. So this biased walk can be defined as αpq(t,x), where (t,x) is the probability of
transitioning on the edges (v,x) (Equation 2.31).

αpq(t,x) =

1
p ifdtx = 0

1 ifdtx = 1
1
q ifdtx = 2

(2.31)

The parameter p and q control the tendencies from the bias. The smaller the p higher is
the probability of re-visiting nodes. The parameter q controls the probability of choosing breadth
or depth search, where q > 1 tends to breadth search and q < 1 tends to depth search.

Metapath2Vec uses metapaths to guide random walks. In a HIN N = (O,R,W) a set of
metapaths P : o1 →R1 o2 →R2 ...os →Rs

Vs+1 has a probability of transitioning to other nodes p

defined in Equation 2.32.

p(vi+1|vi
s,P) =

1

|Ns+1(vi
s)|

(vi+1,vi
s) ∈ R,φ(vi+1) = s+1

0 (vi+1,vi
s) ∈ R,φ(vi+1) ̸= s+1

0 (vi+1,vi
s) /∈ R

(2.32)

This equations guarantees that the walk will follow a cyclic metapath vi+1 ∈ Vs+1.
Although metapaths allow Metapath2Vec to bias its embedding vectors towards certain typed
relations, this technique requires extra processing to achieve better performance. At the same
time, it may hurt performance compared to a traditional random walk if the metapaths are not
well chosen.

LINE

The authors Tang et al. (2015) developed a network embedding method capable of
mapping in a function fG : V → Rd , local u → v relations with weight wuv and global u → ...→ v

with weight (wu1, ...,wuv) for each node v ∈V . The method is called LINE, and it aims to tackle
this problem in networks with millions of nodes and billions of edges. The method can also be
applied in either directional or undirectional networks and weighted and unweighted networks.

So the LINE method captures probabilities for local and global relations are optimized
separately. The local relations are capture by the equation O1 presented in 2.33.

O1 =− ∑
(i, j)∈E

wi j log p1(vi,v j) (2.33)

For global relations, LINE considers the node and its generated context formed by
the connections of the nodes. For that LINE assumes a distance d(., .) between the distribution
p2(.|vi) that captures this context and the distribution p̂2(.|vi) that is the current global embedding

46 Chapter 2. Theoretical foundation and related works

vector in order to achieve an equilibrium. The Equation 2.34 is used as the weights for edges,
and the global probability is minimized.

O2 =− ∑
(i, j)∈E

wi j log p2(vi|v j) (2.34)

Both functions are optimized separately considered the objective function presented in
Equation 2.35. In order to make the training scalable, LINE uses negative sampling to find the
correct edge (i, j) in a noisy distribution, where K is the number of negative edges.

logσ(
→|T
u j .

→
ui)+

K

∑
i=1

Evn Pn(v)[logσ(−
→|T
u j .

→
ui)] (2.35)

After that, LINE is minimized through a mini-batch. The resulting embeddings are
formed by concatenating the local and global embeddings.

GCN

GCN is a semi-supervised classification method that uses existing label information and
local relations (KIPF; WELLING, 2017) for generating a function f (X ,A) trained in labeled
nodes L0. First, GCN propagates the nodes on a convolutional network and applies spectral
filters (HAMMOND; VANDERGHEYNST; GRIBONVAL, 2011) to learn information from the
network. The spectral convolutions are a signal multiplication x ∈ RN with a filter gθ = diag(θ),
where diag is the diagonal of a Laplacian matrix L = IN −D− 1

2 AD− 1
2 =UΛUT . The Laplacian

matrix used in GCN is an approximation calculated through the Chebyshev polynomials 2.36
Tk(x) until the K-eth order to reduce computational cost.

g
′
θ ∗ x ≈

K

∑
k=0

θ
′
kTk(L̃)x (2.36)

For the convolutions, GCN utilizes a neural network of multiple layers, using the spectral
filters (DEFFERRARD; BRESSON; VANDERGHEYNST, 2016). The convolutions allow a
deeper capability of modeling a non-linear function to classify the nodes. For the classification
output, GCN uses a softmax layer. A fixed dimension embedding vector can be obtained from
the weights of each unit in the penultimate layer.

2.3 Applications

This section presents related works of methods and techniques related to embedding
propagation. The subsections contain works related to the basis of the method: embedding
propagation, network embedding, and regularization. They also contain works related to the

2.3. Applications 47

applications used to evaluate and validate the proposed methods: event analysis and graph
completion.

Embedding propagation methods

The authors Duran and Niepert (2017) proposed a semi-supervised embedding propaga-
tion method for information networks. Their method uses the BoW representation to start up the
nodes’ embeddings. Nodes with the same label are connected and refined in pairs, and a global
equilibrium between the labels and nodes’ distances is the target by applying a gradient function.
In the end, each node receives a unique embedding. Even though this method allows for the same
vector space to be maintained, the BoW representation can only encode one language at a time
and has its challenges. Another disadvantage is that by refining between pairs, the computational
cost is quadratic. The method outperformed random walk baselines in some scenarios only by
around 1% F1.

The authors Yang, Zhang and Han (2019) proposed a semi-supervised neural embedding
propagation method. The method generates embeddings through a two-stage propagation: it
initializes the vectors through an MLP that uses node positioning; and it propagates and adjusts
the values further through a series of MLPs that consider nodes and distances in different random
walks. Even though it is an embedding propagation method, it does not consider other features to
initialize the embeddings, which does not allow for pre-trained embedding’s general knowledge
to be used. Multiple MLPs have a high computational cost for training and execution compared to
a graph neural network model like GCN. The method outperformed all baselines, in all datasets
but by little margin of less than 1% in most scenarios.

Network embedding methods

The authors Yu et al. (2020) propose a semi-supervised network embedding method
based on using paths for different types in a heterogeneous information network for training a
variational auto-encoder. The method has shown better performance than other methods in the
literature, indicating that variational auto-encoders can generalize knowledge for heterogeneous
information networks. However, it is not optimized for large-scale or sparse networks, which
makes it difficult to be used in the real world. The proposed method Rich Heterogeneous
Information Preserving Network Representation Learning (HIRL), consistently outperforms
baselines by around 5% AUC in all scenarios.

The authors Gui et al. (2017) propose a network embedding method called HEBE
designed primarily for event networks. This method uses the concept of hyperedges to aggregate
edges of the same type, effectively creating communities of events between them. The model
also optimizes its execution using sub-sampling and negative-sampling and can be used for
hyperedge prediction. The HEBE model in its HEBE-PE and HEBE-PO variants outperforms

48 Chapter 2. Theoretical foundation and related works

baselines in two databases by at least 2% AUC and accuracy to the second best performer.

The authors Setty and Hose (2018) modified Node2Vec’s biased walk to use Jaccard’s
similarity (JACCARD, 1901) in place of the probabilities to change the next step between DFS
and BFS. The method called Event2Vec takes advantage of this biased walk to better explore
different types of event networks without manually assigned meta-paths. Although Event2Vec
can use the same devices for scalability as Node2Vec obtaining the Jaccard similarity for every
step adds a high computational cost. Event2Vec achieved better performance than Node2Vec in
both Precision@k and Recall@k metrics by at least 0.4 points.

Regularization methods

The authors Rossi, Lopes and Rezende (2017) proposed a semi-supervised classification
method based on a graph construction method called GBILI (BERTON; LOPES, 2014) and a
label propagation method called LLGC (ZHOU et al., 2004). The proposed method constructs
a new sparse network where each labeled node is connected to its neighbors. The new sparse
network propagates labels with the regularization function to achieve local and global equilibrium.
The method has achieved good performance compared to other classification methods. It has
increased F1 performance within 10% in some scenarios.

The authors Santos et al. (2020) proposed a regularization method called Heterogeneous
Event Network Regularization in Two-stages (HENR2). As the name of the method implies,
it applies the regularization in two stages. In the first stage, the relations are regularized and
receive an entropy value corresponding to their value in the network. In the second stage, the
regularization uses the fixed weight of the relations. The two-stage method helps reduce noise
within the regularization but can also propagate errors from previous iterations forward. HENR2

performed better than baselines with a 2% increase of F1 in some scenarios.

Event analysis

The authors Ning et al. (2016) proposed a method for predicting future occurrences
of protest events using news text data. They use super-bags, where each bag is a news text
embedding and a collection of news from a particular period in time is a super-bag. The super-
bags are then fed to three different models: (1) it calculates the similarity between super-bags in
order to determine precursor events; (2) it calculates the probability of a new protest occurrence
from the precursor events; and (3) is a multi-class prediction of how many participants will attend
said protest. The model shows great performance in the experiments executed. It outperformed
baselines with nearly 10% more accuracy and F1 in some cases. However, they were limited to
specific datasets of certain regions, and the models can not accept explicit features from events
like locations and organizations involved.

The authors Deng, Rangwala and Ning (2019) model the protest events in a dynamic

2.3. Applications 49

graph of import tokens from each event. These graphs also allow for access to the embeddings of
each token. The graph is then applied to a GCN model that aims to predict a temporal relation t

between the protest events. The method has achieved good performance, outperforming baselines
F1 results in every scenario by 2% in some cases. However, the experiments were executed in
specific datasets of protest events in certain regions.

The authors Deng, Rangwala and Ning (2020) proposed a multi-task model for event and
actors prediction by modeling the data in dynamic graphs and using graph completion techniques.
The modeled graphs are dynamic because they allow the insertion of new data into the pipeline
of GCN to predict links to related events and actors in the graph. Although this method allows
for dynamic insertion, the GCN model necessitates a percentage of labeled data to achieve good
performance. The model has only experimented with particular datasets of protests in certain
regions. However, the proposed model achieved excellent performance compared to baselines
with the least improvement in F1 reaching 3.1%. The model also increased Hits@k performance
with as much as 27.5% in one scenario.

Graph completion and link prediction

The authors Ozcan and Oguducu (2019) proposed a link prediction method for hetero-
geneous information social networks called Multivariate Time Series Link Prediction. Besides
considering different types of relations, the method also considers local and global distances
and temporal data. The method creates vectors that are concatenated according to the metadata.
The links are predicted by receiving these concatenated vectors and measuring similarity. The
method achieved good performance when predicting global relationships but underperformed
baselines for local relationships.

The authors Chen et al. (2018) propose a network embedding method for HINs based
on project metric embedding. This method generates different embedding vectors for different
network relations types. These vectors are then used to obtain local and global distance measures
between nodes to aggregate the different embedding vectors. The method performs better than
other literature network embedding methods, especially on link prediction tasks. It achieved at
least 7% more AUC than other baseline methods within all binary link prediction scenarios.

The authors Zhou et al. (2018) proposed a method for link prediction in a social network
by combining network embedding methods to a probabilistic model from offline movement in
the social network. The method called Vec2Link combined user check-in history with the other
network data to achieve better performance. It achieved at least 5% more AUC than baseline
network embedding methods, combined with different similarity measures for link prediction.

50 Chapter 2. Theoretical foundation and related works

2.4 Concluding remarks
This chapter presents fundamental concepts on text mining and HIN representation

learning. Related applications on embedding propagation, network embedding, regularization,
event analysis, and graph completion were also presented. These applications are essential for
this master’s dissertation because they relate directly to the proposed method or the domains
used in the evaluation experiments.

The proposed method in this master’s dissertation uses regularization for embedding
propagation on HINs modeled after text data. The method outputs unique embeddings for all
nodes, considering the initial text embeddings’ vector space, allowing the dynamic insertion of
new nodes. The proposed method is presented in the following chapter.

51

CHAPTER

3
EMBEDDING PROPAGATION OVER
HETEROGENEOUS INFORMATION

NETWORKS

3.1 Motivation

As introduced in Chapter 1, accessible text data is exponentially growing because of
the internet. Because humans are able to consume information from unstructured data sources,
machines require text data to be cleaned and transformed for machine readability. Usually texts,
sentences and/or words are transformed into vectors before applying extraction methods.

HINs can also be used to structure text and even enrich data by explicitly connecting
characteristics or combining the data with other HINs. In Chapter 2 presents network embedding
methods for extracting vectors from these HINs. However, regular network embedding methods
are not able to benefit from existing neural language models knowledge when applied to HINs
with textual data in some nodes.

This master’s dissertation presents an embedding propagation method of text embeddings
in HINs with textual data in some objects to generate new embedding vectors that contain related
data and metadata. The proposed embedding propagation method uses a regularization function
to propagate BERT embedding vectors instead of labels. This allows the embedding vectors
to contain data directly from the text and other relations. The proposed method also maintains
BERT’s space vector, allowing dynamic generation of newly added nodes. More details of the
proposed method are discussed below.

52 Chapter 3. Embedding propagation over heterogeneous information networks

3.2 Method: Embedding propagation over heterogeneous
networks (EPHEN)

Considering a heterogeneous information derived from text data represented as N =

(O,R,W), where O is a set of typed objects O = {Or ∪Oc} defined as: Or raw text (documents,
sentences, others); and Oc complements (dates, objects involved, others). The objective is to
define an embedding propagation function f : O →Rd , where for each node o ∈ O an embedding
vector fo ∈ Rd is generated. The steps from the proposed method illustrated in Figure 7 are
described in the subsections 3.2.1, 3.2.2 and 3.2.3.

Figure 7 – Illustration of the pipeline of the proposed embedding propagation method, EPHEN. Source:
authors.

3.2.1 Initial text embedding using BERT

The process of training and obtaining embeddings from the BERT model can be explored
as defined in Equation 3.1,

p(t|c) = exp(h⊤
c wt)

∑t ′ exp(h⊤
c wt ′)

(3.1)

where hc is a context embedding and wt is a word embedding of the token t. BERT models
are pre-trained in massive corpora and is fine-tuned for multilingual inputs, as presented in

3.2. Method: Embedding propagation over heterogeneous networks (EPHEN) 53

(REIMERS; GUREVYCH, 2020). Generally BERT models fine-tuned in texts related to the
application context perform better, but general knowledge methods can also be used when
specific data is not available.

The start-up embedding for EPHEN is generated from raw texts ri = (t1, ..., tk), and
outputted as gr for a text r. Each text embedding is generated with the default behavior of
Sentence-BERT (SBERT) (REIMERS; GUREVYCH, 2019) by taking the average of all token
BERT embeddings gd = ∑

k
j=1

1
k wt j . In the heterogeneous event network, each raw text r is

represented by a node o ∈ Or and directly associated with its respective initial embedding
gr computed from the SBERT model as shown in Figure 8. Although SBERT embeddings
can represent node documents, other characteristics from the domain of the documents in the
network, such as nodes of time and names of objects, people, or organizations, are also crucial for
generalizing knowledge. With the initial embeddings generated for the raw text nodes Or, EPHEN
uses a regularization function to generate a final embedding that considers other complement
nodes on the heterogeneous information network.

Figure 8 – A visualization of the start-up SBERT embedding insertion in the heterogeneous information
network. Source: authors.

3.2.2 Embedding propagation

After the HINs have received their initial SBERT embedding, the regularization process
can occur. Unlike Yang, Zhang and Han (2019) this master’s dissertation proposes an embedding
propagation method based on a regularization function (ZHOU et al., 2004). This regularization
is presented in Equation 3.2, where oi and o j are the neighboring nodes that must have similar
embedding vectors foi and fo j . Moreover Ω is a distance equation and woi,o j are the weights of
their relations. In the second part of the equation the start-up SBERT embedding goi ∈ Rd of raw
text nodes Or regulates the vector space according to a hyperparameter µ (where µ > 0).

