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RESUMO

SILVA, J. A. R. Direção autônoma: apredendo a tomar decisões na presença de incertezas.
2023. 117 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computaci-
onal) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2023.

Um veículo que navega em um ambiente urbano deve obedecer às regras de trânsito, definindo
corretamente sua velocidade para ficar abaixo do limite de velocidade da estrada e evitar colisões.
Este é presumivelmente o cenário que os veículos autônomos enfrentarão: eles compartilharão
as vias de tráfego com outros veículos (autônomos ou não), interagindo cooperativamente
com eles. Em outras palavras, os veículos autônomos não devem apenas seguir as regras de
trânsito, mas também devem se comportar de maneira semelhante a outros veículos. Porém, a
especificação manual de tal comportamento é um trabalho demorado e sujeito a erros, visto que
dirigir em vias urbanas é uma tarefa complexa, que envolve diversos fatores. Além disso, uma
vez que a interação entre os veículos é inerente à condução, inferir o movimento dos veículos ao
redor é essencial para proporcionar uma navegação mais fluida, evitando um comportamento
excessivamente reativo. Nesse sentido, incertezas provenientes de sensores com algum grau de
imprecisão, como também do comportamento desconhecido de outros veículos não podem ser
negligenciadas de forma a garantir tomadas de decisão seguras e confiáveis.

Nesta tese, propomos o uso do Processo de Decisão de Markov Parcialmente Observável
(POMDP) para resolver o problema de informação incompleta inerente ao planejamento de
movimento para veículos autônomos. Também propomos uma variante do Aprendizagem por
Reforço Inverso (IRL) baseado no princípio da Entropia Máxima para aprender o comportamento
de motoristas humanos a partir de demonstrações. Três diferentes cenários urbanos são abordados
ao longo deste trabalho: planejamento longitudinal em cruzamentos com semáforo considerando
medições ruidosas de sensores; planejamento longitudinal e lateral em vias de múltiplas faixas
na presença de outros veículos, em que a intenção dos mesmos de mudar de faixa é inferida a
partir de uma sequência de observações; planejamento longitudinal e lateral durante manobras
para adentrar vias movimentadas em um cenário altamente interativo, no qual o comportamento
do veículo autônomo é aprendido a partir de dados reais contendo demonstrações humanas.
Os resultados mostram que nossos métodos se comparam favoravelmente a abordagens que
negligenciam a incerteza durante o planejamento, e também podem melhorar o desempenho do
aprendizado por IRL, o que agrega segurança e confiabilidade na tomada de decisão.

Palavras-chave: Veículos Autônomos, Tomada de Decisão na Presença de Incertezas, Planeja-
mento de Movimento, Predição de Movimento, Processo de Decisão de Markov Parcialmente
Observável (POMDP), Aprendizagem por Reforço Inverso (IRL), Robótica, Inteligência Artifi-
cial, Aprendizado de Máquina.





ABSTRACT

SILVA, J. A. R. Autonomous driving: learning to make decisions in uncertain environ-
ments. 2023. 117 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2023.

A vehicle navigating in an urban environment must obey traffic rules by properly setting its
speed in order to stay below the road speed limit and avoiding collisions. This is presumably the
scenario that autonomous vehicles will face: they will share the traffic roads with other vehicles
(autonomous or not), cooperatively interacting with them. In other words, autonomous vehicles
should not only follow traffic rules, but should also behave in such a way that resembles other
vehicles behavior. However, manually specification of such behavior is a time-consuming and
error-prone work, since driving in urban roads is a complex task, which involves many factors.
Furthermore, since the interaction between vehicles is inherent to driving, inferring surrounding
vehicles’ motion is essential to provide a more fluid navigation, avoiding a over-reactive behavior.
In this sense, the uncertainty coming from noisy sensor measurements and unknown surrounding
vehicles behavior cannot been neglected in order to guarantee safe and reliable decisions.

In this thesis, we propose using Partially Observable Markov Decision Process (POMDP) to
address the problem of incomplete information inherent of motion planning for autonomous
driving. We also propose a variant of Maximum Entropy Inverse Reinforcement Learning (IRL)
to learn human expert behavior from demonstration. Three different urban scenarios are covered
throughout this work: longitudinal planning at signalized intersection by considering noisy
measurements sensor; longitudinal and lateral planning on multi-lane roads in the presence of
surrounding vehicles, in which their intention of changing lane are inferred from sequential
observations; longitudinal and lateral planning during merge maneuvers in a highly interactive
scenario, in which the autonomous vehicle behavior is learned from real data containing human
demonstrations. Results show that our methods compare favorably to approaches that neglected
uncertainty during planning, and also can improve the IRL performance, which adds safety and
reliability in the decision-making.

Keywords: Autonomous Driving, Decision-making under Uncertainty, Motion Planning, Mo-
tion Prediction, Partially Observed Markov Decision Process (POMDP), Inverse Reinforcement
Learning (IRL), Robotics, Artificial Intelligence, Machine Learning.
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CHAPTER

1
INTRODUCTION

According to the World Health Organization (WHO), 1.2 million people die every year
due to traffic accidents, making them the leading cause of death among people from 15 to 29
years old (WHO, 2015). In Brazil, the deaths reach 49,000 per year, making it the fourth country
in America in number of traffic accident deaths. In addition, 1.2% of Brazil’s Gross Domestic
Product (GDP) is lost due to accidents (WHO, 2015). The WHO points out that many accidents
are due to improper driving behavior, such as talking on the mobile phone, exceeding the speed
limit or being under the influence of alcohol or psychoactive drugs, whether legal or illegal.
Therefore, lives could be saved if mistakes of this nature could be avoided. Moreover, the costs
arising from these accidents could be invested in other areas, such as education, health and safety.

The number of accidents resulting from human error could be significantly reduced by
using robotic cars with systems that allow autonomous navigation, due to their rapid processing
and decision making in various situations (LITMAN, 2014). The use of mobile robots to transport
people and cargo has been intensively studied in recent years (RANFT; STILLER, 2016; PADEN
et al., 2016). Researchers around the world focus their efforts on adapting commercial cars to
operate completely autonomously, the so-called autonomous vehicles. Autonomous vehicles, also
known as driverless cars or self-driving cars, are vehicles that can sense their environment and
navigate without human input. They combine a variety of sensors to perceive their surroundings,
such as radar, lidar, Global Positioning System (GPS) and computer vision. Advanced control
systems interpret sensory information to identify appropriate navigation paths and implement
corresponding actions. Benefits of this technology include improved safety due to reduced risk
of human error, increased efficiency through optimized routing and decreased pollution from
less fuel consumption.

Commonly, the decision-making architecture of autonomous vehicles is divided into
simpler components or layers (PADEN et al., 2016), as shown in Fig. 1. In the first layer of
the decision-making hierarchy , the vehicle needs to find a route considering the connections
between the roads that constitute the environment which it is inserted in, the so-called mission
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Figure 1 – Decision-making hierarchy.
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Source: Elaborated by the author.

planning. During navigation, the vehicle must deal with static and dynamic obstacles (other
moving vehicles) that can be found along the way, identified through sensors such as cameras,
lasers and radars. The presence of dynamic obstacles requires the vehicle to make fundamental
navigation decisions. These decisions are performed by the behavioral planner in order to
minimize the risk of accidents and to accomplish the planned goal, such as overtaking a slower
vehicle. Right after deciding on the best strategy, for example changing lanes in the event of an
overtaking, it is necessary to calculate a trajectory, which can be understood as a reference that
will lead to the successful execution of the maneuver. The planned trajectory is executed by the
controller-layer, which is the lowest layer of the decision-making hierarchy. Sensors such as
GPS, Inertial Measurement Unit (IMU), cameras and lasers are used to estimate the vehicle’s
position. Actuators, such as steering wheel steering, accelerator and brake are used in order to
keep the vehicle on the calculated trajectory. Despite the notable improvements in this field,
mainly after the Darpa Challenge (BUEHLER; IAGNEMMA; SINGH, 2007) and the subsequent
Darpa Urban Challenge (DCU) (URMSON et al., 2008; MONTEMERLO et al., 2008), many
challenges still need to be overcome to achieve safe, reliable autonomous systems.

An open problem in autonomous vehicles research is dealing with uncertainty while
making decisions (SCHWARTING; ALONSO-MORA; RUS, 2018). The main source of un-
certanty in autonomous driving field comes from sensor noisy measurements and unknown
information, such as occlusions, traffic lights cycle duration, as well as pedestrian, cyclists and
surrounding vehicles future trajectories. Neglecting such sources of uncertainty may lead to
erroneous planned behaviors or even to unsafe conditions. Besides that, another point of attention
of the self driving community is how to define a properly behavior for the controlled vehicle.
During navigation in urban areas, the autonomous vehicle has to accomplish some objectives that
have opposed effects on its behavior. For instance, the vehicle tries to progress along the road
with a near-constant speed, but have to slow down when it encounters slower vehicles in front of
it. Balance those objectives in such a way to produce a desired behavior is a time-consuming
task, and can become very hard as more features are added to the problem.
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1.1 Thesis objective and main contributions

This work focus on decision-making for autonomous vehicles in the presence of uncer-
tainty and learning driving behavior through real data. The main approaches presented throughout
this thesis to solve the decision-making problem apply variants of the well-known Partially Ob-
servable Markov Decision Process (POMDP) (KAELBLING; LITTMAN; CASSANDRA, 1998)
and Inverse Reinforcement Learning (IRL) (NG; RUSSELL et al., 2000) algorithms, which are
properly defined in Chapter 2. POMDP a powerful tool when the true states of the system are
unknown and can only be estimated through sequential observations (RUSSELL, 2010), while
IRL focuses on learning the underlying reward function from observed demonstrations or expert
trajectories. The main hypothesis of this thesis is that the combination of the both approaches

can be used to compute optimal actions that imitate the human behavior, which is crucial for

autonomous vehicles to be socially integrated to urban roads in the presence of human drivers.

Artificial Intelligence (AI) has been proved to be a powerful tool to address the problem
of motion planning for autonomous driving, avoiding the need of manually defining complex
behaviors through mathematical models. Deep Learning (DL) can be applied to this domain
in order to learn a policy directly from data, in a process known as end-to-end learning. The
work of Pomerleau (1989) pioneered this area. He uses an Artificial Neural Network (ANN) to
produce steering commands directly from camera images and laser scans. The employed ANN
has only three layers, which can be considered a tiny network for nowadays. With advances
of computer processing capabilities, specially due to the development of moderns Graphics
Processing Unit (GPU), ANN with greater complexity could be applied to this domain. In an
earlier study, Bojarski et al. (2016) collect images from three cameras mounted on the vehicle in
different positions. These images are used to train a Convolutional Neural Network (CNN) to
output the steering wheel angle to keep the vehicle on the road. The authors highlight that such
approach can avoid engineering the entire planning pipeline for autonomous driving, which can
be replaced by only one CNN. Nevertheless, end-to-end approaches require a large amount of
data to learn efficient policies. Moreover, it cannot provide insights into why certain decisions
are being made, since the learned model is difficult to be interpreted in an human perspective.
IRL often requires fewer expert demonstrations compared to training deep neural networks,
which can be data-hungry. Also, IRL can capture the implicit safety and ethical considerations
of human drivers.

Instead of learning a policy directly from data, some methods are dedicated to learn a
part of the model, which is optimized in order to compute optimal policies. Dynamic Bayesian
Networks (DBN) (RUSSELL, 2010) can be used to model relationships between variables using
probabilistic dependencies. In the context of autonomous driving, they can capture uncertainties
and dependencies between different aspects of the environment. Gindele, Brechtel and Dillmann
(2015) apply a DBN to describe physical relationships between vehicles and other driving
elements in a non-signalized intersection, and uses an Expectation Maximization (EM) approach



30 Chapter 1. Introduction

for learning the models integrated in the DBN. However, DBNs might not directly capture human
preferences. On the other hand, IRL can learn from human demonstrations, making it more
aligned with capturing the nuances of human driving.

This thesis is organized as a collection of papers, in which each chapter presents its
own problem definition and contributions by covering common scenarios encountered in the
autonomous driving domain:

∙ Chapter 3 presents a decision-making framework for autonomous vehicles at traffic light
signs in the presence of uncertain measurements and speed rate constraints for comfort
assurance using POMDP. The solution of the POMDP model is an optimal policy, which
gives the optimal speed to be followed by the autonomous vehicle.

∙ Chapter 4 details a POMDP model for decision-making for autonomous driving in multi-
lane roads in the presence of other vehicles. The model can estimate surrounding vehicles
ongoing lane changes in order to anticipate to their maneuvers. The output of the computed
policy is combination of longitudinal and lateral actions, which enable the vehicle to
adapted its speed and to perform lane changes as well.

∙ Chapter 5 presents an approach for designing autonomous vehicles behavior using learning
from demonstration. A variation of the IRL algorithm is proposed in order to deal with
continuous state spaces. The experiments are performed in a merging scenario considering
real data, showing that the proposed method can generate trajectories similar to the ones
executed by human drivers.

∙ Chapter 6 extends Chapter 5 by considering uncertainty in surrounding vehicles behavior.
A POMDP model is used to plan actions by estimating the intention of other vehicles
of giving the right way to the autonomous vehicle to merge onto the target lane. Results
show that the proposed approach compares favorably to deterministic methods, in which
surrounding vehicles latent intentions are not considered in the IRL problem formulation.

Moreover, Chapter 7 highlights key aspects of this work and addresses future work as
well.

1.2 Publications

During the thesis formulation, we have published and submitted papers to relevant
journals and conferences in the autonomous vehicles and robotics fields, either as first authors or
in collaboration with other colleagues:

Published journal articles:
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“Sparse Road Network Model for Autonomous Navigation Using Clothoids”, Júnior A.
R. da Silva, Iago P. Gomes, Denis F. Wolf, Valdir Grassi Jr. Published in IEEE Transactions
on Intelligent Transportation Systems, Volume: 23, Issue 2, February 2022 [Qualis A1, Impact
factor: 5.293].

Accepted journal articles:

“Autonomous driving of trucks in off-road environment”, Kenny A. Q. Caldas, Filipe M.
Barbosa, Júnior A. R. da Silva, Tiago C. dos Santos, Iago P. Gomes, Luis A. Rosero, Denis F.
Wolf, Valdir Grassi Jr. Accepted in Journal of Control, Automation and Electrical Systems, April
2023 [Qualis A4].

Journal articles under review:

“Interaction-aware Decision-making on Multi-lane Roads for Autonomous Driving”,
Júnior A. R. da Silva, , Valdir Grassi Jr, Denis F. Wolf. Submitted to Engineering Applications
of Artificial Intelligence, May 2023.

“Maximum Entropy Inverse Reinforcement Learning using Monte Carlo Tree Search for

Autonomous Driving”, Júnior A. R. da Silva, Valdir Grassi Jr, Denis F. Wolf. Submitted to IEEE
Transactions on Intelligent Transportation Systems, May 2023.

“Learning Driving Behavior for Autonomous Vehicles in Partially Observable Environ-

ments”, Júnior A. R. da Silva, Valdir Grassi Jr, Denis F. Wolf. Submitted to IEEE Transactions
on Intelligent Vehicles, May 2023.

“Scheduling System for multiple self-driving cars using K-means and Bio-inspired opti-

mization algorithms”, Clenio Silva, Tiago C. dos Santos, Iago P. Gomes, Júnior A. R. da Silva,
Denis F. Wolf, Raulcézar Alves, Jeferson Souza. Submitted to SN Computer Science, April
2023.

Published conference papers:

“Route Scheduling System for Multiple Self-driving Cars Using K-means and Bio-inspired

Algorithms”, Clenio Silva, Tiago C. dos Santos, Iago P. Gomes, Júnior A. R. da Silva, Denis
F. Wolf, Raulcézar Alves, Jeferson Souza. Publish in International Conference on Engineering
Applications of Neural Networks, 2022, Creta, p. 27-39.

“A neural path planner based on sensor fusion in the bird’s eye view representation

space for mapless autonomous driving”, Luis A. Rosero, Júnior A. R. da Silva, Denis F. Wolf,
Fernando S. Osório. IEEE Latin American Robotics Symposium (LARS), 2022, São Bernardo
do Campo, p. 181.

“Decision Making for Autonomous Vehicles at Signalized Intersection under Uncertain

Traffic Signal Phase and Timing Information”, Júnior A. R. da Silva, Valdir Grassi Jr, Denis F.
Wolf. IEEE 20th International Conference on Advanced Robotics (ICAR), 2021, Ljubljana, p.
619.
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“Continuous Deep Maximum Entropy Inverse Reinforcement Learning using online

POMDP”, Júnior A. R. da Silva, Valdir Grassi Jr, Denis F. Wolf. IEEE 20th International
Conference on Advanced Robotics (ICAR), 2019, Belo Horizonte, p. 382.

“Advanced Driver Assistance System Based on Automated Routines for the Benefit of

Human Faults Correction in Robotics Vehicles”, Diego Bruno, Tiago C. dos Santos, Júnior A.
R. da Silva, Denis F. Wolf, Fernando S. Osório. IEEE Latin American Robotics Symposium
(LARS), 2018, João Pessoa, p. 112.

Preprint articles:

“A software architecture for autonomous vehicles: Team LRM-B entry in the first carla

autonomous driving challenge”, Luis A. Rosero, Iago P. Gomes, Júnior A. R. da Silva, Tiago C.
dos Santos, Angelica T. M. Nakamura, Jean Amaro, Denis F. Wolf, Fernando S. Osório. arXiv
preprint arXiv:2010.12598, 2020.

