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“ ...I leave Sisyphus at the foot of the mountain. One always finds one’s burden again. But

Sisyphus teaches the higher fidelity that negates the gods and raises rocks. He too concludes that

all is well. This universe henceforth without a master seems to him neither sterile nor futile.

Each atom of that stone, each mineral flake of that night-filled mountain, in itself, forms a world.

The struggle itself toward the heights is enough to fill a man’s heart.

One must imagine Sisyphus happy...”

(The Myth of Sisyphus, Albert Camus)





RESUMO

ZAMORA, P.I. Controladores dinâmicos de feedback de saída para sistemas lineares de
tempo discreto com parâmetros de salto markoviano, observação de modo imperfeito e
perturbações aditivas de ruído. 2020. 60 p. Dissertação (Mestrado em Ciências – Ciências
de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2020.

Uma classe de controladores de retorno de saída dinâmicos estacionários para sistemas lineares
de salto markoviano em tempo discreto (MJLS), considerando a minimização de o custo médio
a longo prazo é estudado.

Uma classe de controladores de feedback de saída dinâmicos estacionários para sistemas lineares
de salto markoviano em tempo discreto (MJLS), considerando a minimização de o custo médio a
longo prazo é estudado. A cadeia de Markov que governa os parâmetros não precisa ser ergódica
e é permitido que seja periódica e contenha estados transitórios / classes não comunicantes, o
que aumenta a classe do sistema, compreendendo sistemas periódicos como uma subclasse. Uma
formulação compacta de otimização é obtida para o independente de modo/ baseado em detector
controlador de ordem parcial / total, permitindo explorar a complexidade e consequentemente
obtenha o melhor desempenho implementável para um aplicativo. Desenvolvemos um algoritmo
de viabilidade - otimização em dois estágios, usando a abordagem baseada no operador. Apre-
sentamos um conjunto de exemplos numéricos no contexto aleatório não trivial sistemas sujeitos
a saltos para representar nossos resultados e comparar o desempenho com um algoritmo genético
clássico, resultando em uma clara vantagem para o algoritmo proposto

).

Palavras-chave: Sistemas Lineares,parametros com saltos Markovianos,Controle Otimo, Con-
trole Estocástico, Otimização.





ABSTRACT

ZAMORA, P.I. Dynamic output-feedback controllers for discrete-time linear systems with
markovian jumping parameters, imperfect mode observation and additive noise perturba-
tions. 2020. 60 p. Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2020.

A class of stationary dynamic output-feedback controllers for discrete-time Markovian Jumping
Linear Systems(MJLS) considering the minimization of a long run average cost is studied. The
Markov chain that governs the parameters is not required to be ergodic, and it is allowed to be
periodic and contain transient states / non-communicating classes, which enlarges the class of
system, e.g. now comprising periodic systems as a sub-class. A compact optmization formulation
is obtained for the mode-independent/detector-based controller of partial/full order, allowing one
to explore the complexity and consequently obtain the best implementable performance for an
application. We develop a two stage feasibility - optimization algorithm using the operator-based
approach. We present a set of numerical examples in the context of random non-trivial systems
that are subject to jumps in order to represent our results and compare the performance with a
classical genetic algorithm, resulting in a clear advantage for our proposed algorithm.

Keywords: Linear systems, Markov jump parameters, optimal control, Stochastic Control,
Optimization.
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CHAPTER

1
INTRODUCTION

The first chapter of this thesis is devoted to explain the main characteristics of Markov
Jump Linear Systems, the principal topic of this work. We will justify his study and the control
scheme selected and his main characteristics. A description on how the chapters are organized is
given at the end.

1.1 Markov Jump Linear Systems

Influenced by mechanics and engineering in 1940, control theory emerged. These sci-
ences induced the need to model physical phenomena as state space ordinary differential equa-
tions. This interest led to the rise of three theoretical paradigms in control (POLDERMAN;
WILLEMS, 2010). Pontryagin developing the maximum principle, Bellman dynamical pro-
gramming and Kalman with his Linear Quadratic Gaussian(LQG) con- troller(BERTSEKAS,
1987). A good background material in to the foundations are(SONTAG, 1998; POLDERMAN;
WILLEMS, 2010). We make special emphasis in the LQG problem whose creation was a
breakthrough, in the sense that it achieves an optimal disturbance attenuation. Figure 1

Figure 1 – LQG Problem

Source: Polderman and Willems (2010).

This result, considered for the first time the stochasticity in control and solved problems
that arose in the design of gunfire control systems, during the second world war as stated
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Figure 2 – A scheme of MJLS

Source: Vargas, Costa and Val (2013).

on (ÅSTRÖM, 1970). The study of a subgroup of this theory, resulted in an original paper
by Krasovskii and Lidskii in 1961 (KRASOVSKII; LIDSKII, 1961), introducing a class of
systems, that has abrupt parameter changes according to a stochastic process. Markov jump linear
systems are a subclass of stochastic systems that can be characterized for having a continuous-
valued (discrete-valued) dynamics that is linear in time and a discrete-valued dynamic that is
modeled as a Markov chain that is independent of the other set of continuous-valued (discrete-
valued) dynamics. For the Markov jump linear system, a more didactic explanation can be done,
considering that a dynamical system G, is described by a non autonomous ODE in matrix form
(A1,B1,H1). In a certain moment, suppose an abrupt change caused the model to change and be
described by (A2,B2,H2), more generally, we can imagine that the system is subject to a series
of changes that make it switch, over time, among a countable set of models θk.

1.2 Control of Markov Jump Linear Systems

In this section, we will giver some brief explanations of main concepts on MJLS we will
reference forward, we also denote the main articles where the theoretical framework of this work
lies.

The Markov Jump Linear Systems(MJLS) framework allows a more complex approach
in order to model processes that have abrupt changes or disturbances, a new way to deal with the
control of those systems. Much work has been done extending the theory of control of linear
systems to MJLS (COSTA; FRAGOSO; MARQUES, 2005). And much investigation has to be
done to extend results to other systems and controllers applications of MJLS include. Considering
the broad applications the development of this theory has brought,for example for macroeconomic
systems(VAL; BASAR, 1999), networked control (HESPANHA; NAGHSHTABRIZI; XU, 2007),
Fault isolation in Multi-Agent systems(MESKIN; KHORASANI, 2009), Finance and Portfolio
Optimization(COSTA; ARAUJO, 2008),(ELLIOTT T. K. SIU; LAU, 2007) , Quadcopter failure
Control(DRAGAN; COSTA, 2016a), A DC motor device(VARGAS; COSTA; VAL, 2013) ,
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Robotics and fault tolerant manipulators (SIQUEIRA; TERRA, 2009).

1.2.1 Output feedback controllers

In the state feedback scheme we assume complete access to the state vector x, which is
not always possible in real world problems due to physical limitations and/or costs involved.
This assumption makes it impossible to apply a state feedback approach,so new schemes are
introduced. One possibility is to use static output feedback in the form u(t) = Fy(t); this is an
easy to implement controller, however the task of finding a suitable F is frequently very complex.
Another possibility is to use the so called dynamic controller, which we denote by Gc. we will
use the system output vector,

Figure 3 – State feedback stabilization block diagram

For a discrete-dynamical system one can construct the closed loop system coupling the
output of the controller to the control variable of the system and the output of the system to the
input of the controller.

1.2.2 Class of controllers with partial or non-observation of the mode

The theoretical framework for optimal control of MJLS with mode observation is quite
mature and it has many strong results(COSTA; VARGAS, 2011; COSTA; FRAGOSO; MAR-
QUES, 2005; COSTA; FRAGOSO; TODOROV, 2013; CHIZECK; WILLSKY, 1986; DRAGAN;
COSTA, 2016a). The situation is different in control problems with partial or no information
of the Markov state, there are few existing results(VARGAS; COSTA; VAL, 2013; DOLGOV;
CHLEBEK; HANEBECK, 2016). This type of problem is much harder because the controller
can, in principle, be used to both optimize the objective function and to help raise information
about the Markov state and these tasks are sometimes conflicting. Now, although the problem is
far more complex, there is a great practical appeal for studying it, because the Markov state is
not available in many applications. It is particularly interesting for applications that the controller
does not take information on the chain into account at all. Which makes it easier to implement
in a embedded controller for example. This approach has narrow results; previous works have
been focusing in a particular class of controllers, the state feedback controllers, the results are
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presented in (VARGAS; COSTA; VAL, 2016; BORTOLIN, 2012; OLIVEIRA, 2014; SILVA,
2012) where the state variable, x is assumed to be available.

In this work we assume x is not available and it is worth to mention that, (DRAGAN;
COSTA, 2016a) is a natural starting point because it uses a general approach the one we are
looking for; it computes the gains for a dynamic stabilizing output feedback controller sadly
the approach cannot be used totally in the sense that it is based on filtering and control coupled
Riccati equations that can be solved by well-known,sadly this efficient methods are not possible
to use in the case when we cannot observe the governing Markov chain.That is why we also
study results of the work of the KIT Intelligent Sensor-Actuator-Systems (ISAS) Research
Group (DOLGOV; HANEBECK, 2015; DOLGOV; CHLEBEK; HANEBECK, 2016; DOLGOV;
HANEBECK, 2017) as the ones from Vargas et al.(VARGAS; COSTA; VAL, 2013) that explores
the state feedback approach(also without the observation of the mode) we will also use the
results from (TODOROV; FRAGOSO; COSTA, 2018; COSTA; FRAGOSO; TODOROV, 2015;
de Oliveira; Costa; Daafouz, 2018) were the detector based solution is explored, by detector, we
mean that an process estimates the situation of the markov chain governing the switching.

1.3 Motivation
The interest in this type of problem is due to a combination between the potential for

applications and, at same time, availability of results and algorithms that can be used for finding
solutions. For instance, the controller given in (DRAGAN; COSTA, 2016a) is computed based
on filtering and control coupled Riccati equations that can be solved by well-known, efficient
methods. Moreover, the formulation in (DRAGAN; COSTA, 2016a) allows one to explore
the trade-off between the complexity and performance of the controller; more specifically, the
dimension of the dynamic controller can be selected by the user, ranging from nc = 0 to a
full order controller with nc = n, where n is the dimension of the state component x of the
plant. Another relevant aspect for application of an MJLS is that the jump variable θ is not
necessarily observed in a perfect and immediate way (VARGAS; COSTA; VAL, 2016; DOL-
GOV; CHLEBEK; HANEBECK, 2016; DOLGOV; HANEBECK, 2017), which motivated the
development of mode-independent and detector-based controllers, see e.g. (VARGAS; COSTA;
VAL, 2016; DOLGOV; HANEBECK, 2017) and (TODOROV; FRAGOSO; COSTA, 2018;
COSTA; FRAGOSO; TODOROV, 2015; de Oliveira; Costa; Daafouz, 2018) respectively. The
controller studied in this note gives one more step towards flexibility and applicability. It is
detector-based featuring variable dimension nc, and the case of static output feedback is also
included. In this way, at one extreme one can design a controller of dimension nc = 0 and only
one mode (as in (VARGAS et al., 2016)), and at the other extreme a full order mode dependent
controller (as in (DRAGAN; COSTA, 2016a)). The intermediary cases with 1 ≤ nc ≤ n and
mode-independent/detector-based controllers for the considered class of problem are studied
here for the first time in literature.
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CHAPTER

2
NOTATION AND PRELIMINARY RESULTS

In the second Chapter an extended presentation is made for the notation that is used
along the Thesis, we also show some fundamental results that will be used in the next chapters
and support its development.

