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RESUMO

MENDONCA, H. M. J. DE. Reduc¢ao de campo médio em redes esparsas. 2023. 100
p- Tese (Doutorado em Ciéncias — Ciéncias de Computacdo e Matematica Computacional) —

Instituto de Ciéncias Matematicas e de Computagdo, Universidade de Sao Paulo, Sdo Carlos —
SP, 2023.

A sincronizac¢do é um fendmeno observado em diversos campos cientificos, que vao desde
sistemas mecénicos e bioldgicos até comportamentos sociais. O modelo de Kuramoto, desen-
volvido nas décadas de 1970 e 1980, revolucionou a compreensao da sincronizagao espontanea
em grandes sistemas de elementos interagentes. Nesse modelo, a sincronizagdo € quantificada
utilizando o parametro de ordem, que representa o centroide de pontos distribuidos na circunfe-
réncia unitaria. O modelo de Kuramoto revelou a existéncia de trés estados distintos: assincrono,
parcialmente sincrono e completamente sincrono. Enquanto o modelo cldssico de Kuramoto
assume uma configuracio de rede de todos para todos, a maioria das redes do mundo real sdao
esparsas. Compreender a sincronizagdo em redes esparsas € os efeitos do tamanho finito do

sistema na sincronizagdo € um problema de pesquisa desafiador.

Para abordar esse problema, adotamos uma estrutura de sistema dindmico usando mapas de
Mobius na circunferéncia unitdria complexa. Investigamos a transicdo para a sincroniza¢ao
em redes complexas densas e esparsas, onde os sistemas evoluem por meio de mapas em vez
de equacdes diferenciais ordindrias. Exploramos os efeitos do tamanho finito do sistema nos
fendmenos de sincronizagdo e examinamos o comportamento de escala do tempo médio para a
sincronizac¢do. Surpreendentemente, descobrimos que o estado incoerente pode ser metaestivel
para determinados valores de acoplamento e densidades de links, desafiando suposi¢des con-
vencionais. Ao analisar as equacdes de campo médio, construimos um diagrama de bifurcagdo
para redes infinitamente grandes e observamos a presenca de transientes cadticos com tempos de
escape distribuidos exponencialmente. Isso sugere que o sistema passa por periodos transitorios
de assincronia antes de atingir um estado sincronizado. Nossa pesquisa proporciona uma com-
preensdo abrangente da sincronizacdo em redes complexas, lancando luz sobre o comportamento
de sistemas do mundo real. Ela contribui com percepg¢des valiosas sobre a dindmica de redes
de tamanho finito e desafia suposi¢Oes existentes. Nossas descobertas tém implicacdes para a
dindmica de redes e aprimoram nossa compreensao dos fendmenos de sincronizacdo em diversos

sistemas.

Palavras-chave: sincronizacio, redes densas, redes esparsas.






ABSTRACT

MENDONCA, H. M. J. DE. Mean-field reduction in sparse networks. 2023. 100 p. Tese (Dou-
torado em Ciéncias — Ciéncias de Computacdo e Mateméatica Computacional) — Instituto de
Ciéncias Matematicas e de Computacao, Universidade de Sdo Paulo, Sdo Carlos — SP, 2023.

Synchronization is a phenomenon observed in various scientific fields, ranging from mechanical
and biological systems to social behavior. The Kuramoto model, developed in the 1970s and
1980s, revolutionized the understanding of spontaneous synchronization in large systems of
interacting elements. In this model, synchronization is quantified using the order parameter,
which represents the centroid of points distributed on the unit circle. The Kuramoto model re-
vealed the existence of three distinct states: asynchronous, partially synchronous, and completely
synchronous. While the classic Kuramoto model assumes an all-to-all network configuration,
most real-world networks are sparse. Understanding synchronization in sparse networks and the

effects of finite system sizes on synchronization is a challenging research problem.

To address this problem, we adopt a dynamical system framework using Moebius maps on
the complex unit circle. We investigate the transition to synchronization in both dense and
sparse complex networks, where systems evolve through maps instead of ordinary differential
equations. We explore the effects of finite system sizes on synchronization phenomena and
examine the scaling behavior of the mean time to synchronization. Surprisingly, we discover
that the incoherent state can be meta-stable for certain coupling strengths and link densities,

challenging conventional assumptions.

By analyzing mean-field equations, we construct a bifurcation diagram for infinitely large net-
works and observe the presence of chaotic transients with exponentially distributed escape times.
This suggests that the system experiences transient periods of asynchrony before reaching a
synchronized state. Our research provides a comprehensive understanding of synchronization in
complex networks, shedding light on the behavior of real-world systems. It contributes valuable
insights into the dynamics of finite-sized networks and challenges existing assumptions. Our find-
ings have implications for network dynamics and enhance our understanding of synchronization

phenomena in diverse systems.

Keywords: synchronization, dense networks, sparse networks.
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Figure 32 — Statistics of transient times f,, to synchronization. (a—c) In the fully con-
nected network; (d—f) in random networks of various link densities p = k/N.
The upper panels show straight lines in semi-logarithmic plots of cumulative
tail distributions of the transient times, demonstrating the rate character of
the transition process. The middle panels show the estimated average tran-
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and link densities p. The mean field critical coupling strength &y = 2.0 and
the maximum observation time 7" are marked by dashed lines. In the globally
coupled system on the left-hand side, the transient time depends strongly on
the system size NV, whereas in dense networks and above &y, the transient
time depends strongly on the link density p = k/N, but not on the system
size. We demonstrate the scaling of the transition times in the lower panels.
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CHAPTER

INTRODUCTION

Synchronization refers to the adjustment of rhythms observed in various fields of science,
such as mechanical, biological, physical systems, and social behavior (PIKOVSKY; ROSEN-
BLUM; KURTHS, 2003; STROGATZ, 2003; WINFREE, 2001). One simple example of synchro-
nization is the phenomenon of metronomes shaking side by side and eventually synchronizing
their movements'. The earliest recorded observation of synchronization dates back to 1665 when
the Dutch physicist Christiaan Huygens noticed that two pendulum clocks hanging on the wall
swung in harmony, even though there was no apparent reason for it, while he was confined to his
bed due to illness(PIKOVSKY; ROSENBLUM; KURTHS, 2003).

In the 1970s and 1980s, the work of Kuramoto had a significant impact on the scientific
community, particularly in understanding spontaneous synchronization in systems with a large
number of interacting elements (KURAMOTO, 1975; KURAMOTO, 1984). This model, often
referred to as the Kuramoto model, provided insights into fundamental aspects of synchronization
and led to numerous extensions and new approaches (WINFREE, 2001; STROGATZ, 2000).

Kuramoto quantified the overall synchrony using the order parameter given by
o 1 N 0
re’> = —Y %, 1.1
N J;l (1.1)

where 1 is the order parameter representing the centroid of N points distributed on the unit circle

in the complex plane (see fig. 1).

Kuramoto observed that the behavior of the points changed as they moved around the
unit circle. In one extreme, when the elements were not moving together, the value of the
order parameter was approximately zero, indicating an asynchronous state (see fig. 1 (A)). In
the opposite extreme, when the order parameter was close to one, the system was considered
synchronous (fig. 1 (B)). Kuramoto referred to a state with intermediate values of r as partial
synchronization.

' <https://www.youtube.com/watch?v=W 1TMZASCR-I>



https://www.youtube.com/watch?v=W1TMZASCR-I
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Figure 1 — Illustration of the observable r. In part (A), they are uniformly spread the circle with » = 0. In
part (B), we have that all elements are moving on together, implying that r ~ 1

IITI

&

Figure 2 — Transition in the globally coupled Kuramoto model. Note that for € < & the value of the
e /= 0, implying that the system is not synchronized. Considering € > €., we have block (II),
where the system is partially synchronized, and block (III), where the system is completely
synchronized.

