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RESUMO

CATANANTE, V. A. A. Fusão adaptativa em imagens de microscopia de campo claro adqui-
ridas em diferentes planos focais. 2020. 129 p. Dissertação (Mestrado em Ciências – Ciências
de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2020.

A microscopia é uma técnica extremamente relevante relacionada a tarefas que lidam com estru-
turas de ordem micrométrica. Seu uso remonta ao século XVII e tende a avançar paralelamente à
evolução conhecimento tecnológico humano. Dentre as diversas aplicações, destacam-se as áreas
de ciências biológicas e da saúde, que envolvem estruturas normalmente invisíveis a olho nu.
Existem diferenças de profundidade inevitáveis entre os pontos das superfícies e estruturas que
produzem desfoque nas imagens; no entanto, é necessário que tais images possuam alta qualidade
para análises precisas em aplicações de microscopia. Neste aspecto, a avaliação da qualidade da
imagem e a fusão de imagens são exemplos de técnicas que podem ser aplicadas para resolver o
problema. Trabalhos recentes em tais áreas mostram que técnicas matemáticas como análise no
domínio da frequência, análise multirresolução e redes neurais convolucionais são eficazes para
avaliar quantitativamente a qualidade das imagens; paralelamente, os pesquisadores também
apresentam muitas técnicas inovadoras para fusão de imagens baseadas em ferramentas clássicas
como detecção de bordas ou em estruturas de aprendizado de máquina de última geração. O
objetivo deste trabalho é desenvolver um método de duas etapas - uma etapa de avaliação da
qualidade da imagem sem referência e uma etapa de fusão da imagem, para realizar a fusão de
imagens de microscopia de luz de campo claro adquiridas em diferentes planos focais, além
de propor novos conjuntos de dados de imagens de microscopia de campo claro de amostras
histológicas de folhas de plantas como referência para testar os algoritmos de avaliação da
qualidade e fusão. Análise no domínio da frequência e métodos estatísticos foram utilzados
para obter uma métrica de qualidade, e a energia das arestas extraídas com o filtro Laplaciano
da Gaussiana foi utilizada como regra de fusão. O coeficiente de correlação de Pearson médio
obtido para o método de qualidade de imagem foi de 0.7448, e a frequência espacial média para
o método de fusão de imagens foi de 0.0667.

Palavras-chave: Avaliação de qualidade de imagem sem referência, Transformada Discreta de
Fourier, Microscopia de Campo Claro, Fusão de Imagens Multifocais, Laplaciano da Gaussiana.





ABSTRACT

CATANANTE, V. A. A. Adaptive fusion of bright-field microscopy images acquired in diffe-
rent focal planes. 2020. 129 p. Dissertação (Mestrado em Ciências – Ciências de Computação e
Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2020.

Microscopy is an extremely relevant technique related to tasks that deal with micrometric order
structures. Its use dates back to the 17th century and tends to evolve in parallel with the evolution
of human technological knowledge. Among the various applications, the fields of biological and
health sciences stand out, which involve structures normally invisible to the naked eye. There
are unavoidable differences in depth between the points of the surfaces and structures which
yield out-of-focus blur to images. However, high quality is necessary in order to allow precise
analysis in microscopy applications. In this sense, image quality assessment and image fusion
are examples of techniques that may be applied to solve the issue. Recent works on such fields
show that mathematical techniques such as frequency domain analysis, multiresolution analysis
and convolutional neural networks are effective to quantitatively assess the quality of images. At
the same time, researchers also present many novel techniques for image fusion, either based on
classical tools such as edge detection or based on state-of-the-art machine learning frameworks.
The aim of this work is to develop a two-stage method, consisting of a no-reference image quality
assessment and an image fusion step, to perform the fusion of bright-field light microscopy
images acquired in different focal planes, and propose novel bright-field microscopy image
datasets of plant leaf histological samples as a benchmark for testing both quality assessment
and fusion algorithms. Frequency domain analysis and statistical methods were used to obtain
a quality metric and the energy of edges extracted with the Laplacian of Gaussian filter as the
fusion rule. The mean Pearson’s correlation coefficient obtained for the image quality method
was 0.7448, while the mean spatial frequency for the image fusion method was 0.0667.

Keywords: No-reference Image Quality Assessment, Discrete Fourier Transform, Bright-field
Microscopy, Multi-focus Image Fusion, Laplacian of Gaussian.
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CHAPTER

1
INTRODUCTION

The microscope is a device that performs extremely important tasks to human knowledge,
in theoretical or empirical aspects. It is capable of providing magnified views of small objects
and structures. Currently, several variations of microscopes are used to investigate much smaller
spaces than those visible to the naked eye (WU; MERCHANT; CASTLEMAN, 2008). Fields
such as materials sciences and biology broadly apply microscopy and health professionals use
them on large scale for practical procedures, clinical analysis, and research. High throughput
microscopy is an important technique for the diagnosis and treatment of genetic diseases.
However, to make it acceptable in the clinical environment, it is of great importance to perform
high-resolution image acquisition, since low levels of sharpness can directly affect the diagnostic
accuracy (QIU et al., 2013).

The current advances in microscopy technologies and methods show a natural trend
of linking novel microscopy improvements and image processing. This bond dates back to
the middle of the 20th century, when some techniques for capturing and manipulating images,
primarily developed for televisions, were applied to microscopy images (WU; MERCHANT;
CASTLEMAN, 2008). A classic example is noise reduction, which is an important step for
cryoelectronic microscopy and also for energy filtering in transmission electron microscopy,
before the 3D reconstruction process on Computed Tomography scans. High noise levels hinder
the necessary alignment in the reconstruction task (VYAS; YU; PAIK, 2017).

1.1 Motivation

Biological and biomedical analysis procedures using microscopy images also employ
image processing algorithms to produce better results. In this scenario, the concept of focus
is an element of great relevance. The microscopically analyzed surfaces and structures are a

priori smooth and homogeneous to the naked eye; when magnified, these images show that
those elements are irregular, i.e. they have different depths (when considering an upper view),
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textures and topologies. It is, therefore, necessary to constantly adjust the focus to obtain a sharp
image. Figure 1 illustrates the problem of differences in depth of focus in histological images of
a Ctenanthe oppenheimiana specimen with the structure of a slope, acquired in the same scene
but with different height settings for the objective lenses. The axial location for Figure 1.(a) was
higher than in Figure 1.(b), and this produced clear differences among the blurred and sharp
regions of both images.

Figure 1 – Examples of Cthenante oppenheimiana partially blurred images, with the leftmost (a) and
rightmost parts (b) as sharp due to topological height differences.

(a) (b)

Source: Elaborated by the author.

Sharpness is a concern when it comes to the analysis of microscopy images in order
to obtain conclusions. According to Costa et al. (2019), blurred regions in sputum smear
microscopy images caused by the depth of field limit in the microscope affect the accuracy
of bacilli detection. Several proposed methods address the sharpness problem in microscopy
images based on image restoration techniques. As stated by Ponti, Nazaré and Thumé (2016),
the most frequently used iterative method in microscopic image restoration is the Richardson-
Lucy algorithm. Some examples presented by SUN, DUTHALER and NELSON (2005) consist
of four classes: derivative algorithms, statistical algorithms, histogram-based algorithms and
intuitive algorithms. Among these applications, derivative methods deserve more credit. The
Fourier Transform proved itself to be effective for low or moderate noise levels; in highly
noisy environments, the resulting images were not satisfactory (RICHARDSON, 1972). As a
consequence, probabilistic methods based on the Bayes Theorem were developed and provided
images with better contrast, higher bandwidth and edge enhancement for confocal fluorescence
microscopy samples (PONTI; NAZARÉ; THUMÉ, 2016).

The resulting images from such restoration processes are sharper than the observed ones.
However, the algorithms produce degradation as output. An alternative to restoration is to use
images from the same object, with different foci, in order to obtain an enhanced depth of field
image with low degradation levels. This process is known as image fusion, and even though a
significant effort was done by researchers towards the development of techniques in this context,
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most of the image fusion methods are applicable but not directly related and built for bright-field
microscopy images. The fusion process also require the selection of images that have ate least
some sharp region, and according to Koho et al. (2016), very few publications that address the
problems of measuring the quality of images can be found on microscopy applications. There
are many image analysis tools, but not many easily accessible and applicable image quality
assessment methods.

1.2 Aims and Hypothesis

This work aims to develop a method to perform the fusion of bright-field microscopy
images acquired in different focal planes. We propose three stages to achieve this, described as
follows:

∙ Dataset acquisition: Acquisiton of a bright-field microscopy image dataset of leaf samples
to evaluate the performance of the methods;

∙ No-reference image quality assessment: Development of a method to quantitatively as-
sess the quality of bright-field microscopy images based on the Fourier transform and
descriptive statistics;

∙ Multi-focus image fusion: Fusion of the sharp regions of selected images among the dataset
by means of a Laplacian of Gaussian-based method and compose the sharp image.

It is hypothesized that frequency domain information from images may be used to quan-
tify the sharpness of bright-field microscopy images. Simultaneously, we also have the hypothesis
that image fusion methods that employ edge detection by means of the Laplacian operator and
its derivatives, e.g. the Laplacian of Gaussian, perform well on bright-field microscopy images.

1.3 Contributions

This work yields the bright-field microscopy z-stack datasets as a first contribution. Those
may be used to study, develop and test novel no-reference image quality metrics and multi-focus
image fusion techniques by image processing and microscopy researchers, as well as industry
professionals. The datasets comprise real world high-resolution microscopy images of biological
material (particularly, plant leaves) with different illumination techniques and settings, which
turns image quality assessment and image fusion into more challenging tasks.

In addition to the datasets, our proposed quality index and fusion algorithms explore
well-known mathematical analysis, image processing, signal processing and statistical techniques.
This not only it provides significant applications of those tools, but also stimulates studies among
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researchers in order to combine new state-of-the-art technologies to strong theoretical concepts
in order to develop robust and scalable solutions.

Structure of the document
This monograph is organized as follows:

∙ Chapter 2 provides the bright-field microscopy basics and the z-stacking technique, i.e.
the method to acquire images in different focal planes;

∙ Chapter 3 comprises relevant information about the bright-field microscopy image forma-
tion process and also describes the defocus blur property;

∙ Chapter 4 provides the theoretical basis of this work, i.e. Fourier transform, image en-
hancement, registration, fusion and quality assessment, as well as the statistical methods
employed in the analysis;

∙ Chapter 5 presents methods in which this work is based on, by means of a literature review
on no-reference image quality assessment and multi-focus image fusion;

∙ Chapter 6 presents the acquisition and usage protocols of the proposed image datasets and
the proposed method;

∙ Chapter 7 presents our results with the proposed datasets and exposes a discussion con-
cerning the quantitative and qualitative analysis of them;

∙ Chapter 8 summarizes what has been achieved, suggests some future work on the field and
improvements to the methods;

∙ Appendix A presents fundamentals of optics that may aid the comprehension of bright-field
microscopy;

∙ Appendix B provides details about some of the background concepts;

∙ Appendix C is the result of mathematical reasoning to prove some properties concerning
the method which were hypothesized true.
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CHAPTER

2
BRIGHT-FIELD MICROSCOPY

FUNDAMENTALS

Microscopes are instruments designed to accomplish several important tasks to human
knowledge, capable of magnifying images of small objects and structures which otherwise
would not be seen by the human eye. It grants more information about the object of study to
the research or the analysis. The first idea of the device was introduced by Romans, which
discovered the magnifying property of glass in some sort of biconvex shape. Zacharias Janssen
(1588-1632) was responsible for the invention of the first compound microscope with a concave
eyepiece and Francisco Fontana (1580-1656) introduced the convex eyepiece version of it (ZÍLIO,
2009). Furthermore, Robert Hooke (1635-1703) and Anton van Leeuwenhoek (1632-1723)
were the most prominent science-related men responsible for microscope improvements (WU;
MERCHANT; CASTLEMAN, 2008). Due to the development of theories and their empirical
proofs of veracity, in addition to the advances in hardware and software power, techniques such
as image processing are applied to other fields. This also happens in microscopy, aiming to
improve image quality, data reliability, and range of use (BOYDE, 1990).

This chapter provides information about bright-field and microscopy concepts in this
work, describing the structure of the optical microscope, along with its uses and implications on
the acquired images.

2.1 Light microscopy

Historically, the structure of the first microscopes developed by Hooke and Leeuwenhoek
had no eyepiece; the compound microscope, developed by Janssen, consists of the magnification
lenses and also an eyepiece, which adds more magnification power and delivers the image to the
user (LAWLOR, 2019). As stated by Murphy and Davidson (2012), the word compound refers
to the fact that the objective lens and the eyepiece (or ocular) work together to produce the final
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magnification of the image as a product of their magnifications. A graphical representation of
the general structure of a compound microscope is shown in Figure 2, and as reported by Bell
and Morris (2009), it consists of objective lenses, eyepieces, condensers, the stage and the light
source.

Figure 2 – Structure of the basic compound microscope: lenses that capture light rays from the specimen
or object (objectives) or where the observer may look through (eyepieces), a collector of light
from the light source (condenser), the support for the object (stage) and the light source.

Source: Bell and Morris (2009).

Since light is some sort of radiation, there are several different ways to achieve imaging
in microscopes; it can be made by light, polarized light, lasers, X-rays, among others. There are
also advanced techniques such as confocal microscopy, which is capable of imaging a very small
area of the object, with all the light rays focused on it (ROCHOW; TUCKER, 1994). The choice
of the most suitable microscopy depends on the task.

According to Dokland et al. (2006), the purpose of light microscopy is to provide
magnified images of specimens by means of capturing emitted, reflected or transmitted light in
the visible range of the spectrum, or even in the ultraviolet or near-infrared regions. As reported
by Lawlor (2019), there are three general styles of light microscope. The upright microscope

is the easily affordable, easy to use traditional configuration with a light source on the base, a
stage and the objective lenses. The inverted microscope consists of the inverted configuration of
an upright microscope, and offers some advantages when it comes to life sciences applications
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such as live cell imaging. Finally, the stereomicroscope consists of a fusion of two compound
microscopes in a convergent optical system and may have two different objectives and eyepieces
or only one objective and two eyepieces (SCHREIER; GARCIA; SUTTON, 2004). The former is
named binobjective-binocular (Greenough) and the latter monobjective-binocular, or Common
Main Objective Stereo Microscope (CMO). One of the advantages of CMO microscopes is
the higher depth of field, which allows the user to view and investigate biological specimens,
relatively small materials and any kind of non-smooth surfaces. Furthermore, it is possible to
view and acquire images in three dimensions (ROCHOW; TUCKER, 1994). The structure of
both types of stereo compound microscopes is depicted in Figure 3.

Figure 3 – Graphic representation of the basic stereo compound light microscope structure, (a) for the
Greenough type and (b) for the CMO.

Source: Rochow and Tucker (1994).

2.1.1 Bright-field microscopy

As for the use of light microscopes, there are several techniques and configurations which
are achieved by varying the amount of lenses and light sources: bright-field, dark-field, phase-
contrast, differential interference and fluorescence (ROANE; PEPPER; MAIER, 2009). As stated
by Lawlor (2019), images in bright-field microscopy are characterized by the contrast between
the sample and the bright white background, generated by transmitted light. It is commonly used
in pathology and histology fields for imaging fixed cells and tissues to reveal their structure,
shape, and organization. The amount of light should be controlled, since the sample might suffer
substantial changes, e.g. the chlorophyll molecules when illuminated by UV and visible light
suffer irreversible breakdown (photodegradation) and generate other photoproducts (PETROVIĆ;
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ZVEZDANOVIĆ; MARKOVIĆ, 2017). The Figure 4 provides an example of bright-field
microscopy image.

Figure 4 – Example of bright-field microscopy image of bone tissue.

Source: Lawlor (2019).

2.1.2 Z-stacking technique

The z-stacking is a procedure to capture images in different positions concerning the z

axis, named slices, which may create a pseudo 3D image of the sample and consequently retrieve
depth information about the specimen (LAWLOR, 2019). Figure 5 presents the scheme of a
z-stack acquisition with an arbitrary object:

Figure 5 – Scheme of a z-stack image dataset acquisition with an arbritrary object.

Source: Trivedi and Mills (2020).
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Objective lenses with large magnifications can only focus on a thin slice of space, which
implies that the acquisition of a entirely sharp image of a thick sample will be impossible;
the different structures are consequently sharp in different focal planes (GIUSTI et al., 2011).
Both the visualization and the acquisition of microscopy images with the z-stacking technique
can be done by performing progressive adjustments of the focus knob of the microscope or by
motorized stages or objectives, capable of changing the focal plane with more precision. Each
focal plane adjustment is done inwards or outwards along the z axis, and the set of acquired slices
contain a focused region of the sample. The distance between each slice is dictated manually
or automatically. Next, the images must be aligned before any analysis is conducted. Figure 6
represents the differences in focus between the slices of a z-stack.

Figure 6 – Z-stack images of yeast cells, acquired in positions under the focal plane (-15, -10 and -5 µm),
exactly on it (0 µm) and above it (5, 10 and 15 µm).

Source: Wei and Roberts (2018).
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CHAPTER

3
IMAGE FORMATION AND DEFOCUS BLUR

The human eye constructs images from incident light rays on the retina, a very complex
set of photoreceptors that converts light into electrical signals which are later interpreted by the
brain. The result of this process may be modelled as continuous function of two variables f (x,y)

which comprises the illumination and the reflectance information, i.e. the amount of incident
light and the amount of reflected light in the scene, respectively (GONZALEZ; WOODS, 2018).

Digital image processing deals with, as the term suggests, digital images, i.e. discrete
representations of f (x,y) generated by sensors that transform the illumination and reflectance
information into electrical signals. Still according to Gonzalez and Woods (2018), in order to
achieve this representation, the signals undergo sampling (signal conversion from continuous to
discrete) and quantization (mapping of real-valued intensities to discrete pixel values). For the
sake of notation simplicity, f (x,y) denotes the digital image and the term “image” also refer to it
throughout this work.

It is clear that the image formation is influenced by several factors: sensor type, scene il-
lumination conditions, and others. In fact, each imaging system such as a camera or a microscope
adds its own constraints to the process, e.g. conventional transmitted light microscopy images
are only achieved with non-opaque samples (ROTTENFUSSER; WILSON; DAVIDSON, 2020).
Although there are many types of microscopy, each with its own imaging procedure, this work
limits its scope to bright-field microscopy. Therefore, this chapter summarizes the bright-field
microscopy image formation processes and its implications on image quality. Furthermore, it
describes blur properties concerning its origins either in image formation or other events.