1.3 Honors and Awards
During the period covered by this thesis, the author has participated in additional activities.

An important activity was the participation in the CARLA Autonomous Driving Challenge1, an
international challenge for autonomous vehicles in simulated urban environments. The team
LRM, of which the researcher was part, won first place in three of the four categories available
in the challenge. The team won second place in the only category in which it did not win:

“First Place Achievement of Track 1”, CARLA Autonomous Driving Challenge 2019 -
July, 2019.

“First Place Achievement of Track 3”, CARLA Autonomous Driving Challenge 2019 -
July, 2019.

“First Place Achievement of Track 4”, CARLA Autonomous Driving Challenge 2019 -
July, 2019.

“Second Place Achievement of Track 2”, CARLA Autonomous Driving Challenge 2019 -
July, 2019.

The fact that a Brazilian team was the main winner of the competition got relevant media
coverage, as can be seen here, here, here and here.

1 https://carlachallenge.org/

http://agenciabrasil.ebc.com.br/geral/noticia/2019-08/pesquisadores-da-usp-vencem-desafio-internacional-de-carros-autonomos?fbclid=IwAR21ufh63J_7W6qhLgfiUB2P4SiDtewKLs3cUshqT9MRC0pmUtwQ7maWtls
https://www.youtube.com/watch?v=-lspYMlH9Mg
https://www.tecmundo.com.br/software/144580-equipe-usp-vence-desafio-internacional-carros-autonomos.htm
https://olhardigital.com.br/noticia/pesquisadores-da-usp-vencem-desafio-de-carros-autonomos/88773
https://carlachallenge.org/
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CHAPTER

2
BACKGROUND

The theoretical background of Markov Decision Process (MDP) and Partially Observed
MDP is given in this chapter. Their mathematical framework comes along with examples in order
to provide a better understanding of their applications. Also, the basis of Maximum Entropy
Inverse Reinforcement Learning, one of most popular algorithms used in IRL, is presented.

2.1 Markov Decision Process

During navigation, the ego vehicle must adopt some tactical behaviors in order to safely
reach its destination, such as avoiding static and dynamic obstacles. Considering only static
obstacles, the ego vehicle needs to plan a trajectory to avoid them, while guaranteeing some level
of comfort for the passengers. This task becomes more complex when other traffic participants
are considered. For example, intersection negotiation and overtaking require a higher level of
reasoning than deviates from a static obstacle on the road. To achieve such level of reasoning,
the ego vehicle must consider its future actions as well as other vehicles’ motion. This prediction
comes along with uncertainty, assuming that communication between vehicles is not available.
In order to deal with the inherent uncertainty, the problem can be modeled as a Markov Decision
Process (MDP) (BRECHTEL; GINDELE; DILLMANN, 2011).

MDP is a mathematical framework to solve problems subject to uncertainty (RUSSELL,
2010). It is defined by the tuple (𝒮 , 𝒜, T, R, γ), where 𝒮 and 𝒜 are the state and action space,
respectively. When taking action a ∈𝒜 in state s ∈ 𝒮 , the agent reaches the state s′ ∈ 𝒮 . The
conditional probability function T (s, a, s′) = Pr(s′|s, a), which describes the probability of
reaching s′ from s after taking a, models the uncertainty related to state transitions. R(a, s) is
the expected reward when taking action a in s. MDP aims to compute a policy π* : s→ a that
maximizes the expected sum of discounted rewards.

Computing π* is not straightforward since the agent is in a stochastic environment.
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Therefore, not only R(s, a) has influence on π*, but also T (s, a, s′). In other words, π* gives
the best action to take for every s ∈ 𝒮 , which also depends on the dynamics of the system. In
this way, π* attempts to drive the agent to states that are more valuable than others. The value or
utility of a state is given by the expected sum of discounted rewards in time

V π(s) = E
∞

∑
t=0

γ
tR(st ,π(st)), (2.1)

where st are the reachable next states according to π for t > 0, and γ ∈ [0,1) is the discount factor,
which prioritizes immediate rewards. The optimal policy is the one that gives the maximum
utility in s,

π
*(s) = argmax

π

V π(s) (2.2)

where the optimal utility of s is given by

V *(s) = max
a∈𝒜

Q*(s,a). (2.3)

Q*(s,a) = ∑s′ T (s, a, s′)[R(s, a)+γV (s′)] is the Q-value, which is the optimal utility for s when
executing action a. Therefore,

V *(s) = max
a∈𝒜∑

s′
T (s, a, s′)[R(s, a)+ γV (s′)] (2.4)

which is the well-known Bellman equation (BELLMAN, 1957).

As it can be noted, the Bellman equation computes the optimal policy of only one state s.
Thus, n equations are required to solve a problem with n states. Since the system is composed of
nonlinear equations (due to the "max" operand), the problem can be solved using an iterative
approach. First, the utility of all states are initialized with arbitrary values. After that, V (s) is
updated according to possible actions a ∈𝒜 and all the reachable states s′ from s:

Vi+1(s) = max
a∈𝒜∑

s′
T (s, a, s′)[R(s, a)+ γVi(s′)] (2.5)

Each Bellman equation is updated until the stop criteria |Vi+1(s)−Vi(s)|< ε is reached
for each s, where ε is the threshold value. In this process, γ has an convergence effect, since an

Figure 2 – 3×4 grid world.
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Figure 3 – Rint =−0.01 for intermediate states.
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Figure 4 – Rint =−0.3 for intermediate states.
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infinite horizon solution is sought. This is known as the value iteration algorithm, one of the
most popular algorithms applied to MDP solving (RUSSELL, 2010).

To illustrate MDP, the following example is considered: a robot lives in a 3× 4 grid
world (Figure 2), in which 𝒜 = {U p, Down, Le f t, Right} are the possible movements it can
execute. However, the transition between states is uncertain: the robot can reach the intended
state with probability 0.8, but with probability 0.2 the robot moves at right angles to the chosen
action. When it collided with a wall it remains on the current cell. The two terminal states have
rewards +1 and -1, i. e. the robot leave the grid world when it reaches one of the terminal states.

Figures 3, 4 and 5 show the effect of changing the rewards Rint of intermediate states.
Figure 3 depicts the values and the policy when Rint =−0.01. Since Rint is not too much negative,
the policy is too conservative, avoiding the negative terminal state. If Rint = −0.3, staying in
the grid world becomes more “painful”, so the policy is less conservative in order to reach the
positive terminal state as soon as possible (Figure 4). When Rint =−1.8, it becomes too much
“painful” staying in the grid world and, consequently, the policy attempts to find a terminal state,
no matter what it is (Figure 5). Thereby, the agent’s behavior can be changed by adjusting R(s, a).
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Figure 5 – Rint =−1.8 for intermediate states.

0 1 2 3

0

1

2

-6.257 -3.727 -1.477 1.000

-8.505 0.000 -3.295 -1.000

-9.809 -7.724 -5.475 -3.497

Values

− 8

− 6

− 4

− 2

0

(a) Values.

+1

-1

(b) Policy.

Source: Elaborated by the author.

2.2 Partially Observable Markov Decision Process
In the previous section, it is assumed that the agent can completely observe its current

state. In a Partially Observable Markov Decision Process (POMDP), the state space are not fully
observable. Instead, the state s is only partially observed given an observation o ∈𝒪, where 𝒪
is the agent’s observation space. After taking action a, the agent make an observation in s′. The
observation in s′ is given by a conditional probability function 𝒵(s′, a, o) = Pr(o|s′, a). Unlike
MDPs, it is not possible to compute a policy that maps states into actions because the agent does
not know the state in which it is. Thus, the optimal policy π* : b→ a maps a belief b ∈ ℬ into an
action a ∈𝒜, where b is a probability distribution over 𝒮 , and ℬ is the belief space. Using value
iteration algorithm does not work for POMDPs, since ℬ is continuous even for discrete state
spaces. Like states in MDP, each belief b has its value or utility V (b), which can be approximated
by the linear, piecewise function:

V *(b) = max
α∈Γ
{α.b}, (2.6)

where Γ is the finite set of vectors α called α-vectors (KAELBLING; LITTMAN; CASSAN-
DRA, 1998). Each element of α is the utility of executing a fixed conditional plan starting from
s. The optimal policy corresponds to the best α-vector in the current belief b according to (2.6).
However, evaluating the conditional plans becomes more costly as the planning depth increases.
The exact optimal policy computation becomes intractable even for problems with dozes of states
(RUSSELL, 2010). Therefore, methods that are able to compute approximate solutions have
been developed in literature (LITTMAN; CASSANDRA; KAELBLING, 1995; KURNIAWATI;
HSU; LEE, 2008; SILVER; VENESS, 2010; SOMANI et al., 2013; KURNIAWATI; YADAV,
2016). In this work, the online solver Partially Observable Monte Carlo Planning (POMCP)
(SILVER; VENESS, 2010) is used to compute policies in POMDPs.

POMCP maintains a belief tree 𝒯 by sampling episodes h, which are composed of
a sequence of quadruples (s, a, o, r)(Figure 6). The models T , 𝒪 and R must not be given
explicitly, instead POMCP samples an action a and an initial state s from the initial belief b0. A
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Figure 6 – Partially Observable Monte Carlo Planning (POMCP). Adapted from (KURNIAWATI; YA-
DAV, 2016).

...

...

...

Source: Elaborated by the author.

generative model is responsible for generating an observation o, a reward r and a next state s′.
Since the policy is solved by sampling episodes, POMCP can handle either discrete or continuous
states. Each node in 𝒯 is a belief b that can be reached from the initial belief b0. In this way, the
value equation is defined as

V *(b) = argmax
a∈𝒜(E,b)

Q̂(b, a), (2.7)

where E is the set of edges in 𝒯 , and 𝒜(E,b) is the set of actions that have been used to expand
b. The value Q̂(b, a) is the estimated Q-value, given by

Q̂(b, a) =
1

|H(b, a)|
∑

h∈H(b, a)

V (h, l). (2.8)

H(b, a) is the set of all sampled episodes associated with all paths in 𝒯 that contains (b, a), |.| is
the size of a set, l is depth level of b in 𝒯 , and V (h, l) is the value of an episode h started from
the lth element, given by

V (h, l) =
|h|

∑
i=l

γ
i−lR(hi.s, hi.a). (2.9)

Now, it remains to defined how to select an action to be executed at b. First, POMCP executes
all available action until all 𝒜(E,b) have been covered. After that, POMCP selects an action
according to

a = argmax
a∈𝒜

(
Q̂(b, a)+ c

√
log(|Hb|)
|H(b, a)|

)
(2.10)

where Hb is the set of episodes associated with b, and c is a scalar value that determines the ratio
between exploration and expectation.

The next example illustrates how POMCP works in practice. Now, in the grid world of
Section 2.1, the agent no longer can observe its current state: it can only observe the number
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Figure 7 – Online POMDP solving using POMCP. As more observations are gathered, the agent becomes
more confident about its true current state.
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of walls of a cell. In the grid world, the cells (0, 0), (0, 1), (0, 3), (1, 0), (2, 0), (2, 1) and (2, 3)
have 2 walls, whereas the other ones have 1 wall. Figure 7 depicts the steps performed by the
agent from cell (0, 0) until it reaches the positive terminal state. Despite being in cell (0, 0) at the
beginning, the agent beliefs it is in any of the non-terminal states. The number inside the cells
correspond to the probability of being in that cell. The arrow indicates which action is computed
by POMCP. After sampling episodes for 1 second, the agent perform an action, with c = 200 to
prioritizes exploration. As it can be seen, the agent reaches the positive terminal state with few
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steps.

Table 1 presents the average number of steps, how many times the agent succeeds in
solving the policy and how many times it fails. Ten trajectories are performed for each initial
state. One key thing to note is that a policy is computed for each belief. As shown in Figure 7,
the optimal policy for the initial belief is a =U p. However, when the agent is in cell (2, 3) it fails
in the most of the times because going up tends to lead it to the negative terminal state. Table 2
illustrate the case when the agent receive noisy observations of the environment: it observe
the right number of walls with probability 0.9. Although the number of times the agent fails
increases, it still can satisfactorily perform good policies, even with non-perfect observations.

Table 1 – POMDP solving considering perfect observation.

Avg steps Win Lose
(0,0) 9.0 10 0
(0,1) 8.9 10 0
(0,2) 3.6 9 1
(1,0) 12.1 10 0
(1,2) 3.7 8 2
(2,0) 18.4 8 2
(2,1) 14.1 9 2
(2,2) 4.3 7 3
(2,3) 5.5 2 8
Source: Elaborated by the author.

Table 2 – POMDP solving considering noisy observation.

Avg steps Win Lose
(0,0) 12.2 10 0
(0,1) 8.9 10 0
(0,2) 4.2 9 1
(1,0) 11.5 9 1
(1,2) 5.0 9 1
(2,0) 10.5 7 3
(2,1) 15.2 7 3
(2,2) 9.8 4 6
(2,3) 4.9 4 6
Source: Elaborated by the author.

2.3 Inverse Reinforcement Learning

The ego vehicle must act according to some traffic rules and social acceptance. This
behavior might be passed to the ego vehicle by tuning a reward function. However, this process
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can become a tedious, error prone task, since the sought behavior is governed by many rules. To
overcome this issue, the reward function can be learned from expert trajectory demonstrations
via IRL.

A trajectory ζ = ((s1, a1), (s2, a2), ...) is a set of state-action pair (s,a). The total
reward of a trajectory is a combination of features fζ = ∑s∈ζ fs and weight parameters θ , which
maps the features into rewards:

R(ζ ) = ∑
ζ

Rθ (fζ ). (2.11)

Nevertheless, ambiguity may occur when determining θ . For example, a policy may be explained
by different reward functions and vice-versa. Moreover, the trajectories performed by the expert
are expected to be optimal, which imposes an important constraint to the problem. One solution
is assuming expert trajectories as noisy optimal trajectories sampled from a distribution

p(ζ ) ∝ eR(ζ ), (2.12)

which gives that the likelihood of a expert trajectory is higher for higher rewards.

Ziebart et al. (2008) applied this principle to develop the well-known Maximum Entropy

Inverse Reinforcement Learning, in which the reward model is learned from the maximization of
the likelihood of the observed data under maximum entropy,

θ
* = argmaxθ L(θ)

= argmaxθ

1
M

logPr({ζ}|θ)

= argmaxθ

1
M

log∏
ζ

Pr(ζ |θ)

= argmaxθ

1
M ∑

ζ

logPr(ζ |θ)

= argmaxθ

1
M ∑

ζ

log
eRθ (ζ )

Z

= argmaxθ

1
M ∑

ζ∈ζdemo

Rθ (ζ )− logZ,

(2.13)

in which M is the number of expert trajectories and

Z = ∑
ζ∈ζback

eRθ (ζ ) (2.14)

is the partition function, where ζback are trajectories sampled from the background distribution
given θ . The gradient ∇θ L can be computed as

∇θ L =
1
M ∑
∈ζdemo

fζ −
1
Z ∑

ζ∈ζback

(
eRθ (ζ )

dRθ (ζ )

dθ

)
(2.15)
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When Rθ (fζ ) is linear with respect to θ , the partition function can be exactly computed by
using a dynamic programming algorithm, avoiding the need to sample many possible trajectories
to estimate Z:

∇θ L =
1
M ∑

ζ∈ζdemo

fζ − ∑
ζ∈ζback

eRθ (ζ )

Z
fζ

=
1
M ∑

ζ∈ζdemo

fζ − ∑
ζ∈ζback

Pr(ζ |θ)fζ .

(2.16)

Since trajectories ζ are a sequence of states,

∇θ L =
1
M ∑

s
fs−∑

s
Pr(s|θ)fs, (2.17)

where Pr(s|θ) is the state visitation frequency of state s and can be determined by dynamic
programming:

µt+1(s) = ∑
a

∑
s′

µt(s′)π(a, s′)T (s, a, s′) (2.18)

where µt denotes the probability of visiting s at t which gives that

Pr(s|θ) = ∑
t

µt(s). (2.19)

It is important to note that an optimal policy must be found at each iteration in order to compute
the state visitation frequency. With the gradient, θ can be update at each iteration using gradient
descent optimization.

The MDP presented in Section 2.1 with Rint =−0.04 is used to illustrate the Maximum
Entropy IRL algorithm. But now, the agent is trying to recover the reward model from expert
demonstrations. The initial state of the demonstrations are sampled uniformly from the non-
terminal states. Since the algorithm considers trajectories with same length, the model must be
slightly changed: now, when the agent reaches a terminal state, it remains there until a predefined

Figure 8 – Maximum Entropy IRL applied to the 3 × 4 grid world.
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number of steps is concluded. As depicted in Figure 8, the values are satisfactorily recovered
using 400 expert demonstrations with length 10.

A drawback of Maximum Entropy IRL algorithm is that it assumes the reward function
as a linear combination of weight parameters and features. Therefore, it can fails to learn complex
non-linear functions. Moreover, an MDP must be solved at each iteration in order to compute the
gradients, which can become very costly or even intractable for problems with large state space.