In his work (KURAMOTO, 1984), Kuramoto discovered that the system exhibited
three different behaviors depending on the values of a parameter €: asynchronous, partially

synchronous, and completely synchronous states (fig. 2, blocks I, II, and III, respectively).

The classic Kuramoto model is based on an all-to-all configuration, where all elements
are connected to each other. This configuration can be represented by a fully connected network,
which is the densest complex network possible, with a density (d) equal to 1. However, most
natural networks are sparse, meaning that d < 1. The transition to collective behavior in such

sparse networks is not well understood, and this motivates our research problem:

— we investigate the transition to synchronization in both dense and sparse complex networks,
considering systems that evolve through maps rather than ordinary differential equations.

We also aim to explore the effects of finite system sizes on synchronization phenomena.

To address this problem, we adopt a dynamical system framework using Moebius maps
as in (GONG; TOENIJES; PIKOVSKY, ) on the complex unit circle, which act as phase dynamics
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in Bernoulli maps
o(t+1)=(2¢(t) mod2x). (1.2)

The resulting dynamics can be described by

eZi@,L. + Z2

T T eor (-

2(t+1) =M (z(t)*,0(t),1(t))

where z(t) represents the state of the system at time ¢, M denotes the Moebius map, and 7 and ®

are parameters within specific ranges: T € (—1,1) and ® € (0, 27| respectively.

To summarize our findings, we used mean-field equations to construct a bifurcation
diagram for N — co. Our analysis revealed several interesting observations. First, we observed
the presence of chaotic transients characterized by exponentially distributed escape times. This
indicates that the system experiences transient periods of asynchrony behavior before reaching a

synchronized state.

Furthermore, we investigated the scaling behavior of the mean time to synchronization.
By examining the relationship between system size and the time required for synchronization to
occur, we gained valuable insights into the dynamics of finite-sized networks. Surprisingly, we
discovered that the incoherent state, where elements are not synchronized, can be meta-stable for
coupling strengths exceeding the critical coupling in the mean-field model depending on the link
density p = <Ni>, where (k) is the mean node degree size of neighbors and N is the size of the
network. This finding challenges conventional assumptions and sheds new light on the behavior

of complex networks with finite sizes.

In conclusion, our research provides a comprehensive understanding of synchronization
in complex networks. By employing mean-field equations and examining both dense and sparse
network configurations, we uncovered the presence of chaotic transients, studied the scaling
behavior of synchronization time, and identified the meta-stability of the incoherent state. These
results contribute to the broader field of network dynamics and offer valuable insights into the

behavior of real-world systems

Next, we present the text structure necessary to get to the problem. In chapter 2, We
start studying some background about ordinary differential equations in R” for a system with
exponentially stable limit cycle denoted by y. Thus, it allows us to reduce and analyze the

behavior of this periodic orbit through a phase 0 in T.

Moving on, in chapter 3, we introduce some basics and necessary concepts about graphs.
Moreover, from chapter 2 and chapter 3 we define the dynamics in complex networks in chapter 4.
We also present some results and simulations using the all-to-all Kuramoto Model. In chapter 5,
we present some concepts about probability theory, including stochastic process to help us

describe the internal fluctuations.
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CHAPTER

PHASE MODEL

In this chapter, we give some backgrounds about ordinary differential equations, and
we aim to study the asymptotic behavior of periodic solutions for certain initial value problems
(I.V.P). Furthermore, we analyze the comportment of the system, considering a perturbation on
that.

2.1 |Initial value problem and flow

Consider the following initial value problem
x =f(x
f(x) o
x(0) = xo
where x € R”, f € Ck(U,R")I, k> 1, and U is an open subset of R". Since f is a function of
class C*, using the Picard-Lindel6f theorem (see Theorem 2.2 in (TESCHL, 2012), p. 38), the

eq. (2.1) has a unique local solution
u:J—-U (2.2)

with u € C* such that u(0) = xo, and J C R is the interval where the solution is defined for 0 € J.

Remark. For the reason that the vector field in eq. (2.1) is time independent, we could ask for
the solution starting at x(79) = xo. By adjusting the domain J in such way that for a fixed 1,
t +— t +to. Thus, we can define v(¢) = u(t + 1) for ¢ and #( in this new time-shifted domain.

Since eq. (2.1) has a unique solution at every point x defined on the time interval J,, we
introduce the set
M= |JJx{x}C(RxU) (2.3)
xeU
and we define the map

T:M—U (2.4)

I CK(U,R") denotes the set of functions U — R" having continuous derivatives up to order k.
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such that
(t,x) = T (t,x) (2.5)

is called local flow of the differential equation. For the sake of simplicity, we sometimes can

write 7 (x) = 7 (t,x).
The set
Iy, ={T(t,x0) 1t €Jy,} (2.6)

is the orbit through xo € U. Note that

u(t) = J(t,xg), such that,
u(0) = 7(0,x0), (2.7)

for 0 and all r € Jy, and xg € U. If t 45 € Jy, then u(r + ) is also a solution at y = u(s) and in
particular J, = s +J,. Then, as consequence we note that for x € U and s € J,, we have

T (t+s,%0) =T (t,7(s,%)) (2.8)

forallt € J7(, ). Thus, the flow satisfies two properties on I'y,

(a1) 7(0,x0) = xo,
(@) T(t+s,x0) =T (t,7 (s,x0)), forall xo € U and t,s € J,.
The condition (al) implies that
7 (0,x) =x, (2.9)

and the condition (a2) is called group property of the flow. Note that if s = —¢, we have
T(t+s,x) =T (s+1,x) =x. (2.10)

Implying that for all x € U, under the operation defined in (a2), the sets I'y are an additive group.

Morever, .7 is an invertible function of x for each ¢ € J,, such that
(T (t,%)] " = T (~1,x) (2.11)

for all x € U. The set M is open and the flow is a diffeomorphism (see Theorem 6.1 in Teschl

(2012), p. 189 for more information).

The solution # might not exists for all # € R, however, if the solution never leaves a
compact set K or if f grows at most linearly with respect to x, we can extend the solution for all
t € R4, and likewise for negative time (see Corollary 2.15 in Teschl (2012), p. 52). Consequently,
following eq. (2.7), we also can extend the definition of local flow, for all r € R .
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2.2 Limit cycle and its stability

For now, we assume that eq. (2.1) has a periodic orbit y C R”, i.e., there is a T > 0, such
that y(r +T7) = y(¢) for all t € R, where T is the period of the periodic orbit. Since f in eq. (2.1)

is at least a C' function, we can linearize the system setting

x(t) = y(t) +y(t) (2.12)

and expanding f in a Taylor series around () to obtain

flx®)] = fly@)] + Dfly(0)][x(r) — v(2)] + R(x), (2.13)

where R is the Lagrange remainder, and by eq. (2.12), it becomes
(@) +y(@)] = fly@)] + DfTy(@)ly(0) + R(y)- (2.14)
Moreover, note that f[y(z) + y(t)] = f[y(¢)] + y(¢) implying that
y(t) = Df[y(@)]y(t) + R(y). (2.15)

where Df[y(t)] is jacobian of the system evaluated at the point y(z) € R". Neglecting the

remainder we have
() = A(t)y(t),y(to) = yo, (2.16)

where A(t) = Df[y(t)]. Moreover, by the fact of y to be periodic implies that

A(t+T)=A(®). (2.17)

We have that linear combination of solutions are again solutions. In particular, the

solution corresponding to the initial condition of eq. (2.16) can be written as

n

u(t,10,y0) = Z u(t,10, 87)yoj, (2.18)

where §; € R” represents the canonical basis with value one in the entry j, and yo; is the

Jjth—component of yy.

Thereby, it is possible to define a linear map yo — u(,y,yo) given by

I/t(t,l(),yo) = %(tvl())y(% (2.19)
where
U (t,t0) = [u(t,t0,61),...,u(t,t0,0n)] (2.20)
for each column vector u(z,1y, ;) € R".