3.1 Image Formation

As mentioned in Chapter 2, the bright-field microscopy images are formed by either
transmitted or reflected light that passes through the sample and reaches the objective lens. The
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difference between transmitted light and reflected light microscopes is the illumination system;
there is no difference in how both direct light rays leave the specimen (LENG, 2009).

According to Davidson and Abramowitz (2002), the light which reaches the specimen is
either undeviated, i.e. does not suffer any disturbances in its direction, or diffracted; the diffracted
rays leave the sample with a phase difference in comparison to the undeviated light and cause
destructive interference in the eyepiece, which projects a magnified version of this pattern onto a
sensor and consequently produces the image.

Furthermore, the diffraction patterns that are captured by objectives have a particular
shape. As also stated by Davidson and Abramowitz (2002), the Airy disks (also called Airy

patterns), named after Sir George Biddell Airy (1801 - 1892), are small circular diffraction disks
projected by the objectives onto the image plane of the eyepiece diaphragm, which describe the
focus profile of the resulting image. The Airy disks, as described by Fowles (1989), follow the
Fraunhoffer diffraction pattern, and may be mathematically modelled as an angular distribution
of intensity of light diffracted by a circular aperture, given by

I(θ) = I0

[
2J1(ρ)

ρ

]2

ρ =

(
2π sinθ

λ

)
a
2
, (3.1)

where I0 = (CπR2)2 is the intensity for θ = 0, C is a constant, R is the radius of the aperture, λ

is the wavelength of the light, a is the diameter of the aperture and J1 is the Bessel function of
the first kind and first order (MATHEWS; WALKER, 1970). The Bessel function for the general
case of rth order is given by

Jr(x) =
∞

∑
n=0

(−1)r

r!Γ(m+ r+1)

(x
2

)m+2r
Γ(z) =

∫
∞

0
e−uuz−1du. (3.2)

The Airy disks are intrinsically related to the numerical aperture and the definition of
resolution. The resolution is the minimum distance between two points at which they can be
visibly distinguished as two points; optically, it is defined as the minimum distance between
two Airy disks that can be distinguished, which is limited by diffraction (LENG, 2009). The
resolution of an optical microscope, given by the Rayleigh equation, is described by

d = 1.22
λ

2NA
, (3.3)

where d is the space between two adjacent particles that may be distinguished from each other, λ

is the wavelength of the illumination and NA is the numerical aperture of the objective (DAVID-
SON; ABRAMOWITZ, 2002). It is evident that objectives with higher numerical apertures
and shorter wavelengths of visible light will yield better resolution. Figure 7 shows arbitrary
examples of Airy patterns, as well as their possible configurations and their consequences to
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the image. In Figure 7.(a), the usual shape of Airy patterns is shown, together with its two-
dimensional representation as a function of the intensity by an interval. Figure 7.(b) depicts an
occurrence of Airy disk overlapping where both points would be properly resolved, i.e. below
the Rayleigh limit, and Figure 7.(c) represents the minimum distance in which both points would
be distinguished. Finally, Figure 7.(d) represents an unresolved pair of points.

Figure 7 – Arbitrary example of an Airy disk (a), resolved Airy disks (b), Rayleigh limit of resolution (c)
and unresolved Airy disks (d).

Source: Adapted from Dunst and Tomancak (2019).

As explained by Goodman (1996), an imaging system, particularly a set of microscope
lenses, is said to be diffraction-limited if the incident spherical light wave generated from a
point-source object is transformed into another spherical wave which converges to an ideal image
point, described by the original object point and affected by some sort of isotropic effect, such as
magnification in a microscope.

The depth of field was described in Chapter 2 in terms of focal plane distances, but it
may also be taken as the axial resolving power, a measurement of resolution along the z axis,
determined by the numerical aperture and described by the Airy disk profile (DAVIDSON;
ABRAMOWITZ, 2002). Similarly to the Rayleigh’s equation, the depth of field increases with
higher numerical apertures for the objective and shorter wavelengths of the incident light, and it
represents a key property concerning the amount of blur in the resulting image.

3.1.1 Point Spread Function and Image Formation Model

When light waves from a point source reach the lenses, they suffer diffraction and
refraction, originating a new propagating set of rays that converge to a point in the center of the
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image plane in the shape of Airy disks; such shape is called the Point Spread Function (PSF) of
the imaging system (also called impulse response), and it is intrinsically related to the imaging
process (WU; MERCHANT; CASTLEMAN, 2008). Particularly, the bright-field microscopy
employs polychromatic nonpolarized incoherent light. Hence, it is possible to relate the Airy
disks to the PSF, since those are intensity distributions for each point source of light emanating
from the specimen. Figure 8.(a) presents a theoretical scheme of imaging for a point source of
light, and Figure 8.(b) depicts the shape of a incoherent PSF.

Figure 8 – Light rays from a point source go through a lens’ surface and converge to a point in the image
plane (a) and the scheme of a point spread function generated by a focused diffraction-limited
system with incoherent light (b).

Source: Adapted from Castleman (1996), WU, MERCHANT and CASTLEMAN (2008).

In Figure 8.(a), the imaging system in in focus, which is given by

1
do

+
1
di

=
1
f
, (3.4)

where f is the focal length of the lens, do and di are the distances from the point source plane to
the lens and the distance from the image plane to the lens, respectively. The intensity of light
in the point source is directly proportional to the intensity in the image, what characterizes a
two-dimensional linear system (CASTLEMAN, 1996). Also according to Castleman (1996), any
motion of the point source on its plane moves the image is dictated by the law

xi =−
di

do
xo yi =−

di

do
yo, (3.5)

where (xo,yo) are the coordinates for the object location on its plane and (xi,yi) are coordinates
that locate the image on its plane. This implies that the shape of the image will not change
according to the object’s location, and this property yields shift invariance to the system, which
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may be called isoplanatic. These properties are observed in an ideal imaging system, not in real
cases such as an optical microsope. Simple lenses are neither isoplanatic nor linear, however,
there are approximations and mathematical tools that allow advanced microscopes to be assumed
isoplanatic and linear.

The PSF, as related to the intensity distributions described by the Airy disks, are limited
to the area of the aperture. This means that the amount of light that reaches the image plane is
truncated by the circular aperture, what is also true for the PSF. The truncation is mathematically
represented by the pupil function, which is zero outside the boundaries of the aperture and unity
otherwise, and might include also information about wave aberrations of the lens (GOODMAN,
1996). As denoted by WU, MERCHANT and CASTLEMAN (2008) with some notation ad-
justments, the PSF of an incoherent illuminated circular aperture imaging system is the Fourier
Transform (explained further in Chapter 4) of the generalized pupil function, given by

hλ (x,y,z) =
∫

∞

−∞

∫
∞

−∞

P(u,v)e j2πz
(

u2+v2

2λL2

)
e j2π( xu+yv

λL )dudv, (3.6)

where hλ (x,y,z) is point spread function for a light with wavelength λ , P(x,y) is the pupil
function, z is the axial location the focal plane and L = r/NA is the focal length, i.e. ratio between
the radius of the circular aperture of the objective and the numerical aperture. The normalized
Fourier Transform of the PSF is called Optical Transfer Function (OTF) (CASTLEMAN, 1996).

The image is then formed as a set of impulse responses from each point in the object
plane that were magnified by the imaging system. Linear systems possess a general expression,
a convolution (which will be explained in Chapter 4) of the input with the system’s impulse
response, that describes the output (BRIGHAM, 1988). In this sense, the resulting image is a
convolution of the PSF with the original image, defined as

g(x,y) =
∫

∞

−∞

∫
∞

−∞

h(x−u,y− v) f (x,y)dudv, (3.7)

where f (x,y) is the original image, g(x,y) is the observed image, h(x,y) is the PSF of the imaging
system and u,v are shift parameters.

3.1.2 Discrete Image Formation Model

Digital images follow a discrete model for image formation due to the acquisition process:
the spherical waves that leave the objectives reach the surface of Charge-coupled Devices (CCD),
sensors which proportionally convert light intensities to electrical signals digitized as pixels
(GONZALEZ; WOODS, 2018). The digital images are matrices of pixels that represent light
intensities with different channel configurations, where the most common one is the Red,
Green and Blue (RGB) image. Therefore, similarly to the image formation model shown in
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subsection 3.1.1, the two-dimensional digital image formation is arbitrarily described as a discrete
process

g[x,y] = h[x,y]* f [x,y], (3.8)

where * denotes the discrete convolution, g, h and f are respectively the observed image, the
discrete PSF of the imaging system and the original image, and x,y ∈ Z. The discrete PSF of an
imaging system with incoherent illumination and a circular aperture is given by

h(r) =
[

2
J1[π(r/r0)]

π(r/r0)

]2

, r =
√

x2 + y2, r0 =
λdi

a
, (3.9)

where h(r) is the radially symmetrical PSF, r is the radial distance, r0 is a scaling factor, J1 is
the Bessel function of first order and first kind, λ is the wavelength of the illumination, a is the
diameter of the aperture and di is the distance from the lens plane to the image plane. A scheme
of the geometric setup of discrete image formation through the PSF is shown in Figure 9.

Figure 9 – Geometric scheme of a lens’ circular aperture and arbitrary point spread function profile.

Source: Adapted from Castleman (1996).

The discrete OTF is then the Discrete Fourier Transform (DFT) (explained in Chapter 4)
of the PSF in Equation 3.9. The OTF characterizes the intensities of light that emanate from the
specimen in terms of frequencies.

There is another property of image formation and acquisition that influences the image
quality: the noise. Pursuant to WU, MERCHANT and CASTLEMAN (2008), imaging is
corrupted by intrinsic or extrinsic noise; the former is modelled by a Poisson distribution
that influences each photon that reaches the sensor, and the latter is modelled by a Gaussian
distribution that sums to the matrix of pixels. Details about noise are out of the scope of this
work, since the degradation to be deeply explored is the defocus blur.
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3.2 Defocus Blur

The blur effect is one type of degradation that consists of global or local information
loss in the image. The defocus blur is caused by the incidence of light within an aperture with
significant dimensions, where the source of light is not properly placed in accordance to the
focal plane; it is related to the variables of the optical system such as depth of focus, aperture,
depth of field, aberrations and so on (JOSHI, 2014). According to Smith (2007), every optical
system exhibits blur properties, in higher or lower proportions, due to the depth of focus and its
adjustment. Therefore, blurring is unavoidable to a certain extent, hence every imaging device
possesses a PSF due to its optics. The PSF is also named blur kernel.

Another useful way to mathematically describe the point spread function is through the
Dirac Delta. It consists of a generalized function that represents an impulse, i.e. an infinitely
high value within an infinitely small period of time (BRACEWELL; BRACEWELL, 2000).
Figure 10 shows an arbitrary example of a punctual source of light and its image, which suffers
the spreading effect.

Figure 10 – Magnified image of a light impulse (left) and its impulse response function, the PSF (right).

Source: Adapted from Gonzalez and Woods (2009).

Namely, it is a function δ (x) that is zero-valued for any x ̸= 0 and is infinity-valued for
x = 0. This property can be combined with any smooth function f : Rn→ Rn. The continuous
Dirac Delta may be written, as stated by Weisstein (2020a), as

δ
2(x,y) =

∞, if x2 + y2 = 0

0, if x2 + y2 ̸= 0
,

∫
∞

−∞

∫
∞

−∞

δ
2(x,y)dxdy = 1. (3.10)
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The discrete version of the Dirac Delta function consists of an infinite sum instead of the integral.
This concept of impulse is the point source of light, concerning images. It provides the blur
effect on images, as it promotes the diffusion of the acquired information.
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CHAPTER

4
THEORETICAL BACKGROUND

This chapter summarizes the relevant theoretical concepts, methods, and tools for the
development of our approach to select partially sharp images among a z-stack dataset and merge
the best information from each selected image into a high-quality image. The mathematical
and image processing concepts needed to develop our method are convolutions, transforms,
enhancement, registration, fusion and quality assessment; statistical methods are used as a bridge
between yielding a quantitative index of image quality and merging pixels, as well as evaluating
the performance.

4.1 Continuous and Discrete Fourier Transform

The Fourier Transform was conceived by Jean Baptiste Joseph Fourier (1768 - 1830) and
states that any periodic function can be expressed as the sum of sines and cosines of different
frequencies, each multiplied by a different coefficient (GONZALEZ; WOODS, 2018). According
to Brigham (1988), the relationship between the different frequency sinusoids and an arbitrary
function s to be analyzed is described as

S( f ) =
∫

∞

−∞

s(x)e− j2π f xdx, (4.1)

where S( f ) is the Fourier Transform of the s(t) function and j =
√
−1 represents the imaginary

unit. Note that the function transformed from the one-dimensional spatial domain to the frequency
domain, is represented by f . Similarly, the inverse transform is denoted by

s(x) =
∫

∞

−∞

S( f )e j2π f xd f . (4.2)

As stated by Bracewell and Bracewell (2000), an arbitrary periodic function s with a
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period T can be expressed as a Fourier series, given by the expression

a0 +
∞

∑
1
(an cos2πn f t +bn sin2πn f t), (4.3)
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If the function is not periodic, then the Fourier Transform is applied as a continuous func-
tion of frequency, i.e. s(t) is represented by the sum of sinusoids of all frequencies (BRIGHAM,
1988). Particularly, this applies to images, which are non-periodic functions. The most common
approach is to appraise the image as a section of a periodic function so the use of Fourier Trans-
form makes sense. The Equations 4.1 and 4.2 together are named the Fourier Transform pair.
Images are represented by two-variable functions, which motivates the use of a two-dimensional
Fourier Transform; moreover, as digital images are matrix representations of images, the two-
dimensional Discrete Fourier Transform is the most relevant brand of the FT for image processing
applications. Consequently, the two-dimensional Fourier Transform pair of a function s(x,y) is
given by

S(u,v) =
∫

∞

−∞

∫
∞

−∞

s(x,y)e− j2π(ux+vy)dxdy (4.4)

s(x,y) =
∫

∞

−∞

∫
∞

−∞

S(u,v)e j2π(ux+vy)dudv. (4.5)

According to Bracewell and Bracewell (2000), this pair of equations represents the
analysis of s(x,y) into components of the form exp [ j2π(ux+ vy)], where the variables u and
v represent spatial frequencies. The equation that relates such components to sinusoids is the
Euler’s Formula or Euler’s Identity, i.e e jθ = cosθ + j sinθ , where θ = 2π f is a number
that represents an angle in radians and e jθ is the polar form representation of the sinusoids
(GONZALEZ; WOODS, 2018). Finally, the two-dimensional DFT form commonly used in
image processing is, as reported by Gonzalez and Woods (2018), denoted by
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S(u,v) =
M
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s(x,y) =
1

MN

M

∑
1

N

∑
1
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where s(x,y) is a discrete function that represents an image of size M×N, x and y, discrete
variables that represent spatial coordinates, and u and v are discrete spatial frequencies.

One prominent example of Fourier Transform use is the Convolution Theorem. It states
that convolution may be computed by a multiplication in the Fourier domain (BRIGHAM,
1988). This allows much faster computations of convolution in comparison to the spatial domain
approach and is frequently used in many applications, such as image filtering and convolutional
neural networks. In terms of computational complexity, the conventional two-dimensional
Discrete Fourier Transform implementations are of order 𝒪(n2) for square or zero-padded
images and 𝒪(mn) for images of size m×n; for this reason, the Fast Fourier Transform (FFT) is
a divide-and-conquer implementation created by Cooley and Tookey in 1965 and reduces the
computational complexity to 𝒪(n logn) (BRACEWELL; BRACEWELL, 2000).

4.2 Contrast Limited Adaptive Histogram Equalization

Contrast enhancement may be described as the process of optimizing the quality of the
image in human visual criteria. Histogram equalization is one of the techniques to perform
contrast enhancement and works in an image by mapping the distribution of its gray levels to
an approximately uniform distribution. The performance of this process is deeply related to the
amount of noise in the image since it consists of peaks in the histogram, which unbalances the
mapping and enhances noisy structures. One solution to this problem, according to Zuiderveld
(1994), is to divide the image into contextual regions, i.e. rectangular areas of 8×8 size, compute
the optimal contrast for each of the regions and merge the results with bilinear interpolation to
avoid boundary effects. This method is known as Adaptive Histogram Equalization (AHE), where
the global outlier gray levels do not influence each contextual region contrast enhancement.

The Contrast Limited Adaptive Histogram Equalization (CLAHE) method was proposed
to overcome the drawback of noise. As stated by Sonali et al. (2019), it is the method that
improves the low contrast issue and operates by limiting the contrast enhancement that is
usually performed by ordinary histogram equalization or the AHE, which results in the noise
enhancement as well. It is accomplished by allowing only a maximum number of pixels in each
of the histogram bins and equally distributing the clipped pixels among the whole histogram
(ZUIDERVELD, 1994). Figure 11 presents an example of the differences between histogram
equalization techniques and their results in a Magnetic Resonance Imaging (MRI) example:
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Figure 11 – MRI image of a human knee (a), a simple histogram equalization (b), an adaptive histogram
equalization (c) and the contrast limited adaptive histogram equalization (d).

Source: Adapted from Zuiderveld (1994).

4.3 Scale-invariant Feature Transform

As originally proposed by Lowe (1999), the SIFT is a feature extraction approach for
object and scene recognition. First, the scale-space extrema are detected with a difference-of-
Gaussian function, applied in order to identify the invariant scale and orientation keypoints.
Each keypoint is selected based on measures of their stability, and one or more orientations are
assigned to each keypoint location based on image gradient directions. Finally, a measurement
of the local image gradients is performed for the particular scales and neighborhood of each
keypoint, followed by a transformation of those into a proper representation.

The custom SIFT implementation described here was proposed by Lowe (2004). The
difference-of-Gaussian method for the detection of scale-space extrema is a convolution of an
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image f (x,y) with the difference of two nearby scales of distance k, given by

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ)) f (x,y), (4.8)

where D(x,y,σ) is the result of the convolution and G(x,y,σ) stands for a Gaussian function
described as

G(x,y,σ) =
1√

2πσ
e−

x2+y2

σ2 . (4.9)

The difference-of-Gaussians is constructed by convolving the image with several Gaus-
sians separated by the multiplicative factor k, followed by a reduction of the scale-space by
doubling σ at each change of scale. Next, the local maxima and minima (extrema) are detected by
checking the 8-neighborhood in the current image and 9-neighborhood in the image, in adjacent
scales. Having computed the scale-space extrema, the keypoints are localized by fitting a 3D
quadratic function of local sample points with the Taylor expansion

D(x) = D+
∂DT

∂x
x+

1
2

xT ∂ 2D
∂x2 x, (4.10)

where the derivatives of the difference-of-Gaussians matrix D is computed at the sample point
and x = (x,y,σ)T is the offset for such point. The extremum location is found with the derivative
of D with respect to x by setting it to zero. The value of D at the extremum provides a way to
include only stable and good contrast extrema. As well as the low contrast keypoint exclusion, it
is necessary to eliminate keypoints which possess a large principal curvature across the edge
direction and a small one in its perpendicular direction; this is achieved with a threshold based
on the sum and product of the eigenvalues from the trace and determinant of a Hessian matrix
computed at the location and scale of each keypoint.