2.4 Final Considerations
This chapter shows how MDP can be used to solve problems in which uncertainty can

not be neglected. Moreover, it shows how the optimal behavior of the agent can be changed
by adjusting the reward model. Considering a partially observable environment, the optimal
policy is estimated using the online POMDP solver POMCP. Also, a reward function is properly
recovered using Maximum Entropy IRL. Next chapters present how POMDP and IRL can be
applied to the autonomous driving problem by dealing with uncertainty as well as by mimicking
human drivers behavior.
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CHAPTER

3
DECISION MAKING FOR AUTONOMOUS

VEHICLES AT SIGNALIZED INTERSECTION
UNDER UNCERTAIN TRAFFIC SIGNAL

PHASE AND TIMING INFORMATION

In real environments, autonomous vehicles must be able to deal with uncertainties
related to the measurements provided by their perception system. Not taking such perception
uncertainties into account can lead the vehicle to take erroneous decisions and cause accidents.
Excessive speed rate change variations and red light crossing at signalized intersections are
special cases of this problem. This chapter presents a decision making for autonomous vehicles
that considers uncertainty in timing information, but also in traffic light color (signal phase)
measurement at signalized intersections. A Partially Observable Markov Decision Problem
(POMDP) model is proposed in order to deal with the problem of partially observability of both
signal phase and timing. By incorporating the perception system uncertainty, the POMDP model
can reliably predict signal phase transitions, avoiding too reactive behaviors and running red
lights as well. Results show that the proposed POMDP model is able to estimate the true values
of the signal phase and timing as more observations are gathered, which allows better decisions
when compared to deterministic approaches.

3.1 Introduction

During navigation in urban areas, self-driving cars, as well as human drivers, must deal
with traffic lights placed at signalized intersections. The purpose of such traffic signs is the
organization of the traffic flow. Since traffic lights have a predefined transition cycle (red-green-
yellow-red), vehicles must be aware of such transitions, so they do not adopt excessive reactive
behaviors, mainly during yellow signals (HORST et al., 1988).
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Figure 9 – An autonomous vehicle is approaching a signalized intersection. It must be reason about
future transitions in the traffic light phase in order to plan its velocity. This task becomes more
difficult due to noisy sensor measurements and unknown signal timing.
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Source: Elaborated by the author.

In the specific automated driving domain, the traffic signal can be perceived either
by sensors attached to the vehicle or through direct communication. The latter imposes the
autonomous vehicle to have access to a vehicle-to-infrastructure communication (V2I), which
may be a very optimistic assumption (KATRAKAZAS et al., 2015). In this sense, the use of
sensors attached to the vehicle, such as monocular and stereo vision cameras, becomes a cheaper
and viable option when dealing with the problem of traffic signal detection (LEVINSON et

al., 2011; BEHRENDT; NOVAK; BOTROS, 2017). Nevertheless, sensors may provide noisy
measurements, which may be caused by color tone shifting and halo disturbances, occlusion and
partial occlusion, incomplete shapes because of malfunctioning or dirty lights, and false positives
(JENSEN et al., 2016). This can lead the vehicle to take erroneous decisions, such as performing
trajectories with excessive speed rate change variations in response to noisy measurements and,
in the worst case, running red lights and causing accidents. Therefore, a robust automated vehicle
system must take into account uncertainties and passengers’ comfort during the motion planning
phase (Fig. 9).

Most works in the literature addresses the problem of motion planning at signalized
intersection from the fuel consumption perspective, also known as eco-driving. Asadi and Vahidi
(2010) propose a predictive cruise control that takes into account signal phase and timing to
improve fuel usage and to reduce trip time. The problem is solved using Model Predictive
Control (MPC) (CAMACHO; ALBA, 2013), in which the constraints and objectives of the
problem can be modeled in an intuitive way. By considering multiple signalized intersections and
vehicle motion during turning, Huang and Peng (2017) propose a sequential convex optimization
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formulation. It allows the solver to find a local optimal solution without suffering from the curse
of dimensionality, since the main problem is divided into sub-problems. Despite being able to
provide efficient solutions, none of those works consider uncertainties in Signal Phasing and
Timing (SPaT) estimation.

A particular traffic light SPaT can vary during different periods of the day to adapt to
traffic conditions (MAHLER; VAHIDI, 2012). Therefore, considering deterministic SPaT can
become a too simplistic approach when dealing with such problem. This issue is addressed
by Mahler and Vahadi (MAHLER; VAHIDI, 2012; MAHLER; VAHIDI, 2014) by assuming
that SPaT is uncertain even for fixed-time signals. They estimate the traffic signal phase by
using conditional probability functions and by considering that the average duration of red and
green signals is known. Another possible approach is to incorporate the uncertainty directly
into the model, without previously estimating it. A Reinforcement Learning (RL)-based control
(SUTTON; BARTO, 2018) for connected vehicles is presented by Zhou, Yu and Qu (2019).
Although SPaT of traffic lights are randomly set at each episode, the agent can fully observe
the traffic light color and light cycle. Sun, Shen and Moura (2018) propose a robust optimal
eco-driving control by defining the red-light duration as a random variable and the optimal
solution is computed via Dynamic Programming (DP) (BELLMAN, 2010). In a posterior work
(SUN et al., 2020), the authors extend the application to connected vehicles, in which the optimal
control is applied to a queue of vehicles approaching the intersection. By estimating the red-light
duration, the vehicle can chose whether to stop or not: if the red-light cycle is finishing as it
approaches the intersection, the vehicle can cross the intersection without stopping. Nevertheless,
not considering uncertainty in the light observation can lead the vehicles to take erroneous
actions. Also, those works assume a long acceleration range (-4 m/s2 to 2 m/s2) and no minimal
distance to perceive the traffic light.

The contribution of this chapter is a decision-making framework for autonomous vehicles
at traffic light signs in the presence of uncertain measurements and speed rate constraints for
comfort assurance. In order to deal with imperfect sensor information, the problem is modeled as
a Partially Observable Markov Decision Process (POMDP), which is a powerful tool when the
true states of the system are unknown and can only be estimated through sequential observations
(RUSSELL, 2010). The signal phase as well as its timing are considered as partial observable
states, which makes the vehicle aware of possible signal transitions, specially during the end
of a green signal phase, enhancing robustness when receiving information from noisy sensors.
Moreover, the absolute speed rate range is very limited in order to assure comfort to passengers.
The solution of the POMDP model is an optimal policy, which gives the optimal speed to be
followed by the autonomous vehicle with respect to its current belief about SPaT.

The remainder of this chapter is organized as follows: the problem covered in this work is
stated in Section 3.2; Section 3.3 describes the POMDP model and how it can be approximately
solved in real-time using particle sampling; the results are presented and discussed in Section
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Figure 10 – Problem Statement.

(a) A vehicle approaching a signalized intersec-
tion must decide to keep its current speed,
to slow down or to accelerate. (b) Traffic light color transitions.

Source: Elaborated by the author.

3.4; finally, remarks and future work are presented in Section 3.5.

3.2 Problem Statement

A controlled vehicle approaches an intersection signalized by a traffic light, which has
three different states: GREEN, Y ELLOW and RED, as shown in Fig. 10a, where d is the distance
to the intersection. The states’ transitions are depicted in Fig. 10b, where tφ is the elapsed time
since the last state transition, and Tgreen, Tyellow and Tred are the expected duration times for
GREEN, Y ELLOW and RED staying activated, respectively. From a high-definition map, the
vehicle have access to d, but can only observe the light color from a minimum distance dmin.
When the sign is red, the vehicle is not able to run through the intersection and must wait until the
sign has turned green. Thus, the vehicle’s goal is to keep its reference speed during green lights
and not to cross the intersection during red lights. In the presence of perfect sensor measurements
or V2I communication, the problem can be solved by deterministic approaches, such as the ones
discussed in Section 3.1. Nevertheless, with only noisy information, the vehicle cannot determine
the current state of the traffic light. Instead, it has a belief about the true state, which changes
as it gathers subsequent measurements. The planned speed is given by the solution of the the
POMDP optimization.

3.3 POMDP Model

This section presents the POMDP model used to compute near-optimal actions for the
controlled vehicle when it is approaching a signalized intersection. Those actions are computed
using the online solver POMCP (SILVER; VENESS, 2010), as detailed in Chapter 2.



3.3. POMDP Model 47

3.3.1 State Space

The state space 𝒮 includes the states of the autonomous vehicle and the traffic light in
front,

𝒮 = [d v φ tφ ]T, (3.1)

where d is the distance between the vehicle and the traffic light; v is the velocity of the vehicle;
φ ∈ {GREEN, Y ELLOW, RED} is the state of the traffic light; and tφ is the elapsed time since
the last state transition of φ . While d and v are directly observable, φ and tφ are only partially
observable, which models the uncertainty in SPaT.

3.3.2 Action Space and Transition Model

The transition on the state variables related to the vehicle’s longitudinal motion is
constrained to the following motion model:[

d′

v′

]
=

[
d

v

]
+

[
−v

alon

]
∆t− 1

2

[
alon

0

]
∆t2, (3.2)

in which alon is the speed rate change of the vehicle, ∆t is the time step and d′ and v′ are the
updated values of d and v. Low values of alon guarantee the comfort level during the travel, since
the vehicle smoothly accelerates and slows down.

The traffic light state φ is assumed to change according to tφ , as described in Fig. 10b,
where

t ′φ = tφ +∆t, (3.3)

where t ′
φ

is the updated value of tφ . However, t ′
φ

does not increase indefinitely: it must be reset
whenever one of the following conditions are met:

t ′φ ≥
(
Tgreen +𝒩 (0, σ

2)
)

and φ = GREEN,

t ′φ ≥
(
Tyellow +𝒩 (0, σ

2)
)

and φ = Y ELLOW,

t ′φ ≥
(
Tred +𝒩 (0, σ

2)
)

and φ = RED,

(3.4)

meaning that the duration of the phase has been reached. Instead of simply assuming t ′
φ
= 0,

its value is sampled from the uniform distribution 𝒰(0,∆t). Sampling tφ from 𝒰(0,∆t) adds
robustness to the model, since observations are gathered at a discrete time step ∆t. Also, the
transition model considers that a simulated Gausian noise 𝒩 (0, σ2) is added to Tgreen, Tyellow

and Tred , which makes the model robust to the uncertainty in the remaining time until the next
state transition.

3.3.3 Observation Space and Observation Model

The observation space 𝒪 is defined as

𝒪 = [dobs vobs φobs]
T, (3.5)
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where dobs, vobs and φobs are the observed distance to the intersection, vehicle’s speed and the
traffic light state, respectively. While dobs and vobs are fully observable states, φobs is a noisy
measurement of the true traffic light state. In order to model the uncertainty, φobs is given by

φobs = φ
′, with probability p,

φobs ̸= φ
′, with probability 1− p,

(3.6)

where p describes the accuracy of the perception system.

3.3.4 Reward Model

The reward model gives the desired behavior of the autonomous vehicle, which must
accomplish two main objectives: 1) not to run red lights and 2) maintain its reference speed when
φ = GREEN. Also, when φ = RED, the vehicle must stop within a certain distance range dstop

in order to be able to keep the traffic light in its field of view, according to Fig. 11. Therefore, the
reward function is given by

R(s, a) = Rv +Rstop +Rφ +Ra, (3.7)

where Rv = (v− vref)
2/(Vtravel)

2 +1 is the reward of following the reference speed vref. When d

is within dstop and φ = RED, the vehicle must stop, which results in vref = 0. If this condition
is not met, vref =Vtravel, which is the traveling speed given by the mission planning. In order to
avoid unnecessary stops, a punishment Rstop =−0.9 is given whenever the vehicle is stopped.
Rφ =−4 is the punishment for crossing red lights, and Ra = {−0.1|(at−at−1 ̸= 0)} improves
comfort by penalizing changes in the chosen action.

3.4 Experimental Results

To validate the proposed approach, the experiments are conducted on the realistic simu-
lator Car Learning to Act (CARLA) (DOSOVITSKIY et al., 2017), version 0.9.10.1, which is
running in synchronous mode. This means that the simulation runs at a fixed time step, which

Figure 11 – Stop zone for red lights.

Source: Elaborated by the author.
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Figure 12 – Simulation environment in CARLA.

(a) Back view. (b) Bird eyes view.

Source: Elaborated by the author.

Table 3 – POMCP and POMDP model parameters.

∆t c γ Tgreen Tyellow Tred σ2

1.0 s 50 0.99 10 s 4 s 20 s 2

enables more control over the experiments. In this mode, the simulation runs at 10 Hz. The
system containing the simulation environment and algorithms runs on a Intel Core i7-7700 CPU
with 3.60 Hz, a 15.5 GB memory RAM and a NVIDIA GeForce GTX 1050 Ti GPU. Both
POMDP model and POMCP are implemented in Python, which provides a simpler integration to
CARLA. The simulation scenario can be seen in Fig. 12.

The experiments consider that the perception system can provide traffic light measure-
ments at a dmin = 50 m distance. For simplification purposes, a real perception system that uses
cameras and other sensors is not considered in this work. Instead, the ego-vehicle receives a noisy
measurement according to p directly sent by CARLA. This attempts to simulate a real perception
system with known accuracy. After d <= dmin, POMCP starts to run in order to output the speed
to be followed by the autonomous vehicle. The parameters values used in the POMDP model
and POMCP are detailed in Tab 3. Considering the values of Tgreen, Tyellow and Tred, the initial
belief for φ is given by pgreen =

10
34 , pyellow = 4

34 and pred =
20
34 . The initial belief of tφ is simply

the uniform distribution 𝒰(0,Tφ ). Also, dstop is considered in the range d = [6,12] m.

3.4.1 State Estimation

One of the main advantages of using POMDP is its capability of knowledge gain by
gathering successive observations. In fact, the model behaves like a filter, making the particles
that are less likely to be rejected. Fig. 13 and 14 depicts an example of the evolution of the beliefs
about φ and tφ , respectively.

As it can be seen in Fig. 13, some erroneous measurements are gathered by the sensors. At
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Figure 13 – Signal phase estimation in the presence of noisy measurements of φ .
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Source: Elaborated by the author.

t = 1s, the vehicle observes φ = Y ELLOW instead of φ = GREEN, making the yellow phase to
be more likely in the belief. However, with subsequent correct observations, the belief converges
to the true φ . The robustness of the estimation can be seen at t = 6s, when the vehicle observes
φ = RED instead of φ = Y ELLOW . Since the transition from green to red is not possible, the
model is able to recognize this is an erroneous measurement. Also, after many green observations,
the belief starts to change from green to yellow according to Eq. (3.4), since the ego-vehicle has
been observing φ = GREEN for a long period. After the yellow phase is observed, the belief
converges once again to the true state.

Fig. 14 shows the estimation of tφ to the same true observations seen in Fig. 13. At t = 1s,
the particles concentrate around tφ = 0s, since it is likely that a yellow phase has been initiated
according to the erroneous observation. After the subsequent correct observations, the belief
changes according to the evolution of tφ (Eq. (3.3)). At t = 7s, the particles concentrate in two
different regions: around tφ = 8s (green phase) and tφ = 0s (yellow phase). At t = 8s, the belief
about φ converges to the yellow phase and the belief about tφ concentrates around t = 0s.

3.4.2 Optimal Policy Computation

To evaluate the efficiency of the proposed approach, the experiments are conducted in two
different scenarios depending on the values of φ and tφ . Also, in each scenario, the perception
system’s accuracy p is changed in order to analyze robustness. When p = 1, no uncertainty in
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Figure 14 – Signal timing estimation with respect to time. As more measurements are gathered by the
ego-vehicle, it becomes more confident about the true value of tφ .
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Source: Elaborated by the author.

considered, meaning that the vehicle has full knowledge about φ . In all experiments, the vehicle’s
initial speed is 7.0 m/s, Vtravel = 7.0 m/s, alon = {−1,0,1} m/s2 and the maximum allowed speed
is 8.33 m/s.
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Figure 15 – Planned speed with respect to d and color observations.
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Source: Elaborated by the author.

In the first scenario, the traffic sign is yellow and three seconds remain until the next
transition. As it can be seen in Fig. 15a, the vehicle decreases its speed as soon as it receives the
first observation. This can be justified by the fact that a yellow-light observation is unlikely when
compared to other colors. This makes the belief to converge fastly to the true state of the traffic
light, which allows POMCP to compute reliable actions. Furthermore, the computed policy is
very similar for all values of p, showing the robustness of the proposed model.
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The second scenario is more challenging, since it considers that the traffic light is green
and seven seconds remain until the sign turns yellow. Fig. 15b shows the computed policy in
this situation. Although the policy is similar for both p = 1.0 and p = 0.9, when p = 0.8 it is
quite different. With low uncertainty, the vehicle can quickly estimate the true traffic light sign
and try to cross the intersection before the sign turns red. However, with high uncertainty, the
observation model cannot give a confident belief about the sign, which makes the vehicle adopt a
conservative policy in order not to cross the red-light. As it approaches the intersection, enough
observations are gathered in order to make the belief more reliable. This leads the vehicle to try
cross the intersection before the lights turn red.

3.4.3 Quantitative analysis

This section presents quantitative results in order to analyze the influence of uncertain
measurement awareness. The proposed POMDP model is compared to other scenarios in which
the ego-vehicle assumes that the perception system is able to provide perfect measurements.
When partially observability is not considered, the problem is reduced to an MDP. Moreover, the
influence of alon, which directly affects comfort, is considered. For both scenarios, the perception
system has 80% of accuracy (p = 0.8).

Tables 4 and 5 shows the results of POMDP and MPD models for 100 different trajec-
tories, in which the initial φ and tφ is randomly chosen. However, in order to conduct a fair
comparison, the 100 different initial conditions are the same for both POMDP and MDP models.
Also, three features are chosen for this experiment: the mean jerk at run, the number of fails
(running red lights), and the mean time to run the traffic light in successful trajectories. The
ego-vehicle’s initial speed and Vtravel is kept in 7 m/s as in Section 3.4.2.

