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RESUMO

MENDONCA, H. M. J. DE. Redução de campo médio em redes esparsas. 2023. 100
p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2023.

A sincronização é um fenômeno observado em diversos campos científicos, que vão desde
sistemas mecânicos e biológicos até comportamentos sociais. O modelo de Kuramoto, desen-
volvido nas décadas de 1970 e 1980, revolucionou a compreensão da sincronização espontânea
em grandes sistemas de elementos interagentes. Nesse modelo, a sincronização é quantificada
utilizando o parâmetro de ordem, que representa o centroide de pontos distribuídos na circunfe-
rência unitária. O modelo de Kuramoto revelou a existência de três estados distintos: assíncrono,
parcialmente síncrono e completamente síncrono. Enquanto o modelo clássico de Kuramoto
assume uma configuração de rede de todos para todos, a maioria das redes do mundo real são
esparsas. Compreender a sincronização em redes esparsas e os efeitos do tamanho finito do
sistema na sincronização é um problema de pesquisa desafiador.

Para abordar esse problema, adotamos uma estrutura de sistema dinâmico usando mapas de
Möbius na circunferência unitária complexa. Investigamos a transição para a sincronização
em redes complexas densas e esparsas, onde os sistemas evoluem por meio de mapas em vez
de equações diferenciais ordinárias. Exploramos os efeitos do tamanho finito do sistema nos
fenômenos de sincronização e examinamos o comportamento de escala do tempo médio para a
sincronização. Surpreendentemente, descobrimos que o estado incoerente pode ser metaestável
para determinados valores de acoplamento e densidades de links, desafiando suposições con-
vencionais. Ao analisar as equações de campo médio, construímos um diagrama de bifurcação
para redes infinitamente grandes e observamos a presença de transientes caóticos com tempos de
escape distribuídos exponencialmente. Isso sugere que o sistema passa por períodos transitórios
de assincronia antes de atingir um estado sincronizado. Nossa pesquisa proporciona uma com-
preensão abrangente da sincronização em redes complexas, lançando luz sobre o comportamento
de sistemas do mundo real. Ela contribui com percepções valiosas sobre a dinâmica de redes
de tamanho finito e desafia suposições existentes. Nossas descobertas têm implicações para a
dinâmica de redes e aprimoram nossa compreensão dos fenômenos de sincronização em diversos
sistemas.

Palavras-chave: sincronização, redes densas, redes esparsas.





ABSTRACT

MENDONCA, H. M. J. DE. Mean-field reduction in sparse networks. 2023. 100 p. Tese (Dou-
torado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

Synchronization is a phenomenon observed in various scientific fields, ranging from mechanical
and biological systems to social behavior. The Kuramoto model, developed in the 1970s and
1980s, revolutionized the understanding of spontaneous synchronization in large systems of
interacting elements. In this model, synchronization is quantified using the order parameter,
which represents the centroid of points distributed on the unit circle. The Kuramoto model re-
vealed the existence of three distinct states: asynchronous, partially synchronous, and completely
synchronous. While the classic Kuramoto model assumes an all-to-all network configuration,
most real-world networks are sparse. Understanding synchronization in sparse networks and the
effects of finite system sizes on synchronization is a challenging research problem.

To address this problem, we adopt a dynamical system framework using Moebius maps on
the complex unit circle. We investigate the transition to synchronization in both dense and
sparse complex networks, where systems evolve through maps instead of ordinary differential
equations. We explore the effects of finite system sizes on synchronization phenomena and
examine the scaling behavior of the mean time to synchronization. Surprisingly, we discover
that the incoherent state can be meta-stable for certain coupling strengths and link densities,
challenging conventional assumptions.

By analyzing mean-field equations, we construct a bifurcation diagram for infinitely large net-
works and observe the presence of chaotic transients with exponentially distributed escape times.
This suggests that the system experiences transient periods of asynchrony before reaching a
synchronized state. Our research provides a comprehensive understanding of synchronization in
complex networks, shedding light on the behavior of real-world systems. It contributes valuable
insights into the dynamics of finite-sized networks and challenges existing assumptions. Our find-
ings have implications for network dynamics and enhance our understanding of synchronization
phenomena in diverse systems.

Keywords: synchronization, dense networks, sparse networks.
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CHAPTER

1
INTRODUCTION

Synchronization refers to the adjustment of rhythms observed in various fields of science,
such as mechanical, biological, physical systems, and social behavior (PIKOVSKY; ROSEN-
BLUM; KURTHS, 2003; STROGATZ, 2003; WINFREE, 2001). One simple example of synchro-
nization is the phenomenon of metronomes shaking side by side and eventually synchronizing
their movements1. The earliest recorded observation of synchronization dates back to 1665 when
the Dutch physicist Christiaan Huygens noticed that two pendulum clocks hanging on the wall
swung in harmony, even though there was no apparent reason for it, while he was confined to his
bed due to illness(PIKOVSKY; ROSENBLUM; KURTHS, 2003).

In the 1970s and 1980s, the work of Kuramoto had a significant impact on the scientific
community, particularly in understanding spontaneous synchronization in systems with a large
number of interacting elements (KURAMOTO, 1975; KURAMOTO, 1984). This model, often
referred to as the Kuramoto model, provided insights into fundamental aspects of synchronization
and led to numerous extensions and new approaches (WINFREE, 2001; STROGATZ, 2000).

Kuramoto quantified the overall synchrony using the order parameter given by

reiΦ =
1
N

N

∑
j=1

eiφ j , (1.1)

where r is the order parameter representing the centroid of N points distributed on the unit circle
in the complex plane (see fig. 1).

Kuramoto observed that the behavior of the points changed as they moved around the
unit circle. In one extreme, when the elements were not moving together, the value of the
order parameter was approximately zero, indicating an asynchronous state (see fig. 1 (A)). In
the opposite extreme, when the order parameter was close to one, the system was considered
synchronous (fig. 1 (B)). Kuramoto referred to a state with intermediate values of r as partial
synchronization.
1 <https://www.youtube.com/watch?v=W1TMZASCR-I>

https://www.youtube.com/watch?v=W1TMZASCR-I
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Figure 1 – Illustration of the observable r. In part (A), they are uniformly spread the circle with r ≈ 0. In
part (B), we have that all elements are moving on together, implying that r ≈ 1

Figure 2 – Transition in the globally coupled Kuramoto model. Note that for ε < εc the value of the
r∞ ≈ 0, implying that the system is not synchronized. Considering ε > εc, we have block (II),
where the system is partially synchronized, and block (III), where the system is completely
synchronized.

In his work (KURAMOTO, 1984), Kuramoto discovered that the system exhibited
three different behaviors depending on the values of a parameter ε: asynchronous, partially
synchronous, and completely synchronous states (fig. 2, blocks I, II, and III, respectively).

The classic Kuramoto model is based on an all-to-all configuration, where all elements
are connected to each other. This configuration can be represented by a fully connected network,
which is the densest complex network possible, with a density (d) equal to 1. However, most
natural networks are sparse, meaning that d ≪ 1. The transition to collective behavior in such
sparse networks is not well understood, and this motivates our research problem:

– we investigate the transition to synchronization in both dense and sparse complex networks,
considering systems that evolve through maps rather than ordinary differential equations.
We also aim to explore the effects of finite system sizes on synchronization phenomena.

To address this problem, we adopt a dynamical system framework using Moebius maps
as in (GONG; TOENJES; PIKOVSKY, ) on the complex unit circle, which act as phase dynamics
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in Bernoulli maps
ϕ(t +1) = (2ϕ(t) mod 2π). (1.2)

The resulting dynamics can be described by

z(t +1) = M
(
z(t)2,Θ(t),τ(t)

)
=

e2iΘτ + z2

1+ e−2iΘτz2 , (1.3)

where z(t) represents the state of the system at time t, M denotes the Moebius map, and τ and Θ

are parameters within specific ranges: τ ∈ (−1,1) and Θ ∈ (0,2π] respectively.

To summarize our findings, we used mean-field equations to construct a bifurcation
diagram for N → ∞. Our analysis revealed several interesting observations. First, we observed
the presence of chaotic transients characterized by exponentially distributed escape times. This
indicates that the system experiences transient periods of asynchrony behavior before reaching a
synchronized state.

Furthermore, we investigated the scaling behavior of the mean time to synchronization.
By examining the relationship between system size and the time required for synchronization to
occur, we gained valuable insights into the dynamics of finite-sized networks. Surprisingly, we
discovered that the incoherent state, where elements are not synchronized, can be meta-stable for
coupling strengths exceeding the critical coupling in the mean-field model depending on the link
density p = ⟨k⟩

N , where ⟨k⟩ is the mean node degree size of neighbors and N is the size of the
network. This finding challenges conventional assumptions and sheds new light on the behavior
of complex networks with finite sizes.

In conclusion, our research provides a comprehensive understanding of synchronization
in complex networks. By employing mean-field equations and examining both dense and sparse
network configurations, we uncovered the presence of chaotic transients, studied the scaling
behavior of synchronization time, and identified the meta-stability of the incoherent state. These
results contribute to the broader field of network dynamics and offer valuable insights into the
behavior of real-world systems

Next, we present the text structure necessary to get to the problem. In chapter 2, We
start studying some background about ordinary differential equations in Rn for a system with
exponentially stable limit cycle denoted by γ . Thus, it allows us to reduce and analyze the
behavior of this periodic orbit through a phase θ in T.

Moving on, in chapter 3, we introduce some basics and necessary concepts about graphs.
Moreover, from chapter 2 and chapter 3 we define the dynamics in complex networks in chapter 4.
We also present some results and simulations using the all-to-all Kuramoto Model. In chapter 5,
we present some concepts about probability theory, including stochastic process to help us
describe the internal fluctuations.
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CHAPTER

2
PHASE MODEL

In this chapter, we give some backgrounds about ordinary differential equations, and
we aim to study the asymptotic behavior of periodic solutions for certain initial value problems
(I.V.P). Furthermore, we analyze the comportment of the system, considering a perturbation on
that.

2.1 Initial value problem and flow
Consider the following initial value problem

{
ẋ = f (x)

x(0) = x0
(2.1)

where x ∈ Rn, f ∈Ck(U,Rn)1, k ≥ 1, and U is an open subset of Rn. Since f is a function of
class Ck, using the Picard-Lindelöf theorem (see Theorem 2.2 in (TESCHL, 2012), p. 38), the
eq. (2.1) has a unique local solution

u : J →U (2.2)

with u ∈Ck such that u(0) = x0, and J ⊂ R is the interval where the solution is defined for 0 ∈ J.

Remark. For the reason that the vector field in eq. (2.1) is time independent, we could ask for
the solution starting at x(t0) = x0. By adjusting the domain J in such way that for a fixed t0,
t 7→ t + t0. Thus, we can define v(t) = u(t + t0) for t and t0 in this new time-shifted domain.

Since eq. (2.1) has a unique solution at every point x defined on the time interval Jx, we
introduce the set

M :=
⋃

x∈U

Jx ×{x} ⊂
(
R×U

)
(2.3)

and we define the map
T : M →U (2.4)

1 Ck(U,Rn) denotes the set of functions U → Rn having continuous derivatives up to order k.
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such that

(t,x) 7→ T (t,x) (2.5)

is called local flow of the differential equation. For the sake of simplicity, we sometimes can
write Tt(x) := T (t,x).

The set

Γx0 = {T (t,x0) : t ∈ Jx0} (2.6)

is the orbit through x0 ∈U . Note that

u(t) = T (t,x0), such that,

u(0) = T (0,x0), (2.7)

for 0 and all t ∈ Jx0 and x0 ∈U . If t + s ∈ Jx0 then u(t + s) is also a solution at y = u(s) and in
particular Jx0 = s+ Jy. Then, as consequence we note that for x ∈U and s ∈ Jx0 we have

T (t + s,x0) = T (t,T (s,x0)) (2.8)

for all t ∈ JT (s,x0). Thus, the flow satisfies two properties on Γx0

(a1) T (0,x0) = x0,

(a2) T (t + s,x0) = T (t,T (s,x0)), for all x0 ∈U and t,s ∈ Jx.

The condition (a1) implies that

T (0,x) = x, (2.9)

and the condition (a2) is called group property of the flow. Note that if s =−t, we have

T (t + s,x) = T (s+ t,x) = x. (2.10)

Implying that for all x ∈U , under the operation defined in (a2), the sets Γx are an additive group.
Morever, Tt is an invertible function of x for each t ∈ Jx, such that

[T (t,x)]−1 = T (−t,x) (2.11)

for all x ∈U . The set M is open and the flow is a diffeomorphism (see Theorem 6.1 in Teschl
(2012), p. 189 for more information).

The solution u might not exists for all t ∈ R, however, if the solution never leaves a
compact set K or if f grows at most linearly with respect to x, we can extend the solution for all
t ∈R+, and likewise for negative time (see Corollary 2.15 in Teschl (2012), p. 52). Consequently,
following eq. (2.7), we also can extend the definition of local flow, for all t ∈ R+.
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2.2 Limit cycle and its stability
For now, we assume that eq. (2.1) has a periodic orbit γ ⊂ Rn, i.e., there is a T > 0, such

that γ(t +T ) = γ(t) for all t ∈ R, where T is the period of the periodic orbit. Since f in eq. (2.1)
is at least a C1 function, we can linearize the system setting

x(t) = γ(t)+ y(t) (2.12)

and expanding f in a Taylor series around γ(t) to obtain

f [x(t)] = f [γ(t)]+D f [γ(t)][x(t)− γ(t)]+R(x), (2.13)

where R is the Lagrange remainder, and by eq. (2.12), it becomes

f [γ(t)+ y(t)] = f [γ(t)]+D f [γ(t)]y(t)+R(y). (2.14)

Moreover, note that f [γ(t)+ y(t)] = f [γ(t)]+ ẏ(t) implying that

ẏ(t) = D f [γ(t)]y(t)+R(y). (2.15)

where D f [γ(t)] is jacobian of the system evaluated at the point γ(t) ∈ Rn. Neglecting the
remainder we have

{ẏ(t) = A(t)y(t),y(t0) = y0, (2.16)

where A(t) = D f [γ(t)]. Moreover, by the fact of γ to be periodic implies that

A(t +T ) = A(t). (2.17)

We have that linear combination of solutions are again solutions. In particular, the
solution corresponding to the initial condition of eq. (2.16) can be written as

u(t, t0,y0) =
n

∑
j=1

u(t, t0,δ j)y0 j, (2.18)

where δ j ∈ Rn represents the canonical basis with value one in the entry j, and y0 j is the
jth−component of y0.

Thereby, it is possible to define a linear map y0 7→ u(t, t0,y0) given by

u(t, t0,y0) = U (t, t0)y0, (2.19)

where
U (t, t0) = [u(t, t0,δ1), . . . ,u(t, t0,δn)] (2.20)

for each column vector u(t, t0,δ j) ∈ Rn.

Note that
A(t)U (t, t0) = [A(t)u(t, t0,δ1), . . . ,A(t)u(t, t0,δn)], (2.21)
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implying that each column of eq. (2.21) is a solution of the eq. (2.16). Thus, the whole matrix
U (t, t0) solves the matrix valued initial value problem

{
U̇ (t, t0) = A(t)U (t, t0),U (t0, t0) = I (2.22)

where we called U (t, t0) as principal matrix solution (at t0). By the fact of the eq. (2.17), we
can see that U (t +T, t0 +T ) also solves eq. (2.22), consequently, by the uniqueness

U (t +T, t0 +T ) = U (t, t0).

If we consider an initial condition on γ , it is possible to investigate what happens if the
orbit move on by one period. Then, we use the well-known matrix, called monodromy matrix,
given by

M(t0) = U (t0 +T, t0). (2.23)

Note that, M(t0) is also periodic, i.e.,

M(t0 +T ) = M(t0). (2.24)

2.2.1 Asymptotic stability of periodic orbits

Studying the eigenvalues of the monodromy matrix is possible to know about the stability
of periodic orbits, in special when the orbit is asymptotically stable. The following result shows
that a monodromy matrix has at least one unit eigenvalue.

Theorem 2.2.1 (Theorem 4.50 in Meiss (2017), p. 146). The monodromy matrix M(t0) for

the linearization of the system eq. (2.1), around the periodic orbit γ , always has at least one

eigenvalue with value 1.

