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ABSTRACT

GIMENES, GABRIEL P. Data analysis over large-scale graphs using vertex-centric asyn-
chronous parallel processing. 2020. 89 p. Tese (Doutorado em Ciências – Ciências de Com-
putação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2020.

Since the birth of web 2.0, users no longer just consume but are now active creators of content
that is going to be consumed by other users. This new dynamic took data generation to a
whole new scale, called planetary-scale or web-scale. Often, this data represents relationships
between its elements, such as in social networks, recommendation systems, online boards, email
networks, scientific citation networks, and others. Analyzing how information flows and how
nodes influence each other in several of such networks is a widely regarded problem; While Belief
Propagation, which is the fundamental algorithm for these types of inference, is widely used,
it historically lacked convergence guarantees for real-world networks. However, even though
recently alternative methods such as LinBP solve the convergence problems of the original
algorithm, it’s scalability when dealing with large-scale problems remains a challenge. Also,
several of the works proposed to solve this issue, do so by relying on specific infrastructures such
as supercomputers and computational clusters. Motivated by these challenges we propose a new
algorithm, called VCBP, that aims to provide a scalable framework for belief propagation on large-
scale problems, such as when graphs do not fit the main memory. We do so by combining state-
of-the-art asynchronous vertex-centric parallel processing with state-of-the-art belief propagation
algorithm. Our algorithm maintains the same accuracy rate while achieving performance orders
of magnitude higher than former LinBP’s implementation. Due to the asynchronous nature of
our algorithm, VCBP demands fewer iterations before convergence than any previous algorithm.
Additionally, we analyze our algorithm in the task of node classification, achieving significant
results over real-world datasets. Our findings indicate that there is unexplored potential in today’s
widely available modern hardware, specifically concerning parallelism, sparking a shift towards
a more cost-efficient and ubiquitous data mining scenario.

Keywords: graph processing, belief propagation, parallel processing, vertex-centric processing,
big data.





RESUMO

GIMENES, GABRIEL P. Análise de dados sobre grafos em larga escala por meio de proces-
samento paralelo assíncrono centrado em vértices. 2020. 89 p. Tese (Doutorado em Ciências
– Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2020.

Desde o surgimento da web 2.0, os usuários não mais apenas consomem conteúdo, mas também
são responsáveis agora por criar conteúdo que será consumido por outros usuários. Essa nova
dinâmica levou a produção de dados à uma nova e surpreendente escala, chamada de escala
planetária. Muitas vezes tais dados representam relacionamentos entre seus elementos, como é o
caso em redes sociais, sistemas de recomendação, fórums online, redes de email, redes de citação
científica, entre outras. Analisar o fluxo de informações e como os nós influenciam uns aos outros
nesses domínios é um problema recorrente; Apesar do algoritmo Belief Propagation ser um dos
principais algoritmos utilizados nesse contexto, o algoritmo historicamente apresentou problemas
de garantias de convergência quando aplicado à redes reais. Contudo, apesar de recentemente
métodos alternativos como LinBP focarem em resolver o problema de convergência do algoritmo
original, a escalabilidade do algoritmo em grafos de larga escala continua sendo um desafio.
Além disso, muitas das propostas que tentam resolver o problema de escalabilidade necessitam de
infraestrutura adicional como supercomputadores e clusters computacionais. Com a motivação
desses desafios, essa tése propoe um novo algoritmo, chamado VCBP, que tem como objetivo
prover um arcabouço escalável para Belief Propagation em problemas de larga escala, como
ocorre nos casos em que o grafo não cabe na memória principal. A proposta combina técnicas
de processamento paralelo assíncrono centrado em vértices com avanços de estado-da-arte no
algoritmo de Belief Propagation. O VCBP é capaz de alcançar novos patamares de performance
que são ordens de magnitude melhores que a implementação do LinBP. Além disso, devido à
natureza assíncrona do algoritmo são necessárias menos iterações até que a convergência seja
alcançada quando comparado com outras soluções. Por fim, analisamos também o algoritmo
quando aplicado à tarefa de classificação, alcançando resultados significativos em bases de dados
reais. Nossas descobertas indicam que existe um grande potencial inexplorado na tecnologia de
hardware largamente disponível atualmente, especialmente em relação ao paralelismo, apontando
para a oportunidade de uma computação mais acessível e com melhor custo-benefício.

Palavras-chave: processamento de grafos, propagação de crenças, processamento paralelo,
processamento centrado em vertíces, larga escala.
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CHAPTER

1
INTRODUCTION

1.1 Context

The massive amount of data produced in the so-called Information Era, in the first
decade of the 21st century, is undoubtedly a very promising source of knowledge, but also a
consolidated problem involving several issues such as storage, processing, and comprehension
of the underlying phenomena. These issues are investigated by different research areas and pose
a promising, yet, challenging problem. Such data is ubiquitously produced in our everyday life,
from social network interactions and credit card transactions to digital breadcrumbs left by our
Global Positioning System (GPS) systems. In 2010, a publication from The economist entitled
Data, data everywhere (ECONOMIST, 2010) discussed the advantages, such as the potential
of life and services improvements, and also the disadvantages, like privacy concerns that arise
from this new availability of information. Finally, the publication emphasizes the importance
of understanding and utilizing this data as a mean of pursuing several common interests of our
society.

A significant part of this ubiquitously and constantly generated data come from the
so-called web 2.0, in which users not only consume content but also generate content that is
to be consumed by other users. This dynamic pushes data generation levels to a new ground,
named Web-scale or planetary scale. Many times, this data can represent relationships between
its elements, as in social networks, recommendation systems, online forums, electronic commu-
nication networks, citation networks, cybersecurity, and others. For that reason, it is intuitive and
promising to model these systems as graphs, because it allows several properties to be explored,
such as edge weights (representing for instance, the strength of a connection), edge and node
data (such as a user’s profile in a social network), and also the dynamic processes that take place
in these networks (the diffusion of a hoax, for example).
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1.2 Problem

Analyzing large scale networks, which can have up to billions of edges and nodes,
requires a very efficient and powerful processing framework. Graphs like the YahooWeb (KANG
et al., 2011), Twitter (KRISHNAMURTHY; GILL; ARLITT, 2008) and Clickstreams (LIU;
GUO; FALOUTSOS, 2009) are challenging due to their size, requiring large storage disks.
It is not uncommon for these graphs to not fit in memory, which means that with inadequate
processing it can take up to weeks until any analysis be obtained. One of the main strategies to
process large graphs has been the use of distributed processing over computational clusters (LOW
et al., 2010) (KANG et al., 2011) (MALEWICZ et al., 2010), usually managed by frameworks
like Hadoop (SHVACHKO et al., 2010). This approach demands additional complexity, due to the
distributed processing, as well as additional infrastructure cost, both of which can be prohibitive.
Therefore it is interesting to be able to process large scale graphs in a single computational node,
aiming at the definition of an analysis framework capable of discovering patterns, helping in the
decision making process and comprehension, whilst maintaining a scalable, cheaper and simpler
approach.

Following these considerations, new approaches that intend to circumvent scalability and
complexity issues have been proposed in the years recent to this work. The more important are
the ones that take advantage of the, now common, multi-core architectures, such as TurboGraph
(HAN et al., 2013), GraphChi (KYROLA; BLELLOCH; GUESTRIN, 2012), X-Stream (ROY;
MIHAILOVIC; ZWAENEPOEL, 2013a), MMap (SABRIN et al., 2013) and M-Flash (GUAL-
DRON et al., 2015). These frameworks employ techniques that allow a graph to be processed
iteratively without the need of having the whole graph in memory, as well as allowing for several
properties and algorithms to be calculated without the need for a complete traversal of the graph
– which can sometimes be computationally inviable.

The aforementioned techniques refer to the use of the asynchronous parallel process-
ing model, which can be oriented to edges or nodes; namely edge-centric and vertex-centric,
respectively. That is, the processing is done iteratively, once for each edge, in the case of the
edge-centric processing; or once for each node, in the case of the vertex-centric processing. De-
spite limiting the ways the network can be traversed, edge and vertex-centric algorithms are still
very powerful, allowing for several tasks to be performed; specifically, discrete techniques that
are based on matrix operations (matrix-matrix multiplications or matrix-vector multiplications,
for instance) generalize under this paradigm. Examples of such algorithms include PageRank
(PAGE et al., 1999), spectral analysis (KANG et al., 2014), diameter estimation (KANG et al.,
2008), connected components (ZHU; GHAHRAMANI, 2002) and random walks (KYROLA,
2013), as was shown by Kang, Tsourakakis and Faloutsos (2009).
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1.3 Rationale for the choice of the research topic

In fact, due to the relevance of analyzing and comprehending different network properties,
several works have been proposed in this context. Some of them analyze the temporal evolution
of networks (AGGARWAL; SUBBIAN, 2014) (BRANDT; LESKOVEC, 2014) (MCAULEY;
LESKOVEC, 2013); others focus on analyzing recommendations (GÜNNEMANN; GÜNNE-
MANN; FALOUTSOS, 2014) or mining sentiments (WEST et al., 2014); some are focused on
tensor decomposition (SIDIROPOULOS; PAPALEXAKIS; FALOUTSOS, 2014) (PAPALEX-
AKIS et al., 2013) (SHIN; KANG, 2014) and enumerating triangles (PARK et al., 2014). Another
important consideration is security and quality of several online services (SHNEIDERMAN,
2015); in a mobile application store, for instance, it is important that user reviews remain
legitimate because this factor can affect the credibility of the store (XIE; ZHU, 2014).

Furthermore, the need for efficient and cost-effective solutions can be perceived by a
growing number of works that consider alternatives to the distributed processing approaches. In
the work CatchSync (JIANG et al., 2014), the authors define metrics to quantify the suspicious-
ness of a given user, Cristofaro et al. (2014) on the other hand, proposes an experiment where
legitimate and illegitimate likes are compared, proposing metrics to help differentiate them. In
another work, Shah et al. (2014) proposes an algorithm to detect suspicious behaviors, whereas
Mao et al. (2014) recognizes malicious attempts in a governmental security network by using a
multi-linear analysis algorithm.

Additionally, Gatterbauer et al. (2014) focuses on developing an efficient belief prop-

agation algorithm to search for anomalies, such as fake profiles in social networks. Also Lin
et al. (2014) proposes the use of a diffusion model to analyze the temporal evolution of a mo-
bile application. Similarly, some works employ epidemiology concepts to model information
diffusion (RODRIGUEZ et al., 2014), while also trying to predict the size and duration of
cascade-like effects in social networks (CHENG et al., 2014). Finally, we also developed an
algorithm that is capable of identifying potentially illegitimate promotion or defamation in online
recommendation networks (GIMENES; CORDEIRO; RODRIGUES-JR, 2016).

1.4 Results and general hypothesis

With the results and discussions presented in this thesis, we consider that we were able
to develop processing techniques for large-scale networks, building towards analyzing some of
the underlying properties that emerge from these complex networks in different domains. As our
main contributions we managed to:

∙ investigate algorithms and properties of networks, their comprehension and requirements
for interpretation in specific domains, as shown in Chapter 3;
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∙ work with a large scale graph processing framework, using vertex-centric asynchronous
parallel processing to enable efficient computation in a single computational node, as
shown in both Chapters 3 and 5;

∙ finish the project that started during the MSc, culminating in the publication ORFEL
(GIMENES; CORDEIRO; RODRIGUES-JR, 2016) that focused on fraud detection in
large scale recommendation systems; also presented in Chapter 3;

∙ propose our novel vertex-centric belief propagation algorithm VCBP that improved the
state-of-the-art by enhancing the applicability and efficiency such an algorithm, detailed in
Chapters 2, 4 and 5

Given these contributions, this doctorate thesis can be expressed through the following
general hypothesis, which this thesis shall find valid or invalid based on the standard scientific
protocol:

General Hypothesis: The use of iterative vertex-centric asynchronous parallel processing

techniques over multi-core computational architectures can lead to the development of efficient

algorithms capable of revealing interesting patterns in large scale networks over real-world

domains, such as social networks, recommendation systems, and citation networks.

1.5 Document organization
This document is structured in a way that we start as broad as possible whilst gradually

narrowing the scope towards the more specific results of this thesis. The Chapters are organized
as follows:

Chapter 2 explains and reviews the literature related to graph processing techniques and
paradigms.

Chapter 3 reviews an extensive scope of concepts related to graphs/complex networks
while simultaneously presenting practical applications, methodologies, results and interpretations
revolving around those concepts in multiple domains comprising three of our published works.

Chapter 4 discusses the history and characteristics of the Belief Propagation algorithm.

Chapter 5 details our methodology and the results for our proposed VCBP algorithm
and this thesis main contribution.