Note that
AU (t,tg) = [A(t)u(t,t9,61),...,At)u(t,to, )], (2.21)
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implying that each column of eq. (2.21) is a solution of the eq. (2.16). Thus, the whole matrix

% (t,19) solves the matrix valued initial value problem
{U (t,10) =A(t)% (t,10), % (10,10) =1 (2.22)

where we called % (z,1y) as principal matrix solution (at 7p). By the fact of the eq. (2.17), we
can see that % (t + T,tp + T') also solves eq. (2.22), consequently, by the uniqueness

Ut+T,00+T)=U(t,1).

If we consider an initial condition on 7, it is possible to investigate what happens if the
orbit move on by one period. Then, we use the well-known matrix, called monodromy matrix,
given by

M(ty) = U (to+T,1p)- (2.23)

Note that, M (t) is also periodic, i.e.,

M(t()—|—T) :M(l‘()). (2.24)

2.2.1 Asymptotic stability of periodic orbits

Studying the eigenvalues of the monodromy matrix is possible to know about the stability
of periodic orbits, in special when the orbit is asymptotically stable. The following result shows

that a monodromy matrix has at least one unit eigenvalue.

Theorem 2.2.1 (Theorem 4.50 in Meiss (2017), p. 146). The monodromy matrix M(ty) for
the linearization of the system eq. (2.1), around the periodic orbit vy, always has at least one

eigenvalue with value 1.

For the next results about the stability of the periodic orbit 7y, consequently, the eigenval-
ues of the monodromy matrix, it is necessary to introduce what is a submanifold and define a

Poincaré map.

Definition 2.2.1 (Submanifold). A (n— 1)—dimensional surface X is called of a submanifold if
it can be written as
r={xeV:8x)=0} (2.25)

where V C R" is open, S € Ck(V), and %9 #0forall x € X.

The submanifold is transversal to the vector field f if

(g) F(x)£0 (2.26)

for all x € X and it will be named as a cross-section of the vector field f.
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Take x € U and consider ¢ € J,. Let X be a submanifold as defined in eq. (2.2.1), and
transversal to the vector field in eq. (2.1), such that .7 (¢, x) € X. Then (see Lemma 6.9 in Teschl
(2012), p. 197 for more information) there is a neighborhood V around x and 7 € ck (V,R) with
7(x) =1/, such that

T(1(y),y) €X (2.27)

for all y € V. This is important because as 7 is periodic, and considering the cross-section ¥ we
can define the Poincaré map as
BK:X—L, (2.28)

such that
Pe(y) = 7 (t(),y), (2.29)

for all y € V. Note that this replaces the flow of the n—dimensional continuous vector field for
an (n — 1)—dimensional map. This P maps X to itself and for every fixed point of the map, this

corresponds to a point along the periodic orbit . Then, we have the following results

Theorem 2.2.2. [Theorem 12.4 in Teschl (2012), p. 319] If M(ty) is a monodromy matrix of the
periodic orbit y, for some initial t) € R and xo € Y. Then, the eigenvalues of the DPs(xo) plus
the single value 1 coincide with the eigenvalues of the monodromy matrix My, (to). In particular,

the eigenvalues are independent of the base point xy and the transversal section ¥.

Lemma 2.2.3. [Lemma 12.2 in Teschl (2012), p. 319] The periodic orbit y of the eq. (2.1)
is asymptotically stable if and only if xy € v is an asymptotically stable fixed point of Py (the

eigenvalues of DPs(xg) are inside the unit circle).

Since all the eigenvalues of the Poincaré map are inside the unit circle. We specify the
decay rate (see Teschl (2012), p. 71 for more details) of the orbits in a neighborhood around 7,

1.e., there are positive constants C, ¢ such that for every y around y
d(7(t,y),y) <Ce'*, for >0, (2.30)
where

d(7 (t,y),7) = inf{| T (1,y) —x0| : x0 € 1} (2.31)

is the point-set distance between the flow and the periodic orbit y. Thus, in the rest of this chapter,
we will consider that the eq. (2.1) will have an exponentially stable periodic orbit, called an

exponentially stable limit cycle.

2.3 Phase oscillators

Recall eq. (2.1), since it has a periodic orbit assumed to be an exponentially stable limit
cycle, we parametrize
y:S! - R” (2.32)
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Figure 3 — The straight line represents the periodic phase 6. It parameterizes the motion of the point along
the 7. The initial phase 6y (shown by a blue circle) can be chosen arbitrarily.

for new variable 6 € S', called phase. Thus, for every phase on S! we identify to a unique point
on the curve 7, such that,
¥(6) = point on the curve ¥, (2.33)

as shown in eq. (3). By invariance of y under the flow, i.e., if xo € y implies that .7 (¢,xy) € ¥ for
all time, and the additive property, together with its parametrization. We have for a y(6y) € v
that y(z + 6p) also belongs to y. Implying that the evolution of a point on 7 is simply a phase
shift for every 6 € S'.

Assuming that the 6 are not static, i.e, it is moving on in respect time on S'. We choose

a monotonic function g : S! — R such that

0 =g(9), (2.34)
and introduce a new time T, where
t—1T=g(0), (2.35)
implying that
do(t) do(r)dr
= g 2.36
dt dt dt ( )
and using eq. (2.35) to obtain
do(r)
0) = 0
“e(0) = s(6),
de
@ _ 2.37)
drt

where by this choices of parametrization and new time, we have that the flow evolves uniformly

in time on the curve.

The key is to extend 0 to a neighborhood of 7, such that if we introduce a weak pertur-
bation in the ordinary differential equation it will be possible to study the system based on the

information about the isolated system (the orbit 7).
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We know that for every point around 7, the orbit will converge exponentially fast to 7.
The neighborhood where it happens is

B(y):={x€eU: }Lrgod(ﬁ(t,x),y) =0} (2.38)
where U C R",
d(7 (t,x),y) =inf{| T (t,x) = ¥(1)| : y(t) € 7} (2.39)

is the point-set distance similar to eq. (2.31), and the set B(y) it is called of basin of attraction of
Y (GUCKENHEIMER; HOLMES, 1983). Furthermore, by construction, for each point zg € B(7y)

we can assign a unique point 6y € S! as
®:B(y) —S!
) (2.40)
20 — O (z0) = 6o,

such that

Definition 2.3.1 (Asymptotic phase value(WINFREE, 1967)). Consider a point zg € B(y) and
¥(60) = x0 € 7. If

lim |7 (t,20) — ¥t + )| =0, (2.41)
we say that zg and x¢ has the same asymptotic phase 6y. We denote the asymptotic phase of zg
by O(z9) as in eq. (2.40).

The next key concept is:

Definition 2.3.2 (Isochron). Consider a set of points such that the asymptotic phase function is

constant, i.e.,
Ly = {20 € B(Y) : ©(z0) = X0} (2.42)

where xo € ¥. This set is an isochron with base point xq (see fig. 4).

Isochrons are tools to help in the qualitative analysis of oscillators since the behavior of
points on the same isochron looks almost the same. The following result tell us informations

about these sets.

Theorem 2.3.1. Consider the eq. (2.1), where the flow 7 is a function of class C*, with k > 1.
Assume the system has an exponentially limit cycle y and for a small € > 0, let B¢(7y) C B(Yy) be
a neighborhood of vy, such that for every inital condition 7o € B(Y) it is attracted to Y when time
goes to infinity. Then,

1. there is a unique function
oy : M — N,

withM CR, NCR" ! and M x N = Be () such that I, is an invariant graph of @ under

g. It means
g(graph(oy)) = graph(oky); (2.43)
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Figure 4 — Isochrons I, and I, inside the basin of attraction. The isochrons foliate the whole basin of
attraction and the flow sends point on isochrons into isochrons. All the points on the same
isochron have identical asymptotic phase values.

where
graph(oy) =1, = {(u,v) € Be(y) :Yu € M,3lv € N, such that v = o, (u)}, (2.44)
where g is a time one map of the flow.