For the next results about the stability of the periodic orbit γ , consequently, the eigenval-
ues of the monodromy matrix, it is necessary to introduce what is a submanifold and define a
Poincaré map.

Definition 2.2.1 (Submanifold). A (n−1)−dimensional surface Σ is called of a submanifold if
it can be written as

Σ = {x ∈V : S(x) = 0} (2.25)

where V ⊂ Rn is open, S ∈Ck(V ), and ∂S
∂x ̸= 0 for all x ∈ Σ.

The submanifold is transversal to the vector field f if

(
∂S
∂x

)
· f (x) ̸= 0 (2.26)

for all x ∈ Σ and it will be named as a cross-section of the vector field f .
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Take x ∈U and consider t ′ ∈ Jx. Let Σ be a submanifold as defined in eq. (2.2.1), and
transversal to the vector field in eq. (2.1), such that T (t ′,x) ∈ Σ. Then (see Lemma 6.9 in Teschl
(2012), p. 197 for more information) there is a neighborhood V around x and τ ∈Ck(V,R) with
τ(x) = t ′, such that

T (τ(y),y) ∈ Σ (2.27)

for all y ∈V . This is important because as γ is periodic, and considering the cross-section Σ we
can define the Poincaré map as

PΣ : Σ → Σ, (2.28)

such that
PΣ(y) = T (τ(y),y), (2.29)

for all y ∈V . Note that this replaces the flow of the n−dimensional continuous vector field for
an (n−1)−dimensional map. This PΣ maps Σ to itself and for every fixed point of the map, this
corresponds to a point along the periodic orbit γ . Then, we have the following results

Theorem 2.2.2. [Theorem 12.4 in Teschl (2012), p. 319] If M(t0) is a monodromy matrix of the

periodic orbit γ , for some initial t0 ∈ R and x0 ∈ γ . Then, the eigenvalues of the DPΣ(x0) plus

the single value 1 coincide with the eigenvalues of the monodromy matrix Mx0(t0). In particular,

the eigenvalues are independent of the base point x0 and the transversal section Σ.

Lemma 2.2.3. [Lemma 12.2 in Teschl (2012), p. 319] The periodic orbit γ of the eq. (2.1)

is asymptotically stable if and only if x0 ∈ γ is an asymptotically stable fixed point of PΣ (the

eigenvalues of DPΣ(x0) are inside the unit circle).

Since all the eigenvalues of the Poincaré map are inside the unit circle. We specify the
decay rate (see Teschl (2012), p. 71 for more details) of the orbits in a neighborhood around γ ,
i.e., there are positive constants C, α such that for every y around γ

d(T (t,y),γ)≤Ce−tα , for t ≥ 0, (2.30)

where
d(T (t,y),γ) = inf{|T (t,y)− x0| : x0 ∈ γ} (2.31)

is the point-set distance between the flow and the periodic orbit γ . Thus, in the rest of this chapter,
we will consider that the eq. (2.1) will have an exponentially stable periodic orbit, called an
exponentially stable limit cycle.

2.3 Phase oscillators
Recall eq. (2.1), since it has a periodic orbit assumed to be an exponentially stable limit

cycle, we parametrize
γ : S1 → Rn (2.32)
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Figure 3 – The straight line represents the periodic phase θ . It parameterizes the motion of the point along
the γ . The initial phase θ0 (shown by a blue circle) can be chosen arbitrarily.

for new variable θ ∈ S1, called phase. Thus, for every phase on S1 we identify to a unique point
on the curve γ , such that,

γ(θ) = point on the curve γ, (2.33)

as shown in eq. (3). By invariance of γ under the flow, i.e., if x0 ∈ γ implies that T (t,x0) ∈ γ for
all time, and the additive property, together with its parametrization. We have for a γ(θ0) ∈ γ

that γ(t +θ0) also belongs to γ . Implying that the evolution of a point on γ is simply a phase
shift for every θ0 ∈ S1.

Assuming that the θ are not static, i.e, it is moving on in respect time on S1. We choose
a monotonic function g : S1 → R such that

θ̇ = g(θ), (2.34)

and introduce a new time τ , where
t 7→ τ = g(θ)t, (2.35)

implying that
dθ(t)

dt
=

dθ(τ)

dτ

dτ

dt
(2.36)

and using eq. (2.35) to obtain

dθ(τ)

dτ
g(θ) = g(θ),

dθ(τ)

dτ
= 1, (2.37)

where by this choices of parametrization and new time, we have that the flow evolves uniformly
in time on the curve.

The key is to extend θ to a neighborhood of γ , such that if we introduce a weak pertur-
bation in the ordinary differential equation it will be possible to study the system based on the
information about the isolated system (the orbit γ).
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We know that for every point around γ , the orbit will converge exponentially fast to γ .
The neighborhood where it happens is

B(γ) := {x ∈U : lim
t→∞

d(T (t,x),γ) = 0} (2.38)

where U ⊂ Rn,
d(T (t,x),γ) = inf{|T (t,x)− γ(t)| : γ(t) ∈ γ} (2.39)

is the point-set distance similar to eq. (2.31), and the set B(γ) it is called of basin of attraction of
γ (GUCKENHEIMER; HOLMES, 1983). Furthermore, by construction, for each point z0 ∈ B(γ)

we can assign a unique point θ0 ∈ S1 as

Θ : B(γ)→ S1

z0 7→ Θ(z0) = θ0,
(2.40)

such that

Definition 2.3.1 (Asymptotic phase value(WINFREE, 1967)). Consider a point z0 ∈ B(γ) and
γ(θ0) = x0 ∈ γ . If

lim
t→∞

|T (t,z0)− γ(t +θ0)|= 0, (2.41)

we say that z0 and x0 has the same asymptotic phase θ0. We denote the asymptotic phase of z0

by Θ(z0) as in eq. (2.40).

The next key concept is:

Definition 2.3.2 (Isochron). Consider a set of points such that the asymptotic phase function is
constant, i.e.,

Ix0 = {z0 ∈ B(γ) : Θ(z0) = x0} (2.42)

where x0 ∈ γ . This set is an isochron with base point x0 (see fig. 4).

Isochrons are tools to help in the qualitative analysis of oscillators since the behavior of
points on the same isochron looks almost the same. The following result tell us informations
about these sets.

Theorem 2.3.1. Consider the eq. (2.1), where the flow T is a function of class Ck, with k ≥ 1.

Assume the system has an exponentially limit cycle γ and for a small ε > 0, let Bε(γ)⊂ B(γ) be

a neighborhood of γ , such that for every inital condition z0 ∈ B(γ) it is attracted to γ when time

goes to infinity. Then,

1. there is a unique function

αx : M → N,

with M ⊂ R, N ⊂ Rn−1, and M×N = Bε(γ) such that Ix is an invariant graph of α under

g. It means

g(graph(αx)) = graph(αx); (2.43)
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Figure 4 – Isochrons Ix0 and Ix inside the basin of attraction. The isochrons foliate the whole basin of
attraction and the flow sends point on isochrons into isochrons. All the points on the same
isochron have identical asymptotic phase values.

where

graph(αx) = Ix = {(u,v) ∈ Bε(γ) : ∀u ∈ M,∃!v ∈ N, such that v = αx(u)}, (2.44)

where g is a time one map of the flow.

2. for every x ̸= y in γ , Ix is mapped to Iy under the time one map g;

3. the ⋃

x∈γ

Ix (2.45)

covers the entire neighborhood Bε(γ) of γ , where for every x,y ∈ γ , Ix
⋂

Iy = /0.

Proof. See A.

Analytically is not always possible to compute isochrons and the techniques differs from
different problems. Let us consider the simple planar example in polar coordinates

ṙ = (1− r)r2

θ̇ = r. (2.46)

The system has an stable limit cycle when r = 1 and the basing of attraction is the whole plane,
with the point at the origin removed. On the limit cycle the asymptotic phase is only θ and the
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asymptotic phase function around the limit cycle could be defined as

Θ(r,θ) = θ − f (r) (2.47)

for some function f , such that f (1) = 0. The isochrons will be the level curves of eq. (2.47) for
different values of Θ ∈ [0,2π), i.e,

Θ(r,θ) =C, (2.48)

where C is scalar. After some computations we can find explicitly an equation of the asymptotic
phase depending on (r,θ), given by

Θ(r,θ) = θ +1− 1
r
, (2.49)

where the isochrons are draw in figure 5.

Figure 5 – Illustration of the isochrons (dashed lines) of the system (2.46). Points on the same isochron
have identical asymptotic phase values, e. g., B and C. The point B outside the limit cycle γ has
asymptotic value (equals to C) greater than A, even A and B sharing the same θ value between
the x-axis and the dashed yellow curve.

2.4 Perturbed phase system
The fact of considering local behaviors near asymptotically stable limit cycles allow

us to introduce some mathematical foundations about normally hyperbolic invariant manifolds
(HOPPENSTEADT; IZHIKEVICH, 1997; ELDERING, 2013) and results about the persistence
of this subject under weak perturbations (FENICHEL; MOSER, 1971; HIRSCH; PUGH; SHUB,
1977).

Let M be an invariant manifold2, it is defined to be a Normally Hyperbolic Invariant
Manifold if in the transversal directions to M, the linearization of the flow has spectrum values
separate of the imaginary axis and the rate of the contraction in the transversal directions are
greater than the horizontal ones along to the manifold (see eq. (6)). Then, by the previous section,
γ is a normally hyperbolic invariant manifold.
2 Briefly, a manifold is a topological space that locally resembles Euclidean space near each point

(GUILLEMIN; POLLACK, 2011).
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Figure 6 – Adapted from (ELDERING, 2013) where we show the transversal directions to the normally
hyperbolic invariant manifold M, where the double arrows indicate a convergence rate greater
than the single ones.

An important result related to normally hyperbolic invariant manifold is the persistence
((FENICHEL; MOSER, 1971; HIRSCH; PUGH; SHUB, 1977), because if a system has a
normally hyperbolic invariant manifold M and it is perturbed by a weak perturbation, the new
one still has the object, called Mε , which is ε−close to M.

Let us recall eq. (2.1) having an asymptotically stable limit cycle γ being perturbed as
follows

ẋ = f (x)+ ε p(x, t), (2.50)

where x ∈ Rn, p(x, t +T ) = p(x, t) for all t ≥ 0 and smooth with respect to its arguments, and
ε ≪ 1 is a small parameter indicating the intensity of the perturbation. Using the result about the
persistence of normally hyperbolic invariant manifold we have that the eq. (2.50) will have a
stable limit cycle γ̃ of order ε−close to γ .

If ε = 0, and x0 ∈ B(γ) such that T (t,x0) ∈ B(γ). By eq. (2.40) and applying the chain
rule we have

dθ(t)
dt

=
d[Θ◦Tt ](x0)

dt
(2.51)

= DΘ(Tt(x0)) · f (Tt(x0)),

where DΘ(Tt(x0)) is the jacobian of Θ at Tt(x0). Thus, by eq. (2.37) the phase function should
satisfies

DΘ(Tt(x0)) · f (Tt(x0)) = 1 (2.52)
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in the basin of attraction of γ .

If ε ̸= 0, using the theorem 2.3.2, furnished by Hagos (2019) p. 32. We can compute the
evolution of the phase function Θ in respect the time, applied at the point γ̃ as

dθ(t)
dt

=
d[Θ◦ γ̃](t)

dt
(2.53)

= DΘ(γ̃(t)) · [ f (γ̃(t))+ ε p(γ̃(t), t)].

Since ˜γ(t) is ε−close to γ(t), we set

γ̃(t) = γ(t)+O(ε). (2.54)

By the fact the vector field, f , the phase function Θ, and p are smooths. Considering a neighbor-
hood of γ , we can expand them in Taylor series around ε = 0 to obtain

DΘ[γ(t)] f [γ(t)]+ εDΘ[γ(t)]p[γ(t), t]+O(ε2). (2.55)

Then, using the fact of eq. (2.52) holds in the basin of attraction of γ (including γ itself), and
since 0 < ε ≪ 1, we have that eq. (2.53) becomes

dθ(t)
dt

= 1+ εDΘ[γ(t)]p[γ(t), t], (2.56)

which is the evolution of the perturbed phase oscillator.
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CHAPTER

3
COMPLEX NETWORK EXAMPLES

We aim to show in this chapter some examples of complex networks. The complex
systems arise in a wide range of applications such as social relations, e.g., as collaboration and
citation networks of scientists (NEWMAN, 2001), the World-Wide Web (BRODER et al., 2000),
power grids (PAGANI; AIELLO, 2013), and so on. Each structure of such systems affect their
performance, e.g., the topology of social networks affects the spread of information or disease
(STROGATZ, 2001).

For behind applications of the complex networks, the mathematical foundation is fur-
nished by the theory of graphs. Then, in the first sections, we intend to present some basic ideas
backward of graph theory before to go into some examples of complex networks.

3.1 Graphs

The graphs usually stem from arbitrary abstractions whereas networks are more often
constructed from measured data (SMALL; HOU; ZHANG, 2014). They are usually denoted by
G = (N ,E), where N ⊂ N is the set of the vertices of the graph, and E ⊂ N ×N denotes
the set of edges of the graph. Each edge is a connection between two of the N vertices. Usually,
vertices and edges are translated as nodes and links in complex network analysis.

From now we consider two types of graphs (complex networks) in the text

Definition 3.1.1 (Directed). A graph G is said to be a directed graph if

E = {(i, j) : i ̸= j for all i, j ∈ N }, (3.1)

where the condition i ̸= j implies that we are not considering self-loops in the graph.

and undirected graph, i.e., whenever (i, j) ∈ E, then also ( j, i) ∈ E for all i, j ∈ N . We assume
that N = [N] = {1,2, . . . ,N} is the set of labeled nodes. Moreover, there is other way to describe
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the graph G = ([N],E), which is from the adjacency matrix, i.e., a N ×N matrix A = (Ai j)i, j∈[N]

satisfying

Ai j =





1, if (i, j) ∈ E,

0, otherwise.
(3.2)

whose their entries encode the topology of the graph. An observation is that the adjacency matrix
of an undirected graph is symmetric, i.e.,

Ai j = A ji (3.3)

for all i, j ∈ [N]. In the fig. 7 we ilustrate the directed and undirected graphs with their respective
adjacency matrices.

Figure 7 – (a) directed graph and its respective adjacency matrix A, and (b) a undirected graph.

From a directed graph, every vertex i has a respective in-degree (kin) and out-degree
(kout), i.e., the numbers of incoming and outgoing edges represented as the head and nock of an
arrow, respectively (see figure (colocar)). For all i ∈ [N], they are obtained from the adjacency
matrix as follow

kin,i =
N

∑
j=1

Ai j and kout,i =
N

∑
j=1

A ji, (3.4)

and if the graph is undirected, then kin,i = kout,i and the degree of a vertex i is

ki =
kin,i + kout,i

2
, (3.5)

with i ∈ [N], and

⟨k⟩= 1
N

N

∑
i=1

ki =
2|E|

N
, (3.6)

where |E| (or #E) is the number of elements of the set of edges. Given a directed graph, the
distribution of the sequence {kin,i}N

i=1 (or {kout,i}N
i=1) plays an important role in to classify

between an homogenous or heterogeneous graph, i.e.,
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Definition 3.1.2 (Homogeneous graph). It is a graph such that all nodes have approximately
the same degree, where the variance in respect to the distribution of the sequence {kin,i}N

i=1 (or
{kout,i}N

i=1) is small, e.g., in the fig. 8(a) the all-to-all graph.

and

Definition 3.1.3 (Heterogeneous graph). It is a graph where the variance in respect to the
distribution of the sequence {kin,i}N

i=1 (or {kout,i}N
i=1) is not small, exhibiting a very different

pattern of connectivity across the graph, e.g., in the fig. 8(b) the star graph, where there is a node
(red) with high degree and the other ones with degree one.

Figure 8 – (a) the all-to-all graph, where all the nodes have the same degree, and (b) the star graph, where
the node 9 has the highest degree in comparison with the other ones.