Important conclusions can be made about the chosen model and speed rate change
range. Regarding alon, there clearly is a trade-off between comfort and success rate. When the
ego-vehicle is able to perform greater deceleration, it can better manage the speed so it does not
run the red light, which in turn causes an increase in the mean jerk. Nevertheless, the POMDP
model achieves a much lower jerk for alon = {−1,0,1} m/s2 when compared to the MDP model.
In fact, the MDP model presents similar jerk in both scenarios. Since it does not account for

Table 4 – Results for alon = {−1,0,1} m/s2.

Mean jerk (m/s3) Fails Mean time (s)
POMDP 0.38 14 15.8

MDP 0.59 32 14.4

Table 5 – Results for alon = {−2,0,1} m/s2.

Mean jerk (m/s3) Fails Mean time (s)
POMDP 0.67 3 17.3

MDP 0.67 20 15.3
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noisy measurements, it changes its speed in a too reactive manner causing larger jerk values.

The POMDP model also presents much better results with respect to the number of fails.
The capability of estimating φ through successive measurements makes the ego-vehicle aware of
possible traffic light color transitions, which can be used to plan better policies so it does not
cross red lights. This causes the ego-vehicle to adopt more cautious behaviors, since it tends to
take conservative actions before the convergence of φ and tφ beliefs, as in Fig 15a. This justifies
the larger time taken by the POMDP model to cross the traffic light.

3.5 Final Considerations
This chapter presents a POMDP model for autonomous vehicle decision-making at

signalized intersections in the presence of uncertainty and limited speed rate changes. Results
show that the proposed approach provides reliable results even in the presence of highly uncertain
observations when compered to approaches that assume perfect observations. Next chapter covers
the problem of decision-making in the presence of other vehicles, which is a common scenario
in real applications.
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CHAPTER

4
INTERACTION-AWARE DECISION-MAKING

ON MULTI-LANE ROADS FOR
AUTONOMOUS DRIVING

The presence of autonomous vehicles on public roads is getting closer and closer becom-
ing reality. To achieve that, they are expected to be able to deal with surrounding vehicles on
multi-lane roads. Hence, being aware of surrounding vehicles’ motion is essential to provide a
fluid navigation in this scenario. However, if communication between the vehicles is not avail-
able, the motion inference must be made only from sensors information. This chapter presents
a decision-making framework using Partially Observable Markov Decision Process (POMDP)
for autonomous driving on multi-lane roads in the presence of sensor noisy measurements and
other vehicles as well The current reference lane of a surrounding vehicle is assumed partially
observable in order to account for the possibility of lane changes. Therefore, an ongoing lane
change can be inferred from a sequence of observations. Also, the POMDP model considers that
a vehicle can influence on the motion of other vehicles and vice-versa, which can significantly
benefit the autonomous vehicle in taking decisions. Results from simulation show the efficiency
of the proposed decision-making framework by considering the execution of regular maneuvers,
such as merging into the gap of two other vehicles and reacting to a sudden lane change of a
vehicle in front.

4.1 Introduction

One key feature of autonomous vehicles is the capability of making complex decisions in
urban roads, since it is a highly stochastic domain due to other traffic participants. This requires
autonomous cars to be aware of surrounding vehicles’ movements in order to anticipate to their
maneuvers, avoiding behaving in over-reactive manner. Moreover, it is expected that autonomous
vehicles act in accordance to some level of social acceptability, which means not only obeying
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traffic rules and avoiding accidents, but also behaving in such way to provide a smoother joint
navigation among all traffic participants. This includes being aware of and giving way to other
vehicles when necessary, avoiding aggressive overtaking, keeping the traffic flow, etc. This
challenging task requires being able to reason about future actions of all traffic participants,
including the autonomous vehicle itself.

When navigating on roads with multiple lanes, the future actions of surrounding vehicles
can be summarized in executing lane changes and changing speed. However, the autonomous
vehicle are not able to know when each vehicle will take action, unless there is direct communi-
cation between them (CHEN; ENGLUND, 2015; BEVLY et al., 2016). In general, surrounding
vehicles’ intentions can only be estimated through the automated vehicle’s perception system,
which gives the pose and velocity of moving obstacles. Therefore, surrounding vehicles’ intention
can be assumed as partially observed, since it can be inferred from the available information
provided by sensors. Nevertheless, this intention estimation comes along with inevitable uncer-
tainty, which cannot be neglected in the decision-making process when safe, reliable navigation
is pursued.

This chapter presents a decision-making framework for autonomous vehicles when
navigating on multi-lane roads in the presence of other vehicles. Partially Observable Markov
Decision Process (POMDP) is used in order to address the issue of intention estimation of
surrounding vehicles. The solution of the POMDP is an optimal policy that are composed by a
lateral action (making a lane change or staying on the current lane) and a longitudinal action
(breaking, accelerating or keeping the current speed). The POMDP problem is solved by using
the online POMDP solver Partially Observable Monte Carlo Planning (POMCP) (SILVER;
VENESS, 2010), which can handle discrete and continuous states. The main contributions of
this work are:

∙ An interaction-aware motion model that is capable of dealing with future interaction
between surrounding vehicles and the autonomous vehicle itself.

∙ A centralized action model that is used to compute lateral and longitudinal actions.

∙ An observation model that can estimate an ongoing lane change only by making use of the
perception system, without the need of communication between vehicles.

The remainder of this work is organized as follows: Section 4.2 covers related works; the
formal definition and scope of the problem is discussed in Section 4.3; the proposed POMDP
model is detailed in Section 4.4; in Section 4.5 simulation results are presented and discussed;
and, finally, remarks and future work are presented in Section 4.6.
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4.2 Related Work

This section covers relevant work related to decision-making for autonomous vehicles in
multi-lane roadways, discussing the main approaches that have been applied in this field.

4.2.1 Finite State Machines

In the Urban Darpa Challenge (DCU), Finite State Machines (FSM) was the approach
used by the two winners of the competition: CMU’s Boss (URMSON et al., 2008) and Stanford’s
Junior (MONTEMERLO et al., 2008). In this context, the action chosen by the controlled
autonomous vehicle (referred to as ego-vehicle from here on out) depends on its current state.
The states are high level abstractions of the current situation experienced by the vehicle. Instead
of using only one FSM, Montemerlo et al. (2008) propose a Hierarchical State Machine (HSM),
in which each state represents a context and each context is described by a FSM. The three
proposed contexts are Lane Driving, Intersection Handling and Goal Selection. Two states in
the Lane Driving context are directly related to lane changes, which requires the vehicle to
make lateral motion: LANE_SELECTOR and MERGE_PLANNER. The ego-vehicle chooses
between staying on the current lane or changing to the adjacent one after evaluating some
metrics, such as the distance to the vehicle in front, its speed and a safe minimal gap to execute
the maneuver. Despite being capable of handling the scenarios in DCU, such as intersection
negotiation, merging and lane change, these approaches require engineering the possible states
the vehicle might be in, which can become a difficult task as more complex scenarios are
considered. Moreover, those approaches does not consider uncertainty during the planning phase.

4.2.2 Planning under uncertainty

The driving task requires being able to reason about the future actions of the ego-vehicle.
In some works, surrounding vehicles are either considered to be static obstacles (OBAYASHI;
UTO; TAKANO, 2016) or to follow a constant speed during planning (MOUHAGIR et al., 2017).
These assumptions can lead to reactive planning since the motion prediction of other vehicles are
not considered. Estimating vehicles’ maneuvers can be straightforward if they can communicate
with each other. In the literature, this is referred to as Vehicle to Vehicle (V2V) communication
(KATRAKAZAS et al., 2015). Nevertheless, the planner cannot rely only in perfect information,
since it cannot be guaranteed that it will be available in all circumstances (HUBMANN et al.,
2018a). When this is the case, the vehicles’ maneuver can be inferred through motion prediction

models. Lefèvre, Vasquez and Laugier (2014) group the behavior prediction into three classes
depending on the level of abstraction:

∙ Physics-based motion models: simplest models, based on laws of physics governing
vehicles’ motion.
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∙ Maneuver-based motion models: consider, besides laws of physics, the road network
topology and traffic rules to improve prediction.

∙ Interaction-aware motion models: take the interaction between vehicles into account,
which leads to inter-dependencies between vehicles’ motion.

According to Lefèvre, Vasquez and Laugier (2014), interaction-aware motion models lead to
better estimation, since they consider the influence of one vehicle in other vehicle’s motion.
However, uncertainty is inherent in such framework, since the prediction is made relying only on
environment information gathered by sensors.

Partially Observable Markov Decision Process (POMDP) is commonly applied to solve
planning problems for autonomous vehicles in the presence of uncertainty (SCHWARTING;
ALONSO-MORA; RUS, 2018). In this framework, vehicles’ intentions are considered as partially
observable states. Whereas Markov Decision Process (MDP) aims to compute an optimal policy

that maps states into actions (RUSSELL, 2010), since the state space is fully observable, POMDP
calculates a policy that maps beliefs into actions. A belief is a probability distribution over
the state space (KAELBLING; LITTMAN; CASSANDRA, 1998). The desired ego-vehicle’s
behavior is specified by the maximization of a reward function. POMDP has been used in many
areas of research regarding decision-making in autonomous driving: to deal with unknown
intention of pedestrians (BANDYOPADHYAY et al., 2013); to handle situations at T-junction
negotiations in the presence of occlusions (BRECHTEL; GINDELE; DILLMANN, 2014);
intersection negotiation with surrounding vehicles (HUBMANN et al., 2018a)(GINDELE;
BRECHTEL; DILLMANN, 2015) (SONG; XIONG; CHEN, 2016); and merging onto a road or
into a roundabout (LIU et al., 2015).

Specifically in lane change scenarios, Ulbrich and Maurer (2013) propose a discrete
POMDP model to decide when to initiate the maneuver. A Signal Processing Network (SPN)
computes the probability of safely executing the lane change and whether it is beneficial for
the ego-vehicle. Ulbrich and Maurer (2015) incorporate the uncertain SPN in the measurement
model required to estimate unknown states in POMDP, such as the maneuver safety or the
gap quality in which the ego-vehicle is going to merge. The POMDP model itself is modified
to accommodate mixed-integer states, such as the distance to vehicles in front. Sezer (2018)
present a discrete mixed-observable MDP in order to account for uncertainty in the transition and
observation model. However, in these works, the POMDP model does not explicitly define the
interaction between the vehicles. Hubmann et al. (2018b) propose a POMDP model to planning
speed and lane changes maneuver in heavy traffic conditions. Despite of estimating whether
surrounding vehicles intend to give the right of way to the ego-vehicle merge in a target lane,
they do not consider that surrounding vehicles are able to perform lane changes. On the other
hand, Sunberg, Ho and Kochenderfer (2017) assumes that other vehicles can change lane in
the planning phase, however they only present quantitative results by comparing them to other
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deterministic planners.

In contrast to previous works, this chapter proposes an unified POMDP model, in which
the optimal policy is composed of lateral and longitudinal actions. Also, the proposed POMDP
model is able to account for more complex behaviors of other traffic participants, such as when
they execute lane changes or reduce speed in order to give way to other vehicles. Moreover,
the quality of the belief estimation is detailed in order to justify the use of a POMDP model to
handle the problem discussed in this chapter.

4.3 Problem Statement

As discussed before, the goal of the proposed decision-making framework is the naviga-
tion of the ego-vehicle in multi-lane roads where other vehicles may be present. Therefore, the
focus is the development of a behavior planner, which is responsible for computing tactical deci-
sions, such as changing lanes and adjust the ego-vehicle’ speed, in order to avoid collision and to
keep the velocity around the reference value given by the highest-layer in the decision-making
hierarchy based on traffic rules (Fig 1). The perception system, trajectory planner and controllers
are assumed to be available as well as the lane paths constituting the road network.

Fig. 16 depicts the problem considered in this work. The ego-vehicle is navigating in a
road constituted of I lanes, where r(i) ∀i ∈ I stands for a specific path that leads to lane i, with
the right-most lane represented by i = 0. All K vehicles in the scene, including the ego-vehicle,
can chose between changing to an adjacent lane or staying in its current one. Because of the
lack of V2V, the ego-vehicle is unable to determine the current path of surrounding vehicles,
since all possible paths initiate from the same point. Therefore, the ego-vehicle can only infer if
a lane changing is in course throughout subsequent measurements coming from the perception
system. Also, all K vehicles are assumed to be able to adjust their speed in order to interact
with the other traffic participants. While the intention of surround vehicles can be only inferred,
the ego-vehicle’s actions are determined by a policy, which is the result of solving the POMDP
problem.

4.4 POMDP Model

This section presents the POMDP model used to compute near-optimal actions for the
ego-vehicle when it is navigation in a multi-lane road in the presence of other vehicles.

4.4.1 State Space

The state space 𝒮 includes the states of all vehicles considered in the scene,

𝒮 = [s0 s1 s2 · · · sK]
T, (4.1)
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Figure 16 – Problem statement. The ego-vehicle navigates on a multi-lane road with the presence of other
vehicles. These vehicles are following unknown paths given by r(i).

ego-vehiclevehicle 1
 

vehicle 2
 

Source: Elaborated by the author.

Figure 17 – Vehicle k is following one of the unknown paths r(i)k . Each path leads to a different lane with
width L, where ek is the lateral deviation from the reference lane.

vehicle k
Source: Elaborated by the author.

where s0 represents the state of the ego-vehicle and sk ∈ {1, · · · , K} are the states of surrounding
vehicles.

The ego-vehicle’s state s0 is defined as

s0 = [d0 v0 r0]
T, (4.2)

where d0, v0 and r0 are: the distance from the ego-vehicle center to the initial point of the road,
the speed, and the followed path, respectively. Similarly, surrounding vehicles’ states are defined
as

sk = [dk vk rk ek]
T. (4.3)

The route rk is one of the possible paths that the vehicle can follow from its current position, as
demonstrated in Fig. 17. Since POMCP is particle-based, the lateral deviation from the reference
lane ek is added in order to determine the position the vehicle occupies on the road given rk.
Hence, the ego-vehicle can be aware of possible lane transitions performed by surrounding
vehicles.
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4.4.2 Action Space and Transition Model

The transition on the state variables related to the vehicles’ longitudinal motion is
constrained to the following motion model:[

d′k
v′k

]
=

[
dk

vk

]
+

[
vk

alonk

]
∆t +

1
2

[
alonk

0

]
∆t2, (4.4)

in which alonk is the speed rate change of vehicle k, and ∆t is the time step. Also, the vehicles
can perform lane changes according to

r′(i
′)

k = r(i + alatk)
k . (4.5)

The ego-vehicle is able to chose between three longitudinal actions and three lateral
actions:

𝒜lon = {Brake StayConst Accelerate},

𝒜lat = {LLC SCL RLC},

where Brake, StayConst and Accelerate stand for a negative, a null and a positive speed rate
change, respectively. For lateral maneuvers, LLC, SCL and RLC represent a change to the adjacent
left lane, staying in the current lane and a change to the adjacent right lane, respectively. In order
to compact the action space, 𝒜lon and 𝒜lat are grouped as {Brake, SCL}, {Accelerate, SCL},
{StayConst, LLC}, {StayCon, RCL}, {StayConst, SCL}, summing up to five different actions
instead of the nine possible combinations between 𝒜lon and 𝒜lat. Thus, the ego-vehicle chooses
the best action according to the optimal policy. The values of the longitudinal actions are shown
in Table 6.

While the ego vehicle’s motion is determined by the optimal policy, surrounding vehicles’
actions must be predicted, since V2V communication is not considered. These actions are
inferred from the vehicle’s position on the road and velocity, and also from the interaction with
other vehicles, including the ego-vehicle.

The vehicles are assumed to perform lane changes in order to a) overtake a slower vehicle,
b) to return to its original lane or even c) to reach an exit from the road. Instead of predicting
such maneuvers, alatk is chosen according to the following stochastic model:

Plat = {LLC = 0.05 SCL = 0.9 RLC = 0.05}, (4.6)

where Plat is the probability of choosing a lateral action by considering that lane changes are less
likely than staying in the current lane. Whenever a lane change is chosen, ek is set with respect

Table 6 – Speed rate change.

Brake StayConst Accelerate
-1 m/s 0 1 m/s
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to the lane width L (Fig. 17) and changes according to

e′k = ek + sign(alatk) ·0.875∆t, (4.7)

where sign(alatk) is negative for LLC and positive otherwise, and assuming that surrounding
vehicles move 0.875 m/s towards the target lane. Further, a lane change cannot be aborted once
it has been initiated, meaning that a new lane change for a given particle is only allowed when
ek = 0.

The longitudinal motion of vehicle k is assumed to be determined by the distance D to a
vehicle in front:

∙ D > 15 m: In this case, the longitudinal action alonk is simply assumed as a Gaussian noise
𝒩 (0,σ2), by considering that vehicles tend to keep a nearly-constant velocity when they
do not directly interact with other vehicles.

∙ D < 15 m: Now, alonk is determined from the chosen alatk. If the vehicle stays on the
current lane, i.e. alatk = SCL, it must decrease its speed to avoid collision. Vehicle k starts
to follow the vehicle in front (assumed as vehicle k−1) and adjusts its speed according to

alonk = max
(
amin, (vk−1− vk)/∆t +𝒩 (0, σ

2)
)
, (4.8)

where amin is the minimum speed rate change allowed, assumed as -1 m/s2. Otherwise,

alonk = max
(
0, 𝒩 (0, σ

2)
)
, (4.9)

by considering that vehicles do not tend to reduce their speed when performing an overtak-
ing.