Chapter 6 closes this thesis presenting conclusions and future works.
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CHAPTER

2
VERTEX-CENTRIC ASYNCHRONOUS

PROCESSING

2.1 Initial considerations

This chapter presents one of the bases of this thesis: the vertex-centric graph processing
paradigm, including a review of the more broad graph processing literature as well as specific
works that inspired and helped the development of our work. Although not intended as an
exhaustive list of all the frameworks and techniques, we focus on seminal works that originated
schools of thought when it comes to processing graphs, allowing the reader to understand the
overall state of the art and different approaches to be used.

2.2 Overview

Graph processing, in general, has been transitioning from a more traditional whole-graph
available model to a more decentralized design. That is, conventional graph algorithms such as
Dijkstra’s shortest path receive the whole graph as input and considers that the data is available
in memory, making frequent use of random accesses. However, with the unprecedented increase
in the size of real-world graphs and data applications, newer and more scalable approaches
have been and are still being proposed to address such a problem. One of the more commonly
proposed methodologies focuses on partitioning the data, and using distributed frameworks such
as MapReduce (DEAN; GHEMAWAT, 2004) to process the graphs.

Yet, due to the high inter-dependency between graph partitions, these generic approaches
fail to leverage specific graph information to optimize the processing; hence, several of such
attempts failed to produce the desired performance, which led to more specific research and
development regarding large-graph processing. We can divide these proposals into two processing
categories: Distributed and Single-Machine.
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2.3 Distributed graph processing

Distributed systems take advantage of large computational clusters to divide-and-conquer,
by splitting the graph into smaller partitions and processing each part in a different node. Several
works follow this route such as: Pegasus (KANG; TSOURAKAKIS; FALOUTSOS, 2009),
GraphLab (LOW et al., 2012), Pregel (MALEWICZ et al., 2010) and PowerGraph (GONZALEZ
et al., 2012). The issues of this approach are the high cost associated with the infrastructure, the
complexity associated with the programming model, and the graph partitioning scheme; which
can lead to heavy network communication and unnecessary waste of processing power.

More specifically, GraphLab (LOW et al., 2012) is an asynchronous parallel system that
relies on a shared-memory abstraction called GAS (Gather, Apply, Scatter); in this model, a
vertex can discover information about its neighbors in the Gather phase, effectively perform the
algorithm computations in the Apply phase, and finally update its adjacent edges and vertices
during the Scatter phase. In order to maintain serializability during asynchronous processing,
GraphLab utilizes a neighbor-locking protocol. Similarly, PowerGraph (GONZALEZ et al.,
2012) builds upon these concepts by proposing an architecture where high-degree nodes are
processed by more than one worker, in order to avoid imbalance issues on power-law graphs.

Pegasus (KANG; TSOURAKAKIS; FALOUTSOS, 2009) is one of the frameworks
that build upon the MapReduce (DEAN; GHEMAWAT, 2004) technology via proposing a
generalized iterative matrix-vector multiplication model called GIM-V; one of the first works to
propose this model, Pegasus suffers from the necessity of synchronizing the whole graph-state
between iterations, even when most of the graph remained unchanged, such overhead leads to
performance inefficiencies.

Finally, Pregel (MALEWICZ et al., 2010) is one of the main precursors to the BSP
(Bulk Synchronous Parallel) programming model, using a message passing processing model to
address the communication between multiple workers and data segments. Additionally, in such a
model it is possible to declare one or more vertices inactive during any iterative step. Leveraging
the TLAV (Think Like a Vertex) programming framework - which is discussed in more details
further ahead in subsection 2.4.1 - Pregel facilitates the user programming costs by allowing the
user to focus only on the computation that happens inside a vertex while not needing to worry
about the underlying graph representation structure.

Other works (TAMERSOY; ROUNDY; CHAU, 2014) (PANDIT et al., 2007) (MCGLO-
HON et al., 2009) fail to consider large-scale scenarios, whereas others make use of clusters
(KANG; CHAU; FALOUTSOS, 2011) or supercomputers (CHAU et al., 2011) to achieve
scalability.
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2.4 Single-machine large graph processing

Alternatively to the distributed approach, in 2012, scientists started proposing single-
machine frameworks that rely on iterative parallel processing and efficient disk-based techniques.
These include both Vertex-Centric and Edge-Centric processing frameworks, such as Graphchi
(KYROLA; BLELLOCH; GUESTRIN, 2012), TurboGraph (HAN et al., 2013), X-Stream (ROY;
MIHAILOVIC; ZWAENEPOEL, 2013b) and MFlash (GUALDRON et al., 2015).

Aiming to explore multi-core architectures and disk-based I/O optimizations to provide
scalability over cheaper machinery, these approaches also avoid the distributed pitfalls of needing
to partition the graph over several computational nodes. Reducing the communication overhead
and being able to more specifically optimize the processing of the graphs based on underlying
structural properties and characteristics. Additionally, due to the lower complexity of the overall
system, programming algorithms for single-machine graph processing frameworks tend to be
simpler and more straight-forward than their distributed counterparts.

Graphchi (KYROLA; BLELLOCH; GUESTRIN, 2012) is a vertex-oriented graph pro-
cessing framework that implements the Parallel Sliding Windows (PSW) mechanism, which is
a disk-based graph access model that focuses on minimizing the number of random accesses
needed to perform a given task. PSW works by partitioning the graph into shards, which allows
large graphs that do not fit in the main memory to be sequentially loaded via these partitions.
Each partition is an ordered subgraph; edges are stored based on the source vertex ID. Graphchi
also allows for selective scheduling of vertices, avoiding unnecessary processing of already
stabilized vertices in every iteration. TurboGraph (HAN et al., 2013) has a similar approach to
Graphchi, while focusing mainly on the advantages in the performance that can be obtained
when using modern Solid State Drives (SSD).

X-Stream (ROY; MIHAILOVIC; ZWAENEPOEL, 2013b), on the other hand, is an edge-
centric framework that proposes an unordered edge list stream processing technique. X-Stream
manages to lower the preprocessing costs by eliminating the need to order the edges before
starting to process the graph. Whilst MFlash (GUALDRON et al., 2015) proposes a different
block-based graph partitioning system to reduce disk-accesses that focus on fully exploiting the
capabilities of modern hard drives.

As mentioned before, there are two main approaches to single-machine large graph
processing frameworks, Vertex-Centric and Edge-Centric, and below we detail each:

2.4.1 Vertex-centric graph processing

Vertex-centric, vertex-oriented or TLAV algorithms are computations oriented to the
standpoint of each vertex in the graph. That is, the user-defined computation is iteratively
processed over vertices of the graph, considering only localized information for the computation
such as the vertex’s own information as well as its incoming-edges messages. Vertex-centric
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Figure 1 – Update function representation.

Source: Elaborated by the author.

programs can be executed both synchronously where each vertex computes its update function
once and then waits for every vertex to finish before starting the next iteration, as well as
asynchronously, when a vertex finishes its processing it can immediately begin the next iteration.
Several methods exist to control the execution of the algorithm including local and global barriers,
synchronization locks, and scheduling techniques depending on the implemented framework.

Due to the local nature of the processing, vertex-centric techniques cannot express every
graph algorithm, particularly it has difficulties implementing algorithms that require a graph-
omniscient approach. However, such a processing model can still perform several common and
useful graph algorithms, such as the PageRank (PAGE et al., 1999) algorithm that calculates the
importance of web-pages. PageRank is a good example of a problem that can be solved both by
traditional shared-memory sequential processing models as well as using the iterative parallel
vertex-centric approach. By leveraging the inherent parallelism available to the vertex-centric
approach, it is possible to process the PageRank algorithm efficiently, enhancing the scalability
of the algorithm when compared to traditional methods.

At its core, in a vertex-centric graph processing system, each vertex has associated values
and iteratively updates its values based on incoming messages from in-edges and then propagates
such changes to its neighbors via out-edges. Figure 1 shows the basic structure of vertex-centric
models, the Update Function. This approach is well suited to work with large graphs in a single
computational node due to the inherent parallelism and asynchronicity allowing for efficient
usage of computational resources such as the multiple cores available in modern processors, as
well as the higher rates of data transfer in SSDs.

The vertex-centric graph processing is based on iteratively executing the update function
for each scheduled vertex in the graph until the algorithm converges. Algorithm 1 presents an
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overview of the model. The first part of the algorithm represents the overall application loop,
that is we iteratively process every node in the graph by calling its update function. In the
second part of the algorithm, the actual update function is presented. Each vertex has access
to its own information as well as incoming and outgoing edges; this differs from omniscient
graph processing paradigms where the whole graph is available in memory at any point in the
computation.

Therefore computation inside an update function usually happens as a variation of the
presented pseudo-code - first the function accesses neighboring information, then performs local
computation according to the algorithm being implemented, and finally broadcasts the new
information processed so that adjacent vertices may access it. In this step, we can discuss the
difference between synchronous and asynchronous execution of the algorithm. If we consider
synchronous execution while the vertices may update their values and interfere with adjacent
edges that information is only going to be consolidated when the iteration ends, therefore
neighboring vertices will not have access to the new values until the next update function.
Whereas if we are running the algorithm asynchronously all of the newly update values are
immediately made available to neighboring vertices - this means that effectively information
propagates inside the same iteration also. This is controlled internally via scheduling techniques,
limiting which vertices are processed in each iteration as well as inside the same iteration.
Leveraging the potential asynchronous capabilities of the model can result in more efficient
programs as shown and discussed in detail in Chapter 5. On the other hand, it is important to
note that not all algorithms and computational problems can be processed asynchronously as
several problems depend upon the synchronization steps to guarantee the correct execution of
the program.

Algorithm 1 – Vertex-Centric Algorithm Structure
1: procedure VC-PROGRAM(Graph G) . The program receives the input graph
2: while Convergence is not achieved do
3: for each Vertex v ∈ G do
4: Update(v)
5: end for
6: end while
7: end procedure

procedure UPDATE(Vertex v) . The update function receives the vertex
2: x[] <- read values of incoming edges of v

v.value <- f(x[]) . Perform computations and update v
4: for each Edge e ∈ v do

e.value <- g(v.value, e.value) . Propagates the changes to neighbors
6: end for

end procedure

Another important part of the vertex-centric model is related to its iterative nature.
Depending on the algorithm it may be more interesting to run the program for a fixed number of
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iteration. However most of the time we will be interested in running the algorithm as efficiently
as possible and that means stopping as soon as the computation has finished or more specifically
as soon as the algorithm reaches convergence. Convergence can vary from program to program,
but in general, it refers to a stopping point in the algorithm when there is no need to continue
running it given that it would not significantly improve the results. Most of the time we are
interested in making sure that our output is somewhat stable between iteration so that we can
finish the execution. This can be done both in absolute terms - the execution ends when the
output change from one iteration to the next is less than a ε; as well as in relative terms - the
execution stops when the ratio between the output of one iteration and the next is less than a ε .

In order to exemplify the usability of a vertex-centric program, Algorithm 2 shows how
one could implement the classic PageRank algorithm as previously presented in Section 3.2.2. In
the algorithm we first loop through the incoming edges of the vertex, computing the summation
of the neighbors ranking weighted by the edge value. We then update the current vertex value
based on the calculated sum, and finally broadcast the change to outgoing edges by updating
their value to the new vertex value. The update-function is executed for every vertex in the graph
iteratively for a given number of iterations following the general structure already presented in
the first part of Algorithm 1.

Algorithm 2 – Update-function for the PageRank algorithm.
1: procedure UPDATE(Vertex v)
2: var sum <- 0
3: for each Edge e ∈ v.InEdges() do . Loops through in-edges computing sum of ranks
4: sum += e.weight * (e.weight * e.neighborRank)
5: end for
6: v.value <- 0.15+0.85* sum
7: for each Edge e ∈ v.outEdges() do . Broadcasts new rank to out-edges
8: e.neighborRank <- v.value
9: end for

10: end procedure
Source: Adapted from Kyrola, Blelloch and Guestrin (2012).

This example shows how intuitive it can be to express iterative algorithms in the vertex-
centric paradigm, providing not only the already discussed benefits in terms of scalability but
also simplifying the programming overhead necessary to create efficient parallel algorithms.

2.4.2 Edge-centric graph processing

Initially proposed in X-Stream (ROY; MIHAILOVIC; ZWAENEPOEL, 2013b), edge-
centric graph processing is similar to vertex-centric approaches in the sense that it also relies
on local and iterative processing. In edge-centric models, the graph is considered a stream of
edges and computation is performed in two steps, as shown in Algorithm 3, which presents the
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processing model. In the first step, all the edges are processed distributing the source vertex
values and creating a list of the necessary updates. In the second step, every update is processed,
this time performing the computation and updating of the values.