Other remarkable feature of complex networks is the property of clustering, which
denotes the propensity that neighbours of a given node are also neighbours of themselves. Since
we could specify the graph by its adjacency matrix A this property, called local clustering
coefficient, can be expressed in terms of A as

Ci =
2

ki(ki −1)∑
j,k

Ai jA jkAki, (3.7)

for all i ∈ [N], where ki is given by eq. (3.5). Then, the average clustering coefficient is

⟨C⟩= 1
N

N

∑
i

Ci (3.8)

The last features of a network we intend to describe are:

• the shortest path length, i.e., the minimum number of traversed edges between the nodes i

and j, given by

Li, j = min{d(i, j) : there is a path between i and j}, (3.9)

where d(i, j) is the number of edges which connects i and j (see fig. 9).
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• the diameter of a graph, i.e.,

D = max(Li, j) (3.10)

and

• The average shortest path length

⟨L⟩= 1
N(N −1)∑

i, j
Li, j. (3.11)

Figure 9 – Representation of the distance between two nodes in a graph. From this, we can conclude by
eq. (3.9) that Li, j = 2.

Therefore, after some basic properties of graphs we present in the next sections some
models considering their structures.

3.2 Erdös-Rényi model

Consider a set of network parameters as the nodes N, and the probability p to rewire the
links (or edges) fixed. Let the links be created by a random process. From this, we can try to
analyze the effects of these parameters on the structure of the complex network. Erdös and Rényi
(1959) started to study and describe some properties of these complex systems.

The Erdös-Rényi model is obtained as follows:

• Start with N isolated nodes (or vertices) (fig. 10(a));

• Fix some probability p. Then, for each pair of nodes, we can generate at randomly another
number, called r, between 0 and 1 such that if p > r, you add a link between them
(fig. 10(b));

• if p = 1 the graph is complete, it means that all possible pairs of nodes are connected by
links. (fig. 10(c)).
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a) p = 0 b) p = 0.1

c) p = 1

Figure 10 – Different topologies of the Edös-Rényi model with fixed nodes N = 20 and considering
different values of p.

The Edös-Rényi model has a characteristic concerning the degree of the nodes, because
even the process is random, considering a large network, e.g., N = 1000 and increasing p a little,
the distribution of the degrees is similar to a Poisson distribution given by

p(k) =
e−k̄k̄k

k!
, (3.12)

where k̄ is the average degree of the nodes in the complex network. In fig. 11, we presented an
numerical simulation of a complex network considering N = 1000 nodes and p = 0.05 to see
the degree distribution.
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Figure 11 – The blue dots is the Edös-Rényi model considering an average of 100 realizations of N = 1000
nodes and probability p = 0.05. The dashed line is the expected distribution given by eq.
(3.12)

3.3 Barabási–Albert model
As presented previously, the Edös-Rényi model has a Poisson degree distribution. How-

ever, it has been empirically observed that many networks in the real world as collaboration
networks (NEWMAN, 2001), the World-Wide Web (BRODER et al., 2000), and so on have
a power-law distribution. The first model was introduced by Barabási–Albert (BARABáSI;
ALBERT, 1999), and it will be the model described a bit below.

The idea of the construction is the following:

• Initialize with a network, it could be the Edös-Rényi model with N0 fixed nodes;

• At each step we add a new node u to the network and connect it to N ≤ N0 of the existing
nodes v ∈V , where V is the set containing all the vertices of the system;

• The probability of connecting node u to v is proportional to the degree of v, i.e., we are
more likely to connect new vertices to existing ones with a high degree.

From the last step, we can notice small inhomogeneities in the degree distribution during the
process. In fig. 12, we simulated the Barabási–Albert model considering a network of N = 20
nodes. In fig. 13, we increased the number of nodes to 1000, where we can see the power-law
distribution given by the blue dots and the fit is given by

p(k) ∝ k−α , (3.13)

where we obtain α ≈−3.012317.
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Figure 12 – Barabási–Albert model considering N = 20 nodes.

Figure 13 – The blue dots is the Barabási–Albert model considering the complex network with N = 1000
nodes. The red dashed line is the expected distribution given by eq. (3.13).

3.4 Watts–Strogatz model
The structure of connection in a complex system is ordinarily assumed to be either

completely regular, or completely random, e.g., when you consider the Edös-Rényi model with
high p. However, Watts and Strogatz (1998) created a complex network that lies somewhere
between these two extremes, it is called a small-world network. The construction is the following:

• Start from a ring lattice with N vertices and k edges (or k−neighbors) per vertex;

• Then, we rewire each edge at random with probability p.

In fig. 14, we have the process between completely regular (fig. 14(a)) to a completely random
network (fig. 14(c)), where in the middle (fig. 14(b)) we have the small-world network.
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a) N = 20, k = 4, p = 0 b) N = 20, k = 4, p = 0.1

c) N = 20, k = 4, p = 1

Figure 14 – Different topologies of the Watts–Strogatz model with N = 20 fixed nodes, k = 4, and
considering different values of p.

The structural property of small-worlds networks could be quantified consider two
characteristics discussed in section 3.1

1. the average path length L(p) that depends on the probability p to connect nodes and;

2. the average clustering coefficient C(p) which also depends on the probability p.

The average path length L(p) measures the typical separation between to vertices in the graph.
Whereas the C(p) processes the proportion of triangles in a network (each triangle is a sort of
transitive relations between the nodes) and the potential number of triangles it can support given
the degrees of its nodes (ESTRADA; KNIGHT, 2015). Thus, small-world networks are systems
that can be highly clustered, like regular lattices, yet have small characteristic path lengths, like
random graphs. It is seen in fig. 15, wherein the middle of the plot we have the behavior which
describes exactly a small-world network.
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Figure 15 – N = 500, k = 4, p = 0 to 1

3.5 Sparse networks

The number of nodes and links of a complex network could vary widely, mainly when
we consider real-networks, e.g., the world-wide-web network. However, it is always possible for
every system with N nodes to verify the maximum number of connections by

Emax =
N(N −1)

2
, (3.14)

where Emax represents the number all possible connections in the network, where we are not
considering self-loops.

In real-networks, the number of connections is often much smaller than the maximum
(MENCZER; FORTUNATO; DAVIS, 2020). Then, there is a way to quantify if the networks
have or not many links, given by

d =
|E|

Emax
, (3.15)

where d represents the density of the network, and |E| (or #E) is the number of elements of
the set of edges. In complete graphs, the value of d is always one, and every system which has
density closes to one is called a dense network.

According to Barabási and Pósfai (2016) real-networks are sparse. We define the sparsity
of a complex network when

0 < d ≪ 1, (3.16)

even if the number of nodes N goes to infinity. Another way to check the sparsity of a complex
network is analyzing if the links grow proportionally to the number of nodes, i.e.,

|E| ∝ N, (3.17)
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Figure 16 – (a) exhibits the growth of |E| as function of N for the Newman-Watts-Strogatz model (NEW-
MAN; WATTS, 1999). The black circles are the simulation result, and the red dashed line is
the linear fit with the coefficients a ≈ 1.1 and b ≈ 0.18. (b) is similar to (a), but represents the
growth of a complete graph where the red dashed line is the quadratic fit with coefficients
a ≈ 0.5, b ≈−0.5, and c ≈ 0.

or even slower (MENCZER; FORTUNATO; DAVIS, 2020). If instead, the number of links grow
faster, for example, quadratically

|E| ∝ N2, (3.18)

we say that the network is dense (MENCZER; FORTUNATO; DAVIS, 2020). In fig fig. 16(a), we
represented the growth of |E| as a function of N, where we considered a well-established modifi-
cation of the Watts-Strogatz model (NEWMAN; WATTS, 1999). In fig. 16(b), we considered a
complete complex network.
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CHAPTER

4
SYNCHRONIZATION TRASITION IN

COMPLEX NETWORKS

In this chapter, we define in the first section, the dynamical systems on complex networks,
i.e., given a network G, for each node i ∈ [N] we associate a coordinate θi, called phase variable,
that describes the state of the unit on that node which evolves by time. Every node either could be
or not interacting with adjacent nodes on the graph, and we will define precisely in the following.
The last sections are about some important features on complex network dynamics.

4.1 Network dynamics

We define dynamics on complex networks as the triple (G, f ,h), where

• G is the complex network;

• f : T → T1 represents the local dynamics for the isolated nodes in the network for all
i ∈ [N];

• h : T×T→ T is the coupling function, which allows the interactions between the phase
variables.

We assume that the local dynamics are periodic on T, and putting all together, the general
dynamics is a 




θ̇i = f (θi)+
N

∑
j=1

h(θ j,θi), for all i ∈ [N],

θi(0) = θ0i,

(4.1)

where the θi(0) = θ0i are the initial conditions.

1 we define T= R
2πZ
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The eq. (4.1) is a very general approach, and at first, we are assuming the well-known
Kuramoto model (KURAMOTO, 1984). The difference is that we are not considering the all-
to-all configuration in the entries of the adjacency matrix Ai j and we consider the frustration
parameter α . Thus, the model is





θ̇i = ωi +
ε

kin,i

N

∑
j=1

Ai j sin(θ j −θi +α), for all i ∈ [N],

θi(0) = θ0i,

(4.2)

where N ∈N is the number of nodes in the network. For all i ∈ [N], θi ∈T are the phase variables,
θi(0) = θ0i are the initial conditions, 0 < ε ≪ 1 is the coupling strength, α ∈ [0, π

2 ), and

kin,i =
N

∑
j=i

Ai j (4.3)

is the in-degree of the node i. The ωi ∈ R are the natural frequencies of the phase variables.
Usually, in the literature, they assume to be Gaussian or Cauchy distributed.

4.2 Phase synchronization phenomena
In nature, synchronization happens all the time, e.g., in an audience where the applauses

start randomly, and they turn quite suddenly into synchronized clapping (NéDA et al., 2000).
Kuramoto (1984) observed this synchronization phenomenon considering large ensembles of
oscillators, where each element interacted with all others in the all-to-all configuration.

There are two possible flavors of synchronization. The former is when a multi-oscillator
system evolves into a system in which every unit θi does the same thing, i.e.,

θi(t) = θ j(t), (4.4)

for all i, j = 1, ...,N, implying that
θ̇i = θ̇ j. (4.5)

That means they are in the synchronous state, and the natural frequency is also identical. The
last is the nodes in phase-locked, i.e. when their coordinates follow the same periodic orbit apart
from a phase shift.

θi −θ j = α (4.6)

where α is a constant.

Sometimes all the nodes could not be fully synchronized, i.e., when a portion of nodes
are in phase-locked, and the other one is not. This sort of behavior means that the system is
partially synchronized.

The last comment is that if the system does not present some of those characteristics, we
say that the system is in incoherence state, i.e., when the phase oscillators are going around the
unit circle at random for each unit time.
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4.2.1 All-to-all Kuramoto model synchronization

Recalling all discussion in the introduction (see chapter 1), we again consider the order
parameter

r : TN → [0,1], (4.7)

such that for every t ∈ R+, we have

r(θ1(t), . . . ,θN(t)) =
1
N

∥∥∥∥∥
N

∑
j=1

eiθ j(t)

∥∥∥∥∥ , (4.8)

where N is the number of oscillators, θ j are the phases oscillators, and r is ranging from
incoherence state (r ≈ 0), where the system is not synchronized, to coherence state (r ≈ 1),
indicating that the system is synchronized. In fig. 17, considering K as the coupling strength, we
have a simulation of the order parameter from eq. (4.8) considering an network with N = 1000
oscillators.

0 10 20 30 40 50

t

0

0,2

0,4

0,6

0,8

1

r

K = 0.1
K = 0.4

Figure 17 – The order parameter behavior as a function of time where we consider two distinct situations
during the simulations of the model eq. (4.2) and eq. (4.8). In both, we consider N = 1000
oscillators, and the ωi are normally distributed. We take K different values as labeled in the
figure. The blue line shows that the system after some time synchronizes (r ≈ 1), however the
red one, the system stays on an incoherence regime (r ≈ 0) without synchronizing.

From fig. 17, we can notice that for different values of K the behaviors to synchronization
are different. Then, if we look at r as a function of the parameter K we can draw the bifurcation
diagram and analyze precisely the influence of K in the synchronous states of the system. In
fig. 18, we simulated this result and Kuramoto (1984) derived exact results for Kc and it was
discussed by Strogatz (2000), where Kc is given by

Kc =
2

πg(ω̄)
, (4.9)
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Figure 18 – Bifurcation diagram of the Kuramoto model, considering the normal distribution with N =
5000

where g is the distribution of the natural frequencies for a large N−oscillators. In fig. 18, we
simulated using a normal distribution with g(0) = 4, hence we obtained Kc ≈ 0.16.

In fig. 18, we can notice that the transition to synchronization is continuous and Strogatz
(2000) found that after K > Kc, r, obeys the following growth

r ∝ |K −Kc|1/2. (4.10)

4.3 Discontinuous transition

A discontinuous transition, also known as a first-order transition, refers to a qualitative
change in the behavior of a system where there is an abrupt and discontinuous jump in a certain
order parameter as a control parameter, such as coupling strength or network density, crosses a
critical value.

In the context of complex networks, a discontinuous transition signifies a sudden and
sharp change in the collective behavior of the networked oscillators. This phenomenon can be
observed in synchronization transitions, where a network transitions from a desynchronized state
to a synchronized state.

4.3.1 Phase model

Following the studies from Toenjes, Masuda and Kori (2010). For every node i of the
complex network, we associate a phase θi ∈ T, such that the dynamics of the network is given
by the the Kuramoto model from section (4.1), eq. (4.2)
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Since ε > 0 we can re-scale time such that t 7→ t ′ = t
ε
, and in a co-rotating frame of

reference where the natural frequencies ωi of the oscillators are identical, we can rewrite the
model in eq. (6.7) as follows





ϑ̇i(t) =
1

kin,i

N

∑
j=1

Ai j sin(ϑ j(t)−ϑi(t)+α), for all i ∈ [N],

ϑi(0) = ϑ0i.

(4.11)

The overall synchrony is described by the order parameter

r(t) =
1
N

∥∥∥∥∥
N

∑
j=1

eiϑ j(t)

∥∥∥∥∥ , (4.12)

where in the fig. 19 we see the global behavior of the system with respect to the asymptotic
behavior of the order parameter, where see the discontinuous transition observed by Toenjes,
Masuda and Kori (2010).

Figure 19 – Global transition for the phase model eq. (6.8), considering the asymptotic behavior of the
order parameter eq. (6.9). For this simulation, we consider N = 800 interacting units uniformly
distributed between 0 to 2π , σ = 1 and after n = 104 iterations, we took the ϑi for i = 1, . . . ,N
to compute one of the 50 values of r∞. Note that for α < αc, the value of the r∞ ≈ 1, implying
that the system is completely synchronized. However, for α > αc , we have a discontinuous
transition between the synchronous to asynchronous state.
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CHAPTER

5
STOCHASTIC PROCESS AND SOME

FEATURES

In this chapter, we aim to define and describe some properties about stochastic process.

5.1 Some definitions of probability theory
In this section, we give some definitions of concepts of probability, but we do not get

deep into it. For more details about it, look at James (2015).

We are going to study experiments or random process considering

Definition 5.1.1 (Probability space). A probability space is a triple (Ω,F ,P), such that

1. Ω it is called of sample space that contains all possible outcomes for an experiment.

Example 1. Toss a coin n−times, then

Ω = {ω = (ω1,ω2, . . . ,ωn) : ωi = H or T,∀i = 1, . . . ,n}, (5.1)

where H = Head and T = Tail.

2. F is a σ−algebra of Ω, i.e.,

a) /0 ∈ F and Ω ∈ F ;

b) If A ∈ F , then Ac ∈ F ;

c) For all A1,A2, . . . ∈ F , the

∞⋂

i=1

Ai and
∞⋃

i=1

Ai ∈ F . (5.2)
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Remark. That means F is closed through the operations of countable unions, inter-
sections, and relative complement.

3. P : F → [0,1] is the probability function, such that

a) For a nonempty set A, P(A)> 0, for all A ∈ F ;

b) P(Ω) = 1, P( /0) = 0;

c) P(
⋃

∞
i=1 Ai)≤ ∑

∞
i=1 P(Ai).