2.1 Notations

Let Rr denote the usual r-th dimensional Euclidean space,ℳr×d (ℳd) be the linear
space formed by all real matrices Rr×d (Rd×d), let 𝒮d ⊂ℳd be the linear subspace of symmetric
matrices of size d× d and 𝒮+d (𝒮0

d ) the closed (open) convex cone of positive semi-definite
(definite) matrices.

ℳ𝒩
r×d is the 𝒩 -th cartesian productℳr×d ×ℳr×d ×·· ·×ℳr×d indexed by the set

Θ := {1, . . . ,𝒩} forming a linear space of indexed matrices, that is, for an arbitrary V :=
(V (1), ...,V (𝒩 )) ∈ ℳ𝒩

r×d , we have that V (i) ∈ ℳr×d; the sets 𝒮𝒩d , 𝒮𝒩 (+)
d and 𝒮𝒩 (0)

d are
defined following the same principle.

We also employ the ordering V>U (V≥U) for elements of 𝒮d , meaning that V (i)−U(i)

is positive definite (semi-definite) for all i∈Θ. Relations involving elements ofℳ𝒩
r×d are defined

in an element-wise way, e.g. S = UV is such that S(i) =U(i)V (i), in addition, with V ∈ℳ𝒩
r×d

and T ∈ Rd×l the product VT represents the indexed set (V (1)T, ...,V (N)T ), following the same
logic for T V. We define In as the indexed identity matrix (In(1), . . . , In(N)).
We denote tr{·} as the trace operator. For this space an inner product is defined,

⟨V,U⟩=
𝒩

∑
i=1

tr[V (i)ᵀ U(i)]. (2.1)

for an arbitrary V,U ∈ℳr×d and a corresponding norm ||V ||22 = ⟨V,V⟩, inducing a Hilbert
space structure onℳ𝒩

d .
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If f :ℳr×d → R is a differentiable function on the domainℳr×d , we denote the partial
derivative ∂ f (G)/∂G as ∂G f (·) whenever G ∈ℳr×d .

We define the independent stochastic processes {θk}k≥0, {wk}k≥0 and {vk}k≥0 on a
probability space (Ω,ℱ ,𝒫). It is assumed that wk and vk are independent, and Gaussian random
sources of noise, with zero-mean covariances:
E[wk] = 0, E[vk] = 0, E[wkwᵀ

k ] = 𝒲 , E[vkvᵀk ] = 𝒱 and E[wkvᵀk ] = 0. Also, E[wtw
ᵀ
k ] = 0,

E[vtv
ᵀ
k ] = 0, t ̸= k.

{θk}k≥0 is an homogeneous Markov chain whose state θk takes values in the set Θ= {1,2, ...,𝒩},
with a transition probability matrix P = (pi, j), (i, j) ∈Θ×Θ, that is, pi, j = 𝒫(θt+1 = j|θt = i).
πk = (πk(1), . . . ,πk(𝒩 ) denotes the distribution of θk.

The Cesàro limit distribution of the Markov chain can be computed as

ρ
π0( j) =

𝒩

∑
k=1

π0(k)ρk, j, 1≤ j ≤ N (2.2)

where the vector π0 = (π0(1), . . . ,π0(N)) is the initial distribution of the Markov chain. ρk, j are
elements of the following matrix Π, whose existence is demonstrated in (DOOB, 1953)

Π = lim
τ→∞

1
τ

τ

∑
k=0

Pk. (2.3)

For the same space, 1A be the indicator function over a set A for a set, is defined for any ω ∈Ω

(Dirac measurement).

Finally for sake of generality, we define a stochastic process {γk}k≥0, with γk ∈ Γ =

{1, . . . ,L }, satisfying 𝒫(γk = `|θk = i) = qi,`, we call this process a "detection process", with a
detection probability matrix Pα = (ql, j), (l, j) ∈ Γ×Γ, that is, ql, j = 𝒫(γt+1 = l|γt = j). for this
new index we haveℳL

d ⊂ℳ𝒩
d and respectively for the other spaces defined above.

2.2 Lyapunov type operators
We introduce on the space 𝒮𝒩d the linear operator ℒcl , considering matrices 𝒜 ∈ℳ𝒩

r×d

in the space defined above and the elements of the stochastic matrix P defined by:

(ℒclV)(i) = ∑
j∈Θ

p ji𝒜( j)V ( j)𝒜( j)ᵀ, 1≤ i≤𝒩 , (2.4)

for all V = (V (1), . . . ,V (𝒩 )) ∈ 𝒮𝒩d . By direct calculation one obtains that the adjoint operator
of ℒcl with respect to the inner product (2.1) is described by:

(ℒ*clV)(i) = ∑
j∈Θ

pi j𝒜(i)ᵀV ( j)𝒜(i), 1≤ i≤𝒩 . (2.5)
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CHAPTER

3
THE DETECTOR BASED DYNAMIC

OUTPUT-FEEDBACK CONTROLLER
PROBLEM

In this chapter, the problem, focus of this thesis is presented. We present a class of
discrete-time dynamical system, that needs to be controlled by a detector based output feedback
controller; we present operators and functionals that will help us to develop the theoretical
framework of the solution proposal for them. With these tools we develop an deterministic cost
function that later on will be formulated as an optimization problem finishing with a compact
cost function that needs to be optimized.

3.1 Problem formulation
Let a class of discrete-time dynamical system G be of the form,xk+1 = A(θk)xk +B(θk)uk +H(θk)wk

yk =C(θk)xk + J(θk)vk

(3.1)

where xk ∈ Rn is the state vector, uk ∈ Rp is the control variable and yk ∈ Rm is the system
output available to feed the controller. The system matrices belong to given sets of matrices with
dimensions A ∈ℳ𝒩

n , B ∈ℳ𝒩
n×p, H ∈ℳ𝒩

n×l , C ∈M𝒩
m×n and J ∈M𝒩

m×r.

Consider also the following stationary linear dynamic controller Gc,x̂k+1 = F(γk)x̂k +K(γk)yk

uk = L(γk)x̂k +M(γk)yk,
(3.2)

where x̂k ∈ Rnc denotes the internal state of the controller1, yk ∈ Rm the input of the controller,
uk ∈ Rp the output.
1 The dimension nc can be defined as any value in the interval 0≤ nc ≤ n.
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The goal of this work is to design a dynamic/static output feedback controller that
depends only on the detector, that is, γk is the only measure available to the controller. This
is general enough as to include the case of no observation of θk (by making L = 1), cluster
observation of θk, and perfect observation of θk (with L = 𝒩 and qi,` = 1 when i = `) (de
Oliveira; Costa; Daafouz, 2018).

The controller matrices belong to sets of matrices F∈ℳ𝒩
nc

;K∈ℳL
nc×m;L∈ℳL

p×nc
and

M ∈ℳL
p×m of appropriate dimensions; these matrices are to be determined by an optimization

problem whose objective function (or cost function) is given by:

J = lim
𝒦→∞

1
𝒦

E
[ 𝒦

∑
k=0

[
xᵀk Q(θk)x+uᵀk R(θk)uk

]]
, (3.3)

with weighting matrices that belong to the sets Q ∈ 𝒮𝒩n and R ∈ 𝒮𝒩 (+)
p .

The controller (3.2) is coupled to the system, yielding a closed loop system that can be
rewritten as

xk+1 = Acl(θk,γk)xk +Hcl(θk,γk)wk (3.4)

where xk ∈ R(n+nc), wk ∈ R(l+r),

xk = [xᵀk x̂ᵀk ]
ᵀ wk = [wᵀ

k vᵀk ]
ᵀ, (3.5)

Acl(i, `) =

[
A(i)+B(i)M(`)C(i) B(i)L(`)

K(`)C(i) F(`)

]
,

Hcl(i, `) =

[
H(i) B(i)M(`)J(i)

0 K(`)J(i)

]
.

Remark 1. Assumptions and notations established describe a minimal set of properties involved
in the system. As in (DRAGAN; COSTA, 2016a) the ergodicity hypothesis is not taken into
account,in particular, results apply for MJLS with periodic Markov chains unlike for example
(DOLGOV; CHLEBEK; HANEBECK, 2016).

3.2 Associated functionals and operators

3.2.1 Second moment and related results

We start defining the second moment matrix for our system using (3.5),

Xk(i) = E[xkxᵀk 1{θk=i}], ∀i ∈Θ, ∀k ≥ 0. (3.6)
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Note that X ∈ 𝒮𝒩rx
, where rx = (n+nc)× (n+nc). Based on (3.5) we consider the partitioned

form

Xk(i) =

[
Xk(i)1 Xk(i)12

(Xk(i)12)
ᵀ Xk(i)2

]
(3.7)

=

[
E[xkxᵀk1{θk=i}] E[xkx̂ᵀk1{θk=i}]

E[x̂kxᵀk1{θk=i}] E[x̂kx̂ᵀk1{θk=i}]

]
. (3.8)

We will also present an adaptation of (COSTA; FRAGOSO; MARQUES, 2005, Proposition
3.35) for our specific case, using (3.5),(3.4) and using previous definition of second moment
(3.6). We state the following,

Lemma 1 (Adapted from (COSTA; FRAGOSO; MARQUES, 2005)).

Xk+1(i) = ∑
j∈Θ,`∈Γ

p jiq`, j
[
Acl( j, `)Xk( j)Acl( j, `)ᵀ+Hcl( j, `)SHcl( j, `)ᵀπk( j)

]
(3.9)

Proof.