Q(F) =
1
2 ∑

oi,o j∈O
woi,o jΩ(foi, fo j)+µ ∑

oi∈Or

Ω(foi,goi) (3.2)

54 Chapter 3. Embedding propagation over heterogeneous information networks

Although this equation can be used in an embedding propagation pipeline, it works better
when extended (JI et al., 2010). For this master’s dissertation, the start-up embedding is outputted
by a pre-trained SBERT model, and the dimension size d is determined by it. The Equation
3.3 defines the extensions and modifications applied to better accommodate the embedding
propagation methods in HINs. This equation considers nodes of different types separately, and
the results of the operations from a distance between embedding vectors are absolute values
since this function was designed to propagate labels, and embedding vectors can accommodate
negative values. Even with these modifications, the convergence of this regularization function
has been proven (ZHOU et al., 2004). It is minimized through quadratic operations or an iterative
propagation process.

Q(F) =
1
2 ∑

or∈Or

∑
oc∈Oc

wor,oc∥for − foc∥2 +µ ∑
or∈Or

∥for −gor∥2 (3.3)

Figure 9 presents an example of EPHEN’s execution. The first portion shows a heteroge-
neous event network before propagation, meaning that only event nodes have the start-up SBERT
embedding. In the second portion, the network is shown after the propagation, meaning that all
nodes have an adjusted final embedding but still belong to the initial SBERT vector space.

Figure 9 – A visualization of EPHEN’s execution. Each node type has a different color, and the opaque
BERT icon defines the start-up embedding. The final embeddings are defined by a translucent
BERT icon, which shows they were adjusted by the network’s topology and types of relations.
Source: authors.

Figure 10 shows the embedding propagation steps highlighting what portions of the
regularization it represents on the example. The modifications considering the difference for
nodes with and without textual data are presented in Figure 10a. Figure 10b shows a modification
to the original regularization is which the distances from neighbors are measured as absolute
values to deal with embeddings instead of one-hot encoded labels. Figure 10c shows the hyper-
parameter µ that whenever the value is closer to 1 the regularization tends to be more similar
to the start-up embedding. And the first portion of the function is responsible for inserting the
topology information in the final embedding as shown in Figure 10d.

3.2. Method: Embedding propagation over heterogeneous networks (EPHEN) 55

(a) The nodes that contain textual data are accounted
separately from the ones that do not contain it.

(b) The distances between these types of nodes are ac-
counted as absolute values since embeddings can
contain negative values.

(c) The second portion, where the hyperparameter µ

amounts for how much of the final embedding will
tend towards the start-up embedding.

(d) The first portion where the neighborhood and dis-
tances account for the topology knowledge extracted
from the network.

Figure 10 – Step by step demonstration of the regularization function used for embedding propagation.
Source: authors.

3.2.3 SSN-based BERT fine-tuning

Since EPHEN adapts its regularization stage to any start-up embedding vector, it is
possible to use both pre-trained and fine-tuned embedding models. Although BERT fine-tuning
is a good option for obtaining better embeddings in a particular domain, it needs large quantities
of labeled data. Since EPHEN is an unsupervised embedding propagation method, it will more
often than not be applied to unlabeled data.

Thus it is essential to consider unlabeled data for fine-tuning as well. Conveniently the
SBERT model first used as the start-up embedding for EPHEN has an architectural characteristic
that can be leveraged for unsupervised fine-tuning. SBERT uses Siamese neural networks to
aggregate tokens in sentences while generating a single output (REIMERS; GUREVYCH, 2019).
Thanks to that, a fine-tuning method adjusts the BERT by approximating sentence similarity to
node similarity.

Figure 11 shows an overview of the fine-tuning pipeline. The SBERT model is adjusted
using the topological properties of the event network. Let ni and n j be two raw text nodes. They
are connected with nodes representing complement characteristics to the raw text data like person
or object names and others. Equation 3.4 defines the Shared Nearest Neighbors (SNN) measure,
which calculates the similarity between raw text nodes from the network topology, measuring
the number of shared complement nodes,

56 Chapter 3. Embedding propagation over heterogeneous information networks

SNN(ni,n j) =
S (ni)∩S (n j)

S (ni)∪S (n j)
(3.4)

where S (ni) returns the set of neighboring nodes to ni. The SNN measure varies in the range
[0,1], meaning the more shared neighbors, the closer to 1 and the greater the topological similarity
between the two nodes.

Figure 11 – Illustration of the fine-tuning using node similarity pipeline. Source: authors.

The Siamese neural networks use two different input vectors (e.g., initial SBERT event
embeddings) to compute comparable output vectors (fine-tuned event embeddings). While the
existing approaches use predefined manual scores between pairs of texts as similarity ground
truth (which may be unfeasible in real-world applications), the final value is adjusted using the
SNN measure as a target for fine-tuning. In this case, the embeddings are fine-tuned so that the
cosine similarity of the raw texts cos(gni,gn j), where gni and gn j using the BERT embeddings
of raw text nodes ni and n j respectively, is approximated by SNN(ni,n j) — which represents
topological properties of the heterogeneous information network. The loss function for the
proposed fine-tuning is the MSE function (mean squared error), according to Equation 3.5,

MSE =
1
k

k

∑
i=1

(cos(gni,gn j)−SNN(ni,n j))
2 (3.5)

where k is the number of raw text pairs extracted from the heterogeneous information network for
the BERT fine-tuning process. After the fine-tuning process, these are the start-up embeddings
used in the embedding propagation function described in Equation 3.3.

3.2. Method: Embedding propagation over heterogeneous networks (EPHEN) 57

3.2.4 Evaluation criteria

Since EPHEN is an unsupervised method that can be fine-tuned with unlabeled data, it
needs to be evaluated in unsupervised tasks. So EPHEN is evaluated with graph completion tasks.
Graph completion is derived from link prediction and can be understood as masking some known
relationships in a network. After that, the model has to learn to predict these hidden relationships
correctly (Figure 12). This master’s dissertation evaluates graph completion separately on the
desired type of relations. In order to evaluate only the quality of the generated embeddings, the
predicted output will be a sorted list by the similarity between a pair of node embeddings.

Figure 12 – Illustration of a graph completion task solved using node similarity on EPHEN’s embeddings.
Source: authors.

Within this master’s dissertation, the default graph completion predictions will be ob-
tained through a sorted list of the similarity between all possible pairs of relations from the
desired type in a HIN. This behavior allows evaluation metrics for one correct prediction in a list
of recommendations. More specifically, this master’s dissertation will use evaluation metrics like
MRR, MRR@k, and Hits@k that were discussed in the subsection 2.1.3. Since these relations
can be hidden randomly, the splits can be created using either train-[validation]-test split or
k-fold cross-validation, which were also discussed in the subsection 2.1.3.

59

CHAPTER

4
EMBEDDING PROPAGATION OVER

HETEROGENEOUS EVENT NETWORKS

This chapter presents the paper published in Carmo and Marcacini (2021). The source
codes from the method and experiments are available at <https://github.com/PauloRVdC/
ephen-experiments>. The paper authors were Paulo do Carmo and Ricardo Marcacini.

4.1 Initial remarks

Events can be defined as an action or a series of actions that occur at a specific time
and place (ALLAN, 2012; CORDEIRO; GAMA, 2016; CHEN; LI, 2020). They are happening
and evolving all the time. In this sense, social networks and news portals act as digital sensors
for events happening around the world (DENG; RANGWALA; NING, 2019), allowing event
analysis tasks. Different types of event analysis can allow real-time monitoring for application
domains like the economy, epidemics, agribusiness, medicine, sentiment analysis, and many
other social behavior studies (MARCACINI et al., 2017).

Event analysis is the computational task for automatically identifying related events
through text and other data such as timestamps, places, people, and entities involved (HAMBORG
et al., 2018; XUE et al., 2019). In general, event analysis relies on unsupervised learning methods
such as clustering (FLORENCE; NOGUEIRA; MARCACINI, 2017), and supervised learning
such as classification (SANTOS; ROSSI; MARCACINI, 2017) and link prediction (RADINSKY;
HORVITZ, 2013; NING et al., 2019). Event analysis is challenging since different topics can be
related at some level. For example, a country that changes its economic politics can change the
behavior of consumers and the stock market and even trigger social acts (DENG; RANGWALA;
NING, 2019).

Recently, heterogeneous networks have been used successfully for modeling large event
datasets (SHI et al., 2016). They model the different components of events as nodes (e.g.,

https://github.com/PauloRVdC/ephen-experiments
https://github.com/PauloRVdC/ephen-experiments

60 Chapter 4. Embedding propagation over heterogeneous event networks

events, actors, locations, people, themes, and organizations), and network links express different
relationships between these nodes. Thus, heterogeneous information networks (HIN) represent
real-world objects through their connections among themselves.

Link prediction has a wide range of applications involving relationships between objects,
in which the objective is to predict the probability of the link between two nodes. The most
straightforward link prediction strategy measures the similarity between two nodes. The greater
the value of the similarity function, the greater the probability of the link between nodes
(YANG; LICHTENWALTER; CHAWLA, 2015; SHI et al., 2016; KUMAR et al., 2020). In
this paper, we explore one of the ways to solve the link prediction problem for event analysis
(LIBEN-NOWELL; KLEINBERG, 2007), which is to measure similarity between two nodes
and determine the existence of a significant similarity considering events and their components.
However, we must first define a unified feature space from heterogeneous data to calculate the
similarity between nodes in heterogeneous networks.

Recently, network embeddings have been proposed as promising methods to learn
features for nodes (WU et al., 2020). Network embeddings methods map each node into a
low-dimensional vector representing the network topology. Node type information (CHANG
et al., 2015; HUANG; MAMOULIS, 2017; SETTY; HOSE, 2018; CUI et al., 2018; WU et

al., 2020). The recent literature has explored several methods to solve this task, including from
random walks to deep learning methods (HAMILTON; YING; LESKOVEC, 2017; ZHANG et

al., 2019; WU et al., 2020; HU et al., 2020).

Existing network embeddings methods fail to meet two critical requirements to support
link prediction in event networks. The first is to deal with different event components and
metadata, in which event-type nodes have unstructured textual information. However, nodes
representing location (e.g., latitude and longitude), time, person, and organizations are categorical
or numeric features. The second is to deal with the inductive behavior of link prediction tasks, in
which new nodes can be added to the heterogeneous network continuously. We argue that it is
unfeasible to regenerate network embeddings for the entire network for each new event and its
components. Thus, we raise the following question: how to incrementally learn a unified feature

space considering the textual information of event nodes with other non-textual node types of the

event network?

This paper presents a language model-based embedding propagation method for hetero-
geneous event networks, called Embedding Propagation over Heterogeneous Event Networks
(EPHEN). While most of the existing network embedding methods mainly explore the network’s
topology, our method maps both: (i) textual information about events; and (ii) the complex
relationships between events and their components to a low-dimensional vector space in order to
use link prediction methods. Since events can be partially represented as texts, we can use neural
language models, such as BERT (Bidirectional Encoder Representations from Transformers)
(DEVLIN et al., 2018), to compute meaningful representations. Moreover, neural language

4.2. Embedding Propagation over Heterogeneous Event Networks 61

models are pre-trained with billions of tokens, including news headlines. They have valuable
general-purpose knowledge for event prediction. To our knowledge, we propose the first method
to transfer textual embedding from pre-trained language models to heterogeneous event net-
works. In addition, we extend a regularization framework to adjust pre-trained language models’
embeddings according to the topology of the event network.

We evaluate the proposed EPHEN method with other information network embeddings
methods on real-world events datasets. We demonstrate the strengths of enrolling the general
knowledge of a pre-trained neural language model into a multi-typed event information network
for link prediction tasks through quantitative metrics and qualitative analysis. Furthermore, our
experiments demonstrate that our EPHEN method generates competitive embeddings against
state-of-the-art network embeddings, allowing dynamic and incremental updating as new events
arise.

In this version of the paper used for the master’s dissertation the related works section
is omitted since it is contained within Section 2.3. It presented an introduction with concepts
and motivation. It presents a proposal section with formulations and explanations. Moreover, it
presents an experimental section with the used datasets, machines, achieved results, and discus-
sions about them. Finally, it presents a conclusion wrapping up the contributions, limitations,
and future work for this paper.

4.2 Embedding Propagation over Heterogeneous Event
Networks

A heterogeneous event network is formally defined as a triple N = (O,R,W), where
O is the set of object nodes, R is the set of connections between objects, and W is the weight
of those connections (SANTOS et al., 2020). Heterogeneous event networks are information
networks with the set O > 1, meaning they have more than one object node type. That allows
the representation to adapt to a variety of real-world data and event analysis (Figure 13), in
particular events represented by multiple components, such as places, time, names of people, and
organizations. In this case, the set of objects is defined as O = {Oe ∪Og ∪Oa ∪Op ∪Os}, where
subset Oe represents event nodes, Og represents geographical location nodes, Oa represents actor
nodes (e.g. people or organizations), Op represents theme nodes, and Os represents temporal
information nodes.

Our paper investigates network embedding through embedding propagation (YANG;
ZHANG; HAN, 2019), where we can take advantage of initial event embeddings using a pre-
trained neural language model. This version omits the method explanation section since the
general problem for embedding propagation proposed in this paper is presented in Chapter 3. It
is adapted for dealing with the specific characteristics extracted from an event dataset.

62 Chapter 4. Embedding propagation over heterogeneous event networks

Figure 13 – An example of event analysis from heterogeneous networks. The network maintains complex
relationships between the different event components. Network embeddings allow link pre-
diction tasks and general queries to determine event predecessors of a target event. Source:
(CARMO; MARCACINI, 2021).

4.3 Experiment evaluation

4.3.1 Datasets

To evaluate the proposed method under real-world scenarios, we extracted events from
the GDELT Project 1 within 09/2019 and 10/2020. Table 1 presents an overview of the event
networks used in the experimental evaluation, containing the total number of nodes, number of
events, and the total number of nodes for each component. We use the DistilBERT-multilingual2

pre-trained model to generate the initial event embeddings.

Table 1 – Overview of the heterogeneous event networks used throughout the experiments.

Network #Nodes #Events #Dates #Locations #Actors #Themes
#1 1272 161 43 141 343 584
#2 908 100 42 109 188 469

4.3.2 Baselines

We used the following baseline methods, which are explained in Chapter 2: DeepWalk,
Node2Vec, Metapath2Vec, Struc2Vec, LINE, and GCN.
1 Available at: <https://www.gdeltproject.org/>
2 Available at: <https://github.com/UKPLab/sentence-transformers>

https://www.gdeltproject.org/
https://github.com/UKPLab/sentence-transformers

4.3. Experiment evaluation 63

We chose these baselines since they represent shallower methods like EPHEN. Further-
more, GCN was used to represent inductive methods, but since the network does not contain
labels, it learns embeddings according to event types. For the baselines, we use the parameters
recommended by the authors in the respective original papers for each baseline method. Regard-
ing the number of dimensions of the embeddings, we used 512 for all methods since it is the
dimension used by the DistilBERT pre-trained model.