The next step is to provide the orientation of each keypoint concerning local image
properties. This yields invariance to image rotation and is done by computing the gradient
magnitude and the orientation for each smoothed image sample, denoted by

m(x,y) =
√

(L(x+1,y)−L(x−1,y))2 +(L(x,y+1)−L(x,y−1))2 (4.11)

θ(x,y) = tan−1
(

L(x,y+1)−L(x,y−1)
L(x+1,y)−L(x−1,y)

)
, (4.12)

where m(x,y) is the gradient magnitude, θ(x,y) is the orientation and L(x,y) is the smoothed
image, i.e. the observed image convolved with a Gaussian kernel. The obtained information is
sampled around each keypoint location at the selected scale and Gaussian blur level, in order to
generate the descriptor representation. The samples are then weighted by a Gaussian window
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and accumulated into orientation histograms that represent 4×4 subregions. The descriptors
are computed from a 16×16 subarray. Finally, the advantages of the custom implementation
of SIFT are the invariance to image rotation and scale, robustness across a substantial range of
distortions (affine, additive noise and illumination changes) and computational efficiency.

The RANSAC algorithm is a non-deterministic iterative method for fitting a mathematical
model to experimental data and also an outlier detector. (FISCHLER; BOLLES, 1981). As for
the image registration application in this work, it is used to identify corresponding landmark
points in overlapping image tiles (SAALFELD, 2019). Then, the recognized matching points in
each image undergo the geometric consistency filtering process with the expected transformation
model and the maximal expected error parameters; this last filtering process aims to verify
whether all points support the same transformation model and yield the best matches concerning
all points for each image of the dataset.

4.4 Image Fusion

Image fusion is a process that merges several images, possibly acquired in diverse
conditions or with different cameras, into one image with higher quality, more details and
consequently more useful for humans and computer tasks (MITCHELL, 2010). Examples of
image fusion applications are noise reduction, edge enhancement, and super-resolution. One
traditional use of image fusion occurs in medical imaging fields; the quality of information about
illnesses, cells, clinical analysis and several other medical tasks (including the computer-assisted
ones) have found profitable results from the image fusion techniques and led themselves to
better and faster decisions when it comes to human beings (JAMES; DASARATHY, 2014).
There are also relevant applications in remote sensing multispectral images, segmentation of
regions in different color spaces, biometry: the pan-sharpening process is the generation of a
high-resolution multispectral image from low to high-resolution ones, K-Means segmentation
and fusion of pixels in the RGB and the Iris Recognition biometric process with video frames
are examples of such tasks, respectively (MITCHELL, 2010). Also according to Mitchell (2010),
the general framework for the image fusion procedure consists of four stages: Multiple Input

Images, Common Representational Format, Fusion and Display. The multiple input images stage
is simply the acquisition of the images to be merged. There are several approaches to this: the
dataset may be captured from different sensors, under distinct light conditions or angles, with
different magnifications, under several focus settings, and with temporal measurements, if the
scene changes through time. Figure 35 depicts an arbitrary example of the four stages.

The four arbitrary images in Figure 35.(a) represent different images of the same scene,
taken at different resolutions, rotation angles, and shapes. In Figure 35.(b), the images are all
reshaped, converted to common color space and ready to undergo the processing algorithm which
will transform them into feature vectors. Figure 35.(c) represents the image fusion by means of
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Figure 12 – Image fusion general framework. (a) Multiple Input Images, (b) Common Representational
Format, (c) Fusion and (d) Display.

Source: Elaborated by the author.

an arbitrary fusion rule. The resulting image is depicted in Figure 35.(d).

If the acquired dataset images do not share the same features such as dimension, rotation
angle, and resolution, then the images should be pre-processed in order to arrive at a common
state. This configures the common representational format step, which generates a new and
temporary dataset with the same properties, e.g. color space, dimensions, and noise level. The
fusion stage employs a decision method to dictate which regions, objects, colors or details will
compose the final image; some methods rely on the wavelet transform, for example. Finally, the
display stage provides a view of the resulting image, which can be used directly for any further
task or even be the input for other image processing operations.

4.5 Image Quality Assessment

Image Quality Assessment (IQA) is the evaluation of image quality as perceived by an
average human observer, i.e. how close an image is to a given original or reference image. It is
also related to the accuracy of the image acquisition process for an imaging system (BOVIK,
2009). It is known that images are frequently used in health and life sciences, public security
systems, remote sensing, and several other fields; hence, there are computational applications
that offer some useful service employing image processing. As a result, assessing image quality
poses as an important task among those applications for which several techniques are being
developed, evolved and deployed.

As stated by Zhou Wang et al. (2004), there are three classes of objective image quality
metrics that relate to the existence of a no-distortion image (or with a negligible amount of it) for
comparison purposes. The Full-Reference Image Quality Assessment (FR-IQA) methods assume
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that the reference image is available, while Reduced-Reference Image Quality Assessment
(RR-IQA) methods employ a representation of the reference image, such as a set of extracted
features. Finally, the No-Reference Image Quality Assessment (NR-IQA) methods, also known
as “blind”, are those which do not employ a reference image. Figure 36 denotes an example of a
full-reference method, the Mean Structural Similarity Measure (MSSIM) method and its output
for an image with different types of degradation:

Figure 13 – Example of the MSSIM method output: Original image (a), contrast-stretched image (b),
mean-shifted image (c), JPEG compressed image (d), blurred image (e) and salt-pepper
impulsive noisy image (f).

Source: Zhou Wang et al. (2004).

According to Tang et al. (2019), the IQA methods are distributed between the subjective
assessment and objective assessment categories. The former is based on a well-defined test
environment for random observers to label images and provide the final Mean Opinion Scores
(MOS), while the latter is based on the use of strategies such as statistical modeling, machine
learning, spatial or spectral image features and so on. It is evident that subjective IQA is
demanding; consequently, objective methods are preferred to conduct IQA.

IQA methods are also present within microscopy and its close interaction with image
processing. The image acquisition in microscopy techniques may involve lasers, transmitted
or reflected light, measurements of atomic force responses, the fluorescence of chemical com-
pounds and several other means. Each technique has an inherent kind of degradation that affects
the acquired images or spectra, e.g. the Raman confocal microspectroscopy suffers from the
interference of cosmic rays, which yields unexpected peaks in the spectrum.
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4.6 Statistics

The measures of the relative standing of an observation describe its location among other
values in the distribution, and two examples of these measures are percentiles and z-scores;
also, an observation located outside the range of the distribution is an outlier (MENDENHALL;
SINCICH, 2016). Percentiles are values that split the data into 100 parts in a sorted dataset, so
that the i-th percentile stands for the i(n+1)/100 observation, e.g. the 25-th percentile comprises
25% of the data; the z-score, or standard score, is given by

z =
xi− x̄

σ
, (4.13)

where xi is the i-th observation of the variable x, x̄ is the mean and σ is the standard deviation of
the population or the sample (ZWILLINGER; KOKOSKA, 1999).

The Interquartile Range (IQR) is the length of the interval that contains the middle half of
the distribution (DEGROOT; SCHERVISH, 2012). Mathematically, it is the difference between
the third (Q3) and the first (Q1) quartiles, i.e. the 75th percentile 25th percentile, respectively
(DEVORE, 2011). The IQR is described by

IQR = Q3−Q1. (4.14)

The kurtosis is one of the probability distribution shape statistics, which measures the
extent of the peak in a distribution, i.e. its “peakedness”; smaller absolute values indicate that the
distribution tends to be uniform (ZWILLINGER; KOKOSKA, 1999). First of all, the concepts
of expectation and moments should be described. The expectation of a random variable (and
consequently, of a distribution) is a value that summarizes its nature and is given by

E(X) =
∫

∞

−∞

xp(x)dx E(X) = ∑
x

xp(x), (4.15)

where x is each possible outcome of the random variable X , p(x) is the probability density
function for a continuous random variable (left) and the probability function for a discrete
random variable (right) (DEGROOT; SCHERVISH, 2012). Still according to DeGroot and
Schervish (2012), for a random variable X and every positive k ∈ R, the expectation E(Xk) is
called the k-th moment of X . The r-th moment may be described, according to Zwillinger and
Kokoska (1999), as

mr =
1
n

k

∑
i=1

pi(xi− x̄)r (4.16)
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for every xi in the possible outcomes of X . Thus, kurtosis may be defined as the ratio of the
fourth moment (Equation B.11 with r = 4) by the square of the variance (also Equation B.11
with r = 2), denoted by

g2 =
m4

(m2)2 −3 (4.17)

The −3 constant is inherited from Fischer’s approach, where the kurtosis of a normal
distribution is zero.
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CHAPTER

5
RELATED WORK

This chapter presents a literature review on relevant IQA and multi-focus image fusion
techniques, which guided the development of our method. The continuous search for an objective
image quality assessment technique covered several strategies, such as subjective testing, statis-
tical modeling, brain science, perceptual modeling, saliency detection, and machine learning
(TANG et al., 2019). Every strategy has advantages and trade-offs, according to the nature of the
images.

There are challenging features on the multi-focus image fusion part of our method, such
as the blurring and illumination patterns, inherent to the bright-field microscopy images. The
most trivial pixel-level fusion techniques are simple mathematical operations such as the average
or a weighted average of gray levels; those are suitable to the task, but also deliver losses in basic
image features, e.g. contrast and saturation (ZHANG; GUO, 2009). Thus, there is a demand
for techniques that rely on more sophisticated tools, capable of covering multiple situations:
images with different resolutions, light conditions and exposure times, for instance. Multiscale
transform approaches, e.g. wavelet domain transforms are good choices and provide a very
flexible framework since they depend on the chosen wavelet function (PAJARES; CRUZ, 2004).

5.1 Image Quality Assessment

Defocus blur is an example among all distortions that an image may be acquainted with
during its acquisition or processing; this implies that the resulting image will have some sort of
degradation in its visual quality, which justifies the need of objective techniques to evaluate and
predict the quality of images since the subjective ways are commonly unavailable or inconvenient
(Zhou Wang et al., 2004). This section presents a literature review on no-reference IQA methods
based on frequency domain analysis, human perception of blur, probabilities, local contrast
levels, and gray level variability.
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5.1.1 Image sharpness measure for blurred images in frequency do-
main

De and Masilamani (2013) proposed a DFT-based algorithm to compute an image quality
measure of blurred images. This approach is an attempt to quantify sharpness as the amount of
high-frequency components in a blurred image is smaller than in a sharper one. The algorithm
consists of the following, where g(x,y) denotes the input image of size M×N:

I - Compute the Fourier Transform representation of image g(x,y), denoted by ĝ(m,n);

II - Shift the origin of the Fourier coefficients to the center of the matrix;

III - For each Fourier coefficient, compute its magnitude and assign it to a matrix A(m,n)

A(m,n) =
√

[Re(ĝ(m,n))]2 +[Im(ĝ(m,n))]2

IV - Calculate the maximum value m of A(m,n);

V - Compute the number t of pixels in ĝ where ĝ > m/1000;

VI - Calculate the image quality measure FM = t/M×N.

5.1.2 A no-reference perceptual blur metric

A very simple but efficient perceptual blur metric was proposed by Marziliano et al.

(2002). It is also based on the fact that high-frequency components are attenuated in a blurred
image. Considering that blur affects the edges and texture regions of an image, the technique
attempts to measure how scattered they are. First, an edge detector is applied to the luminance
component of the image (equivalent to a grayscale-converted image) in order to find the vertical
edges. Each row of the image is scanned for pixels corresponding to edges, and the width of
each edge is computed by the difference of local extrema closest to the edge. This is done for
each edge location, and the global blur measure is the average of all computed widths.

5.1.3 A No-Reference Objective Image Sharpness Metric Based on
the Notion of Just Noticeable Blur (JNB)

Ferzli and Karam (2009) employ a psychometric model, i.e. the assignment of numerical
representations to subjective tests to create a perceptual sharpness metric. The subjective tests
employ the Just Noticeable Blur (JNB) concept, which is the minimum amount of perceived
blur around an edge given a contrast higher than the limit of contrast between background and
foreground that is possible to notice.
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The subjective experiment consists in the evaluation of 27 contrast values (considering the
difference between the background and the foreground grayscale values), done by 18 volunteers
with normal or corrected vision, with the aim to find a particular standard deviation σJNB of a
7×7 Gaussian mask. Each contrast value yields a normalized histogram with the volunteers’
responses that are treated as the probability of detecting blur as a function of the standard
deviation σ , denoted by

P = 1− exp

(
−
∣∣∣∣ σ

σJNB

∣∣∣∣β
)
, (5.1)

where σ is the standard deviation of the Gaussian blur filter and corresponds to the blur strength
at the considered edge, σJNB is the standard deviation corresponding to the JNB threshold.
The parameters σJNB and β are chosen by means of a least-square fitting to approximate the
probabilities P with the answers from volunteers. The σJNB value is adjusted to obtain P = 63%.

First and foremost, the image is divided into blocks of dimensions 64× 64. Let each
block and the image be denoted by R and g, respectively. All the blocks are subject to a Sobel
edge detection process and are later classified as “smooth” or “edge” using a threshold. If the
number of edge pixels in a block is greater than 0.2% of the total number of pixels in it, then it is
classified as an edge block. The smooth blocks are not processed since they are not relevant in
terms of blur. Then, for each block, the horizontal edge pixels are retrieved and the width of each
edge is computed. With this in hands, the perceptual blur metric for each block Rb is described
by the equation

DRb =

(
∑

ei∈Rb

∣∣∣∣ w(ei)

wJNB(ei)

∣∣∣∣
β

) 1
β

, (5.2)

where wJNB(ei) is the JNB width relative to the contrast of block Rb for all edges ei. The
parameter β is empirically determined to be 3.4 ≤ β ≤ 3.8. Thus, the general blur measure
concerning the whole image corresponds to the probability of all blocks being blurred, given by

Pblur(I) = 1−ΠRb∈g (1−Pblur(Rb)) , (5.3)

where Pblur(Rb) may be substituted by 1− exp
(
−Dβ

Rb

)
, which results in

Pblur(I) = 1− exp
(
−Dβ

)
D =

(
∑
Rb

|DRb|
β

) 1
β

. (5.4)

Finally, D from Equation 5.4 is then normalized by the amount of blocks and represents the final
image quality index.
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5.1.4 A No-Reference Image Blur Metric Based on the Cumulative
Probability of Blur Detection (CPBD)

A sharpness metric that extends the approach described in 5.1.3 was proposed by
Narvekar and Karam (2011). It is based on the cumulative probability of blur detection (CPBD),
which applies the same psychometric function framework from JNB. The wJNB value is defined
as 5, if the contrast is less or equal to 50 and 3, otherwise. The metric explores the normal-
ized histogram of the probability of blur detection from the whole image, where CPBD is the
percentage of edges at which blur is not likely to be detected.

First, the horizontal edges from the image are detected, also divided into blocks of 64×64
and classified as edge blocks or sharp blocks with the same threshold as in Ferzli and Karam
(2009). The probability of detection blur for and edge ei is computed with the Equation 5.5

PBLUR = PBLUR(ei)

= 1− exp

(
−
∣∣∣∣ w(ei

wJNB(ei)

∣∣∣∣β
)
.

(5.5)

Then, the cumulative probability of blur detection is computed from the probability density
function of Equation 5.5, and may be described as

CPBD = P(PBLUR ≤ PJNB)

=
PBLUR=PJNB

∑
PBLUR=0

P(PBLUR).
(5.6)

Thus, greater values for the CPBD metric mean sharper images.

5.1.5 S3: A Spectral and Spatial Measure of Local Perceived Sharp-
ness in Natural Images

Vu, Phan and Chandler (2012) proposed one technique to assess image quality that
explores both spatial and spectral information from the image. The denomination S3 represents
the combination of S1, which denotes the spectral measure of sharpness and S2, which the
authors denote as the spatial measure of sharpness. The first step is to convert the RGB image
to the grayscale color space with weights 0.2989, 0.5870 and 0.1140 for the red, green and
blue channels, respectively. The grayscale image is then divided into blocks denoted by x of
dimensions m×m and an overlap d around each neighbor block.

In order to compute the S1(x) measure, they calculate the luminance contrast of each x
block, denoted by CR as follows
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CR(x) = l(x) = (b+ kx)γ b = 0.7656; k = 0.0364; γ = 2.2 (5.7)

CR(x) = 0 ⇐⇒

max(l(x))−min(l(x))≤ T1

µ1 ≤ T2

T1 = 5; T2 = 2.

The S1 measure for a block is set to zero if the contrast is zero. For the blocks with
CR > 0, the magnitude spectrum is computed from the two-dimensional DFT, which is defined
as the modulus of each complex coefficient and represents how much each frequency is present
in the image and is given by mag(x̂). Then, the slope of the magnitude spectrum denoted by αx

is the slope of a line in the standard form ax+b and is obtained by linear regression with

αx = argmin
α

∥∥β x̂−α −mag(x̂)
∥∥2

2 , (5.8)

where the L2 norm is taken over all frequencies. From this framework, S1(x) is described by

S1(x) = 1− 1
1+ eτ1(αx−τ2)

, (5.9)

where τ1 =−3 and τ2 = 2. Equation 5.9 is a sigmoid function to estimate sharpness considering
the slope of the spectral magnitude. This measure does not include the contrast information
directly and it may generate inaccurate classifications; this is the reason why the authors propose
the use of spatial information. S2 incorporates the spatial information by analyzing the 8-
neighborhoods of pixels in a block x. The Total Variation (TV) is a metric of regularity within
the grayscale values and is mathematically described as

v(x) =
1

255 ∑
i, j

∣∣xi− x j
∣∣ , (5.10)

where xi and x j are 8-neighbors in x. The TV provides a good representation of the absolute
differences in each block; this implies that the contrast information is consequently described
well. The larger the TV index is, the higher the contrast in the block. The S2 map is then computed
as

S2 =
1
4

max
a∈x

v(a), (5.11)

where a is a 2×2 block of x. Each x is of dimensions 8×8 and the overlap is d = 4. The final
map for the whole image is the sum of all indices for each of the blocks. Finally, let X denote the
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set of all blocks which form the image. The S3 image quality index is the weighted geometric
mean defined by

S3(X) = S1(X)ηS2(X)1−η , (5.12)

where 0≤ η ≤ 1, and η = 0.5 is the best empirically obtained value for the parameter.