From some random experiments, we can analyze the numerical aspects of it. The way to
extract such pieces of information is using random variables, defined as

Definition 5.1.2 (Random variable). Let (Ω,F ,P) be a probability space. A function

X : Ω → R

is a random variable if the pre-image

X−1(U) := {ω ∈ Ω : Y (ω) ∈U} ∈ F ,

for all open subsets U ⊂ R.

Example 2. Let (Ω,F ,P) be a probability space. Taking a subset E ⊂ Ω, the function defined
as

1E : Ω → R

such that

1E(ω) =

{
1 , If ω ∈ E,

0 , If ω ̸∈ E
(5.3)

is a random variable if E ∈ F . This function is is called indicator function.

If Ω = "faces of a dice", F = { /0, even faces, odd faces, Ω} and consider E = {2,4,6}.
Then,

1E(ω) =





0 , If ω = 1,
1 , If ω = 2,
0 , If ω = 3,
1 , If ω = 4,
0 , If ω = 5,
1 , If ω = 6

(5.4)

is a random variable.

The random variable X could be

• discrete, i.e., there exists a finite or countable set {x1,x2, ...} ⊂ R, such that X(ω) ∈
{x1,x2, ...}, for all ω ∈ Ω, or;
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• continous, i.e., there is an uncountable set of possible outcomes, e.g., the possible values
of the temperature outside on any given day.

Definition 5.1.3. The distribution function of random variable X , denoted as FX or simply F is
defined as

FX(x) = P(X ≤ x), x ∈ R, (5.5)

satisfying the following properties:

1. If x ≤ y, it implies that F(x)≤ F(y), i.e., F is not a decreasing;

2. F is right-continuous, i.e.,

lim
x→y+

F(xn) = F(y);

3. The

lim
x→−∞

F(x) = 0 and lim
x→+∞

F(x) = 1,

i.e.,

F(x) ∈ [0,1].

Remark. The distribution function is also often called the cumulative distribution function (CDF).

If X is a discrete random variable, the distribution function is

FX(x) = ∑
i:xi≤x

P(X = x) = ∑
i:xi≤x

p(xi), (5.6)

otherwise, if X is a continuous random variable and there is a integrable function f : R→ R+,
such that ∫ +∞

−∞

f (x)dx = 1. (5.7)

The distribution function of X is

FX(x) =
∫ x

−∞

f (t)dt, ∀x ∈ R. (5.8)

The function f is called probability density function of X .

The last three concepts will be useful later on to describe the characteristics of stochastic
processes. They are

1. expected value: let X be a continuous random variable with distribution function F . The
expected value of X is defined as

E[X ] =
∫ +∞

−∞

x f (x)dx. (5.9)

Remark. The expected value (or mean) could be denoted as µX as well.
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2. variance: the variance of a continuous random variable X is

Var[X ] = E[(X −E[X ])2] =
∫ +∞

−∞

(x−E[X ])2 f (x)dx. (5.10)

Remark. The variance is also denoted as σ2
X .

3. covariance: let X and Y be two random variables with the joint probability density function

FXY (x,y) =
∫ x

−∞

∫ y

−∞

fXY (x′,y′)dy′dx′, ∀x′,y′ ∈ R. (5.11)

The covariance between X and Y is

Cov[X ,Y ] = E[(X −E[X ])(Y −E[Y ])] =
∫ +∞

−∞

∫ +∞

−∞

(x−E[X ])(y−E[Y ]) fXY (x,y)dydx.

(5.12)

5.2 Stochastic Process and some examples
Stochastic (or random) processes are collections of measurements indexed either by time

or outcomes from an experiment. It is defined as

Definition 5.2.1 (Stochastic Process). Let (Ω,F ,P) be a probability space and (S,Σ) a measur-
able space1. A stochastic process is a function of two variables (t,ω), where t belongs to some
nonempty index set I, and ω is an outcome of some sample space Ω. It could be represented in
two manners, as

• the sequence {X(t, ·) : t ∈ I} of random variables, where

X(t, ·) : Ω → S

represents a random variable indexed by t ∈ I. It is also denoted by {Xt}t∈I or {Xt};

• the sequence {X(·,ω) : ω ∈ Ω} of sample functions of time, where

X(·,ω) : I → S

represents a sample function of the process indexed by the outcome ω ∈ Ω.

Remark. a

• Even the definitions (1) and (2) in 5.2.1 looking be different, actually they produce the
same stochastic process;

• Xt and Xω are only a random variable and a sample function, respectively. They are not
the whole stochastic process;

1 A measurable space is tuple where S is the state space, e.g., S = R equipped with a sigma-algebra Σ,
e.g., Σ is the Borel sigma-algebra of R.
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• As an abuse of notation, Xt will be to denote both, where we are specifying the difference
using random variable or sample function.

The stochastic process could be discrete or continuous time, i.e.,

• discrete: consider the stochastic process {Xt : t ∈ I}. It is a discrete-time process if the
index set I is finite or countable. In practice

I = {0,1,2, . . .},

implying that
{X0,X1,X2, . . .}

is a collection of random variables which are associated with every time t = 0,1,2, . . .

• continuous: consider the stochastic process {Xt : t ∈ I}. It is a continuous-time process if
the index set I is not finite or countable. In practice

I ⊆ [0,∞)

implying that
{Xt : t ∈ I}

is a collection of random variables Xt , which are associated with every instant of time t ∈ I.

Let us look at some examples of the stochastic process.

Example 3. Let the stochastic process be the sequence {Xk : k ∈ N} of random variables, where

Xk : Ω → R

such that
Xk = X(k, ·)∼ N (0,1), ∀k ∈ N. (5.13)

The simple representation of this process is in fig. 20

Example 4. Consider Ω = (0,2π) as the sample space, and a random variable X with a uniform
distribution on the interval (0,2π), such that

X : Ω → (0,2π)

is the identity map
X(ω) = ω.

Let the stochastic process be the sequence {Yω : ω ∈ Ω} of sample functions, where

Yω : R→ R,
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Figure 20 – Shows for k = 1 and k = 2 the realizations of the stochastic process given by eq. (5.13).

such that
Yω = Y (·,ω) = cos(t +ω), ∀ω ∈ Ω. (5.14)

The simple representation of this process is in fig. 21, where for every value of ω , we have a
sample function.

In the last example, we show the stochastic process considering the two topics in the
definition 5.2.1.

Example 5. Let Ω1 = [1,3] and Ω2 = [−1,1] be sample spaces, and the random variables Y and
W with uniform distributions on the intervals [1,3] and [−1,1] respectively, such that

Y : Ω1 → [1,3],

W : Ω2 → [−1,1] (5.15)

are the identity maps, i.e.,

Y (ω1) = ω1,

W (ω2) = ω2. (5.16)

Consider the following stochastic process
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Figure 21 – Shows some sample functions for ω1 = 1, ω2 = 2, ω3 = 3, and ω4 = 4 for all t ∈ [−2π,2π].

• using the first definition

Xt : Ω → R,

where Ω = Ω1 ×Ω2, such that

Xt = X(t, ·) = ω1t +ω2 cos(πt), (5.17)

for every t ∈ R.

• and the second definition

Xω : R→ R,

such that

Xt = X(·,ω) = ω1t +ω2 cos(πt), (5.18)

for every ω = (ω1,ω2) ∈ Ω.

Then, the fig. 22(a) and fig. 22(b) show the representation of the stochastic process following
these two definitions for some values of t and ω .

There are ways to characterize stochastic process, e.g.,
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Figure 22 – (a) shows the stochastic process given by eq. (5.17) for some fixed values of t, and (b) shows
the same stochastic process, but following eq. (5.18) for some fixed values of ω .

Definition 5.2.2 (I.I.D. Stochastic Process). Let {Xk : k ∈N} be a stochastic process, this random
process is independent identically distributed (i.i.d) process if for all k ∈ N the random variables
Xk are idenpendent and identically distributed, i.e.,

FX1(x) = FXk(x), ∀k ∈ N and x ∈ R,

FX1,...,Xk(x1, . . . ,xk) = FX1(x1) · . . . ·FXk(xk), ∀x1, . . . ,xk ∈ R. (5.19)

The example example 3 is a i.i.d random process.

Definition 5.2.3 (S.S.S. random process). Let {Xt : t ∈ R} be a stochastic process, it is a strict-
sense stationary (SSS) random process if, for all t1, . . . , tr ∈ R, τ ∈ R, and the real numbers
x1, . . . ,xr, we have

FXt1 ,...,Xtr
(x1, . . . ,xr) = FX(t1+τ),...,X(tr+τ)

(x1, . . . ,xr). (5.20)

The examples 3 and 4 are SSS random process.

Since SSS stochastic processes require access to the full characterization (r−point
CDF’s), they are hard to show. Hence using partial features of a stochastic process such as
expected value, variance, and covariance, we can define

Definition 5.2.4 (W.S.S stochastic process). Let {Xt : t ∈ R} be a stochastic process. It is a wide
(or weak) sense stationary (WSS) process if it has expected value independent of time, finite
variance, and the (auto)covariance depends only on the time difference t2 − t1, i.e.,





µX(t1) = µX(t2) ∀t1, t2 ∈ R,
Cov[Xt1,Xt2] =Cov[Xt1−t2 ,X0], ∀t1, t2 ∈ R,

Var[Xt ]< ∞, ∀t ∈ R.
(5.21)
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Remark. If we have a SSS process, it implies that we have a WSS process as well, but the
converse is not always true.

Example 6. Consider the following discrete time stochastic process

Xk : Ω → R,

such that

∀k ∈ Z Xk ∼
{

U (−
√

3,
√

3), i f k is odd,

N (0,1), i f k is even,
(5.22)

It implies that 



µX(k) = 0, ∀k ∈ Z,
σ2

X(k) = 1, ∀k ∈ Z,

Cov[Xk1,Xk2] =

{
1, i f k1 = k2,

0, i f k1 ̸= k2
= δ (k1 − k2).

(5.23)

Then, this process is a WSS process because it fits in every condition from definition defini-
tion 5.2.4. However, it breaks in to be a SSS process because

FX2k1 ,...,X2kr
(x1, . . . ,xr) ̸= FX(2k1+1),...,X(2kr+1)(x1, . . . ,xr). (5.24)

for all k1,k2, . . . ,kr ∈ Z.

5.3 Autocovariance function, Fourier Transform and Power
spectral density

5.3.1 Autocovariance function

From the above definitions, since we have the covariance depending only on the time
difference, if we define τ = t2 − t1, we can analyze what happened with a signal when we shift
the process by this time lag. Thus, considering a wide-sense stationary process, we define

Definition 5.3.1 (Autocovariance function). Let {Xt : t ∈ R} be a WSS stochastic process, the
autocovariance function is

KX(τ) =Cov[Xt+τ ,Xt ] = E[(Xt+τ −µt+τ)(Xt −µt)],

= E[Xt+τXt ]−µ
2. (5.25)

If σ2 ̸= 0, the normalized autocovariance function is

ρXX(τ) =
Cov[Xt+τ ,Xt ]

σ2 =
E[Xt+τXt ]−µ2

σ2 , (5.26)

such that if τ = 0

Cov[Xt+0,Xt ] = E[(Xt+0 −µt+0)(Xt −µt)] = E[(Xt −µt)
2] = σ

2 (5.27)
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hence
ρXX(0) = 1. (5.28)

Some properties of the autocovariance function, considering a W.S.S stochastic process,
are

1. If τ = 0 from eq. (5.27) we have

KX(0) = E[(Xt −µt)
2],

= Var[Xt ]< ∞; (5.29)

2. the autocovariance function is symmetric, i.e.,

KX(−τ) = E[(Xt −µt)(X(t−τ)−µ(t−τ))],

= E[(Xs+τ −µs+τ)(Xs −µs)],

= KX(τ) (5.30)

where s = t − τ , such that s ∈ R.

3. The autocovariance function is bounded, indeed, by KX(0), i.e.,

|KX(τ)| ≤ KX(0), ∀τinR. (5.31)

This follows by the Cauchy-Schwarz inequality (see Lapidoth (2017), p. 23 for more
details).

5.3.2 Fourier transform

Physical signals can be decomposed into several discrete frequencies or a spectrum of
frequencies over a continuous range. The Fourier transform is the mathematical operation for it.
This also changes the domain (x−axis) of a signal from time to frequency.

Moreover, the Fourier transform tells you what frequencies make up your signal and
how strong they are. Even if your data contains noise, the Fourier transform allows us to look at
through the noise and see which frequencies matter. The definition is the following

Definition 5.3.2 (Fourier transform). It is an integral transform that decomposes an integrable
function

f : R→ C (or R)

into its constituent frequencies ξ , such that

f̂ (ξ ) =
∫ +∞

−∞

f (x)e−2πixξ dx, ∀ξ ∈ R, (5.32)

where the inverse transform is

f (x) =
∫ +∞

−∞

f (ξ )e2πixξ dξ , ∀x ∈ R, (5.33)
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Example 7. Consider the function f : R → R such that

f (t) = cos(ω0t), (5.34)

where ω0 = 2πξ0. Then, the Fourier transform of f is

f̂ (ξ ) =
∫

∞

−∞

cos(ω0t) · e−2πiξ tdt

=
1
2

∫
∞

−∞

(
ei(ω0−ω)t + e−(ω0+ω)t

)
dt

=
1
2
[δ (ω −ω0)+δ (ω +ω0)] ,

(5.35)

where ω = 2πξ . In fig. 23 we show this example for ω0 = 1, considering just the positive part
δ (ω −ω0) of eq. (5.35).

Figure 23 – (a) shows the eq. (5.34) for ω0 = 1 as function of time and (b) represents its respective Fourier
transform considering just the positive part δ (ω −ω0) of eq. (5.35) as a function of the
natural frequency ω .

5.3.3 Power spectrum density

An important result relating autocovariance function and the Fourier transform is the
following

Theorem 5.3.1 (See Lapidoth (2017), p. 571). If the autocovariance function KX is continuous

at the origin and integrable, then its Fourier Transform K̂X is nonnegative

K̂X(ξ )≥ 0, ξ ∈ R (5.36)

and symmetric

K̂X(−ξ ) = K̂X(ξ ), ξ ∈ R (5.37)

Moreover, the Inverse Fourier Transform recovers KX in the sense that

KX(τ) =
∫

∞

−∞

K̂X(ξ )ei2πξ τdξ , τ ∈ R (5.38)
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The Fourier transform K̂X is usually denoted as SX , and it is called power spectral density.
Thus, eq. (5.38) becomes

KX(τ) =
∫

∞

−∞

SX(ξ )ei2πξ τdξ , τ ∈ R (5.39)

and, we have
SX(ξ ) =

∫
∞

−∞

KX(τ)e−i2πξ τdτ, ξ ∈ R. (5.40)

Let us look at some examples.

Example 8. Let the random variable X be uniform distributed, i.e.,

X ∼ U (0,2π)

and consider the following stochastic process

Xt = sin(t +X), (5.41)

for all t ∈ R. We have that

• E[Xt ] = 0, ∀t ∈ R;

• KX(t1, t2) = 1
2π

cos(t1 − t2), and;

• Var[Xt ]< ∞.

Thus, it is a wide-sense stationary stochastic process. Defining the time lag τ = t1 − t2, we have
that the normalized autocovariance function is

ρX(τ) = cos(τ). (5.42)

This eq. (5.42) is represented in example 7, where we consider ω0 = 1. Thus, in the fig. 23(a) we
have the autocovariance function, and in fig. 23(b), we have the the power spectral density SX

which is the Fourier transform of the autocovariance function, such that satisfies all properties of
the theorem 5.3.1.

Example 9. Consider the example 3, fixing ω and getting one sample function for t, such that
t ∈ R. The autocovariance function is

ρX(τ) = δ (τ), (5.43)

where the power spectral density is constant equals to 1. The fig. 24 we show more details of it.
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Figure 24 – (a) shows a sample function of the stochastic process given by eq. (5.13), (b) shows the
autocovariance function of the process, where the blue points represent the "ACF white noise"
and the red line fitting it is the Dirac delta represented by "δ (τ)". In (c), we have the power
spectrum density, which is constant for this sort of stochastic process.
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CHAPTER

6
INTERNAL FLUCTUATIONS

In this chapter, we aim at studying the behavior of the internal fluctuations caused by the
effect of a small number of connections between neighbors of a large, sparse, homogeneous, and
directed complex network.