4.4.3 Observation Space and Observation Model

The ego-vehicle’s perception system gives the position and velocity of all vehicles
considered in the scene, in which the position measurement is assumed to be corrupted by a
Gaussian noise. However, it cannot determine which path is being followed by surrounding
vehicles. Therefore, the ego-vehicle must infer vehicles’ reference lanes by gathered observations.

The observation space 𝒪 is defined as

𝒪 = [o0 o1 o2 ... oK]
T, (4.10)

where o0 represents the observation of the ego-vehicle and ok ∈ {1, · · · , K} are the observation
of surrounding vehicles. As discussed before, the ego-vehicle is able to directly observe its own
state,

o0 = [d0 v0 r0]
T, (4.11)
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Figure 18 – Simulated observation given r′k and e′k. The road is divided into regions by considering the
vehicle close to the lane center (light gray) or between two adjacent lanes (dark gray).

vehicle k
Source: Elaborated by the author.

and the position and velocity of surrounding vehicles,

ok = [xk yk vk]
T, (4.12)

where (xk, yk) is the position of vehicle k in global coordinates.

The longitudinal movement of surrounding vehicles can be predicted with low uncertainty
as described in Section 6.3.1.2. However, the same cannot be stated for their lateral movement,
since they perform lane changes according to (4.6). Hence, whereas the prediction of vk relies
only on the transition model over time, the observation ok can be used to infer whether a lane
change is occurring, resulting in the prediction of future positions on the road.

POMCP does not require to explicitly define an observation model. Instead, a potential
observation must be sampled from the generative model. Fig. 18 shows how future observations
are computed. The future position of the vehicle (x′k, y′k) is simulated given r′k and e′k. After
that, the continuous observation ok are transformed into a discrete observation that consider
different regions along the road according to Fig. 18. This transformation is required since
POMCP assumes discrete observations to expand 𝒯 . In order to account for uncertainty in the
observation, such as deviations from the lane center that do not result in lane changes because of
noisy measurements, a Gaussian noise 𝒩 (0,1.0) is added to the simulated observation.

4.4.4 Reward Model

The ego-vehicle must navigate while 1) avoiding deviating from its reference speed and
2) avoiding collisions. The reward function is defined as

R(s, a) =

{
0, if NSC,

Rv +Ralon +Ralat +Rr, otherwise,
(4.13)

where NSC means that the ego-vehicle is not in a safe condition (Fig. 19). In order to be
considered in NSC, the ego-vehicle must be, at least, 3 m from vehicles in which rk = r0. The
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Figure 19 – Definition of NSC in the reward model.
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ego-vehicle vehicle 2
 

Source: Elaborated by the author.

distance of 3 m is applied in order to ensure a safe margin for lane changes performed by the
ego-vehicle. In this work, the length of all vehicles is assumed as 2.5 m, which means that the
ego-vehicle is in NSC when dsa f e ≤ 5.5 m. However, the vehicles’ length can be given by the
perception system and can easily be incorporated into the model. Since being in NSC is not
desirable, the total reward is null when this condition is met. Otherwise, the reward is given by a
sum of terms, where Rv gives the reward of keeping the velocity around the reference speed and
is computed as:

Rv = (1/vre f )
2, v0 ≤ vre f

Rv = 2−1/vre f , v0 > vre f .
(4.14)

where vre f is the reference speed given by the mission planner. When v0 ≤ vre f , Rv is squared
in order to decrease the reward for low speeds (it should be noted that Rv ≤ 1). This prevents
the ego-vehicle to decrease its speed to follow a slower vehicle. Ralon =−0.1, Ralat =−0.25 are
punishments for changing speed and changing lanes, respectively. This forces the ego-vehicle
to not execute unnecessary actions. The punishment term Rr is used to keep the vehicle on a
predefined lane given by the mission planner, in a similar way as for the velocity. Thus, Rr = 0
for the predefined lane and decreases by an amount of 0.1 for more distant lanes.

4.5 Results

Conducting experiments in real traffic environments with several vehicles is a very com-
plex task. An alternative to that is the use of simulators dedicated to autonomous driving research.
The simulated environment must correspond, in a satisfactorily manner, to that encountered
in real traffic. CARLA (Car Learning to Act) simulator (DOSOVITSKIY et al., 2017) is used
as the simulation platform for experimental validation of the proposed approach. The system
containing the simulation environment and algorithms runs on a Intel Core i7-7700 CPU with
3.60 Hz, a 15.5 GB memory RAM and a NVIDIA GeForce GTX 1050 Ti GPU. Both POMDP
model and POMCP are implemented in Python, which provides a simpler integration to CARLA.
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Table 7 – POMCP parameters.

∆t c γ

1.5 s 3.0 0.99

The experiments are conducted considering a road with four lanes. The ego-vehicle
is the only controlled vehicle. The goal of the proposed decision-making is to compute the
reference speed and lane to be followed by the ego-vehicle at each time step. The predefined
lane, which is given by the mission planner, is the right-most lane. The trajectory planner and
control modules required to execute the computed decisions are assumed already available, as
well as the perception system.

The main parameters of POMCP are depicted in Table 7. As it should be noted, the time
step ∆t imposes a trade-off between prediction horizon and re-planning frequency. ∆t = 1.5 s is
chosen in order to reach both requirements satisfactorily. The parameter c = 3 allows enough
exploration in the belief tree and maintains the prediction horizon around 6 s, an acceptable
value in autonomous driving (LEFÈVRE; VASQUEZ; LAUGIER, 2014). The prior probabilities
of surrounding vehicles’ path is assumed as 0.8 for the closest lane to the vehicle and 0.1 to the
adjacent ones.

To show the attributes of the proposed approach, the experiments are divided into three
scenarios, where the position configurations and velocities of the surrounding vehicles differs in
each scenario. In all experiments, the reference speed given by the mission planner is 7.0 m/s.

4.5.1 Experiment 1: Surrounding vehicles’ motion prediction

The first set of experiments considers two surrounding vehicles, as in Fig. 20, and aims
to show how the interaction motion model is applied in order to predict alonk. Table 8 shows
the observed values when the planner is started. Considering this scenario, two situations can
arise: vehicle 1 overtakes vehicle 2, or vehicle 1 does not overtake vehicle 2 and gives way to the
ego-vehicle. Both scenarios are analyzed in detail.

4.5.1.1 Overtaking

Fig. 21a shows the current belief about vehicle 1’s path. At t = 3 s, the ego-vehicle
observes vehicle 1 in the region between lane 0 and lane 1. At this point, the ego vehicle becomes
aware of the ongoing lane change. In the next time step (t = 4.5 s), the current belief finally

Table 8 – Variables of Experiment 1.

d0(m) d1(m) v1(m/s) d2(m) v2(m/s)
113.1 127.2 6.5 151.1 4.1
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Figure 20 – Experiment 1: surrounding vehicles’ motion prediction.

Source: Elaborated by the author.

Figure 21 – Estimation of r1 over time in Experiment 1.
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(b) Giving way.

Source: Elaborated by the author.

converges to lane 1. The belief about the chosen lane directly influences the predicted speed of
vehicle 1. Fig. 22 depicts the number of particles with respect to the predicted speed. As it should
be noted, all particles have the same speed value at the beginning, since they are originated from
the true observed value. In the next time step, the particles assume different values because of the
noise uncertainty σ added to the transition model. At t = 3.0 s, vehicle 1 is in the region between
lane 0 and lane 1, and approximates to vehicle 2, which makes the particles concentrate in two
regions. The particles around 5.0 m/s consider that vehicle 1 is sufficiently close to vehicle 2,
forcing a speed reduction. On the other hand, some particles consider an ongoing lane change,
as shown in Fig. 21a, and are concentrated around 6.5 m/s. This concentration in two different
regions is due to the uncertainty considered in the observation model. After confirmation of the
lane change at t = 4.5 s, the particles converge to v1 = 6.5 m/s.
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Figure 22 – Prediction of v1 in the overtaking scenario.
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Source: Elaborated by the author.

Figure 23 – Prediction of v1 in the giving way scenario.

6.00 6.25 6.50 6.75 7.00
Speed [m/s]

0

25

50

75

100

Pa
rti

cle
s

(a) t = 0 s.

6.4 6.5 6.6
Speed [m/s]

0

50

100

Pa
rti

cle
s

(b) t = 1.5 s.

5.0 5.5 6.0 6.5
Speed [m/s]

0

200

400

600

Pa
rti

cle
s

(c) t = 3.0 s.

4 5 6
Speed [m/s]

0

200

400

Pa
rti

cle
s

(d) t = 4.5 s.

Source: Elaborated by the author.



68 Chapter 4. Interaction-aware Decision-making on Multi-lane Roads for Autonomous Driving

4.5.1.2 Giving way

In this scenario, vehicle 1 does not perform a lane change, as shown in Fig. 21b, which
forces it to adapt its speed according to vehicle 2. Fig. 23 depicts how the velocity is predicted
in this situation. Up to 3.0 s, the analysis is very similar to the one made for Fig. 22. However,
vehicle 1 is observed close to the line center of lane 0 at t = 4.5 s, meaning that a lane change is
not happening. This makes the particles concentrate around v1 = 4.1 m/s, which is the speed of
vehicle 2.

4.5.2 Experiment 2: Lane merging

An interaction-aware motion model can be required in order to achieve more complex
maneuvers, as presented in Fig. 24. Table 9 describes the state values at the beginning of the
planning. As it can be seen, the ego-vehicle must chose between merging into the gap between
vehicle 1 and vehicle 2, or decreasing its speed in order to follow vehicle 3 until being completely
overtaken by vehicle 1.

Fig. 25 depicts the resulting policy with respect to time, while 26 demonstrates the
evolution of the vehicles’ position on the road. For brevity, only some time steps are chosen to be
shown. As it can be noted, v0 is decreased to 5.5 m/s as the ego-vehicle approximates to vehicle
3 in order to wait for the gap between vehicle 1 and vehicle 2. At t = 6.0 s, v0 is increased to 7.0
m/s, which indicates that the ego-vehicle is ready to perform a lane change. Once a safe distance
from the surrounding vehicles is available at t = 7.5 s, the ego-vehicle changes lane and stays
between vehicle 1 and vehicle 2 until it completely overtakes vehicle 3, returning to lane 0 at
t = 16.5 s.

Table 9 – Variables of experiment 2.

d0(m) d1(m) v1(m/s) d2(m) v2(m/s) d3(m) v3(m/s)
101.1 69.6 8.0 100.7 7.7 122.9 4.8

Figure 24 – Experiment 2: lane merging.

Source: Elaborated by the author.
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Figure 25 – Resulting policy in Experiment 2. The ego-vehicle decreases its speed and merges into the
gap between vehicle 1 and vehicle 2 in order to overtake vehicle 3.

0 5 10 15
Time [s]

5.5

6.0

6.5

7.0
Sp

ee
d 

[m
/s

]

(a) Speed.

0 5 10 15
Time [s]

0

1

2

3

La
ne

(b) Lane.

Source: Elaborated by the author.

Figure 26 – Sequence of frames of Experiment 2.

(a) t = 3.0 s. (b) t = 6.0 s. (c) t = 9.0 s.

(d) t = 12.0 s. (e) t = 15.0 s.

Source: Elaborated by the author.

This complex maneuver is only possible because the ego-vehicle is aware of vehicle 1’s
motion. According to the interaction-aware motion model, since vehicle 1 decided to stay on
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Figure 27 – Experiment 3: reacting to lane changes.

Source: Elaborated by the author.

Table 10 – Variables of Experiment 3.

d0(m) d1(m) v1(m/s) d2(m) v2(m/s) d3(m) v3(m/s)
108.8 94.6 7.4 125.0 5.1 140.3 4.0

lane 1 after the ego-vehicle changes lane, it must decrease its speed in order to avoid colliding
with the ego-vehicle. As it can be seen in Fig. 26, vehicle 1 decreases its speed, with v1 around
7.0 m/s, and starts to follow the ego-vehicle.

4.5.3 Experiment 3: Reacting to lane changes

As discussed in Section 4.5.2, the ego-vehicle can benefit from being aware of other
vehicles’ longitudinal motion. Nevertheless, being aware of their lateral motion also plays a key
role during planning. Fig. 27 and Table 10 illustrate this situation. The ego-vehicle approximates
vehicle 2, which is close to vehicle 3. Therefore, both the ego-vehicle and vehicle 2 have slower
vehicles in front of them.

Fig. 28 and 29 show the optimal policy resulting from the online POMDP solver. At
t = 1.5 s, the ego-vehicle merges into lane 1 to overtake vehicle 2. However, the same action is
taken by vehicle 2 in order to overtake vehicle 3. As vehicle 2 moves towards lane 1, the belief
about its current path begins to change, similar to Fig. 21a. The ego-vehicle predicts the lane
change and decides to merge to lane 2 in order to overtake both vehicle 2 and vehicle 3.

Despite being right behind vehicle 2 at the moment it executes the lane change, the
ego-vehicle is able to avoid a collision due to the prediction about the future lane that vehicle 2 is
going to occupy. Since POMCP can simulate not only future states as well as future observations,
the node in 𝒯 representing the belief in which vehicle 2 changes lane is expanded during the
policy computation. When this belief is reached after the observation, a plan that considers
vehicle 2’s motion is already available. This demonstrates that the POMDP model can deal with
uncertain lane changes performed by surrounding vehicles.
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Figure 28 – Sequence of frames of Experiment 3.

(a) t = 3.0 s. (b) t = 6.0 s. (c) t = 9.0 s.

(d) t = 12.0 s. (e) t = 15.0 s.

Source: Elaborated by the author.

Figure 29 – Resulting policy in Experiment 3. The ego-vehicle properly reacts to an ongoing lane change
performed by a vehicle in front.
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4.6 Final Considerations
This chapter presents a POMDP model for solving decision-making problems on multi-

lane roads. The main contribution is a POMDP model, which considers interaction between
vehicles as well as the possibility of lane changes executed by surrounding vehicles. The POMDP
model does not require V2V communications and is capable of estimating surrounding vehicles’
actions only through sensor information. The results demonstrates that the proposed model can
handle complex situations encountered in multi-lane roads, such as merging into the gap between
two vehicles and reacting to sudden lane changes performed by a vehicle in front.

Tuning a reward function with many features, such as the one proposed in this work, has
proven to be a difficult task, since it must encode antagonistic behaviors, such as deviating from
slower vehicles and avoiding to change lane. This problem is addressed in the next chapter.
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CHAPTER

5
MAXIMUM ENTROPY INVERSE

REINFORCEMENT LEARNING USING
MONTE CARLO TREE SEARCH FOR

AUTONOMOUS DRIVING

Autonomous vehicles must be capable of driving safely and having some level of social
compliance with human drivers. Acting egoistically can make other drivers to take undesirable
actions, such as performing hard brakes to avoid collisions. Designing a proper behavior involves
dealing with antagonic objectives, such as increasing speed and avoiding rear-end collisions.
Weighting those objectives in a reward or cost function is an error-prone and time-consuming
task, and can become very hard as more features are added to the problem. This chapter presents
an approach for designing autonomous vehicles behavior using learning from demonstration. A
variation of the well-known Maximum Entropy Inverse Reinforcement Learning (IRL) algorithm
is proposed in order to deal with continuous state spaces. Instead of exactly computing the
gradients, we estimate them by sampling trajectories in regions with higher rewards using
a Monte Carlo Tree Search (MCTS) based approach, which optimizes a Markov Decision
Problem (MDP). We propose an interaction-aware MDP model capable of dealing with the
inherent interaction and uncertainty present in surrounding vehicles motion. The experiments
are performed in a merging scenario considering real data, showing that the proposed method
can generate trajectories similar to the ones executed by human drivers. Additionally, favorable
results are achieved when compared to traditional baseline methods and also to a variant of IRL
that uses a polynomial-curve trajectory sampler.
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Figure 30 – Maximum Entropy IRL via Monte Carlo Tree Search for autonomous driving in a merg-
ing scenario. The behavior of the ego-vehicle is learned from demonstrations by sampling
trajectories according to the current reward function.
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Source: Elaborated by the author.

5.1 Introduction

In many autonomous driving applications, the behavior of the autonomous vehicle
(named ego-vehicle from now on for clarity) is determined by a reward or a cost function, which
is a combination of weights and features (PADEN et al., 2016). Nevertheless, manually tuning
the weights can become a hard, tedious and error-prone task, because the ego-vehicle tries to
optimize a function with antagonic objectives, such as keeping a target velocity and avoiding
collisions with the vehicle in front. In this domain, Inverse Reinforcement Learning (IRL) (NG;
RUSSELL et al., 2000), which belongs to the class of imitation learning algorithms (HUSSEIN
et al., 2017), becomes a valuable tool since it allows learning optimal weights based on human
drivers’ expert demonstrations.

The demonstrations are assumed to be performed by an expert agent that solves a Markov
Decision Process (MDP)(RUSSELL, 2010). Therefore, the objective of IRL is to recover the
reward function that is being maximized by the expert agent. In general, the main IRL algorithms
require solving the MDP problem to update the current weights at each learning iteration. This
computation is necessary to compute the gradients by calculating the features expectation, which
is a distribution over features given the current weights.