5.1.6 A Fast Approach for No-Reference Image Sharpness Assess-
ment Based on Maximum Local Variation

Bahrami and Kot (2014) proposed the Maximum Local Variation (MLV) metric for
image sharpness assessment. The MLV metric improves the idea of the total variation measure.
Instead of computing the variations of pixel values among 8-neighborhoods, the authors propose
the maximum among all differences in a neighborhood, represented by ψ described by

ψ(g(i, j)) = max(g(i, j)−g(k, l)) x = {i−1, i, i+1}; y = { j−1, j, j+1}, (5.13)

where g(k, l) with the bounds for k and l denoted in Equation 5.13 are the 8-neighbors of the
pixel g(i, j). In a nutshell, the metric finds the maximum among the 8-neighborhood of a pixel,
concerning the `1 norm as a distance. With this setup, the algorithm begins with the grayscale
conversion of an image of dimensions M×N. The neighborhoods are 3×3 blocks along the
image and the MLV is computed for all pixels, which results in a map Ψ(g) given by

Ψ(g) =


ψ(g(1,1)) · · · ψ(g(1,N))

... . . . ...
ψ(g(M,1)) · · · ψ(g(M,N)).

 (5.14)

The next step is to apply a statistical technique to analyze how the distribution of Ψ behaves
when the image is sharp or blurred. For the sharp regions, i.e. high MLV values or black content,
the distribution is closer to hyper-laplacian; for smoother and blurred regions, the distribution
is closer to Gaussian. Therefore, the authors chose to parametrize the MLV with a Generalized
Gaussian Distribution (GGD), which covers the Gaussian, the laplacian and hyper-laplacian
distributions and is denoted as

GGD(Ψ(g); µ,γ,σ) =

 γ

2σΓ

(
1
γ

)√
Γ

(
1
γ

)
Γ

(
3
γ

)

e

−

 Ψ(g)−µ

σ

√√√√√Γ( 1
γ )

Γ( 3
γ )


γ

, (5.15)
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where µ is the mean, σ is the standard deviation, γ is the shape parameter and Γ is the gamma
function. In a nutshell, the MLV metric is relative to the standard deviation of the GGD distribu-
tion: the sharper the image is, the higher the standard deviation. The Ψ matrix is weighted with
values obtained with the exponential function wi, j = eηi, j , where ηi, j is the rank of ψ(g(i, j))

when sorted in ascending order.

5.2 Multi-focus Image Fusion

Either in microscopic or macroscopic scales, imaging devices have a finite depth of
field. Blurry regions in images may occur due to several reasons, e.g. the acquisition outside
the boundaries of the depth of field (HUANG; ZHONGLIANG, 2007). Therefore, it is nearly
impossible to obtain a globally sharp image in microscopic scales, since height differences within
the surface of the sample will also be magnified and the depth of field of microscopes is usually
small. Image fusion of stack of images, acquired with a variety of focus adjustments, may yield
a fully sharp image. In this section, we investigate multi-focus image fusion techniques based on
principal component analysis, guided filtering with local linear models, gradients and singular
value decomposition.

5.2.1 Pixel-level image fusion using wavelets and principal compo-
nent analysis

Naidu and Raol (2008) addressed the multi-focus image fusion problem with two fusion
rules, based on Principal Component Analysis (PCA) and the Discrete Wavelet Transform
(DWT). The Principal Component Analysis is a mathematical procedure based on linear algebra,
which performs the extraction of uncorrelated variables that represent data. In other words, the
PCA based fusion rule composes the image from the most relevant subset of data from each
input image. The proposed PCA-based image fusion algorithm consists of the following steps:

I - Reshape the input images as two-column vectors, which yields a matrix of dimensions
2×n, with n as the original dimension of each image. Let the resulting matrix be denoted
as Z;

II - Compute the empirical mean vector of dimensions 1×2, i.e. a vector that contains the
mean of observations for each variable;

III - Subtract the empirical mean vector from each column of Z, which results in a matrix of
dimensions 2×n. Let the resulting matrix be denoted as Y ;

IV - Compute the covariance matrix of Y , i.e. YY T ;
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V - Compute the eigenvectors and the eigenvalues of the covariance matrix and sort them
by descending order. Let the eigenvectors and the eigenvalues be denoted by V and D,
respectively. Both V and D dimensions are 2×2;

VI - Compute the principal components P1 and P2 with the first column of V , as

P1 =
V (1)
∑V

P2 =
V (2)
∑V

. (5.16)

Finally, the fused image is composed by

g f used(x,y) = P1g1(x,y)+P2g2(x,y), (5.17)

where g f used represents the fused image and g1 and g2 represent the two input images. The
process may be extended to several images by applying the method in the first two images of the
dataset, then with the fused image and another image and so on. Along with PCA, the authors
explored a fusion approach with the DWT. The transform is applied to the input images and
decomposes them into subbands of detailed and approximation wavelet coefficients, i.e. high
and low-frequency components, respectively. Finally, the fusion rule consists of averaging the
approximation coefficients and choosing the maximum among each detailed coefficient in each
subband.

5.2.2 Image fusion with guided filtering

The guided filtering, i.e., a windowed linear transform of the input image where coeffi-
cients are obtained by linear ridge regression was applied to perform image fusion (LI; KANG;
HU, 2013). The authors proposed a three step pixel-level image fusion technique (decomposition,
filtering and reconstruction) that also makes use of low-pass filtering, edge extraction, and spatial
consistency. The decomposition step transforms the input images into two-scale representations
by means of a convolution with an average filter of size 31×31. The first representation is named
base layer, directly obtained from the average filter convolution, and the second representation
is named detail layer, obtained by subtracting the base layer from the input image. In order to
retrieve the weight map, i.e., a characterization of sharp and blurry regions of the image, edge
extraction is performed with a 3×3 Laplacian filtering kernel (which will be further explained
in Chapter 6); subsequently, the edges undergo a Gaussian low-pass filter of dimensions 11×11
and σ = 5. Let Sk

i be the smoothed edge in the pixel k of the ith input image. The weight map is
built as

Pk
i =

1, if Sk
i = max(Sk

1,S
k
2, . . . ,S

k
n)

0, otherwise
, (5.18)



5.2. Multi-focus Image Fusion 65

where n is the number of input images. The guided filter is then applied to each image, together
with its weight map, which produces final weight matrices W B

i and W D
i for the base and detail

layers of each image, respectively. Subsequently, all base and detail layers are fused by means of
weighted averaging with their respective weight matrices, given by

B̄ =
n

∑
i=1

W B
i Bi D̄ =

n

∑
i=1

W D
i Di, (5.19)

where B̄ and D̄ are the fused base and detail layers, respectively. The fused image is finally
constructed by summing the fused layers.

5.2.3 Multi-scale weighted gradient-based fusion for multi-focus im-
ages

Another way to perform edge detection-based image fusion is to extract gradients from
each image of a dataset and merge them with the structure tensor, as proposed by Zhou, Li and
Wang (2014). The first step consists of obtaining the local gradients of each input image in
the form of a structure tensor, i.e. a non-negative second-moment matrix where its eigenvalues
represent the intensity changes in a given point, and then a local gradient covariance matrix
described as

Cσ =

(
∇2

x *Gσ (∇x∇y *Gσ )

(∇x∇y *Gσ ) ∇2
x *Gσ

)
, (5.20)

where Gσ is a Gaussian filter, ∇x and ∇y are the gradients of the image along x and y directions
in a given pixel. The σ parameter represents the standard deviation of the Gaussian function and
also the scale of the matrix Cσ . The local image structure is related to the eigenvalues of Cσ , s2

1

and s2
2. Let s1 and s2 be the square root of such eigenvalues. If one of those is large and the other

is small, it means that the pixel consists of an edge; if both are large, then the region is sharp,
which indicates a corner. Then, the authors define a structure saliency measure for the image at a
selected scale, as

Q =
√
(s1 + s2)2 +α(s1− s2)2, (5.21)

where α >−1. This is used as a sharpness measure for the multi-focus images at different scales
in the presence of anisotropic blur and also misregistration. The sharpness is first computed at a
large scale, i.e. a large σ value, which roughly detects the focused region of each input image.

The next step is to define an unknown region near the boundaries of each focused
region and set the gradient weights as 1 for sharp and 0 for blurry. The gradient weights are
then calculated by applying the focus measure with a small σ value and then merged with the
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gradients. This results in a set of probabilities for each pixel in each image. The composition of
the fused image is then guided by the largest probability values.

5.2.4 Image fusion technique using multi-resolution singular value
decomposition

Naidu (2011) proposed a fusion technique which is similar to the DWT-based ones, but
employs a Multiresolution Singular Value Decomposition (MSVD) instead. The multiresolution
SVD performs a factorization of a matrix into eigenvalues and eigenvectors in different scales by
the following steps:

I - Let X = [x1,x2, . . . ,xn] be an one-dimensional signal of length n. Reshape X onto a matrix
given by

X1 =

[
x1 x3 . . . xn−1

x2 x4 . . . xn

]

and a scatter matrix T1 = X1XT
1 ;

II - Factorize the matrix T1. Let the eigenvector matrix of T1 be U1. Then T1 is transformed
into a diagonal matrix S2

1 as

S2
1 =UT

1 T1U1 =

[
s2

1 0
0 s2

2

]
,

where s2
1 and s2

2 are the squares of the singular values. Then, let X̂1 =UT
1 X1. The top row

of X̂1 contains the approximation component, i.e. the largest eigenvalue, and the bottom
row contains the detail component, i.e. the smallest eigenvalue. Let ϕ and ψ represent the
top and bottom rows of X̂1, respectively. In order to perform the image decomposition in
other scales, the approximation component ϕ plays the role of X .

The MSVD is a decomposition of 2× 2 blocks of the image, rearranged into one-
dimensional vectors of dimensions 4× 1. The authors proposed a two-level decomposition,
which generates 8 images from each input image. At each level, the largest absolute value among
the MSVD detailed coefficients will compose the fused image, while at the coarsest level, the
average of all approximation is computed and added to the output.
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CHAPTER

6
MATERIALS AND METHODS

The literature review presented in Chapter 5 showed that both no-reference image quality
analysis and image fusion were addressed by many known techniques such as multiresolution
analysis and principal component analysis. However, applications still evolve as new strategies
such as machine learning are presented. The idea that motivated the use of the Fourier Transform
as the basis for an IQA method is that it is a fast, robust and reliable analysis tool and could
produce relevant results if properly explored. Similarly, the image fusion process was developed
by exploring many state-of-the-art fusion applications and addressing both computational re-
quirements (both hardware and software) and computational performance, since the method is
built to work on normal optical microscope workstations instead of large clusters. As a result, we
studied the capabilities of the Laplacian of Gaussian as the basis for our image fusion algorithm.

This chapter presents all the details about our no-reference image quality assessment
method and our multi-focus image fusion method, as well as relevant information about the
proposed datasets, including acquisition details. We also show how the methods relate to each
other since it also requires the human knowledge to select the images for registration and posterior
fusion, similar to most of the z-stacking systems on microscopy software packages.

6.1 Overview

Our approach, depicted in Figure 14, consists of three parts: a) an image acquisition
process based on the z-stacking technique; b) a method for assessing the quality of images that
explores frequency domain features and basic statistical analysis tools and outputs a quantitative
index that allows the selection of focused images and c) an image fusion procedure, based on
the Laplacian of Gaussian filter and energy of edges, which forms the final image. Figure 14.(a)
denotes the image acquisition process, which consists of collecting specimens of plants, acquiring
images with microscopes and organizing the datasets. Then the images undergo our IQA method
in Figure 14.(b), and a subset of the images is selected for registration by means of statistical
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methods. Finally, Figure 14.(c) represents the image fusion procedure, which aims to produce a
high-quality image.

Figure 14 – Overview of each stage of our approach: (a) image acquisition and registration, (b) selection
of images after IQA and (c) image fusion.

Source: Elaborated by the author.

6.2 Proposed dataset

Three bright-field microscopy images datasets were acquired with the ZEISS Axio-
cam ERc5s camera in the ZEISS SteREO Discovery.v20 and the ZEISS AxioLab A1 stereo
microscopes from the Scientific Computing Group (SCG) at São Carlos Institute of Physics
(IFSC). The datasets contain images from leaf histological samples of the plants Callisia repens,
Tradescantia zebrina and Cthenante oppenheimiana, acquired with different focal planes and
with different magnification levels.

A shared feature among the species Callisia repens, Tradescantia zebrina and Cthenante

oppenheimiana is the purple abaxial (lower or bottom) leaf surface. This is commonly observed
in deeply-shaded understorey plants and can be either transient or permanent, depending on
the species and environmental conditions (FILHO; BRUNO, 2018). Several research projects
have been conducted by the SCG group on plant leaf images, including biological studies with
complex network analysis, where the locations of particular structures of the leaf, i.e. the stomata,
were modeled as graphs. The stoma (plural stomata) is a structure that consists of an aperture



6.2. Proposed dataset 69

between two cells, named guard cells, and controls the exchange of steam, CO2 and other gases
from the inner part of the leaf and the atmosphere (HETHERINGTON; WOODWARD, 2003).
Furthermore, the concentration of stomata in leaves of purple plants is high; such stomatal cells
are green and create a contrast between the epidermis and the stomata, which yields very good
results with optical microscopy imaging (FILHO; BRUNO, 2018). Samples of blurred and sharp
images of both datasets are shown in Figure 15.

Figure 15 – Examples of the proposed dataset images: blurred Callisia (a), sharp Callisia (b), blurred
Tradescantia (c), sharp Tradescantia (d) and blurred Cthenante (e), sharp Cthenante (f).

Source: Elaborated by the author.

6.2.1 Acquisition and Usage Protocols

We will refer to the datasets as Callisia, Tradescantia and Cthenante for notation sim-
plicity. The Callisia and Tradescantia datasets were acquired with the z-stacking method in
the SteREO Discovery.v20 microscope, whereas the Cthenante dataset was acquired with the
AxioLab A1 microscope. The workstation was connected to the microscopes by means of the
ZEISS Axiovision version 4.8 software package. The z-stacks were manually built, i.e. the axial
location of the objective was manually changed.

The SteREO Discovery.v20 microscope allows a precise measurement of the objective
height, and the slices were acquired with a distance of 10 µm between each other - the maximum
manually achievable distance. For both microscopes, the acquisition started with the objective
height above the focal plane and, therefore, a completely blurred image. Then, the objective was
progressively lowered in the z axis, and at each step, an image was taken; this process was done
until the objective height was below the focal plane and the images were blurred again.
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The z-stacks were registered for image fusion after the eligible images in each set were
chosen. Therefore, after the IQA method was applied, each set of eligible images was aligned with
the TrakEM2 package, an ImageJ-based tool for processing and analyzing microscopy images. It
includes methods for lens distortion correction, stitching, serial section alignment, correction
of section thickness, and contrast adjustment (SAALFELD, 2019). TrakEM2 uses a particular
combination of methods. The feature extraction was done with a custom implementation of the
Scale Invariant Feature Transform (SIFT), together with a custom extension of the Random
Sample Consensus (RANSAC) method for parameter estimation and the geometric consensus
filtering process with the expected transformation model and a maximal expected error as
parameters (SAALFELD, 2019).

Primarily, a subjective quality index based on the Mean Opinion Score (MOS) was built
in order to validate the results. The mean opinion score is the average of values on a predefined
scale that an observer assigns to his opinion about the performance of a system (in this case, the
imaging system) across a sample of observers (LIU et al., 2019). Practically, it consists of integer
numbers in the interval [1,5] where 1 is the worst score and 5 is the best. With the output of three
people - two microscopy experts and one from a non-microscopy field - a subjective index was
created. Most of the images were classified as 1 and the maximum score was 3. The images were
then labeled as 3 - eligible and 1 or 2 - negligible for the fusion process, respectively. The axial
nature of the acquisition allowed for a contiguous set of eligible images in each dataset. Table 1
presents some relevant properties of each dataset.

Table 1 – Information about the proposed datasets.

Dataset Callisia Tradescantia Cthenante

Magnification 50x 200x 100x
Step 10µm 10µm 4µm
Number of images 56 66 55
Eligible 9 2 16
Sharp sequence 41 - 49 50 - 51 30 - 45

Source: Elaborated by the author.

In order to use the proposed datasets for evaluation of new methods, it is necessary to take
into account that several images are totally blurred, and an image quality assessment algorithm
should yield a low metric number for such images. As the z position approaches the optimal
focal plane, the metric may start to produce better values. The images are named with the step of
the z-stack starting at 1, so that the eligible images are easily located. The metric should yield the
highest quality values are among the range of eligible images, depicted as “Sharp sequence” in
Table 1. When the axial position is not exceeds the limits of the sharp sequence, the metric values
should decay. The datasets are capable of assessing the monotonicity, accuracy and precision of
image quality metrics.
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6.3 Benchmark datasets

Benchmark datasets are fundamental in computer vision and image processing research
in order to track the performance, accuracy and efficiency of new methods and algorithms. The
image quality assessment was also evaluated against literature methods with the well-known
Computational and Subjective Image Quality database (CSIQ) image quality assessment database
(LARSON; CHANDLER, 2010) and the KonIQ database, the largest image quality assessment
database to date (Hosu et al., 2020).

The CSIQ database contains 30 original images of dimensions 512×512. Each image
is distorted in four to five different levels separately by JPEG and JPEG-2000 compression,
Gaussian blurring, global contrast decrements and additive pink Gaussian noise. The Gaussian
blur subset with 150 images was employed in the proposed analysis. The dataset also contains
5000 subjective rates done by 35 different observers, By means of a MOS index.

The KonIQ database was built in order to evaluate the performance of a deep learning
method for blind image quality assessment. It consists of 10073 images of dimensions 1024×
768 with different labels for brightness, contrast, colorfulness and sharpness. The labels were
generated from 1.2 million MOS rating of 1459 observers. One dissimilar feature of KonIQ
when compared to CSIQ is that the quality assessment should be done among different scenes
with different levels of degradation. Figure 16 shows two samples of the CSIQ database, and
Figure 17 presents both blurred and sharp samples from the KonIQ image.

Figure 16 – Samples from the CSIQ database: blurred image (a) and sharp image (b).

(a) (b)

Source: Larson and Chandler (2010).
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Figure 17 – Samples from the KonIQ database: blurred image (a) and sharp image (b).

(a) (b)

Source: Hosu et al. (2020).