4.3.3 Evaluation Criteria

We evaluate EPHEN with the MRR@k metric, which is explained in the Subsection
2.1.3.

EPHEN is configured to a µ = 0.85 value and 15 iterations. In our experimental settings,
three link prediction tasks were executed: event → event; event → location; and event → actor.

We also measured execution times for EPHEN and baseline methods. All experiments
were executed in a machine with an AMD Ryzen 5 2600X; 32GB of RAM; an Nvidia Geforce
GTX 1070; Ubuntu 21.04 as the OS; and a conda3 environment for Python 3.8.10. It is important
to reinforce that EPHEN is sequential, and DeepWalk and Node2Vec were executed as sequential
methods in the CPU. In contrast, Metapath2Vec and Struc2Vec are parallel on the CPU, and
LINE and GCN are parallel on GPU.

We also evaluated EPHEN’s performance when new nodes were added after the first
propagation, and new ones were generated upon the existing values since it maintains the same
semantical space provided by the language model. In this scenario, we: (1) hide 40% of event
nodes from a network; (2) propagate the embeddings with 15 iterations; (3) return 50% from
the 40% hidden; propagate again with 5 iterations; (4) return the rest of the 50% from the %40
hidden; and (5) propagate for the last time with 5 iterations to obtain the final embeddings.
Dynamic EPHEN’s experiments were conducted in two tasks: event → location and event →
actor link prediction tasks.

We compared t-SNE plots for EPHEN and three baseline methods: DeepWalk, Metap-
ath2Vec, and GCN, for a visualization analysis. All t-SNE representations were constructed with
perplexity = 50.0 and otherwise default settings.

All the results for link prediction scenarios were obtained after ten runs in random train-

test splits. The heterogeneous networks and source codes are available at a GitHub repository4.

4.3.4 Results and discussions

The first link prediction task defines an event → event scenario, which is a difficult task
due to its correlation with event prediction and precursor recognition. Next, the event → location
3 https://www.anaconda.com/
4 Available at: <https://github.com/PauloRVdC/ephen-experiments>

https://github.com/PauloRVdC/ephen-experiments

64 Chapter 4. Embedding propagation over heterogeneous event networks

link prediction task requires spatial abstraction for correlating multiple events. Finally, the event
→ actor link prediction task requires the model to generalize different words for describing a
common actor like: ’President’, ’Trump’ and ’Government’ might represent the same person in
different events.

Table 2 presents the scores for three different levels MRR@k and for different amounts of
edges removed before the link prediction evaluation. Our model has obtained the best results in
all metrics configurations and percentages of splits, especially for Network #2. That indicates that
pre-trained language models add valuable information to event analysis models. However, since
our network builds the event → event links through text similarity, EPHEN’s good performance
was expected. On the other hand, the topology models like DeepWalk and Node2Vec were able
to obtain second-best results, which indicates that the network topology also adds information to
this event analysis scenario.

Table 2 – Average MRR@k score to the link prediction scenario event → event. The best results are bold.

Network #1 Network #2
MRR@1 MRR@3 MRR@5 MRR@1 MRR@3 MRR@5

5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

DeepWalk 0.1 0.1 0.05 0.03 0.1 0.1 0.05 0.05 0.1 0.1 0.09 0.07 0 0.1 0.08 0.04 0.03 0.13 0.08 0.05 0.03 0.13 0.08 0.05
Node2Vec 0.1 0 0 0 0.1 0.03 0.05 0.07 0.1 0.03 0.08 0.08 0.1 0.1 0.1 0.08 0.10 0.13 0.10 0.09 0.10 0.13 0.11 0.10
Metapath2Vec 0 0 0 0.03 0 0 0.03 0.06 0 0 0.06 0.06 0 0 0 0.02 0.03 0.03 0 0.02 0.03 0.03 0 0.03
Struc2Vec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0.01 0
LINE 0 0 0 0 0.05 0.05 0 0 0.05 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GCN 0 0 0 0 0 0.03 0 0.02 0.02 0.03 0 0.02 0 0 0 0 0 0 0 0 0 0.01 0 0
EPHEN 0.1 0.1 0.1 0.07 0.17 0.17 0.15 0.13 0.21 0.21 0.20 0.16 0.20 0.15 0.15 0.14 0.23 0.20 0.20 0.19 0.25 0.21 0.21 0.20

In Table 3 we observe the scores for event → location link prediction scenario. These
nodes are components from events and are not directly related to the headline’s text, and
EPHEN was still capable of obtaining the best results overall. That shows us that the embedding
propagation was able to insert network topology data within DistilBERT’s embeddings. The
scenario event → actor shows a similar behavior, as seen in Table 4. Once again, DeepWalk and
Node2Vec’s results were closest to EPHEN. Moreover, in this scenario, they were the closest out
of the three. Since multiple names can represent the same actor, the more structured network
topology extraction from the baselines can obtain more information.

Table 3 – Average MRR@k score to the link prediction scenario event → location. The best results are
bold.

Network #1 Network #2
MRR@1 MRR@3 MRR@5 MRR@1 MRR@3 MRR@5

5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

DeepWalk 0.15 0.12 0.12 0.10 0.18 0.14 0.15 0.13 0.18 0.15 0.15 0.13 0.10 0.08 0.07 0.06 0.11 0.10 0.09 0.08 0.12 0.10 0.10 0.09
Node2Vec 0.15 0.12 0.11 0.09 0.16 0.14 0.13 0.12 0.17 0.15 0.14 0.12 0.08 0.08 0.07 0.06 0.09 0.09 0.09 0.07 0.09 0.09 0.09 0.08
Metapath2Vec 0.07 0.06 0.07 0.07 0.09 0.09 0.10 0.08 0.10 0.10 0.10 0.09 0.06 0.05 0.03 0.03 0.07 0.06 0.05 0.04 0.07 0.06 0.05 0.04
Struc2Vec 0.12 0.11 0.11 0.11 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.13 0.10 0.12 0.08 0.09 0.14 0.14 0.11 0.11 0.14 0.15 0.12 0.12
LINE 0 0.1 0 0 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0 0 0 0 0 0 0 0 0 0.02 0.02 0.01
GCN 0.08 0.05 0.07 0.03 0.11 0.10 0.09 0.06 0.12 0.11 0.10 0.07 0.06 0.05 0.06 0.01 0.10 0.07 0.09 0.02 0.12 0.09 0.10 0.03
EPHEN 0.30 0.25 0.27 0.24 0.37 0.34 0.35 0.33 0.40 0.37 0.38 0.36 0.14 0.15 0.13 0.12 0.22 0.22 0.21 0.19 0.25 0.24 0.23 0.22

We also measured execution times for the link prediction tasks for each network embed-
ding method. In Table 5 we present the time in seconds from obtaining embeddings to returning
the predicted ordered list of correct links to that node. All the network embedding methods have
the same nodes to predict links and use the same algorithm. GCN has the lowest execution time

4.3. Experiment evaluation 65

Table 4 – Average MRR@k score to the link prediction scenario event → actor. The best results are bold.

Network #1 Network #2
MRR@1 MRR@3 MRR@5 MRR@1 MRR@3 MRR@5

5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

DeepWalk 0.19 0.17 0.16 0.14 0.21 0.20 0.19 0.18 0.22 0.20 0.19 0.18 0.16 0.16 0.15 0.14 0.19 0.19 0.18 0.18 0.20 0.20 0.19 0.19
Node2Vec 0.18 0.17 0.14 0.14 0.21 0.19 0.17 0.17 0.21 0.20 0.17 0.18 0.16 0.15 0.15 0.15 0.18 0.18 0.18 0.19 0.19 0.19 0.19 0.19
Metapath2Vec 0.03 0.04 0.02 0.02 0.04 0.05 0.04 0.03 0.04 0.05 0.05 0.03 0.05 0.07 0.05 0.06 0.07 0.09 0.08 0.08 0.08 0.10 0.09 0.09
Struc2Vec 0.01 0.02 0.01 0.02 0.03 0.04 0.03 0.03 0.03 0.05 0.03 0.04 0.05 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08
LINE 0 0 0.01 0 0 0.01 0.02 0.01 0 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03
GCN 0.08 0.05 0.02 0.02 0.11 0.06 0.04 0.04 0.13 0.07 0.05 0.04 0.06 0.03 0.04 0.04 0.10 0.07 0.08 0.06 0.11 0.09 0.09 0.08
EPHEN 0.24 0.24 0.22 0.20 0.26 0.26 0.25 0.24 0.26 0.26 0.25 0.24 0.19 0.20 0.19 0.19 0.23 0.24 0.24 0.24 0.23 0.25 0.25 0.25

in all tasks, followed by EPHEN and Metapath2Vec. It is important to reinforce that from these
three best execution time methods, EPHEN is the only sequential method.

Table 5 – The average execution times and standard deviation for network embedding learning and link
prediction tasks are in seconds. The lowest values are bold.

Network #1 Network #2
event → event event → location event → actor event → event event → location event → actor

DeepWalk 22 ± 0.12 24.58 ± 0.15 25.99 ± 0.89 13.20 ± 0.12 16.12 ± 0.15 14.76 ± 0.23
Node2Vec 13.99 ± 0.19 16.80 ± 0.26 18.40 ± 0.80 9.18 ± 0.29 11.64 ± 0.11 10.71 ± 0.16
Metapath2Vec 4.21 ± 0.07 7.64 ± 0.17 9.06 ± 0.40 3.04 ± 0.11 5.36 ± 0.10 4.70 ± 0.09
Struc2Vec 196.22 ± 1.72 206.15 ± 3.60 199.39 ± 5.14 121.19 ± 2.48 125.26 ± 3.54 121.34 ± 3.33
LINE 191.09 ± 1.84 187.53 ± 3.63 192.37 ± 0.71 127.55 ± 0.63 129.70 ± 1.34 129.13 ± 0.93
GCN 1.78 ± 0.04 5.60 ± 0.46 6.62 ± 0.14 1.94 ± 0.15 4.37 ± 0.04 3.66 ± 0.13
EPHEN 2.68 ± 0.16 6 ± 0.18 7.09 ± 0.42 2.30 ± 0.04 4.67 ± 0.03 3.99 ± 0.08

We compare the EPHEN offline results with the dynamic insertion experiment. The event
→ location and event → actor link prediction tasks allow us to evaluate the capacity of EPHEN’s
dynamic insertion in real-time event analysis.

In Table 6 we present the results with the average score and standard deviation for
the location link prediction scenario. In this dynamic evaluation, we compare the results with
embeddings for an entire network with EPHEN and the dynamic insertion scenario, where events
were added to the network at different moments. The results show that the dynamic version of
EPHEN obtains similar results to the embeddings obtained offline and regenerated for the entire
event network. However, we have observed that there is generally an increase in the standard
deviation of the link prediction score, indicating that the incremental version is less stable than
the offline version.

Table 6 – Average MRR@k score and standard deviation to the link prediction scenario event → location,
with dynamic insertion to the embedding propagation. The highest average score and lowest
standard deviation values are bold.

Network #1
MRR@1 MRR@3 MRR@5

5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

EPHEN 0.30 ± 0.09 0.25 ± 0.05 0.27 ± 0.04 0.24 ± 0.03 0.37 ± 0.06 0.34 ± 0.03 0.35 ± 0.03 0.33 ± 0.03 0.40 ± 0.06 0.37 ± 0.04 0.38 ± 0.04 0.36 ± 0.03
Dynamic EPHEN 0.29 ± 0.09 0.26 ± 0.08 0.25 ± 0.05 0.26 ± 0.06 0.34 ± 0.1 0.34 ± 0.1 0.35 ± 0.07 0.34 ± 0.07 0.37 ± 0.1 0.37 ± 0.1 0.37 ± 0.07 0.37 ± 0.06

Analogous results were obtained in the link prediction task between events and actors, as
described in Table 7. In this case, different names for the same actor might appear in different
moments and events of the network, and they might be positioned accordingly to the previous

66 Chapter 4. Embedding propagation over heterogeneous event networks

state of the network. On the other hand, the scenario we built is the worst case for the dynamic
EPHEN since events were hidden randomly.

Table 7 – Average MRR@k score and standard deviation to the link prediction scenario event → actor,
with dynamic insertion to the embedding propagation. The highest average score and lowest
standard deviation values are bold.

Network #1
MRR@1 MRR@3 MRR@5

5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

EPHEN 0.24 ± 0.08 0.24 ± 0.06 0.22 ± 0.04 0.20 ± 0.04 0.26 ± 0.08 0.26 ± 0.06 0.25 ± 0.04 0.24 ± 0.04 0.26 ± 0.08 0.26 ± 0.06 0.25 ± 0.04 0.24 ± 0.04
Dynamic EPHEN 0.26 ± 0.13 0.19 ± 0.09 0.18 ± 0.08 0.16 ± 0.07 0.29 ± 0.14 0.21 ± 0.1 0.22 ± 0.07 0.20 ± 0.07 0.30 ± 0.14 0.22 ± 0.1 0.22 ± 0.07 0.21 ± 0.07

Figure 14 shows t-SNE plots for EPHEN and three other baselines: DeepWalk, Meta-
path2Vec, and GCN. Regarding network #1 and the link prediction tasks, we can observe the
plots in two aspects. First, we measure the plot quality concerning the network topology. Then,
we restored the nearest point from each point representing an event node and analyzed if it
corresponded to a link on the network. Then we averaged the correct event → [component] pair
for each network embedding and used it as a quantitative metric for the plot. As a result, we
can observe on the plot that EPHEN and DeepWalk create smaller communities with events
and components, while Metapath2Vec and GCN generate embeddings by clustering node types.
This behavior helps to explain the good performance from EPHEN and DeepWalk in the link
prediction tasks as the nodes connected in the network are close, even with the t-SNE dimension
reduction.

Figure 14 – t-SNE plots for EPHEN and three other baselines representing different network embedding
approaches. Source: (CARMO; MARCACINI, 2021).

4.4. Concluding remarks 67

In general, these experiments show that EPHEN is competitive both in the performance
of link prediction tasks and computational complexity. Specifically, in our heterogeneous star
networks from GDELT data, EPHEN’s embedding propagation performed best in every task.
Furthermore, EPHEN has the second best execution, and in contrast to the best execution times
achieved by GCN, EPHEN is a sequential method.

4.4 Concluding remarks
This paper introduces an embedding propagation method that transfers knowledge from

pre-trained language models into heterogeneous events networks. Considering a more conceptual
aspect, we adjust the semantic space of a neural language model according to the topology of a
heterogeneous event network. In practice, our method takes advantage of dozens of pre-trained
language models that are currently published and incorporates them into network event analysis.
We show that this strategy is simple and effective, achieving competitive results in different link
prediction tasks and naturally allowing the incremental update of embeddings as new events
arise.

An analysis of the experimental results revealed that our proposal is competitive com-
pared to the Deepwalk and Node2vec methods, which mainly explore the network topology.
Based on these results, we plan to explore different importance levels for each relationship
between events and their components, thereby incorporating more network topology informa-
tion during the embedding propagation. Our experiments did not explore Deep Learning based
methods like HetGNN, HGT, and GraphSAGE. Those methods require more computational
resources and hyperparameter tuning than "shallow” strategies like DeepWalk, or regularization
approaches like EPHEN.