6.1 Problem description

6.1.1 Network

We follow the same network structure from Toenjes, Masuda and Kori (2010), i.e., we
consider a ring of N unidirectionally coupled nodes, i.e., for all i ∈ [N] the node i is connected
to the i−1 node (black arrows in fig. 25). So, we add Nsc unidirectional shortcuts with random
origin j and destination i represented as the brown arrows in fig. 25. The parameter

σ =
Nsc

N
(6.1)

is the density of the cross-connections in the network. Note that the number of edges in the
network is given by

|E|= N +Nsc, (6.2)

where

0 ≤ Nsc ≤
N2 −3N

2
, (6.3)

and
⟨kin,i⟩= 1+σ . (6.4)

The density of the network is

d =
(1+σ)

(N −1)
. (6.5)

Then, for large number N such that Nsc ≪ N the network is sparse, i.e.,

0 < d ≪ 1, (6.6)
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Figure 25 – Complex network structure where the black arrows are the connections of the ring, which has
N fixed links and the brown ones are the shortcuts Nsc. The topology of the network could be
encoded by the adjacency matrix A.

and the network becomes more sparse as N → ∞.

6.1.2 Phase model

We consider the same phase model previously discussed in the subsection (4.3.1) of
section (4.3):





θ̇i(t) = ωi +
ε

kin,i

N

∑
j=1

Ai j sin(θ j(t)−θi(t)+α), for all i ∈ [N],

θi(0) = θ0i,

(6.7)

where N ∈N is the number of nodes in the network, θi ∈T are the phase variables, θi(0) = θ0i are
the initial conditions, 0 < ε ≪ 1 is the coupling strength, α ∈ [0, π

2 ) is the frustration parameter,
and kin,i is the in-degree of the node i.

As metioned the rewrite the model is




ϑ̇i(t) =
1

kin,i

N

∑
j=1

Ai j sin(ϑ j(t)−ϑi(t)+α), for all i ∈ [N],

ϑi(0) = ϑ0i,

(6.8)

where overall synchrony is described by the order parameter

r(t) =
1
N

∥∥∥∥∥
N

∑
j=1

eiϑ j(t)

∥∥∥∥∥ , (6.9)

and in the fig. 19 of subsection (4.3.1) we saw the global behavior of the system with respect to
the asymptotic behavior of the order parameter, observing the discontinuous transition.
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6.1.3 Mean-field approach

Looking at fig. 25, the dynamics for each node i is influenced by the other ones. Then,
it is reasonable to analyze the average contribution this node receives in its dynamics from all
the rest. Thus, we introduce the macroscopic average G, such that for N large, this could be
approximated to the spatial average, i.e.,

G(ϑi(t), t,α) =
1
N

N

∑
i=1

sin(ϑ j(t)−ϑi(t)+α),

≈
∫

π

−π

sin(ϑ ′−ϑi(t)+α)ρ(ϑ ′, t)dϑ
′, (6.10)

where ρ is probability density function and the last term denotes the mean-field approach.
Another approach is with respect to the empirical distribution of the ϑi for i = 1,2, . . . ,N, such
that considering a large number N it approximates to (e.g., see fig. 26)

1
N

N

∑
i=1

δ (ϑi(t)−ϑ)≈
∫

ϑ

−π

ρ(ϑ ′, t)dϑ
′, (6.11)

with ∫ +π

−π

ρ(ϑ ′, t)dϑ
′ = 1. (6.12)

6.1.4 Fluctuation approach

We define fluctuations for each node i as

η
N
i (G, t,α) =

√
kin,i

[
1

kin,i

N

∑
j=1

Ai j sin(ϑ j(t)−ϑi(t)+α) − G(ϑi, t,α)

]
. (6.13)

in the next sections will be devoted to describe the behavior of such fluctuations.

6.1.5 Numerical observations about α

Recalling eq. (6.8), we know that

1. for α = α ′ > αc:

r(t) =
1

N

∥∥∥∥∥
N

∑
j=1

teiϑ j(t)

∥∥∥∥∥= 0, (6.14)

after some transient time. Moreover, in the fig. 26, we note that empirical distributions
for the set {ϑ1(t), . . . ,ϑN(t)} of solutions, for some time unities, seemed to converge to a
uniform distribution.

This apparently implies that the probability density function seems to be stationary, where it
is confirmed from computations in Strogatz (2000). Thus, when r = 0 the phase oscillators
are uniformed distributed in the unit circle with

ρ(ϑ) =
1

2π
, (6.15)
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implying that

G
(
ϑi, t,α ′)≈ 1

2π

∫ +π

−π

sin
(
ϑ
′(t)−ϑi(t)+α

′)dϑ
′ = 0 (6.16)

and

η
N
i
(
0, t,α ′)=

√
kin,i

[
1

kin,i

N

∑
j=1

Ai j sin
(
ϑ j(t)−ϑi(t)+α

′)
]

; (6.17)

2. for α = α ′ < αc and t → ∞:

r∞ = 1. (6.18)

Thereby, there is a ϑ ∈ T, such that as t → ∞, ϑi(t) = ϑ(t),∀i ∈ [N] and it makes sense to
think that the probability density function ρ is a delta, i.e.,

G
(
ϑ , t → ∞,α ′)≈

∫ +π

−π

sin
(
ϑ
′(t)−ϑ(t)+α

′)
δ (ϑ ′(t)−ϑ(t)) = sin

(
α
′) . (6.19)

Then

η
N
i
(
G, t∞,α ′)= 0. (6.20)

Figure 26 – Histogram for the set {ϑi(t)}N
i=1 of phases in different times together with the cumulative

histogram in the right-hand-side. For this simulation we consider N = 7000, σ = 200, and
α = 1.57. For each time unity labeled in the figure, we plot the histogram of the phases. Note
that the cumulative histogram of the phases seems to converge to the uniform cdf represented
by the dashed black line.

In the figure fig. 27, we simulate the fluctuations for α > αc. For that, we integrate the
system considering n time-steps, such that for every step, the system is integrated 10 times before



6.1. Problem description 67

Figure 27 – Histogram for the set {ηN
i (0, t,α ′)}N

i=1 with N = 7000, σ = 200, and α = 1.57. The phases
started uniformly distributed in (0,2π) and for different time unities labeled in the figure we
compute the fluctuations from eq. (6.17).

to go to the next one. Then, the total integration steps is n ∗ 10 and the size of the time-step
is dt = 0.01. Note that fluctuations seem to be normally distributed with the same mean and
variance.

6.1.6 Autocovariance function of the fluctuations for α > αc

Numerically, we have already analyzed the autocovariance function of the fluctuations
with respect to the time in the fig. 28(b). For that, we consider a partition of the time, such that
for the process {ηi(t j)}n

j=1 we define the autocovariance function as

ρi(τ) =
E
[(

ηi(t j+τ)−µ ′
i (t j+τ)

)(
ηi(t j)−µ ′

i (t j)
)]

σ ′2
i

, (6.21)

where we use the results from chapter 5 to plot the power spectral density S of the autocovariance
function in the fig. 28(c).
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Figure 28 – Panel (a) shows a sample function of the process {ηi(t j)}n
j=1 for i = 500, in the panel (b)

we have the autocovariance function of (a) running overtime τ , the panel (c) is the power
spectrum density considering the autocovariance function in (b), and in the last panel (d), we
plot the log-log scale of the red curve outlining the extremes of the autocovariance function.
For all simulations of this figure, we consider N = 7000, σ = 200, α = 1.57, and we take
just the last 1000 units of time of the simulation.
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CHAPTER

7
SYNCHRONIZATION OF COUPLED

CHAOTIC CIRCLE MAPS

This chapter focuses on studying synchronization in dense random networks using mean-
field equations. The research reveals the presence of chaotic transients before synchronization,
with the incoherent state persisting for extended periods. The study explores the statistics and
scaling behavior of transient times and uncovers a dependence on the link probability. The
delayed transition to synchrony challenges mean field theory and raises questions about the
dynamics of similar systems.

7.1 Model

The local phase dynamics within each node of the network are described by a Bernoulli
map of the circle, where the time steps t ∈ Z are governed by the equation:

ϕ(t +1) = f (ϕ(t)) = 2ϕ(t) mod 2π, (7.1)

Alternatively, we can express this dynamics on the complex unit circle using the notation
z = exp(iϕ), resulting in the equation z(t+1) = f (z(t)) = z(t)2. This Bernoulli map is known for
its chaotic behavior and structural stability, as observed in previous studies (TANZI; PEREIRA;
STRIEN, 2019). Structural stability implies that the statistical properties of the map persist
even under small perturbations. Consequently, when the coupling between nodes is weak, the
individual maps behave nearly independently, leading to the absence of collective dynamics in
the network.

Due to the structural stability of the Bernoulli map, for small coupling strengths, the
individual maps in the network behave almost independently. In other words, the interaction
between oscillators is weak, and there is limited influence of neighboring oscillators on each
other. Consequently, the system does not exhibit significant collective dynamics under small
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coupling. The lack of synchronization in this regime can be attributed to the near-independence
of the individual phase dynamics, which prevents any coherent alignment or coordination of
the oscillators. It is only when the coupling strength exceeds a certain threshold that the system
transitions to a synchronized state, where the individual oscillators become more strongly
coupled, and their collective dynamics start to emerge.

The behavior of the Bernoulli maps as nearly independent entities for small coupling
serves as a foundation for understanding the absence of collective behavior in this regime,
providing insight into the onset of synchronization when the coupling strength surpasses a
critical value. This understanding is crucial for studying synchronization transitions in complex
networks and elucidating the conditions under which synchronization emerges in the networked
system. By exploring the interplay between the chaotic dynamics of individual oscillators and
their collective behavior, researchers can gain valuable insights into the mechanisms driving
synchronization transitions and the role of network topology, coupling strength, and other factors
in shaping the emergent dynamics of complex systems.

7.2 Moebius map

In the study conducted by Gong et al. (GONG; TOENJES; PIKOVSKY, ), the global
coupling of the phase dynamics is realized using a Moebius map on the complex unit circle. The
Moebius map has been proven to provide exact solutions for sinusoidally forced phase dynamics
(Marvel; Mirollo; Strogatz, ), including models such as the Kuramoto model, Winfree-type
phase equations, and even the dynamics of theta neurons through a nonlinear transformation
(MONTBRIÓ; PAZÓ; ROXIN, ). Thus, it serves as a meaningful alternative to the sine coupling
commonly used in the standard circle map. In this work, we adopt a composition of Equation 7.1
and a Moebius map, as illustrated in Figure 29:

z(t +1) = M ( f (z(t)),Φ(t),τ(t)) , (7.2)

where

M(w,Φ,τ) =
eiΦτ +w

1+ e−iΦτw
, (7.3)

with a coupling intensity −1 < τ < 1, an angle of contraction Φ ∈ S1, and a point w ∈ D =

{z ∈ C : |z|< 1} within the open complex unit disk. The family of Moebius maps represents a
group of biholomorphic automorphisms of D, and through analytic continuation, these trans-
formations bijectively map the boundary of D onto itself. The effect of Equation 7.3 on the
unit disk is a contraction of almost all points towards exp(iΦ) on the boundary. Specifically, as
τ approaches ±1, we have limτ→±1 M(w,Φ,τ) = ±exp(iΦ), and as τ approaches 0 we have
limτ→0 M(w,Φ,τ) = w. The parameter τ characterizes the strength of the contraction, and as τ

tends to 0, the map described by Equation 7.2 approximates the uncoupled dynamics given by
Equation 7.1.
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This incorporation of the Moebius map in the model enriches our understanding of
synchronization transitions in complex networks. By introducing a coupling mechanism that
induces a contraction towards a specific point on the boundary of the unit disk, we can investigate
how the strength of this contraction affects the emergence and properties of synchronization.
Moreover, the ability of the Moebius map to accurately capture various types of forced phase
dynamics makes it a versatile tool for studying synchronization in different systems. Therefore,
the utilization of Equation 7.2 provides a valuable framework for exploring synchronization
transitions and their underlying mechanisms in complex networks.

7.3 Mean-field as Moebius map dynamics

The family of wrapped Cauchy distributions given by

p(ϕ) =
1

2π

1−R2

|1−Rei(ϕ−Θ)|2 (7.4)

is a continuous phase measure that includes both incoherence as the uniform distribution when
R → 0 and a delta distribution at ϕ = Θ when R → 1, is invariant under (7.2) and (7.3) (GONG;
TOENJES; PIKOVSKY, ; Marvel; Mirollo; Strogatz, ; PIKOVSKY, ). This family of continuous
phase measures, in the context of phase synchronization, is known as the Ott-Antonsen mani-
fold, and assuming this form of phase distribution is equivalent to the so called Ott-Antonsen
ansatz (OTT; ANTONSEN, b; OTT; ANTONSEN, a). The Ott-Antonsen manifold is parameter-
ized using the mean-field amplitude R and the mean-field angle Θ

Z = ReiΘ =
∫ 2π

0
eiϕ p(ϕ)dϕ. (7.5)

The mean-field amplitude R is the Kuramoto order parameter (KURAMOTO, ), which is
zero for incoherence, i.e., a uniform phase distribution, and R = 1 for complete synchronization
ϕn = Θ (a.s.). Furthermore, the higher circular moments Zq on the Ott-Antonsen manifold with
q ∈ Z are integer powers of the mean field

Zq =
∫ 2π

0
eiqϕ p(ϕ)dϕ = Zq. (7.6)

As a consequence, phase doubling maps the circular moments as f (Zq(t)) = Z2q(t) =

Zq
2(t) = f (Z1(t))q, leaving the Ott-Antonsen manifold invariant and mapping the mean-field

amplitude and phase as R → R2 and Θ → 2Θ.



72 Chapter 7. Synchronization of Coupled Chaotic Circle Maps

Z = 0.50eiπ/4

zn

Z = 0.25eiπ/2

z2
n

Z ≈ 0.67eiπ/2

M(z2
n, π/2, 0.5)

Figure 29 – Dynamics of phases. N = 30 points on the complex unit circle colored by phase, and corre-
sponding mean field (red dot inside the unit circle). From left to right : initial phase config-
uration at the points zn with mean-field amplitude R = 0.5 and mean-field phase Θ = π/4,
after chaotic phase doubling z2

n with R2 = 0.25 and 2Θ = π/2, and after subsequent contrac-
tion toward the angle π/2 with intensity τ = 0.5. Figure from: Mendonca, Tönjes and Pereira
()

In order to couple the dynamics of the Bernoulli maps given by Equation (7.2), we need
to define the parameters Φ(t) and τ(t) in Equation (7.3) as functions of the ensemble mean
field. Building upon the work of Gong et al. (GONG; TOENJES; PIKOVSKY, ), we define the
contraction angle Φ(t) and the coupling intensity τ(t) as follows:

Z(t) =
1
N

N

∑
n=1

zn(t) = R(t)eiΘ(t) (7.7)

Φ(t) = 2Θ(t) (7.8)

τ(t) = tanh
(

ε

2
R(t)

)
. (7.9)

Here, ε represents the coupling strength. When τ = 1, corresponding to εR → ∞, the phases
undergo contraction towards a single point exp(2iΘ) on the unit circle. Conversely, for small
values of εR, we can linearize Equation (7.2) and obtain the well-known form of mean-field
coupled circle maps with phase doubling

ϕn(t +1) = 2ϕn(t)+ εR(t)sin(2Θ(t)−2ϕn(t))+O(ε2R2(t)). (7.10)

The crucial observation is that on the Ott-Antonsen manifold, the mean-field Z =

Rexp(iΘ) transforms exactly the same way via (7.2),(7.3) as each element z = exp(iϕ) on
the unit circle (Marvel; Mirollo; Strogatz, ; GONG; TOENJES; PIKOVSKY, ); that is,

Z(t +1) = M(Z2(t),Φ(t),τ(t)). (7.11)

The derivation of a closed analytic expression for the dynamics of the mean field in
coupled nonlinear systems is highly unusual and provides valuable insights. This reduction
from infinitely dimensional microscopic dynamics to low-dimensional mean-field dynamics has
proven to be remarkably successful in analyzing synchronization phenomena over the last decade
(OTT; ANTONSEN, b). However, understanding the effects of finite system size N remains
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challenging (PETER; PIKOVSKY, ; PETER; GONG; PIKOVSKY, ). It is important to note that
while a finite ensemble of phases may not precisely lie on the Ott-Antonsen manifold, it can, in
some sense, be arbitrarily close to the so-called thermodynamic limit, i.e., the limit of the infinite
system size N → ∞.