Algorithm 3 – Edge-Centric Algorithm Structure
1: procedure VC-PROGRAM(Graph G) . The program receives the input graph
2: while Convergence is not achieved do
3: for each Edge e ∈ G do
4: Scatter(e)
5: end for
6: for each Update u ∈ G do
7: Update(u)
8: end for
9: end while

10: end procedure
procedure UPDATE(Update u)

2: Applies u to the destination vertex
end procedure
procedure SCATTER(Edge e)

Sends needed updates through e
3: end procedure

One of the characteristics of the edge-centric model proposed by Roy, Mihailovic and
Zwaenepoel (2013b) is that it iterates over an unordered edge list, eliminating the need to sort
the graph during preprocessing. However, due to the nature of the two-step processing model, it
can also lead to performance loss due to having to stream the entire edge list in order to perform
computation in a given edge. Whilst vertex-centric programs can also suffer from this same issue
the single-step nature of vertex-centric algorithms helps to mitigate this issue. Additionally, while
it is possible to express the same algorithms in both paradigms - because they are intrinsically
very similar - we find that it is easier to understand and develop algorithms for the traditional
vertex-centric framework from the programmer’s standpoint.

2.5 Our choice

When considering the available graph processing frameworks to develop our work we
chose the vertex-centric approach, particularly the GraphChi framework (KYROLA; BLEL-
LOCH; GUESTRIN, 2012). We analyzed different options and while there are multiple frame-
works in the literature to choose from, Graphchi remains competitive while also being well-
documented, having great programmability and offering out-of-the-gate asynchronous parallel
processing (CAPELLI et al., 2019). Additionally, GraphChi also provides built-in in-memory
execution for smaller graphs that fit in memory seamlessly, making it so that its practical use is
unrivaled.
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More specifically, in this work, we departed from the summation-based version of
BP, based on which we designed a vertex-centric version of the message-passing principle.
Following the vertex-centric model, we engineered an algorithm that runs on asynchronous
parallel processing frameworks. Our design breaks the computation in asynchronous parallel
steps, taking full advantage of the intrinsic parallelism of the algorithm. As a result, it significantly
improves the speed and the convergence ratio when compared to previous algorithms. As
our objectives included: an algorithm that can be expressed over the paradigm; the ability to
process large graphs that may not fit in main memory; as well as the necessity of asynchronous
capabilities, GraphChi proved to be the correct choice.

2.6 Final considerations
This chapter discussed the processing paradigm options and compared several approaches.

We also present the reasoning behind our choice of framework and processing technique.
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CHAPTER

3
APPLIED CONCEPTS

3.1 Initial considerations
This chapter presents and explores the general concepts related to graph processing and

characterization. The objective is to introduce the building blocks that were important to the
doctoral thesis. We observe that, beyond a simple exposition of definitions, we demonstrate the
use of relevant theories over real and synthetic datasets as detailed in the sections related to each of
our published works. Such works include ORFEL (GIMENES; CORDEIRO; RODRIGUES-JR,
2016), which is the culmination of research started during my MSc degree, and expanded during
the Phd; it focuses on fraud detection and scalability for large graph processing. We also discuss
two collaborative works (SPADON; GIMENES; RODRIGUES-JR, 2017)(SPADON; GIMENES;
RODRIGUES-JR, 2018) that focus on overlapping research areas between a colleague Gabriel

Spadon and myself, focusing on applied complex network analysis, specifically for the domain
of street-networks. The goal is to demonstrate the framework composed of data, programming
libraries, tools, and code used and developed during the project as well as presenting the
additional contributions derived from our work.

3.2 Complex network analysis
Science has always tried to understand the underlying phenomena in all areas of human

knowledge. With the advent of powerful computers, many seemingly impossible tasks began to
be solved by simulating potentially costly and long experiments in the blink of an eye. Recently,
scientists have started analyzing and understanding how complex systems work with the help of
graph theory. That is, by using the graph model to represent a system’s complex structure, it is
possible to emulate its emergent behavior, something that was not possible by analyzing its parts
separately.

Such a course of action can help to understand and solve several important and current
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Table 1 – Table of symbols

G(V,E) G is a network where V is the set of vertices and E is the set of edges
Γ(x) set of neighbors of vertex x
e(x,y) edge between vertices x and y
d(x,y) shortest path distance between x and y

problems of society. Examples include analyzing how epidemic viruses spread using, for instance,
airline networks; detecting suspect behavior in online recommendations, to prevent customers
from being scammed; understanding how proteins interact to discover their importance; mapping
brain functions to treat degenerative diseases, and several other applications. Therefore, in this
chapter, we present applied concepts related to the multitude of domains we worked with.

3.2.1 Global measures

In this section, we present global features useful in the understanding of the work to
be presented in this document. Along the text, please refer to Table 1 for the symbols used
throughout this chapter.

Degree distribution

Arguably, the most important and defining characteristic of a network is its degree
distribution. Several properties can be obtained directly from it, and several others can be derived.
There are known distributions observed in complex networks, such as the uniform distribution
that comes from Random Graphs. But the most common distribution in the real world, that is,
both in nature as well as in human environments is the Power-law distribution. Networks that
follow this distribution are known as scale-free networks. The degree distribution in scale-free
networks is given by:

P(k) ∝ k−γ

where P(k) stands for the fraction of nodes that have degree k in the network and γ is a constant,
known as the scaling factor.

In order to empirically find the best γ and kmin, that is the minimum degree for which the
distribution starts to follow a power-law, one need to iteratively compute the following expression
for each kmin while using a distance measure to define the best value:

γ = 1+
n

∑
n
i=1 ln( ki

kmin
)
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Mean degree

One of the more common network measures is the vertex degree, that is, the number
of connections that a given vertex has. As for the network itself, one can consider the average
degree of all vertices:

⟨K⟩= 1
|V | ∑v∈V

|Γ(x)|

Second moment of the degree distribution

The second moment of the degree distribution is the variance, intuitively representing
the disparity between the degree of different nodes in the network, defined by:

⟨K2⟩= 1
|V | ∑v∈V

P(v)(kv−⟨K⟩)2

an example of the usage of this measure is that it can be be used to calculate the theoretical
activation threshold for an epidemic spread.

Shannon entropy of the degree distribution

Entropy is a widely used concept in areas such as information theory, and intuitively
represents the amount of uncertainty in the given information. In the context of complex networks,
it can be used to quantify, for instance, the network’s resistance to attacks. The entropy of a
network is given by:

H (G) =−∑
k

P(k) logP(k)

where P(k) is the fraction of vertices in the network that have degree k. It can also be interpreted
as being the probability of a random vertex having exactly degree k.

Local clustering coefficient

The local clustering coefficient measures how sparse (or connected) is the neighborhood
of a given vertex.

LCC(x) =
2 |Ex|

(|Γ(x)|)(|Γ(x)|−1)

where |Ex| is the number of edges between neighbours of vertex x. If we were considering a
directed network, we would have |Ex| instead of 2 |Ex|.
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Mean local clustering coefficient

As the name suggests, the mean local clustering coefficient is the average local clustering
coefficient throughout the whole network. That is:

C (G) =
∑v∈V LCC(v)

|V |

which gives a quantitative idea about the connectivity of the local neighborhood in the network.

Transitivity

Similar to the MLCC, transitivity measures how sparse or connected is a network, with
the difference of giving all triangles in the network the same weight, while MLCC weighs
vertices equally. We can define transitivity as:

T (G) =
3N△
N3

where N△ is the number of triangles in the network and N3 is the number of connected triplets.

Average shortest path

One might be interested in evaluating how quickly can information travels through a
network, and one of the basic properties related to that task is finding what the average shortest
path is, that is, measuring the average travel distance between all pairs of nodes. That can be
done via:

L (G) =
1

(|V |)2 ∑
x∈V

∑
y∈V

d(x,y)

Efficiency

Efficiency measures how efficient is the communication in a network, that is, how fast
and reliable is the propagation of information. This is done by calculating:

E (G) =
1

(|V |)((|V |)−1) ∑
x ̸=y

1
d(x,y)

Diameter

The diameter of a network is the largest shortest path distance between all pairs of nodes.
Given by:

D(G) = max
x,y∈V

d(x,y)
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3.2.2 Centrality

Another important set of measures are the centrality-related measures, which can be
used to determine the most interesting vertice depending on the desired characteristics. Such a
concept can be used in real-world problems like finding the best address to allocate a hospital or
deciding how to work marketing campaigns.

Degree centrality

One of the more common network measures is the vertex degree, that is, the number of
connections that a given vertex has. This measure can also be used in a centrality context, that is,
the bigger the degree of the vertex, the more central it can be considered.

K(x) = |Γ(x)|

Betweeness centrality

Betweenness, proposed by Freeman (1977) accounts for the importance of a node when
considering all shortest paths in a network. That is, by determining the fraction of all the shortest
paths that happen to pass through a given vertex. Intuitively, higher values of betweenness
indicate that the vertex is part of more paths, and therefore can be considered more central. The
measure is calculated as follows:

B(x) = ∑
s ̸=x ̸=t∈G

σst(x)
σst

where σst(x) corresponds to the number of shortest paths between s and t, that go through x; and
σst accounts for all of the shortest paths between s and t.

Eigenvector centrality

Another centrality measure is the Eigenvector centrality, which tries to compute the
centrality of a node based on the centrality of its neighbors. It can be written in its matrix form
or solved iteratively. In its matrix formulation, we can write:

Ar = λ r

where A is the adjacency matrix of the graph and λ is the largest eigenvalue associated with the
eigenvector of matrix A (NEWMAN, 2010).
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Closeness centrality

Closeness centrality, as proposed by Freeman (1979) considers the inverse of the sum of
all shortest paths starting on the given vertex and ending on every other vertex on the network.
That is, it computes the distance between a vertex and the rest of the network. which intuitively
should relate to how central a vertex is, the closer he is to the rest of the network. That being so,
we can write:

C(x) =
1

∑y̸=x∈G d(x,y)

Page Rank

Following the same idea of the Eigenvector centrality, the Page Rank metric also tries to
gauge a vertex centrality based on its neighbors. Additionally, PageRank weighs each neighbor’s
contribution according to the number of edges it has, therefore considering also the exclusivity
of the link. Finally, it also incorporated a random factor, which accounts for the probability of a
random node being visited disregarding existing nodes, which makes sense in the context it was
proposed, that is, to rank the results of the Google search engine. Proposed by Page et al. (1999),
we can write Page Rank as follows:

PR(x) =
1−d
|G|

+d ∑
∀y|x∈Γ(y)

PR(y)
|Γ(y)|

where d is the random factor and |G| is the number of nodes in the network.

Assortativity

Assortativity, as defined by Newman (2003), is a measure that models the similarity of
connections in the network with respect to the node’s degree. That is, it tries to understand if
the nodes tend to connect with other nodes that have similar degrees, or if nodes with a higher
degree tend to connect with nodes with a lower degree, or even if there is no correlation between
the degrees of neighbors.

3.2.3 Community detection

One of the more prominent research areas in network analysis is the community detection
area, born from the same basic concepts as the clustering data mining area. Unfortunately, one
cannot simply use the same algorithms and theoretical solutions for complex networks. Therefore
there is a constant flux of new algorithms, techniques, and concepts related to community
detection in the literature.
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By analyzing the community structure in a network one can better understand how
different groups of vertices interact as well as understand where does a given vertice fits in terms
of the overall network structure. Practical examples of applications include detecting frauds,
grouping customers based on their profiles, optimizing network routing and several others.

Therefore, we focus on whether or not vertices can be grouped according to their
connections. That is, can we find sets of vertices that have significantly more connections
between them as opposed to connections with other vertices in the network?

Additionally, if we are indeed able to find such communities, this is strong evidence that
nodes within the same community must share common properties, as stated by Fortunato (2010).
Communities also have several applications such as identifying customers with similar interests
and classifying nodes according to their memberships. To gauge how well does a partition divide
the network into communities, one can use the Q modularity measure, as defined by Newman
(2004):

Q = ∑
i
(eii−a2

i )

where we compute the fraction of edges that fall within the same communities, minus the
expected fraction of edges that would appear between communities if these edges had been
randomly assigned.

Finally, many algorithms and techniques were proposed for the specific task of finding
the community structure in complex networks, including the ones we analyze in this section:
Betweenness-centrality based, Fast greedy, Walktrap and Leading Eigenvector.

Betweeness centrality based

The first method we analyze was proposed by Girvan and Newman (2002) and consists
of iteratively removing the edge with the highest betweenness centrality until there are no more
edges left. This is considered a divisive algorithm, as one starts with the whole graph and ends up
with each edge in its own community. The authors show that the method works for both computer-
generated data as well as real-world datasets with a satisfactory success ratio. Nonetheless, it is
important to note that this algorithm is fairly intensive in terms of computational complexity,
given that we need to calculate the betweenness for every edge multiple times.