Other directions for future work involve investigating EPHEN’s performance against
Deep Learning based methods for network embedding. We also pretend to extend EPHEN’s
regularization method for considering different weights to different types of nodes and evaluating
its performance in different networks, tasks, and through different performance metrics. Finally,
we reinforce that all source code, networks, and extended versions of the experiments are
available at <https://github.com/PauloRVdC/ephen-experiments>.

https://github.com/PauloRVdC/ephen-experiments

69

CHAPTER

5
COMMODITIES TREND PREDICTION ON

HETEROGENEOUS INFORMATION
NETWORKS

This chapter presents a paper accepted in a periodic that is the extension of a con-
ference paper. The original paper was published in Carmo, Filho and Marcacini (2021) and
its extension was accepted but not yet published in the Journal of Information and Data
Management (JIDM). The first paper method and experiments source codes are available at
<https://github.com/PauloRVdC/tphin-experiments>. The extended paper presented here was
chosen since it accommodates the method and original experiments while adding a fine-tuning
pipeline and its experiments. The source codes from the extended paper, which contains the
fine-tuning pipeline, are available at <https://github.com/PauloRVdC/TRENCHANT>. Both
papers authors were Paulo do Carmo, Ivan José dos Reis Filho and Ricardo Marcacini.

5.1 Initial remarks

Events can be defined as an action or a series of actions that occur at a specific time and
place (ALLAN, 2012; CORDEIRO; GAMA, 2016; CHEN; LI, 2020). Different types of event
analysis allow real-time monitoring for application domains like the economy, agribusiness,
epidemics, medicine, sentiment analysis, and many other social behavior studies (MARCACINI
et al., 2017). Agribusiness events are challenging to predict since they depend on (i) climate
changes, (ii) historical data from the market, (iii) supply and demand, (iv) aggregate demand,
and (v) politics. Climate changes are predictable through meteorologic data. Market history, as
well as supply and demand data, are obtained from temporal series. However, aggregate demand
and politics are also available in text data from the news or social networks. Since textual data is
made for humans, text mining is a challenging task that requires multiple steps of processing
(VENTER; STRYDOM; GROVÉ, 2013).

https://github.com/PauloRVdC/tphin-experiments
https://github.com/PauloRVdC/TRENCHANT

70 Chapter 5. Commodities trend prediction on heterogeneous information networks

Event analysis is the computational task for automatically identifying related events
through text and other data such as timestamps, places, people, and entities involved (HAMBORG
et al., 2018; XUE et al., 2019). The data extracted comes in 5W1H model which is described
as (CHEN; LI, 2020): what happened; when it happened; where it happened; who is involved;
why it happened; and how it happened. Thus, these techniques can be used to explore useful
agribusiness data for trend prediction (RADINSKY; HORVITZ, 2013; NING et al., 2019), since
they can be modeled as events. Event analysis is challenging since different topics can be related
at some level. For example, the corn value can drop due to new exporting politics that lower
international demand, and if identified earlier, a producer might be able to close a better domestic
deal (FILHO et al., 2020).

Recently, heterogeneous information networks (HINs) have been used successfully for
modeling large event datasets (SHI et al., 2016) since they model different components from
events as nodes (e.g., when, where, who, why, and how), and network links express different
relationships between these nodes. Thus, we can create a HIN representing each event by itself
and the 5W1H. The use of HINs also allows network completion tasks. Network completion
tasks derive from link prediction. It is the task of estimating the connection between two nodes
based on observed links and node features. The main difference from link prediction is that
the method only tries to connect nodes of specific types in network completion. It can also be
defined as a simple binary classification problem (SHI et al., 2016). Network completion can
also be modeled as a multi-class classification problem whenever a set of node types can be used
as labels. Network completion as a classification uses node features as data. There are many
techniques for obtaining node features from a network.

Network embeddings methods map each node into a low dimensional vector that rep-
resents the network topology, and node type information (CHANG et al., 2015; HUANG;
MAMOULIS, 2017; SETTY; HOSE, 2018; CUI et al., 2018; WU et al., 2020). The recent litera-
ture has explored several methods to solve this task, from random walks within the entire network
to deep learning methods (WU et al., 2020). However, since events can be partially represented
as texts, such as news headlines or social networks posts, we can use neural language models,
such as the Bidirectional Encoder Representations from Transformers (BERT) (DEVLIN et al.,
2018), to compute meaningful representations. Neural language models are trained over large
textual datasets, including news headlines, so they have valuable general-purpose knowledge
for event prediction. However, using just text embedding is not recommended since it ignores
essential component information (CHEN; LI, 2020), which may lead to deeper connections
between events, like location and actors involved.

This paper presents the TrEnd pRediction on heteRogeneous InFormatIon nEtwoRks
(TRENCHANT), a language model-based embedding propagation method for heterogeneous
event networks. While most existing network embedding methods mainly explore the network’s
topology, our method maps both (i) textual information about events; (ii) the complex rela-

5.1. Initial remarks 71

tionships between events and their components to a low-dimensional vector space; and (iii) a
fine-tuning strategy that leverages topological properties from the heterogeneous information
network to enrich the textual embeddings. Existing methods of network embeddings are offline,
which requires repeating the entire process when new nodes are added to the network. Some
pipelines may include different techniques for dynamic insertions (DENG; RANGWALA; NING,
2019; DENG; RANGWALA; NING, 2020), but they must be modeled apart from the network
embedding. On the other hand, our proposed method is naturally incremental. It uses an initial
neural language model embedding, pre-trained and fine-tuned respectively, to maintain a fixed
vector space propagated to the entire network.

A preliminary version of our method was proposed in Carmo, Filho and Marcacini
(2021). In this extended version, we incorporate the BERT model fine-tuning strategy using
topological properties of the event network, as well as a more robust experimental analysis. Our
main contributions are threefold:

• First, we propose a regularization framework for embedding propagation from a pre-trained
BERT language model to all nodes of a heterogeneous event network. Thus, all network
nodes are mapped to the same embedding space, allowing to compute similarities between
textual and non-textual nodes of an event dataset.

• Second, we introduce a fine-tuning method of the BERT model from the topological
properties of the event network. Although the proposed method can handle general-purpose
pre-trained BERT models (TRENCHANT method), we discuss and evaluate scenarios in
which fine-tuning the initial embeddings before propagation in the heterogeneous network
yields promising results (FT-TRENCHANT method).

• Finally, we model the trend prediction problem as a classification task from the final em-
beddings extracted from an event network. That is a practical solution that allows different
well-known classifiers, such as Long Short-Term Memory (LSTM) neural networks.

We evaluate the proposed methods with other information network embeddings methods
on an agribusiness news dataset. We consider corn and soybean prices for trend prediction. We
also demonstrate how enrolling the general knowledge of a pre-trained and fine-tuned neural
language model into a heterogeneous information network embedding method performs in
trend prediction scenarios. We show that using TRENCHANT and FT-TRENCHANT proposed
methods is competitive with state-of-art network embeddings algorithms. Moreover, our proposal
performs network embedding incrementally, allowing the insertion of new nodes in the same
semantic space without rebuilding the entire network embedding.

72 Chapter 5. Commodities trend prediction on heterogeneous information networks

5.2 Related Work

Commodities trend prediction is usually based on time series analysis techniques like
Integrated Autoregressive Moving Average (ARIMA, (DAREKAR; REDDY, 2017)) and Inte-
grated Seasonal Autoregressive Moving Average (SARIMA (ADANACIOGLU; YERCAN et

al., 2012)). With the advance in text mining techniques, some works began to combine these text
features with time series data for stock and commodity prediction (WANG et al., 2019; CHEN;
CHEN; CHIU, 2016). In dos2020forecasting the authors combine text and time-series data. The
text was obtained from a bag-of-words model and concatenated with a decision tree model based
on time series data. They evaluate the models by comparing the results from time series and the
proposed model in a Support Vector Regression model for commodity price prediction.

The remainder of this section is omitted since it is contained in Section 2.3.

5.3 Trend prediction on heterogeneous information net-
works

5.3.1 Event Modeling with Heterogeneous Networks

Events extracted from news data act as digital sensors, as they are published around the
time they happened and contain information. This information can be extracted directly from
the text and its metadata (HAMBORG et al., 2018). We chose to extract a 4W1H variation
without the when characteristics since it is not as good data as the publication date in this domain.
We also consider metadata from commodities prices to generate the trend indicators of the
temporal series. The trend labels are calculated according to the [week|month]/year period and
commodity they represent. With the news features extracted and trend labels calculated, we can
model different heterogeneous networks to each combination (Figure 15).

A heterogeneous event network is formally defined as a triple N = (O,R,W), where
O is the set of object nodes, R is the set of connections between objects, and W is the weight
of those connections (SANTOS et al., 2020). Heterogeneous event networks are information
networks with the set O > 1, meaning they have more than one object node type. That allows
the representation to adapt to various real-world data and event analysis, in particular events
represented by multiple components, such as places, time, names of people, and organizations.
In this case, the set of objects is defined as O = {Oe∪Od ∪Ow∪Ol ∪Oa∪Oy∪Oh∪Ot}, where
the subset Oe represents event nodes, Od represents date nodes, Ow represents what nodes, Ol

represents location nodes, Oa represents actors nodes (e.g. people or organizations), Oy represents
why nodes, Oh represents how nodes and Ot represents trend nodes (our desired labels).

This version omits the embedding propagation and fine-tuning methods explanation
subsections since they were presented in Chapter 3. They were adapted to address the specific

5.3. Trend prediction on heterogeneous information networks 73

Figure 15 – Visual representation of the proposal. The event components are extracted from news headlines
and metadata. The trend symbolizes the price trend of a commodity at the end of the period
the news was published. Source: (CARMO; FILHO; MARCACINI, 2021; CARMO; FILHO;
MARCACINI, 2022).

characteristics modeled in the proposed HIN. Instead, the following subsection presents the trend
prediction pipeline, which is unique for this paper.

5.3.2 Trend Prediction

We must apply the data collected to a machine learning algorithm with the network
embeddings calculated. In this paper, we have chosen a long-short term memory (LSTM) for
supervised multi-class classification with the network embedding data. The LSTM we used
accommodates memory units. The memory units are composed of three smaller units (u,cin,cout).
The units u (Equation 5.1 (i)) apply a weighted sum, where w represents the weight, for each
value y, and its result is outputted through an activation function. These units are limited by
control units cin (Equation 5.1 (ii)) and cout (Equation 5.1 (iii)) that control when the iteration
t will go forward or keep recurring. The initial value y inserted to the LSTM comes from the
propagated embeddings f and changes throughout training.

(i) uu
(t) = ∑u wuyu(t−1)

(ii) cin
(t) = ∑u win juyu(t−1)

(iii) cout
(t) = ∑u wout juyu(t−1)

(5.1)

These units must learn the correct weights to predict trends from an embedding vector.

74 Chapter 5. Commodities trend prediction on heterogeneous information networks

Thus the LSTM is trained by a process called back-propagation. A back-propagation optimizer
uses a gradient (e.g. Equation 5.2) that calculates the error E between the actual label from
a training to the time step T

′
,T and generates a ∆ to update each weight wi j from the LSTM

network.

∆wEtotal
(T

′
,T) =

T

∑
t=T i+1

∆wE(t) → ∆wi j =−α
∂Etotal(T

′
,T)

∂wi j
(5.2)

The LSTM used in this proposal has: (i) a dense layer with as many units as the input
(512) that uses a relu activation function (Equation 5.3), allowing the optimization process to
turn units off when necessary; (ii) we mini-batch experiments and determined 64 memory units
were the optimal number for these experiments; (iii) the last layer calculates the probabilities of
each class since it uses a SoftMax (GOODFELLOW; BENGIO; COURVILLE, 2016) activation
function; and (iv) it uses the Adam optimizer during training. With this LSTM, we can leverage
the data represented by the embeddings in a neural classification, allowing non-supervised
methods to compete with graph neural networks.

f (u) = max(0,u) (5.3)

5.4 Experimental evaluation

5.4.1 Datasets

We use a dataset related to agribusiness news to evaluate the trend prediction. It contains
news related to the corn and soybean commodities extracted from Soybean & Corn Advisor1 and
the historical prices from the Centro de Estudos Avançados em Economia Aplicada (CEPEA)2.
This dataset allows us to extract the events and components from the news text. We calculate
Trends’ classes in four ways, generating four networks as shown in Table 8. Each network has
the same events and components but generates trends’ labels nodes by different commodities and
time windows. In addition, we use the DistilBERT-Multilingual3 model to generate the initial
embedding for each event headline text.

Table 8 – Overview of heterogeneous event networks used in the experimental evaluation.

Network #Nodes #Events #Dates #Whats #Wheres #Whos #Whys #Hows Time window Commodity

#1 4348 2322 380 48 115 9 244 1226 weekly corn
#2 4348 2322 380 48 115 9 244 1226 weekly soybean
#3 4056 2322 89 48 115 9 244 1226 monthly corn
#4 4056 2322 89 48 115 9 244 1226 monthly soybean

1 Available at: <http://soybeansandcorn.com>
2 Available at: <https://www.cepea.org.br>
3 Available at: <https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2>

http://soybeansandcorn.com
https://www.cepea.org.br
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2

5.4. Experimental evaluation 75

5.4.2 Evaluation criteria and experiment setup

We use traditional metrics to evaluate the multi-class classification scenario: macro
precision, macro recall, and macro F1. Another important metric to evaluate these methods is the
F1 for the big_down and big_up classes. We consider it essential because these classes indicate
a critical market tendency transition. It is important to know the performance of the methods on
them. The evaluation scenarios consist of two windows for obtaining trends and two splits for
predicting them on all four networks. We also evaluate average execution times. In Table 9 we
present the training scenarios statistics for train and test size, according to the commodity and
number of weeks or months used to generate the labels.

Table 9 – Overview of scenario configurations with train and test sizes.

Scenario Time window Commodity #Weeks #Months Train size Test size

#1 weekly corn 24 - 2196 126
#2 weekly corn 48 - 2037 285
#3 weekly soybean 24 - 2196 126
#4 weekly soybean 48 - 2037 285
#5 monthly corn - 6 2203 119
#6 monthly corn - 12 2029 293
#7 monthly soybean - 6 2203 119
#8 monthly soybean - 12 2029 293

With the experiment scenarios displayed, we also need to account for the class imbal-
ance between all four labels (big_down, down, up, and big_up). Table 10 presents all class
distributions for each scenario train/test split.

Table 10 – Overview of class balance for each scenario on train/test splits.

Scenario big_down(train/test) down(train/test) up(train/test) big_up(train/test)

#1 97/5 999/57 977/57 123/7
#2 83/19 964/92 887/147 103/27
#3 189/12 918/63 898/41 191/10
#4 155/46 888/93 838/101 156/45
#5 28/0 1006/38 1093/81 76/0
#6 28/0 973/71 952/222 76/0
#7 26/23 1096/15 1000/61 81/20
#8 26/23 1096/15 846/215 61/40

We compare TRENCHANT and FT-TRENCHANT with state-of-art network embeddings
methods: DeepWalk, Node2Vec, Metapath2Vec, Struc2Vec, LINE, and GCN. We use the param-
eters recommended by the authors in the respective original papers for each baseline method. Re-
garding the number of dimensions of the embeddings, we used 512 for all methods since it is the
dimension used by the DistilBERT language model. All experimental data, source code, and net-
works are available at the GitHub repository <https://github.com/PauloRVdC/TRENCHANT>.