E[(xk+1)(xk+1)
ᵀ1{θk+1=i}] =

∑
j∈Θ,`∈Γ

E
[
(Acl(θk,γk)xk +Hcl(θk,γk)wk)(Acl(θk,γk)xk +Hcl(θk,γk)wk)

ᵀ1{θk+1=i},{θk= j}1{γk+1=`}
]
=

Recalling that θk+1,γk+1 and xk+1 are conditional independent events,
𝒫(θk+1 = i,θk = j,γk = `) = 𝒫(θk+1 = i|θk = j,γk = `)×𝒫(γk = `|θk = i)×𝒫(θk = i) =

𝒫(θk = j)p ji q`, j = E[1{θk= j}]p ji q`, j

= ∑
j∈Θ,`∈Γ

E
[
(Acl( j, `)xk +Hcl( j, `)wk)(Acl( j, `)xk +Hcl( j, `)wk)

ᵀ1{θk= j}
]
p jiq`, j

= ∑
j∈Θ,`∈Γ

[
(Acl( j, `)E[xkxᵀk 1{θk= j}]Acl( j, `)ᵀ+Hcl( j, `)E[wkwᵀ

k 1{θk= j}]Hcl( j, `)ᵀ
]
p ji

using previous definition of second moment (3.6) and the fact that E[wkwᵀ
k 1{θk= j}] =E[wkwᵀ

k ]𝒫(θk =

j) = Sπk( j) where,

wkwᵀ
k = [wᵀ

k vᵀk ]
ᵀ[wᵀ

k vᵀk ] =

[
wkwᵀ

k wkvᵀk
vkwᵀ

k vkvᵀk

]
(3.10)

S =

[
𝒲 0
0 𝒱

]
(3.11)

That gives us,

= ∑
j∈Θ,`∈Γ

p jiq`, j{Acl( j, `)Xk(i)Acl( j, `)ᵀ+Hcl( j, `)SHcl( j, `)ᵀπk( j)} (3.12)

which completes the proof
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3.2.2 Modified Lyapunov type operator

We present a modified lyapunov operator using (2.4)(2.5) and based on the coefficients
of the linear system (3.4) and the elements of the stochastic matrix P and Pα the detector process
transition probability, we introduce on the space 𝒮𝒩d the linear operator ℒcl defined by:

(ℒclV)(i) = ∑
j∈Θ,`∈Γ

p jiq`, jAcl( j, `)V ( j)Acl( j, `)ᵀ, 1≤ i≤𝒩 , (3.13)

for all V = (V (1), . . . ,V (N)) ∈ 𝒮𝒩d . By direct calculation one obtains that the adjoint operator
of ℒcl with respect to the inner product (2.1) is described by:

(ℒ*clV)(i) = ∑
j∈Θ,`∈Γ

pi jq`,iAcl(i, `)ᵀV ( j)Acl(i, `), 1≤ i≤𝒩 . (3.14)

3.3 The long run average cost 𝒥

Given the new closed-loop system, a new cost functional (3.3) can be written,

J = lim
𝒦→∞

1
𝒦

E
[ 𝒦

∑
k=0

[
xᵀk Q(θk)xk +uᵀk R(θk)uk

]]
Using the linearity of the expectation operator and replacing output function fo the controller
(3.2),

E
[

xᵀk Q(θk)xk +uᵀk R(θk)uk
]
=

E
[

xᵀk Q(θk)x+(L(γk) x̂k +M(γk)(C(θk)xk + J(θk)vk))
ᵀ R(θk) (L(γk) x̂k +M(γk)(C(θk)xk + J(θk)vk))

]
=

= E
[
xᵀk Q(θk)xk +(x̂ᵀk Lᵀ

(γk)
+ xᵀkCᵀ

(θk)
Mᵀ

(γk)
+ vᵀk Jᵀ

(θk)
Mᵀ

(γk)
) R(θk) (L(γk) x̂k +M(γk)C(θk)xk +M(γk)J(θk)vk)

]
= E

[
xᵀk Q(θk)xk + x̂ᵀk Lᵀ

(γk)
R(θk)L(γk)x̂k + x̂ᵀk Lᵀ

(γk)
RM(γk)C(θk)xk + x̂ᵀk Lᵀ

(γk)
R(θk)M(γk)J(θk)vk+

+xᵀkCᵀ
(θk)

Mᵀ
(γk)

R(θk)L(γk) x̂k + xᵀkCᵀ
(θk)

Mᵀ
(γk)

R(θk)M(γk)C(θk)xk + xᵀkCᵀ
(θk)

MᵀRMJ(θk)vk+

+vᵀk Jᵀ
(θk)

Mᵀ
(γk)

R(θk)L(γk) x̂k + vᵀk Jᵀ
(θk)

Mᵀ
(γk)

R(θk)M(γk)C(θk)xk + vᵀk Jᵀ
(θk)

Mᵀ
(γk)

R(θk)MJ(θk)vk

Based on the assumptions of the problem statement, it may be inductively verified that for each
k ≥ 0 the random vectors xk,wk and vk are independent among them, therefore:

E
[
x̂ᵀk Lᵀ

(γk)
R(θk)M(γk)J(θk)vk

]
E
[
xᵀkCᵀ

(θk)
Mᵀ

(γk)
R(θk)M(γk)J(θk)vk

]
= E

[
x̂ᵀk Lᵀ

(γk)
R(θk)M(γk)J(θk)

]
E
[
vk
]
= 0 = E

[
xᵀkCᵀ

(θk)
Mᵀ

(γk)
R(θk)M(γk)J(θk)

]
E
[
vk
]
= 0

E
[
vᵀk Jᵀ

(θk)
Mᵀ

(γk)
R(θk)L(γk) x̂k

]
E
[
vᵀk Jᵀ

(θk)
Mᵀ

(γk)
R(θk)M(γk)C(θk)xk

]
= E

[
vᵀk Jᵀ

(θk)
Mᵀ

(γk)
R(θk)L(γk)

]
E
[
x̂k
]
= 0 = E

[
vᵀk Jᵀ

(θk)
Mᵀ

(γk)
R(θk)M(γk)C(θk)

]
E
[
[x̂k
]
= 0
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This allows us to obtain,

E
[

xᵀk Q(θk)xk +uᵀk R(θk)uk
]
=

E
[
(xᵀk Q(θk)x+ x̂ᵀk Lᵀ

(γk)
R(θk)L(γk)x̂k + x̂ᵀk Lᵀ

(γk)
R(θk)M(γk)C(θk)xk + xᵀkCᵀ

(θk)
Mᵀ

(γk)
R(θk)L(γk) x̂k+

+xᵀkCᵀ
(θk)

Mᵀ
(γk)

R(θk)M(γk)C(θk)xk)+ vᵀk Jᵀ
(θk)

Mᵀ
(γk)

R(θk)M(γk)J(θk)vk
]

(3.15)

and use (3.5) to rewrite,

E
[

xᵀk Q(θk)xk +uᵀk R(θk)uk
]
=

=E
[[

xᵀk x̂k
ᵀ
][Q(θk)+Cᵀ

(θk)
Mᵀ

(γk)
R(θk)M(γk)C(θk) Cᵀ

(θk)
Mᵀ

(γk)
R(θk)L(γk)

Lᵀ
(γk)

R(θk)M(γk)C(θk) Lᵀ
(γk)

R(θk)L(γk)

] [
xk

x̂k

]
+ vᵀk

[
JᵀR(θk)M(γk)J

]
vk

]
=E
[

xᵀk Q̃(θk)xk + vᵀk [J
ᵀR(θk)M(γk)J]vk

]

If we take the second term and use properties of the trace operator,his linearity,and
commute it with the expectation operator:

E
[
vᵀk Jᵀ

(θk)
Mᵀ

(γk)
R(θk)M(γk)J(θk)vk

]
= ∑

i∈Θ,`∈Γ

tr
[

E[J(i)ᵀM(`)ᵀR(i)M(`)J(i)vkvᵀk ]1{θk=i}1{ γk=`}
]

= ∑
i∈Θ,`∈Γ

tr
[
J(i)ᵀM(`)ᵀR(i)M(`)J(i) E[vkvᵀk 1{θk=i}]1{ γk=`}

]

If we take into account that,

E[vkvᵀk 1{θk=i}] = E[vkvᵀk ]𝒫(θ(t) = i)×𝒫(θ(t) = i)

using problem assumptions we have, E[vkvᵀk ] =V so,

E[vkvᵀk 1{θk=i}] =V πk(i)

Resulting in:

E
[
vᵀk Jᵀ

(θk)
M(`)ᵀR(i)M(`)J(θk)vk

]
= ∑

i∈Θ,`∈Γ

πk(i) q`,i tr
[
M(`)J(i)V J(i)ᵀM(`)ᵀR(i)

]
(3.16)

In intern product notation,

E
[
vᵀk Jᵀ

(θk)
M(`)ᵀR(i)M(`)J(θk)vk

]
= ⟨RᵀMJ,MJV⟩ (3.17)
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rewritting the first term

E
[
xᵀk Qcl(θk,γk)xk] = ∑

i∈Θ,`∈Γ

[
E[xᵀk Qcl(i, `)xk 1{θk=i}]

]
= ∑

i∈Θ

E
[
tr[Qcl(i, `) (xkxᵀk )]1{θk=i}

]
= ∑

i∈Θ

tr
[
Qcl(i, `) E[xkxᵀk 1{θk=i}]

]

using the definition of Second Moment of xk at mode i, we have

= ∑
i∈Θ,`∈Γ

tr
[
Qcl(i, `) Xk(i)

]
That is,

E
[
xᵀk Qcl(i, `)xk] = ∑

i∈Θ,`∈Γ

tr
[
Qcl(i, `) Xk(i)

]
(3.18)

In intern product notation,

E
[
xᵀk Qcl(θk,γk)xk] = ⟨Q,X ⟩ (3.19)

Combining (3.18) and (3.16) to obtain the value performance (3.3) the result states as
follows,

Proposition 2. The performance index (3.3), for the system (3.4) can be expressed as

𝒥 = lim
𝒦→∞

1
𝒦

𝒦

∑
k=0

[
∑

i∈Θ,`∈Γ

tr[Qcl(i, `)Xk(i)]

+ ∑
i∈Θ,`∈Γ

πk(i)q`,i tr
[
M(`)J(i)V J(i)ᵀM(`)ᵀR(i)

]]
.

(3.20)

where,

Qcl(i, `) =[
Q(i)+Cᵀ(i)M(`)ᵀR(i)M(`)C(i) Cᵀ(i)M(`)ᵀR(i)L(`)

L(`)ᵀR(i)M(`)C(i) L(`)ᵀR(i)L(`)

]
If a limiting X = limk→∞ Xk exists, then

𝒥 = ⟨𝒬,X ⟩+ ⟨RᵀMJ,MJV ⟩ (3.21)

where 𝒬∈ℳ𝒩
p , R ∈ℳ𝒩

p , J ∈ℳ𝒩
m×r, M ∈ℳL

p×m, and V ∈ℳp×m satisfy

R = (R(1), . . . ,R(𝒩 )), J = (J(1), . . . ,J(𝒩 )),

𝒬= (Qcl(1), . . . ,Qcl(𝒩 )) M = (M(1), . . . ,M(L ))
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3.4 A compact formulation for the cost
Although the cost formulation in (3.20) is quite compact, it is valid under the condition

that the limiting Xk exists, which is not always the case – e.g. when the Markov chain is periodic.
In this section we get around this inconvenience by working with a “time-average” of Xk. We
also develop an even more compact notation. Let us write

U(`) =

[
F(`) K(`)

L(`) M(`)

]
and U = (U(1), . . . ,U(𝒩 )) ∈ℳrU×rU, where rU = (nc + p)× (nc +m). Let the operator F :
𝒮𝒩d ×ℳL

rU
→𝒮𝒩d𝒩 be such that, for V ∈ℳr𝒩 , we have

F(V,U) = diag
(
(ℒclV)(1) . . . ,(ℒclV)(𝒩 )

)
,

We also define its adjoint operator G : 𝒮𝒩d ×ℳL
rU
→𝒮𝒩d𝒩

G(V,U) = diag
(
(ℒ?clV)(1), . . . ,(ℒ?clV)(𝒩 )

)
,

Note that the controller matrix U is implicit in the closed-loop operators in the above expressions.
Along the lines of the above definitions, we write

Σ = diag
(

∑
j∈Θ,`∈Γ

p j1q`, jρ jT ( j, `), . . .