6.4 NR-IQA in Bright-field Microscopy Images Using the
Fourier Transform and Kurtosis

The next step is to devise a quantitative representation of sharpness for each image in
each dataset. This measure allows for the selection of the eligible images through statistical
analysis and the posterior registration of the selected slices. We propose a new method for image
quality assessment based on a sampling process of the Fourier spectrum and posterior analysis of
the coefficients as a probability distribution using summary and descriptive statistics. This section
presents each stage of the method: pre-processing, Fourier spectrum sampling and statistical
analysis. Figure 18 shows a diagram of the proposed method.

Figure 18 – Pipeline of processing steps of the propose no-reference IQA method.

The DFT was chosen as the basis for the method after tests with the techniques in the
literature review, but it was also claimed within the SCG group that it is a simple and robust
way to describe image sharpness in terms of a frequency profile. Some tests were done with the
discrete wavelet transform, but the response was similar to the DFT. Similarly, after exploring
the mathematical properties of the Fourier transform and also the other mathematical functions
employed, i.e. the logarithm and the modulus of a complex number, the final feature vector was
proven to be a distribution and could be mapped onto a probability space. This discovery brought
the idea of statistics to the scope of this work, and by means of visualization techniques such as
2D and 3D plots, it was possible to notice the pattern of blurred and sharp images in the resulting
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distribution. The need of a statistical property capable of quantifying such pattern and allowing
the method to segregate the blurred and sharp images motivated the research for techniques that
deal with the shape of a distribution. The simplest tools were kurtosis, the interquartile range
and the z-score, which were empirically proven to be accurate in the proposed setup.

First, each image undergoes a grayscale conversion with the luminance method (PONTI;
NAZARÉ; THUMÉ, 2016) - a linear combination of the three channels of a RGB image, as
shown in the matrix equation given by

Iluminance = 0.299R+0.587G+0.114B, (6.1)

where Iluminance is the matrix that represents the grayscale converted image, R, G and B represent
the matrices of the red, green and blue channels, respectively.

The CLAHE algorithm is then applied to deliver a more uniform image to the Fourier
Transform. This is necessary as microscopy images are influenced by illumination conditions,
the focus adjustment itself and also physical properties of the transmitted or reflected light. Next,
the DFT is applied to all images and the resulting spectra are analyzed. The Fourier spectrum of a
two-dimensional signal such as an image is a matrix with complex coefficients and zeros on each
of its four corners and carries information about frequency bands of the image, characterized as
a distribution. Our approach requires a shift between the first and third quadrants, and also the
second and the fourth quadrants, to the center of the matrix. The unshifted and shifted Fourier
spectrum of an grayscale airplane test image are shown in Figures 19.(c) and 19.(d), respectively.

The frequency information may be retrieved from the shifted Fourier spectrum by means
of concentric circles drawn over it in the form of masks. Theoretically, the number of masks that
may be applied to the spectra is infinite, but the discrete nature of images renders a finite number
of masks. Let the matrix of DFT coefficients be graphically represented in Figure 19.(e) and
be mathematically denoted as a square of side L = max(m,n), k = L/2 be the maximum radius
value for circles within the square and C = (k,k) be the center of the infinite set of concentric
circles inscribed in the square. Circles with small radii comprise low-frequency information
whereas large radii values cover high-frequency coefficients.

Taking into account the pixel resolution of the input images, it makes sense to sample the
information, otherwise, the computational complexity and running times of the algorithm for one
image alone would be impractical. Moreover, it is also unrealistic to evaluate every area under
each concentric circle to retrieve the frequency content of an image; there is also no standard
discrete amount of frequency bands to be evaluated. Therefore, we drove our efforts to comprise
as much information about each frequency band as possible and explored the fact that the Fourier
spectrum of a real function such as an image is even, i.e. symmetric concerning its origin. Instead
of the pure complex coefficients, we represent the Fourier spectrum by the magnitude of its
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Figure 19 – Original image (a), luminance grayscale converted image (b), unshifted Fourier spectrum of
the grayscale image (c), shifted Fourier spectrum of the grayscale image (d) and frequency
bands as rings of radius {ri : i ∈ N*} drawn over the 2D spectrum (e).

Source: Elaborated by the author.

coefficients, given by

K(m,n) = loge

(
1+
√

[Re(ĝ(m,n))]2 +[Im(ĝ(m,n))]2
)
, (6.2)

where ĝ(m,n) are the complex Fourier coefficients of an image g(x,y). We propose to sample the
spectrum by means of radial lines as masks, i.e. white lines are drawn over a zero-valued matrix
with the same dimensions as the Fourier spectrum of the image, which are then element-wise
multiplied by the spectrum. The lines are created from the (xc,yc) center of the spectrum to
points in an approximate radial position, which is calculated by

P(x,y) = (xcr j cosa j,ycr j sina j) (6.3)

with the set of angles {a j} in the radian form, computed as

{
a j : a j =

jπ
180

}
j = {0,1,2, ...,360}. (6.4)

Equation 6.3 is a floating-point ordered pair, rounded to the nearest integer value in
order to represent a location in the spectrum. The antialiased lines are drawn with a Gaussian
filtering process. After all the lines have been generated, the mask is similar to what is shown in
Figure 20:
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Figure 20 – Final mask of antialised radial lines to sample the Fourier spectrum.

Source: Elaborated by the author.

The extraction of the region of interest from the spectrum with the mask of radial
lines results in arrays of complex coefficients that represent samples of the frequency profile
of the image. However, despite the antialiasing, the resulting arrays differ in length since the
original data is discrete. The vectors go through an element-wise average, which results in a
one-dimensional vector as a descriptor of the frequency spectrum, and before such average, we
find the smallest vector size among all of them and discard the remaining information in all of
them. For comparison purposes, a square image of side L yields a feature vector of size 1/2L.

Next, the sharpness information of the image is encoded into a low-dimensional and
concise representation that may undergo analysis with statistical tools and the mathematical
properties of the Fourier spectrum. The feature vectors from each image need to be transformed
into a model that is suitable for techniques such as Descriptive Statistics or Bayesian Inference,
and therefore must be mapped onto the probability space Ω = [0,1]. Hence, we apply an operator
T : `2(Z2)→ `2(Z2), written as

T (xi) =
xi

∑
n−1
j=0 x j

i = {0,1, ...,n−1}, (6.5)

where each xi is a value of the descriptor which will be mapped onto a probability. Note that each
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feature vector after the sampling process is a distribution in the scope of the Distribution Theory,
i.e. a continuous linear functional defined on a space of smooth (functions with continuous
derivatives up to some desired order over some domain (WEISSTEIN, 2020b)) and compact
supported (the functions yields zero outside of a closed and bounded set (ROWLAND; WEIS-
STEIN, 2020)) functions, with values in the range [0,∞). Therefore, it makes sense to apply
the operator that maps it to a probability. This proposition was proved in Appendix C, which
summarizes several definitions from Mathematical Analysis, Measure Theory and Distribution
Theory required for the proof. The shape of the frequency distribution represented by each
descriptor may vary according to the contents of the image, i.e. lines, circles, edges or complex
textures, but it possesses a common representation, as shown in Figure 21 for the “1600” image
in the CSIQ database. The black line represents a sharp image (without any degree of Gaussian
blur) and the blue line represents the blurriest sample of the “1600” subset.

Figure 21 – Common shape of the descriptors right after computation.

Source: Elaborated by the author.

Information embedded in the low-frequency components of each feature vector corre-
sponds to the Dirac delta distribution within the PSF of the microscope and should be discarded
since it is equal to all images and does not resemble blur information; the removal should be
done with caution so that the remaining information is enough to represent the blur profile of
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the image and allow the further selection by the image quality metric. An optimal threshold
should be calculated for “cropping” the data, i.e. only a subset of it will represent the sharpness
information. The threshold is chosen to maximize the range of a set of kurtosis values for each
feature vector.

Consequently, the data presented by Figure 21 provides an overview of the distribution
of frequencies, but it does not depict distinguishable differences between a sharp and a blurred
image. However, by maintaining the range of values, selecting a subset of both sharp and blurred
feature vectors (in this case, the dimensions of the original image are 512×512 and the feature
vectors are of length 592) which starts at the position zero and ends at 100, and finally plotting
both subsets, it is possible to notice a difference between the graphs. Figure 22 shows that the
blue line (the blurred image) contains larger values within the [0,20] interval in the x axis in
comparison to the black line (the sharp image), providing less “peakedness” to the distribution -
which translates itself as lower kurtosis values.

Figure 22 – Low-frequency profiles of a sharp (black line) and a blurry (blue line) image.

Source: Elaborated by the author.

The kurtosis array for every crop size is computed as follows. The crop size initializes as
zero and is used to compute the kurtosis of the entire set {x1,x2, ...,xn} of all descriptors. The
crop size is then incremented by 1, yielding the subset {x2,x3, ...,xn}. This process is done until
the kurtosis for all crop sizes of the feature vectors is computed. Algorithm 1 summarizes the
computation of kurtosis for all crop sizes:
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Algorithm 1 – Kurtosis computation
1: // Xc×n: dataset of n descriptors with size c ∈C, where
2: // C = {0,1, ...,size(descriptor)}
3:
4: // T (X): operator from equation 6.5 to map the
5: // descriptors onto probability distributions
6:
7: X ← T (X)
8: A← zeros(c,n)
9: for each crop size c in C do

10: for each descriptor i in {1,2, ...,n} do
11: A[crop][i]← kurtosis(X [i].subset(0,crop))
12: end for
13: end for
14: return A

Next, the optimal threshold computation is done with algorithm 2. It aims to produce a crop size
to maximize the peak to peak value, i.e. the difference between the maximum and minimum
values in the dataset. This allows low-frequency information to be discarded from the PSF
without loss of the blur.

Algorithm 2 – Find the optimal dataset variability threshold
1: // Ac×n: matrix with kurtosis values for all n descriptors that were computed at every crop
2: // size c ∈C, where
3: // C = {0,1, ...,size(descriptor)}
4:
5: threshold← 0
6: maximum← ∞

7: for each crop size c in C do
8: row←{Ac,1,Ac,2, ...,Ac,n}
9: a← max(row)

10: b← min(row)
11:
12: if a < 0 or b < 0 then
13: continue
14: end if
15:
16: range← a−b
17:
18: if range > maximum then
19: maximum← range
20: threshold← c
21: end if
22: end for
23: return threshold

The low-frequency is discarded in each feature vector up to the optimal threshold, and
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the logarithm of a final kurtosis value is computed for all of them, in order to enhance the
differences between values. In this work, such final kurtosis value of each feature vector of an
image corresponds to the amount of details, i.e. high-frequency content on it: the higher the
kurtosis value, the sharper the image is. Finally, an estimate of the subset of images that is
eligible for the fusion process is then obtained by the z-score transformation by choosing the
images that locate at one or more standard deviation units away from the mean.

6.5 Laplacian of Gaussian-based Multi-focus Bright-field
Microscopy Image Fusion

The NR-IQA method provided a sharpness measure for each image of the datasets and
such numerical representations were analyzed with the z-score; at this point, the estimate of
eligible images was prompted to the user and the real eligible ones were chosen. The obtained
subset is registered by means of the SIFT-based z-stack alignment tool of the TrakEM2 package.
The subsequent stage is to perform the fusion of images in the before-mentioned subset. We
propose a multi-focus bright-field microscopy image fusion algorithm with the Laplacian of
Gaussian edge detection filter and the energy of edges. Fig. 23 shows a diagram of the proposed
method.

Figure 23 – Diagram of the proposed multi-focus bright-field microscopy image fusion algorithm.

Source: Elaborated by the author.

The Laplacian of Gaussian is a standard method for feature extraction or multiscale
filtering. In contrast to some of the literature methods presented in Chapter 5, which include
several parameters that may affect the accuracy and even computational performance of the
method, the Laplacian of Gaussian only requires the standard deviation of the Gaussian function
as a parameter. However, some literature methods rely on it during their processing. It was
chosen, therefore, due to its simplicity in terms of parameters, usage and efficiency concerning
image fusion. The standard deviation of the Gaussian function was empirically set according to
the proposed bright-field microscopy image datasets. Furthermore, it might be claimed that the
differences in the edges of blurred and sharp images are not a relevant and efficient as a fusion
rule, as noisy signals result in false edges. The Gaussian filter in the Laplacian of Gaussian
operator is capable not only of smoothing the image but reducing the noise levels, which result
in a precise fusion rule.
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The grayscale version of the selected images is again used for fusion; since the images
were converted with the luminance method, the edges are preserved and therefore the edge detec-
tion may be successful. Other methods from the Luminance family, e.g. Luminance, Luminance´,
Luma and Decolorize, are also suitable (KANAN; COTTRELL, 2012).

The images then undergo the Laplacian of Gaussian filter - a spatial filtering algorithm
that extracts edges of a smoothed image. The Laplacian is a second-order derivative isotropic
linear operator, based on the Laplacian of a function, which defines an edge as the zero-crossing
of the second derivative of a function. First and foremost, the Laplacian of a function is denoted
by

∇
2g(x,y) =

∂ 2g(x,y)
∂x2 +

∂ 2g(x,y)
∂y2 , (6.6)

where g(x,y) is the input image. For the discrete case (which applies to the digital images), the
Laplacian operator is achieved by means of a convolution. The approximation of the second
derivatives in each dimension yields the following convolution kernel

0 1 0
1 −4 1
0 1 0

 .
Similarly, instead of extracting edges with the Laplacian filter only, the Laplacian of

Gaussian filter performs a Gaussian filtering process to remove noise and smooth the images
before retrieving the edges (MARR; HILDRETH, 1980). This approach applies to cases where
the quality and reliability of edges obtained by the Laplacian operator are sensitive to noise, and
also plays the role of distinguishing the blurry regions from the sharp ones in our approach; pixels
belonging to sharp regions will suffer a stronger smoothing effect in comparison to blurry pixels.
For our application, an image is convolved with a two-dimensional Gaussian filter, denoted by

S(x,y) = g(x,y)* 1√
2πσ

e−
x2+y2

σ2 , (6.7)

where S(x,y) is the smoothed version of the image, g(x,y) is the input image and σ is the
standard deviation of the Gaussian function. Then, the Laplacian is applied to the smoothed
image S. Both operators are linear and shift-invariant and therefore can be applied in any order,
but the Gaussian filter is commonly applied first if the application required separated filters. In
our case, the Laplacian of Gaussian operator can be defined as

LoG(x,y) =− 1
πσ4

[
1− (x2 + y2)

2σ2

]
e−

x2+y2

2σ2 . (6.8)
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The σ parameter is responsible for the smoothing magnitude. The convolution kernel is then a
combination of both Laplacian and Gaussian filters; higher σ values increase the effective kernel
size consequently the smoothing effect. The next step is to retrieve the energy for each region,
also based on the fact that blurry regions of an image present less high-frequency components
than sharp regions. This stems from the fact that sharp regions are prone to have more edges
than smoothed ones, hence a higher energy level. The higher the number the edges in an area of
the image, the better the focus on it. Therefore, pixels that correspond to edges are chosen to
form the fused image. Their spatial location is used to construct an RGB image by retrieving the
content of the three channels from those pixels and assigning them to the final image.
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CHAPTER

7
RESULTS

Experiments have been carried out for the two proposed methods: a) the NR-IQA and
b) multi-focus image fusion, both with bright-field microscopy. In this chapter, we report the
performance of our methods on the created datasets and described in Chapter 6. We also present
the quantitative evaluation metrics used. Both IQA and image fusion experiments have been
conducted on an Intel Core i7 CPU computer with 8 GB RAM, running Ubuntu Linux 18.04
64-bit.

According to Wang and Li (2011), evaluation metrics such as the Pearson Linear Correla-
tion Coefficient (PLCC), the Spearman’s Rank Correlation Coefficient (SRCC) and the Kendall’s
Rank Correlation Coefficient (KRCC) are quantitative techniques which are more appropriate to
our goals. Pursuant to Chen, Smithson and Popovich (2002), the PLCC (also named Pearson’s
r coefficient) is the most widely used correlation coefficient. It characterizes the degree of the
association between linearly related variables and is given by

rxy =
n∑xiyi−∑xi ∑yi√

n∑x2
i (∑xi)

2 n∑y2
i (∑yi)

2
, (7.1)

where rxy is the r correlation coefficient between the x and y variables, n is the number of
observations of both variables, xi is the value of x for the ith observation and yi is the value of
y for the ith observation. Still, according to Chen, Smithson and Popovich (2002), the KRCC
and SRCC are non-parametric tests that also measure the strength of dependence between two
variables. They may be denoted as

τ =
nc−nd

1
2n(n−1)

(7.2)

ρ = 1− 6∑d2
i

n(n2−1)
, (7.3)
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where τ and ρ denote the KRCC and SRCC measures, respectively. For both equations, n is the
number of observations of both variables. In Equation 7.2, nc and nd are the number of concordant
and discordant observations, i.e. ranked in the same and opposite ways, respectively. In addition,
di in Equation 7.3 denotes the difference between the ranks of corresponding variables.

Similarly, we propose the use of Entropy, Spatial Frequency (SF) and the Standard
Deviation (STD) for the evaluation of our image fusion method (NAIDU; RAOL, 2008). The
Entropy measures the information content of an image and is denoted as

He =−
L

∑
i=0

h(i) log2 h(i), (7.4)

where h(i) is the normalized histogram of the fused image and L is the number of bins of such
histogram. The higher the Entropy value, the more details the fused image has, i.e. the sharper it
is. The Spatial Frequency presents the overall activity level in the fused image by means of the
amount of information in the rows and columns, given by

RF =

√√√√ 1
MN

M

∑
x=1

N

∑
y=2

[I(x,y)− I(x,y−1)]2

CF =

√√√√ 1
MN

N

∑
y=1

M

∑
x=2

[I(x,y)− I(x−1,y)]2

SF =
√

RF2 +CF2, (7.5)

where I(x,y) is the fused image and M, N are the image width and height, respectively. Higher
values indicate better fusion quality since more activity means less homogeneous regions in our
case. Finally, the Standard Deviation measures the contrast in the fused image, and therefore
higher values yield higher contrast. It can be computed as

ST D =

√
L

∑
i=0

(i− ī)2h(i), ī =
L

∑
i=0

ih(i). (7.6)

with h(i) and L as defined in Equation 7.4.

7.1 Image Quality Assessment Evaluation
We compared our results with well-known NR-IQA approaches such as MLV (Bahrami;

Kot, 2014), S3 (Vu; Phan; Chandler, 2012), JNB (Ferzli; Karam, 2009), CPBD (NARVEKAR;
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KARAM, 2011), Marziliano et. al. (Marziliano et al., 2002) and Kanjar (DE; MASILAMANI,
2013). Table 2 shows the results of the PLCC, SRCC and KRCC metrics for the Callisia,
Tradescantia and Cthenante datasets, respectively. For all proposed datasets, the correlation
coefficients were computed against the Mean Structural Similarity Index between the resulting
image of our fusion method and the images.