5.4.3 Results and Discussion

Considering the experiment setup explained previously, we will present results for each
scenario, pointing out relevant overall and specific class performance results. We will also

https://github.com/PauloRVdC/TRENCHANT

76 Chapter 5. Commodities trend prediction on heterogeneous information networks

evaluate the models considering stability through box plot variations on scenario results.

In Table 11 we present the results for the odd number scenarios (#1, #3, #5 and, #7),
representing the shorter time splits. We can see TRENCHANT and FT-TRENCHANT are the
best performers on most scenarios and metrics. More specifically, FT-TRENCHANT is best
in both scenarios constructed with soybean trends. At the same time, TRENCHANT has the
best F1 and better recall for scenario #1, which is the shorter time split for corn trends. We can
also observe that TRENCHANT had worst performance than baseline methods on scenario #3,
and FT-TRENCHANT managed to beat them with some margin. These results show that our
fine-tuning pipeline adds some knowledge to the representation. However, it also shows that
our fine-tuning pipeline does not help all scenarios since performance has decayed in all corn
scenarios.

Table 11 – Trend prediction performance for scenarios #1, #3, #5 and, #7 on three metrics (macro F1,
macro precision (pre) and, macro recall (rcl)). The highest scores are in bold.

Scenario #1 Scenario #3 Scenario #5 Scenario #7
F1 pre rcl F1 pre rcl F1 pre rcl F1 pre rcl

DeepWalk 0.24 0.24 0.26 0.23 0.23 0.26 0.48 0.48 0.48 0.13 0.12 0.21
Node2Vec 0.27 0.30 0.27 0.23 0.23 0.25 0.24 0.25 0.24 0.18 0.22 0.25
Metapath2Vec 0.22 0.32 0.27 0.20 0.28 0.26 0.11 0.29 0.08 0.15 0.21 0.23
Struc2Vec 0.17 0.22 0.22 0.20 0.23 0.23 0.18 0.29 0.14 0.19 0.21 0.27
LINE 0.24 0.25 0.24 0.25 0.26 0.26 0.31 0.32 0.31 0.18 0.21 0.25
GCN 0.27 0.32 0.30 0.21 0.22 0.23 0.39 0.42 0.45 0.14 0.12 0.24
TRENCHANT 0.29 0.30 0.30 0.21 0.22 0.24 0.23 0.24 0.23 0.21 0.30 0.24
FT-TRENCHANT 0.21 0.22 0.21 0.33 0.34 0.34 0.26 0.27 0.26 0.25 0.31 0.35

In Table 12 we present the results for the even number scenarios (#2, #4, #6 and, #8),
representing the longer time splits. Compared to the shorter time splits, TRENCHANT and
FT-TRENCHANT have lacked some performance, going from being the best in most scenarios to
having the best F1 and precision on scenario #8. Nevertheless, this shows us that the fine-tuning
process adds some knowledge that helps discriminate trends for the soybean commodity. We
can also see that TRENCHANT is the second-best on scenario #2, which aligns with its good
performance on scenario #1.

Table 12 – Trend prediction performance for scenarios #2, #4, #6 and, #8 on three metrics (macro F1,
macro precision (pre) and, macro recall (rcl)). The highest scores are in bold.

Scenario #2 Scenario #4 Scenario #6 Scenario #8
F1 pre rcl F1 pre rcl F1 pre rcl F1 pre rcl

DeepWalk 0.24 0.26 0.27 0.20 0.27 0.24 0.36 0.40 0.39 0.16 0.20 0.24
Node2Vec 0.24 0.25 0.26 0.22 0.23 0.26 0.24 0.27 0.26 0.17 0.24 0.25
Metapath2Vec 0.19 0.25 0.20 0.30 0.35 0.32 0.10 0.28 0.07 0.13 0.19 0.24
Struc2Vec 0.20 0.23 0.22 0.22 0.24 0.24 0.16 0.28 0.12 0.17 0.22 0.22
LINE 0.24 0.26 0.25 0.22 0.23 0.24 0.25 0.28 0.27 0.17 0.26 0.25
GCN 0.26 0.31 0.31 0.19 0.17 0.24 0.37 0.38 0.40 0.16 0.24 0.32
TRENCHANT 0.25 0.26 0.27 0.19 0.18 0.20 0.22 0.25 0.23 0.18 0.38 0.28
FT-TRENCHANT 0.23 0.23 0.24 0.20 0.20 0.22 0.20 0.23 0.20 0.20 0.39 0.25

In Table 13 we present the results specific for the critical classes (big_down and big_up).
We can observe that even though TRENCHANT and FT-TRENCHANT only achieve the best

5.4. Experimental evaluation 77

results on scenarios #1 and #3, respectively, the overall performance guarantees a result through-
out all scenarios. Scenarios #5 and #6 did not present any results for the big_down and big_up

classes. Another takeaway from these results is that Metapath2Vec achieves the best performance
in most scenarios, showing us that the meta-paths allow for good coverage of unbalanced class
features.

Table 13 – Trend prediction performance for all scenarios on two metrics (big_down F1 (bd), big_up F1,
(bu)). The highest scores are in bold.

Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #5 Scenario #6 Scenario #7 Scenario #8
(bd) (bu) (bd) (bu) (bd) (bu) (bd) (bu) (bd) (bu) (bd) (bu) (bd) (bu) (bd) (bu)

DeepWalk 0.00 0.00 0.01 0.01 0.01 0.00 0.03 0.03 - - - - 0.00 0.00 0.00 0.00
Node2Vec 0.07 0.02 0.02 0.01 0.03 0.03 0.04 0.02 - - - - 0.00 0.05 0.01 0.03
Metapath2Vec 0.07 0.00 0.01 0.12 0.07 0.10 0.29 0.25 - - - - 0.28 0.16 0.27 0.14
Struc2Vec 0.04 0.10 0.08 0.12 0.09 0.13 0.16 0.20 - - - - 0.05 0.21 0.04 0.20
LINE 0.00 0.09 0.02 0.07 0.07 0.05 0.09 0.07 - - - - 0.01 0.04 0.01 0.05
GCN 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 - - - - 0.00 0.00 0.00 0.00
TRENCHANT 0.07 0.12 0.00 0.05 0.06 0.04 0.06 0.02 - - - - 0.02 0.09 0.04 0.07
FT-TRENCHANT 0.00 0.02 0.00 0.07 0.23 0.01 0.03 0.02 - - - - 0.04 0.09 0.07 0.10

In Figure 16 we present five box plots from scenario #3 that showcase the stability of
methods through five variations of the F1, precision, and recall metrics. The first box plot (Figure
16a) shows that FT-TRENCHANT not only has the highest average of the macro metrics but is
also the most stable, followed by TRENCHANT and LINE. Another standout is that box plots
for specific classes (Figures 16b, 16c, 16d, 16e) show that different methods get better results on
different classes. Most methods have a good performance on the up class, but FT-TRENCHANT
is among the best, while TRENCHANT is among the methods that managed big_down class
performance on some runs. Overall, FT-TRENCHANT has good performance throughout the
macro and class-specific metrics and manages to edge out TRENCHANT and the baselines in
most metrics.

We also evaluated average execution times for all algorithms on all executions for all
scenarios. In Figure 17 we present the average seconds for each algorithm. It is important to
denote that: (i) GCN is a semi-supervised graph neural network that is parallel on GPU; (ii) LINE
is a neural network embedding method that is parallel on GPU; (iii) Struc2Vec is an extension
of DeepWalk parallel on CPU; (iv) DeepWalk, Node2Vec, Metapath2Vec, TRENCHANT and,
FT-TRENCHANT are sequential; and (v) all methods, except GCN, execution times include
training and prediction with the LSTM. With that in mind, GCN has the fastest execution times,
followed by TRENCHANT and FT-TRENCHANT. These results can be explained for two
reasons: (i) they are linear methods considering nodes and edges of the network; and (ii) their
stable embeddings allowed the LSTM loss to be stable sooner, resulting in a shorter training,
specially FT-TRENCHANT, which has fine-tuned initial embeddings.

Overall, TRENCHANT and FT-TRENCHANT are methods competitive with the state-
of-art network embedding methods. Also, an initial embedding ensures that all nodes will be
in the same vector space. This single vector space allows new nodes added to the network to

78 Chapter 5. Commodities trend prediction on heterogeneous information networks

Dee
pW

alk

Nod
e2

Ve
c

Meta
pa

th2
Ve

c

Str
uc2

Ve
c

LIN
E

GCN

TR
EN

CHANT

FT-
TR

EN
CHANT

algorithm

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

metric
f1
precision
recall

(a) macro F1, precision and recall.

Dee
pW

alk

Nod
e2

Ve
c

Meta
pa

th2
Ve

c

Str
uc2

Ve
c

LIN
E

GCN

TR
EN

CHANT

FT-
TR

EN
CHANT

algorithm

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

metric
f1
precision
recall

(b) big_down F1, precision and recall.

Dee
pW

alk

Nod
e2

Ve
c

Meta
pa

th2
Ve

c

Str
uc2

Ve
c

LIN
E

GCN

TR
EN

CHANT

FT-
TR

EN
CHANT

algorithm

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

metric
f1
precision
recall

(c) down F1, precision and recall.

Dee
pW

alk

Nod
e2

Ve
c

Meta
pa

th2
Ve

c

Str
uc2

Ve
c

LIN
E

GCN

TR
EN

CHANT

FT-
TR

EN
CHANT

algorithm

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

metric
f1
precision
recall

(d) up F1, precision and recall.

Dee
pW

alk

Nod
e2

Ve
c

Meta
pa

th2
Ve

c

Str
uc2

Ve
c

LIN
E

GCN

TR
EN

CHANT

FT-
TR

EN
CHANT

algorithm

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

metric
f1
precision
recall

(e) big_up F1, precision and recall.

Figure 16 – Box plots for scenario #3 with the metrics: macro and class-specific F1, precision, and recall.
Source: (CARMO; FILHO; MARCACINI, 2022).

5.5. Concluding remarks 79

Dee
pW

alk

Nod
e2

Vec

Meta
pa

th2
Vec

Str
uc2

Vec LIN
E

GCN

TR
EN

CHANT

FT-
TR

EN
CHANT

algorithm

0

100

200

300

400

500

se
co

nd
s

Figure 17 – Average execution times for all algorithms on all executions for each scenario in seconds.
Source: (CARMO; FILHO; MARCACINI, 2022).

receive a final embedding with a few iterations on top of the existing embedding. It also provides
a more stable performance since all executions will have the same starting point.

5.5 Concluding remarks
This paper introduces an embedding propagation method of pre-trained neural language

models. It also proposes an extension that leverages the heterogeneous network architecture
for fine-tuning a neural language model. Furthermore, we propose a pipeline for trend price
prediction of agribusiness commodities prices and evaluate our proposed models against network
embedding models. Finally, our experiment results show that using an embedding propagation
technique from a BERT-based model allows network embedding without recalculating the
entire network. We also show that the use of text information, combined with simple network
topology, is competitive against state-of-art topology network embeddings algorithms when the
text database is well-curated. The results with the fine-tuned extension also show that graph data
can be incorporated into BERT embeddings.

We plan to incorporate weights on the different types of relations for future work, thereby
allowing the embedding propagation to consider more topology information. We also want to
investigate semi-supervised embedding propagation methods to incorporate the existing labels
into the resulting embeddings. Finally, Attention mechanisms in place of an LSTM is another
scenario we can evolve this work.

81

CHAPTER

6
NATUKE: NATURAL PRODUCT

KNOWLEDGE EXTRACTION FROM
ACADEMIC LITERATURE

This chapter presents a paper accepted in 17th IEEE International Conference on Seman-
tic Computing (ICSC) in the resource track. The source code for the experiments and usability
tips are available at <https://github.com/AKSW/natuke>. This paper was worked on during
a three month guest researcher period in the Hochschule für Technik, Wirtschaft und Kultur
(HTWK) at Leipzig, Germany. The papers authors were Paulo do Carmo, Edgard Marx, Ricardo
Marcacini, Marilia Valli, João Victor Silva and Alan Pilon.

6.1 Initial remarks

Knowledge graphs (KGs) play a key role as a source of structured data for a variety of
applications (HOGAN et al., 2021). They can be specialized or multi-purpose, containing infor-
mation from many domains. Nevertheless, building KGs is usually a very cumbersome and time-
consuming task, often relying on manual efforts that can lead to errors or incompleteness (ZA-
VERI et al., 2013). It is a main-fold task that involves several complex reading-understanding
natural language processing techniques. An effort that can be significantly challenging when
keeping the dataset up-to-date with the latest information (HELLMANN et al., 2009). Devising
automatic knowledge extraction methods is a far-reaching goal to facilitate KG curation and
maintenance.

Machine learning (ML) methods have recently shown promising results in various natural
language tasks. ML methods can cope with data nuances that can go unnoticed by rule-based
approaches designed by humans over limited data observations. In this work, we introduce a
crowd-sourced benchmark containing a corpus of over two thousand exemplars for evaluating

https://github.com/AKSW/natuke

82 Chapter 6. NatUKE: Natural Product Knowledge Extraction from Academic Literature

natural products’ knowledge extraction from academic literature. We refer to natural products
as chemical compounds generated by living organisms. They contribute as much as 67% to all
drugs approved worldwide (NEWMAN; CRAGG, 2016). Natural product research relies mainly
on text for academic communication. Building approaches to facilitate data querying, exploration
and organization are therefore pivotal to speed up research. We also evaluate different state-
of-the-art unsupervised embedding generation methods and show that it is possible to extract
some properties with relatively good performance. In our evaluation, EPHEN and Metapath2Vec
outperform other graph embedding methods in the natural product knowledge extraction task.
Although we focus on natural products, the methods evaluated in this work can be easily extended
to other domains. Overall our contributions are as follows:

• A large crowd-sourced benchmark for natural product knowledge extraction from academic
literature containing over two thousand manual curated entries, and;

• A baseline evaluation of different state-of-the-art unsupervised embedding generation
methods on the task of end-to-end natural product knowledge extraction from academic
literature.

6.2 Related works

The US-BERT method was proposed for unsupervised relation extraction between two
named entities (ALI; SALEEM; NGOMO, 2021). US-BERT uses S-BERT-type embeddings
to encode sentences with hidden named entities. Then the method uses affinity propagation to
create clusters based on certain sentences with greater cosine similarity with the query of entities.
The method achieved better precision than the literature in all experiments.

Since this paper uses an ML-based graph completion, or entity linking, for informa-
tion extraction, we must specify a few related works in this field (MARTINEZ-RODRIGUEZ;
HOGAN; LOPEZ-AREVALO, 2020). The NED-EE method is based on conditional random
fields (CRF) classifier and combines other non-ML techniques like Stanford NER in its struc-
ture (HOFFART; ALTUN; WEIKUM, 2014). ADEL (PLU; RIZZO; TRONCY, 2016) and
UDFS (DERCZYNSKI; AUGENSTEIN; BONTCHEVA, 2015) also use Stanford NER, while
JERL (LUO et al., 2015) uses a custom CRF model that recognizes and links to existing KGs.
WAT relies on OpenNLP’s NER in a maximum entropy model (PICCINNO; FERRAGINA,
2014). On the other hand, J-NERD (NGUYEN; THEOBALD; WEIKUM, 2016) uses Stanford’s
dependency parse-tree in each sentence and then combines it into a global model used in an
inference model based on Gibbs sampling.