2. for every x #yin Y, I, is mapped to I, under the time one map g;

3. the
UL (2.45)

xey

covers the entire neighborhood B¢ (y) of y, where for every x,y € v, I, (1, = 0.
Proof. See A. ]

Analytically is not always possible to compute isochrons and the techniques differs from
different problems. Let us consider the simple planar example in polar coordinates
o= (1—r)r?
6 = r (2.46)

The system has an stable limit cycle when r = 1 and the basing of attraction is the whole plane,

with the point at the origin removed. On the limit cycle the asymptotic phase is only 0 and the
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asymptotic phase function around the limit cycle could be defined as
O(r,0)=0—f(r) (2.47)

for some function f, such that f(1) = 0. The isochrons will be the level curves of eq. (2.47) for
different values of ® € [0,27), i.e,
O(r,0)=C, (2.48)

where C is scalar. After some computations we can find explicitly an equation of the asymptotic

phase depending on (r, 0), given by

1
O(r0)=0+1—-, (2.49)

r

where the isochrons are draw in figure 5.

Figure 5 — Illustration of the isochrons (dashed lines) of the system (2.46). Points on the same isochron
have identical asymptotic phase values, e. g., B and C. The point B outside the limit cycle y has
asymptotic value (equals to C) greater than A, even A and B sharing the same 6 value between
the x-axis and the dashed yellow curve.

2.4 Perturbed phase system

The fact of considering local behaviors near asymptotically stable limit cycles allow
us to introduce some mathematical foundations about normally hyperbolic invariant manifolds
(HOPPENSTEADT; IZHIKEVICH, 1997; ELDERING, 2013) and results about the persistence
of this subject under weak perturbations (FENICHEL; MOSER, 1971; HIRSCH; PUGH; SHUB,
1977).

Let M be an invariant manifold?, it is defined to be a Normally Hyperbolic Invariant
Manifold if in the transversal directions to M, the linearization of the flow has spectrum values
separate of the imaginary axis and the rate of the contraction in the transversal directions are
greater than the horizontal ones along to the manifold (see eq. (6)). Then, by the previous section,

Y is a normally hyperbolic invariant manifold.
2

Briefly, a manifold is a topological space that locally resembles Euclidean space near each point
(GUILLEMIN; POLLACK, 2011).



30 Chapter 2. Phase Model

Figure 6 — Adapted from (ELDERING, 2013) where we show the transversal directions to the normally
hyperbolic invariant manifold M, where the double arrows indicate a convergence rate greater
than the single ones.

An important result related to normally hyperbolic invariant manifold is the persistence
((FENICHEL; MOSER, 1971; HIRSCH; PUGH; SHUB, 1977), because if a system has a
normally hyperbolic invariant manifold M and it is perturbed by a weak perturbation, the new

one still has the object, called M., which is eé—close to M.

Let us recall eq. (2.1) having an asymptotically stable limit cycle y being perturbed as
follows
x=f(x)+ep(x1), (2.50)

where x € R”, p(x,t+T) = p(x,t) for all t > 0 and smooth with respect to its arguments, and
€ < 1 is a small parameter indicating the intensity of the perturbation. Using the result about the
persistence of normally hyperbolic invariant manifold we have that the eq. (2.50) will have a

stable limit cycle ¥ of order €—close to 7.

If € =0, and xo € B(y) such that .7 (t,x0) € B(y). By eq. (2.40) and applying the chain
rule we have

de(r) _ d[®oF](x)
da dt 5D

= DO(J(x0))- f(Fi(x0)),

where DO(.7;(xp)) is the jacobian of ® at .7;(xg). Thus, by eq. (2.37) the phase function should

satisfies

DO(F(x0)) - f(T(x0)) =1 (2.52)
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in the basin of attraction of 7.

If € # 0, using the theorem 2.3.2, furnished by Hagos (2019) p. 32. We can compute the
evolution of the phase function ® in respect the time, applied at the point ¥ as
do(t) d[®o7](r)

= 2.53
dt dt ( )

= DO(¥(t))-[f(¥(1)) +ep(7(r),1)].

Since ¥(¢) is €—close to ¥(t), we set
y(t) =7y(t)+ O(¢€). (2.54)

By the fact the vector field, f, the phase function @, and p are smooths. Considering a neighbor-

hood of 7y, we can expand them in Taylor series around € = 0 to obtain

DO[y(1)]f[y(t)] +eDO[y(1)|p[¥(1).1] + O (€). (2.55)

Then, using the fact of eq. (2.52) holds in the basin of attraction of y (including 7 itself), and
since 0 < € < 1, we have that eq. (2.53) becomes

AU _ 1 4 ep@ly(1)]plr().1] (256)

which is the evolution of the perturbed phase oscillator.
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CHAPTER

COMPLEX NETWORK EXAMPLES

We aim to show in this chapter some examples of complex networks. The complex
systems arise in a wide range of applications such as social relations, e.g., as collaboration and
citation networks of scientists (NEWMAN, 2001), the World-Wide Web (BRODER et al., 2000),
power grids (PAGANI; AIELLO, 2013), and so on. Each structure of such systems affect their
performance, e.g., the topology of social networks affects the spread of information or disease
(STROGATZ, 2001).

For behind applications of the complex networks, the mathematical foundation is fur-
nished by the theory of graphs. Then, in the first sections, we intend to present some basic ideas

backward of graph theory before to go into some examples of complex networks.

3.1 Graphs

The graphs usually stem from arbitrary abstractions whereas networks are more often
constructed from measured data (SMALL; HOU; ZHANG, 2014). They are usually denoted by
G = (AN ,E), where .4/ C N is the set of the vertices of the graph, and E C .4 x .4 denotes
the set of edges of the graph. Each edge is a connection between two of the .4 vertices. Usually,

vertices and edges are translated as nodes and links in complex network analysis.

From now we consider two types of graphs (complex networks) in the text

Definition 3.1.1 (Directed). A graph G is said to be a directed graph if
E={(i,j):i# jforalli,je 1}, 3.1)
where the condition i # j implies that we are not considering self-loops in the graph.

and undirected graph, i.e., whenever (i, j) € E, then also (j,i) € E for all i, j € .4". We assume
that 4 = [N] ={1,2,...,N} is the set of labeled nodes. Moreover, there is other way to describe
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the graph G = ([N], E), which is from the adjacency matrix, i.e., a N x N matrix A = (A;}); jen]
satisfying
1,if (i,j) € E,
ij = . (3.2)
0, otherwise.
whose their entries encode the topology of the graph. An observation is that the adjacency matrix

of an undirected graph is symmetric, 1.e.,
A=A (3.3)

for all i, j € [N]. In the fig. 7 we ilustrate the directed and undirected graphs with their respective

adjacency matrices.

o=

EOO -
NP
e e R
—_O - O

S — o
(el e N
—_O O -

Figure 7 — (a) directed graph and its respective adjacency matrix A, and (b) a undirected graph.

From a directed graph, every vertex i has a respective in-degree (k;,) and out-degree
(kout), 1.€., the numbers of incoming and outgoing edges represented as the head and nock of an
arrow, respectively (see figure (colocar)). For all i € [N], they are obtained from the adjacency

matrix as follow

N N
king =Y Aij and kouri= Y Aji, (3.4)
j=1 j=1
and if the graph is undirected, then k;, ; = k., ; and the degree of a vertex i is
Kin + Ko
kl‘ — ) =+ out 1 : (35)
2
with i € [N], and
1 & 2|E|
k==Y ki=—— 3.6

where |E| (or #E) is the number of elements of the set of edges. Given a directed graph, the
distribution of the sequence {kin,;}Y | (or {kou }Y ,) plays an important role in to classify

between an homogenous or heterogeneous graph, i.e.,



3.1. Graphs 35

Definition 3.1.2 (Homogeneous graph). It is a graph such that all nodes have approximately
the same degree, where the variance in respect to the distribution of the sequence {kin’i}?’: | (or
{k,,u,,i}i.vzl) is small, e.g., in the fig. 8(a) the all-to-all graph.

and

Definition 3.1.3 (Heterogeneous graph). It is a graph where the variance in respect to the
distribution of the sequence {kin’i}f\]: | (or {kout’i}é\': 1) is not small, exhibiting a very different
pattern of connectivity across the graph, e.g., in the fig. 8(b) the star graph, where there is a node

(red) with high degree and the other ones with degree one.