Table 2 – Performance comparison of our proposed method and other NR-IQA metrics on the microscopy
images datasets, in terms of correlation coefficients between the MSSIM quality score and each
method.

Dataset Index MLV S3 JNB CPBD Marz. Kanjar Proposed

Callisia
PLCC 0.1462 0.0140 0.7336 0.8606 0.8663 0.8167 0.8155
SRCC 0.3099 0.3654 0.9623 0.9658 0.9671 0.9594 0.9364
KRCC 0.2130 0.2558 0.8584 0.8636 0.8701 0.8506 0.7961

Tradescantia
PLCC 0.1910 0.0466 0.2867 0.2565 0.2683 0.3400 0.4708
SRCC 0.0249 0.0184 0.6052 0.6023 0.5159 0.6544 0.5730
KRCC 0.0117 0.0107 0.5012 0.4825 0.3930 0.5798 0.4350

Cthenante
PLCC 0.0760 0.2346 0.9463 0.8428 0.9490 0.8968 0.9482
SRCC 0.1289 0.2450 0.9617 0.8821 0.9697 0.9650 0.9466
KRCC 0.0976 0.1717 0.8384 0.7212 0.8653 0.8545 0.8020

Mean
PLCC 0.1377 0.0984 0.6556 0.6533 0.6945 0.6845 0.7448
SRCC 0.1546 0.2096 0.8430 0.8168 0.8176 0.8596 0.8187
KRCC 0.1074 0.1461 0.7327 0.6891 0.7095 0.7617 0.6777

Source: Elaborated by the author.

The difference between our images and benchmark datasets such as LIVE (Sheikh; Sabir;
Bovik, 2006) and CSIQ (LARSON; CHANDLER, 2010) is that our bright-field microscopy
images are subjected to a non-homogeneous blur kernel and the spherical aberrations are more
prominent. Consequently, the labeling of blurred and sharp is subjective, since the notion of
quality might be different according to what the images will be used for. In the scope of this work,
the reason for assessing image quality is to predict eligible images and select the proper ones to
perform the fusion process. The SRCC and KRCC coefficients also evaluate the monotonicity,
i.e. the property of maintaining the order relation between the sets - it is only nondecreasing or
nonincreasing. In this work, monotonicity relates the values obtained by applying our metric on
the proposed datasets and the set of labels provided by the subject evaluation of them.

The Kanjar method was also implemented in Python, and the code is also organized in a
repository. The methods we used in our comparisons were implemented in MATLAB, C++ and
Python programming languages. Details are summarized in Table 3, including the repository
with the implementation of our method:
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Table 3 – Implementations of the literature IQA methods and ours.

Method Environment Implementation

MLV MATLAB <https://sites.google.com/site/khosrobahrami2010/publications>
S3 MATLAB <http://vision.eng.shizuoka.ac.jp/s3/>
JNB MATLAB <https://ivulab.asu.edu/software/jnbm/>
CPBD Python <https://pypi.org/project/cpbd/>
Marz. C++ <https://github.com/PeterWang1986/blur>
Kanjar Python <https://github.com/vaugusto92/kanjar-nr-iqa>
Proposed C++ <https://github.com/vaugusto92/fourier-light-microscopy-nr-ism>

7.2 Image Fusion
The proposed method was implemented in Python programming language with the

NumPy, Scipy, scikit-image and Pillow libraries. Following reproducible research ideals, the
code is organized and made available in a repository 1.

We compared our proposed method with well-known multi-focus image fusion ap-
proaches such as PCA (NAIDU; RAOL, 2008), GF (LI; KANG; HU, 2013), MSWG (ZHOU;
LI; WANG, 2014), and MSVD (NAIDU, 2011). The optimal value for the σ parameter was
empirically acquired and set to 0.7. Table 4 shows the results of the Entropy, MSSIM and STD
metrics for the Callisia, Tradescantia and Cthenante datasets with each fusion approach.

Table 4 – Objective performance evaluation of the proposed method (σ = 0.7) and other image fusion
approaches.

Dataset Index PCA GF MSWG MSVD Proposed

Callisia
Entropy 10.9928 11.3332 11.7052 11.4759 12.1904

SF 0.0253 0.0347 0.0441 0.0424 0.0836
STD 0.1966 0.1939 0.1949 0.1968 0.1987

Tradescantia
Entropy 8.4619 9.2162 9.2120 8.6751 9.3011

SF 0.0167 0.0249 0.0250 0.0219 0.0286
STD 0.0809 0.0826 0.0825 0.0811 0.0816

Cthenante
Entropy 6.7263 6.7577 3.6411 7.7962 4.3565

SF 0.0317 0.0473 0.0645 0.0482 0.0881
STD 0.0810 0.0760 0.0815 0.0827 0.1117

Source: Elaborated by the author.

Our image dataset differs from benchmarks such as the Lytro (NEJATI; SAMAVI;
SHIRANI, 2015). As seen in Chapter 3, the image formation is subject to anisotropic blur kernels
due to the optical properties of the lenses in bright-field microscopy. In the benchmark images, it
1 <https://github.com/vaugusto92/light-microscopy-image-fusion-prototype>

https://sites.google.com/site/khosrobahrami2010/publications
http://vision.eng.shizuoka.ac.jp/s3/
https://ivulab.asu.edu/software/jnbm/
https://pypi.org/project/cpbd/
https://github.com/PeterWang1986/blur
https://github.com/vaugusto92/kanjar-nr-iqa
https://github.com/vaugusto92/fourier-light-microscopy-nr-ism
https://github.com/vaugusto92/light-microscopy-image-fusion-prototype
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is possible to point out precisely the blurred and sharp regions, as there are usually two or three
images of each scene. Our datasets, on the other hand, do not allow this. Thus, the fusion results
for benchmark datasets reach optimal performance, and some of them even contain the reference
image for a better comparison. Finally, the fusion rule should be robust to noise and should have
a large variation with respect to the degree of blurring (HUANG; ZHONGLIANG, 2007). The
Gaussian smoothing procedure provides robustness to noise in our algorithm.

We also present the qualitative results, i.e. the fused images and some samples of each
dataset. With the results from our IQA method, we have selected the eligible slices in each
dataset and registered with the TrakEM2 alignment tool. The Callisia dataset has six slices which
present slight differences between the background of the leaf and the stomata. The images in
this dataset are the brightest among all images in our datasets. Two eligible slices were obtained
in the Tradescantia dataset due to its large magnification, where either background sections
or stomata are focused. Also, images in this dataset are not as bright as Callisia ones, as the
specimens present a strong purple color in their abaxial region. Finally, the Cthenante dataset
presents the strongest difference in focused regions among all datasets and also the darkest
images. The results of the fusion process of Callisia, Tradescantia and Cthennante are shown in
Figure 24, Figure 25 and Figure 26, respectively, while Figure 27 depicts samples of registered
images in each dataset.

Figure 24 – Fused Callisia image.

Source: Elaborated by the author.
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Figure 25 – Fused Tradescantia image.

Source: Elaborated by the author.

Figure 26 – Fused Cthenante image.

Source: Elaborated by the author.
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Figure 27 – Registered slices of our Callisia (a), Tradescantia (b) and Cthenante (c) datasets.

Source: Elaborated by the author.

Each of the images in Figure 27 represent the middle of the z-stack. For example,
Figure 27.(c) is blurred on the left and right parts and sharp in the middle section; this shows that
the leaf has a slope structure that promoted a clear division between blurred and sharp regions.
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CHAPTER

8
CONCLUSIONS

This work proposed a no-reference DFT-based image quality metric that produced reliable
results, which highly correlate with the labels obtained by subjective analysis. Additionally, a
multi-focus image fusion algorithm for bright-field microscopy z-stacks that explores the energy
of edges extracted with a Laplacian of Gaussian operator proved to be an efficient way to perform
image fusion. Both of our hypotheses that methods based on frequency domain information
and the Laplacian of Gaussian operator were confirmed experimentally in the performance
comparison with related methods.

Concerning our IQA method, the implementation is efficient in terms of computational
performance and it may be extended to other applications such as auto-focus systems. Future
work on this method comprises several possibilities. The improvement of the computational
performance of the method by refactoring the implementation and applying parallel programming
techniques and the integration of the software with hardware devices may be the basis for new
imaging solutions. The study and empirical evaluation of other methods to estimate the set
of eligible images rather than z-score, which includes more advanced statistical methods and
machine learning methods, may provide even better results.

The most obvious improvement is to implement it in C++ in order to improve computa-
tional performance since our Python implementation is a prototype. Next, we should study and
evaluate the availability of information in each channel of the RGB images, as it may suppress
the need of a grayscale conversion and also may yield better results. Additionally, different
smoothing functions and other detection algorithms should be evaluated, and those should also
be robust to noise and enhance the difference between blurred and sharp regions. Finally, the
research on the availability of different fusion rules rather than the energy of edges and the use
of frequency-domain convolution may lead to better results and faster computation, respectively.

The set of mathematical methods and techniques applied in this work are standards in
image processing. All of them have been extensively explored during the past few decades, and
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this work is another example which underpins the strength of such methods. However, there is
still a lot to be explored in terms of tuning parameters and extracting more from the theoretical
side of each technique. This approach is important, since it helps to find limitations and also to
build novel tools.

An interesting and important insight from this work is the use of a full-reference image
quality metric in order to evaluate a no-reference one. This evolves to a brand new area of study,
since there are many benchmark methods, e.g. the MSSIM itself, which can be applied in this
scenario. The evaluation of a blind metric may be more effective under a combination of several
non-blind metrics. The whole IQA area would benefit from a novel validation protocol based on
well-known methods.

Publications

∙ (CATANANTE; BRUNO; NETO, 2020) Victor Augusto Alves Catanante, Odemir Mar-
tinez Bruno, and João do Espírito Santo Batista Neto. “Frequency domain kurtosis-based
no-reference image quality assessment for bright-field microscopy images”. To be sub-
mitted.
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APPENDIX

A
FUNDAMENTALS OF OPTICS

This appendix provides information about optics and microscopy in order to aid the
bright-field microscopy and defocus blur comprehension. Plenty of image degradation is due to
the system acquisition process; in fact, defocus is a natural occurrence in optics, mainly caused
by adjustments of the optical system. The definition of the spectroscopy procedure consists on
the interaction between electromagnetic radiation and the matter (GAUGLITZ; VO-DINH, 2006).
This concept can be extended to microscopy, which deals with the range of the electromagnetic
spectrum of wavelength between 400 and 700 nanometers, i.e. visible light, to create visual
representations of the objects (BELL; MORRIS, 2009). Light microscopy is inherently related
to optics, and some concepts of the field are directly related to the blurring process; therefore, it
is meaningfully important to elucidate them.

A.1 Dual Nature of Light

The light was described in different ways according to different geniuses. Isaac Newton
(1642-1727) proposed that light had a corpuscular nature, due to the trajectory in which light
appeared to travel in a uniform medium in his experiments; Christiaan Huygens (1629-1695)
stated in his works that light was traveling in a “wave-like” way and apparently could explain
some optical principles such as the interference phenomena (FOWLES, 1989).

The corpuscular approach for explaining the behavior of light was accepted during the
17th and 18th centuries since Newton played a central role in science in that era. The development
of electricity and magnetism as solid fields of research and theoretical representations of natural
phenomena was happening concomitantly with optics. Michael Faraday (1791-1867) connected
magnetism and light for the first time with his studies on light polarization in magnetic field
immersed materials. Later, James Clerk Maxwell (1831-1879) established a complete relation
between optics and electromagnetism by defining the displacement current density - a relation that
involves the polarization of a medium, the intensity of electric fields and the electric permittivity
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of vacuum - and writing its differential equations (ZÍLIO, 2009).

Light as an electromagnetic wave is therefore composed of the two vectors and propagates
in some particular coordinate direction upon a metric space, e.g. the x coordinate on a three-
dimensional Euclidean space. Hence, it is possible to treat light as a wave or particle, according to
the application or needs. Light microscopy deals with light as a wave and its related phenomena
such as reflection, refraction, interference and diffraction, which will be presented on the
following subsections and are useful for a deeper understanding of this work. Posterior studies of
Max Planck (1858-1947), Albert Einstein (1879-1955) and Niels Bohr (1885-1962) (FOWLES,
1989) linked the prior discoveries with the quantum theory, and therefore differ from this
research’s scope. Maxwell enunciated that there were two different vectors which could cause a
state of disturbance in the space while dealing with electric charges; those consist of the electric
vector E and the magnetic induction vector H. Together, they construct the electromagnetic field
(BORN et al., 1999), as shown in Figure 28.

Figure 28 – Composition of the electromagnetic wave. The red and the blue curves represent the electric
(E) and induction (H) vectorial quantities, respectively.

Source: Elaborated by the author.

A.2 Light Wave Properties and Phenomena

The light waves can be represented by a ray, i.e. a single oriented line which shows the
direction of propagation; several waves that propagate in nearly the same direction can be named
as a beam (HALLIDAY; RESNICK; WALKER, 2013). Some relevant properties of waves are
explained here according to Tipler and Mosca (2007). The frequency ( f ) is the number of cycles
per unit of time, or the reciprocal of the time that a periodic wave takes to execute a complete
cycle of oscillatory motion T , given by f = T−1. The Amplitude is the maximum displacement
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from the equilibrium position, where the wave peak reaches its highest value. Finally, the Phase
is a point in time on the cycle of a wave propagation, quantified in degrees.

When rays or beams of light reach surfaces during its propagation, there are four promi-
nent phenomena to consider: reflection, refraction, interference and diffraction. The incident ray
of light suffers a split procedure when it reaches a frontier between two homogeneous media.
One of the resulting rays reflects within the initial medium and the other one propagates inside
the other medium; the first phenomenon is denominated reflection and the second, refraction

(BORN et al., 1999). The speed of light depends on the medium in which it propagates. The
refractive index is a number that quantifies the speed of light in a particular medium in relation
to the speed of light in vacuum, and can be described by

n =
c
v
, (A.1)

where c is the speed of light in vacuum and v is the speed of light in the medium. According to
Halliday, Resnick and Walker (2013), the reflection law states that the resulting ray propagates
within the incidence plane and that the angle of reflection θ

′
1 equals the θ1 angle of incidence;

comparably, the refraction law states the same about the incidence plane and relates the incidence
θ1 and refraction θ2 angles by Snell’s law, given by

n2 sinθ2 = n1 sinθ1, (A.2)

where n1 and n2 are the refractive indices of the media. This framework consists of an approxi-
mation and may be considered ideal for didactic purposes. The process that happens in the real
situations may involve non-homogeneous media, opaque or translucent media (which blocks
the propagation of light or randomly changes the direction of the rays, respectively), and those
concepts are relevant to the imaging procedures, e.g. microscopy. Figure 29 depicts the real-world
phenomenon and its ideal representation.

When two or more waves of similar or equal frequency superpose in space and form a
different intensity pattern, the interference of the waves occurred (TIPLER; MOSCA, 2008).
Mathematically, when interference is observed with light waves, it consists on a vector addition of
the electromagnetic fields (ZÍLIO, 2009). If the interfering waves are in phase, i.e. the difference
between the same positions within the wave cycles of the two waves is zero. This process is
called constructive, which yields a larger amplitude to the new wave. Similarly, if the interfering
waves are not in phase, then the process is named destructive and yield smaller or null amplitudes
to the new wave (TIPLER; MOSCA, 2007). Both types of interference are show in Figure 30.

The wave theory of light also contains another important property for the real processes:
the diffraction, a phenomenon that was discovered by Francesco Maria Grimaldi (1618-1663)
and consists of the distortion in a wavefront which focuses on obstacles such as apertures on an
object, spheres, disks, or anything with similar dimension to the wavelength of the focusing light
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Figure 29 – (a) Example of a beam of light that reflects and refracts when touching the frontier between
air and water. (b) Representation of the process with rays.

Source: Halliday, Resnick and Walker (2013).

Figure 30 – (a) Constructive interference and (b) destructive interference.

Source: Adapted from Tipler and Mosca (2007).

(ZÍLIO, 2009). The wavefront deviates and scatters after propagating through the obstacle and
transforms itself into circular or spherical waves; this is a relevant property that distinguishes a
wave from a particle, since the latter would either propagate without any change in its trajectory
or would be blocked by the obstacle (TIPLER; MOSCA, 2007). When a beam of light reaches an
opaque object, the waves suffer changes in their direction of propagation, which can be predicted
by the fact that all the points in each wavefront (points of identical phase on waves) generate
a new wave, as stated by Huygens (FOWLES, 1989). As described by the Huygens principle,
each point of the wavefront acts as a source and creates secondary waves which scatter in every
direction; each of the new wavefronts is generated by the interference of an infinite number of
sources of waves (ZÍLIO, 2009). Diffraction is a phenomenon that always happens as waves pass
through apertures, but its magnitude depends on the relative proportions between the aperture
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size and the wavelength: when the latter is large in comparison to the former, the diffraction
effects are large and, likewise, a relatively small wavelength yields smaller effects (TIPLER;
MOSCA, 2007). As stated by Zílio (2009), there are two common types of diffraction:

∙ Fresnel Diffraction: also named near-field diffraction, it occurs when a cylindrical wave-
front (the curvature cannot be neglected) passes through an obstacle and diffracts in the
near-field, i.e. short distances relative to the path of the diffracted waves’ propagation.
However, the observation distance is usually finite. It results in different sizes and shapes
for the diffraction patterns;

∙ Fraunhofer Diffraction: also named far-field diffraction, it occurs when planar waves (the
curvature of the wavefront may be neglected) pass through an obstacle in the far-field, i.e.
large distances relative to the path of the diffracted waves’ propagation. Practically, the
observation distance is infinite. It results in different sizes for observed aperture images.

A.3 Illumination Qualities
The propagating waves, rays or beams of light that illuminate the object in imaging

systems carry some attributes which depend on the source and the desired result. Figure 31
depicts some relevant qualities of light.

Figure 31 – Comparison between different qualities of an imaging systems’ illumination setup.

Source: Adapted from Murphy and Davidson (2012).

Pursuant to Murphy and Davidson (2012), the attributes in Figure 31 refer to color,
polarization, coherence and direction. Every ray in a monochromatic beam has the same wave-
length, i.e. the same color, and similarly a polychromatic beam consists of a mixture of rays with
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different wavelengths. The polarization relates to the vibration in the electric vector of light as an
electromagnetic wave which may occur in parallel planes (polarized light) or not (nonpolarized

light). The coherence is the relationship between the phase of each wave of a given wavelength:
if the phase is the same for all waves, as in a laser beam, the light is named coherent, otherwise it
is said that the illumination is noncoherent or incoherent, as in bright-field microscopes. Finally,
the waves may propagate in parallel trajectories, i.e. be collimated, or may diverge or converge
to some point.