. . . , ∑
j∈Θ,`∈Γ

p j𝒩 q`, jρ jT ( j, `)
) (3.22)

and

Σk = diag
(

∑
j∈Θ,`∈Γ

p j1π j(k)q`, jT ( j, `), . . .

· · · , ∑
j∈Θ,`∈Γ

p j𝒩π j(k)q`, jT ( j, `)
)
.

(3.23)

where we write T ( j, `) = Hcl( j, `) S Hcl( j, `)ᵀ for convenience. Also,

Q = diag(Qcl(1), . . . ,Qcl(𝒩 ))

Zk = diag(Xk(1), . . . ,Xk(𝒩 ))

In terms of the operators and notation above, the result of Lemma 1 becomes simply

Zk+1 = F(Zk,U)+Σk (3.24)

In order to handle periodic states of the Markov chain,we define δ as the least common multiple
of δ1, . . . ,δ𝒩 , where δi, i ∈Θ, is the period of the Markov state i (or δi = 1 if i is aperiodic), and
consider

Xk =
1
δ
(Zk +Zk+1 + · · ·+Zk+δ−1),

π̄i(k) =
1
δ
(πi(k)+πi(k+1)+ · · ·+πi(k+δ −1)).
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Note that

Xk+1 =
1
δ
(F(Zk,U)+F(Zk+1,U)+ · · ·+F(Zk+δ−1,U))

+Σk +Σk+1 + . . .+Σk+δ−1

= F(Xk,U)+ Σ̄k

(3.25)

where
Σ̄k = diag

(
∑

j∈Θ,`∈Γ

p j1q`, jT ( j, `)π̄ j(k), . . .

. . . , ∑
j∈Θ,`∈Γ

p j𝒩 q`, jT ( j, `)π̄ j(k)
)

The “time-average second moment variable” Xk has as an intrinsic advantage over 𝒳k

that π̄i(k) converges (exponentially fast) to a limiting ρ (recall (2.2)) as k→ ∞, as opposed to
πi(k) that fails to converge in the case when the Markov chain is periodic. When the initial
distribution of {θk} coincides with the Cesaro limit, that is, π0 = ρ = limk→∞ π̄(k) it is simple
to see that Xk is governed by a stationary version of (3.25):

Xk+1 = F(Xk,U)+Σ. (3.26)

Hence, for any U that yields convergence of Xk, the limiting X∞ is a fixed point solution of the
above equation,

X∞ = F(X∞,U)+Σ. (3.27)

Moreover, when π0 ̸= ρ , the fact that π̄i(k) converges exponentially fast to ρ can be used to show
that the limit X∞ is unaltered. It is worth mentioning that, even if Xk converges, both Xk and Zk

may fail to converge because of the periodicity of the Markov chain, preventing us from using
the result given in Proposition 2.

Having established a suitable framework for the general Markov chain scenario, we
rewrite the cost,

𝒥 = Ř+ lim
𝒦→∞

1
𝒦

𝒦

∑
k=0

[
tr(QZk)

]
= Ř+ lim

𝒦→∞

1
𝒦

{
−δ

−1tr
(
Q(Z𝒦+1 + · · ·+Z𝒦+δ−1)

)
+

𝒦

∑
k=0

[
tr(QXk)

]}
.

(3.28)

where

Ř = ∑
i∈Θ,`∈Γ

qi,`ρi tr
[
M(`)J(i)V J(i)ᵀM(`)ᵀR(i)

]
For any U for which there is a corresponding limiting X∞, it is simple to show that the terms
Z𝒦+ j, 0 ≤ j ≤ δ − 1 are bounded in the sense that exists some Z̄ such that Z j ≤ Z̄ for large
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enough j (otherwise the average Xk would not converge); this yields

𝒥 = Ř+ lim
𝒦→∞

1
𝒦

{
−δ

−1tr
(
Q(Z𝒦+1 + · · ·+Z𝒦+δ−1)

)
+

+
𝒦

∑
k=0

[
tr(QXk)

]}
≤ Ř+ lim

𝒦→∞

1
𝒦

{
−δ

−1tr
(
Q(Z̄ + · · ·+ Z̄)

)
+

+
𝒦

∑
k=0

[
tr(QXk)

]}
= Ř+ lim

𝒦→∞

1
𝒦

{
𝒦

∑
k=0

[
tr(QXk)

]} (3.29)

A similar evaluation follows by using the lower bound Z j ≥ 0, leading to,

𝒥 ≥ Ř+ lim𝒦→∞
1
𝒦

{
∑
𝒦
k=0

[
tr(QXk)

]}
; this and (3.29) provide

𝒥 = Ř+ lim
𝒦→∞

1
𝒦

{
𝒦

∑
k=0

[
tr(QXk)

]}
. (3.30)

Consider an arbitrary time instant ι ≥ 0. Rearranging terms and taking into account that
the matrix Fι(X,U) converges (exponentially fast) to F(X,U) we write:

𝒥 = Ř+ lim
𝒦→∞

1
𝒦

{[
tr
(
QX0 + · · ·+QXι+

+Q(F(Xι ,U)+Σ)+ · · ·+Q(F𝒦−ι(Xι ,U)+

+F𝒦−ι−1(Σ,U)+ · · ·+F(Σ,U)+Σ)
)]

+O(ι)

}
= Ř+ lim

𝒦→∞

1
𝒦

{
tr
[(

QX0 + · · ·+QXι+

+(G(Q,U)Xι +QΣ)+ · · ·+G𝒦−ι(Q,U)Xι+

+(G𝒦−ι−1(Q,U)+ · · ·+F(Q,U)+Q)Σ
)]

+O(ι)

}
.

(3.31)

We have used a compact notation for composition of operators, e.g. F2(·,U) denotes F(F(·,U),U).
Inspired on the operator G the self adjoint of F, we define the “co-state” Pk with the same dimen-
sions as Xk satisfying,

Pk+1 = G(Pk,U)+Q. (3.32)

with initial condition P0 = 0. Note that e.g. P1 = Q and P2 = G(Q,U)+Q with Pk ∈ 𝒮
𝒩 (0)
d .

Substituting this in (3.30) and rearranging terms,

𝒥 = Ř+ lim
𝒦→∞

1
𝒦

{
tr
[
(Q(X0 + · · ·+Xι)

+(P𝒦−Q)Xι +(P1 +P2 + · · ·+P𝒦−ι)Σ

]
+O(ι)

}
.

(3.33)

Taking ι as the dividend of 𝒦/2 in the above, and taking limits,

𝒥 = Ř+ tr
(
(1/2)QX∞ +(1/2)P∞Σ

)
. (3.34)
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Different formulas can be obtained by rearranging the terms in (3.33), e.g. if ι is fixed then
𝒥 (U) = Ř+ tr(P∞Σ). With ι = κ−1 we have 𝒥 (U) = Ř+ tr(QX∞). We collect the main results
of this section in the following theorem,

Theorem 3. Consider a controller U for which X∞ = limk→∞ Xk and P∞ = limk→∞ Pk exist.
Then: (i) Both P∞ and X∞ are irrespective of the initial conditions π0, x0 and (ii) The long run
average cost 𝒥 defined in (3.20) can be written as

𝒥 = Ř+ tr((1/2)QX∞ +(1/2)P∞Σ)

= Ř+ tr(P∞Σ)

= Ř+ tr(QX∞).
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CHAPTER

4
AN ALGORITHM FOR THE LARC

Considering the results of Theorem 3, we study the optimization problem that consists of
minU,X∞,P∞

𝒥 subject to the constraint (3.27) and its dual counterpart

P∞ = G(P∞,U)+Q. (4.1)

This is a highly nonlinear problem in the sense that, if we expand any of the formulas given in the
theorem, exposing the hidden controller matrices, we will find terms involving multiplication of
up to four of the variables of the optimization problem. Moreover, the relative high dimension and
the fact that both X∞ and P∞ are frequently ill-conditioned matrices in real world applications,
makes it difficult to obtain a high precision numerical solution by means of standard methods.
In some cases it is reported that X∞ and P∞ leave the cone of positive semi-definite matrices
(DOLGOV, 2017). Another complication is that X∞ and P∞ are restricted to the cone of positive
semi-definite matrices 𝒮𝒩 (+)

d (which is considered throughout the paper).

Fortunately, if we fix X∞ and P∞, then the objective function (OF) comprises multiplica-
tions of no more than two of the variables of the optimization problem. Inspired by optimization
methods that sequentially use an optimization operator and an feasibility operator, for problems
where both operators are computationally inexpensive (Shaikh; Caines, 2007), and taking into
account what we described before, it is natural to consider a method that minimize the OF in the
variable U and then projects X∞ and P∞ onto the solution of (3.27) / (4.1). In the next sections
we construct these operator, separately.

4.1 Two stage Optimization - Feassibility method

4.2 Optimization operator
Here we focus on the problem minU𝒥 for given, fixed X∞,P∞. Although the equations

given in Theorem 3 are useful for computing the long run average cost, (specially when one
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computes X∞ and P∞ via (3.27), (4.1)) In fact, by using the Kronecker product, one can transform
(3.27) in a conventional linear system in the form A x = b, and similarly for P∞, leading to a
relatively inexpensive way to compute the cost for a given U. However, we shall modify the OF
to obtain some useful properties that will be used later. First we use the equivalences in Theorem
3 to obtain tr(P∞Σ−QX∞) = 0, then we subtract this term from the first equality given in the
theorem, yielding

𝒥 = Ř+ tr((3/2)QX∞− (1/2)P∞Σ). (4.2)

One can check via the definition of Q and Σ that the terms of the above OF contain the blocks M

and K of U, only; in a descent-like method we seek for, which updates U based on the gradient
of the OF, this would cause entire blocks of U to be fixed along iterations. To avoid this, we
substitute (3.27) into (4.41) to get

𝒥 (U) = Ř+ tr((3/2)QX∞ +(1/2)P∞(F(X∞,U)−X∞).

The optimization problem can now be written as

min
U

Ř+ tr((3/2)QX∞ +(1/2)P∞(F(X∞,U)−X∞)

s.t. X∞ = F(X∞,U)+Σ,

P∞ = G(P∞,U)+Q.

