• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2012.tde-10092012-163429
Documento
Autor
Nombre completo
Lucas Vendramin
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2012
Director
Tribunal
Monard, Maria Carolina (Presidente)
Bruno, Odemir Martinez
Figueiredo, Mauricio Fernandes
Título en portugués
Estudo e desenvolvimento de algoritmos para agrupamento fuzzy de dados em cenários centralizados e distribuídos
Palabras clave en portugués
Agrupamento de dado distribuído
Agrupamento de dados
Resumen en portugués
Agrupamento de dados é um dos problemas centrais na áea de mineração de dados, o qual consiste basicamente em particionar os dados em grupos de objetos mais similares (ou relacionados) entre si do que aos objetos dos demais grupos. Entretanto, as abordagens tradicionais pressupõem que cada objeto pertence exclusivamente a um único grupo. Essa hipótese não é realista em várias aplicações práticas, em que grupos de objetos apresentam distribuições estatísticas que possuem algum grau de sobreposição. Algoritmos de agrupamento fuzzy podem lidar naturalmente com problemas dessa natureza. A literatura sobre agrupamento fuzzy de dados é extensa, muitos algoritmos existem atualmente e são mais (ou menos) apropriados para determinados cenários, por exemplo, na procura por grupos que apresentam diferentes formatos ou ao operar sobre dados descritos por conjuntos de atributos de tipos diferentes. Adicionalmente, existem cenários em que os dados podem estar distribuídos em diferentes locais (sítios de dados). Nesses cenários o objetivo de um algoritmo de agrupamento de dados consiste em encontrar uma estrutura que represente os dados existentes nos diferentes sítios sem a necessidade de transmissão e armazenamento/processamento centralizado desses dados. Tais algoritmos são denominados algoritmos de agrupamento distribuído de dados. O presente trabalho visa o estudo e aperfeiçoamento de algoritmos de agrupamento fuzzy centralizados e distribuídos existentes na literatura, buscando identificar as principais características, vantagens, desvantagens e cenários mais apropriados para a aplicação de cada um deles, incluindo análises de complexidade de tempo, espaço e de comunicação para os algoritmos distribuídos
Título en inglés
Study and development of fuzzy clustering algorithms in centralized and distributed scenarios
Palabras clave en inglés
Clustering
Distributed clustering
Resumen en inglés
Data clustering is a fundamental conceptual problem in data mining, in which one aims at determining a finite set of categories to describe a data set according to similarities among its objects. Traditional algorithms assume that each object belongs exclusively to a single cluster. This may be not realistic in many applications, in which groups of objects present statistical distributions with some overlap. Fuzzy clustering algorithms can naturally deal with these problems. The literature on fuzzy clustering is extensive, several fuzzy clustering algorithms with different characteristics and for different purposes have been proposed and investigated and are more (or less) suitable for specific scenarios, e.g., finding clusters with different shapes or working with data sets described by different types of attributes. Additionally, there are scenarios in which the data are (or can be) distributed among different sites. In these scenarios, the goal of a clustering algorithm consists in finding a structure that describes the distributed data without the need of data and processing centralization. Such algorithms are known as distributed clustering algorithms. The present document aims at the study and improvement of centralized and distributed fuzzy clustering algorithms, identifying the main characteristics, advantages, disadvantages and appropriate scenarios for each application, including complexity analysis of time, space and communication for the distributed algorithms
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
LucasVendramin.pdf (2.48 Mbytes)
Fecha de Publicación
2012-09-10
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2019. Todos los derechos reservados.