Figure 8 — (a) the all-to-all graph, where all the nodes have the same degree, and (b) the star graph, where
the node 9 has the highest degree in comparison with the other ones.

Other remarkable feature of complex networks is the property of clustering, which
denotes the propensity that neighbours of a given node are also neighbours of themselves. Since
we could specify the graph by its adjacency matrix A this property, called local clustering
coefficient, can be expressed in terms of A as

= ——— Y AjjA A, (3.7)

C)==YCG (3.8)
The last features of a network we intend to describe are:

* the shortest path length, i.e., the minimum number of traversed edges between the nodes i

and j, given by
L; j = min{d(i, j) : there is a path between i and j}, (3.9)

where d(i, j) is the number of edges which connects i and j (see fig. 9).
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* the diameter of a graph, i.e.,

D = max(L; ;) (3.10)
and
* The average shortest path length
(L) = ;ZLZ;_;. (3.11)
N(N-1) Y
@i, j) = 2

Figure 9 — Representation of the distance between two nodes in a graph. From this, we can conclude by
eq. (3.9) that L; ; = 2.

Therefore, after some basic properties of graphs we present in the next sections some

models considering their structures.

3.2 Erdos-Rényi model

Consider a set of network parameters as the nodes N, and the probability p to rewire the
links (or edges) fixed. Let the links be created by a random process. From this, we can try to
analyze the effects of these parameters on the structure of the complex network. Erdés and Rényi

(1959) started to study and describe some properties of these complex systems.

The Erdds-Rényi model is obtained as follows:

 Start with N isolated nodes (or vertices) (fig. 10(a));

* Fix some probability p. Then, for each pair of nodes, we can generate at randomly another
number, called r, between 0 and 1 such that if p > r, you add a link between them
(fig. 10(b));

* if p =1 the graph is complete, it means that all possible pairs of nodes are connected by
links. (fig. 10(c)).
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a)p=0

cp=1

Figure 10 — Different topologies of the Ed6s-Rényi model with fixed nodes N = 20 and considering
different values of p.

The Edos-Rényi model has a characteristic concerning the degree of the nodes, because
even the process is random, considering a large network, e.g., N = 1000 and increasing p a little,
the distribution of the degrees is similar to a Poisson distribution given by

e*]_‘l_ck

p(k) = 0 (3.12)

where £ is the average degree of the nodes in the complex network. In fig. 11, we presented an
numerical simulation of a complex network considering N = 1000 nodes and p = 0.05 to see

the degree distribution.
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Figure 11 — The blue dots is the Ed6s-Rényi model considering an average of 100 realizations of N = 1000
nodes and probability p = 0.05. The dashed line is the expected distribution given by eq.
(3.12)

3.3 Barabasi—Albert model

As presented previously, the Edos-Rényi model has a Poisson degree distribution. How-
ever, it has been empirically observed that many networks in the real world as collaboration

networks (NEWMAN, 2001), the World-Wide Web (BRODER et al., 2000), and so on have
a power-law distribution. The first model was introduced by Barabasi—Albert (BARABASI;
ALBERT, 1999), and it will be the model described a bit below.

The idea of the construction is the following:

* Initialize with a network, it could be the Edos-Rényi model with Ny fixed nodes;

* At each step we add a new node u to the network and connect it to N < Ny of the existing

nodes v € V, where V is the set containing all the vertices of the system;

* The probability of connecting node u to v is proportional to the degree of v, i.e., we are

more likely to connect new vertices to existing ones with a high degree.

From the last step, we can notice small inhomogeneities in the degree distribution during the
process. In fig. 12, we simulated the Barabasi—Albert model considering a network of N = 20
nodes. In fig. 13, we increased the number of nodes to 1000, where we can see the power-law
distribution given by the blue dots and the fit is given by

plk) <k, (3.13)

where we obtain o¢ ~ —3.012317.
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Figure 12 — Barabdsi—Albert model considering N = 20 nodes.
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Figure 13 — The blue dots is the Barabdsi—Albert model considering the complex network with N = 1000
nodes. The red dashed line is the expected distribution given by eq. (3.13).

3.4 Watts—Strogatz model

The structure of connection in a complex system is ordinarily assumed to be either
completely regular, or completely random, e.g., when you consider the Ed6s-Rényi model with
high p. However, Watts and Strogatz (1998) created a complex network that lies somewhere

between these two extremes, it is called a small-world network. The construction is the following:

* Start from a ring lattice with N vertices and k edges (or k—neighbors) per vertex;

* Then, we rewire each edge at random with probability p.

In fig. 14, we have the process between completely regular (fig. 14(a)) to a completely random
network (fig. 14(c)), where in the middle (fig. 14(b)) we have the small-world network.
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AN=20k=4,p=0

ON=20k=4,p=1

Figure 14 — Different topologies of the Watts—Strogatz model with N = 20 fixed nodes, k = 4, and
considering different values of p.

The structural property of small-worlds networks could be quantified consider two

characteristics discussed in section 3.1

1. the average path length L(p) that depends on the probability p to connect nodes and;

2. the average clustering coefficient C(p) which also depends on the probability p.

The average path length L(p) measures the typical separation between to vertices in the graph.
Whereas the C(p) processes the proportion of triangles in a network (each triangle is a sort of
transitive relations between the nodes) and the potential number of triangles it can support given
the degrees of its nodes (ESTRADA; KNIGHT, 2015). Thus, small-world networks are systems
that can be highly clustered, like regular lattices, yet have small characteristic path lengths, like
random graphs. It is seen in fig. 15, wherein the middle of the plot we have the behavior which

describes exactly a small-world network.
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3.5 Sparse networks

The number of nodes and links of a complex network could vary widely, mainly when
we consider real-networks, e.g., the world-wide-web network. However, it is always possible for

every system with N nodes to verify the maximum number of connections by

N(N—1)

5 (3.14)

Emax =

where E,,,, represents the number all possible connections in the network, where we are not

considering self-loops.

In real-networks, the number of connections is often much smaller than the maximum
(MENCZER; FORTUNATO; DAVIS, 2020). Then, there is a way to quantify if the networks

have or not many links, given by

E
LB

) (3.15)

Emax
where d represents the density of the network, and |E| (or #E) is the number of elements of
the set of edges. In complete graphs, the value of d is always one, and every system which has

density closes to one is called a dense network.

According to Barabdsi and Pdsfai (2016) real-networks are sparse. We define the sparsity

of a complex network when
0<dk, (3.16)

even if the number of nodes N goes to infinity. Another way to check the sparsity of a complex

network is analyzing if the links grow proportionally to the number of nodes, i.e.,

|E| = N, (3.17)
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Figure 16 — (a) exhibits the growth of |E| as function of N for the Newman-Watts-Strogatz model (NEW-

MAN; WATTS, 1999). The black circles are the simulation result, and the red dashed line is
the linear fit with the coefficients a ~ 1.1 and b ~ 0.18. (b) is similar to (a), but represents the
growth of a complete graph where the red dashed line is the quadratic fit with coefficients
a~0.5 b~ —0.5 and c~0.

or even slower (MENCZER; FORTUNATO; DAVIS, 2020). If instead, the number of links grow
faster, for example, quadratically
|E| o< N2, (3.18)

we say that the network is dense (MENCZER; FORTUNATO; DAVIS, 2020). In fig fig. 16(a), we
represented the growth of |E| as a function of N, where we considered a well-established modifi-
cation of the Watts-Strogatz model (NEWMAN; WATTS, 1999). In fig. 16(b), we considered a

complete complex network.
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CHAPTER

SYNCHRONIZATION TRASITION IN
COMPLEX NETWORKS

In this chapter, we define in the first section, the dynamical systems on complex networks,
i.e., given a network G, for each node i € [N] we associate a coordinate 6;, called phase variable,
that describes the state of the unit on that node which evolves by time. Every node either could be
or not interacting with adjacent nodes on the graph, and we will define precisely in the following.