(4.3)

By expanding the OF (4.3) and introducing a convenient notation that makes the dependence on
U explicit, one can write (4.4)

2𝒥 (U) = ∑
i∈Θ

{
2 tr
(

ρ(i)

[
0p×nc Ip

0p×nc 0p

]
U

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
Uᵀ

[
0nc×p 0nc×p

R(i) 0p

])
+ tr

[
ℰ(i)

([
A(i) 0n×nc

0nc×n 0nc

]
+

+

[
0n×nc B(i)

Inc 0nc×p

]
U

[
0nc×n Inc

C(i) 0m×nc

])
X∞(i)

([
A(i) 0n×nc

0nc×n 0nc

]
+

[
0n×nc B(i)

Inc 0nc×p

]
U

[
0nc×n Inc

C(i) 0m×nc

])ᵀ]
+

+3 tr
([

Q(i) 0n×nc

0nc×n 0nc

]
+

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
Uᵀ

[
0nc 0nc×p

0p×nc R(i)

]
U

[
0nc×n Inc

C(i) 0m×nc

])
X∞(i)− tr

(
𝒫∞(i)X∞(i)

)}
(4.4)

where X∞(i) is the i−th block-diagonal element of X∞, and similarly for the i−th block-diagonal
𝒫∞(i) of P∞; and ℰ(i) = ∑ j∈Θ pi j𝒫∞( j) is introduced to ease notation. Note in (33) that all
blocks of U are relevant. It is also interesting that no more than two variables U appear in each
sum, so that the cost is “quadratic” in U. In order to avoid possible saddle points, we need a
lower bound for the objective function, which follows from the fact that

𝒥 (U)+ tr((1/2)P∞X∞) = Ř+ tr((3/2)QX∞ +(1/2)P∞F(X∞,U)).

is a non-negative number, leading to 𝒥 (U)≥−(1/2)tr(P∞X∞) and

𝒥 (U)≥−(1/2)n2‖P∞‖‖X∞)‖, (4.34)

explaining why we have adopted (4.2). We are now in position to state the main result of this
section.
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Lemma 4. 𝒥 (U) defined in (4.4) has at least one finite norm global minimum.

Proof. Consider a matrix norm for U, denoted by ‖U‖, the set ℬr = {U : ‖U‖= r}, and define
the function h : ℬ1→ R by

hU(U) = min
α
𝒥 (αU).

Using (4.4) we can write 𝒥 (αU) = 𝒥 (0)+a1(U)α +a2(U)α2 where a1(U),a2(U) are scalar-
valued functions, continuous in U, and we know that either a2(U)> 0 or a2(U) = a1(U) = 0 in
view of (4.34), so its minimizer is α =−a1(U)/a2(U) when a2 > 0 or any α when a2 = 0. This
implies that hU is well defined for each U. One can check that there exists κ > 0, uniform in ℬ1

such that |a1(U)| ≤ κ|a2(U)| (otherwise, the smaller is |a2| when compared with |a1|, the smaller
is the minimum of𝒥 (αU), eventually violating the lower bound expressed in (4.34). This implies
that the minimizer (obtaining by differentiating the above polynome) α =−a1(U)/(2a2(U)) is
such that |α|< κ/2, which allows to write

inf
U
𝒥 (U) = inf

U∈ℬ1
hU(U) = inf

U∈ℬ1
min
|α|≤κ/2

𝒥 (αU)

= inf
U∈ℬκ/2

min
|α|≤1/2

𝒥 (αU) = inf
U∈ℬκ/2

𝒥 (U).

Finally, note from Theorem 1 that 𝒥 is continuous in U; then it follows from Weirstrass theorem
that the inf on the right hand side of the above equation is realized by some minimizer U ∈ ℬκ/2.

Lemma 4 allows us to define the optimality operator 𝒪 :ℳnU →ℳnU of the method as:

𝒪(U) = argmin
U

J(U). (4.35)

Since the minimizer of 𝒥 (U) always exists, one can compute it by taking the partial derivatives
of 𝒥 w.r.t. U and set it to zero (∂U 𝒥 (U) = 0). The result is as follows.

Theorem 5. The minimizer of 𝒥 (U) is the solution of the matrix equation

∑
i∈Θ

{
2 ρ(i)

[
0nc 0nc×p

0p×nc R(i)

]
U

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
+ γL(i) U γM(i)

}
=

−∑
i∈Θ

{[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰ(i)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]} (4.36)

where,

γL(i) = 3

[
0nc 0nc×p

0p×nc R(i)

]
+

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

]

γM(i) =

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]

Proof. If we consider, the partitioned control matrix U, and we explicit the control term in every
matrix component of the cost, we have
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Acl(i, `) =

[
A(i) 0n×nc

0nc×n 0nc

]
+

[
0n×nc B(i)

Inc 0nc×p

]
U

[
0nc×n Inc

C(i) 0m×nc

]
(4.37)

Hcl(i, `) =

[
H(i) 0n×r

0nc×l 0nc×r

]
+

[
0n×nc B(i)

Inc 0nc×p

]
U

[
0nc×l 0nc×r

0m×l J(i)

]
(4.38)

Qcl(i, `) =

[
Q(i) 0n×nc

0nc×n 0nc

]
+

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
Uᵀ

[
0nc 0nc×p

0p×nc R(i)

]
U

[
0nc×n Inc×nc

C(i) 0m×nc

]
(4.39)

ℛ(i) = tr
([

0p×nc Ip

0p×nc 0p×p

]
U

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
Uᵀ

[
0nc×p 0nc×p

R(i) 0p

])
(4.40)

Recalling the cost functional,

𝒥 = tr(R)+ tr((3/2)QX∞ +(1/2)P∞(F(X∞,U)−X∞) (4.41)

In that sense we can rewrite the cost,

𝒥 = ∑
i∈Θ

tr
(

ρ(i)

[
0p×nc Ip

0p×nc 0p×p

]
U

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
Uᵀ

[
0nc×p 0nc×p

R(i) 0p

])
+

+(3/2) ∑
i∈Θ

tr
([

Q(i) 0n×nc

0nc×n 0nc

]
X∞(i)+

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
Uᵀ

[
0nc 0nc×p

0p×nc R(i)

]
U·

·

[
0nc×n Inc×nc

C(i) 0m×nc

]
X∞(i)

)
+

+(1/2) ∑
i∈Θ

tr
[
ℰi(P∞)

([
A(i) 0n×nc

0nc×n 0nc

]
+

[
0n×nc B(i)

Inc 0nc×p

]
U

[
0nc×n Inc

C(i) 0m×nc

])
X∞(i) ·

·
([

Aᵀ(i) 0nc×n

0n×nc 0nc

]
+

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
Uᵀ

[
0nc×n Inc

Bᵀ(i) 0p×nc

])]
+

−(1/2) ∑
i∈Θ

tr
(

P∞(i)X∞(i)
)

(4.42)

For the extended cost form, 𝒥 , we have that for an optimal U,

∂U 𝒥 (U) = 0 (4.43)
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0 = ∑
i∈Θ

(
ρ(i)

[
0nc 0nc×p

0p×nc R(i)+Rᵀ(i)

]
U

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
+

+(3/2)

[
0nc 0nc×p

0p×nc R(i)+Rᵀ(i)

]
U

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

]
U

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

])

0 = ∑
i∈Θ

{
2 ρ(i)

[
0nc 0nc×p

0p×nc R(i)+Rᵀ(i)

]
U

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
+

+

(
3

[
0nc 0nc×p

0p×nc R(i)+Rᵀ(i)

]
+2

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

])
·

·U

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+2

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
(4.44)

We take R(i) as a symmetric positive definite matrix, in order to compare it with (DRA-
GAN; COSTA, 2016a) MJLS dynamic output feedback Riccatti approach.

0 = ∑
i∈Θ

{
2 ρ(i)

[
0nc 0nc×p

0p×nc R(i)

]
U

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
+

+

(
3

[
0nc 0nc×p

0p×nc R(i)

]
+

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

])
·

·U

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
We rename,

γL(i) = 3

[
0nc 0nc×p

0p×nc R(i)

]
+

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

]
(4.45)

γM(i) =

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
(4.46)
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Leading to the following matrix equation,

∑
i∈Θ

{
2 ρ(i)

[
0nc 0nc×p

0p×nc R(i)

]
U

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
+ γL(i) U γM(i)

}
=

=−∑
i∈Θ

{[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]} (4.47)

4.2.1 Matricial Equation for U

The equation presented in Theorem 5 can be transformed into a linear system in the
form A𝒪 · x = b, with A𝒪 ∈ 𝒮N

d by using stack-column operators and the Kronecker product
properties. In this system, the solution matrix is of dimension rU. Another alternative is to write
it as a general Sylvester equation and use a gradient-iterative or a least-square iterative method
e.g (DING; CHEN, 2005a; DING; CHEN, 2005b).

We can expand the matrix equation obtained in (4.47), by using the partitioned form of
U,X∞(i) and P∞(i),

Recalling, that we defined for a partitionated P∞(i) and X∞(i),

X∞(i) =

[
X1(i) X12(i)

(X12(i))T X2(i)

]
and P∞(i) =

[
P1(i) P12(i)

(P12(i))T P2(i)

]
(4.48)

We define the operator,
ℰi(P∞) = ∑

j∈Θ

pi jP∞( j) (4.49)

and his partitioned version,

ℰi(P∞) =

[
ℰ1(i) ℰ12(i)

(ℰ12(i))T ℰ2(i)

]
(4.50)

In that order we start with γL (4.45)

γL(i) =

[
ℰ2(i) ℰᵀ12(i)B(i)

Bᵀ(i)ℰ12(i) γl(i)

]
(4.51)

where,

γl(i) = 3R(i)+Bᵀ(i)ℰ1B(i) (4.52)

and γM (4.46) form,

γM(i) =

[
X2(i) X ᵀ

12(i)C
ᵀ(i)

C(i)X12(i) γm

]
(4.53)
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where

γm =C(i)X1(i)Cᵀ(i) (4.54)

With the partitioned U, (4.51) and (4.53) replacing in (4.47)

∑
i∈Θ

{
2 ρ(i)

[
0n 0n×m

0p×n R(i)MJ(i)V Jᵀ(i)

]
+

[
ℰ2(i) ℰᵀ12(i)B(i)

Bᵀ(i)ℰ12(i) γl(i)

]
U

[
X2(i) X ᵀ

12(i)C
ᵀ(i)

C(i)X12(i) γm

]}
=

=−∑
i∈Θ

{[
ℰᵀ12(i)A(i)X12(i) ℰᵀ12(i)A(i)X1(i)Cᵀ(i)

Bᵀ(i)ℰᵀ1 (i)A(i)X12(i) Bᵀ(i)ℰ1(i)A(i)X1(i)Cᵀ(i)

