• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2003.tde-10112014-165328
Document
Auteur
Nom complet
André Guilherme Ribeiro Balan
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2003
Directeur
Jury
Batista Neto, João do Espírito Santo (Président)
Hashimoto, Ronaldo Fumio
Ruiz, Evandro Eduardo Seron
Titre en portugais
Técnicas de segmentação de imagens aéreas para contagem de população de aves
Mots-clés en portugais
Não disponível
Resumé en portugais
O monitoramento biológico de determinadas espécies de aves representa uma fonte importante de informações referentes à qualidade do meio ambiente. O censo, que consiste na contagem dos indivíduos de uma população, é uma das principais variáveis deste processo. Em virtude deste contexto, o trabalho proposto nesta dissertação tem como objetivo a implementação e aplicação de técnicas de segmentação de imagens para a contagem de indivíduos pertencentes a uma determinada população de aves, e de seus respectivos ninhos, em imagens aéreas de seu habitat (os ninhais). Devido às características dessas imagens, a segmentação baseada em textura, é adotada, como abordagem principal do projeto. O método escolhido para este estudo faz parte do conjunto de métodos baseados em modelos estocásticos para segmentação por textura. Em particular, (este método utiliza como modelo fundamental um Campo Aleatório de Markov (Markov Random Field). Esta dissertação apresenta os fundamentos estatísticos da técnica, adotada., bem como as etapas de sua implementação e alguns melhoramentos incorporados ao método padrão, afim de torná-lo mais robusto. Por fim, são ilustrados alguns resultados de segmentação de imagens de ninhais, bem como o de algumas imagens sintéticas e imagens de modalidade médica. As imagens aéreas são adquiridas em parceria, com outro projeto cm curso no ICMC-USP: o P r o j e t o A R A R A (Aeronaves de Reconhecimento Assistidas por Rádio e Autónomas).
Titre en anglais
Monitoring bird populations by means of segmentation techniques of aerial images
Mots-clés en anglais
Not available
Resumé en anglais
The biological monitoring of certain species of birds represents an important source of information related to the quality of the environment. The census, which consists of the quantification of individuals, is one of the key factors of this process. On this contcxt, the work proposed in this dissertation aims the implementation and employment of image segmentation techniques for counting individuals of a specific population of birds (as well as its nests) from aerial images of its habitat, (a nest colletion). Due to the intrinsic characteristics of these images, a texture based segmentation has been adopted as the main approach of the project. The method chosen for this study is part of a broader set of methods based on random models for texture segmentation. In particular, this method is based on Markov Random Field (MRF). This dissertation presents the statistical grounding for the adopted technique, as well as the stages involved in its implementation and some improvements added to the standard method, in order to make it more robust. Finally, the segmentation of bird's nest collection images is presented, as well as the results obtained with some medicai and synthetic textural images. The aerial images have been acquired in partnership with another project in course in the ICMC-USP: the A R A R A Project (Aeronaves de Reconhecimento Assistidas por Rádio e Autónomas).
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
AndreGRBalan.pdf (4.54 Mbytes)
Date de Publication
2014-11-11
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.