A.4 Properties of the Spherical Lenses

As stated by Halliday, Resnick and Walker (2013), lenses are objects consisting of a
transparent material, with a certain refractive index, that are made of two spherical surfaces
on which light propagates and suffers refraction. They are used in optical systems due to their
capacity to create images as long as their refractive index is not equal to that of the medium. Yet,
in agreement with Halliday, Resnick and Walker (2013), some concepts related to lenses are
important in our context and will be shown below. Figure 32 illustrates an arbitrary spherical lens,
with principal elements from geometric optics that relate to lenses and its consequent imaging
properties.

Figure 32 – Arbitrary scheme of the optical properties of a spherical lens: radii of curvature (r1, r2),
centers of curvature (C1, C2), focal points (F1, F2) and focal length ( f ).

Source: Adapted from Halliday, Resnick and Walker (2013).

Some properties of the spherical lenses directly influence the image formation process
and, consequently, the resulting image quality. The numerical aperture (NA), as reported by
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Murphy and Davidson (2012), is a measurement in terms of angles that shows how much light
the lenses can capture, and it is given by

NA = nsinθ , (A.3)

where θ is the half angle of the cone of specimen light accepted by the objective lens and n is
the refractive index between the lens and the specimen. There are optical flaws in lenses that
hinder a proper image formation. Those are named aberrations (LAWLOR, 2019), and the most
relevant types in the scope of this project are the spherical aberrations. According to Murphy
and Davidson (2012), the spherical aberrations occur when there is a difference in the focal point
of incident parallel rays at central and peripheral locations of a spherical lens’ surface, which
yields a blurred image of either a point source of light or an extended object. It is possible to
correct a spherical aberration by changing the shape of the refracting surface, i.e. changing the
radius of curvature for the lenses in order to adjust the focal point to one particular distance
(SMITH; THOMSON, 1988). The illustration in Figure 33 represents the spherical aberration
for a point source of light, where it is possible to see the difference between incident rays in
the borders and in the inner regions of the lens. The resulting image is, in this case, a set of
concentric circles around a point.

Figure 33 – Arbitrary example of the spherical aberration.

Source: Tipler and Mosca (2008).
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APPENDIX

B
THEORETICAL BACKGROUND DETAILS

B.1 Convolution and Image Transforms
As seen in Chapters 2 and 3, the processes of image formation and acquisition concerning

linear systems are subject to some operations, i.e. the convolution, the Fourier Transform (FT)
and its continuous and discrete versions, that modify the original representation of the scene.
The linear system theory provides mathematical tools to explore these operations and others,
such as sampling, filtering, and enhancement; it describes the behavior of electrical circuits and
optical systems (CASTLEMAN, 1996).

According to Bracewell and Bracewell (2000), the convolution of two arbitrary functions
s and t that results in another function r is, with notation adjustments, defined by the integral

r(x) =
∫

∞

−∞

s(u)t(x−u)du, (B.1)

where x is the one-dimensional coordinate and u is a shifting parameter. In other words, this
procedure is compared to moving a 180 degree-rotated filter mask over the function values and
computing the sum of products at each location (GONZALEZ; WOODS, 2018). Hence, the
shifting parameter represents the slide of the filter mask over the values. As seen in Chapter 3,
convolution is responsible for the image formation and acquisition processes, but it also covers
several other applications, e.g. smoothing, sharpening and reducing noise in images. Similarly to
the one-dimensional case and pursuant to Castleman (1996), the two-dimensional convolution is
denoted by

r(x,y) =
∫

∞

−∞

∫
∞

−∞

s(u,v)t(x−u,y− v)dudv, (B.2)

where u and v are shifting parameters, and * denotes the convolution. The spatial domain is
the subset of the real plane where functions like r, s and t are spanned, and (x,y) as points
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within such subset are named spatial variables; consequently, any mathematical operation
that employs pixels from this subset is named a spatial domain technique. As for the digital
image processing applications, which deal with images as matrices of pixels, the discrete two-
dimensional convolution for an image f (x,y) and a function h(x,y) is given by

g(x,y) = h(x,y)* f (x,y) =
a

∑
m=−a

b

∑
n=−b

f (m,n)h(x−m,y−n), (B.3)

where a = (m− 1)/2 and b = (n− 1)/2, given that the function h(x,y) is considered to be a
two-dimensional filter of size m×n (GONZALEZ; WOODS, 2018).

Convolution, together with several other operations employed in this work, operate
directly on the spatial domain by modifying pixel values based on mathematical constraints.
Some of those operations may have issues that hinder the operation, e.g. the computation time
of a convolution process should be finite, otherwise, its use is impractical; this is one of the
reasons why image transforms are widely used. They encompass any group of mathematical
operations that transfers the input signal or image from its domain to the transform domain
(GONZALEZ; WOODS, 2009). Let s be an arbitrary two-variable function, t f and ti be the
forward and inverse transformation kernels, respectively. The general discrete form of the forward
and inverse two-dimensional transforms is denoted by

R(u,v) =
M−1

∑
x=0

N−1

∑
y=0

s(x,y)t f (x,y,u,v) s(x,y) =
M−1

∑
x=0

N−1

∑
y=0

R(u,v)ti(x,y,u,v), (B.4)

where M and N are the dimensions of the image, x and y are coordinates of the image,
u = {0,1,2, ...,M−1} and v = {0,1,2, ...,N−1} are called transform variables. The t f function
is responsible for the forward domain change and the ti transfers the image back to the spatial
domain. Switching from spatial to frequency domain, for example, allows different operations
to be executed that otherwise could not be performed in the spatial domain. The convolution
operation, for instance, turns itself into a simple matrix multiplication task on the Fourier Trans-
form domain (which will be detailed in the following sections) and that solves the performance
constraint.

B.2 Image Enhancement

Image enhancement is the process of manipulating an image in order to provide a result-
ing representation that is more suitable for a particular problem, e.g. an enhancement method
for medical images may not be efficient for satellite images (GONZALEZ; WOODS, 2018).
In microscopy, image enhancement is desirable due to the limited capacity of optical imaging
devices and the drawbacks posed by each microscopy technique, e.g. acquisition with different
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illumination settings, focal planes, time intervals or spectral channels. Therefore, enhancement
algorithms for microscopy should cover all types of information (WU; MERCHANT; CASTLE-
MAN, 2008). According to WU, MERCHANT and CASTLEMAN (2008), image enhancement
techniques are divided into spatial domain, Fourier transform and wavelet transform methods.
They will be described in the following paragraphs.

The spatial domain methods are transforms that work directly on pixels of the image
(GONZALEZ; WOODS, 2018). Some examples are contrast stretching (redistribution of image
gray levels to a wider range), thresholding (image binarization given a preset gray level),
histogram equalization, and spatial filtering. Particularly, histogram equalization and spatial
filtering play an important role in this work and therefore will be explored further.

Fourier transform domain methods operate with images as a distribution of frequencies
since some features are better described by it. Noise, for example, may be suppressed in a
sharpening process or reduced by amplifying mid-frequency components and attenuating high-
frequency ones. The Wiener Filtering process is a popular example of a frequency domain
enhancement method that recovers a noisy signal or image based on estimations of spectral
properties from the original image. Other examples of Fourier domain enhancement are band-pass
filters and least-squares deconvolution applications.

Finally, there are methods based on the Wavelet Transform, i.e. a mathematical frame-
work that decomposes images or signals into frequency components in different scales. Some
operations such as thresholding may be applied to wavelet coefficients. However, the output of
the wavelet transform is not always the same; it depends on the chosen wavelet function and
consequently should be properly set in order to extract the desired image features.

The image histogram is one of the simplest and most useful tools in image processing
and consists of a function that summarizes the gray level content of an image in terms of a
frequency distribution (CASTLEMAN, 1996). The histogram equalization consists of a non-
linear monotonic mapping to provide an approximation of a uniform distribution to the output
image’s histogram (GONZALEZ; WOODS, 2018). The output histogram is a normalization of
the cumulative histogram of the image, given by

histequalized(r) =
L−1
MN

histcumulative(r), (B.5)

where histequalized(r) and histcumulative(r) are the equalized and cumulative histograms relative to
a range L of intensities after the image quantization with r values. M×N is the image resolution.
Since it stems from a sum of probabilities and no new gray intensity levels should be created, the
process generates fractional values that are mapped onto integers.

Spatial filtering consists of the convolution of an image with a predefined kernel operator
(GONZALEZ; WOODS, 2018). The continuous form may be represented as a convolution over
all values of a defined region of the image and the discrete form consists of sliding a weight
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mask over the image (WU; MERCHANT; CASTLEMAN, 2008). Figure 34 presents an arbitrary
schema of a simple linear spatial filtering procedure:

Figure 34 – Arbitrary example of linear spatial filtering of an image (a) with a 3×3 filter mask (b), which
results in filtered sections (c).

Source: Adapted from Gonzalez and Woods (2018).

Examples of discrete spatial filtering in digital image processing are smoothing filters,
order-statistic nonlinear filters and sharpening filters (GONZALEZ; WOODS, 2018). Spatial
smoothing filters are applied to remove details, edges and lines from an image to reduce noise.
The order-statistic nonlinear filters are based on ordering pixels of the image under the filter
area and replacing the pixel value in the center of the area with the response from ordering; one
example is the median filter, which replaces the center pixel with the median of pixels in its
neighborhood. Median filters yield significant noise reduction effects if the nature of the noise
is random. Finally, the sharpening filters are built to highlight transitions in intensity by spatial
differentiation and are used for enhancing edges.

B.3 Image Registration

When images belonging to the same scene are acquired in different conditions such as
distinct focus configurations, sensors, or even at different times, they should be geometrically
aligned according to a reference image. The process of overlaying two or more images with
different acquisition settings is named image registration and plays an important role as a pre-
processing step for image fusion, change detection and multichannel image restoration (ZITOVA;
FLUSSER, 2003). According to Gonzalez and Woods (2018), magnetic resonance imaging and
positron emission tomography systems, for example, are two different medical image modalities
that may require images to be registered. Images which were taken in different times such as
satellite images also need to be registered.
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The image registration methods consist of the following steps, as reported by Zitova and
Flusser (2003) and Gonzalez and Woods (2018):

∙ Feature detection: manually or automatically detect distinctive objects, e.g. edges, contours,
corners and represent those as control points, i.e. points with known locations in the
reference and input images;

∙ Feature matching: a relationship between the detected features in each image is established
using feature descriptors;

∙ Transform model estimation: parameter estimation for mapping functions that align the
input images with the reference image, either by establishing feature correspondence or
performing an optimization procedure;

∙ Image resampling and transformation: the image is resampled with interpolation tech-
niques.

Image registration is, in practice, a mapping between two or more images by means
of a spatial and an intensity transformation (BROWN, 1992). Some prominent examples of
registration methods are the principal axes, multiresolution, optimization-based, boundary,
model-based and adaptive methods (GOSHTASBY, 2012). The spatial transformations play an
important role in all image registration techniques, and the most common examples are rigid,
affine, projective, perspective and global polynomial (BROWN, 1992). Also pursuant to Brown
(1992), each of such transformations may be described as:

∙ Rigid: accounts for object or sensor movement in which objects in the images retain their
relative shape and size. Example: rigid-body transformation which combines rotation,
translation and scale changes;

∙ Affine: handle more complicated distortions and preserve mathematical properties. Exam-
ple: shear transformation;

∙ Projective and Perspective: the former deals with distortions due to projection of the
objects at varying distances to the sensor onto the image plane, and the latter demands
prior knowledge about the locations of the objects in the scene relative to the sensor;

∙ Polynomial: cover the broadest range of distortions, as long as they are approximately
homogeneous in the image.

B.4 Image Fusion
Image fusion is a process that merges several images, possibly acquired in diverse

conditions or with different cameras, into one image with higher quality, more details and
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consequently more useful for humans and computer tasks (MITCHELL, 2010). Examples of
image fusion applications are noise reduction, edge enhancement, and super-resolution. One
traditional use of image fusion occurs in medical imaging fields; the quality of information about
illnesses, cells, clinical analysis and several other medical tasks (including the computer-assisted
ones) have found profitable results from the image fusion techniques and led themselves to
better and faster decisions when it comes to human beings (JAMES; DASARATHY, 2014).
There are also relevant applications in remote sensing multispectral images, segmentation of
regions in different color spaces, biometry: the pan-sharpening process is the generation of a
high-resolution multispectral image from low to high-resolution ones, K-Means segmentation
and fusion of pixels in the RGB and the Iris Recognition biometric process with video frames
are examples of such tasks, respectively (MITCHELL, 2010). Also according to Mitchell (2010),
the general framework for the image fusion procedure consists of four stages: Multiple Input

Images, Common Representational Format, Fusion and Display. The multiple input images stage
is simply the acquisition of the images to be merged. There are several approaches to this: the
dataset may be captured from different sensors, under distinct light conditions or angles, with
different magnifications, under several focus settings, and with temporal measurements, if the
scene changes through time. Figure 35 depicts an arbitrary example of the four stages.

Figure 35 – Image fusion general framework. (a) Multiple Input Images, (b) Common Representational
Format, (c) Fusion and (d) Display.

Source: Elaborated by the author.

The four arbitrary images in Figure 35.(a) represent different images of the same scene,
taken at different resolutions, rotation angles, and shapes. In Figure 35.(b), the images are all
reshaped, converted to common color space and ready to undergo the processing algorithm which
will transform them into feature vectors. Figure 35.(c) represents the image fusion by means of
an arbitrary fusion rule. The resulting image is depicted in Figure 35.(d).

If the acquired dataset images do not share the same features such as dimension, rotation
angle, and resolution, then the images should be pre-processed in order to arrive at a common
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state. This configures the common representational format step, which generates a new and
temporary dataset with the same properties, e.g. color space, dimensions, and noise level. The
fusion stage employs a decision method to dictate which regions, objects, colors or details will
compose the final image; some methods rely on the wavelet transform, for example. Finally, the
display stage provides a view of the resulting image, which can be used directly for any further
task or even be the input for other image processing operations.

B.5 Image Quality Assessment

Image Quality Assessment (IQA) is the evaluation of image quality as perceived by an
average human observer, i.e. how close an image is to a given original or reference image. It is
also related to the accuracy of the image acquisition process for an imaging system (BOVIK,
2009). It is known that images are frequently used in health and life sciences, public security
systems, remote sensing, and several other fields; hence, there are computational applications
that offer some useful service employing image processing. As a result, assessing image quality
poses as an important task among those applications for which several techniques are being
developed, evolved and deployed.

As stated by Zhou Wang et al. (2004), there are three classes of objective image quality
metrics that relate to the existence of a no-distortion image (or with a negligible amount of it) for
comparison purposes. The Full-Reference Image Quality Assessment (FR-IQA) methods assume
that the reference image is available, while Reduced-Reference Image Quality Assessment
(RR-IQA) methods employ a representation of the reference image, such as a set of extracted
features. Finally, the No-Reference Image Quality Assessment (NR-IQA) methods, also known
as “blind”, are those which do not employ a reference image. Figure 36 denotes an example of a
full-reference method, the Mean Structural Similarity Measure (MSSIM) method and its output
for an image with different types of degradation:

According to Tang et al. (2019), the IQA methods are distributed between the subjective
assessment and objective assessment categories. The former is based on a well-defined test
environment for random observers to label images and provide the final Mean Opinion Scores
(MOS), while the latter is based on the use of strategies such as statistical modeling, machine
learning, spatial or spectral image features and so on. It is evident that subjective IQA is
demanding; consequently, objective methods are preferred to conduct IQA.

IQA methods are also present within microscopy and its close interaction with image
processing. The image acquisition in microscopy techniques may involve lasers, transmitted
or reflected light, measurements of atomic force responses, the fluorescence of chemical com-
pounds and several other means. Each technique has an inherent kind of degradation that affects
the acquired images or spectra, e.g. the Raman confocal microspectroscopy suffers from the
interference of cosmic rays, which yields unexpected peaks in the spectrum.
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Figure 36 – Example of the MSSIM method output: Original image (a), contrast-stretched image (b),
mean-shifted image (c), JPEG compressed image (d), blurred image (e) and salt-pepper
impulsive noisy image (f).

Source: Zhou Wang et al. (2004).

B.6 Statistics

Statistics is the science of planning studies and experiments, obtaining, organizing,
summarizing, presenting, analyzing, and interpreting data and finally drawing conclusions.
Descriptive statistics is an important branch that comprises a set of methods which aim to
describe relevant characteristics in data (TRIOLA, 2017). The descriptive statistics methods
either employ graphical elements such as boxplots, histograms, bar graphs and scatter plots
to analyze data or yield numerical summary measures such as means, standard deviations,
correlation coefficients and other related indices (DEVORE, 2011). The methods that compose a
descriptive statistical approach for data analysis are simple yet powerful tools.

The concepts of population, sample and variable are elementary: a population is a
well-defined collection of objects that might be included in the analysis, a sample is a subset
of a population and a variable is a feature of the objects which may change from one object to
another (DEVORE, 2011). Moreover, a frequency distribution is a tool that presents how the
data is partitioned among several categories by listing each category and its frequency of data
values; a relative frequency distribution is a frequency distribution in which each frequency is
represented by a proportion, usually as percentage (TRIOLA, 2017). According to Mendenhall
and Sincich (2016), the measures of central tendency provides several ways to locate the center
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of the relative frequency distribution, and the three most common are the arithmetic mean, i.e.
the average of the measurements, the median, i.e. the middle number when the measurements
are ordered in ascending or descending order and the mode, i.e. the value that occurs with the
greatest frequency. Mathematically, the arithmetic mean is given by

x̄ =
1
n

n

∑
i=1

xi =
x1 + x2 + · · ·+ xn

n
, (B.6)

where n is the sample size and xi represents the i-th observation of the variable x (ZWILLINGER;
KOKOSKA, 1999).

The measures of variation provide a description of how the values spread along the
distribution. Commonly used measures are the range, the variance, and the standard deviation
(MENDENHALL; SINCICH, 2016). The range is simply the difference between the largest and
the smallest value within the data, which may precisely point out its variability, since it does
not comprise the middle values among the distribution (DEVORE, 2011). The variance and the
standard deviation are closely related, as the former measures variability based on the squared
deviations about the mean and the latter is the positive square root of the variance, as

σ
2 =

1
n−1

n

∑
i=1

(xi− x̄)2
σ =
√

σ2 (B.7)

where σ2 and σ are respectively the variance and the standard deviation, xi is the i-th observation
of the variable x, x̄ is the mean, all concerning a sample or the population (ZWILLINGER;
KOKOSKA, 1999).