Fast Greedy

The Fast Greedy algorithm is an agglomerative algorithm that works by joining pairs of
vertices while trying to maximize the modularity measure directly. Proposed by Clauset, Newman
and Moore (2004), one of the main advantages of the algorithm is, as the name suggests, the
computational efficiency of the algorithm, arguably running in linear time for real-world graphs.
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Walktrap

Walktrap is also an agglomerative algorithm, proposed Pons and Latapy (2006), it
leverages random walks to calculate the distance between two communities, merging the closest
ones according to the mean of the squared distances between each vertex and its community. It
is also computationally efficient, as the authors propose several resourceful techniques to update
the distances iteratively.

Leading eivenvector

Finally, the leading eigenvector method (NEWMAN, 2006) is a divisive algorithm based
on the concept of a modularity matrix. By leveraging the known properties of random networks
(specifically the ones generated via the configuration model), the authors propose to divide the
graph based on the discrepancy of probabilities between the real network and the corresponding
random graph. This is done by calculating the largest eigenvector for the modularity matrix,
similarly to how the Laplacian matrix is used in graph partitioning techniques.

3.2.4 Multidimensional projection

In our work to characterize street-networks (SPADON; GIMENES; RODRIGUES-JR,
2018), we consider multidimensional projection as a dimensionality reduction tool, representing
higher dimensional data in an embedded lower-dimensional space. We use both a non-linear
algorithm called Isomap and a linear alternative called PCA.

Isomap (TENENBAUM; SILVA; LANGFORD, 2000) combines ideas from the original
Floyd-Warshall algorithm with classic multidimensional scaling by computing positions for each
pair of vertices based on their distances, and therefore effectively estimating the full pair-wise
matrix from which the algorithm computes the reduced-dimensional points. PCA (RINGNÉR,
2008) on the other hand uses an orthogonal transformation to convert a set of observations into a
set of linearly uncorrelated points.

3.2.5 Cluster analysis

Separating objects into groups following the general idea that objects that find themselves
within the same group are considered more similar to each other than to objects that are in
different groups is an intuitive task, often referred to as clustering or cluster analysis. Several
algorithms and domain-specific techniques exist, the concept is similar to the already discussed
community detection problem 3.2.3.

In our work ORFEL (GIMENES; CORDEIRO; RODRIGUES-JR, 2016) we use the
concept of co-clustering or bi-clustering in the context of detecting lockstep behavioral patterns,
as is shown in detail in section 3.3. Whereas when grouping similar cities (SPADON; GIMENES;
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RODRIGUES-JR, 2018) we use the widely regarded KMeans (LLOYD, 1982) algorithm to split
our data into groups of equal variance, minimizing the distance within the clusters.

In addition to clustering algorithms, one common concept related to grouping techniques
is the validation of the partitions. There are several metrics dedicated to measuring partition-
ing quality. Including the ones we employed in our work: the Silhouette score (PAKHIRA;
BANDYOPADHYAY; MAULIK, 2004) and the Dunn index (PAKHIRA; BANDYOPADHYAY;
MAULIK, 2004) both of which fall into the internal-quality metrics classification, meaning that
they do not require prior knowledge about the dataset.

3.3 ORFEL - Detection of defamation or illegitimate pro-
motion in online recommendation

This Section depicts the problem, development, and results achieved in our work ORFEL
(GIMENES; CORDEIRO; RODRIGUES-JR, 2016). ORFEL is a fraud detection algorithm that
focuses on finding systematic attacks in recommendation systems, that is, trying to differentiate
legitimate reviews from ill-intended interactions. Our work also considers the ever-increasing
problem of scalability, working with web 2.0 systems that can have very large user bases and
therefore a large amount of recommendation data to parse and investigate, by providing a scalable
framework capable of processing large-graphs efficiently and cost-effectively.

3.3.1 Problem and method

Fraud detection

At its core, ORFEL identifies lockstep behavior in recommendation system bipartite
graphs of users and products. Known in the literature as co-clustering or bi-clustering we aim to
partition both the rows and columns of the adjacency matrix, in this case, users and products.
Other works have addressed the bi-clustering problem such as Papalexakis and Sidiropoulos
(2011) and Papalexakis, Beutel and Steenkiste (2012), who used PARAFAC decomposition
techniques, and Dhillon, Mallela and Modha (2003) that worked with information theory methods
over text documents.

In 2012, Douceur (2002) managed to propose one of the first algorithms that tried to
find fraudulent interactions on the web, from this work the term Sybil attacks where a single
entity impersonates multiple identities to interfere with the normal functioning of the system.
Other types of attacks were analyzed, such as the shilling attack; in which fake users are used
to undermine the reliability of recommender systems. However, to be able to accurately detect
attacks in the domains we are interested, it is also important to consider the interaction timestamp,
making the problem more complex (NP-Hard), which prevents more ambitious goals of finding
the best solution. The CopyCatch algorithm (BEUTEL et al., 2013) also takes into consideration
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the timestamps but leverages distributed technologies to achieve satisfactory performance whilst
not considering any weight in the graph’s edges, that is, it cannot take into consideration ratings,
such as the 1-to-5-star commonly used rating system.

Lockstep formulation

More formally, ORFEL is interested in finding sub-sets that can be expressed by the
following definition:

Definição 1. A set of products P and a set of users U comprise an [n,m,∆t,ρ]-temporally-

coherent near bipartite core if and only if there exists Pi ⊂ P for all i ∈U such that:

|P| ≥ m (3.1)

|U | ≥ n (3.2)

|Pi| ≥ ρ|P| ∀i ∈U (3.3)

(i, j) ∈ E ∀i ∈U, j ∈ Pi (3.4)

∃t j ∈ R s.t. |t j−Li, j| ≤ ∆t ∀i ∈U, j ∈ Pi (3.5)

Or simply, we are interested in a set of products P, that was recommended by a set of
users U, within a δ t time-window. Parameter ρ is responsible for relaxing the definition when we
also want those groups that follow the definition within a certain percentage. Figure 2 illustrates
the aforementioned definition, in the figure a group of users (1,2 and 3) recommends a group of
products (A and B), within limited time-windows for each product, forming a bipartite core. This
modular definition of lockstep is also interesting because it is possible to tailor each parameter
according to domain-specific real-world constraints and prior knowledge, allowing the algorithm
to adapt to several different scenarios and applications.

Finally, it is then possible to formalize the task as an optimization problem; and taking
into consideration the weights of the edges - that is, the system’s specific rating score model - we
can further define the concepts of illegitimate promotion and defamation. Illegitimate promotion
is characterized by weight scores larger than κ , whereas defamation corresponds to weight
values smaller than κ , where κ represents the average score, that is, the closest to a neutral
recommendation. Table 2 presents the definitions needed for our problem formalization.

Given that our objective is to catch as many suspect users as possible, while only growing
P until parameter m is satisfied we can define our objective function as in Equation 3.6. The goal
is then to find U [c] and P[c] to maximize the number of users and their interactions for a given
cluster c.
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Figure 2 – Lockstep illustration.

Source: Gimenes, Cordeiro and Rodrigues-Jr (2016).

Symbol Definition
M and N Number of nodes in each side of the bipar-

tite graph.
C Set of locksteps.
I M×N adjacency matrix.
L M × N matrix holding the timestamp of

each edge.
W M×N matrix holding the weight of each

edge.
U [c] and P[c] Set of users or products in lockstep c.

m and n Minimum number of products and users in
the lockstep to be considered valid.

∆t Size of the timespan.
ρ Threshold percentage that the cardinality of

the sets of products and users must satisfy
to be in a lockstep.

nSeed Number of starting seeds for the algorithm
to begin searching for locksteps.

λ and κ Function and threshold used to define
defamation and promotion.

ν j Current average time of suspicious recom-
mendations to product j.

Table 2 – Symbols and Definitions.

Source: Gimenes, Cordeiro and Rodrigues-Jr (2016).

argmax
U [c],P[c]

∑
i

q(Li,*|c,Wi,*|c,P[c]) (3.6)
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where

q(u,w,P[c]) =

σ if σ = ∑ j∈P[c] Ii, jφ(ν j,u j)λ (w j)≥ ρm

0 otherwise
(3.7)

φ(tν , tu) =

1 if |tν − tu| ≤ ∆t

0 otherwise
(3.8)

λ (g j) =

1 if g j ≥ κ

0 otherwise
for promotion (3.9)

λ (g j) =

1 if g j ≤ κ

0 otherwise
for defamation (3.10)

Equations 3.9 and 3.10 correspond to our concepts of illegitimate promotion and defama-
tion, respectively, while Equation 3.7 shows how we incorporate these weight constraints in the
overall formulation, through the definition of a threshold λ .

ORFEL has five parameters: m, n, ρ , ∆t and nSeeds. The first two, m and n, respectively
refer to the minimal amount of products and users that the algorithm searches for when consid-
ering suspicious locksteps. Parameter ρ is the minimum percentage (the tolerance fraction) of
products ρ *m. Parameter ∆t sets the desired time-window. And nSeeds refers to the number of
seeds that are spread on the search-space at startup.

ORFEL, as shown in Algorithm 4, leverages parallel vertex-centric graph processing
techniques as detailed during Chapter 2. Starting from randomly generated small seed-clusters,
ORFEL iteratively grows such clusters by adding both new products, as shown in Algorithm 5,
as well as new users, as shown in Algorithm 6, to them when it finds users and products that
fit into our lockstep definition and parametrization. Important to consider is that when adding
entities to the clusters ORFEL expands upon the delimited δ t time-window temporarily allowing
users and products that are just outside of the said window to be added to the cluster (technically
the temporary window is considered to be double the size of the original window). Immediately
after ending each iteration, the algorithm then revisits every cluster, calculating a new center for
the time-window based on our objective function, then removing those entries that are not within
the desired time-window, as shown in Algorithm 7. Such a mechanism is the main engine behind
the algorithm, making it so that we can traverse in the space of potential solutions whilst trying
to find the ones that better suit our goal. The algorithm finishes when all clusters are stable, that
is, at the end of the iteration, the clusters are the same they were at the beginning. It is also worth
noting that some clusters may converge sooner than others, and then the algorithm will skip
those already finished clusters in order to maintain the best performance.
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Algorithm 4 – ORFEL Algorithm.
procedure ORFEL(n,m,ρ,∆t,nSeeds)

Initialize U [nSeeds],P[nSeeds] . Initial Seeding
repeat

U ′ =U
P′ = P
for each product p in |V | do

P = updateProducts(p)
end for
for each user u in |V | do

U = updateUsers(u)
end for
endIteration()

until U ′ =U and P′ = P
return [U,P]

end procedure

Dataset # Users #Products # Total nodes # Edges
Amazon.FineFoods 256,059 74,258 330,317 568,454
Amazon.Movies 889,176 253,059 1,142,235 7,911,684
Synthetic.C 2,000,000 8,000,000 10,000,000 100,000,000

Table 3 – Datasets.

Source: Gimenes, Cordeiro and Rodrigues-Jr (2016).

3.3.2 Results

We ran several experiments to understand how ORFEL performs in both the real world
as well as in controlled conditions. Table 3 presents the datasets that were used during our
experimentation process, two Amazon datasets, one for the Fine Foods section, and one for the
Movies section of the website, reviews are scored between 1 and 5 stars. We also used a synthetic
dataset using NetworkX (HAGBERG; SCHULT; SWART, 2008) bipartite graph generator as
well as larger versions of the dataset for scalability tests. ORFEL was implemented within
the GraphChi (KYROLA; BLELLOCH; GUESTRIN, 2012) framework, all of the necessary
components for full reproducibility can be found at <www.icmc.usp.br/pessoas/junio/ORFEL/
index.htm>.