]}

−∑
i∈Θ

{[
ℰᵀ12(i)A(i)X12(i) ℰᵀ12(i)A(i)X1(i)Cᵀ(i)

Bᵀ(i)ℰᵀ1 (i)A(i)X12(i) Bᵀ(i)ℰ1(i)A(i)X1(i)Cᵀ(i)

]}
= ∑

i∈Θ

{[
0n 0n×m

0p×n 2 ρ(i)R(i)MJ(i)V Jᵀ(i)

]
+

+

 ℰ2(i)FX2(i)+ℰᵀ12(i)B(i)LX2(i)+ℰ2(i)KC(i)X12(i)+ℰᵀ12(i)B(i)MC(i)X12(i)

Bᵀ(i)ℰ12(i)FX2(i)+ γl(i)LX2(i)+Bᵀ(i)ℰ12(i)KC(i)X12(i)+ γl(i)MC(i)X12(i)

ℰ2(i)FX ᵀ
12(i)C

ᵀ(i)+ℰᵀ12(i)B(i)LX ᵀ
12(i)C

ᵀ(i)+ℰ2(i)Kγm(i)+ℰᵀ12(i)B(i)Mγm(i)

Bᵀ(i)ℰ12(i)FX ᵀ
12(i)C

ᵀ(i)+ γl(i)LX ᵀ
12(i)C

ᵀ(i)+Bᵀ(i)ℰ12(i)Kγm(i)+ γl(i)Mγm(i)

}

Leading to the following coupled set of matrix equations,

∑
i∈Θ

{
ℰ2(i)FX2(i)+ℰ2(i)KC(i)X12(i)+ℰᵀ12(i)B(i)LX2(i)+

+ℰᵀ12(i)B(i)MC(i)X12(i)+ℰᵀ12(i)A(i)X12(i)
}
= 0n

∑
i∈Θ

{
ℰ2(i)FX ᵀ

12(i)C
ᵀ(i)+ℰ2(i)Kγm(i)+ℰᵀ12(i)B(i)LX ᵀ

12(i)C
ᵀ(i)+

+ℰᵀ12(i)B(i)Mγm(i)+ℰᵀ12(i)A(i)X1(i)Cᵀ(i)
}
= 0n×m

∑
i∈Θ

{
Bᵀ(i)ℰ12(i)FX2(i)+Bᵀ(i)ℰ12(i)KC(i)X12(i)+ γl(i)LX2(i)+

+γl(i)MC(i)X12(i)+Bᵀ(i)ℰ1(i)A(i)X12(i)
}
= 0p×n

∑
i∈Θ

{
Bᵀ(i)ℰ12(i)FX ᵀ

12(i)C
ᵀ(i)+Bᵀ(i)ℰ12(i)Kγm(i)+ γl(i)LX ᵀ

12(i)C
ᵀ(i)+

+γl(i)Mγm(i)+2 ρ(i)R(i)MJ(i)V Jᵀ(i)+Bᵀ(i)ℰ1(i)A(i)X1(i)Cᵀ(i)
}
= 0p×m

(4.55)
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Using vec operator and kronecker product properties we can factorize F,K,L,M,



ΓFF ΓFK ΓFL ΓFM

Γ
ᵀ
FK ΓKK ΓKL ΓKM

Γ
ᵀ
FL Γ

ᵀ
KL ΓLL ΓLM

Γ
ᵀ
FM Γ

ᵀ
KM Γ

ᵀ
LM ΓMM





vec(F)

vec(K)

vec(L)

vec(M)


+



ΓFC

ΓKC

ΓLC

ΓMC


= 04n (4.56)

where,

ΓFF = ∑
i∈Θ

(
X2(i)⊗ℰ2(i)

)
ΓFK = ∑

i∈Θ

(
X ᵀ

12(i)C
ᵀ(i)⊗ℰ2(i)

)
ΓFL = ∑

i∈Θ

(
X2(i)⊗ℰᵀ12(i)B(i)

)
ΓFM = ∑

i∈Θ

(
X ᵀ

12(i)C
ᵀ(i)⊗ℰᵀ12(i)B(i)

)
ΓFC = vec( ∑

i∈Θ

(
ℰᵀ12(i)A(i)X12(i)

)
)

ΓKK = ∑
i∈Θ

(
γm(i)⊗ℰ2(i)

)
ΓKL = ∑

i∈Θ

(
C(i)X12(i)⊗ℰᵀ12(i)B(i)

)
ΓKM = ∑

i∈Θ

(
γm(i)⊗ℰᵀ12(i)B(i)

)
ΓKC = vec( ∑

i∈Θ

(
ℰᵀ12(i)A(i)X1(i)Cᵀ(i)

)
)

ΓLL = ∑
i∈Θ

(
X2(i)⊗ γl(i)

)
ΓLM = ∑

i∈Θ

(
X ᵀ

12(i)C
ᵀ(i)⊗ γl(i)

)
ΓLC = vec( ∑

i∈Θ

(
Bᵀ(i)ℰ1(i)A(i)X12(i)

)
)

ΓMM = ∑
i∈Θ

(
γm(i)⊗ γl(i)+2 ρ(i)J(i)V Jᵀ(i)⊗R(i)

)
ΓMC = vec( ∑

i∈Θ

(
Bᵀ(i)ℰ1(i)A(i)X1(i)Cᵀ(i)

)
)

And the solution can be obtained solving the linear system (4.56),

Xsys = (Γ)+(−C) (4.57)

4.3 Feasibility operator and the basics of the algorithm
Aiming at a numerically inexpensive feasibility operator, and taking into account that

the fixed point equations (3.27), (4.1) may be written as conventional linear systems in the form
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Aℱ · x = b by using stack-column operators and the Kronecker product properties, we start
defining ℱ : {(x, p) ∈ 𝒮𝒩 (+)

r𝒩 ×𝒮𝒩 (+)
r𝒩 }

ℱ(X∞,P∞) = feasb
X∞,P∞

{(X∞,P∞) : (3.27) and (4.1) hold true}. (4.58)

An inconvenience is that we can not show existence of solution to the above feasibility problem.
This motivated us to “relax” the use of ℱ , as described next. We need some additional notation:
we write the OF in (4.35) as 𝒥 (U,X∞,P∞) to emphasize the dependence on its arguments. Also,
we denote Uη ,Xη

∞,P
η
∞ the solution at the η-th iteration of the algorithm. Given Uη ,Xη

∞,P
η
∞ one

computes

Uη+1 =𝒪(Xη
∞,P

η
∞),

providing Uη+1,Xη
∞,P

η
∞. If the following conditions hold:

(i) (Xη+1
∞ ,Pη+1

∞ ) = 𝒯 (Uη) exists,

and

(ii) 𝒥 (Uη+1,Xη+1
∞ ,Pη+1

∞ )≤ 𝒥 (Uη ,Xη
∞,P

η
∞) (4.59)

then set η = η + 1 and go back to the optimization step. If any of (i)/(ii) fails, or both fail,
compute

Xaux = F(Xη
∞,U

η+1)+Σ,

Paux = G(Pη
∞,U

η+1)+Q.
(4.60)

Now, if 𝒥 (Uη+1,Xaux,Paux)≤ 𝒥 (Uη ,Xη
∞,P

η
∞) then set η = η +1 and go back to the optimiza-

tion step.; otherwise, find the largest ρ,0≤ ρ < 1 such that

(Xη+1
∞ ,Pη+1

∞ ) := ρ
(
Xη

∞,P
η
∞

)
+(1−ρ)

(
Xaux,Paux

)
satisfies (4.59). Such a ρ always exists because, in view of Lemma 4, 𝒥 (Uη+1,Xη

∞,P
η
∞) ≤

𝒥 (Uη ,Xη
∞,P

η
∞).

4.4 The algorithm

The algorithm explained in Section 4.3 is formalized in the sequel.
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Algorithm 1 – Two Stage 𝒪-ℱ
Result: U
Initialize: U0,X0

∞,P
0
∞,maxIter

η ← 0
while η < maxIter do

Uη+1←𝒪(Xη
∞,P

η
∞)

if 𝒯 (Uη+1) then
(Xη+1

∞ ,Pη+1
∞ )←𝒯 (Uη)

𝒥 η ←𝒥 (Uη ,Xη
∞,P

η
∞)

𝒥 η+1←𝒥 (Uη+1,Xη+1
∞ ,Pη+1

∞ )
if 𝒥 η+1 > 𝒥 η then
(Xη+1

∞ ,Pη+1
∞ )←ℛ(Xη

∞,P
η
∞,Uη+1,Uη ,𝒥 η)

end
else

(Xη+1
∞ ,Pη+1

∞ )←ℛ(Xη
∞,P

η
∞,Uη+1,Uη ,𝒥 η)

end
η +1← η

end

procedure ℛ(Xη
∞,P

η
∞,Uη+1,Uη ,𝒥 η)

(Xaux,Paux)←𝒯 (Xη
∞,P

η
∞,Uη+1)

𝒥 η+1←𝒥 (Uη+1,Xaux,Paux)
while 𝒥 η+1 > 𝒥 η do

(Xη+1
∞ ,Pη+1

∞ )← ρ
(
Xη

∞,P
η
∞

)
+(1−ρ)

(
Xaux,Paux

)
ρ ← ρ +0.01

end

Theorem 6. Algorithm 1 converges.

Proof. The proof is immediate from the facts that Lemma 4 ensures 𝒥 (Uη+1,Xη
∞,P

η
∞) ≤

𝒥 (Uη ,Xη
∞,P

η
∞) and that Xη+1

∞ ,Pη+1
∞ satisfy the condition in (4.59).

For indirect variational methods initialization plays a huge role, in the sense that it can influence
the quality of convergence and its domain, for our method (Algorithm 1) we initialize first, that
is, we initialize with a starting feasibility set: (X0

∞,P
0
∞) that by definition is bounded from below

(by its positive definiteness); with this set we encounter a minimizer U0 for 𝒪(X0
∞,P

0
∞). In our

experience fast convergence is achieved for small random initialization values of X0
∞,P

0
∞. Two

main conclusions can be drawn for the analysis of the initialization of Algorithm 1, the first one
is for the convergence of a static controller

Corollary 1. For 𝒯 (X0
∞,P

0
∞) := {(αInN ,β InN)|α,β ∈ R} Algorithm ?? converges and 𝒪(Uη)
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is a static controller defined by the solution of the matrix equation:

∑
i∈Θ

{
2 ρ(i)R(i)MJ(i)V Jᵀ(i)+ γl(i) M γm(i)

}
=

=−∑
i∈Θ

{
Bᵀ(i)ℰ1(i)A(i)X1(i)Cᵀ(i)

} (4.61)

where,

γl(i) = 3R(i)+Bᵀ(i)ℰ1(i)B(i)

γm =C(i)X1(i)Cᵀ(i)

Proof. The proof is straightforward, we calculate with the feasibility set {X0
∞,P

0
∞} :=(α diag(IN

n ),β diag(IN
n ))

the optimization operator for the initial minimizer𝒪(U0) whom is of the form U1 =

[
0 0
0 M0

]
and

leads to a new feasibility set that is of the form {X1
∞,P

1
∞} :=

{
diag
([

X1(1) 0
0 0

]
, . . . ,

[
X1(N) 0

0 0

])
,

diag
([

P1(1) 0
0 0

]
, . . . ,

[
P1(N) 0

0 0

])}
deriving in to a new minimizer 𝒪(U1) for the matrix equation

(4.61).