The last sections are about some important features on complex network dynamics.

4.1 Network dynamics

We define dynamics on complex networks as the triple (G, f,h), where

* G is the complex network;

e f: T — T represents the local dynamics for the isolated nodes in the network for all
i € [N];

* h: T xT — T is the coupling function, which allows the interactions between the phase

variables.

We assume that the local dynamics are periodic on T, and putting all together, the general

dynamics is a
N
6i=f(6)+ Y h(6),6,), forallie|N],
= 4.1

ei (O) - 90i7

where the 6;(0) = 6y; are the initial conditions.

R
217

I we define T =
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The eq. (4.1) is a very general approach, and at first, we are assuming the well-known
Kuramoto model (KURAMOTO, 1984). The difference is that we are not considering the all-
to-all configuration in the entries of the adjacency matrix A;; and we consider the frustration
parameter ¢. Thus, the model is

. e N
0, —w;+— A,-jsin(Gj—Bi—i—a), foralli € [N],
1

kin i 4

= (4.2)

6:(0) = 6y,

where N € N is the number of nodes in the network. For all i € [N], 6; € T are the phase variables,
6;(0) = 6y; are the initial conditions, 0 < € < 1 is the coupling strength, & € [0, %), and

N
kini = ZAij 4.3)
=i

is the in-degree of the node i. The w; € R are the natural frequencies of the phase variables.

Usually, in the literature, they assume to be Gaussian or Cauchy distributed.

4.2 Phase synchronization phenomena

In nature, synchronization happens all the time, e.g., in an audience where the applauses
start randomly, and they turn quite suddenly into synchronized clapping (NEDA et al., 2000).
Kuramoto (1984) observed this synchronization phenomenon considering large ensembles of

oscillators, where each element interacted with all others in the all-to-all configuration.

There are two possible flavors of synchronization. The former is when a multi-oscillator

system evolves into a system in which every unit 6; does the same thing, i.e.,
Gl-(t): Gj(t), 4.4)

foralli,j=1,...,N, implying that
6, = 0;. (4.5)

That means they are in the synchronous state, and the natural frequency is also identical. The
last is the nodes in phase-locked, i.e. when their coordinates follow the same periodic orbit apart
from a phase shift.

6i—0i=a (4.6)

where « is a constant.
Sometimes all the nodes could not be fully synchronized, i.e., when a portion of nodes

are in phase-locked, and the other one is not. This sort of behavior means that the system is

partially synchronized.

The last comment is that if the system does not present some of those characteristics, we
say that the system is in incoherence state, i.e., when the phase oscillators are going around the

unit circle at random for each unit time.
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4.2.1 All-to-all Kuramoto model synchronization

Recalling all discussion in the introduction (see chapter 1), we again consider the order

parameter
r: TV = 10,1], 4.7

such that for every t € R, we have

HO1(0),... 6w (1)) :]lv , 4.8)

N .
Z 20i(0)
j=1

where N is the number of oscillators, 6; are the phases oscillators, and r is ranging from
incoherence state (r ~ 0), where the system is not synchronized, to coherence state (r ~ 1),
indicating that the system is synchronized. In fig. 17, considering K as the coupling strength, we
have a simulation of the order parameter from eq. (4.8) considering an network with N = 1000

oscillators.

0,8
0,6
—

0.4

0,2

0 L 1 L 1 T 1 L
0 10 20 30 40 50

t

Figure 17 — The order parameter behavior as a function of time where we consider two distinct situations
during the simulations of the model eq. (4.2) and eq. (4.8). In both, we consider N = 1000
oscillators, and the @; are normally distributed. We take K different values as labeled in the
figure. The blue line shows that the system after some time synchronizes (r ~ 1), however the
red one, the system stays on an incoherence regime (7 ~ 0) without synchronizing.

From fig. 17, we can notice that for different values of K the behaviors to synchronization
are different. Then, if we look at r as a function of the parameter K we can draw the bifurcation
diagram and analyze precisely the influence of K in the synchronous states of the system. In
fig. 18, we simulated this result and Kuramoto (1984) derived exact results for K. and it was

discussed by Strogatz (2000), where K, is given by

K. = , 4.9)
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Figure 18 — Bifurcation diagram of the Kuramoto model, considering the normal distribution with N =
5000

where g is the distribution of the natural frequencies for a large N—oscillators. In fig. 18, we

simulated using a normal distribution with g(0) = 4, hence we obtained K. ~ 0.16.

In fig. 18, we can notice that the transition to synchronization is continuous and Strogatz
(2000) found that after K > K, r, obeys the following growth

roc |K—K|'/2. (4.10)

4.3 Discontinuous transition

A discontinuous transition, also known as a first-order transition, refers to a qualitative
change in the behavior of a system where there is an abrupt and discontinuous jump in a certain
order parameter as a control parameter, such as coupling strength or network density, crosses a

critical value.

In the context of complex networks, a discontinuous transition signifies a sudden and
sharp change in the collective behavior of the networked oscillators. This phenomenon can be
observed in synchronization transitions, where a network transitions from a desynchronized state

to a synchronized state.

4.3.1 Phase model

Following the studies from Toenjes, Masuda and Kori (2010). For every node i of the
complex network, we associate a phase 6; € T, such that the dynamics of the network is given

by the the Kuramoto model from section (4.1), eq. (4.2)
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Since € > 0 we can re-scale time such that t — ' = é, and in a co-rotating frame of
reference where the natural frequencies @; of the oscillators are identical, we can rewrite the

model in eq. (6.7) as follows

Bi(t) = k.l ‘ .N Ausin(9;(1) — &i(1) + &), foralli € [N],
ini j—1 (4.11)
9;(0) = ;.
The overall synchrony is described by the order parameter
r(t) = 1 i 00 , (4.12)
N =

where in the fig. 19 we see the global behavior of the system with respect to the asymptotic
behavior of the order parameter, where see the discontinuous transition observed by Toenjes,
Masuda and Kori (2010).

1.0 eeccceccesceccs

0.8

0.6

Feo

0.4
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0.0

Figure 19 — Global transition for the phase model eq. (6.8), considering the asymptotic behavior of the
order parameter eq. (6.9). For this simulation, we consider N = 800 interacting units uniformly
distributed between 0 to 27, ¢ = 1 and after n = 10* iterations, we took the ¥; fori=1,...,N
to compute one of the 50 values of r... Note that for @ < ¢, the value of the r.. =~ 1, implying
that the system is completely synchronized. However, for o > &, , we have a discontinuous
transition between the synchronous to asynchronous state.
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CHAPTER

STOCHASTIC PROCESS AND SOME
FEATURES

In this chapter, we aim to define and describe some properties about stochastic process.

5.1 Some definitions of probability theory

In this section, we give some definitions of concepts of probability, but we do not get

deep into it. For more details about it, look at James (2015).

We are going to study experiments or random process considering

Definition 5.1.1 (Probability space). A probability space is a triple (,.%#, P), such that

1. Qitis called of sample space that contains all possible outcomes for an experiment.

Example 1. Toss a coin n—times, then
Q={w=(0,w,...,0,): 0 =HorT,Vi=1,...,n}, (5.1
where H = Head and T = Tail.

2. % is a o—algebraof Q, i.c.,
a) 0.7 and Q € .7,
b) If A € .%, then A¢ € .F,
c) Forall Aj,A,,... € .7, the

(Aiand [ JA;i € Z. (5.2)
i=1 i=1
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Remark. That means .% is closed through the operations of countable unions, inter-

sections, and relative complement.
3. P:.# —[0,1] is the probability function, such that

a) For a nonempty set A, P(A) > 0, for all A € .%;
b) P(Q) =1, P() =0;
o) P(UZ1Ai) < X2, P(A).