The first aspect we analyzed for our algorithm is the ability to detect locksteps of different
sizes. To be able to measure it, we generated artificial attacks with varying sizes whilst fixating
the algorithm’s parameters to see how the algorithm behaves. We appended artificial attacks to
the data with sizes varying from 10 users and 5 products to 1,000 users and 500 products. This
allowed us to observe the percentage of attacks caught for each configuration of the algorithm –
in Figure 3a, (n = 10, m = 5, ρ = 0.8, nSeeds = 1000); in Figure 3b, (n = 50, m = 25, ρ = 0.8,
nSeeds = 1000); and, in Figure 3c, (n = 50, m = 25, ρ = 0.8, nSeeds = 3000). These results
show that larger attacks are often more easily detected, as well as the fact that if we are trying to

www.icmc.usp.br/pessoas/junio/ORFEL/index.htm
www.icmc.usp.br/pessoas/junio/ORFEL/index.htm
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Algorithm 5 – updateProducts
procedure UPDATEPRODUCTS(vertex)

for each Lockstep c ∈C do
reviews←U [c].edges∩ vertex.edges
timeCenter← avgtime(reviews)
for each edge e in reviews do

if |e.time− timeCenter|> ∆t and λ (e.weight) then
reviews = reviews−{e}

end if
end for
if |P[c]|< m then

if (|reviews|/|U [c]|)≥ ρ then
P[c] = P[c]∪{vertex}

end if
else

for each product p ∈ P[c] do
if p.reviews⊂ reviews then

swap = p
end if

end for
P[c] = (P[c]−{swap})∪{vertex}

end if
end for

end procedure

Algorithm 6 – updateUsers
procedure UPDATEUSERS(vertex)

for each Lockstep c ∈C do
reviews← P[c].edges∩ vertex.edges
for each edge e in reviews do

pCenter← avgtime((u, e.vertex), u ∈U [c])
if |e.time− pCenter|> ∆t and λ (e.weight) then

reviews = reviews−{e}
end if

end for
if (|reviews|/|P[c]|)≥ ρ then

U[c] = U [c]∪{vertex}
end if

end for
end procedure

detect attacks that are small or very similar in magnitude to the chosen m and n parameters, the
algorithm has more difficulty to find them. This experiment presents a general overview of how
the algorithm behaves in relation to different parameters and attack scenarios.

Another interesting question we wanted to answer for ORFEL is how the number of seeds
affects the ability of the algorithm to find the attacks. We then proposed the following experiment
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Algorithm 7 – endIteration
procedure ENDITERATION

for each Cluster c ∈C do
for each product p ∈ P[c] do

Sort U[c] by the time of the reviews
Scan sorted U[c] for the 2∆t-subset that maximizes the number of reviews
Remove the users from U[c] that are not in the subset

end for
end for

end procedure

Figure 3 – Experiments of efficacy: the percentage of attacks caught versus the size of the artificially
generated attacks. Parameters are described as (n,m,ρ ,nSeeds).
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(b) Amazon.Movies - Parameters (50,25,0.8,1000)
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Source: Gimenes, Cordeiro and Rodrigues-Jr (2016).

where we introduce 20 artificial attacks in our datasets and then varied the number of seeds given
to the algorithm. Figure 4 shows the efficacy of the algorithm, that is, the percentage of attacks
caught versus the number of seeds, for this run parameters [n,m,ρ ,AttackSize(Users,Products)]
were set as: Synthetic.C [50,25,0.8,(750,375)]; Amazon.Movies [50,25,0.8,(500,250)]; Ama-
zon.FineFoods [10,5,0.8,(50,25)].

With this experiment, we verified that ORFEL identified more than 95% of the attacks
in three datasets of different sizes as we started it with enough seeds. This also shows that
the algorithm is capable of dealing with different attack sizes given the proper selection of
parameters, and is, therefore, able to perform well regardless of specific particularities of different
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Figure 4 – Efficacy of attacks caught versus number of seeds.

Source: Gimenes, Cordeiro and Rodrigues-Jr (2016).

domains and scenarios. It is also important to note that ORFEL does so while complying to the
vertex-centric asynchronous parallel processing paradigm, meaning that it keeps high-scalability,
seamless parallelism and high efficiency due to the asynchronicity of the value updates.

Finally, we also ran ORFEL in both Amazon real-world networks without inserting any
artificial attacks. We selected that our parameters for a suspicious behavior would be comprised
of at least 20 users, recommending 6 products over less than a week. ORFEL was able to detect
37 suspicious clusters which upon further manual analysis revealed themselves to be caused
an interesting yet potentially problematic design decision by amazon. All of the locksteps we
found were caused by Amazon’s policy of merging user reviews for different flavors or sizes
of a determined food product and also different versions of the same movie whilst giving them
different id’s. Such findings, while not exactly considered illegitimate promotion or defamation
attacks reveal an important oversight in design that could cause users to be reading a review for
a specific product that was actually written by someone who purchased a similar but not quite
the same product.

Additionally, as previously stated one of the most important premises for ORFEL is its
scalability. Therefore we also tested our algorithm’s runtime for different sized datasets as shown
in Figure 5. We excluded preprocessing times and took the average time for 3 separate runs.
ORFEL manages to process 1 billion edges stored on a mechanical disk within 143 min. (≈2.38
hour) , and 78 min. (≈1.3 hours) using a solid-state disk. We consider this performance to be
very efficient given that previous work Beutel et al. took ≈0.5 hours to do the same processing
whilst fully utilizing a computational cluster composed of one thousand machines on top of
MapReduce, whereas ORFEL ran in a single commodity machine with an i7-4770 processor
and 16GB of RAM, with a 7200RPM HDD and a 450MB/s SSD. Our approach allows for a
more efficient framework where multiple nodes are being processed simultaneously, exploiting
the inherent parallelism of the algorithm without the need for specific infrastructure while still
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allowing for linear scalability.
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Figure 5 – Experiments of scalability over the number of edges.

Source: Gimenes, Cordeiro and Rodrigues-Jr (2016).

We also present ORFEL’s performance when considering increasing amounts of starting
seeds. As previous experiments showed that different scenarios may require different amounts of
seeds; so we verify that our algorithm is also able to scale linearly against the number of seeds
as shown in Figure 6. We ran ORFEL starting with 100 seeds with up to 5000, the program took
10 minutes to run with 100 seeds and 298 min with 5000 seeds. We chose a 100 million edges
graph to be used in this experiment.
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Figure 6 – Experiments of scalability over the number of seeds.

Source: Gimenes, Cordeiro and Rodrigues-Jr (2016).

ORFEL extends the state-of-the-art for the problem of lockstep detection in the following
ways:

1. Novel algorithmic paradigm: we introduce the first vertex-centric algorithm able to spot
lockstep behavior in Web-scale graphs using asynchronous parallel processing; vertex-
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centric processing is a promising paradigm that still lacks algorithms specifically tailored
to its modus operandi;

2. Scalability and accuracy: we tackle the problem for billion-scale graphs in one single

commodity machine, achieving efficiency that is comparable to that achieved by state-of-
the-art works on large clusters of computers, whilst obtaining the same efficacy;

3. Generality of scope: we tackle the problem for real weighted graphs ranging from social
networks to e-commerce recommendation, expanding the state-of-the-art of lockstep
semantics to discriminate defamation and illegitimate promotion.

With the increasing importance of security and reliability of online services, ORFEL
serves a relevant cause, one that can cause high damage both to customers and vendors if
malicious and artificial recommendations affect product sales, marketing arrangements and
the overall credibility of the ecosystem. Furthermore, we state that while we worked mainly
with recommendation systems, our methodology can be promptly extended to other domains.
Especially given the high scalability of the algorithm due to the asynchronous vertex-centric
parallel processing technique applied. The modular definition of the lockstep behavior, as well as
the versatility of the algorithm’s parameters, allow for other applications such as social network
analysis and scientific citations networks.

3.4 Collaborative Works

3.4.1 Identifying urban inconsistencies

Here we discuss our collaborative work with Gabriel Spadon entitled "Identifying Urban

Inconsistencies via Street Networks" (SPADON; GIMENES; RODRIGUES-JR, 2017). One of
the interesting natural occurrences of graph-like data in our everyday lives is the very cities
we live in. Possible modeling of our cities considers streets as edges and their intersection as
nodes in a network. This allows for a multitude of processes and techniques to be applied to such
structures. In our methodology we focused on the topological characterization of these networks,
more specifically, we identify urban inconsistencies, which are locations of interest in the cities
that lack efficient access from or to other regions. By analyzing inconsistencies in a real-world
city we discuss urban planning and the impact of improper facility placements.

3.4.1.1 Problem

Preparing the networks

One of the challenges in analyzing street-networks is to obtain a functional representation
of the city, that can correctly model the underlying characteristics we are interested in investi-
gating. To do so we used maps provided by the Open Street Map (OpenStreetMap contributors,
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2017) project. Although when following the representation previously mentioned of considering
streets as edges and their intersections as nodes we found that several real-world structures that
are commonly found in cities did not produce an efficient representation in the graph, for in-
stance, roundabouts added a lot of unnecessary clutter to our representation, as well as additional
redundancy. Therefore we devised an algorithm that preprocesses the street-networks removing
unwanted nodes and edges, whilst improving the representation of the city to be as efficient as
possible.

Defining the inconsistencies

The be able to define the inconsistencies we are investigating, we first define a set F of
facilities (nodes) of interest, and then devise two related groups of nodes for each of the facilities:
the ones that are closest to the facility when considering the Euclidean distance and another with
the nodes that are the closest to the facility via the network-distance metric.

Perimeter set.

The distance dE
i j is measured between nodes i and j over the Earth’s surface.

VE
f = {v ∈V | dE

v f < dE
v f ′ ∀ f ∈ F, f ′ ∈ F, f ̸= f ′} (3.11)

It is important to note that given the set of nodes V and a set of facilities F, every node
v ∈V belongs to the perimeter set of a single facility f ∈ F.

Network-distance set.

For this set dN
i j is the network distance from node i to node j.

VN
f = {v ∈V | dN

v f < dN
v f ′ ∀ f ∈ F, f ′ ∈ F, f ̸= f ′} (3.12)

Similarly to the first set, every node v ∈V belongs to the network set of a single facility
f ∈ F. Given that the network-distance set is directed, it is important to note that the network-

distance set TO a given facility f might not be the same as the network distance set FROM a

given facility f .

Finally, with these definitions, we can then consider as a urban inconsistency those nodes
that are closest to a given facility according to one metric and closed to another facility according
to the other measurement. This methodology allows us to consider the inconsistencies as set
operations and to devise an algorithm capable of identifying such anomalies.
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3.4.1.2 Results

In this section, we present our results and analysis of the urban inconsistencies our
methodology found in the real-world network derived from the city of São Carlos.

Urban inconsistencies

In order to evaluate our algorithm’s capability of finding facilities that may have their
location considered a urban inconsistency we have analyzed the street-network for the city of
São Carlos. We considered 3 types of facilities - police stations, hospitals and schools as shown
in Table 4. The first thing we notice is that the number of inconsistencies found is related to the
number of facilities analyzed, that is, the more facilities we have of a given category, the more
inconsistencies we observe; that happens due to the higher number of overlapping boundaries,
where inconsistencies are more likely to occur. Figure 7a presents a depiction of a generic
inconsistency example, showcasing an example of inconsistency and its relation to the perimeter
boundaries. Whereas Figure 7b presents a real inconsistency found in the city of São Carlos with
regards to the location of a Hospital.

Urban Inconsistencies
i-th Facility 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 Total

Police St. 32 4 86 191 — — — — — — — — — — — — 342
Hospital 13 2 12 19 30 49 145 39 12 43 72 95 28 — — — 559
Schools 15 77 43 71 114 3 8 15 78 51 38 15 56 8 60 11 663

Table 4 – The inconsistencies from the city of Sao Carlos concerning public facilities.

Figure 7 – The identification of urban inconsistencies.

(a) A sub-graph of the city.

Urban
Inconsistency

Hospital

(b) Post-processed sub-graph.

Source: Spadon, Gimenes and Rodrigues-Jr (2017).

In this work we focused on identifying low-access regions through a methodology able
to analyze urban structures considering a set of facilities. We proposed a set of formalisms
for the problem of identifying urban inconsistencies, as well as two algorithms: one for the



3.4. Collaborative Works 57

preprocessing of street-networks to remove unnecessary and redundant information, such as
malformed roundabouts, and the other to search and identify the inconsistencies.

Our main contributions include: (i) a novel concept based on critical problems in the
urban design, which are caused by potentially misplaced facilities in a city; (ii) new frameworks
to preprocess and prepare maps in the form of street-networks, as well as a method to find and
analyze urban inconsistencies; also, (iii) the experimental analyses of the discussed methods in
the Brazilian city of Sao Carlos.

Whilst it is very challenging to totally eradicate urban inconsistencies due to the nature
and limitations in the design of modern cities, we believe that the careful analysis and support of
specialized tools such as our algorithm can positively impact the overall efficiency of access in a
city, opening several new possibilities for the development of more efficient and well-planned
cities in the future.

3.4.2 Topological street-network characterization

When we consider street-networks as a mean to represent and analyze a city there
are numerous metrics and characteristics that can be extracted from the resulting graphs. We
already explored how distances and facility placement can impact a city’s mobility and overall
efficiency in terms of ease of access and availability of important services (SPADON; GIMENES;
RODRIGUES-JR, 2017). However another interesting question that can be asked considering
the city models is, can we characterize and then group these cities based on several different
measurements? In our second collaborative work with Gabriel Spadon (SPADON; GIMENES;
RODRIGUES-JR, 2018) we managed to extract characteristics from 645 cities of the Brazilian
state of São Paulo, select the most distinctive features and then use those features to cluster cities
based on their topological similarity.