Although these methods achieve good performance, they are limited by the vocabulary
they are trained in. In order to breach this limitation, we search for unsupervised methods
that allow for the dynamic insertion of new nodes or at least reduced time execution for the

6.3. Problem definition 83

information extraction process. Therefore, we propose this benchmark to evaluate four state-of-
art unsupervised graph embedding models in the task of natural product knowledge extraction
from academic literature.

6.3 Problem definition

Our benchmark NatUKE aims to evaluate natural product knowledge extraction from
academic literature. It considers three main aspects of this task: (A) we use the natural product
data set NuBBEDB (PILON et al., 2017) to evaluate the extraction of some characteristics it con-
siders from papers; (B) the knowledge extraction results are obtained through KG completion by
obtaining similarity distances from unsupervised graph embedding models; and (C) we evaluate
four different graph embedding models to compare how their structures behave throughout the
data set.

6.3.1 Dataset curation

The dataset used for evaluation and training was generated from hundreds of peer-
reviewed scientific articles with information on more than 2,521 possibilities of natural product
extraction. The dataset was built manually by chemistry specialists that read the articles anno-
tating four relevant properties associated with each natural product discussed in the academic
publication. In this work, we focus on five NuBBEDB properties for training and prediction:
(I) compound name (rdfs:label), (II) bioactivity (nubbe:biologicalActivity), (III) species from
where natural products were extracted (nubbe:collectionSpecie), (IV) collection site of these
species (nubbe:collectionSite), and (V) isolation type (nubbe:collectionType). Table ?? presents
an overview of the number of unique properties.

Table 14 – Overview of the number of distinct values per property.

#Compounds #Bioactivities #Species #Sites #Isolations
446 34 116 52 6

6.3.2 Experimental setup & evaluation criteria

The problem of knowledge extraction from unstructured data sources is that, even with
academic papers as input data, authors may use different words to describe the same subjects,
methods, or techniques. Using rule-based information extraction algorithms is challenging even
though it tends to output more stable and trustworthy results.

In this work, we propose a benchmark and evaluate different ML graph embeddings
for the task of unsupervised knowledge extraction. Graph embeddings allow the extraction of
information already present in the graph by previous extractions and encode them in characteristic

http://www.w3.org/2000/01/rdf-schema#label
http://nubbe.aksw.org/ontology/index.html#d4e142
http://nubbe.aksw.org/ontology/index.html#d4e227
http://nubbe.aksw.org/ontology/index.html#d4e206
http://nubbe.aksw.org/ontology/index.html#d4e248

84 Chapter 6. NatUKE: Natural Product Knowledge Extraction from Academic Literature

vectors. In order to use graph embedding methods, we model a KG with the paper’s DOI as
a central node (Figure 18). It connects to the previously extracted characteristics, such as
related molecule data properties and topics extracted from BERTopic (GROOTENDORST,
2020). BERTopic is a topic modeling technique based on the BERT (Bidirectional Encoder
Representations from Transformers) (DEVLIN et al., 2018) method and a class-based TF-IDF to
create dense clusters while keeping important words from objects in these clusters to allow for
easily readable topics.

Figure 18 – Example of the proposed structure for the KG.

The BERTopic model requires a certain number of tokens that do not allow the insertion
of entire papers. Therefore, we split the papers into sentences and fed them to the BERTopic
model. So, we fit all the sentences to a multilingual pre-trained BERTopic model and extract
non-duplicate topics. We filter the paper’s topics by allowing connection only when less than
80% of the papers were previously connected. That allows us to eliminate general topics that
do not discriminate papers enough automatically. With them, we can hide all links to manually
extracted characteristics whenever a paper is selected as testing data while maintaining them
connected to other nodes by their topics.

In order to simulate a scenario where new training data is constantly added to the model,
we modeled a dynamic evaluation of four stages with different amounts of training data in each
stage. The first train/test split consists of a resp. 20/80% ratio, and for other stages, the train split

6.3. Problem definition 85

is increased by 20% until it reaches an 80/20% ratio (Figure 19). In our benchmark, we evaluate
the accuracy of each approach in predicting the resource from different chemical compound
properties using hits@k. The metric hits@k measures the average of how many predictions
achieve top k rankings (DOCS, 2019). Together with MRR (Mean Reciprocal Rank), hits@k is
a ranking metric for when there is only one correct document. On the other hand, mAP (mean
Average Precision) and nDCG (normalized Discounted Cumulative Gain) (KISHIDA, 2005) are
designed for ranking when a list of relevant documents is available. We chose hits@k because it
allows us to evaluate each characteristic extraction with reasonable expectations by customizing
the k value.

To coupe with the principles of Findable, Accessible, Interoperable, and Reusable
(FAIR)1 and to facilitate reproducibility, all experiments and data are publicly available at
<http://github.com/AKSW/natuke> under Apache License 2.0.2

Figure 19 – Dynamic evaluation stages for evaluation. Source: (CARMO et al., 2023).

6.3.3 Models & Frameworks

We compare four different unsupervised graph embedding methods for our knowledge
extraction task: (1) DeepWalk (PEROZZI; AL-RFOU; SKIENA, 2014) is an unsupervised graph
embedding method that uses random walks to sample a training dataset for a skip-gram architec-
ture; (2) Node2Vec (GROVER; LESKOVEC, 2016) extends the DeepWalk method to allow more
control on the random walks; (3) Metapath2Vec (DONG; CHAWLA; SWAMI, 2017) is another
extension from DeepWalk that transforms the random walks into meta-path-based walks; and (4)
Embedding Propagation on Heterogeneous Networks (EPHEN) (CARMO; MARCACINI, 2021)
is an embedding propagation method that uses a regularization function to distribute an initial em-
bedding on a KG. Therefore it considers both text and structured data in an unsupervised scenario.
EPHEN relies on a startup embedding, so we used the sentences generated for the BERTopic and
fed them individually to a Sentence-BERT (REIMERS; GUREVYCH, 2019) multilingual model.
The final paper startup embedding is the sum of all the sentence embeddings, which shifts the
vector for a paper representation. We also tried to evaluate GraphSAGE (HAMILTON; YING;
LESKOVEC, 2017). However, our dataset does not achieve a complete KG, and GraphSAGE’s
neural networks can not propagate the features and generate new embeddings without a complete
graph.
1 <https://www.go-fair.org/fair-principles/>
2 <https://www.apache.org/licenses/LICENSE-2.0>

http://github.com/AKSW/natuke
https://www.go-fair.org/fair-principles/
https://www.apache.org/licenses/LICENSE-2.0

86 Chapter 6. NatUKE: Natural Product Knowledge Extraction from Academic Literature

We chose these methods because they generate embeddings for every node without
needing a complete KG, pre-determined weights, or ontology. That is important to us since
these characteristics are necessary for applying the model in the real world since papers will be
connected only by automatically extracted characteristics. We are also interested in dynamic
models that can generate these embeddings within a reasonable amount of time and computational
resources.

6.4 Experimental results

Table 15 shows the results from experiments extracting five different natural product
properties from biochemical academic papers. We use NuBBEKG ontology and dataset3 for
property prediction. We use different values of k proportionally to the property-value prediction
challenge. For instance, it is harder to predict the correct natural product name than it is to predict
the isolation type. As shown in Table 14, there are considerably fewer unique possible character-
istics for isolation type than compound name. Therefore predicting the correct compound name
is significantly more challenging. The final k values in this table are from 1 to 50 considering
values multiples of 5 and two thresholds: (1) a score equal or higher than 0.50 is achieved; and
(2) a score equal or higher than 0.20 is achieved. Considering these conditions, compound name
(C) and isolation type (T) achieve the same final k value in both thresholds. While bioactivity
(B), collection species (S), and collection sites (L) have different k values for each threshold.

Table 15 – Results table for extracting: compound name (C), bioactivity (B), specie (S), collection site
(L), and isolation type (T). The results consider different final k values corresponding to two
different rules. The best results for each extraction are bold.

Property k DeepWalk Node2Vec Metapath2Vec EPHEN
1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

C 50 0.08 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.10 0.08 0.09 0.20 0.09 0.02 0.03 0.04
B 5 0.41 0.12 0.10 0.07 0.41 0.07 0.03 0.03 0.27 0.17 0.13 0.12 0.55 0.57 0.60 0.64

1 0.10 0.01 0.01 0.01 0.09 0.02 0.01 0.01 0.06 0.04 0.03 0.10 0.17 0.19 0.24 0.25
S 50 0.37 0.24 0.27 0.25 0.36 0.22 0.25 0.24 0.40 0.41 0.42 0.44 0.36 0.24 0.29 0.30

20 0.10 0.12 0.12 0.11 0.10 0.13 0.11 0.11 0.15 0.11 0.15 0.19 0.10 0.15 0.19 0.22
L 20 0.56 0.41 0.38 0.29 0.57 0.36 0.28 0.23 0.40 0.42 0.42 0.40 0.53 0.52 0.55 0.55

5 0.15 0.09 0.06 0.06 0.13 0.08 0.06 0.05 0.12 0.13 0.11 0.13 0.26 0.29 0.30 0.27
T 1 0.25 0.14 0.14 0.09 0.10 0.07 0.05 0.01 0.28 0.22 0.19 0.19 0.71 0.66 0.75 0.75

Overall, EPHEN achieves the best bioactivity and isolation type extraction performance,
increasing the accuracy through the evaluation stages. For example, in the bioactivity extraction,
EPHEN achieves 0.55 hits@5 in the first evaluation stage and progressively better results until
0.64 in the fourth evaluation stage. In contrast, DeepWalk has the second-best results on the
first evaluation with 0.41 and drops performance until the second-worst results with 0.07 in the
fourth evaluation stage.

3 <http://nubbe.aksw.org>

http://nubbe.aksw.org

6.5. Concluding remarks 87

Metapath2Vec achieves the best accuracy in extracting compound names and species
when k = 50. However, EPHEN performs best from the second evaluation stage onward for
collection species when k = 20. That shows us that EPHEN’s embeddings allow sorting the
correct document in the first rankings more often than Metapath2Vec’s embeddings. Meanwhile,
Metapath2Vec catches up to the performance when considering longer k intervals. That shows us
that Metapath2Vec’s heterogeneous type data extraction helps to map global relationships that
are not possible in the other evaluated methods.

Table 16 shows the execution times for each extraction scenario. Metapath2Vec benefits
from its parallel execution in the first two steps, which contain more examples in the test
split. Meanwhile, EPHEN’s dynamic structure allows embedding generation in the same vector
space, meaning it does not have to re-calculate embeddings from scratch. That reduces the final
execution time significantly after the first step, which grants EPHEN the best execution times
after the third step. We argue that it also allows EPHEN to improve performance after the first
evaluation stage better than the other evaluated methods, as shown in Table 15.

Table 16 – Execution times table for extracting: compound name (C), bioactivity (B), specie (S), collection
site (L), and isolation type (T). All time executions were measured in seconds. The lowest time
executions for each extraction are bold.

Property DeepWalk Node2Vec Metapath2Vec EPHEN
1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

C 62.5 50.1 43.5 40.5 59.7 43.7 33.7 28.4 51.5 32.3 21.5 14.1 58.0 33.6 21.0 11.7
B 33.8 35.5 35.3 36.3 30.1 27.3 25.8 24.7 24.7 18.1 14.4 11.6 27.6 18.4 13.5 9.32
S 29.5 32.7 34.8 36.8 30.0 25.5 25.2 24.7 19.5 16.2 14.2 11.9 23.5 16.7 13.3 9.71
L 30.1 33.0 35.4 37.1 27.5 28.4 25.4 25.3 20.0 16.4 13.8 12.0 23.9 17.0 13.1 9.59
T 29.4 32.8 36.7 39.5 26.1 26.2 25.3 25.5 19.0 16.4 13.9 12.4 23.0 17.0 12.8 9.69

6.5 Concluding remarks

Our evaluation shows that specific unsupervised graph embedding methods can be used
for certain characteristics to extract natural product knowledge from academic literature through
KG completion. Particularly the properties with fewer candidates (i.e., bioactivity and isolation
type). In most cases, using context-aware data leads to improvements in extraction quality.
EPHEN has achieved the best results, while Metapath2Vec showed good performance in more
challenging scenarios (i.e., chemical compound and collection site prediction). Finally, DeepWalk
and Node2Vec’s random walks perform better with fewer training corpora. All methods evaluated
achieve good execution times in this dataset when considering execution times. Meanwhile,
EPHEN’s capability to dynamically update embeddings shows an excellent trend to better handle
more extensive datasets in a real-world scenario, where the automatized extraction will help
increase the datasets’ size. In future work, we plan to fine-tune those models using resource
similarity data and develop an automatic natural product knowledge extraction framework with

88 Chapter 6. NatUKE: Natural Product Knowledge Extraction from Academic Literature

the human-in-the-loop. We also plan to increase the robustness of the KGs by adding data related
to the papers like citation networks, authors, publishers, and institutions related.

89

CHAPTER

7
CONCLUSION

This chapter presents the conclusion of this dissertation. First, the contributions and
scientific innovations are presented, referring to the method and the answers to the proposed
challenges and goals. Second, the publications and the research collaboration resulting from
this masters are presented. Finally, the limitations of the proposed method and future work are
discussed.

7.1 Contributions and scientific innovations

This master’s dissertation presents an unsupervised embedding propagation method
for heterogeneous information networks that maintain a fixed vector space regarding the start-
up embedding, which makes the dynamic insertion of new nodes possible. The embedding
propagation method was evaluated in heterogeneous information networks modeled after text
data, using the SBERT (REIMERS; GUREVYCH, 2019) embedding model as the starting vector
in different applications such as: (i) an event analysis task that predict related events, actors, and
locations with graph completion; (ii) a trend price prediction model for the soybean and corn
commodities in the Brazilian market; and (iii) an information extraction of chemical compound
characteristics from academic papers in partnership with a German Institution. The innovations
presented in this master’s dissertation are highlighted below:

• Embedding propagation over heterogeneous information networks: we proposed and
developed an unsupervised embedding propagation method. The method is called Embed-
ding propagation over heterogeneous information networks (EPHEN), and it propagates an
initial embedding through a regularization function. It can propagate in both homogeneous
and heterogeneous information networks. Since it is an unsupervised method, it generates
generic embeddings that can be used throughout different tasks without any modifications.

90 Chapter 7. Conclusion

As a result, EPHEN outperforms several other unsupervised network embedding methods
from the literature.

• Embedding propagation over heterogeneous event networks: is the use case paper
highlighted in Chapter 4 where EPHEN was applied in event analysis. That paper presents
EPHEN compared to other network embedding methods in three tasks of link prediction
on heterogeneous event networks modeled after events Project GDELT created after news
published in international portals. Each central event node has an SBERT embedding
vector associated and is connected to other attributes from this dataset: published date,
location, actors, and themes. EPHEN shows better performance than any other network
embedding method used as baselines. It also achieves second-best execution times, losing
only to a GPU parallel method. This paper also shows how EPHEN can dynamically insert
new nodes into the vector space.