The measures of the relative standing of an observation describe its location among other
values in the distribution, and two examples of these measures are percentiles and z-scores;
also, an observation located outside the range of the distribution is an outlier (MENDENHALL;
SINCICH, 2016). Percentiles are values that split the data into 100 parts in a sorted dataset, so
that the i-th percentile stands for the i(n+1)/100 observation, e.g. the 25-th percentile comprises
25% of the data; the z-score, or standard score, is given by

z =
xi− x̄

σ
, (B.8)

where xi is the i-th observation of the variable x, x̄ is the mean and σ is the standard deviation of
the population or the sample (ZWILLINGER; KOKOSKA, 1999).

The Interquartile Range (IQR) is the length of the interval that contains the middle half of
the distribution (DEGROOT; SCHERVISH, 2012). Mathematically, it is the difference between
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the third (Q3) and the first (Q1) quartiles, i.e. the 75th percentile 25th percentile, respectively
(DEVORE, 2011). The IQR is described by

IQR = Q3−Q1. (B.9)

Probability is a common and natural concept among human life, used in expressions such
as “It probably will be cold tonight”; however, there is no common formal definition accepted
among statisticians and related researchers (DEGROOT; SCHERVISH, 2012). The study of
randomness, variability and uncertainty in populations is done by analyzing probabilities, i.e.
numerical descriptions of how likely an event is to occur (DEVORE, 2011). Some basic concepts
that support the probability theory are described also to the light of Devore (2011), as follows:

∙ Experiment: any activity or process whose outcome is subject to uncertainty;

∙ Sample Space: the sample space of an experiment is the set of all possible outcomes for it;

∙ Event: any collection or subset of outcomes of a sample space;

∙ Random Variable: any rule that associates a number with each outcome in a sample space
of some experiment; mathematically, it is a function with the sample space as its domain
and the real numbers as its range;

∙ Discrete Random Variable: a random variable with a finite set or a countable infinite
sequence of possible values;

∙ Continuous Random Variable: a random variable that yields zero as the probability for
every possible outcome or its set of possible values are in a single interval of the real line
or all numbers in a disjoint union of intervals.

From these concepts, it is possible to define a distribution in the scope of the probability
theory. The probability distribution is a collection of all probabilities computed from a discrete
or continuous random variable with the set of real numbers; a discrete probability distribution
is represented by the probability function itself, while a continuous probability distribution is
represented by a probability density function (p.d.f) (MENDENHALL; SINCICH, 2016).

The kurtosis is one of the probability distribution shape statistics, which measures the
extent of the peak in a distribution, i.e. its “peakedness”; smaller absolute values indicate that the
distribution tends to be uniform (ZWILLINGER; KOKOSKA, 1999). First of all, the concepts
of expectation and moments should be described. The expectation of a random variable (and
consequently, of a distribution) is a value that summarizes its nature and is given by

E(X) =
∫

∞

−∞

xp(x)dx E(X) = ∑
x

xp(x), (B.10)
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where x is each possible outcome of the random variable X , p(x) is the probability density
function for a continuous random variable (left) and the probability function for a discrete
random variable (right) (DEGROOT; SCHERVISH, 2012). Still according to DeGroot and
Schervish (2012), for a random variable X and every positive k ∈ R, the expectation E(Xk) is
called the k-th moment of X . The r-th moment may be described, according to Zwillinger and
Kokoska (1999), as

mr =
1
n

k

∑
i=1

pi(xi− x̄)r (B.11)

for every xi in the possible outcomes of X . Thus, kurtosis may be defined as the ratio of the
fourth moment (Equation B.11 with r = 4) by the square of the variance (also Equation B.11
with r = 2), denoted by

g2 =
m4

(m2)2 −3 (B.12)

The −3 constant is inherited from Fischer’s approach, where the kurtosis of a normal
distribution is zero.
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APPENDIX

C
DEFINITIONS AND PROOFS

This appendix presents the mathematical description of how the feature vectors are built
and a proof of the fact that the algorithm yields a probability distribution as the final structure,
which allows the use of statistical analysis as the basis of our quality metric. Along with the
proof, several definitions and auxiliary theorems that are necessary to the understanding of the
proof are described.

Definition 1. (Algebra) (FOLLAND, 2013)

Let X be a nonempty set. A field or an algebra of sets on X is a nonempty collection 𝒜
of subsets of X that is closed under finite unions and complements, as described as follows:

(i) if {E j}n
j=1 ∈ 𝒜, then

⋃n
j=1 E j ∈ 𝒜;

(ii) if E ∈ 𝒜, then Ec ∈ 𝒜.

Definition 2. (σ -algebra) (FOLLAND, 2013)

A σ -field or σ -algebraℳ is an algebra that is closed under countable unions.

Definition 3. (Measure) (FOLLAND, 2013)

Let X be a set equipped with a σ -algebraℳ. A measure onℳ is a function µ :ℳ→
[0,+∞], such that

(i) µ( /0) = 0.

(ii) if {E j}∞
j=1 is a sequence of disjoint sets inℳ, then

µ

(
∞⋃

j=1

E j

)
=

∞

∑
j=1

µ(E j).
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From (ii), if E j = /0 for j > n, if {E1,E2, ...,En} are disjoint sets inℳ, then µ

(⋃n
j=1 E j

)
=

∑
n
j=1 µ(E j).

Definition 4. (Dirac Measure) (ÇINLAR, 2011)

Let (X ,ℳ) be a measurable space and let x be a fixed point of X . For each subset E in
ℳ, put

δx(E) =

{
1, if x ∈ E

0, if x /∈ E
.

Then, δx is a measure on (X ,ℳ) and is called the Dirac measure sitting at x.

Definition 5. (Discrete Measure) (ÇINLAR, 2011)

Let (X ,ℳ,µ) be a measurable space. Let D be a countable subset of X . For each
arbitrarily chosen x ∈ D, let m(x)> 0 . For E ∈ℳ, define

µE = ∑
x∈D

m(x)δx(E).

Then, µ is called a discrete measure on (X ,ℳ).

Definition 6. (Metric and Metric Space) (FOLLAND, 2013)

Let X be a nonempty set. A metric on X is a function ρ : X×X → [0,∞) such that

(i) ρ(x,y) = 0⇔ x = y;

(ii) ρ(x,y) = ρ(y,x) for all x,y ∈ X ;

(iii) ρ(x,z)≤ ρ(x,y)+ρ(y,z) for all x,y,z ∈ X .

A set equipped with a metric is called a metric space.

Definition 7. (Open and Closed Ball) (FOLLAND, 2013)

Let (X ,ρ) be a metric space. If x ∈ X and r > 0, the open ball of radius r about x is

B(r;x) = {y ∈ X : ρ(x,y)< r}.

In other words, a ball of radius r is the collection of points of distance less than (which makes
it open) or equal to (which makes it closed) r from a fixed point x in a metric space (CROFT;
FALCONER; GUY, 2012).
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Definition 8. (Topology and Topological Space) (ROYDEN, 1988)

Let X be a nonempty set. A topology on X is a family of subsets τ ⊂𝒫(X), satisfying

(i) X ∈ τ and /0 ∈ τ .

(ii) if O1,O2 ∈ τ imply O1∩O2 ∈ τ (τ is closed under finite intersections).

(iii) if (Oi)i∈I ∈ τ , then ∪i∈IOi ∈ τ (τ is closed under arbitrary unions).

A topological space (X ,τ) is a nonempty set together with a topology τ on it. The elements of
τ are called open sets of X .

Definition 9. (Topological Vector Space) (FOLLAND, 2013)

A topological vector space is a vector space V over K = (R or C) which is endowed
with a topology such that the maps (x,y)→ x+ y and (λ ,x)→ λx are continuous from V×V
and K×V to V.

Definition 10. (Locally Convex Topological Vector Space) (FOLLAND, 2013)

A topological vector space is called locally convex if there is a base for the topology
consisting of convex sets (that is, sets A such that if x,y ∈ A then tx+(1− t)y ∈ A for 0 < t < 1).
Most topological vector spaces that arise in practice are locally convex.

Definition 11. (Inductive Limit Topology) (GHEONDEA, 2016)

The inductive limit topology of a topological vector space is the strongest locally convex
topology on V that makes the linear maps on continuous.

Definition 12. (Generated σ -algebra) (FOLLAND, 2013)

Let X be an nonempty set. If ℰ is any subset of 𝒫(X), there is an unique smallest
σ -algebraℳ(ℰ) containing ℰ , namely, the intersection of all σ -algebras containing ℰ . Then,
ℳ(ℰ) is called the σ -algebra generated by ℰ .

Definition 13. (Borel σ -algebra) (FOLLAND, 2013)

If X is a topological space, the σ -algebra generated by the family of open sets in X (or,
equivalently, by the family of closed sets in X) is called the Borel σ -algebra on X and is denoted
by ℬX .
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Definition 14. (Closure) (ROYDEN, 1988)

For a set E of real numbers, a real number x is called a point of closure of E provided
every open interval that contains x also contains a point in E. The collection of points of closure
of E is called the closure of E and denoted by Ē.

Definition 15. (Bounded Set, Totally Bounded Set, Cover and Subcover) (FOLLAND, 2013)

Let the minimal upper bound of a set A ∈ R be called the supremum and be denoted by
sup(A).

Let (X ,ρ) be a metric space. We also define the diameter of E ⊂ X as

diam(E) = {supρ(x,y) : x,y ∈ E} .

Then E is called bounded if diam(E)< ∞.

If E ⊂ X and Vα α∈A is a family of sets such that E ⊂
⋃

α∈AVα , {Vα∈A} is called a cover
of E, and E is said to be covered by the Vα ’s. A subcover of E is a subset of {Vα}α∈A that still
covers E.

Finally, E is called totally bounded if, for every ε > 0, E can be covered by finitely
many balls of radius ε .

Definition 16. (Sequence) (FOLLAND, 2013)

A sequence in a set X is a mapping from N into X .

Definition 17. (Cauchy Sequence) (FOLLAND, 2013)

A sequence {xn} in a metric space (X ,ρ) is called Cauchy if ρ(xn,xm)→ 0 as n,m→∞.

Definition 18. (Complete Subset) (FOLLAND, 2013)

Let (X ,ρ) be a metric space. A subset E of X is called complete if every Cauchy
sequence in E converges and its limit is in E.

Theorem 1 (FOLLAND, 2013). If E is a subset of the metric space (X ,ρ), the following are
equivalent:

(i) The subset E is complete and totally bounded;
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(ii) (Bolzano-Weierstrass Property) Every sequence in E has a subsequence that converges
to a point of E;

(iii) (The Heine-Borel Property) If {Vα}α∈A is a cover of E by open sets, there is a finite set
F ⊂ A such that {Vα}α∈F covers E.

Definition 19. (Compact Set) (FOLLAND, 2013)

A compact set is a set E which possesses the properties from Theorem 1.

Definition 20. (Support and Compact Support) (FOLLAND, 2013)

Let (X ,τ) be a topological space and C(X) be the space of continuous functions. If a
function ϕ ∈C(X), then the support supp(ϕ) of the function is the smallest closed set outside
of which ϕ vanishes, i.e. the closure of {x : ϕ(x) ̸= 0}. If supp(ϕ) is compact, we say that r is
compact supported and we define

Cc(X) = {ϕ ∈C(X) : supp(ϕ) is compact}

as the set of all continuous functions with compact support.

Definition 21. (Lp space) (FOLLAND, 2013)

Let (X ,ℳ,µ) be a measure space. If ϕ is a measurable function on X and 0 < p < ∞,
we define

‖ϕ‖p =

[∫
|ϕ|pdµ

]1/p

(allowing ‖ϕ‖p = ∞), and we define

Lp(X ,ℳ,µ) =
{

ϕ : X → C : ϕ is measurable and ‖ϕ‖p < ∞

}
.

We abbreviate Lp(X ,ℳ,µ) by Lp(µ), Lp(X) or simply Lp. In other words, the Lp space is a
function space where a measurable function ϕ is p-integrable.

Definition 22. (L2 space) (FOLLAND, 2013)

The L2(X) is the space of square integrable functions ϕ : X → R on a measurable space
(X ,ℳ,µ), i.e.
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∫
∞

−∞

|ϕ(x)|2dµ < ∞.

Definition 23. (Distribution and 𝒟′(Rn) space) (FOLLAND, 2013)

Let U ⊂Rn be an open set and C∞
c (U) =

⋂
∞
1 Ck

c(U). A distribution on U is a continuous
linear functional ψ : C∞

c (U)→ C, when C∞
c (U) is provided with the inductive limit topology.

The space of all distributions on U is denoted by 𝒟′(U) and forms the topological dual space
𝒟(U) =C∞

c (U). We set 𝒟′ =𝒟′(Rn) and we write the functional as ⟨T,v⟩ instead of T (v).

Theorem 2 (FOLLAND, 2013). Let Ek(x) = e2πikx. Then {Ek : k ∈ Zn} is an orthonormal
basis of L2(Tn).

Proof. Verification of orthonormality is an easy exercise in calculus; by Fubini’s theorem it boils
down to the fact that

∫ 1
0 e2πiktdt equals 1 if k = 0 and equals 0 otherwise.

Next, since EkEλ = Ek+λ , the set of finite linear combinations of the Ek’s is an algebra.
It clearly separates points on Tn; also, E0 = 1 and Ēk = E−k. Since Tn is compact, the Stone-
Weierstrass theorem implies that this algebra is dense in C(Tn) in the uniform norm and hence
in the L2 norm, and C(Tn) is itself dense in L2(Tn) . It follows that {Ek} is a basis.

�

Definition 24. (Parseval’s Equation) (GARLING, 2014) If V is a topological vector space,
ϕ,ψ ∈ V, ϕ̂ and ψ̂ are respectively the Fourier Transforms of ϕ and ψ , then

1
2π

∫
π

−π

ϕ(t)ψ(t)dt =
∞

∑
k=−∞

ϕ̂kψ̂k.

Particularly, 1
2π

∫
π

−π
|ϕ(t)|2dt = ∑

∞
k=−∞

|ϕ̂k|2.

Corollary 1 (FOLLAND, 2013). Let T= [0,1]× [0,1]. The Fourier Transform, as defined in
Chapter 4, maps L2(T) one to one onto

`2(Z2) =

{
(ξi j)i, j∈Z ∈ C :

∞

∑
i=−∞

∞

∑
j=−∞

|ξi j|2 < ∞

}

In other words, the Fourier coefficients of a square integrable function defined within T are a
square integrable sequence of real values.
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Proof. (GARLING, 2014)

Parseval’s equation implies that the Fourier Transform is an isometric (bijective map
between two metric spaces) linear isomorphism (a map which preserves sets and relations) of
L2(T) into `2(T). On the other hand, if γn(e jθ ) = e jnθ is an orthonormal sequence, i.e. each
vector is orthonormal to all others, in L2(T) and {an}∞

n=−∞ ∈ `2(Z2), then
(
∑

n
i=−n aiγi

)∞

n=1 is a
Cauchy sequence in L2(T). Since L2(T) is complete, the sequence converges to an element in
L2(T). �

Next, we provide a mathematical proof that the proposed sampling of the Fourier spec-
trum and the posterior mapping by means of an operator produces a probability distribution.

Theorem 3. Let T = [0,1]× [0,1]. The proposed sampling of the Fourier spectrum yields a
distribution, which maps L2(T) into `2(Z2).

Proof. Indeed, let the magnitude matrix of Fourier coefficients of a digital image represented by
the function g ∈ L2(T) be defined as

K(m,n) = loge

(
1+
√
[Re(ĝ(m,n))]2 +[Im(ĝ(m,n))]2

)
,

where ĝ(m,n) are the complex Fourier coefficients just after the transform. Since the modulus
of a complex number and the natural logarithm are always positive in this case (since we add
1 to the number, otherwise it could be negative), we have that every element generated by the
function K is positive for any outcome of ĝ ∈ C.

The sampling procedure is the element-wise mean of a discrete amount of inradii, taken
from a inscribed circle within the matrix. Each inradius is a one-dimensional set S of real numbers
from K. Formally, the sampling consists of an operator T : `2(Z2)→ `2(Z2) defined as

T (xi) =
∑

n
j=1 xi j

n
,

where xi is the i-th element of the final sample array and ∑
n
j=1 xi j is the sum of each i-th element

for each inradius S. We now need to show that K ∈ `2(T). Indeed, L2(T)⊂𝒟′(T), due to the
following facts:

(i) Every function ϕ : T→ C, ϕ ∈C∞
c (T) is locally integrable, i.e.

∫
T
|ϕ|dx < ∞.

Since T is compact and ϕ is continuous, then ϕ is consequently integrable all over T;
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(ii) Every function ϕ : T→ C, ϕ ∈ Lp(T) is locally integrable, i.e.

∫
T
| f |pdx < ∞.

It belongs to Lp(T2) for all compact subsets from T2, then ϕ is called locally p-integrable;

(iii) The space L2(T) is a subset of Lp(T) when 1≤ p≤ 2, which is our case, and also Lp(T)
is a subset of 𝒟′(T). Thus, L2(T)⊂ Lp(T)⊂𝒟′(T);

(iv) From Corollary 1, it follows that the space L2(T) is isomorphic and isometric to `2(Z2).

�

We will also show a numerical approach to complete the proof. Let I be an arbitrary matrix
which represents a digital image, described by

I =


0.00 0.00 0.00 0.00 0.00
0.25 0.25 0.25 0.25 0.25
0.50 0.50 0.50 0.50 0.50
0.75 0.75 0.75 0.75 0.75
1.00 1.00 1.00 1.00 1.00

 .

Practically, I represents the set of numbers that the g would produce after the acquisition of the
following scene by an arbitrary imaging system:

Figure 37 – Arbitrary scene acquired by an arbitrary imaging system.

Source: Elaborated by the author.
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The DFT transforms I into a set of Fourier coefficients, as

Î =


12.5+0i 0+0i 0+0i 0+0i 0+0i

−3.125+4.30119i 0+0i 0+0i 0+0i 0+0i

−3.125+1.01537i 0+0i 0+0i 0+0i 0+0i

−3.125−1.01537i 0+0i 0+0i 0+0i 0+0i

−3.125−4.30119i 0+0i 0+0i 0+0i 0+0i

 .

Applying Î in K, we obtain the magnitude matrix of the Fourier coefficients from Î, denoted as
M and given by

M =


2.60269 0 0 0 0
1.84318 0 0 0 0
1.45531 0 0 0 0
1.45531 0 0 0 0
1.84318 0 0 0 0

 .

From this result, we may compute the sum of the square of absolute values of M in order to show
that the result is finite. Indeed,

m

∑
i=1

n

∑
j=1
|M|2 ≈ 18 < ∞,

what completes the proof. �
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