To overcome the computational burden of the MDP optimization, trajectory sampling

can be applied to estimate the features expectation. These trajectories are rollouts of finite time
episodes in which the initial features are encountered in the demonstrations dataset. Subsequently,
the scene evolves according to a predefined policy executed by the ego-vehicle. Therefore, the
samples are acquired by varying the policy, and changing the initial conditions according to
the dataset so that the features expectation can be computed using the current weights. One key
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aspect is that the chosen trajectory sampler must be capable of dealing with a highly dynamic
and diverse environment as the one encountered in merging tasks with congested traffic. This
task requires that the ego-vehicle be aware of surrounding vehicles’ motion, while assuming
some level level of uncertainty in their future states. Besides that, it is desirable that the sampler
be efficient in order to diminish the number of sampled trajectories.

Addressing the main requirements needed to learn human drivers behaviors, the main
contributions of this chapter can be summarized as follows:

∙ We apply Maximum Entropy Inverse Reinforcement Learning to learn a reward function
in a merging scenario with congested traffic. The reward function is used to adapt the
ego-vehicle policy to regions with higher rewards as in Fig. 30, increasing the learning
efficiency. The results show that the optimal weights converge with a few number of
sampled trajectories.

∙ To accomplish the aforementioned task, we propose an interaction-aware MDP model,
which can estimate surrounding vehicles’ future actions and account for uncertainty during
this process. A policy is computed using a Monte Carlo Tree Search (MCTS) online solver
(ŚWIECHOWSKI et al., 2022). The proposed sampler is capable of planning near-optimal
trajectories required to update the reward function.

∙ We compare the proposed method with polynomial curves-based trajectory planning and
also with other baselines. The results indicate that the incorporation of complex reasoning
in the sampler can achieve better learned behaviors.

The remaining of this chapter is organized as follows: previous works are discussed
in Section 5.2 in order to highlight the contributions of this chapter; Section 5.3 describes the
proposed methodology by presenting important concepts related to IRL, the sampling approach
as well as the proposed interaction-aware MDP model; Section 5.4 details the experiments
organization, implementation details and also the chosen features; in Section 5.5, we present
quantitative and qualitative results related to our approach and baseline methods; finally, Section
5.6 highlights key aspects of this work and addresses future work as well.

5.2 Related Work

One of the most popular algorithms for IRL uses the principle of maximum entropy

to handle the problem of sub-optimal demonstrations. Proposed by Ziebart et al. (2008), the
approach considers that the demonstrations are sampled from a noisy distribution and the
optimal weights are those which maximize the entropy of the system. The main drawback of this
approach is the requirement of solving an MDP in the inner loop in order to calculate the feature
expectation under the current rewards, making the algorithm very costly and even intractable for
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large state spaces. Therefore, authors that make use of Maximum Entropy IRL in the automated
driving domain have proposed some approaches to overcome this issue.

Kuderer, Gulati and Burgard (2015) employ IRL to fit a cost function of a trajectory
planning that uses quintic polynomial splines. In order to make the problem tractable, they only
compute the features of the most likely trajectory instead of computing the expectations given
the current cost. Similar, González et al. (2018) compute trajectories using spatial-temporal
lattices in order to achieve more complex behaviors while respecting the structure environment
and kinematic constraints. However, by assuming only one optimal trajectory, these approaches
lack the capability of capturing the diversity of trajectories generated by the same cost function.

Instead of approximating the feature expectation by the most likely trajectory, other
authors chose to assume that the demonstrations are only local optimal by computing a second
order Taylor approximation around the demonstrations (LEVINE; KOLTUN, 2012). Sadigh et

al. (2016) apply this method to learn human drivers behavior to predict their motion during the
interaction with the ego-vehicle. A similar approach is used by Schwarting et al. (2019). They
model the surrounding vehicle behavior using Social Value Orientation (SVO), which quantifies
the degree of an agent’s selfishness or altruism, leading to a better prediction during interactions.
Nevertheless, assuming only local optimal trajectories demonstrations is a strong assumption in
a such large state space problem.

The drawback of the local optimality assumption can be handled by estimating the feature
expectation from sampled trajectories (BOULARIAS; KOBER; PETERS, 2011). Rosbach et

al. (2019) uses Model Predictive Control (MPC) to generate trajectories from sampling a set
of actions, which approximates the samples to a uniform distribution. However, they do not
consider other vehicles while learning the optimal weights, which limits its application to
environments that requires interaction between vehicles. Wu et al. (2020) propose sampling
trajectories by employing an efficient hierarchic sampler, since the computational burden is a
concern in such approaches due to the number of samples required to estimate the expectations.
It computes collision free paths via discrete elastic band, and subsequent calculates smooth paths
and velocities to estimate the expectations. Nevertheless, they assume that surrounding vehicles
follow a constant speed in the sampled trajectories. This drawback is addressed by Huang, Wu
and Lv (2021), which apply the Intelligent Driving Model (IMD) (TREIBER; HENNECKE;
HELBING, 2000) to model vehicles’ behavior by explicitly accounting for interaction between
them. The trajectories are sampled via a short-term planner using polynomial curves. Although
considering interaction is closer to real scenarios, polynomial curves are sometimes a simplistic
assumption for imitating complex behaviors. Moreover, the authors assume full knowledge about
vehicles’ motion that are not overridden by IDM, which are considered to follow their original
trajectories in the dataset.

Additionally, one limitation of the aforementioned works is that they chose to sample
trajectories independently of the current weights. This results in a large amount of samples to
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estimate the features expectations. In this chapter, we propose to sample trajectories with respect
to the current weights, moving the sample policy to regions of higher rewards, as in Finn, Levine
and Abbeel (2016). They use a model-free optimization approach, which fits the dynamics
of a manipulator robot using the expert and sampled trajectories, and posteriorly computes a
time-varying linear-Gaussian controller. Nevertheless, their method only considers uncertainty
in the control system and not in other agents behavior. In this regard, we propose an interaction-
aware MDP model, which can capture the interaction between surrounding vehicles and also the
uncertainty in their future motion. Moreover, we chose to re-planning the ego-vehicle’s action at
a given frequency in order to achieve more complex behaviors.

5.3 Methodology

5.3.1 Sample-based Maximum Entropy IRL

Inverse Reinforcement Learning (IRL) is the process of learning the reward function
that describes an agent’s behavior. The learning process requires a set of optimal trajectories 𝒟
(demonstrations), which are provided by an expert. IRL considers that the expert is trying to
maximize an underlined reward function. In this work, the reward function describes how the
ego-vehicle behaves: higher rewards are related to those states where the ego-vehicle prefers to
be.

Formally, a trajectory ζ = ((s1,a1), (s2,a2), ...) is a set of state-action pairs (s,a). The
total reward of a trajectory is a combination of features fζ = ∑s∈ζ fs and weight parameters θ ,
which maps the features into rewards:

Rθ (ζ ) = ∑
s

Rθ (fs). (5.1)

However, since considering that the demonstrations are optimal is a strong assumption,
Ziebart et al. (ZIEBART et al., 2008) consider that the expert demonstrations are sub-optimal
trajectories sampled from a noisy distribution

P(ζ ) =
1
Z

exp(Rθ (ζ )), (5.2)

where Z =
∫

exp(Rθ (ζ ))dζ is the partition function and the optimal weights are those which
maximize the entropy of the system:

θ
* = argmaxθℒ(θ)

= argmaxθ

1
M ∑

ζ∈𝒟
logP(ζ |θ)

= argmaxθ

1
M ∑

ζ∈𝒟
log

exp(Rθ (ζ ))

Z

= argmaxθ

1
M ∑

ζ∈𝒟
Rθ (ζ )− logZ,

(5.3)
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where M is the number of expert trajectories.

In small and discrete state spaces, the partition function can be exactly computed by using
a dynamic programming algorithm, avoiding the need of sampling many possible trajectories
to estimate Z (ZIEBART et al., 2008). However, this computation can become very costly and
even intractable for large state spaces as it requires solving an MDP in the inner loop, since θ is
iteratively updated given the gradients.

Other authors propose to estimate Z instead of computing it exactly (BOULARIAS;
KOBER; PETERS, 2011)(KALAKRISHNAN et al., 2013)(FINN; LEVINE; ABBEEL, 2016). If
the set of sampled trajectories �̃� is assumed to be finite and sampled from a chosen background
distribution q(ζ ), the gradients can be given by

∇θℒ(θ) =
1
M ∑

ζ∈𝒟
fζ −

1
Z ∑

ζ∈�̃�
wζ fζ , (5.4)

where wζ = z(ζ )exp(Rθ (ζ )), Z = ∑ζ wζ , z(ζ ) are the importance weights related to the distri-
bution q(ζ ) ∝ exp(Rθ (ζ )), and Rθ (fζ ) is considered linear with respect to θ . With the gradients,
θ can be iteratively updated using gradient descent.

Specifically in datasets containing human drivers trajectories, each demonstration repre-
sent a particular scenario with different initial conditions. Since the demonstrations have equal
probability of being observed, the gradient must be slightly modified as:

∇θℒ(θ) =
1
M ∑

ζ∈𝒟

[
fζ −

1
Z

|�̃�|

∑
ζ̃i=0

w
ζ̃i

f
ζ̃i

]
−2λθ , (5.5)

where ζ̃i are sampled trajectories with the same initial conditions as ζ , and |�̃�| is the amount
of samples. We also add a L2 normalization term −2λθ in the gradient to prevent overfitting,
where λ is the L2 normalization weight. In this work, the trajectories are generated based on the
current value of θ . This attempts to generate more samples with higher rewards according to the
current Rθ . Since trajectories are sampled from multiple distributions, the importance weights
can be estimated by computing a fusion distribution (FINN; LEVINE; ABBEEL, 2016),

z(ζ̃i) =
1
J

J

∑
j=0

1

q j(ζ̃i)
, (5.6)

where J is the number of distributions. In this work, J = |�̃�| as q(ζ̃i) ∝ exp(Rθ (ζ̃i)) only varies
with respect to the current weights, which are updated at each iteration of the algorithm. Some
authors chose q(ζ ) to be unique, such as Rosbach et al. (ROSBACH et al., 2019), Wu et al. (WU
et al., 2020) and Huang et. al (HUANG; WU; LV, 2021), in which all trajectories are sampled
from the same distribution before the training initiates. Instead, we propose to use an adaptive
sampling: the IRL algorithm is interleaved with an online policy optimization step using MCTS,
which generates more samples with higher rewards according to the current θ .
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5.3.2 MCTS Sampler

During navigation, the ego-vehicle must adopt some tactical behaviors in order to safely
reach its destination. This task becomes more complex when other traffic participants are
considered. For example, merging onto an adjacent lane requires a higher level of reasoning than
deviating from a static obstacle on the road. Thus, the ego-vehicle must consider its future actions
as well as other vehicles’ motion. This prediction comes along with uncertainty, assuming that
communication between vehicles is not available. In order to deal with the inherent uncertainty,
the problem can be modeled as a Markov Decision Process (MDP) (BRECHTEL; GINDELE;
DILLMANN, 2011).

However, the optimal policy computation in MDPs becomes very costly and even
intractable for models with large state spaces by using traditional methods, such as value iteration
and policy iteration (RUSSELL, 2010). Thus, an approach that can handle large state spaces
while ensuring, at least, near-optimal policies must be employed. In this work, an online solver
based on Monte Carlo Tree Search (MCTS) (ŚWIECHOWSKI et al., 2022) is used to compute
near-optimal policies in MDPs, similar to POMCP solver detailed in Chapter 2, but without
assuming non-observable states.

In the remaining of this section, the key components of the MDP model proposed in this
chapter is described.

5.3.2.1 State Space

The state space 𝒮 includes the states of all vehicles considered in the scene,

𝒮 = [s0 s1 s2 · · · sK]
T, (5.7)

where s0 represents the state of the ego-vehicle and sk ∈ {1, · · · , K} are the states of surrounding
vehicles. A vehicle is considered in the scene when its distance to the ego-vehicle is within 30 m.
Therefore, the number of surrounding vehicles can vary at each time step.

The vehicle’s state 𝒮k is defined as

sk = [dk uk vd_k]
T, (5.8)

where dk is the longitudinal distance from the start of the road to the vehicle center; uk is the
lateral distance from the center of the right-most lane to the vehicle center; and vd_k is the
longitudinal speed.



80
Chapter 5. Maximum Entropy Inverse Reinforcement Learning using Monte Carlo Tree Search for

Autonomous Driving

5.3.2.2 Action Space and Transition Model

The transition on the state variables related to the vehicles’ lateral and longitudinal
motion is constrained to the following motion model: d′k

v′d_k

u′k

=

 dk

vd_k

uk

+
v_dk

ad_k

vu_k

∆t +
1
2

ad_k

0
0

∆t2, (5.9)

in which ad_k and vu_k is the speed rate change and lateral speed of vehicle k, respectively,
and ∆t is the time step. The ego-vehicle’s longitudinal acceleration ad_0 is chosen based on
UCT criterion, where ad_0 can be selected from 𝒜ad0 = {−1.0, −0.5, 0, 0.5, 1.0}m/s2. On the
other hand, surrounding vehicles are assumed to plan their speed according to the IDM model
(TREIBER; HENNECKE; HELBING, 2000):

aIDM = amax

(
1−

(
vk

vdesired

)δ

−

(
g*(v, ∆v)

g

)2)
(5.10)

g*(v, ∆v) = gdesired + ttcv+
v∆v

2
√

amaxbcom f ort
, (5.11)

where the rear-to-front distance g and the speed difference ∆v are computed with respect to
either the vehicle in front or end of its current lane. Also, δ is the acceleration exponent, amax is
the desired maximum acceleration, bcom f ort is the comfort deceleration, vdesired is the desired
speed and ttc is the desired time gap. In order to account for model uncertainties and physical
constraints,

ad_k = max
(

aIDM +𝒩 (0,σ2
acc), −bsa f e

)
(5.12)

where 𝒩 (0,σ2
acc) is a zero mean Gaussian noise acceleration and bsa f e is the maximum safe

deceleration.

The lateral position of surrounding vehicles is considered constant by making {vu_k =

0 | ∀k ̸= 0}. As in (HUBMANN et al., 2018b), we consider that the ego-vehicle can instanta-
neously change its lateral speed vu_0 according to 𝒜0_lat = {LC, SCL}, where:{

vu_0 = min(0.17vd_k, 0.6), if a0_lat is LC

vu_0 = 0, otherwise
, (5.13)

in which LC and SCL represent a change to the target lane, and staying in the current lane,
respectively.

5.3.2.3 Reward Model

As discussed in Section 5.3.1, the reward model is a linear combination of features fs

and a set of learned weights θ . The features must encode important aspects of human driver
behaviors so that the reward model be capable of imitating their trajectories. The set of chosen
features are detailed in Section 5.4.
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5.3.3 Algorithm Summary

The summary of the proposed Maximum Entropy IRL via MCTS trajectory sampling
algorithm (MEIRL-MCTS) can be seen in Algorithm 1.

5.4 Experiment Setup

5.4.1 Dataset

The training data is selected from the subset DR_CHN_Merging_ZS0 belonging to the
INTERACTION dataset (ZHAN et al., 2019), as shown in Fig. 31. The dataset provides the
position in global coordinates, the heading and the speed of the vehicles in the scene. This
information is used to reconstruct the road structure throughout a whole trajectory. The duration
of each trajectory is 4s duration and the sampling time ∆tsim = 0.1s. The chosen merging

Algorithm 1: Maximum Entropy Inverse Reinforcement Learning via MCTS trajectory
sampling

Input :Human drivers demonstrations 𝒟, environment model 𝒞, interaction-aware MDP
model, MCTS online solver, learning rate α , regularization parameter λ , number
of iterations I and number of epochs E.

Result: optimized reward weights θ *

1 Initialize θ ← random([-1, 1]);
2 Compute feature expectation for expert demonstrations f̄(𝒟) = 1

M ∑ζ∈𝒟 fζ ;
3 Initialize the samples datasets �̃�i=0:M← [ ];
4 Initialize the reward weights buffer Θ← [ ];
5 for iteration← 1 to I do
6 foreach ζi ∈𝒟 do
7 Generate a trajectory ζ̃i with the same initial conditions as ζi using the MDP

model, the MCTS online solver and environment model 𝒞;
8 Add ζ̃i→ �̃�i;
9 end

10 Add θ →Θ;

11 For each initial condition, calculate q j(ζ̃i) =
exp(Rθ j (ζ̃i))

∑
|Θ|
i=0 exp(Rθ j (ζ̃i))

for each θ j ∈Θ;

12 Compute the importance weights z(ζ̃i) =
1
|Θ|∑

|Θ|
j=0

1
q j(ζ̃i)

;

13 for epoch← 1 to E do
14 Compute the features expectation with the sampled trajectories for each initial

condition: f̃ = 1
Z ∑
|�̃�i|
ζ̃i=0

w
ζ̃i

f
ζ̃i

;

15 Calculate the gradient ∇θℒ(θ) = 1
M ∑

M
i=0

[
f̄i(𝒟)− f̃i(�̃�)

]
−2λθ ;

16 Update the reward weights θ ← θ +α∇θℒ(θ);
17 end
18 end
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Figure 31 – Subset DR_CHN_Merging_ZS0 in the INTERACTION dataset. The vehicles are moving
from right to left.