• Commodities trend prediction on heterogeneous information networks: Chapter 5
shows an extended paper on the trend price prediction of soybean and corn commodities use
case. This paper uses commodities-related news and the 5W1H (HAMBORG et al., 2018)
characteristics as well as weekly and monthly swings of price to model heterogeneous
information networks for a trend link prediction task. This paper also shows a LSTM neural
network as the classifier for a multi-class classification of the price swing (big_down, down,
up, big_up). Since this chapter presents the extended version of the paper, it also presents
an unsupervised fine-tuning pipeline for the SBERT that is also compared against previous
baselines and the pre-trained version of the SBERT model as the start-up embedding. This
paper shows exciting results such as better performances from fine-tuned and pre-trained
methods in different scenarios. The fine-tuning helped to achieve better performance from
other network embedding methods when the propagation of pre-trained language model
embedding performed worse than topological network embedding methods.

• NatUKE: A benchmark for natural product knowledge extraction from academic
literature: this paper shows a benchmark of different unsupervised network embedding
on the task of information extraction of chemical compound characteristics from academic
papers. This paper was developed in a collaboration work with the Hochschule für Technik,
Wirtschaft und Kultur (HTWK) at Leipzig, Germany. The paper aimed to evaluate if unsu-
pervised network embedding methods and graph completion techniques could be used for
information extraction (IE). The IE process is then used to automatize the update process
of a Resource Description Framework (RDF) knowledge graph of chemical compounds.
EPHEN showed competitive performance compared to other network embedding methods
in most scenarios. Allied with EPHEN’s ability to dynamically insert new nodes to the
same vector space allows a human-in-loop system implementation.

7.2. Publications 91

7.2 Publications
Publications in conferences and one journal helped to disseminate the obtained through-

out the development of this master’s. A list of publications separated by type is presented
below:

• Conferences

1. CARMO, P. do; FILHO, I. R.; MARCACINI, R. Commodities trend link prediction
on heterogeneous information networks. In: SBC. Anais do IX Symposium on
Knowledge Discovery, Mining, and Learning, 2021. p. 81–88.

2. CARMO, P. do; MARCACINI, R. Embedding propagation over heterogeneous event
networks for link prediction. In: 2021 IEEE International Conference on Big Data
(Big Data), 2021. p. 4812–4821.

• Accepted in Journals

1. CARMO, P. do; FILHO, I. R.; MARCACINI, R. TRENCHANT: TRENd prediCtion
on Heterogeneous informAtion NeTworks. In: Journal of Information and Data
Management, 2022. (prelo)

• Accepted in Conferences

1. CARMO, P. do; MARX, E.; MARCACINI, R.; VALLI, M.; SILVA, J. V.; PILON, A.
NatUKE: A Benchmark for Natural Product Knowledge Extraction from Academic
Literature. In: 17th IEEE International Conference on Semantic Computing,
2023. (prelo)

It is important to reinforce that all papers have the source code, datasets, and some
usability guidelines are publicly available at the following addresses, respectively: <https://github.
com/PauloRVdC/tphin-experiments>; <https://github.com/PauloRVdC/ephen-experiments>;
<https://github.com/PauloRVdC/TRENCHANT>; and <https://github.com/AKSW/natuke>.

7.3 Limitations and future work
The proposed embedding propagation method fulfilled the research goals of propagating

the initial embedding from some textual nodes to the remaining nodes in a heterogeneous
information network and allowing dynamic insertion of new nodes in the embedding propagation
process.

This master’s dissertation explored one regularization function for propagating the em-
beddings that adapted itself throughout different domains and tasks. Even though the proposed

https://github.com/PauloRVdC/tphin-experiments
https://github.com/PauloRVdC/tphin-experiments
https://github.com/PauloRVdC/ephen-experiments
https://github.com/PauloRVdC/TRENCHANT
https://github.com/AKSW/natuke

92 Chapter 7. Conclusion

regularization function achieved the research goals of propagating text embeddings while allow-
ing dynamic generation of new embeddings to nodes connected afterwards, no other function
was proposed and evaluated in comparison.

Another limitation of the experiments was that the results of a general knowledge pre-
trained start-up embedding were not compared to domain-specific fine-tunings. Even though that
was the case, the master’s dissertation also proposes and evaluates an unsupervised fine-tuning
pipeline for the used SBERT structure compared to the pre-trained model.

Statistical analysis for the proposed method against baselines were also not executed
because few datasets were used within each use case. Therefore, statistical methods would not
provide enough information to discriminate the methods based on their performance. However,
the proposed method was evaluated against baselines in three different use cases and it showed
promising performance within these limited analysis.

For future work, the aim is to solve the current limitations. Another possibility is to
include linguistics and semantic features within the network and fine-tuning stages to try and
boost the regularization performance. Moreover, they must also consider other methods of graph
neural networks, besides GCN, for baseline comparison. Graph neural networks can also be used
to extend the research, for example: the current embedding propagation method can only use
one type of start-up embeddings at a time, and if a HIN is modeled after text and images, the
proposed method can only propagate text or image features to the remaining nodes. Graph neural
networks allow different types of features to be joined together in an end-to-end pipeline that
uses the regularization function to generate features of all types to all nodes in a network.

93

BIBLIOGRAPHY

ADANACIOGLU, H.; YERCAN, M. et al. An analysis of tomato prices at wholesale level in
turkey: an application of sarima model. Custos e Agronegócio Online, v. 8, n. 4, p. 52–75, 2012.
Citation on page 72.

AGGARWAL, C. C. Machine learning for text. "": Springer, 2018. Citations on pages 21, 29,
34, and 36.

AGGARWAL, C. C.; ZHAI, C. Mining text data. "": Springer Science & Business Media, 2012.
Citations on pages 21, 27, and 29.

ALI, M.; SALEEM, M.; NGOMO, A.-C. N. Unsupervised relation extraction using sentence
encoding. In: SPRINGER. European Semantic Web Conference. [S.l.], 2021. p. 136–140.
Citation on page 82.

ALLAN, J. Topic detection and tracking: event-based information organization. "": Springer
Science & Business Media, 2012. Citations on pages 59 and 69.

ALPAYDIN, E. Introduction to machine learning. "": MIT press, 2020. Citation on page 34.

BERTON, L.; LOPES, A. D. A. Graph construction based on labeled instances for semi-
supervised learning. In: IEEE. 2014 22nd International Conference on Pattern Recognition.
"", 2014. p. 2477–2482. Citation on page 48.

BOURLARD, H.; KAMP, Y. Auto-association by multilayer perceptrons and singular value
decomposition. Biological cybernetics, Springer, v. 59, n. 4, p. 291–294, 1988. Citation on
page 34.

BROWNLEE, J. A gentle introduction to the rectified linear unit (relu). Machine learning
mastery, v. 6, 2019. Citation on page 35.

CARMO, P. do; FILHO, I. R.; MARCACINI, R. Commodities trend link prediction on hetero-
geneous information networks. In: SBC. Anais do IX Symposium on Knowledge Discovery,
Mining and Learning. [S.l.], 2021. p. 81–88. Citations on pages 16, 24, 69, 71, and 73.

. Trenchant: Trend prediction on heterogeneous information networks (prelo). Journal of
Information and Data Management, 2022. Citations on pages 16, 24, 73, 78, and 79.

CARMO, P. do; MARCACINI, R. Embedding propagation over heterogeneous event networks
for link prediction. In: 2021 IEEE International Conference on Big Data (Big Data). [S.l.:
s.n.], 2021. p. 4812–4821. Citations on pages 16, 24, 59, 62, 66, and 85.

CARMO, P. do; MARX, E.; MARCACINI, R.; VALLI, M.; SILVA, J.; PILON, A. Natuke:
Natural product knowledge extraction from academic literature (prelo). 17th IEEE International
Conference on Semantic Computing, 2023. Citations on pages 16, 24, and 85.

94 Bibliography

CHANG, S.; HAN, W.; TANG, J.; QI, G.-J.; AGGARWAL, C. C.; HUANG, T. S. Heterogeneous
network embedding via deep architectures. In: Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. "": "", 2015. p. 119–128.
Citations on pages 22, 60, and 70.

CHEN, H.; YIN, H.; WANG, W.; WANG, H.; NGUYEN, Q. V. H.; LI, X. Pme: projected metric
embedding on heterogeneous networks for link prediction. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. "": "", 2018. p.
1177–1186. Citation on page 49.

CHEN, H.-H.; CHEN, M.; CHIU, C.-C. The integration of artificial neural networks and text
mining to forecast gold futures prices. Communications in Statistics - Simulation and Com-
putation, Taylor Francis, v. 45, n. 4, p. 1213–1225, 2016. Citation on page 72.

CHEN, X.; LI, Q. Event modeling and mining: a long journey toward explainable events. The
VLDB Journal, Springer, v. 29, n. 1, p. 459–482, 2020. Citations on pages 22, 59, 69, and 70.

CORDEIRO, M.; GAMA, J. Online social networks event detection: a survey. In: Solving Large
Scale Learning Tasks. Challenges and Algorithms. "": Springer, 2016. p. 1–41. Citations on
pages 59 and 69.

CRASWELL, N. Mean reciprocal rank. In: . Encyclopedia of Database Systems. Boston,
MA: Springer US, 2009. p. 1703–1703. ISBN 978-0-387-39940-9. Available: <https://doi.org/
10.1007/978-0-387-39940-9_488>. Citation on page 37.

CUI, P.; WANG, X.; PEI, J.; ZHU, W. A survey on network embedding. IEEE Transactions on
Knowledge and Data Engineering, IEEE, v. 31, n. 5, p. 833–852, 2018. Citations on pages 22,
43, 60, and 70.

DAREKAR, A.; REDDY, A. Predicting market price of soybean in major india studies through
arima model. Journal of Food Legumes, v. 30, n. 2, p. 73–76, 2017. Citation on page 72.

DEFFERRARD, M.; BRESSON, X.; VANDERGHEYNST, P. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, v. 29, p. 3844–3852, 2016. Citation on page 46.

DENG, S.; RANGWALA, H.; NING, Y. Learning dynamic context graphs for predicting social
events. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. "": "", 2019. p. 1007–1016. Citations on pages 48, 59, and 71.

. Dynamic knowledge graph based multi-event forecasting. In: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. "": "",
2020. p. 1585–1595. Citations on pages 49 and 71.

DERCZYNSKI, L.; AUGENSTEIN, I.; BONTCHEVA, K. Usfd: Twitter ner with drift compen-
sation and linked data. arXiv preprint arXiv:1511.03088, 2015. Citation on page 82.

DEVLIN, J.; CHANG, M.-W.; LEE, K.; TOUTANOVA, K. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
Citations on pages 15, 21, 22, 28, 29, 31, 33, 34, 60, 70, and 84.

DOCS, A. Hits at n score. 2019. Citations on pages 37 and 85.

https://doi.org/10.1007/978-0-387-39940-9_488
https://doi.org/10.1007/978-0-387-39940-9_488

Bibliography 95

DONG, Y.; CHAWLA, N. V.; SWAMI, A. metapath2vec: Scalable representation learning for
heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining. "": "", 2017. p. 135–144. Citations on pages 44
and 85.

DURAN, A. G.; NIEPERT, M. Learning graph representations with embedding propagation. In:
Advances in neural information processing systems. "": "", 2017. p. 5119–5130. Citations on
pages 22 and 47.

ENGELEN, J. E. V.; HOOS, H. H. A survey on semi-supervised learning. Machine Learning,
Springer, v. 109, n. 2, p. 373–440, 2020. Citation on page 39.

FILHO, I. J. dos R.; CORREA, G. B.; FREIRE, G. M.; REZENDE, S. O. Forecasting future
corn and soybean prices: an analysis of the use of textual information to enrich time-series. In:
SBC. Anais do VIII Symposium on Knowledge Discovery, Mining and Learning. "", 2020.
p. 113–120. Citation on page 70.

FLORENCE, R.; NOGUEIRA, B.; MARCACINI, R. Constrained hierarchical clustering for
news events. In: Proceedings of the 21st International Database Engineering & Applications
Symposium. "": "", 2017. p. 49–56. Citation on page 59.

GHAG, K. V.; SHAH, K. Comparative analysis of effect of stopwords removal on sentiment
classification. In: IEEE. 2015 international conference on computer, communication and
control (IC4). "", 2015. p. 1–6. Citation on page 29.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. 6.2. 2.3 softmax units for multinoulli output
distributions. Deep learning, MIT press, n. 1, p. 180, 2016. Citations on pages 35 and 74.

GROOTENDORST, M. BERTopic: Leveraging BERT and c-TF-IDF to create easily inter-
pretable topics. [S.l.]: Zenodo, 2020. Citation on page 84.

GROVER, A.; LESKOVEC, J. node2vec: Scalable feature learning for networks. In: Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data
mining. "": "", 2016. p. 855–864. Citations on pages 44 and 85.

GUI, H.; LIU, J.; TAO, F.; JIANG, M.; NORICK, B.; KAPLAN, L.; HAN, J. Embedding learning
with events in heterogeneous information networks. IEEE transactions on knowledge and
data engineering, IEEE, v. 29, n. 11, p. 2428–2441, 2017. Citation on page 47.

HAMBORG, F.; LACHNIT, S.; SCHUBOTZ, M.; HEPP, T.; GIPP, B. Giveme5w: main event
retrieval from news articles by extraction of the five journalistic w questions. In: SPRINGER.
International Conference on Information. "", 2018. p. 356–366. Citations on pages 59, 70,
72, and 90.

HAMILTON, W.; YING, Z.; LESKOVEC, J. Inductive representation learning on large graphs.
Advances in neural information processing systems, v. 30, 2017. Citations on pages 22, 60,
and 85.

HAMMOND, D. K.; VANDERGHEYNST, P.; GRIBONVAL, R. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, Elsevier, v. 30, n. 2, p. 129–150,
2011. Citation on page 46.

96 Bibliography

HAN, J.; MORAGA, C. The influence of the sigmoid function parameters on the speed of back-
propagation learning. In: SPRINGER. International workshop on artificial neural networks.
"", 1995. p. 195–201. Citation on page 35.

HELLMANN, S.; STADLER, C.; LEHMANN, J.; AUER, S. DBpedia live extraction. In:
SPRINGER. OTM Confederated International Conferences. [S.l.], 2009. p. 1209–1223.
Citation on page 81.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural computation, MIT
Press, v. 9, n. 8, p. 1735–1780, 1997. Citation on page 35.

HOFFART, J.; ALTUN, Y.; WEIKUM, G. Discovering emerging entities with ambiguous names.
In: Proceedings of the 23rd international conference on World wide web. [S.l.: s.n.], 2014. p.
385–396. Citation on page 82.

HOGAN, A.; BLOMQVIST, E.; COCHEZ, M.; D’AMATO, C.; MELO, G. d.; GUTIERREZ,
C.; KIRRANE, S.; GAYO, J. E. L.; NAVIGLI, R.; NEUMAIER, S. et al. Knowledge graphs.
Synthesis Lectures on Data, Semantics, and Knowledge, Morgan & Claypool Publishers,
v. 12, n. 2, p. 1–257, 2021. Citation on page 81.