The application of the Ott-Antonsen ansatz to networks of phase oscillators is feasible
when the network structure allows for the grouping of vertices into a few classes of equivalent
nodes. By assuming that all vertices within a class are subject to the same sinusoidal forcing, the
dynamics of the phase oscillators can be effectively reduced to coupled mean-field dynamics
on the Ott-Antonsen manifold for each vertex class (SKARDAL; RESTREPO, ; MARTENS, ;
OTTINO-LÖFFLER; STROGATZ, ; MARTENS; PANAGGIO; ABRAMS, ; TÖNJES; FIORE;
PEREIRA, ). Furthermore, incorporating oscillator heterogeneity and force fluctuations into
the mean field dynamics is possible by considering Cauchy distributions (LAING, ; TÖNJES;
PIKOVSKY, ; CLUSELLA; MONTBRIÓ, ).

7.3.1 Mean-Field Analysis

The mean-field dynamics (7.11) can be expressed in polar form as

Θ(t +1) = f (Θ(t)) and R(t +1) =
τ(t)+R2(t)

1+ τ(t)R2(t)
. (7.12)

This decouples the dynamics of the phase Θ, which evolves chaotically, from the dynam-
ics of the amplitude R. By substituting equations (7.9) and (7.12), we obtain the exact evolution
of the order parameter R in a closed form:

R(t +1) =
tanh

(1
2εR(t)

)
+R2(t)

1+ tanh
(1

2εR(t)
)

R2(t)
. (7.13)

Equation (7.13) allows us to determine the fixed points of the mean-field amplitude R(t)

and analyze their linear stability. The system exhibits two fixed points: complete synchronization
at R = 1 and complete desynchronization at R = 0. The stability of these fixed points changes
at unique critical points: ε1 = ln(2) ≈ 0.69 and ε0 = 2. The stability is determined by the
eigenvalues of the Jacobian of equation (7.13) evaluated at these fixed points. There exists an
unstable fixed point branch (ε(Ru),Ru) connecting these critical points, given by

ε(Ru) =
1

Ru
log
(
(1+Ru)

2

1+R2
u

)
. (7.14)

This expression is derived by setting R(t +1) = R(t) = Ru in equation (7.13) and solving
for ε . Consequently, the system of all-to-all coupled, identical chaotic phase maps will evolve
towards either complete synchronization or complete desynchronization, with a small region of
bistability ln(2)< ε < 2 (Figure 30a).
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7.4 Extension to Networks

In the next phase of our research, we delve into the dynamics of phase synchronization
on a random network composed of N maps, with each map connected to precisely k random
neighbors. The local mean field, denoted by Qn =RneiΘn , is defined as the average coupling effect
of neighboring maps on map n. We employ an adjacency matrix to determine the connections
between nodes in the network. The phase dynamics on the network are then governed by a
mathematical expression involving the local mean field and the maps’ phases.

To classify networks as dense, we examine the ratio of the average node degree ⟨k⟩ to
the system size N, denoted as p. In the context of finite networks, we consider a network to be
dense when, on average, nodes have more than one neighbor. For large dense networks, the local
mean fields of oscillators in each node’s neighborhood closely resemble the global mean field,
with a deviation proportional to 1/

√
k. Consequently, mean-field theory is a reliable framework

for describing dense networks in the thermodynamic limit.

For our simulations, we adopt a random network model where each node is connected
to exactly k random neighbors. Although this model assumes a uniform in-degree of k for each
node, it slightly differs from the Erdős-Rényi model with a Poissonian in-degree distribution.
Nevertheless, for large values of k, the simulation results obtained using our random network
model align closely with those of other random networks, exhibiting uncorrelated node degrees
and a negligible degree distribution width.

By utilizing this network model, we can directly compare the simulation outcomes with
our mean-field analysis, thereby gaining valuable insights into the dynamics of synchronization
in dense networks.
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Figure 30 – Bifurcation diagram of the mean-field amplitude and a representation of the network inter-
action. In (a), the bifurcation diagram of the all-to-all coupling mean-field dynamics (7.12),
i.e., on the Ott-Antonsen manifold. Dotted lines show linearly unstable fixed points and solid
lines show linearly stable fixed points in the thermodynamic limit. (b) Venn diagram of a
dense network with N vertices and connection probability p. The sets of neighbors of nodes
m and n are of size pN and their overlap is of size p2N, resulting in correlated local mean
fields Qm = Rm exp(iΘm) and Qn = Rn exp(iΘn) acting on the states zm and zn. The ratio of
the amplitudes of the local mean fields and the global mean field are independent of the
network size N. Figure from: Mendonca, Tönjes and Pereira ()
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7.5 Results and Conclusions

7.5.1 Distributions of Transient Times

We perform a large number M of simulations m = 1 . . .M from independent, uniformly
distributed random initial phases over a maximum of T steps and record in each simulation the
first time step tm when R ≥ 0.5, i.e., the transition time from an incoherent state to complete syn-
chronization. Finite-size scaling for such a discontinuous transition is challenging (OLIVEIRA;
LUZ; FIORE, ). The exponential distribution of the times tm, according to some characteris-
tic transition rate, can be checked in a rank plot of time points tm, which gives the sample
complementary cumulative distribution C(t) = prob(t ≥ tm) = rank(tm)/M (Figure 32a,d).

An exponential tail distribution C(t) up to observation time T indicates an exponen-
tial distribution of transient times. Since the simulation time is finite, transition times tm ≥ T

are not observed, which represents a problem when we are interested in the average time to
synchronization. However, assuming a discrete exponential, i.e., geometric distribution, a maxi-
mum likelihood estimation of the average transition time is possible up to values considerably
exceeding the observation time T (see Appendix ??).

Denoting the number of simulations that synchronize at times tm < T as MT , and defining
the observable values lm = min(tm,T ), the maximum likelihood estimation of the expected value
Tesc = E[tm] for the geometric distribution is

Tesc =
⟨lm⟩M

MT
. (7.15)

with the sample mean ⟨lm⟩. If the transition to synchronization is observed in all simulations,
i.e., MT = M, the estimator is simply the sample mean of tm, which is an estimator of Tesc for
arbitrary transient time distributions. However, when most runs do not synchronize within the
finite simulation time T , the ratio M/MT contains additional information, and the estimated
mean escape time can be much larger than the observation time.

7.5.2 During Coexistence: Escape over the Unstable Branch

In (LUCCIOLI et al., ), it was reported that the transition from incoherence to collective
dynamics in sparse networks of coupled logistic maps is of the mean-field type. The analysis
in (RESTREPO; OTT; HUNT, ) predicts a shift in the critical coupling strength in random
networks of Kuramoto phase oscillators of the order ⟨k⟩2/⟨k2⟩ due to degree inhomogeneity, and
1/⟨k⟩ due to finite size fluctuations of the local mean fields. That is, in dense, homogeneous
networks with ⟨k⟩2/⟨k2⟩ → 1 and ⟨k⟩ → ∞, the critical coupling strength does not change. We
expected to find similar behaviors for network-coupled Bernoulli maps. In complete or almost
complete networks k/N = p ≈ 1 for ε < 2, there is a small probability that finite size fluctuations
bring the order parameter R above the unstable branch, leading to a spontaneous transition to
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complete synchronization, as shown in Figure 31a. We first observe the scaling of the transient
time in fully connected networks with p = 1. For values of ε < ε0 = 2.0, the transition rate to
synchronization scales strongly with the size N of the system (Figure 32b,c). However, for values
ε > ε0, the average transition time depends very weakly on N, as the system grows exponentially
fast from a state of incoherence, with R ≈ 1/

√
N. We estimate a finite size scaling exponent

β that is below the transition threshold by collapsing the curves Tesc(ε,N) using the ansatz
Tesc(ε,N) = Tesc

(
(ε − ε0)Nβ

)
. The data are consistent with an ad hoc exponent of β = 1/3

(Figure 32c).

7.5.3 Above the Critical Coupling Strength: Long Chaotic Transient

Above the critical coupling strength ε > ε0 = 2, we expected finite size fluctuations
to grow exponentially fast and independently of N, as predicted by linear stability analysis of
the mean-field equations (7.13). Instead, for small connection probabilities 0 < p < 1, we have
observed a chaotic transient with seemingly stationary finite size fluctuations O(1/

√
N) of the

mean field (Figure 31). In the large N limit, the distribution of the transient times depends on the
link density p with increasingly long transients as p is decreased, but it is otherwise independent
of N.

A coupling strength for which a transition to complete synchronization could still be
observed within the simulation time was considerably larger than the mean-field critical coupling
ε0 = 2. That is, even in dense networks and above the mean-field critical coupling, finite size
fluctuations will not necessarily result in the nucleation and exponential growth of a collective
mode. Such a delayed transition to synchronization (BAER; ERNEUX; RINZEL, ) has so far
not been described in systems of coupled phase oscillators (ICHINOMIYA, ; RESTREPO; OTT;
HUNT, ; KO; ERMENTROUT, ) or coupled logistic maps (LUCCIOLI et al., ).

In Figure 32f, we plot Tesc over (ε − ε0)p to demonstrate that the average transition time
is roughly scaling as 1/p. We do not look for higher-order corrections such as a weak dependence
of ε0 on p, although the curves do not collapse perfectly. Note that the escape time is largely
independent of the network size (Figure 32e,f). For p = 0.1, 0.05, and 0.025 we have performed
simulations with N = 104 (circles) and with N = 5×104 (crosses) for comparison. For p = 0.01,
we compare network sizes N = 104 (circles) with very time-consuming simulations in networks
with N = 105 (crosses).
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Figure 31 – Transient to synchronization for N = 10,000 coupled maps in (a,b), a fully connected network
with coupling strength ε = 1.81 below the critical coupling ε0 = 2, and (c,d), in a random
network with connection probability p = 0.1 for a coupling strength of ε = 2.3 above the
critical coupling. The upper panels (a,c) show the order parameter R(t), and the lower panels
(b,d), the real part of the ratio of the first two circular moments Re[Z2

1/Z2]. This serves as a
visual measure of the alignment of the system state with the Ott-Antonsen manifold, where
the ratio is exactly equal to one. The dashed line in (a) marks the value of the unstable
fixed point of the mean-field dynamics, Ru = 0.098. Above that value, the state of complete
synchronization is attractive on the Ott-Antonsen manifold. In (b,d), the incoherent state
R = 0 is unstable; however, finite size fluctuations do not grow exponentially. Instead, we
observe a long chaotic transient. Figure from: Mendonca, Tönjes and Pereira ()
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Figure 32 – Statistics of transient times tm to synchronization. (a–c) In the fully connected network; (d–f)
in random networks of various link densities p = k/N. The upper panels show straight lines
in semi-logarithmic plots of cumulative tail distributions of the transient times, demonstrating
the rate character of the transition process. The middle panels show the estimated average
transient times for various combinations of system sizes N, coupling strengths ε , and link
densities p. The mean field critical coupling strength ε0 = 2.0 and the maximum observation
time T are marked by dashed lines. In the globally coupled system on the left-hand side,
the transient time depends strongly on the system size N, whereas in dense networks and
above ε0, the transient time depends strongly on the link density p = k/N, but not on the
system size. We demonstrate the scaling of the transition times in the lower panels. In the
globally coupled system, the exponential divergence of the transient times below ε0 appears
to be a function of (ε − ε0)N

1
3 . In dense networks, the exponential divergence is roughly a

function of (ε − ε0)p. Figure from: Mendonca, Tönjes and Pereira ()

7.5.4 Discussion of Finite Size Scaling

Mean field theory assumes a phase distribution on the Ott-Antonsen manifold. The char-
acteristic function of a wrapped Cauchy distribution is the geometric sequence Zq = Zq of circular
moments (7.6). However, in the incoherent state with N independent uniformly distributed phases
ϕn the circular moments of an ensemble

Zq =
1
N

N

∑
n=1

eiqϕn (7.16)

are almost independent complex numbers with a Gaussian distribution of mean zero and a
variance of 1/N by virtue of the central limit theorem. The action of the Bernoulli map on the
circular moments is the shift

Zq → Z2q, (7.17)

that is, it is achieved by discarding all odd circular moments. The exponential growth of the order
parameter in accordance to mean field theory is expected after the distribution comes close to the
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Ott-Antonsen manifold, i.e., when the first few circular moments align by chance sufficiently
under the mapping (7.17); in particular, Z2(t)≈ Z2

1(t). Unless the directions of Z2 and Z2
1 align

by chance, as they would on the Ott-Antonsen manifold, the subsequent contraction of strength
εR in the direction of Z2

1 after the phase doubling may even decrease the amplitude of the order
parameter. In addition, for coupling strengths ε below the critical value, R = |Z1| must be above
the unstable branch R > Ru(ε)∼ (ε0 − ε).

The rate of such a random event should depend on the ratio between Ru(ε) and the stan-
dard deviation 1/

√
N of the Gaussian distribution of the complex mean field. Based on this scal-

ing argument, the expected time to synchronize should scale as
Tesc = Tesc((ε − ε0)

√
N) below the critical coupling. The best collapse of the estimated es-

cape times in fully connected networks of coupled Bernoulli maps was observed by scaling
the distance to ε0 with N1/3 (Figure 31c), i.e., the exponential divergence of the escape time
approaches ε0 slower than 1/

√
N in the thermodynamic limit. One possibility for this discrepancy

is that the scaling argument only considers the chance of R > Ru and not the alignment process
of the higher-order circular moments.

Above the critical coupling strength, there is only the condition of the alignment of
circular moments with the Ott-Antonsen manifold for the initiation of exponential growth.
Since in the incoherent state, all circular moments are random Gaussian with identical variance,
the alignment process (7.17) is strictly independent of the system size N. Once exponential
growth in the direction of the Ott-Antonsen manifold occurs, the time to synchronization is
logarithmic, that is, it is weakly dependent on N. However, it appears that the alignment with
the Ott-Antonsen manifold needs to be stronger for networks with link densities of p < 1.
For small link densities, the divergence of the escape time occurs at larger values ε > ε0. This is
reminiscent of stabilization by noise (KHASMINSKII, ), where a system is driven away from a
low-dimensional unstable manifold of a fixed point into stronger attracting stable directions.

In simulations of dense random networks of coupled Bernoulli maps, we could see the
independence of the mean escape time from the network size and the scaling of the escape
time with roughly ∼ 1/p. To explain this scaling, we argue that mean field theory might be
extended to dense networks, where each node couples to a finite neighborhood of pN nodes in
the network, and for every two nodes, these neighborhoods overlap on a set of size p2N (Figure
30b). The local mean fields are Gaussian random forces of mean value Z, variance 1/k = 1/pN,
and the pairwise correlation of p, which is the relative size of the overlap. The decrease in
correlation between the local mean fields in networks with link densities p < 1 can be interpreted
as individual, finite size noise on the maps, which couples to the global mean field, plus some
uncorrelated random deviation. Therefore, the contractions of the phases do not occur in the
same direction for different nodes in the network. The strength of the contraction in the direction
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of the mean field is effectively reduced by the factor p, i.e.,

τ = tanh
(

1
2

εR
)

p ≈ 1
2

ε pR (7.18)

shifting the coupling strength dependence of the transition time (above ε0) by a factor of 1/p.

7.5.5 Conclusions

We have investigated the synchronization of coupled chaotic maps in dense random
networks, utilizing mean-field equations and examining network configurations with different
link probabilities. Firstly, we noticed the existence of chaotic transients to synchronization within
these networks. This means that the incoherent state can persist for extended periods before
transitioning into synchronization. This finding led us to study the statistics of transient times and
their scaling behaviors in the process of synchronization. The transition times follow exponential
distributions, indicating spontaneous transitions at a constant rate. It is noteworthy that the
transition from incoherence to complete synchronization only occurs spontaneously in networks
of finite size. Additionally, we have observed a remarkable dependence of the transient times to
synchronization on the link probability p, represented by the ratio of the in-degree to the total
number of nodes, at coupling strengths where an immediate transition to synchrony would be
expected from mean field theory. Whether such a delayed transition is due to the specifics of our
model or is typical for a more general class of dynamics remains an open question.
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APPENDIX

A
PROOF OF THE THEOREM 2.3.1

Theorem 2.3.1. Consider the eq. (2.1), where the flow ϕ is a function of class Ck, with k ≥ 1.