Remark 2. When the feasibility set, is set with (X0
∞,P

0
∞) with quadratic dimension n+nc with

0 < nc < n, we will obtain a "reduced-order" controller in the sense that the x̂ will have a
reduction in dimension with respect to the system state x, this fact comes from (3.5) and (3.6).
We can say that Algorithm ??, can converge also to a detector based controller in the sense that a
sequence of controllers can be obtained following a cluster of modes.
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CHAPTER

5
NUMERICAL SIMULATION

We applied the proposed control strategy for 103 instances of the system (3.1) and for our
cost function, which were randomly created. We obtained the parameters for the controller (3.2)
using the proposed Algorithm𝒪−ℱ , and also using a genetic algorithm (GA). The implemented
GA follows the classical concepts proposed by Holland (HOLLAND, 1975), having the steps of
fitness, selection, crossover, mutation and replacement. We denote by 𝒥𝒪ℱ the OF obtained with
Algorithm 𝒪−ℱ , and 𝒥AG the OF via the AG.

Table 1 shows the proportion of instances / methods yielding 𝒥 < 1010, and Figure 4
gives a comparison of the costs using both algorithms, when the cost is smaller than 𝒥 < 1010.
As we can see, the proposed Algorithm 𝒪−ℱ clearly outperforms the GA: the percentage of
instances with costs below 1010 is much higher (55.47%+ 28.53% = 84% via 𝒪−ℱ versus
8.61%+28.53% = 37.14% via AG) and Figure 4 contains more points above and far from the
line 𝒥𝒪ℱ = 𝒥AG.

Regarding the instance generator, the dimension of the state variable, output, noise
processes and Markov state have uniform distribution with 2≤ nx ≤ 5, 2≤ nv ≤ 5, 1≤ nh ≤ 5,
1≤ n j ≤ 5, 1≤ nc ≤ 5, and 2≤𝒩 ≤ 4.

Some features of the modes are also random, e.g. (A1,B1) has 80% of chance of being
controllable.

For each instance we run the Riccati-based algorithm in (DRAGAN; COSTA, 2016b)
(that is, in the scenario of perfect observation of θ ) and we discard the instance when the cost
is higher than 10100, for it is likely not to be stabilizable in the scenario we are dealing with.
Around 50% of instances were discarded, indicating that the generator creates hard problems.
For the remaining 103 instances, 80% are not stable - that is, when all matrices Bi = 0, there is
no solution for (22) with Σ = I, again indicating that a significant share of the instances are hard
to handle. This also means that 20% of the instances are easy (stable), which makes the 37.14%
success rate of the AG less significant when compared with the 84% of our algorithm.
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Figure 4 – Costs obtained with the GA and 𝒪−ℱ algorithm.
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Figure 5 – Costs obtained with the GA and 𝒪−ℱ algorithm along execution time for instance number 1.

Table 1 – Percentages of instances / methods with costs smaller than 1010 (“success rate” of the methods).

%
𝒥AG < 1010, 𝒥𝒪ℱ ≥ 1010 8.61%
𝒥AG ≥ 1010, 𝒥𝒪ℱ < 1010 55.47%
𝒥AG < 1010, 𝒥𝒪ℱ < 1010 28.53%
𝒥AG ≥ 1010, 𝒥𝒪ℱ ≥ 1010 7.39%
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CHAPTER

6
CONCLUSIONS AND DISCUSSION

This thesis has studied discrete-time linear systems and stationary dynamic output-
feedback controllers, featuring selectable dimension nx, additive noise, jump parameters governed
by a Markov chain that is not necessarily ergodic (periodic and transient states allowed), and
detector-based observation of θ". A compact formulation for the optimization problem was
obtained, relying on an operator-based approach, which is the starting point for us to develop
the two stage 𝒪−ℱ (optimality - feasibility) algorithm. Numerical experiments with randomly
created plants and weighting matrices indicate that our method finds solutions with “feasible cost”
(𝒥 < 1010) in 84% of the 103 random instances, versus only 37.14% by the genetic algorithm.
Future research may further explore the complexity of the OF, similarly to what was done in
Section IV, and include weights in the OF to modulate the relative importance of the terms in the
partial derivatives of the optimization step.
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APPENDIX

A
APPENDIX

A.1 Matrix Derivatives
If f : Mr×d → R is a differentiable function on the domain Mr×d , we denote the partial

derivative ∂ f (X)/∂X as ∂X f (X), whenever X ,A,B,C ∈ Mr×d .

∂X tr(AXB) = AᵀBᵀ
∂X tr(AXᵀB) = BA

∂X tr(AXCXᵀB) = AᵀCᵀXBᵀ+CAXB
(A.1)

A.1.1 Derivatives

Given the cost functional

𝒥 = ∑
i∈Θ

tr
(

ρ(i)

[
0p×nc Ip

0p×nc 0p

]
𝒰

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
𝒰ᵀ

[
0nc×p 0nc×p

R(i) 0p

])
+

+(3/2) ∑
i∈Θ

tr
([

Q(i) 0n×nc

0nc×n 0nc

]
X∞(i)+

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
𝒰ᵀ

[
0nc 0nc×p

0p×nc R(i)

]
𝒰·

·

[
0nc×n Inc×nc

C(i) 0m×nc

]
X∞(i)

)
+

+(1/2) ∑
i∈Θ

tr
[
ℰi(P∞)

([
A(i) 0n×nc

0nc×n 0nc

]
+

[
0n×nc B(i)

Inc 0nc×p

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

])
X∞(i) ·

·
([

Aᵀ(i) 0nc×n

0n×nc 0nc

]
+

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
𝒰ᵀ

[
0nc×n Inc

Bᵀ(i) 0p×nc

])]
+

−(1/2) ∑
i∈Θ

tr
(

P∞(i)X∞(i)
)

(A.2)
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Derivation with respect to 𝒰 matrix, to ease the derivation we will denote every term as
follows,

𝒥 (𝒰) = 𝒥1(𝒰)+𝒥2(𝒰)+𝒥3(𝒰), (A.3)

with,

𝒥1(𝒰) = ∑
i∈Θ

tr
(

ρ(i)

[
0p×nc Ip

0p×nc 0p

]
𝒰

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
𝒰ᵀ

[
0nc×p 0nc×p

R(i) 0p

])

𝒥2(𝒰) = (3/2) ∑
i∈Θ

tr
([

Q(i) 0n×nc

0nc×n 0nc

]
X∞(i)+

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
𝒰ᵀ

[
0nc 0nc×p

0p×nc R(i)

]
𝒰·

·

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

)

𝒥3(𝒰) = (1/2) ∑
i∈Θ

tr
[
ℰi(P∞)

([
A(i) 0n×nc

0nc×n 0nc

]
+

[
0n×nc B(i)

Inc 0nc×p

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

])
X∞(i) ·

·
([

Aᵀ(i) 0nc×n

0n×nc 0nc

]
+

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
𝒰ᵀ

[
0nc×n Inc

Bᵀ(i) 0p×nc

])]
For ∂𝒰(J(𝒰)) we obtain the derivative for each term:

∂𝒰(J1(𝒰)) = ∑
i∈Θ

(
ρ(i)

[
0nc×p 0nc×p

Ip 0p

][
0p×nc Rᵀ(i)

0p×nc 0p

]
𝒰

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
+

+

[
0nc×p 0nc×p

R(i) 0p

][
0p×nc Ip

0p×nc 0p

]
𝒰

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

])

∂𝒰(J1(𝒰)) = ∑
i∈Θ

(
ρ(i)

[
0nc 0nc×p

0p×nc R(i)+Rᵀ(i)

]
𝒰

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

])

∂𝒰(J2(𝒰)) = (3/2) ∑
i∈Θ

∂𝒰

{
tr
([

0n×nc Cᵀ(i)

Inc 0nc×m

]
𝒰ᵀ

[
0nc 0nc×p

0p×nc R(i)

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

)}

= (3/2) ∑
i∈Θ

∂𝒰

{
tr
([

0nc 0nc×p

0p×nc R(i)

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
𝒰ᵀ
)}

= (3/2) ∑
i∈Θ

([
0nc 0nc×p

0p×nc R(i)

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+

[
0nc 0nc×p

0p×nc Rᵀ(i)

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

])

∂𝒰(J2(𝒰)) = (3/2) ∑
i∈Θ

([
0nc 0nc×p

0p×nc R(i)+Rᵀ(i)

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

])
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∂𝒰(J3(𝒰)) = (1/2) ∑
i∈Θ

∂𝒰

{
tr
[
ℰi(P∞)

([
A(i) 0n×nc

0nc×n 0nc

]
+

[
0n×nc B(i)

Inc 0nc×p

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

])
·

·X∞(i)
([

Aᵀ(i) 0nc×n

0n×nc 0nc

]
+

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
𝒰ᵀ

[
0nc×n Inc

Bᵀ(i) 0p×nc

])]}

= (1/2) ∑
i∈Θ

∂𝒰

{
tr
(
ℰi(P∞)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
Aᵀ(i) 0nc×n

0n×nc 0nc

])
+

+ tr
(
ℰi(P∞)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
𝒰ᵀ

[
0nc×n Inc

Bᵀ(i) 0p×nc

])
+

+ tr
(
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
Aᵀ(i) 0nc×n

0n×nc 0nc

])
+

+ tr
(
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
𝒰ᵀ

[
0nc×n Inc

Bᵀ(i) 0p×nc

])}

= (1/2) ∑
i∈Θ

([
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

])

∂𝒰(J3(𝒰)) = (1/2) ∑
i∈Θ

(
2

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+2

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

])
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Therefore,

∂𝒰(J(𝒰)) = ∑
i∈Θ

{
ρ(i)

[
0nc 0nc×p

0p×nc R(i)+Rᵀ(i)

]
𝒰

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
+

+(3/2)

[
0nc 0nc×p

0p×nc R(i)+Rᵀ(i)

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+(1/2)
(

2

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+2

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

])}

∂𝒰(J(𝒰)) = ∑
i∈Θ

{
ρ(i)

[
0nc 0nc×p

0p×nc R(i)+Rᵀ(i)

]
𝒰

[
0nc 0nc×m

0m×nc J(i)V Jᵀ(i)

]
+

+(3/2)

[
0nc 0nc×p

0p×nc R(i)+Rᵀ(i)