HU, Z.; DONG, Y.; WANG, K.; SUN, Y. Heterogeneous graph transformer. In: Proceedings of
The Web Conference 2020. [S.l.: s.n.], 2020. p. 2704–2710. Citation on page 60.

HUANG, Z.; MAMOULIS, N. Heterogeneous information network embedding for meta path
based proximity. arXiv preprint arXiv:1701.05291, 2017. Citations on pages 22, 60, and 70.

JACCARD, P. Étude comparative de la distribution florale dans une portion des alpes et des jura.
Bull Soc Vaudoise Sci Nat, v. 37, p. 547–579, 1901. Citation on page 48.

JI, M.; SUN, Y.; DANILEVSKY, M.; HAN, J.; GAO, J. Graph regularized transductive classifi-
cation on heterogeneous information networks. In: SPRINGER. Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. "", 2010. p. 570–586. Citations
on pages 41 and 54.

KIPF, T. N.; WELLING, M. Semi-supervised classification with graph convolutional networks.
In: International Conference on Learning Representations (ICLR). "": "", 2017. Citation on
page 46.

KISHIDA, K. Property of average precision and its generalization: An examination of eval-
uation indicator for information retrieval experiments. "": National Institute of Informatics
Tokyo, Japan, 2005. Citation on page 85.

KUMAR, A.; SINGH, S. S.; SINGH, K.; BISWAS, B. Link prediction techniques, applications,
and performance: A survey. Physica A: Statistical Mechanics and its Applications, Elsevier,
v. 553, p. 124289, 2020. Citation on page 60.

LI, J.-c.; ZHAO, D.-l.; GE, B.-F.; YANG, K.-W.; CHEN, Y.-W. A link prediction method for
heterogeneous networks based on bp neural network. Physica A: Statistical Mechanics and its
Applications, Elsevier, v. 495, p. 1–17, 2018. Citation on page 34.

LIBEN-NOWELL, D.; KLEINBERG, J. The link-prediction problem for social networks. Jour-
nal of the American society for information science and technology, Wiley Online Library,
v. 58, n. 7, p. 1019–1031, 2007. Citation on page 60.

Bibliography 97

LUO, G.; HUANG, X.; LIN, C.-Y.; NIE, Z. Joint entity recognition and disambiguation. In:
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.
[S.l.: s.n.], 2015. p. 879–888. Citation on page 82.

MARCACINI, R. M.; ROSSI, R. G.; NOGUEIRA, B. M.; MARTINS, L. V.; CHERMAN, E. A.;
REZENDE, S. O. Websensors analytics: Learning to sense the real world using web news events.
In: Simp. Brasileiro de Sistemas Multimídia e Web. "": "", 2017. p. 169–173. Citations on
pages 59 and 69.

MARTINEZ-RODRIGUEZ, J. L.; HOGAN, A.; LOPEZ-AREVALO, I. Information extraction
meets the semantic web: a survey. Semantic Web, IOS Press, v. 11, n. 2, p. 255–335, 2020.
Citation on page 82.

MIKOLOV, T.; SUTSKEVER, I.; CHEN, K.; CORRADO, G. S.; DEAN, J. Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural information
processing systems. "": "", 2013. p. 3111–3119. Citations on pages 15, 21, 22, 28, 29, 30, 31,
and 34.

MORIN, F.; BENGIO, Y. Hierarchical probabilistic neural network language model. In: PMLR.
International workshop on artificial intelligence and statistics. "", 2005. p. 246–252. Citation
on page 30.

NEWMAN, D. J.; CRAGG, G. M. Natural products as sources of new drugs from 1981 to 2014.
Journal of natural products, ACS Publications, v. 79, n. 3, p. 629–661, 2016. Citation on page
82.

NEWMAN, M. Networks: An Introduction. Oxford University Press, 2010. ISBN
9780199206650. Available: <https://doi.org/10.1093/acprof:oso/9780199206650.001.0001>.
Citation on page 38.

NGUYEN, D. B.; THEOBALD, M.; WEIKUM, G. J-nerd: joint named entity recognition and dis-
ambiguation with rich linguistic features. Transactions of the Association for Computational
Linguistics, MIT Press, v. 4, p. 215–229, 2016. Citation on page 82.

NING, Y.; MUTHIAH, S.; RANGWALA, H.; RAMAKRISHNAN, N. Modeling precursors
for event forecasting via nested multi-instance learning. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining. "": "", 2016. p.
1095–1104. Citation on page 48.

NING, Y.; ZHAO, L.; CHEN, F.; LU, C.-T.; RANGWALA, H. Spatio-temporal event forecast-
ing and precursor identification. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. "": "", 2019. p. 3237–3238. Citations
on pages 59 and 70.

OZCAN, A.; OGUDUCU, S. G. Multivariate time series link prediction for evolving heteroge-
neous network. International Journal of Information Technology & Decision Making, World
Scientific, v. 18, n. 01, p. 241–286, 2019. Citation on page 49.

PEROZZI, B.; AL-RFOU, R.; SKIENA, S. Deepwalk: Online learning of social representations.
In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining. "": "", 2014. p. 701–710. Citations on pages 43 and 85.

https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

98 Bibliography

PETERS, M. E.; NEUMANN, M.; IYYER, M.; GARDNER, M.; CLARK, C.; LEE, K.; ZETTLE-
MOYER, L. Deep contextualized word representations. arXiv preprint arXiv:1802.05365, 2018.
Citation on page 31.

PICCINNO, F.; FERRAGINA, P. From tagme to wat: a new entity annotator. In: Proceedings of
the first international workshop on Entity recognition & disambiguation. [S.l.: s.n.], 2014.
p. 55–62. Citation on page 82.

PILON, A. C.; VALLI, M.; DAMETTO, A. C.; PINTO, M. E. F.; FREIRE, R. T.; CASTRO-
GAMBOA, I.; ANDRICOPULO, A. D.; BOLZANI, V. S. Nubbedb: an updated database to
uncover chemical and biological information from brazilian biodiversity. Scientific Reports,
Nature Publishing Group, v. 7, n. 1, p. 1–12, 2017. Citation on page 83.

PLU, J.; RIZZO, G.; TRONCY, R. Enhancing entity linking by combining ner models. In:
SPRINGER. Semantic Web Evaluation Challenge. [S.l.], 2016. p. 17–32. Citation on page 82.

POWERS, D. Evaluation: From precision, recall and f-factor to roc, informedness, markedness
& correlation. Mach. Learn. Technol., v. 2, 01 2008. Citations on pages 36 and 37.

RADINSKY, K.; HORVITZ, E. Mining the web to predict future events. In: Proceedings of
the sixth ACM international conference on Web search and data mining. "": "", 2013. p.
255–264. Citations on pages 59 and 70.

REIMERS, N.; GUREVYCH, I. Sentence-bert: Sentence embeddings using siamese bert-
networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP). [S.l.: s.n.], 2019. p. 3982–3992. Citations on pages 53, 55, 85,
and 89.

. Making monolingual sentence embeddings multilingual using knowledge distillation.
arXiv preprint arXiv:2004.09813, 2020. Citation on page 53.

REZENDE, S. O. Sistemas inteligentes: fundamentos e aplicações. "": Editora Manole Ltda,
2003. Citations on pages 15, 21, 27, and 28.

RIBEIRO, L. F.; SAVERESE, P. H.; FIGUEIREDO, D. R. struc2vec: Learning node represen-
tations from structural identity. In: Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining. "": "", 2017. p. 385–394. Citation on
page 44.

ROSENBLATT, F. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, American Psychological Association, v. 65, n. 6, p. 386,
1958. Citation on page 34.

ROSSI, R. G. Classificação automática de textos por meio de aprendizado de máquina
baseado em redes. Phd Thesis (PhD Thesis) — Universidade de São Paulo, 2016. Citation on
page 38.

ROSSI, R. G.; LOPES, A. A.; REZENDE, S. O. A parameter-free label propagation algorithm
using bipartite heterogeneous networks for text classification. In: Proceedings of the 29th
annual acm symposium on applied computing. "": "", 2014. p. 79–84. Citations on pages 21
and 42.

Bibliography 99

ROSSI, R. G.; LOPES, A. de A.; REZENDE, S. O. Using bipartite heterogeneous networks
to speed up inductive semi-supervised learning and improve automatic text categorization.
Knowledge-Based Systems, Elsevier, v. 132, p. 94–118, 2017. Citation on page 48.

SANH, V.; DEBUT, L.; CHAUMOND, J.; WOLF, T. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019. Citation on page
33.

SANTOS, B. N.; ROSSI, R. G.; REZENDE, S. O.; MARCACINI, R. M. A two-stage regular-
ization framework for heterogeneous event networks. Pattern Recognition Letters, Elsevier,
v. 138, p. 490–496, 2020. Citations on pages 48, 61, and 72.

SANTOS, B. N. d.; ROSSI, R. G.; MARCACINI, R. M. Transductive event classification through
heterogeneous networks. In: Proceedings of the 23rd Brazillian Symposium on Multimedia
and the Web. "": "", 2017. p. 285–292. Citation on page 59.

SATHYA, R.; ABRAHAM, A. Comparison of supervised and unsupervised learning algo-
rithms for pattern classification. International Journal of Advanced Research in Artificial
Intelligence, Citeseer, v. 2, n. 2, p. 34–38, 2013. Citation on page 34.

SETTY, V.; HOSE, K. Event2vec: Neural embeddings for news events. In: The 41st Interna-
tional ACM SIGIR Conference on Research & Development in Information Retrieval. [S.l.:
s.n.], 2018. p. 1013–1016. Citations on pages 22, 48, 60, and 70.

SHI, C.; LI, Y.; ZHANG, J.; SUN, Y.; PHILIP, S. Y. A survey of heterogeneous information
network analysis. IEEE Transactions on Knowledge and Data Engineering, IEEE, v. 29, n. 1,
p. 17–37, 2016. Citations on pages 22, 59, 60, and 70.

TANG, J.; QU, M.; WANG, M.; ZHANG, M.; YAN, J.; MEI, Q. Line: Large-scale information
network embedding. In: Proceedings of the 24th international conference on world wide web.
"": "", 2015. p. 1067–1077. Citation on page 45.

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ, A. N.;
KAISER, Ł.; POLOSUKHIN, I. Attention is all you need. In: Advances in neural information
processing systems. "": "", 2017. p. 5998–6008. Citations on pages 15 and 32.

VENTER, M.; STRYDOM, D.; GROVÉ, B. Stochastic efficiency analysis of alternative basic
grain marketing strategies. Agrekon, Taylor & Francis, v. 52, n. sup1, p. 46–63, 2013. Citation
on page 69.

WANG, J.; WANG, Z.; LI, X.; ZHOU, H. Artificial bee colony-based combination approach
to forecasting agricultural commodity prices. International Journal of Forecasting, Elsevier,
2019. Citation on page 72.

WILLIAMS, R. J.; PENG, J. An efficient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural computation, MIT Press One Rogers Street, Cambridge,
MA 02142-1209, USA journals-info . . . , v. 2, n. 4, p. 490–501, 1990. Citation on page 35.

WU, Z.; PAN, S.; CHEN, F.; LONG, G.; ZHANG, C.; PHILIP, S. Y. A comprehensive survey
on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems,
IEEE, 2020. Citations on pages 22, 60, and 70.

100 Bibliography

XUE, F.; HONG, R.; HE, X.; WANG, J.; QIAN, S.; XU, C. Knowledge based topic model for
multi-modal social event analysis. IEEE Transactions on Multimedia, IEEE, 2019. Citations
on pages 59 and 70.

YANG, C.; ZHANG, J.; HAN, J. Neural embedding propagation on heterogeneous networks. In:
IEEE. 2019 IEEE International Conference on Data Mining (ICDM). "", 2019. p. 698–707.
Citations on pages 22, 34, 47, 53, and 61.

YANG, Y.; LICHTENWALTER, R. N.; CHAWLA, N. V. Evaluating link prediction methods.
Knowledge and Information Systems, Springer, v. 45, n. 3, p. 751–782, 2015. Citation on
page 60.

YU, B.; HU, J.; XIE, Y.; ZHANG, C.; TANG, Z. Rich heterogeneous information preserving net-
work representation learning. Pattern Recognition, Elsevier, v. 108, p. 107564, 2020. Citation
on page 47.

ZAVERI, A.; KONTOKOSTAS, D.; SHERIF, M. A.; BüHMANN, L.; MORSEY, M.; AUER, S.;
LEHMANN, J. User-driven quality evaluation of DBpedia. In: . New York, NY, USA: Association
for Computing Machinery, 2013. (I-SEMANTICS ’13), p. 97–104. ISBN 9781450319720.
Citation on page 81.

ZHANG, C.; SONG, D.; HUANG, C.; SWAMI, A.; CHAWLA, N. V. Heterogeneous graph
neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. [S.l.: s.n.], 2019. p. 793–803. Citation on page 60.

ZHOU, D.; BOUSQUET, O.; LAL, T. N.; WESTON, J.; SCHÖLKOPF, B. Learning with local
and global consistency. In: Advances in neural information processing systems. "": "", 2004.
p. 321–328. Citations on pages 40, 42, 48, 53, and 54.

ZHOU, F.; WU, B.; YANG, Y.; TRAJCEVSKI, G.; ZHANG, K.; ZHONG, T. Vec2link: Unifying
heterogeneous data for social link prediction. In: Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge Management. "": "", 2018. p. 1843–1846.
Citation on page 49.

ZHU, X.; GHAHRAMANI, Z.; LAFFERTY, J. D. Semi-supervised learning using gaussian fields
and harmonic functions. In: Proceedings of the 20th International conference on Machine
learning (ICML-03). "": "", 2003. p. 912–919. Citation on page 39.

ZONG, C.; XIA, R.; ZHANG, J. Text Data Mining. [S.l.]: Springer, 2021. Citation on page 29.

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Context and initial remarks
	Research challenges
	Research goals
	Main contributions and results
	Dissertation organization

	Theoretical foundation and related works
	Text mining
	Pre-processing
	Pattern extraction
	Post-processing

	Information network representation learning
	Regularization methods
	Network embedding methods

	Applications
	Concluding remarks

	Embedding propagation over heterogeneous information networks
	Motivation
	Method: Embedding propagation over heterogeneous networks (EPHEN)
	Initial text embedding using BERT
	Embedding propagation
	SSN-based BERT fine-tuning
	Evaluation criteria

	Embedding propagation over heterogeneous event networks
	Initial remarks
	Embedding Propagation over Heterogeneous Event Networks
	Experiment evaluation
	Datasets
	Baselines
	Evaluation Criteria
	Results and discussions

	Concluding remarks

	Commodities trend prediction on heterogeneous information networks
	Initial remarks
	Related Work
	Trend prediction on heterogeneous information networks
	Event Modeling with Heterogeneous Networks
	Trend Prediction

	Experimental evaluation
	Datasets
	Evaluation criteria and experiment setup
	Results and Discussion

	Concluding remarks

	NatUKE: Natural Product Knowledge Extraction from Academic Literature
	Initial remarks
	Related works
	Problem definition
	Dataset curation
	Experimental setup & evaluation criteria
	Models & Frameworks

	Experimental results
	Concluding remarks

	Conclusion
	Contributions and scientific innovations
	Publications
	Limitations and future work

	Bibliography