Assume the system has an asymptotically stable limit cycle γ and for a small ε > 0, let Bε(γ)⊂
B(γ) be a neighborhood of γ , such that for every inital condition z0 ∈ B(γ) it is attracted to γ

when time goes to infinity. Then,

1. there is a unique function αx : R→ Rn−1, such that Ix is an invariant graph of α under g.

It means

g(graph(αx)) = graph(αx); (A.1)

with

graph(αx) = Ix = {(u,v) ∈ Bε(γ) : ∀u ∈ R,∃!v ∈ Rn−1, such that v = αx(u)}, (A.2)

where Bε(γ)⊂ R×Rn−1, g is a time one map of the flow.

2. for every x ̸= y in γ , Ix is mapped to Iy;

3. the ⋃

x∈γ

Ix (A.3)

foliates the entire neighborhood Bε(γ) of γ , where for every x,y ∈ γ , Ix
⋂

Iy = /0.

Proof. We define g in the same way of eq. (2.29), letting τ(x) = 1 be the period of the orbit hits
the cross-section Σ ⊂ Rn again, such that

g
Σ

:= ϕ(1, ·) : Σ → Σ (A.4)

is called of time−1 map. Since the flow is invariant on the limit cycle, after one period, implies
that

g
Σ
(x0) = ϕ(1,x0) = x0. (A.5)
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for every x0 ∈ γ . Then, x0 is a fixed point of the map g and we can follow to prove the part (1) of
the theorem.

Let γ(0) = x0 be a point on γ , since it is an asymptotically stable limit cycle, by the
theorem 2.2.2 and lemma 2.2.3 the monodromy matrix at Mx0(0) has one eigenvalue µ1 = 1 and
(n−1) eigenvalues 0 < µk < 1, with k = 1, ...,n−1. Then, it is possible decompose my space
into two subspaces: tangent along γ at x0 , and transversal to γ also at x0.

Given this decomposition and considering the small neighborhood of x0 and γ defined as

Bε(γ)(x0) = {z ∈ R×Rn−1 : d(z,x0)< ε}, (A.6)

for a small ε > 0, we can introduce a suitable local coordinate system without loss of generality,
considering x0 = (0,0) as the origin, and for every point z0 = (u,v) ∈ Bε(γ)(x0)

u ∈ R and v ∈ Rn−1.

Then, we define the map g as follows
(

u

v

)
7→
(

H(u,v)

Av+R(u,v)

)
, (A.7)

where A is a (n− 1)× (n− 1) matrix that contains all the uk eigenvalues of the monodromy
matrix, and H : R×Rn−1 → R, R : R×Rn−1 → Rn−1 are at least C1 functions with

A(0) = 0, H(0,0) = 0 and R(0,0) = 0. (A.8)

Since R is differentiable and defined in the convex set Bε(x0), it means that for a,b ∈ Bε(x0),
a+λ (b−a) ∈ Bε(x0) for 0 ≤ λ ≤ 1. Let 0 < δ ≪ 1, such that

sup
0≤λ≤1

∥DR(a+λ (b−a))∥ ≤ δ , (A.9)

then by the mean value theorem, follows that

|R(a)−R(b)| ≤ δ |a−b|. (A.10)

Consider b = (0,0) and a = (u,v) ∈ Bε(x0), by eq. (A.10) we have

|R(u,v)| ≤ δ |(u,v)|, (A.11)

where
lip(R)< δ (A.12)

and similarly it is possible to show that lip(H)< µ , where µ ≪ 1.

Since A has no zero eigenvalues it is invertible, then bijective and we also assume that

lip(A−1)lip(H)< 1. (A.13)
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Then, at this stage and by eqs. (A.8), (A.12) and (A.13), all the hypothesis of the graph transform
theorem given by Hadamard are satisfied. Hence, we draw the conclusions of this theorem, which
is precisely the part (1). Therefore, part (1) holds using this theorem.

Let
g

Σ0
:= ϕ(1, ·) : Σ0 → Σ0 (A.14)

be the time−1 map and Σ0 ⊂ B(γ) be a cross-section of γ , where Bε is a neighborhood of γ .
Since Σ0

⋂
γ = {x0} is the fixed point of g

Σ0
and γ is asymptotically stable, we have that

gm+1
Σ0

(z0)→ x0 as m → ∞. (A.15)

for every z0 ∈ Σ0, where by definition

gm+1
Σ0

(z0) = ϕ(m+1,z0),

= ϕ(1,ϕ(m,z0)),

= ϕ(1,gm
Σ0
(z0)). (A.16)

Similarly, letting s ∈ R+ be fixed, consider

g
Σ1

:= ϕ(1+ s, ·) : Σ1 → Σ1, (A.17)

where Σ1 ⊂ Bε is also a cross-section and Σ1
⋂

γ = {x1} is the fixed point of g
Σ1

. Then,

gn+1
Σ1

(z1)→ x1 as n → ∞. (A.18)

for every z1 ∈ Σ1, where using the same process as in eq. (A.16)

gn+1
Σ1

(z1) = ϕ(1+ s,gn
Σ1
(z1)). (A.19)

Therefore, by the following diagram

z0 = ϕ(1,z0) ϕ(1,gm
Σ0
(z0)) x0

z1 = ϕ(1+ s,z0) ϕ(1+ s,gn
Σ1
(z1)) x1

gm+1

ϕ

m→∞

ϕ

gn+1 n→∞

implies that Σ0 is mapped to Σ1 under the flow, where the graph of αx is precisely Ix = Σx given
previously in the part (1). Then, the part (2) of the theorem holds.

Since two distinct nearby points on γ stay close for all time, and for each x ∈ γ is an
asymptotically stable fixed point of gm

Σ
we conclude that for every x ̸= y in γ the Ix

⋂
Iy = /0. Thus,

the last part of theorem holds and we complete the proof to the theorem.
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Abstract: We study the transition to synchronization in large, dense networks of chaotic circle maps,
where an exact solution of the mean-field dynamics in the infinite network and all-to-all coupling limit
is known. In dense networks of finite size and link probability of smaller than one, the incoherent
state is meta-stable for coupling strengths that are larger than the mean-field critical coupling. We
observe chaotic transients with exponentially distributed escape times and study the scaling behavior
of the mean time to synchronization.

Keywords: synchronization; random networks; chaotic maps; mean-field analysis; finite size effects

1. Introduction

Complex nonlinear systems often exhibit collective synchronization phenomena which
can play an important role for the overall functioning of a system [1–3]. Phase oscillator
models can elucidate key aspects of the mechanism that generates the collective motion [4].
The Kuramoto model, for instance, is particularly useful in describing groups of weakly
coupled oscillators such as Josephson junctions, and they can be analyzed in almost full
detail in the thermodynamic limit of infinitely many oscillators. Indeed, Kuramoto himself
initially studied the fully connected networks of coupled oscillators with frequency het-
erogeneity, and obtained the critical value of the coupling strength for the transition from
incoherence to synchronized collective oscillations [5].

While such predictions are obtained in the thermodynamic limit, they have been used
as fruitful approaches to describe networks with finitely many oscillators [6,7]. However,
recent work has shown that finite size fluctuations or sparse connections in the network
can significantly impact on the overall dynamics. In fact, in certain models, synchroniza-
tion cannot, even approximately, be predicted from the mean-field approximation in the
thermodynamic limit [8]. That is, in these models, a transition to synchronization occurs
or is inhibited because of finite size fluctuations [9,10]. The interplay between mean-field
predictions and finite-size fluctuations for general models remains elusive and requires
further investigation.

In this work, we study chaotic phase maps in dense networks where the mean-field
dynamics can be analyzed exactly in the thermodynamic limit. For small coupling, due to
the chaotic phase dynamics, only incoherence is stable. For a range of coupling strengths,
mean-field analysis predicts coexistence between complete chaotic synchronization and
incoherence, and for strong coupling, the incoherence becomes unstable. Then, complete
synchronization is the globally attracting state in our model. Our results are two-fold:

(i) For coupling strengths with a stable coexistence of incoherence and synchronization,
although incoherence is locally attracting, finite-size fluctuations can take the system
into the basin of attraction of the absorbing state of complete synchronization. Starting
near incoherence with uniformly distributed random oscillator phases, the distribution
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of transient times towards synchronization is exponential and scales as a power of the
system size.

(ii) Above the critical coupling strength, in dense but incomplete networks, although
linear stability analysis of the mean-field equations suggests that any nonzero mean field,
e.g., finite size fluctuations of the mean field, will grow exponentially fast, we observe
an exponentially long chaotic transient in the incoherent state. Such a delayed transition
to synchronization has so far not been described in dense networks of coupled phase
oscillators or coupled chaotic maps.

2. Model of Coupled Chaotic Maps

The local phase dynamics in each node is modelled as a Bernoulli map of the circle
with time steps t ∈ Z

ϕ(t + 1) = f (ϕ(t)) = 2ϕ(t) mod 2π, (1)

or via the abuse of notation on the complex unit circle z = exp(iϕ), we write z(t + 1) =
f (z(t)) = z(t)2. This map is chaotic and structurally stable [11]. That is, the statistical
properties of the map persist under small perturbations. Therefore, for small coupling,
the maps behave as nearly independent, and no collective dynamics is possible for small
coupling. In [12], the global coupling of the phase dynamics is implemented as a Moebius
map on the complex unit circle. The Moebius map has been shown to give exact solutions
of sinusoidally forced phase dynamics [13], including the Kuramoto model, Winfree-type
phase equations, and via a nonlinear transformation, the dynamics of theta neurons [14]. It
is therefore a meaningful alternative to the sine coupling in the standard circle map. Here,
we use a composition of (1) and a Moebius map (see Figure 1)

z(t + 1) = M( f (z(t)), Φ(t), τ(t)), (2)

where

M(w, Φ, τ) =
eiΦτ + w

1 + e−iΦτw
(3)

for a coupling intensity −1 < τ < 1, an angle of contraction Φ ∈ S1, and a point
w ∈ D = {z ∈ C : |z| < 1} on the open complex unit disc. The family of Moebius
maps is a group of biholomorphic automorphisms of D, and via analytic continuation,
these transformations map the boundary of D bijectively onto itself. The effect of (3) on
the unit disc is a contraction of almost all points towards exp(iΦ) on the boundary where
limτ→±1 M(w, Φ, τ) = ± exp(iΦ) and limτ→0 M(w, Φ, τ) = w. The parameter τ charac-
terizes the strength of the contraction. For τ → 0, the map (2) approaches the uncoupled
dynamics (1). Moreover, the family of wrapped Cauchy distributions

p(ϕ) =
1

2π

1− R2

|1− Rei(ϕ−Θ)|2 (4)

which includes incoherence as the uniform distribution when R→ 0 and a delta distribution
at ϕ = Θ when R→ 1, is invariant under (2) and (3) [12,13,15]. This family of continuous
phase measures, in the context of phase synchronization, is known as the Ott-Antonsen
manifold, and assuming this form of phase distribution is equivalent to the so called Ott-
Antonsen ansatz [16,17]. The Ott-Antonsen manifold is parameterized using the mean-field
amplitude R and the mean-field angle Θ

Z = ReiΘ =
∫ 2π

0
eiϕ p(ϕ) dϕ. (5)

The mean-field amplitude R is the Kuramoto order parameter [18], which is zero for
incoherence, i.e., a uniform phase distribution, and R = 1 for complete synchronization
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ϕn = Θ (a.s.). Furthermore, the higher circular moments Zq on the Ott-Antonsen manifold
with q ∈ Z are integer powers of the mean field

Zq =
∫ 2π

0
eiqϕ p(ϕ) dϕ = Zq. (6)

As a consequence, phase doubling maps the circular moments as f (Zq(t)) = Z2q(t) =
Zq

2(t) = f (Z1(t))q, leaving the Ott-Antonsen manifold invariant and mapping the mean-
field amplitude and phase as R→ R2 and Θ→ 2Θ.

Z = 0.50eiπ/4

zn

Z = 0.25eiπ/2

z2
n

Z ≈ 0.67eiπ/2

M(z2
n, π/2, 0.5)

Figure 1. Dynamics of phases. N = 30 points on the complex unit circle colored by phase, and cor-
responding mean field (red dot inside the unit circle). From left to right: initial phase configuration at
the points zn with mean-field amplitude R = 0.5 and mean-field phase Θ = π/4, after chaotic phase
doubling z2

n with R2 = 0.25 and 2Θ = π/2, and after subsequent contraction toward the angle π/2
with intensity τ = 0.5.

To couple the dynamics of the Bernoulli maps (2), the parameters Φ(t) and τ(t) in (3)
should be defined as functions of the ensemble mean field. Following [12], we define the
contraction angle Φ(t) and the coupling intensity τ(t) as

Z(t) =
1
N

N

∑
n=1

zn(t) = R(t)eiΘ(t) (7)

Φ(t) = 2Θ(t) (8)

τ(t) = tanh
( ε

2
R(t)

)
, (9)

where ε is a coupling strength. For τ = 1, when εR → ∞, the phases are contracted to
a single point exp(2iΘ) on the unit circle. For small values of εR, we can expand (2) to
the linear order and obtain the more familiar form of mean-field coupled circle maps with
phase doubling

ϕn(t + 1) = 2ϕn(t) + εR(t) sin(2Θ(t)− 2ϕn(t)) + O(ε2R2(t)). (10)

The crucial observation is that on the Ott-Antonsen manifold, the mean-field
Z = R exp(iΘ) transforms exactly the same way via (2), (3) as each element z = exp(iϕ)
on the unit circle [12,13]; that is,

Z(t + 1) = M(Z2(t), Φ(t), τ(t)). (11)

It is highly unusual that a closed analytic expression for the dynamics of the mean field
can be derived and thus analyzed in coupled nonlinear dynamical systems. The reduction
in infinitely dimensional microscopic dynamics to the low-dimensional dynamics of the
mean-field [16] has been tremendously successful in the analysis of synchronization phe-
nomena over the last decade, while the effects of the finite system size N remain difficult
to analyze [19,20]. We note that the point measure of a finite ensemble of phases is never
actually on the Ott-Antonsen manifold, but can, in some sense, be arbitrarily close to the
so-called thermodynamic limit, i.e., the limit of the infinite system size N → ∞.
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Applying the Ott-Antonsen ansatz to networks of phase oscillators is possible if the
network structure allows for the partitioning of the vertices into a few classes of equivalent
vertices. Assuming that all vertices of a class are subjected to the same sinusoidal forcing,
the dynamics of the phases in the network can be reduced to the dynamics of coupled
mean fields on the Ott-Antonsen manifold for each vertex class [10,21–24]. Additionally,
heterogeneity in the oscillators and fluctuations in the forces can be incorporated into the
mean field dynamics if they follow Cauchy distributions [25–27].

2.1. Mean-Field Analysis

The mean-field dynamics (11) can be written in terms of the polar representation

Θ(t + 1) = f (Θ(t)) and R(t + 1) =
τ(t) + R2(t)

1 + τ(t)R2(t)
. (12)

This means that the dynamics of the phase Θ decouples from the amplitude and will
evolve chaotically. Using Equations (9) and (12), we obtain the amplitude dynamics

R(t + 1) =
tanh

(
1
2 εR(t)

)
+ R2(t)

1 + tanh
(

1
2 εR(t)

)
R2(t)

(13)

which describes the exact evolution of the order parameter R in a closed form. We can
readily determine the fixed points of the mean-field amplitude R(t) and their linear stability.
Both the complete synchronization R = 1 and the complete desynchronization R = 0 are
fixed points of (13), and change stability at unique critical points ε1 = ln(2) ≈ 0.69 and
ε0 = 2, respectively, as determined by the eigenvalues of Jacobian of Equation (13) at
these fixed points. These critical points are connected by an unstable fixed point branch
(ε(Ru), Ru), where

ε(Ru) =
1

Ru
log
(
(1 + Ru)2

1 + R2
u

)
. (14)

This expression is derived from (13) by setting R(t + 1) = R(t) = Ru and resolving
the equation for ε.