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
A(i) 0n×nc

0nc×n 0nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]
+

+

[
0nc×n Inc

Bᵀ(i) 0p×nc

]
ℰi(P∞)

[
0n×nc B(i)

Inc 0nc×p

]
𝒰

[
0nc×n Inc

C(i) 0m×nc

]
X∞(i)

[
0n×nc Cᵀ(i)

Inc 0nc×m

]}
(A.4)

A.1.2 Observations on FKLM and U

∑
i∈Θ

{
2 ρ(i)

[
0n 0n×p

0p×n R(i)

]
𝒰

[
0n 0n×m

0m×n J(i)V Jᵀ(i)

]
+

+

[
ℰ2(i) ℰᵀ12(i)B(i)

Bᵀ(i)ℰ12(i) γl(i)

]
𝒰

[
X2(i) X ᵀ

12(i)C
ᵀ(i)

C(i)X12(i) γm

]}
=

=−∑
i∈Θ

{[
ℰᵀ12(i)A(i)X12(i) ℰᵀ12(i)A(i)X1(i)Cᵀ(i)

Bᵀ(i)ℰᵀ1 (i)A(i)X12(i) Bᵀ(i)ℰ1(i)A(i)X1(i)Cᵀ(i)

]}
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Applying vec operator and kronecker properties,

∑
i∈Θ

{
2 ρ(i)

[
0n 0n×m

0m×n J(i)V Jᵀ(i)

]
⊗

[
0n 0n×p

0p×n R(i)

]
+

+

[
X2(i) X ᵀ

12(i)C
ᵀ(i)

C(i)X12(i) γm

]
⊗

[
ℰ2(i) ℰᵀ12(i)B(i)

Bᵀ(i)ℰ12(i) γl(i)

]}
vec(𝒰) =

=−vec
(

∑
i∈Θ

{[
ℰᵀ12(i)A(i)X12(i) ℰᵀ12(i)A(i)X1(i)Cᵀ(i)

Bᵀ(i)ℰᵀ1 (i)A(i)X12(i) Bᵀ(i)ℰ1(i)A(i)X1(i)Cᵀ(i)

]})

A.1.3 Coupled matrix linear equations for one mode

∑
i∈Θ

{
ℰ2(i)FX2(i)+ℰ2(i)KC(i)X12(i)+ℰᵀ12(i)B(i)LX2(i)+

+ℰᵀ12(i)B(i)MC(i)X12(i)+ℰᵀ12(i)A(i)X12(i)
}
= 0n

∑
i∈Θ

{
ℰ2(i)FX ᵀ

12(i)C
ᵀ(i)+ℰ2(i)Kγm(i)+ℰᵀ12(i)B(i)LX ᵀ

12(i)C
ᵀ(i)+

+ℰᵀ12(i)B(i)Mγm(i)+ℰᵀ12(i)A(i)X1(i)Cᵀ(i)
}
= 0n×m

∑
i∈Θ

{
Bᵀ(i)ℰ12(i)FX2(i)+Bᵀ(i)ℰ12(i)KC(i)X12(i)+ γl(i)LX2(i)+

+γl(i)MC(i)X12(i)+Bᵀ(i)ℰ1(i)A(i)X12(i)
}
= 0p×n

∑
i∈Θ

{
Bᵀ(i)ℰ12(i)FX ᵀ

12(i)C
ᵀ(i)+Bᵀ(i)ℰ12(i)Kγm(i)+ γl(i)LX ᵀ

12(i)C
ᵀ(i)+

+γl(i)Mγm(i)+2 ρ(i)R(i)MJ(i)V Jᵀ(i)+Bᵀ(i)ℰ1(i)A(i)X1(i)Cᵀ(i)
}
= 0p×m

(A.5)

Solving the system for one mode, i∈Θ : {1}, can be approached in𝒪(n3) using Gaussian-
elimination analytically,

ℰ2(i)FX2(i)+ℰ2(i)KC(i)X12(i)+ℰᵀ12(i)B(i)LX2(i)+ℰᵀ12(i)B(i)MC(i)X12(i) =−ℰᵀ12(i)A(i)X12(i)

ℰ2(i)KγoM +0+(ℰᵀ12(i)B(i))MγoM =−ℰᵀ12(i)A(i)βoM

γoLLX2(i)+ γoLM(C(i)X12(i)) =−βoLA(i)X12(i)

γoLMγoM +2 ρ(i)R(i)MJ(i)V Jᵀ(i) =−βoLA(i)βoM

(A.6)
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with,

γoM =
(
γm(i)−C(i)X12(i)X −1

2 (i)X ᵀ
12(i)C

ᵀ(i)
)

γoL =
(
γl(i)−Bᵀ(i)ℰ12(i)ℰ−1

2 (i)ℰᵀ12(i)B(i)
)

βoM =
(
X1(i)−X12(i)X −1

2 X ᵀ
12(i)

)
Cᵀ(i)

βoL = Bᵀ(i)
(
ℰ1(i)−Bᵀ(i)ℰ12(i)ℰ−1

2 (i)ℰᵀ12(i)
)

Replacing (4.54) and (4.52),

γoM =C(i)
(
X1(i)−X12(i)X −1

2 (i)X ᵀ
12(i)

)
Cᵀ(i) (A.7)

γoL = 3R(i)+Bᵀ(i)
(
ℰ1−ℰ12(i)ℰ−1

2 (i)ℰᵀ12(i)
)
B(i) (A.8)

Therefore we have,

ℰ2(i)FX2(i)+ℰ2(i)KC(i)X12(i)+ℰᵀ12(i)B(i)LX2(i)+ℰᵀ12(i)B(i)MC(i)X12(i) =−ℰᵀ12(i)A(i)X12(i)

ℰ2(i)KC(i)+(ℰᵀ12(i)B(i))MC(i) =−ℰᵀ12(i)A(i)(
3R(i)−Bᵀ(i)γoℰB(i)

)(
LX2(i)+M(C(i)X12(i))

)
=−Bᵀ(i)γoℰA(i)X12(i)(

3R(i)−Bᵀ(i)γoℰB(i)
)
MC(i) =−Bᵀ(i)γoℰA(i)

(A.9)

with

γoℰ =
(
ℰ1(i)−ℰ12(i)ℰ−1

2 (i)ℰᵀ2 (i)
)

(A.10)

Operating,

ℰ2(i)FX2(i)+ℰ2(i)KC(i)X12(i)+ℰᵀ12(i)B(i)LX2(i)+ℰᵀ12(i)B(i)MC(i)X12(i) =−ℰᵀ12(i)A(i)X12(i)

ℰ2(i)KC(i)+(ℰᵀ12(i)B(i))MC(i) =−ℰᵀ12(i)A(i)(
3R(i)−Bᵀ(i)γoℰB(i)

)
LX2(i)−Bᵀ(i)γoℰA(i)X12(i) =−Bᵀ(i)γoℰA(i)X12(i)(

3R(i)−Bᵀ(i)γoℰB(i)
)
MC(i) =−Bᵀ(i)γoℰA(i)

(A.11)

A.1.4 Iterative general Sylvester matrix equations

We present two ways of solving the matrix equation, both of them reducing the equation
into a general sylvester equation form.

First we show the existence of the solution,(
∑
i∈Θ

{
2 ρ(i)

[
0n 0n×m

0m×n J(i)V Jᵀ(i)

]
⊗

[
0n 0n×p

0p×n R(i)

]
+ γM(i) ⊗ γL(i)

})
vec(𝒰) =

=− vec
(

∑
i∈Θ

{[
0n In

Bᵀ(i) 0p×n

]
ℰi(P∞)

[
A(i) 0n

0n 0n

]
X∞(i)

[
0n Cᵀ(i)

In 0n×m

]})
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renaming,

D =− vec
(

∑
i∈Θ

{[
0n In

Bᵀ(i) 0p×n

]
ℰi(P∞)

[
A(i) 0n

0n 0n

]
X∞(i)

[
0n Cᵀ(i)

In 0n×m

]})

Γ =

{
∑
i∈Θ

(
2 ρ(i)

[
0n 0n×m

0m×n J(i)V Jᵀ(i)

]
⊗

[
0n 0n×p

0p×n R(i)

]
+ γM(i) ⊗ γL(i)

} (A.12)

We have,

Γ vec(𝒰) = D (A.13)

So if Γ is non-singular vec(𝒰) exists, and it is the solution of,

vec(𝒰) = Γ
−1D (A.14)

As Γ is almost always near to singular so instead of using the inverse we use the generalized
Moore-Penrose pseudoinverse,

vec(𝒰) = Γ
+D (A.15)

We use a gradient iterative solution for based on ??, in that sense we accommodate our matrix
equation to the form of a general sylvester equation,

∑
i∈Θ

Ã jXB̃ j = F̃ (A.16)

Ã1XB̃1 + Ã2XB̃2 + · · ·+ ÃNXB̃N = F̃ (A.17)

for Ã, B̃ ∈ Mr×d with j the index of Θ.
If we rename,

RΓ(i) = 2 ρ(i)

[
0n 0n×p

0p×n R(i)

]
; JΓ(i) =

[
0n 0n×m

0m×n J(i)V Jᵀ(i)

]
(A.18)

Then we have,(
γM(1) 𝒰 γL(1)

)
+

(
γM(2) 𝒰 γL(2)

)
+ · · ·+

(
γM(N) 𝒰 γL(N)

)
+

+

(
RΓ(1) 𝒰 JΓ(1)

)
+

(
RΓ(2) 𝒰 JΓ(2)

)
+ · · ·+

(
RΓ(N) 𝒰 JΓ(N)

)
= D

(A.19)

We see that γL and RΓ, γM and JΓ have the same dimensions respectively, considering that each
matrix is indexed by i ∈Θ whose cardinality is 𝒩 , we can group them in new indexing sets with
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cardinality of ∈𝒩 ,

Ã =

{
γL(1), . . . ,γL(N),RΓ(1), . . . ,RΓ(𝒩 )

}
(A.20)

B̃ =

{
γM(1), . . . ,γM(N),JΓ(1), . . . ,JΓ(𝒩 )

}
(A.21)

and considering a new index set, ϒ := 1, . . . ,2N We have,

∑
q∈ϒ

Ã(q) 𝒰 B̃(q) = D (A.22)

And the gradient iterative solution is given by,

Algorithm 2 – GradIt for Grl Sylvester equation
Result: 𝒰
Initialize 𝒰0(i)

µ = 1/[∑2N
i=1‖ ˜A(i)‖2‖ ˜B(i)‖2]

while k < maxIter do

𝒰k(i) = 𝒰k−1(i)+µÃᵀ(i)
[

D−∑
2N
j=1 Ã( j)𝒰k−1B̃( j)

]
B̃ᵀ(i)

𝒰 = [𝒰k(1)+𝒰k(2)+ · · ·+𝒰k(2N)]/2N
if |𝒰k−𝒰k−1|< minTol then

k++
BREAK

end
k++

end
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