From some random experiments, we can analyze the numerical aspects of it. The way to

extract such pieces of information is using random variables, defined as
Definition 5.1.2 (Random variable). Let (Q2,.%, P) be a probability space. A function
X:Q—R
is a random variable if the pre-image
X)) ={wecQ:Y(0)eU}e.Z,
for all open subsets U C R.

Example 2. Let (Q,.%, P) be a probability space. Taking a subset E C Q, the function defined

as
1l : Q—R
such that
1, IfoekE,
lp(w) = (5.3)
0, fod¢E

is a random variable if E € .%. This function is is called indicator function.

If Q = "faces of a dice", .# = {0, even faces, odd faces, Q} and consider E = {2,4,6}.

Then,
(0.Tfo=1,
1,Ifo=2,
0,Ifw=3,
1g(o) = R (5.4)
0,Ifw=35,
\1 , fw=6

is a random variable.
The random variable X could be

* discrete, i.e., there exists a finite or countable set {xj,xs,...} C R, such that X (w) €
{x1,x2,...}, for all € Q, or;
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* continous, i.e., there is an uncountable set of possible outcomes, e.g., the possible values

of the temperature outside on any given day.

Definition 5.1.3. The distribution function of random variable X, denoted as Fx or simply F is
defined as
Fx(x)=P(X <x), x€eR, (5.5)

satisfying the following properties:

1. If x <y, it implies that F(x) < F(y), i.e., F is not a decreasing;

2. F isright-continuous, i.e.,
lim F(x,) =F(y);

x—yt

3. The
lim F(x)=0 and lim F(x)=1,

X——o00 X—>—+o0
1.e.,
F(x) €[0,1].

Remark. The distribution function is also often called the cumulative distribution function (CDF).

If X is a discrete random variable, the distribution function is

Fx(x)= ) PX=x)= Y p(x), (5.6)

X <x X <x

otherwise, if X is a continuous random variable and there is a integrable function f : R — R,
such that

+o0
/ f(x)dx=1. (5.7)

The distribution function of X is

Fx(x) = /x f(t)dt, VxeR. (5.8)

The function f is called probability density function of X.

The last three concepts will be useful later on to describe the characteristics of stochastic

processes. They are

1. expected value: let X be a continuous random variable with distribution function F. The

expected value of X is defined as

E[X] = / T ). (5.9)

Remark. The expected value (or mean) could be denoted as ty as well.
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2. variance: the variance of a continuous random variable X is

Var[X] = E[(X — E[X])?] = / T = E[X))2F(x)dx. (5.10)

—o0

Remark. The variance is also denoted as 63.

3. covariance: let X and Y be two random variables with the joint probability density function

Xy
FXy(x,y):/ / fxy (&, Y)dydx', v,y €R. (5.11)

The covariance between X and Y is

Hoo oo
Corx,¥] = E(X ~EXN(Y ~EWD) = [ [ (= EX) o~ EIY)) far (x.3)dvdx.
(5.12)

5.2 Stochastic Process and some examples

Stochastic (or random) processes are collections of measurements indexed either by time

or outcomes from an experiment. It is defined as

Definition 5.2.1 (Stochastic Process). Let (Q,.%, P) be a probability space and (S,X) a measur-
able space’. A stochastic process is a function of two variables (¢, ), where ¢ belongs to some
nonempty index set /, and @ is an outcome of some sample space Q. It could be represented in

two manners, as

* the sequence {X(7,-) : t € I} of random variables, where
X(t,):Q—S
represents a random variable indexed by 7 € I. It is also denoted by {X; };¢; or {X; };
* the sequence {X(-,®) : @ € Q} of sample functions of time, where
X(o):I—S
represents a sample function of the process indexed by the outcome w € Q.

Remark.

* Even the definitions (1) and (2) in 5.2.1 looking be different, actually they produce the

same stochastic process;

* X; and X, are only a random variable and a sample function, respectively. They are not

the whole stochastic process;

' A measurable space is tuple where S is the state space, e.g., S = R equipped with a sigma-algebra X,

e.g., X is the Borel sigma-algebra of R.
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* As an abuse of notation, X; will be to denote both, where we are specifying the difference

using random variable or sample function.
The stochastic process could be discrete or continuous time, i.e.,

* discrete: consider the stochastic process {X; : ¢ € I'}. It is a discrete-time process if the

index set / is finite or countable. In practice
1={0,1,2,...},

implying that
{Xo0,X1,X2,...}

is a collection of random variables which are associated with every timet =0, 1,2, ...

* continuous: consider the stochastic process {X; : t € I'}. It is a continuous-time process if

the index set / is not finite or countable. In practice

1C[0,00)

implying that
{Xl‘ it e I}

is a collection of random variables X;, which are associated with every instant of time 7 € 1.
Let us look at some examples of the stochastic process.
Example 3. Let the stochastic process be the sequence {Xj : k € N} of random variables, where
X Q—R

such that
X, =X(k,-) ~A4(0,1), VkeN. (5.13)

The simple representation of this process is in fig. 20

Example 4. Consider Q = (0,27) as the sample space, and a random variable X with a uniform
distribution on the interval (0,27), such that

X:Q—(0,2m)

is the identity map
X(w) = o.

Let the stochastic process be the sequence {Y, : @ € Q} of sample functions, where

Yo :R— R,
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Figure 20 — Shows for k = 1 and k = 2 the realizations of the stochastic process given by eq. (5.13).

such that
Yo =Y(,0) =cos(t+ ), Yo Q. (5.14)
The simple representation of this process is in fig. 21, where for every value of ®w, we have a

sample function.

In the last example, we show the stochastic process considering the two topics in the
definition 5.2.1.

Example 5. Let Q) = [1,3] and Q; = [—1, 1] be sample spaces, and the random variables ¥ and

W with uniform distributions on the intervals [1,3] and [—1, 1] respectively, such that

Y: Q@ — [1,3],
W:Qy —[—1,1] (5.15)
are the identity maps, i.e.,
Y(w) = o,
W(w) = w. (5.16)

Consider the following stochastic process
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6 -4 -2 0 3 4
t

Figure 21 — Shows some sample functions for @ = 1, @, =2, @3 =3, and @y =4 for all t € [-27,27].

* using the first definition

Xt Q- R,
where Q = Q1 x Q,, such that
X; =X(t,-) = o1t + wycos(mt), (5.17)
for every t € R.
* and the second definition
Xo :R— R,
such that
X, =X(-,0) = @it + mycos(nt), (5.18)

for every @ = (w1, ™) € Q.

Then, the fig. 22(a) and fig. 22(b) show the representation of the stochastic process following
these two definitions for some values of r and ®.

There are ways to characterize stochastic process, e.g.,
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Figure 22 — (a) shows the stochastic process given by eq. (5.17) for some fixed values of ¢, and (b) shows
the same stochastic process, but following eq. (5.18) for some fixed values of ®.

Definition 5.2.2 (1.1.D. Stochastic Process). Let {X; : k € N} be a stochastic process, this random
process is independent identically distributed (i.i.d) process if for all kK € N the random variables

Xj are idenpendent and identically distributed, i.e.,

Fx,(x) = Fx(x), VkeN and xeR,
FX17...7Xk(x17---7xk) = FXl(xl)-...-FXk(xk), Vxl,...,xkE]R. (519)

The example example 3 is a 1.1.d random process.

Definition 5.2.3 (S.S.S. random process). Let {X; : t € R} be a stochastic process, it is a strict-
sense stationary (SSS) random process if, for all #,...,t, € R, T € R, and the real numbers

X1,...,Xr, we have

FXt] ,...,Xtr (XI, e :xr) = FX(tl+‘C)>"'7X(tr+T) (-xlv' . 7xr)' (5'20)

The examples 3 and 4 are SSS random process.