This means that this system of all-to-all coupled, identical chaotic phase maps will
always evolve to complete synchronization or complete desynchronization, with a small
region ln(2) < ε < 2 of bistability (Figure 2a).

2.2. Extension to Networks

Next, we have studied the same phase dynamics on a random network of N maps
which are coupled to exactly k different, random neighbors. Here, each phase ϕn couples
to a local mean field

Qn = RneiΘn =
1
k

N

∑
n=1

Anmzm (15)

where Anm are the entries of the adjacency matrix, i.e., equal to one if there is a link from
vertex m to vertex n, but zero otherwise, and k = ∑N

m=1 Anm is the in-degree of node n,
which, for computational simplicity, we assume to be identical for all nodes. Thus, with
τn = tanh

(
ε
2 Rn

)
, the dynamics of the phases coupled through a network are

zn(t + 1) =
e2iΘn(t)τn(t) + z2

n(t)
1 + e−2iΘn(t)τn(t)z2

n(t)
. (16)

A class of networks is dense if limN→∞〈k〉/N = p > 0, where 〈k〉 is the mean
node degree. Therefore, p is the fraction of nodes, in relation to the system size N, that
an oscillator is coupled to. Since dense networks are defined in the limit of N → ∞,
there is no sharp distinction between sparse and dense networks of finite size. We refer
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to a finite network as dense if two nodes share more than one neighbor on average,
i.e., 〈k〉2/N = p2N > 1. In large dense networks, the local mean fields of the oscillators in
the neighborhood of each node (15) are equal to the global mean field, with a deviation of
O(1/

√
k), where k is the size of the neighborhood, i.e., the in-degree of the node. Therefore,

mean-field theory should be exact for dense networks in the thermodynamic limit where
〈k〉 → ∞.

The network model. First, we wish to compare the simulation results directly with our
mean-field analysis. For large random networks with a link density p = k/N and 0 < p < 1,
the numerical simulations are time-consuming since the N local mean fields at each node in
the network need to be computed in each time step. To simplify these computations, we use
a random network where each node couples to exactly k different random neighbors. This
model with a unique in-degree of k for each node is slightly different from the Erdös Renyi
model, with a Poissonian in-degree distribution of small relative width std(k)/〈k〉 ∼ 1/

√
k.

For large k, the results of the simulations in our random network model and other random
networks with uncorrelated node degrees and a vanishing relative width of the degree
distribution are expected to be identical.

0 1 2 3 4

ε

0.0

0.2

0.4

0.6

0.8

1.0

R

(a) (b)

Figure 2. Bifurcation diagram of the mean-field amplitude and a representation of the network
interaction. In (a), the bifurcation diagram of the all-to-all coupling mean-field dynamics (12), i.e., on
the Ott-Antonsen manifold. Dotted lines show linearly unstable fixed points and solid lines show
linearly stable fixed points in the thermodynamic limit. (b) Venn diagram of a dense network with
N vertices and connection probability p. The sets of neighbors of nodes m and n are of size pN
and their overlap is of size p2N, resulting in correlated local mean fields Qm = Rm exp(iΘm) and
Qn = Rn exp(iΘn) acting on the states zm and zn. The ratio of the amplitudes of the local mean fields
and the global mean field are independent of the network size N.

3. Results
3.1. Distributions of Transient Times

We perform a large number M of simulations m = 1 . . . M from independent, uni-
formly distributed random initial phases over a maximum of T steps and record in each
simulation the first time step tm when R ≥ 0.5, i.e., the transition time from an incoherent
state to complete synchronization. Finite-size scaling for such a discontinuous transition is
challenging [28]. The exponential distribution of the times tm, according to some character-
istic transition rate, can be checked in a rank plot of time points tm, which gives the sample
complementary cumulative distribution C(t) = prob(t ≥ tm) = rank(tm)/M (Figure 3a,d).

An exponential tail distribution C(t) up to observation time T indicates an exponential
distribution of transient times. Since the simulation time is finite, transition times tm ≥ T
are not observed, which represents a problem when we are interested in the average time
to synchronization. However, assuming a discrete exponential, i.e., geometric distribution,
a maximum likelihood estimation of the average transition time is possible up to values
considerably exceeding the observation time T (see Appendix A).
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Figure 3. Statistics of transient times tm to synchronization. (a–c) In the fully connected network;
(d–f) in random networks of various link densities p = k/N. The left panels show straight lines in
semi-logarithmic plots of cumulative tail distributions of the transient times, demonstrating the rate
character of the transition process. The middle panels show the estimated average transient times for
various combinations of system sizes N, coupling strengths ε, and link densities p. The mean field
critical coupling strength ε0 = 2.0 and the maximum observation time T are marked by dashed lines.
In the globally coupled system in pannels (a–c), the transient time depends strongly on the system
size N, whereas in dense networks and above ε0 (d–f), the transient time depends strongly on the
link density p = k/N, but not on the system size. We demonstrate the scaling of the transient times
in panels (c) and (f) on the right. In the globally coupled system, the exponential divergence of the
transient times below ε0 appears to be a function of (ε− ε0)N

1
3 . In dense networks, the exponential

divergence is roughly a function of (ε− ε0)p.

Denoting the number of simulations that synchronize at times tm < T as MT , and defin-
ing the observable values lm = min(tm, T), the maximum likelihood estimation of the
expected value Tesc = E[tm] for the geometric distribution is

Tesc =
〈lm〉M

MT
. (17)

with the sample mean 〈lm〉. If the transition to synchronization is observed in all simula-
tions, i.e., MT = M, the estimator is simply the sample mean of tm, which is an estimator of
Tesc for arbitrary transient time distributions. However, when most runs do not synchro-
nize within the finite simulation time T, the ratio M/MT contains additional information,
and the estimated mean escape time can be much larger than the observation time.

3.2. During Coexistence: Escape over the Unstable Branch

In [29], it was reported that the transition from incoherence to collective dynamics in
sparse networks of coupled logistic maps is of the mean-field type. The analysis in [30]
predicts a shift in the critical coupling strength in random networks of Kuramoto phase
oscillators of the order 〈k〉2/〈k2〉 due to degree inhomogeneity, and 1/〈k〉 due to finite
size fluctuations of the local mean fields. That is, in dense, homogeneous networks with
〈k〉2/〈k2〉 → 1 and 〈k〉 → ∞, the critical coupling strength does not change. We expected to
find similar behaviors for network-coupled Bernoulli maps. In complete or almost complete
networks k/N = p ≈ 1 for ε < 2, there is a small probability that finite size fluctuations

95



Entropy 2023, 25, 983 7 of 11

bring the order parameter R above the unstable branch, leading to a spontaneous transition
to complete synchronization, as shown in Figure 4a. We first observe the scaling of the
transient time in fully connected networks with p = 1. For values of ε < ε0 = 2.0, the tran-
sition rate to synchronization scales strongly with the size N of the system (Figure 3b,c).
However, for values ε > ε0, the average transition time depends very weakly on N, as the
system grows exponentially fast from a state of incoherence, with R ≈ 1/

√
N. We estimate

a finite size scaling exponent β below the transition threshold by collapsing the curves
Tesc(ε, N) using the ansatz Tesc(ε, N) = Tesc

(
(ε− ε0)Nβ

)
. The data are consistent with an

ad hoc exponent of β = 1/3 (Figure 3c).
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Figure 4. Transient to synchronization for N = 10,000 coupled maps in (a,b), a fully connected
network with coupling strength ε = 1.81 below the critical coupling ε0 = 2, and (c,d), in a random
network with connection probability p = 0.1 for a coupling strength of ε = 2.3 above the critical
coupling. The upper panels (a,c) show the order parameter R(t), and the lower panels (b,d), the real
part of the ratio of the first two circular moments Re[Z2

1/Z2]. This serves as a visual measure of the
alignment of the system state with the Ott-Antonsen manifold, where the ratio is exactly equal to
one. The dashed line in (a) marks the value of the unstable fixed point of the mean-field dynamics,
Ru = 0.098. Above that value, the state of complete synchronization is attractive on the Ott-Antonsen
manifold. In (b,d), the incoherent state R = 0 is unstable; however, finite size fluctuations do not
grow exponentially. Instead, we observe a long chaotic transient.

3.3. Above the Critical Coupling Strength: Long Chaotic Transient

Above the critical coupling strength ε > ε0 = 2, we expected finite size fluctuations to
grow exponentially fast and independently of N, as predicted by linear stability analysis
of the mean-field Equations (13). Instead, for small connection probabilities 0 < p < 1,
we have observed a chaotic transient with seemingly stationary finite size fluctuations
O(1/

√
N) of the mean field (Figure 4). In the large N limit, the distribution of the transient

times depends on the link density p with increasingly long transients as p is decreased, but
it is otherwise independent of N.

A coupling strength for which a transition to complete synchronization could still be
observed within the simulation time was considerably larger than the mean-field critical
coupling ε0 = 2. That is, even in dense networks and above the mean-field critical coupling,
finite size fluctuations will not necessarily result in the nucleation and exponential growth
of a collective mode. Such a delayed transition to synchronization [31] has so far not been
described in systems of coupled phase oscillators [30,32,33] or coupled logistic maps [29].
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In Figure 3f, we plot Tesc over (ε− ε0)p to demonstrate that the average transition
time is roughly scaling as 1/p. We do not look for higher-order corrections such as a weak
dependence of ε0 on p, although the curves do not collapse perfectly. Note that the escape
time is largely independent of the network size (Figure 3e,f). For p = 0.1, 0.05, and 0.025
we have performed simulations with N = 104 (circles) and with N = 5× 104 (crosses)
for comparison. For p = 0.01, we compare network sizes N = 104 (circles) with very
time-consuming simulations in networks with N = 105 (crosses).

3.4. Discussion of Finite Size Scaling

Mean field theory assumes a phase distribution on the Ott-Antonsen manifold. The
characteristic function of a wrapped Cauchy distribution is the geometric sequence Zq = Zq

of circular moments (6). However, in the incoherent state with N independent uniformly
distributed phases ϕn the circular moments of an ensemble

Zq =
1
N

N

∑
n=1

eiqϕn (18)

are almost independent complex numbers with a Gaussian distribution of mean zero and
a variance of 1/N by virtue of the central limit theorem. The action of the Bernoulli map
on the circular moments is the shift

Zq → Z2q, (19)

that is, it is achieved by discarding all odd circular moments. The exponential growth of the
order parameter in accordance to mean field theory is expected after the distribution comes
close to the Ott-Antonsen manifold, i.e., when the first few circular moments align by chance
sufficiently under the mapping (19); in particular, Z2(t) ≈ Z2

1(t). Unless the directions of
Z2 and Z2

1 align by chance, as they would on the Ott-Antonsen manifold, the subsequent
contraction of strength εR in the direction of Z2

1 after the phase doubling may even decrease
the amplitude of the order parameter. In addition, for coupling strengths ε below the critical
value, R = |Z1|must be above the unstable branch R > Ru(ε) ∼ (ε0 − ε).

The rate of such a random event should depend on the ratio between Ru(ε) and the
standard deviation 1/

√
N of the Gaussian distribution of the complex mean field. Based on

this scaling argument, the expected time to synchronize should scale as
Tesc = Tesc((ε− ε0)

√
N) below the critical coupling. The best collapse of the estimated

escape times in fully connected networks of coupled Bernoulli maps was observed by
scaling the distance to ε0 with N1/3 (Figure 4c), i.e., the exponential divergence of the
escape time approaches ε0 slower than 1/

√
N in the thermodynamic limit. One possibility

for this discrepancy is that the scaling argument only considers the chance of R > Ru and
not the alignment process of the higher-order circular moments.

Above the critical coupling strength, there is only the condition of the alignment of
circular moments with the Ott-Antonsen manifold for the initiation of exponential growth.
Since in the incoherent state, all circular moments are random Gaussian with identical
variance, the alignment process (19) is strictly independent of the system size N. Once
exponential growth in the direction of the Ott-Antonsen manifold occurs, the time to
synchronization is logarithmic, that is, it is weakly dependent on N. However, it appears
that the alignment with the Ott-Antonsen manifold needs to be stronger for networks with
link densities of p < 1. For small link densities, the divergence of the escape time occurs
at larger values ε > ε0. This is reminiscent of stabilization by noise [34], where a system
is driven away from a low-dimensional unstable manifold of a fixed point into stronger
attracting stable directions.

In simulations of dense random networks of coupled Bernoulli maps, we could see
the independence of the mean escape time from the network size and the scaling of the
escape time with roughly ∼ 1/p (Figure 3f). To explain this scaling, we argue that mean
field theory might be extended to dense networks, where each node couples to a finite
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neighborhood of pN nodes in the network, and for every two nodes, these neighborhoods
overlap on a set of size p2N (Figure 2b). The local mean fields are Gaussian random
forces of mean value Z, variance 1/k = 1/pN, and a pairwise correlation of p, which is
the relative size of the overlap. The decrease in correlation between the local mean fields in
networks with link densities p < 1 can be interpreted as individual, finite size noise on the
maps, which couple to the global mean field, plus some uncorrelated random deviation.
Therefore, the contractions of the phases do not occur in the same direction for different
nodes in the network. The strength of the contraction in the direction of the mean field is
effectively reduced by the factor p, i.e.,

τ = tanh
(

1
2

εR
)

p ≈ 1
2

εpR (20)

shifting the coupling strength dependence of the transition time (above ε0) by a factor of 1/p.

4. Conclusions

We have investigated the synchronization of coupled chaotic maps in dense random
networks, utilizing mean-field equations and examining network configurations with
different link probabilities. Firstly, we noticed the existence of chaotic transients to syn-
chronization within these networks. This means that the incoherent state can persist for
extended periods before transitioning into synchronization. This finding led us to study the
statistics of transient times and their scaling behaviors in the process of synchronization.
The transition times follow exponential distributions, indicating spontaneous transitions
at a constant rate. It is noteworthy that the transition from incoherence to complete syn-
chronization only occurs spontaneously in networks of finite size. Additionally, we have
observed a remarkable dependence of the transient times to synchronization on the link
probability p, represented by the ratio of the in-degree to the total number of nodes, at cou-
pling strengths where an immediate transition to synchrony would be expected from mean
field theory. Whether such a delayed transition is due to the specifics of our model or is
typical for a more general class of dynamics remains an open question.
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Appendix A

Here, we calculate the maximum likelihood estimation for the mean value of a geo-
metric distribution P(t; α) = (1− α)αt for discrete values t = 0, 1, . . . of time steps when
only times t < T can be observed. The expected value for the geometric distribution is

E[t] = (1− α)
∞

∑
t=0

tαt =
α

1− α
. (A1)

Since the times tm, m = 1 . . . M are only observable up to step T − 1, we define
lm = min(tm, T). The probabilities for the possible values of lm are
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P(lm = T; α) = 1− (1− α)
T−1

∑
t=0

αt = αT (A2)

P(lm = t < T; α) = (1− α)αt. (A3)

The derivative of the log-likelihood of M independent observations lm with respect to the
parameter α is

∂αP(l1, l2, . . . , lM; α)

P(l1, l2, . . . , lM; α)
=

M

∑
m=1

∂αP(lm; α)

P(lm; α)
. (A4)

For the probabilities (A2) and (A3), the derivatives are

∂αP(lm = T, α)

P(lm = T, α)
=

T
α

(A5)

∂αP(lm = t < T, α)

P(lm = t < T, α)
=

t
α
− 1

1− α
. (A6)

For a maximum of the log-likelihood for the observed values lm, the sum in (A4) is required
to be zero. Inserting M − MT times the term (A5) for all observations lm = T and MT
terms (A6), one for each observation lm = t < T, we obtain

(M−MT)
T
α
+ ∑

lm<T

lm
α
−MT

1
1− α

= 0. (A7)

With

〈lm〉 =
1
M

M

∑
m=1

lm =
1
M

(
(M−MT)T + ∑

lm<T
lm

)
(A8)

we can divide (A7) by the number M of observations and re-order the equation to obtain

〈lm〉M
MT

=
α

1− α
. (A9)

However, this is exactly the expected value E[t] of time steps for the full geometric distribution (A1).
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