1020 1040 1060 1080 1100 1120 1140
x [m]

950

960

970

980
y 

[m
]

Source: Elaborated by the author.

scenario is composed of two lanes: the length of the right lane and the left lane are 75m and
155m, respectively, and the width of both lanes is 3.4m. This means that the vehicles on the right
must change lane to continue its travel. Finally, 100 trajectories are selected as training data and
40 trajectories as test data. The trajectories are selected from different locations in the scene to
provide a diverse training and test data.

5.4.2 Implementation Details

The MCTS and the MDP model are implemented using POMDP.jl (EGOROV et al.,
2017), a framework for sequential decision making under uncertainty. POMDP.jl is implemented
in Julia, a high-level, dynamic and high-performance language. On the other hand, the envi-
ronment model required to simulate the sampled trajectories, and also the Maximum Entropy
IRL algorithm are implemented using Python. During the simulation, vehicles on the same
lane and behind the ego-vehicle are overridden by IDM to simulate a more realistic interaction
behavior. The values of the IDM parameters are gdesired = 0.8m, ttc = 0.6s, amax = 0.8m/s2,
bcom f ort = 1.8m/s2, vdesired = 7.0m/s and bsa f e = 4m/s2. The other vehicles follow their original
trajectories in the dataset. The system containing the simulation environment and algorithms
runs on a Intel Core i7-6500U CPU CPU with 2.50 Hz, a 7.7 GB memory RAM and a NVIDIA
GeForce 930M. The code is available on https://bitbucket.org/juniorars/pomdp_irl/src/master/.

For simplification, the MDP model only considers vehicles that are 30m ahead, and the
the vehicles behind it on the same and target lanes, respectively. The main MDP model and
MCTS parameters are c = 1.0, γ = 0.99, ∆t = 1.0s and σ2

acc = 0.05m/s2. The IDM parameters
used in the MDP model are the same as of the simulation. Additionally, we need to smooth
the computed trajectory, since the simulation runs at a higher frequency than the MCTS solver.
Therefore, we employ a ramp-based trajectory planning for longitudinal acceleration and lateral
speed according to the their current values as well as the target values computed by the MCTS
solver. The proposed algorithm runs for 10 iterations, where the reward weights are trained using
1e4 epochs with a L2 normalization parameter λ = 0.001 and learning rate α = 0.05.

https://bitbucket.org/juniorars/pomdp_irl/src/master/
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5.4.3 Feature Selection

As discussed in Section ??, the reward model is a linear combination of fs and θ .
Therefore, the features must be selected in such a way to describe the behavior of the human
drivers and capture important aspects of their driving styles. The features considered in this work
are detailed below:

5.4.3.1 Speed

This feature is directly related to the ego-vehicle progress along the road:

fv(st) = (v(t)− vre f )
2, (5.14)

where vre f = 7m/s is the reference speed of the ego-vehicle.

5.4.3.2 Comfort

The comfort level is directly associated to longitudinal acceleration and lateral speed.
Therefore,

f j(st) =
(as(t)−as(t−1)

∆tsim

)2
, (5.15)

fl(st) =
(vu(t)− vu(t−1)

∆tsim

)2
. (5.16)

5.4.3.3 Merging

The merging feature is proposed to represent the necessity of changing lane. As the
ego-vehicle approaches the end of the right lane, it must move towards the left lane to avoid
stopping. Assuming that, the merging feature is given by:

fm(st) =

(
1− min(u(t), W )

W

)
.

(
1−max(0, L−d(t))

L

)2

, (5.17)

where L is the length of the right-most lane and W is width of the lanes. The first and second
factors are related to the lateral and longitudinal progress, respectively. The idea behind this
feature is that it does not have any influence when the ego-vehicle reaches the left lane and low
influence when it is far from the end of the right lane.

5.4.3.4 Time gap

Human drivers tend to slow down to avoid staying too close to other vehicles. By
considering this feature, the ego-vehicle can be aware of potential future read-end collisions and
adapt the speed according to the distance to the vehicle in front (HUANG; WU; LV, 2021):

fg(st) = exp
(
−

dego(t)−d f ront(t)
vego(t)

)
. (5.18)
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5.4.3.5 Interaction

The interaction with other vehicles is an important factor to consider. The ego-vehicle
must avoid forcing other vehicles to perform hard deceleration, since it can cause some level of
discomfort to them:

fi(st) = (aback)
2, if aback < 0, (5.19)

where aback is the longitudinal acceleration of the vehicle that is following the ego-vehicle.

5.4.3.6 Collision

Although fg(st) and fi(st) can balance the distances between following and leader
vehicles, this feature is import to avoid sideswipe accidents. The collision feature is defined as:

fc(st) =

{
1, if collision,

0, otherwise.
(5.20)

Since the features have different measure units and scale, they are all normalized to [0,1]
based on the minimum and maximum values of each feature in the demonstrations.

5.4.4 Baseline methods

To validate our method, we compare the MCTS approach with different models that are
either used to sample trajectories to estimate the feature expectation or are directly applied on
the ego-vehicle’s control:

5.4.4.1 Polynomial curve-based sampling

This sampler is based on state space-based planning, in which the trajectories are com-
puted according to predefined goal states in a short time horizon (WERLING et al., 2010;
FERGUSON; HOWARD; LIKHACHEV, 2008). The goal states generally considers the end
lateral position on the road, and the end speed. To ensure smooth transition between states for
each trajectories, state space-based planner often use polynomial, bézier, splines or spirals curves
(GONZÁLEZ et al., 2015). For comparison, we apply the polynomial curve-based sampler pro-
posed in (HUANG; WU; LV, 2021), in which the trajectories are represented by two polynomial
functions with respect to x and y coordinates:{

d = a0 +a1t +a2t2 +a3t3 +a4t4,

u = b0 +b1t +b2t2 +b3t3 +b4t4 +b5t5,
(5.21)

where d and u are the longitudinal and lateral positions, respectively. The degree of the poly-
nomial functions allows the control over the end longitudinal speed and acceleration, as well
as over the end lateral position, speed and acceleration. The coefficients of each polynomial
can be determined by solving a linear system based on its derivatives, and initial and goal
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states. The reader is refereed to (HUANG; WU; LV, 2021) for more details. The initial states
are the same of the demonstrations, whereas the goal states are the end longitudinal speed and
acceleration vde, ade, and the end lateral position ue. The remaining goal states are set to zero.
We found necessary not to set ade to zero in the goal states so that to better adapt the planner to
the demonstrations. Therefore, the sampling set of goal states are vde = [vds−4, vds +4] with
a interval of 1m/s, ade = {ads− 1, ads, ads + 1} and ue = [us, uw] with a interval of uw−us

5 m,
where uw =W .

5.4.4.2 IDM+MOBIL

Whereas IDM is widely applied to following vehicle behavior, Minimizing Overall
Braking Induced by Lane Change (MOBIL) (KESTING; TREIBER; HELBING, 2007) is
useful to describe whether a lane change is desirable or not. MOBIL considers the advantage
in performing a lane change and its impact on the new back vehicle (the vehicle behind the
ego-vehicle on the target lane):

a′d_ego−ad_ego > p(a′d_back−ad_back)+athr,

a′d_back >−bsa f e,
(5.22)

where ad and a′d are longitudinal accelerations before and after a possible lane change, respec-
tively. The politeness factor p = [0,1] controls the ego-vehicle aggressiveness by decreasing the
back vehicle disadvantage. The threshold acceleration athr is added to avoid lane changes when
the advantage is not significant. For the experiments, we adopt p = 0.1 and athr = 0.1, where the
IDM parameters are the same as described in Section 6.4.2.

5.4.4.3 Constant speed

This baseline simply assumes that the ego-vehicle follows a constant speed and stay on
the current lane for the whole trajectory.

5.4.5 Evaluation Metrics

The main metrics used to compare the different approaches are feature deviation and
mean Euclidean distance.

5.4.5.1 Feature deviation

The goal of IRL is to imitate expert demonstrations by computing a feature distribution
similar of the one in the dataset. The feature deviation (FD) can be computed as

ℰFD =
1
M

M

∑
i=1

1
Ni
|f(ζ gt

i )− f(ζ plan
i )|, (5.23)

where M is the number of expert demonstrations and Ni is the length of the i-th trajectory.
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5.4.5.2 Euclidean Distance (ED) and Mean Euclidean Distance (MED)

The Euclidean Distance (ED) is computed by considering the final position of the ego-
vehicle for a trajectory in the demonstration and the trajectory given by the sampler with the
same initial conditions:

ℰED = ||ζi(Ni)
gt−ζi(Ni)

plan||2. (5.24)

Similarly, the Mean Euclidean Distance (MED) is given by:

ℰMED =
1
M

M

∑
i=1
||ζi(Ni)

gt−ζi(Ni)
plan||2. (5.25)

5.4.5.3 Qualitative analysis

We also analyze the quality of the trajectories using the learned reward weights. This
aims to verify the similarity of the planned trajectories with the demonstrations, as well as to
show the smoothness of the control inputs applied to the ego-vehicle.

5.5 Results

5.5.1 Learning analysis

We evaluate the evolution of the learning rewards with respect the iterations according to
the proposed metrics. As discussed in Section 5.3.1, the trajectories are sampled to estimate the

Figure 32 – ED distributions with respect the MEIRL-MCTS iterations. The algorithm is capable of
decreasing the ED as more trajectories are sampled.
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feature expectation according to the current rewards in order to minimize the error with respect
to the demonstrations.

Fig. 32 shows the ED for each iteration represented by box-plots, which helps to better
visualize the ED distribution. As we can see, the ED oscillates at the beginning of the learning
and converges after a few iterations. This occurs because, at each iteration, the new sampled
trajectories bounds the feature error by adapting the feature expectation according to the learned
rewards. This statement is corroborated by the analysis of the feature error mean and standard
deviation, as depicted in Fig. 33. We can see that the overall error decreases as more trajectories

Figure 33 – Evolution of FD with respect the MEIRL-MCTS iterations.
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are added to the samples. However, the error of one particular feature may increase between the
iterations. It is expected since some features have antagonic effects, meaning that the adjustment
of one feature weight can influence all features expectation.

5.5.2 Performance on the Test Set

5.5.2.1 Feature Deviation

Table 11 details the FD for the four methods. i.e. constant speed behavior, IDM+MOBIL,
polynomial curve planner and the proposed MEIRL-MCTS. Both planners utilize their learning
rewards in the test trajectories. However, the state-space planner assumes full knowledge about
the motion of surrounding vehicles during the planning horizon and thus does not make use of
any prediction model. It computes the total reward for each sampled trajectory and chose the one
with maximum reward. It is important to mention that this process does not occur in real-time. As
we can see, our method presents relatively smaller FD when compared with the baselines, with
the exception of fi and fl . These results were already expected for both constant speed behavior
and IDM+MOBIL since they are too simple to deal with a such complex scenario. However, our
method also presented a better performance with respect to the state-space planner, even with
its full knowledge about the surrounding vehicles’ future positions. One possible reason is the
efficiency of the state-space planner. We noted that many sample trajectories result in collisions
or are kinematic infeasible. As a consequence, the samples cannot make a good estimation of the
feature expectation.

5.5.2.2 Mean Euclidean Error

The analysis of the MED is similar to the FD, with our method being consistently
better than the baselines. This shows that there is a correlation between FD and MED, which
demonstrates that the chosen features can well describe human driver behaviors during merging.

Table 11 – Results in the test set.

fv fm fi fg f j fl fc MED

MEIRL-MCTS
0.058±
0.72

0.023±
0.032

0.028±
0.189

0.052±
0.083

0.097±
0.157

0.105±
0.272

0.000±
0.000

1.357±
0.906

Polynomial
0.075±
0.095

0.029±
0.038

0.020±
0.085

0.053±
0.085

0.100±
0.145

0.082±
0.236

0.000±
0.000

1.734±
1.584

IDM+MOBIL
0.126±
0.142

0.052±
0.059

0.075±
0.412

0.077±
0.109

52.01±
203.42

2.378±
16.17

0.000±
0.000

3.069±
3.400

Const. Speed
0.086±
0.106

0.056±
0.086

0.052±
0.355

0.083±
0.147

0.065±
0.110

0.357±
3.124

0.009±
0.096

2.077±
1.726
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Figure 34 – Example of trajectory in which the ego-vehicle is attempting to merge onto the target lane.
However, it cannot find a proper gap to conclude the maneuver.
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(a) Trajectory positions. The controlled ego-vehicle is colored in red and the demonstration is in
yellow. Surrounding vehicles are in blue.
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(b) Controlled ego-vehicle states with respect to time. The controlled ego-vehicle is colored in red
and the demonstration is in blue.

Source: Elaborated by the author.

5.5.3 MCTS Trajectory analysis

In this section, we demonstrate the efficiency of the proposed MEIRL-MCTS by analyz-
ing trajectories planned according to the learned rewards. This analysis takes into account the
ego-vehicle’s longitudinal speed and acceleration, as well as its lateral speed. The objective is to
show the smoothness of the planned trajectories and also compare them with the demonstrations.
Figures 34, 35 and 36 depict three representative trajectories from the MEIRL-MCTS and the
demonstrations as well.

5.5.3.1 Attempt to merge

Fig. 34 shows the ego-vehicle approaching the end of the left lane and moving towards
the right lane in the attempt to merge. This move occurs because the ego-vehicle perceives that a
possible gap is forming on the target lane. As we can see, the planned trajectory is similar to
the demonstration, with a small final position displacement. Also, the controls applied to the
ego-vehicle are continuous and absent of abrupt variations.

5.5.3.2 Merging

In Fig. 35, the ego-vehicle performs a lane change and stops accelerating to avoid staying
too close to the vehicle in front. This example demonstrates that the MEIRL-MCTS can perform
safe merging maneuvers as the one observed in the demonstration.
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Figure 35 – Example of a trajectory in which the ego-vehicle merges onto the target lane.
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(a) Trajectory positions. The controlled ego-vehicle is colored in red and the demonstration is in
yellow. Surrounding vehicles are in blue.
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(b) Controlled ego-vehicle states with respect to time. The controlled ego-vehicle is colored in red
and the demonstration is in blue.

Source: Elaborated by the author.

Figure 36 – Example of trajectory of leader following behavior. Since the ego-vehicle is far from the end
of lane, it does not force a lane change maneuver.
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(a) Trajectory positions. The controlled ego-vehicle is colored in red and the demonstration is in
yellow. Surrounding vehicles are in blue.
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(b) Controlled ego-vehicle states with respect to time. The controlled ego-vehicle is colored in red
and the demonstration is in blue.

Source: Elaborated by the author.

5.5.3.3 Leader following

In particular situations, a lane change is not desirable, since it can be dangerous for the
ego and surrounding vehicles, as in Fig. 36. This is often observed when the ego-vehicle is too
far from the end of the lane. In this case, the vehicles on the adjacent lane does not tend to
act cooperatively and does not give enough room for a lane change. Moreover, the values of
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fm, which is mainly responsible for the merging, are very low in this situation. Therefore, the
ego-vehicle can stay on its current lane and avoid dangerous maneuvers.

5.6 Final Considerations
This chapter presents a variation of the Maximum Entropy IRL algorithm that uses an

MCTS online solver to sample trajectories in order to estimate the gradient of the IRL algorithm.
The MCTS solves an MDP problem that considers interaction between vehicles, resulting in a
better estimation of surrounding vehicles’ position. The main objective of the MCTS planner is to
sample trajectories according to the current rewards. The proposed approach is used to learning
human driving behaviors in a merging scenario. The results show better performance compared
to baseline methods and also that the planned trajectories can be applied to real autonomous
systems.

Currently, the proposed approach assumes that the MDP model have perfect knowledge
of surrounding vehicles’ behavior, by considering that their actions are planned according to
IDM. In some occasions, this can lead to poor vehicles’ prediction. For example, the vehicle on
the target lane behind the ego-vehicle may act cooperatively and decelerate to give room for a
merging. In the next chapter, an extension of the interaction model that consider such behavior is
considered.
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CHAPTER

6
LEARNING DRIVING BEHAVIOR FOR

AUTONOMOUS VEHICLES IN PARTIALLY
OBSERVABLE ENVIRONMENTS

Artificial Intelligence (AI) is crucial in the field of autonomous driving because it enables
vehicles to perceive, reason, and act in complex driving scenarios. AI algorithms can analyze and
reason about the data from sensors to make decisions that maximize safety and efficiency, such
as when to change lanes, brake, accelerate, or make a turn. Moreover, AI can also be used to
make autonomous vehicles behave in a similar way as human drivers. This is crucial to achieve
a smooth joint navigation with other vehicles, since the task of driving relies on social rules
inherent to human driving behavior. This chapter presents an approach for designing autonomous
vehicles behavior using learning from demonstration. A variation of the well-known Maximum
Entropy Inverse Reinforcement Learning (IRL) algorithm is proposed in order to deal with
continuous and partially observable state spaces. Instead of exaclty computing the gradients,
we estimate them by sampling trajectories in regions with higher rewards using a Partially
Observable Markov Decision Process (POMDP) based approach. We propose an interaction-
aware POMDP model capable of estimating surrounding vehicles intention during the planning
in order to achieve better sample policies according to the current rewards. Results show that the
proposed approach compares favorably to deterministic methods, in which surrounding vehicles
latent intentions are not considered in the IRL problem formulation.