3.4.2.1 Problem

In order to properly process and analyze our network data, we followed an Acquisition,
Modelling and Computation framework. The first step is to acquire the maps from Open-
StreetMaps (OpenStreetMap contributors, 2017) and transform them into street-networks. We
then extract several features from the graphs before using a combination of multidimensional
projection and cluster analysis to group the cities into partitions.

When deciding which features would be extracted from the networks we considered that
global metrics would fit better due to their relationship with the network as a whole, making
it more intuitive as means of grouping similar cities. We extracted several metrics and then
calculated their pairwise Pearson correlation coefficient (BENESTY et al., 2009) using it to
select a subset of metrics that are less correlated, providing a better distinctive power. We began
with 29 metrics and chose 9 from that set, these metrics were previously discussed in this chapter
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in Section 3.2.1, they are degree distribution entropy, average shortest-path, degree assortativity
coefficient, eccentricity, planar network density, central point dominance, two-way streets, and
global clustering coefficient.

3.4.2.2 Results

In this section, we present our results and discussions. We divided the experimentation
into two parts: first we analyzed how our projections and representations of the cities in São
Paulo compare to the population in those cities; second, we turn to the territorial extension of the
cities and how that affects how our representations cluster together.

Population size versus topological features

One of the main defining characteristics of a city is the number of inhabitants that
live there. In our first experiment we plot the PCA projection of the analyzed cities in a two-
dimensional space, despite only extracting topological properties of the cities, we found that
those that stand out the most in our projection are the ones that have the higher number of
inhabitants, such as Marília, Piracicaba, Campinas and especially São Paulo, it is also worth
noting that the city of São Paulo is a clear outlier.

To further analyze the relationship between the topological features and the city’s de-
mographics, we decided to remove São Paulo from the dataset in order to better investigate the
networks. Expanding on the idea that we can predict the city demographics from its topological
characteristics, we measured the correlation between the one-dimensional feature-vector with
the actual population for each of the 645 cities. The Pearson correlation for IsoMap was 0.799
and for PCA 0.803, indicating a strong correlation between both variables.

Cluster assignment versus territorial extension

Following our exploratory goals we decided to group our cities using the KMeans
algorithm, we tested all numbers of clusters from 2 to 644, aiming to maximize the Silhouette
score while keeping the Dunn index above one. We, therefore, found that the best partition for
our data under said condition is to have 2 clusters. With a final Silhouette score of 0.59 and Dunn
index of 1.10.

Finally, we decided to analyze the reasoning behind the better partition being the 2-
clusters setup. We further investigated the demographics of the cities as well as considering the
territorial extension this time around. By comparing the territorial extension distribution for the
state of São Paulo to the clusters provided by the algorithm we realized that in terms of territorial
extension cities in Cluster 1 are: 30.51% tiny-sized, 31.13% small-sized, 25.78% medium-sized,
and 12.58% are large-sized; whereas in Cluster 2: 7.59% of are tiny-sized, 6.32% are small-sized,
22.78% are medium-sized, and 63.29% are large-sized. And when it comes to the demographics,
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Cluster 1 has 61.20% of the population while Cluster 2 has 38.80%. This allows us to conclude
that cities in Cluster 1 tend to be smaller and heavily populated, whereas cities in Cluster 2 are
larger and less populated.

Our work was able to confirm that on an overall scope the topological features of a
city can shed light into the actual demographics and territorial extension of the city, as well as
indications that cities tend to have similar features and group themselves in more ways than
simply geographic location or administrative boundaries. Our main contributions in this work
can be listed as (i) the description of how the network topology is capable of revealing groups of
cities with similar characteristics; (ii) the correlation analysis between the demography of the
cities and their features; and, (iii) the discussion of why cities cluster with other cities distant
apart instead of with those that they share boundaries with.

3.5 Final considerations
This chapter reviewed an extensive scope of concepts related to graphs/complex networks

while presenting practical applications, methodologies, results, and interpretations revolving
around those concepts in multiple domains. By presenting both the concepts as well as our works
we believe that it consolidates the scope, applicability, and importance of the themes hereby
discussed, further contributing and enhancing the body of work comprised in this thesis. The next
chapter is going to discuss in detail the Belief Propagation algorithm further stepping towards
our proposed solution.
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CHAPTER

4
BELIEF PROPAGATION

4.1 Initial Considerations
This chapter presents details of the Belief Propagation algorithm, discussing its history,

problems and proposed solutions. The aim of the chapter is to familiarize the reader with the
algorithm and its capabilities and limitations.

4.2 Related works
In several circumstances, we are interested in analyzing the propagation of certain infor-

mation, or belief, in a given community. A belief refers to how individuals influence each other
based on their characteristics and preferences. Consider, as an example, the political alignment of
individuals in a social network; one might be interested in inferring the political bias of a given
node based on its neighbors. The technique known as Belief Propagation (BP) addresses this
kind of problem. It is a probabilistic algorithm that estimates the marginal distribution of a given
characteristic (belief) for individuals (nodes) that were not observed (measured), conditional
to the known information about a set of previously annotated nodes. Such inference is, some
times, referred to as guilty by association. In the political alignment example, the relationship
between the characteristics of the nodes is expected to be homophilic; that is, individuals of
a given alignment are expected to be related to individuals with similar biases. Alternatively,
it is also possible to model environments where the expected behavior is not homophilic, but
heterophilic, in which the relationships are better explained by the opposites attract model. It
is also possible to have more complex cases, comprising a mix of both paradigms to deal with
multiple beliefs at the same time.

To represent such a problem setting, one can benefit from the intuitive modeling offered
by graphs, similarly to the modeling seen in domains such as error-correcting codes, statisti-
cal physics, computer vision, and artificial intelligence; with applications ranging from fraud
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detection to product recommendation (YEDIDIA; FREEMAN; WEISS, 2003).

Beginning with Pearl’s original proposal of BP (PEARL, 1982), the algorithm has
undergone many improvements to overcome its problems of convergence and scalability. Murphy,
Weiss and Jordan (1999) proposed a loopy variation of BP to handle more general scenarios,
when graphs are cyclic. In the same line, Yedidia et al. (2000) and Yedidia, Freeman and Weiss
(2003) proposed a physics-based improvement that allowed the algorithm to converge more
than the regular BP, but still without guarantee. With respect to scalability, Felzenszwalb and
Huttenlocher (2006) proposed techniques to speed-up the algorithm based on linear messages,
and Sudderth et al. (2010) presented a nonparametric sampling-based approximation of the
method.

Although such proposals augmented the applicability of the algorithm, some issues
remained, as pointed out by Elidan, McGraw and Koller (2012), who showed that the loopy
BP did not converge as often as expected when used with real-world problems. Additionally,
they proposed an asynchronous version of the method tracing relations to its synchronous
counterparts.

More recently Mooij and Kappen (2012) started considering the possibility of conver-
gence guarantees on BP by improving on existing bounds and spectral measures. Finally, in
2015, Gatterbauer et al. (2015), presented LinBP, a linearized version of BP with exact conver-
gence guarantees, even on cyclic networks, while maintaining similar accuracy. This work is
particularly relevant to us since it sets foundations regarding our methodology.

4.3 Algorithm

Belief Propagation (BP) is an algorithm first introduced by Pearl (1982); it computes the
approximate marginal probability distribution for an unobserved node by taking into account a
set of nodes previously observed (annotated). In our context, we focus on the ability of BP to
estimate the degree (probability) according to which a node believes in a certain class. It works
according to a message-passing computation; in each iteration, each node receives messages
from their neighbors, then, based on such information, they update their own beliefs. Iteratively,
they propagate messages based on their updated beliefs. This process runs until convergence,
that is when the nodes’ beliefs cease to alter significantly after any additional iteration.

Along the document, please refer to the List of Symbols for the symbols we use. First,
consider a graph G(V,E) and c classes; each node s∈V has two c-dimensional vectors associated
to it, es containing the explicit beliefs (priors), and bs storing the implicit beliefs (posteriors).

Vectors es and bs are normalized such that
c−1
∑
j=0

es( j) =
c−1
∑
j=0

bs( j) = 1. The posterior belief of a

node s for class c can be written as:
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bs(i) = es(i) ∏
u∈N(s)

mus(i) (4.1)

where mus(i) is the message from node u to node s about the i-th class; in the equation, u

represents each of the neighbors of node s – denoted by N(s). More generally, for any pair of
nodes s and t, the message regarding class i is calculated as:

mst(i) =
c−1

∑
j=0

Hst( j, i)es( j) ∏
u∈N(s)∖t

mus( j) (4.2)

where Hst( j, i) indicates the relative influence of class j of node s with respect to class i of
node t; function H holds for every pair of classes, defining a matrix named coupling matrix. The
message passing starts with the annotated nodes and proceeds until every node has propagated
their beliefs towards their neighbors, comprising an iteration. This version of the algorithm, as
stated previously, does not offer any convergence guarantees and has performance problems
when considering large graphs.

In order to illustrate the idea behind the algorithm with a simple example, Figure 8 shows
a graph with 8 nodes and only 2 belief classes, where we have nodes 1 through 3 with prior
explicit blue belief and nodes 6 through 8 with prior explicit red belief. Since the algorithm
works by sending messages iteratively between all connected nodes, in this toy example, it is
clear that node 4 would receive more messages indicating that he should believe in blue, whereas
it is the opposite for node 5. It is important to note that 4 and 5 will also exchange messages
trying to convince each other but it would not be enough to change their classification in this
case.

Figure 8 – Toy example for Belief Propagation.

Source: Elaborated by the author.
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4.4 Linearized Belief Propagation - LinBP

To improve on the common issues of BP, method LinBP was proposed by Gatterbauer et

al. (2015); it uses the Maclaurin series expansions to replace the product part of the formulation
with a summation. According to the LinBP method, due to the linearization of the algorithm, we
can write the belief state b for each node, and the message m between nodes, as:

b̂s(i) = ês(i)+
1
k ∑

u∈N(s)
m̂us(i) (4.3)

m̂st(i) = k∑
j

Ĥst( j, i)b̂s( j)−∑
j

Ĥst( j, i)m̂ts( j) (4.4)

where b̂, m̂ and Ĥ are centered around the parameter 1
k , meaning that all values are close

to 1
k and their average is exactly 1

k . This makes it possible to derive convergence guarantees for
the algorithm as well as improves the computational requirements of the algorithm.

This sets the foundation from which we build VCBP, by combining the state-of-the-art
advances of LinBP with state-of-the-art graph processing techniques to produce a scalable,
effective and faster belief propagation algorithm.

4.5 Usage and efficiency

When it comes to using Belief Propagation, it is important to know that the quality of
the results depends on the quality of the parameters used to feed the algorithm. In particular, we
believe that one of the limitations of the algorithm from a computational standpoint is related
to the coupling-matrix - when applying the algorithm to large real-world datasets with several
classes it can be very hard to make intuitive sense of the coupling relations between the classes.
Particularly when we have complex scenarios comprised of multiple heterophilic and homophilic
relations. Additionally, it can be challenging to model the prior labels of known nodes in several
real-world domains given that such data is not usually promptly available.

Despite being an algorithm that was proposed several years ago, the algorithm continues
to be relevant and new approaches and applications continue to be researched, for instance,
Kong, Zhang and Ye (2017) proposes a decentralized BP-based method for multi-agent task
allocation, while Mossel et al. (2016) works with reconstruction and recovery of block models.
But despite its popularity, we find that most works in the literature attack the problem from the
statistical point of view and not so many investigate the practical computational characteristics
and limitations of the algorithm, especially when it comes to the scalability of the algorithm for
very large graphs.
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4.6 Final considerations
We presented mathematical formalizations of the Belief Propagation algorithm as well

as a retrospect of its evolution along time. The goal of this Chapter is to present the algorithm
and lay the foundation of the current state-of-the-art from which the following chapter will pick
up to implement our methodology and contributions.





67

CHAPTER

5
VERTEX-CENTRIC BELIEF PROPAGATION

5.1 Initial considerations
In this chapter, we present our proposed algorithm and processing framework. We further

discuss the limitations of the previous solutions and our proposed contributions, including several
experiments, datasets, convergence analysis, and a real-world application. This is the culmination
of the careful combination of two separate state-of-the-art approaches towards more efficient and
scalable computations.