Since SSS stochastic processes require access to the full characterization (r—point
CDF’s), they are hard to show. Hence using partial features of a stochastic process such as

expected value, variance, and covariance, we can define

Definition 5.2.4 (W.S.S stochastic process). Let {X; : t € R} be a stochastic process. It is a wide
(or weak) sense stationary (WSS) process if it has expected value independent of time, finite

variance, and the (auto)covariance depends only on the time difference , — 1, i.e.,

px(t1) = ux(n) Vr,n eR,
Cov[X;,, X1,| = Cov[X;,—1,,X0], Vt1,0 €R, (5.21)
Var[X;] < e, VteR.
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Remark. If we have a SSS process, it implies that we have a WSS process as well, but the

converse is not always true.

Example 6. Consider the following discrete time stochastic process

Xi: Q— R,
such that
U (—V3,V3), if kis odd
vkez X~ 2\ V3.V3), if kis odd, (5.22)
N(0,1), if k is even,
It implies that
pux(k) =0, VkeZ,
2(k)=1, VkeZ
Cov[Xy,, Xi,] = ”f P Sk — k).
07 lfkl %kZ

Then, this process is a WSS process because it fits in every condition from definition defini-

tion 5.2.4. However, it breaks in to be a SSS process because

FX2k1 ""’szr (xl geee ,xr) % FX(2k1+1)7"‘7X(2kr+l) (xl goee ,x,-). (5.24)

for all ky,k, ... .k, € Z.

5.3 Autocovariance function, Fourier Transform and Power

spectral density

5.3.1 Autocovariance function

From the above definitions, since we have the covariance depending only on the time
difference, if we define T = t, —#;, we can analyze what happened with a signal when we shift

the process by this time lag. Thus, considering a wide-sense stationary process, we define

Definition 5.3.1 (Autocovariance function). Let {X; : # € R} be a WSS stochastic process, the

autocovariance function is

Kx (1) =Cov[Xyi0,Xt] = E[(Xitr— M) (X — )],
= E[X.oX]—u’ (5.25)

If 62 = (0, the normalized autocovariance function is

CoviX,10,X:] E[XiweX:]— 1
pxx(T) = [;f d_ [”;2’] £, (5.26)

such thatif t =0

Cov[X;10,X,] = E[(Xi10 — My0) (X, — )] = E[(X; — )*] = 0° (5.27)
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hence
pxx(0) =1. (5.28)

Some properties of the autocovariance function, considering a W.S.S stochastic process,

are

1. If =0 from eq. (5.27) we have

Kx(0) = E[(X;—m)?,
= Var[X] < oo (5.29)

2. the autocovariance function is symmetric, i.e.,

Kx(—7) = E[(Xi—t)Xy—1) — Hi—1)),
= E[(XS+T - .us—H:) (Xs - .us)]a
— Kx(7) (5.30)

where s =t — 7, such that s € R.

3. The autocovariance function is bounded, indeed, by Kx(0), i.e.,
|Kx(7)| < Kx(0), V7inR. (5.31)

This follows by the Cauchy-Schwarz inequality (see Lapidoth (2017), p. 23 for more
details).

5.3.2 Fourier transform

Physical signals can be decomposed into several discrete frequencies or a spectrum of
frequencies over a continuous range. The Fourier transform is the mathematical operation for it.

This also changes the domain (x—axis) of a signal from time to frequency.

Moreover, the Fourier transform tells you what frequencies make up your signal and
how strong they are. Even if your data contains noise, the Fourier transform allows us to look at

through the noise and see which frequencies matter. The definition is the following

Definition 5.3.2 (Fourier transform). It is an integral transform that decomposes an integrable

function
f:R—=C (orR)

into its constituent frequencies &, such that

~ +oo i

&)= [ rwemhax, vEekR, (532)
where the inverse transform is

ﬂ@:/wﬂaém%& Vx € R, (5.33)

—o0
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Example 7. Consider the function f : R — R such that

£(t) = cos(at), (5.34)

where @y = 27&). Then, the Fourier transform of f is
f(&) = / cos(amyr) -e~ el dr

— l/m (ei(wo—w)l +e—(wo+w)t) dr (5.35)
2 )
1
— 518 (0= )+ (0+a)),
where @ = 2. In fig. 23 we show this example for @y = 1, considering just the positive part

0 (w— ax) of eq. (5.35).

(a)l.O (b)l.O
0.8
0.5
X 0.0 3
N\ <
L‘\0.4
-0.5
0.2
-1.0 0.0
0 5 10 15 20 0 1 2 3 4 5
t w

Figure 23 — (a) shows the eq. (5.34) for @y = 1 as function of time and (b) represents its respective Fourier
transform considering just the positive part 6 (0 — @) of eq. (5.35) as a function of the
natural frequency .

5.3.3 Power spectrum density

An important result relating autocovariance function and the Fourier transform is the

following

Theorem 5.3.1 (See Lapidoth (2017), p. 571). If the autocovariance function Ky is continuous

at the origin and integrable, then its Fourier Transform Ky is nonnegative
Kx(§)>0, E€R (5.36)
and symmetric
Rx(—§)=Kx(§), E€R (5.37)

Moreover; the Inverse Fourier Transform recovers Kx in the sense that

A

Ky (7) = /_w Ry (£)e2™dE, teR (5.38)
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The Fourier transform Ky is usually denoted as Sy, and it is called power spectral density.
Thus, eq. (5.38) becomes

Kx (1) = /_ ) Sx(€)e?™TdE, TeR (5.39)

and, we have N
Sx(£) = / Kx(t)e 2%z, £ R, (5.40)

Let us look at some examples.
Example 8. Let the random variable X be uniform distributed, i.e.,
X~ (0,2m)
and consider the following stochastic process
X; = sin(t +X), (5.41)

for all + € R. We have that

. Kx(tl,tz) = %COS(Z‘] —l‘z), and;

® Var[Xt] < oo,

Thus, it is a wide-sense stationary stochastic process. Defining the time lag T =#; —#,, we have

that the normalized autocovariance function is
px(T) = cos(7). (5.42)

This eq. (5.42) is represented in example 7, where we consider wy = 1. Thus, in the fig. 23(a) we
have the autocovariance function, and in fig. 23(b), we have the the power spectral density Sx
which is the Fourier transform of the autocovariance function, such that satisfies all properties of
the theorem 5.3.1.

Example 9. Consider the example 3, fixing ® and getting one sample function for ¢, such that

t € R. The autocovariance function is
px(t) = 8(7), (5.43)

where the power spectral density is constant equals to 1. The fig. 24 we show more details of it.
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(a)Z —— white noise
-~
:>< 0
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(b) (c)
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Figure 24 — (a) shows a sample function of the stochastic process given by eq. (5.13), (b) shows the
autocovariance function of the process, where the blue points represent the "ACF white noise"
and the red line fitting it is the Dirac delta represented by "6(7)". In (c), we have the power
spectrum density, which is constant for this sort of stochastic process.
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CHAPTER

INTERNAL FLUCTUATIONS

In this chapter, we aim at studying the behavior of the internal fluctuations caused by the
effect of a small number of connections between neighbors of a large, sparse, homogeneous, and

directed complex network.

6.1 Problem description

6.1.1 Network

We follow the same network structure from Toenjes, Masuda and Kori (2010), i.e., we
consider a ring of N unidirectionally coupled nodes, i.e., for all i € [N] the node i is connected
to the i — 1 node (black arrows in fig. 25). So, we add N, unidirectional shortcuts with random

origin j and destination i represented as the brown arrows in fig. 25. The parameter

NSC
c=— 6.1
N 6.1)
is the density of the cross-connections in the network. Note that the number of edges in the

network is given by

|E| = N + Ny, (6.2)
where N3N
O0SNes —5— (6.3)
and
(kini) = 1+ 0. 6.4)
The density of the network is
d= %. (6.5)

Then, for large number N such that Ny, < N the network is sparse, i.e.,

0<d< 1, (6.6)
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