5.2 Problem and Motivation
Although belief propagation addresses many different problems, it is not straightly suited

to solve the real-world problems that emerged in the current era, which characterize by strong
connectivity. This is due to the fact that the original algorithm (PEARL, 1982) requires the
graph to be rooted and acyclic, which are not common characteristics for real-world networks.
Improved versions of the algorithm (MURPHY; WEISS; JORDAN, 1999) addressed the problem
of dealing with cyclic graphs, but they are not able to cope with graphs as big as those found in
social networks, for example. Other works (MURPHY; WEISS; JORDAN, 1999) (YEDIDIA et

al., 2000) achieved improvements in the robustness of the belief propagation computation, but
they are not able to deal with performance and convergence issues at the same time.

Another aspect is related to the performance of the algorithm when scalability is a
need. Most of the works on belief propagation assume that the graph fits in main memory,
which may not always be true in the era of Big Data, or in devices with hardware limitations,
such as cell phones. With that in mind, options to process these networks often include using
supercomputers (CHAU et al., 2011) or relying on distributed processing frameworks such
as MapReduce (KANG; CHAU; FALOUTSOS, 2011). Gonzalez, Low and Guestrin (2009)
affirms that distributed and synchronous implementations of the algorithm are not efficient
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when it comes to the graph-level parallelization that can be achieved using an asynchronous
single-machine model. In another work, Gatterbauer et al. (2015) proposed LinBP, a method that
approximates the belief propagation algorithm by using linear transformations while assuring
exact guarantees of convergence. Although faster than all the previous BP algorithms, LinBP
does not fully explore the performance and scalability potential and limitations of the algorithm
in the context of large graphs.

In the context of this work, we provide a more accessible alternative, focusing on using
a single consumer-grade computer, which not only allows for a cheaper infrastructure but also
manages to provide a simpler framework that can be used by researchers and practitioners. We
present the Vertex-Centric Belief Propagation (VCBP), a parallel vertex-centric graph algorithm
that uses asynchronous directives to expand on scalability while maintaining convergence
guarantees. VCBP is one of the contributions of this thesis, it is designed to run over a single
consumer-grade computer to process large graphs. Specifically, the contributions related to
CVBP include:

1. Algorithm: we designed a vertex-centric algorithm for linearized belief propagation – we
used an asynchronous parallel approach to maximize the computation per graph iteration;

2. Convergence: being able to do more processing per iteration, we managed to improve the
convergence ratio of the algorithm;

3. Scalability: we provide an efficient, scalable, and convergence-guaranteed algorithm that
can process large-scale graphs in a single commodity machine without loss of precision;

4. Application: we discuss new opportunities and difficulties that arise when trying to apply
the algorithm to practical problems; particularly, we provide details of VCBP in the task
of classification.

5.3 Vertex-centric Belief Propagation - VCBP
According to the programming model discussed in Chapter 2, our algorithm has two

parts: the main loop as Shown in Algorithm 8, and the update-function that is called for each
vertex, shown in Algorithm 9. The input to the algorithm consists of the graph G, a list Vexplicit

of vertices with initial known beliefs; a coupling matrix H; and the δh scaling factor, which is
responsible for assuring the convergence guarantees. Line 2 of Algorithm 8 is where the effective
scaling of the coupling matrix happens, before being passed on to the update function. Whereas
line 3 is simply the definition of the squared coupling matrix that is going to be used inside the
update function and so we do the computation once before entering the main loop so that we do
not have to calculate the same values for every vertex. Line 6 represents the call to the update
function, the loop continues until we achieve convergence, that is usually a ε indicating the
desired maximum relative change in belief values accepted between one iteration and the next.
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As seen in Algorithm 9, the actual processing occurs inside the update function. The
algorithm starts by initializing the current beliefs for the vertex to 0, lines 5 through 9 comprise
the first step of the computation, in which the current vertex consumes incoming messages
using their information to update its own beliefs; this is done by considering the influence of
the incoming edges using the edges’ weights, and the coupling matrix. By combining these
values the vertex absorbs all of the information surrounding it. From lines 10 to 15, we apply
the echo cancellation, a mathematical procedure (GATTERBAUER et al., 2015) that prevents
neighboring vertices to constantly induce a given vertex to the same class. After consuming the
incoming messages, the vertex then updates its own beliefs and finally propagates these new
beliefs to its neighbors as described in lines 16 through 18. Such messages will thereafter be
consumed by the neighbors when it is their turn to run the update function, iteratively reaching
every node. The output of the algorithm is then a vector of final beliefs for each of the classes for
each of the vertices as they were in the moment the algorithm stopped running - typically after
convergence.

Algorithm 8 – Vertex-Centric Belief Propagation Algorithm

1: procedure VCBP(G.V , Vexplicit , H, δh)
2: set H ′ = δh *H
3: set H ′′ = H ′2

4: repeat
5: for each vertex ∈ G.V do
6: UPDATE(vertex,H ′,H ′′,Vexplicit)
7: end for
8: until convergence achieved
9: end procedure

Convergence criterium and guarantee

Considering that our algorithm is built upon the foundational platform of LinBP (GAT-
TERBAUER et al., 2015), its convergence guarantees remain valid for our algorithm as well.
That is, we scale the coupling matrix H via factor epsh, as shown in Line 2 of Algorithm 8.
Following, we include a brief explanation of such convergence guarantees:

y(l+1)← x+My(l) (5.1)

VCBP converges⇐ ||H||< 1
||A||

(5.2)

Equation 5.1 shows the Jacobi method iterative solution for linear system y= (I−M)−1x;
it is known that these updates converge for any initial values for y(0) as long as the spectral radius
of M is lower than 1 (GATTERBAUER et al., 2015). Therefore, it is possible to use the fact
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Algorithm 9 – Vertex update function of VCBP
1: procedure UPDATE(vertex)
2: Set degree = 0
3: for each class c ∈C do . initializing vertex values for each class
4: vertex.value(c) = 0
5: end for
6: for each incoming edge e adjacent to vertex do . processing incoming messages
7: degree+= e.weight2

8: for each class c f rom ∈C do
9: for each class cto ∈C do

10: vertex.value(cto) += e.weight * e.value(c f rom) * H(c f rom, cto)
11: end for
12: end for
13: end for
14: if vertex /∈Vexplicit then . echo cancellation of messages
15: for each class c f rom ∈C do
16: for each class cto ∈C do
17: vertex.value(cto)−= degree*vertex.value(c f rom)*H2(c f rom,cto)
18: end for
19: end for
20: else . adding explicit value of the vertex
21: vertex.value(c) +=VExplicit(vertex)(c)
22: end if
23: for each outgoing edge e adjacent to vertex do . sending messages to neighbors
24: for each class c ∈C do
25: e.value(c) = vertex.value(c)
26: end for
27: end for
28: end procedure

that any norm ||X || gives upper bounds to the spectral radius of matrix X to define sufficient
convergence conditions, as shown in Equation 5.2. At this point, we are able to choose any norm,
such as the Frobenius norm, to calculate sufficient convergence guarantees, which is significantly
faster and easier to compute than the spectral radius.

With regard to the convergence criterium, we calculate the ratio between the top-belief
(the highest belief for a given node) for subsequent iterations, obtaining the relative change
of beliefs between iterations. With this computation, we stop processing once a satisfactory
ratio has been achieved. We do it for all the nodes, which must all satisfy the criterium. For
our experiments we considered 0.01 as the minimum relative change - less than that between
iterations indicates that the convergence was achieved.
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Table 5 – Generated Kronecker networks.

Graph # Nodes # Edges

1 59,049 1,048,576
2 177,147 4,194,304
3 531,441 16,777,216
4 1,594,323 67,108,864
5 16,777,216 181,776,201
6 33,554,432 363,552,403
7 67,108,864 727,104,806

5.4 Experiments
Here, we compare our algorithm to the state of the art with regard to its efficiency

(scalability) and efficacy (accuracy). We are interested in knowing whether our solution improves
the scalability of the belief propagation algorithm whilst maintaining competitive accuracy. We
used a 3.4 GHz i7 CPU, with 8 cores, 16 GB of main memory, and a 240 GB SSD for storage.

Our implementation of the VCBP algorithm runs over the GraphChi framework (KY-
ROLA; BLELLOCH; GUESTRIN, 2012) – a disk-based vertex-centric graph processing frame-
work, which abstracts the processing of a partitioned graph. All the information required for
reproducibility, as well as our source code, can be found at <https://goo.gl/8dQG2a>. Is is
important to note that we focused on providing an easy to replicate methodology by making
available our code as well as the detailed steps for reproduction.

5.4.1 Datasets

In order to evaluate our algorithm in a controlled environment, while still making sure
that the experiments match real-world applications, we use a set of synthetic graphs generated
with the Kronecker product method. Proposed by Leskovec et al. (2005), graphs generated with
the Kronecker product present properties common to real-world datasets. We used the Kronecker
generator available in the SNAP library (LESKOVEC; SOSIC, 2014). As the input graph for the
generator we used a smaller version of the real-world dataset Polblog (ADAMIC; GLANCE,
2005) that we used in Section 5.5. Table 5 presents the cardinalities of the datasets that we
used. For a comprehensive assessing, in Section 5.5, we present experiments on two real-world
datasets.

5.4.2 Experimental Setup

In our experiments, we consider a scenario with 3 classes, and the unscaled coupling
matrix is shown in Table 6 – unscaled refers to the coupling matrix before we apply the δh

transformation necessary for the convergence guarantees. We randomly set the initial beliefs for
5% of the nodes; we normalize the beliefs so that they sum up to zero.

https://goo.gl/8dQG2a
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Table 6 – Unscaled residual coupling matrix used in our experiments.

1 2 3
1 0.266667 -0.033333 0.366667
2 0.033333 -0.333333 0.366667
3 -0.233333 0.366667 -0.133333

5.4.3 Accuracy Validation

As mentioned, we are interested in the scalability of our methodology at the same time
that we validate its accuracy. We compare the belief assignments computed by our algorithm
with those of method LinBP for graphs 1−4, which were sufficient to demonstrate scalability –
the same results extend to graphs 5−7.

Our results show that VCBP and LinBP agree with respect to the top beliefs assigned for
all the test graphs. As desired, both algorithms achieve the same results for nearly 100% of the
nodes; with the lowest percentage of accuracy being 99.9% for graph number 4. We attribute this
subtle divergence to numerical imprecisions between different implementations, as well as to the
random breaking of ties. We consider that such results demonstrate that our algorithm maintains
the necessary accuracy standards since it conforms to a baseline implementation widely accepted
in the literature. Next, we discuss scalability and convergence improvements.

5.4.4 Scalability

For scalability, we compare our algorithm to the LinBP-SQL implementation. LinBP-
SQL is the disk-based implementation of LinBP provided by its very authors. We compare with
this version because, just like our work, it is suitable for graphs whose size demands disk storage.
We configured PostgreSQL with the default values while following the author’s instruction for
reproducibility. Additionally we also considered a single-threaded version of our algorithm for
comparison to avoid any misconfiguration.

We ran our algorithm for a fixed number of iterations; we ignored the time spent on
preprocessing the graphs, such as when loading the datasets into PostgreSQL or sharding the
graph in the vertex-centric approach.

We comparatively present the runtimes for algorithms LinBP-SQL and VCBP in Table
7. For graphs 1–4, we compare both methodologies, as shown in Figure 9a; for graphs 1–7, we
compare VCBP for one and eight threads in Figure 9b, stressing its asymptotic behavior. As one
can see, even when limiting the number of threads to only one, our algorithm is still, at least, 100
times faster. Actually, by adding more processing cores, disk controllers, and execution threads,
the performance gains can scale even further. Also, when fully leveraging the parallelism of
modern multi-core processors - from one to eight threads, we notice an even greater speed-up,
reducing the runtime for the largest analyzed graph almost in half. It is important to emphasize
that we are talking about consumer-grade equipment, and also that while adding computational
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Table 7 – Runtime (sec) for each graph.

Graph LinBP-SQL VCBP-1thread VCBP-8threads

1 39.04 0.31 0.23
2 179 1.27 0.75
3 826 5.90 3.15
4 5000 34.62 18.69
5 - 152.12 81.27
6 - 340.11 180.35
7 - 759.52 358

cores can increase the performance further, the disk-access is effectively the bottleneck we are
dealing with.

In Figure 9, we analyze the scalability when considering the runtime versus the number
of edges in the graph comparatively for VCBP only, with one and eight threads. Our algorithm is
able to scale linearly with regard to the number of edges of the network, which allows VCBP
to process even very large datasets that may otherwise need supercomputers or computational
clusters to be timely processed. We attribute the speed-up to the degree of parallelism brought
by an asynchronous vertex-centric approach, while still maintaining the accuracy of a regular
method. Figure 9a shows timing experiments for 5 iterations. Figure 9b stresses the asymptotic
behavior of our algorithm’s scalability by presenting results for graphs orders of magnitude
bigger. Figure 9c compares the number of iterations until convergence for each dataset.

5.4.5 Convergence

While performance is a paramount requirement, convergence is also of great concern
– the algorithm must converge in a timely manner. In fact, during experimentation, we noticed
that the asynchronous processing paradigm also impacted on the convergence behavior of our
algorithm. As showed in Figure 9c, VCBP needed fewer iterations to converge than LinBP,
despite the same parameters and convergence guarantees. For both algorithms, the convergence
criterium considered 0.01 as the minimum relative change to a node’s top belief assignment.
These findings agree to the work of Elidan, McGraw and Koller (2012), who states that an
asynchronous execution of the BP algorithm is guaranteed to be at least as fast as its synchronous
counterpart. That is due to the nature of how update functions work, if vertices do not have to
wait until the next iteration to receive updated values from their neighbors, this will increase the
convergence ratio via effectively compressing multiple synchronous iterations inside a single
asynchronous one. Also, since every iteration can be time-consuming, having the algorithm
finish a couple of iterations earlier implies in an effectively faster algorithm.
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Figure 9 – Experiments comparing LinBP’s SQL implementation, with our proposed asynchronous vertex-
centric algorithm VCBP.
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5.4.6 Results discussion and future directions

VCBP manages to push the Belief Propagation algorithm performance and efficiency
boundaries further, we consider that from our experiments it is possible to conclude that the
approach is very effective for this type of algorithm and we attribute this specially to the
asynchronicity and overall structure of the processing framework, which aligns naturally with
the algorithm’s computational requirements.

Another important aspect is that we believe our work can be leveraged in low-memory
environments such as embedded and mobile devices, allowing for more efficiency in this scenario
where not only the computational power and memory are limited but also other resources such
as battery life need to be taken into consideration.
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Table 8 – Datasets for the classification experiments.

Graph # Nodes # Edges Classes

PolBlogs (ADAMIC; GLANCE, 2005) 1,490 19,090 Democrat or Republican
Pokec (TAKAC; ZABOVSKY, 2012) 1,632,803 30,622,564 Male or Female

5.5 VCBP in the task of node classification

The use of belief propagation for classification is not a novelty, there are several works in this line,
such as CAMLP(YAMAGUCHI; FALOUTSOS; KITAGAWA, 2016) and NetConf(ESWARAN;
GÜNNEMANN; FALOUTSOS, 2017). However, while previous works discuss different aspects
of the problem, such as the ability to deal with homophily/heterophily, and techniques to expand
the versatility of BP, such as including uncertainty in the process; they do not care about the
scalability of the algorithms at the same degree of VCBP. In this section, we present early
experiments showing how our algorithm can be used in the context of classification. Generally,
the lack of convergence guarantees and scalability issues of traditional BP algorithms might
limit their use when considering large datasets, therefore we bring attention to this possibility,
specifically regarding node classification problems.

Classification based on Belief Propagation

First, we define the problem as:

Definição 2. Node Classification. Given a graph G(V,E), with known beliefs w for a subset of
nodes V ′ ⊂V , and the coupling relation represented by matrix H, find the probability b that a
given unannotated node pertains to a class c ∈C. Finally, classify each node according to its
highest class probability.

In order to have Belief Propagation perform classification, it is enough to compute the
beliefs in the network until convergence. The procedure stands for a semi-supervised classifica-
tion since part of the nodes must be previously classified – the final class of each node will refer
to the belief with the highest probability.

5.6 VCBP-based classification

To demonstrate the potential of VCBP in the classification task, we ran experiments with the two
real-world graphs presented in Table 8.

The first dataset, named PolBlogs, consists of a hyper-link network extracted from
political blogs during the 2004 US Election (ADAMIC; GLANCE, 2005). The second one,
named Pokec (TAKAC; ZABOVSKY, 2012), is a social network from Slovakia, containing
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Table 9 – Accuracy (%) of VCBP in the context of classification for two real-world datasets.

Accuracy PolBlogs Pokec

VCBP 90.13 70.67
NET-CONF 92.40 75.02

anonymized data from the profiles of its users, such as age, gender, and hobbies. For the
experimental setup, we randomly seeded 30% of the nodes with their ground-truth information,
and initialized unlabeled nodes to [1

k , ...,
1
k ], where k is the number of classes. We also used a

generic coupling matrix, as defined by Equation 5.3, with δ = 0.4 and δ =−0.4 for homophily
and heterophily, respectively.

H =

[
0.5+δ 0.5−δ

0.5−δ 0.5+δ

]
(5.3)

Table 9 shows the accuracy of the algorithm in the task of classification for each of
the datasets. These results show that VCBP, the way it is, has the potential for dealing with
classification problems; its accuracy is over 90% for PolBlogs and over 70% for Pokec. These
numbers are similar to other works specifically designed for classification (ESWARAN; GÜN-
NEMANN; FALOUTSOS, 2017) (YAMAGUCHI; FALOUTSOS; KITAGAWA, 2016), whilst
VCBP maintains its versatility with regard to graphs that may not fit in main memory.

5.7 Future research lines
Given the adequacy of VCBP for the classification task, we provide some lines of work in order
to improve its results in terms of accuracy – notice that VCBP already addresses the issue of
performance.

While the use of a simple generic coupling matrix can produce competitive results, it
is necessary to use more specific and hard-to-obtain prior knowledge about the domain when
considering more complex scenarios, with multiple classes and different homophily/heterophily
relations between them. Therefore, further research and experimentation are necessary for this
front, including, for instance, developing techniques to automatically infer coupling matrices
and their classes. Another line of work is to incorporate state-of-the-art advancements into the
VCBP’s classifier. Advancements such as an uncertainty model, which considers an additional
layer of information by including the degree of certainty that a given node has with regard to its
own beliefs, allowing for more intuitive results in specific real-world scenarios (ESWARAN;
GÜNNEMANN; FALOUTSOS, 2017).

Additionally, it would be interesting to evaluate how VCBP would be able to interact
with real-time node classification problems, that is when new nodes are inserted into the dataset.
Gatterbauer et al. (2015), proposes a variation on the LinBP algorithm, called SBP, that could be



5.8. Final considerations 77

implemented in VCBP’s paradigm, allowing for fast and efficient computation of the beliefs of
the new nodes. That, coupled with VCBP’s faster convergence ratios, could lead to a reliable and
efficient way to address such problems.

5.8 Final considerations
In this chapter, we discussed our methodology and proposed solutions to the scalability,

convergence and efficiency problems related to the Belief Propagation algorithm. We presented
experiments in both synthetic and real-world datasets, discussed problems and difficulties that
can arise from a practical standpoint and also presented future research opportunities. The next
chapter is going to further discuss our contributions and final thoughts.
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CHAPTER

6
CONCLUSIONS

6.1 General considerations

In our project, we managed to investigate several properties and algorithms related to
the analysis of complex networks, while achieving significant contributions both in terms of
exploratory mining as well as in terms of the scalability and efficiency of the proposed method-
ologies. Chapter 3 includes three of our contributions: ORFEL is a novel algorithm that not only
expanded upon the formalization of the lockstep detection problem but also dealt with scalability
problems by leveraging vertex-centric asynchronous parallel processing techniques to provide a
cost-effective fraud detection framework for bipartite graph domains. Our results included the
analysis of real-world recommender system networks as well as thorough experimentation under
controlled synthetic conditions. We also collaboratively explored street-network domains, we
proposed preprocessing techniques to obtain satisfactory data from the OpenStreetMap project;
delineated the concept of urban inconsistencies whilst providing an algorithm to find such
ill-devised facility placement potential problems; additionally we investigated the relationship
between topological metrics from street-networks and real-world city characteristics such as de-
mographic data and territorial extension, including how those cities group themselves regardless
of administrative borders.

Further, in Chapter 5 we showed that it is possible to improve the scalability and usability
of the BP algorithm by combining the state-of-the-art BP theory with state-of-the-art graph
processing techniques. By taking full advantage of the natural parallel characteristics of the
BP algorithm and pairing it with disk-based vertex-centric asynchronous graph processing, we
propose a novel algorithm that achieves superior scalability when compared to previous works,
even for scenarios where the network does not fit in main memory. Our methodology also
culminated in an improved convergence ratio as shown in our analyses, which can be leveraged
for time-critical applications pushing the limits of the algorithm with newer technologies while
also opening up opportunities for new domains and computational tasks.
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VCBP provides a scalable framework for belief propagation tasks in a single computer,
building upon the theoretical progress of the linearized Belief Propagation principle. The extent
to which such findings can enable previously unexplored tasks is yet to be understood; here,
convergence and performance limitations played a significant role in how the problem was
exploited. We believe that this makes belief-propagation-based algorithms a solid choice for
researchers and practitioners working with network data and willing to explore new possibilities.

We also discussed the task of classification for the Belief Propagation algorithm, present-
ing experiments and directions for future work so to improve the algorithm and its potential for
classification. Finally, our approach brings attention to the yet not-fully explored potential of
single-machine parallel processing algorithms. In contrast to works that rely on supercomputers
and computational clusters to process large graphs, our methodology offers an alternative that
truly benefits from multiple-cores and concurrent programming, reaching results that compare to
equipment way more costly and robust. We hope our contributions to foster a more cost-efficient
and accessible data-mining scenario.

6.2 Hypothesis

With these contributions, we successfully achieved results in accordance with our general
hypothesis, which we reproduce here:

General Hypothesis: The use of iterative vertex-centric asynchronous parallel processing

techniques over multi-core computational architectures can lead to the development of efficient

algorithms capable of revealing interesting patterns in large scale networks for real-world

domains, such as social networks, recommendation systems, and citation networks.

The results observed in the paper Vertex Centric Asynchronous Belief Propagation

Algorithm for Large-Scale Graphs (GIMENES; GUALDRON; RODRIGUES-JR, 2016) demon-
strated the successful combination of the Linearized Belief Propagation Principle with the
vertex-centric asynchronous parallel processing technique. Along with the results presented
in the paper ORFEL (GIMENES; CORDEIRO; RODRIGUES-JR, 2016), we achieved highly-
scalable graph-processing methods as experimented on datasets from several domains.

6.3 Scientific Production

Published

∙ Gabriel Gimenes, Robson Cordeiro, Jose Rodrigues-Jr (2016) ORFEL: Efficient detection
of defamation or illegitimate promotion in online recommendation Elsevier Information
Sciences 379: 10. 274 - 287. (GIMENES; CORDEIRO; RODRIGUES-JR, 2016)
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∙ Gabriel Gimenes, Hugo Gualdron, Jose Rodrigues-Jr (2016) Vertex Centric Asynchronous
Belief Propagation Algorithm for Large-Scale Graphs In IEEE 16th International Confer-
ence on Data Mining Workshops 93-98 IEEE Press. (GIMENES; GUALDRON; RODRIGUES-
JR, 2016)

∙ Gabriel Spadon, Gabriel Gimenes, Jose Rodrigues (2017) Identifying Urban Inconsisten-
cies via Street Networks In Procedia Computer Science Edited by Elsevier, vol 108. 18–27.
(SPADON; GIMENES; RODRIGUES-JR, 2017)

∙ Gabriel Spadon, Gabriel Gimenes, Jose Rodrigues-Jr (2018) Topological Street-Network
Characterization Through Feature-Vector and Cluster Analysis In: Computational Sci-
ence – ICCS 2018 274-287 Springer International Publishing. (SPADON; GIMENES;
RODRIGUES-JR, 2018)

Submitted

∙ Gabriel Gimenes, Gabriel Spadon, Jose Rodrigues (2019) VCBP - Parallel Asynchronous
Vertex-centric Belief Propagation Algorithm (2019) In: ACM Trans. Knowl. Discov. Data

6.4 Mass-media divulgation

∙ Local Television Report EPTV <http://tiny.cc/hwjnfz>

∙ Local Television Report Record <http://tiny.cc/jxjnfz>

∙ FAPESP Report <http://tiny.cc/9xjnfz/>

6.5 Future Work
While we have discussed further directions for our main algorithm in Chapter 5, from

a broader perspective, the goals pursued in this thesis are aligned with problems related to
computational problems from the perspective of efficiency. That is, we believe that in several
fields of knowledge, the society is realizing that while some solutions may work from a practical
standpoint, it is also important to consider the implications and long-term sustainability of the
implemented systems in face of the ever-increasing volumes of data. Therefore, we reinforce
the importance of developing and researching large-scale data mining and graph processing
techniques that are available more ubiquitously, without the need for specific, and potentially
expensive, infrastructure. Whilst also making sure that we are leveraging our readily available
computational power from commodity-machines in the best way possible.

http://tiny.cc/hwjnfz
http://tiny.cc/jxjnfz
http://tiny.cc/9xjnfz/
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