6.1 Introduction

Inverse Reinforcement Learning (IRL) is an area of machine learning that enables
machines to learn behavior by observing and imitating the actions of a human expert. It is based
on the idea that humans are capable of making decisions in complex situations, so it can be
used to teach robots or other artificial agents how to make similar decisions. In IRL, a reward



94Chapter 6. Learning Driving Behavior for Autonomous Vehicles in Partially Observable Environments

function is learned from observed human behavior and then used as feedback for an agent’s
learning process. This allows IRL-based systems to develop strategies and behaviors that reflect
those of their teachers without being explicitly programmed with them. Those features make IRL
extremely useful in autonomous driving domain, since it allows to mimic human driving styles.

The main IRL algorithms require solving a Markov Decision Process (MDP)(RUSSELL,
2010) problem to update the current reward weights at each learning iteration, since the expert
trajectories are considered MDP optimal policies. By making use of MDP, this formulation
assumes that the state space is fully observed by the agent. Nevertheless, in highly interactive
driving scenarios, human drivers need to infer the intention of each other by making sequential
observations of the environment, which is crucial to perform safe and efficient trajectories. In
this sense, if we consider that human drivers intentions are only partially observable, the expert
agent is no longer optimizing an MDP problem. Instead, it is solving a Partially Observable
Markov Decision Process (POMDP), which is a mathematical model for dealing with partially
observable environments (KAELBLING; LITTMAN; CASSANDRA, 1998). Hence, the main
hypothesis presented in this chapter is that modeling the IRL problem as a POMDP can improve
the learning performance when compared with traditional MDP approaches.

This work can be seen as an extension of our previous work (SILVA; GRASSI; WOLF,
2023). The new contributions presented in this chapter can be summarized as follows:

∙ In order to solve the forward partially observable problem in the IRL loop, we propose an
interaction-aware POMDP model that is capable of infer whether surrounding vehicles are
giving the right of way to the ego-vehicle. The results show that our model can efficiently
predict the intention of human drivers.

∙ Maximum Entropy Inverse Reinforcement Learning is applied to learn a reward function in
a highly interactive merging scenario. The reward function is used to adapt the computed
policy to regions with higher rewards, increasing the learning efficiency. The POMDP
model is used in the online solver Partially Observable Monte Carlo Planning (POMCP)
(SILVER; VENESS, 2010) to sample near-optimal policies in real-time according to the
current rewards. Quantitative results show that our method outperforms approaches in
which the intention of other vehicles are considered fully observable.

∙ To deal with the high computation complexity in POMDPs, we present a simple constant
action heuristic to evaluate the value of reached beliefs, instead of using traditional random
rollout policies. The experiments show that the adoption of this heuristic can highly impact
the learning efficiency.

The remaining of this chapter is organized as follows: previous work are discussed in
Section 6.2 in order to highlight the contributions of this chapter; Section 6.3 describes the work
methodology by presenting important concepts related to IRL, the sampling approach as well as
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the proposed POMDP model; Section 6.4 details the experiments organization, implementation
details and also the chosen features; in Section 6.5, we present quantitative and qualitative results
related to our approach and baseline methods; finally, Section 6.6 highlights key aspects of this
work and addresses future work as well.

6.2 Related Work

This section discusses works that apply maximum entropy IRL (ZIEBART et al., 2008)
to autonomous driving, and also how they approach the drawback of solving an MDP in the
inner loop of the algorithm in order to calculate the feature expectation. Moreover, works that
propose solving the IRL problem by considering that the dynamics are modeled as a POMDP
are considered.

6.2.1 IRL in autonomated driving domain

Kuderer, Gulati and Burgard (2015) employ IRL to fit a cost function of a trajectory
planning that uses quintic polynomial splines. In order to make the problem tractable, they only
compute the features of the most likely trajectory instead of computing the expectations given
the current cost. This simplification can be overcome by estimating the feature expectation by
trajectory sampling. Wu et al. (2020) propose sampling trajectories by employing an efficient
hierarchic sampler, since the computational burden is a concern in such approaches due to the
number of samples required to estimate the expectations. It computes collision free paths via
discrete elastic band, and subsequently calculates smooth paths and velocities to estimate the
expectations. Nevertheless, they assume that surrounding vehicles follow a constant speed in the
sampled trajectories. This drawback is addressed by Huang, Wu and Lv (2021), which apply
the Intelligent Driving Model (IDM) (TREIBER; HENNECKE; HELBING, 2000) to model
vehicles’ behavior by explicitly accounting for interaction between them. The trajectories are
sampled via a short-term planner using polynomial curves. Although considering interaction is
closer to real scenarios, polynomial curves are sometimes a simplistic assumption for imitating
complex behaviors. Moreover, the authors assume full knowledge about vehicles’ motion that are
not overridden by IDM, which are considered to follow their original trajectories in the dataset.
In our previous work (SILVA; GRASSI; WOLF, 2023), we tackle this problem by employing a
Monte Carlo Tree Search (MCTS) to solve an interaction-aware MDP model, which can capture
the interaction between surrounding vehicles and also incorporate noise in their future motion to
account for uncertainty.

Nevertheless, in (SILVA; GRASSI; WOLF, 2023) we consider that surrounding vehicles
behavior are completely determined by IDM, which cannot be assumed in a diverse and dynamic
real traffic environment. For instance, human drivers might or might not give the right of way to
other vehicles to perform a merging maneuver. Unfortunately, this behavior cannot be modeled
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using only a following-car model such as IDM. This drawback can be overcome by considering
that vehicles have its own particular behavior determined by their internal intentions, which
cannot be directly observed.

6.2.2 IRL for POMDPs

The main consequence of such assumption is the need of employing methods that can
handle partially observable environments, since other vehicles’ internal intentions cannot be
observed by the ego-vehicle in the absence of vehicle-to-vehicle communication (V2V). In this
regard, Partially Observable Markov Decision Process (POMDP) becomes a natural choice to
deal with such problem. Although POMDP models has been widely studied in autonomous
driving field (LIU et al., 2015; SEZER et al., 2015; SUNBERG; HO; KOCHENDERFER, 2017;
HUBMANN et al., 2018a; HUBMANN et al., 2018b), the ego-vehicle behavior is commonly
determined by a reward function that combines features and hand-craft tuned weights. To the
best of our knowledge, few works address the problem of IRL for POMDPs, which are discussed
in the remaining of this section.

POMDPs are computationally hard to solve, making it difficult to be directly applied
in IRL algorithms. Choi and Kim (2011) were the first authors to deal with this problem. They
approximate the expert belief trajectories by using a Finite State Control (FSC). After, they use a
point-based policy iteration (JI et al., 2007) as POMDP solver to find an approximate optimal
FSC policy on the reachable beliefs. Then, they extend maximum-margin-based approaches for
MDPs (NG; RUSSELL et al., 2000) to POMDP domains. Similarly, Chinaei and Chaib-draa
(2014) propose methods to approximate the transition function of the expert belief trajectories as
well as the use of a point-based value iteration algorithm (SPAAN; VLASSIS, 2005) to alleviate
the computation burden of solving intermediate policies. However, both approaches require
solving a POMDP in the forward problem at each update step of the reward weights. In this sense,
Hussein, Begum and Petrik (2019) approximates the POMDP problem to an MDP either by
directly mapping a set of observations to a specific state or by the discretization of the POMDP
belief to a finite number of segments. Nevertheless, by approximating the POMDP model by an
MDP model, the gain knowledge after making subsequent observations might be lost during the
process. Moreover, the aforementioned works uses maximum-margin-based methods to learn the
reward function, which cannot handle the ambiguity caused by sub-optimal demonstrations in
contrast to maximum entropy-based approaches. By addressing those problems, Djeumou et al.

(2022) propose an Sequential Convex Programming formulation to solve the forward POMDP
problem in large state and observation spaces. They also apply a maximum causal-entropy
approach to deal with sub-optimal demonstrations. However, they present results in classical
benchmarks, which only consider discrete state spaces as well as synthetic data. In our previous
work (SILVA; GRASSI; WOLF, 2019), we apply IRL directly on continuous-state POMDP for
autonomous driving domain, but we also only consider synthetic data coming from an autopilot
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simulator in a simplistic scenario.

In contrast to the aforementioned works, in this chapter we apply maximum entropy
IRL to a continuous-state POMDP model in a highly interactive driving scenario using real
data. By using an online POMDP solver, we estimate the feature expectation by sampling
trajectories in regions with higher rewards, as an extension of our previous work (SILVA;
GRASSI; WOLF, 2023). The proposed POMDP model can estimate surrounding vehicles
intentions, which improves the computed policies according to the current rewards. This leads to
a better learning performance when compared to MDP approaches, since the feature expectation
estimation is directly affected by the chosen sampler.

6.3 Methodology
The approach employed to learn expert behavior in partially observable environments

proposed in this chapter is similar to the one described in Section 5.3. The IRL strategy applied
to continuous state spaces is the same as presented in Section 5.3.1, therefore it is omitted here
for brevity.

6.3.1 POMDP Sampler

In the remaining of this section, we describe the key components of the POMDP model
proposed in this chapter.

6.3.1.1 State Space

The state space 𝒮 includes the states of all vehicles considered in the scene,

𝒮 = [s0 s1 s2 · · · sK]
T, (6.1)

where s0 represents the state of the ego-vehicle and sk ∈ {1, · · · , K} are the states of surrounding
vehicles. For simplification, only four vehicles are considered in the model, according to Fig. 37:
the back-vehicle, which is following the ego-vehicle on the same lane; the host-vehicle is the
one immediately behind the ego-vehicle on the target lane; and the vehicles in front, which are
being followed by the ego-vehicle on both current and target lanes.

The state of all vehicles, with the exception of the host-vehicle state, is defined as

sk = [dk uk vd_k]
T, sk ̸= shost , (6.2)

where dk is the longitudinal distance from the start of the road to the vehicle center; uk is the
lateral distance from the center of the right-most lane to the vehicle center; and vd_k is the
longitudinal speed. Similarly, the state of the host-vehicle is defined as

shost = [dhost uhost vd_host β ]T. (6.3)
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Figure 37 – Description of the vehicles in the state space: only the ego-vehicle, host-vehicle, back-vehicle
and vehicles in front are considered in the planning.

ego-vehicle vehicles in
front

back-vehicle

host-vehicle

Source: Elaborated by the author.

The state variable β ∈ {0,1} is introduced to model whether the host-vehicle is acting cooper-
atively (β = 1) or not (β = 0). In this work, to be cooperative means that the intention of the
host-vehicle is to give the right of way to the ego-vehicle to perform the lane change. Therefore,
β is an internal state that cannot be directly observed by the ego-vehicle.

6.3.1.2 Action Space and Transition Model

The transition on the state variables related to the vehicles’ motion is constrained to the
following motion model: d′k

v′d_k

u′k

=

 dk

vd_k

uk

+
v_dk

ad_k

vu_k

∆t +
1
2

ad_k

0
0

∆t2, (6.4)

in which ad_k and vu_k is the speed rate change and lateral speed of vehicle k, respectively, and
∆t is the time step. The ego-vehicle’s longitudinal acceleration ad_0 is chosen based on UCT
criterion, where ad_0 can be selected from 𝒜a_d0 = {−0.7, 0, 0.7}m/s. The back-vehicle is
assumed to plan its speed according to the IDM model (TREIBER; HENNECKE; HELBING,
2000):

aIDM = amax

(
1−

(
vk

vdesired

)δ

−

(
g*(v, ∆v)

g

)2)
(6.5)

g*(v, ∆v) = gdesired + ttcv+
v∆v

2
√

amaxbcom f ort
, (6.6)

where the rear-to-front distance g and the speed difference ∆v are computed with respect to either
the vehicle in front or end of its current lane. Also, δ is the acceleration exponent, amax is the
desired maximum acceleration, bcom f ort is the comfort deceleration, vdesired is the desired speed
and ttc is the desired time gap.

The behavior of the host-vehicle depends on its internal state β , which is considered
constant during the planning (β ′= β ). When β = 0, the host-vehicle is assumed to act egoistically
and does not give the right of way to the ego-vehicle by behaving according to IDM, where



6.3. Methodology 99

{ad_host = aIDM |β = 0}. However, it may cooperate with the ego-vehicle by decelerating and
giving room for a lane change, in which we consider {ad_host =−1m/s2 |β = 1}. It is important
to note that, after completing the lane change, the host-vehicle becomes the new back-vehicle,
since it and the ego-vehicle are on the same lane. Additionally, the vehicles in front are assumed
to follow a constant speed by making ad_ f ront = 0. In order to account for model uncertainties
and physical constraints,

ad_k = max
(

apred +𝒩 (0,σ2
acc), −bsa f e

)
, ∀k ̸= 0 (6.7)

where 𝒩 (0,σ2
acc) is a zero mean Gaussian noise acceleration, bsa f e is the maximum safe decel-

eration, and apred is the predicted acceleration according to the considered vehicle.

The lateral position of surrounding vehicles is considering constant by making {vu_k =

0 | ∀k ̸= 0}. As in Hubmann et al. (2018b), we consider that the ego-vehicle can instantaneously
change its lateral speed vu_0 according to 𝒜0_lat = {LC, SCL}, where:{

vu_0 = min(0.17vd_k, 0.6), if a0_lat is LC

vu_0 = 0, otherwise
, (6.8)

in which LC and SCL represent a change to the target lane, and staying in the current lane,
respectively.

6.3.1.3 Observation Space and Particle Filter

The ego-vehicle’s perception system gives the position and longitudinal speed of all
vehicles considered in the scene. However, it cannot determine whether the host-vehicle is
cooperating with the ego-vehicle or not. Therefore, the ego-vehicle must infer it by gathered
observations.

The observation space 𝒪 is defined as

𝒪 = [o0 o1 o2 ... oK]
T, (6.9)

where o0 represents the observation of the ego-vehicle state and ok ∈ {1, · · · , K} are the
observation of surrounding vehicles states:

ok = [dobsk uobsk vobskd_k ]
T. (6.10)

POMCP samples discrete observations according to a predefined observation model.
Hence, the continuous observation ok must be converted to a discrete one in order to expand the
belief tree. To accomplish that, we model the observation as a noisy measurement of β given by
a weighted particle filter. Similarly to Sunberg, Ho and Kochenderfer (2017), the particles are
weighted by considering that the observed speed of the host-vehicle vobs_host is sampled from a
Gaussian distribution:

P(ohost |s′host) ∝ exp
(
−

(vobs_host− vpred)
2

2σ2
vel

)
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where σ2
vel is the standard deviation of the distribution, and vpred is the predicted host-vehicle

speed according to the transition model and β . This simplification reduces the observation space
to ohost ∈ {0, 1}, thus avoiding the need of using continuous observation POMDP solvers, such
as POMCPOW (SUNBERG; KOCHENDERFER, 2018).

6.3.1.4 Reward Model

As discussed in Section 5.3.1, the reward model Rθ (s, a) is a linear combination of
features fs and a learned set of weights θ . The features must encode important aspects of human
driver behaviors so that the reward model be capable of imitating their trajectories. The set of
chosen features are the same as presented in Section 5.4.3.

6.3.1.5 Deterministic Constant Action Heuristic

In order to speed up the optimal policy convergence, a deterministic heuristic is applied
to POMCP at each time an episode h in 𝒯 is concluded. An episode is composed by a sequence
of states, actions, observations and rewards sampled from the generative model, and is finished
once a new node is reached. The estimated value at the leaf node can be considered as the total
sum of discount rewards computed from the reached state to the maximum length of the belief
tree H𝒯 , and by assuming that the problem is fully observable. In an intuitive way, the estimated
value gives the potential of exploration of each node, speeding up the policy convergence.

Instead of using a rollout policy based on uniform random action selection as heuristic
(SILVER; VENESS, 2010), we consider that the ego-vehicle executes the last sampled action
in the subsequent time steps until H𝒯 is reached. This assumption is justified by the fact that
human drivers avoid changing acceleration and lateral speed to improve comfort. Therefore, the
same behavior must be observed during the learning of Rθ (s, a). It should be noted that this
simplification on the heuristic is made in order to diminish the computational complexity, since
it must be solved at each new node of 𝒯 . The more complex the heuristic is, the more time is
required to simulate a complete rollout, which can directly affect the quality of the solution.

6.3.2 Algorithm Summary

The summary of the proposed Maximum Entropy IRL via POMDP trajectory sampling
algorithm (MEIRL-POMDP) can be seen in Algorithm 2.

6.4 Experiment Setup

6.4.1 Dataset

The training data are selected from the subset DR_DEU_Merging_MT belonging to
the INTERACTION dataset (ZHAN et al., 2019), as shown in Fig. 38. The dataset provides
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Algorithm 2: Maximum Entropy Inverse Reinforcement Learning via POMDP trajectory
sampling

Input :Human drivers demonstrations 𝒟, environment model 𝒞, interaction-aware
POMDP model, POMCP online solver, learning rate α , regularization parameter λ ,
number of iterations I and number of epochs E.

Result: optimized reward weights θ *

1 Initialize θ ← random([-1, 1]);
2 Compute feature expectation for expert demonstrations f̄(𝒟) = 1

M ∑ζ∈𝒟 fζ ;
3 Initialize the samples dataset �̃�i=0:M← [ ];
4 Initialize the reward weights buffer Θ← [ ];
5 for iteration← 1 to I do
6 foreach ζi ∈𝒟 do
7 Generate a trajectory ζ̃i with the same initial conditions as ζi using the POMDP

model, the POMCP online solver and environment model 𝒞;
8 Add ζ̃i→ �̃�i;
9 end

10 Add θ →Θ;

11 For each initial condition, calculate q j(ζ̃i) =
exp(Rθ j (ζ̃i))

∑
|Θ|
i=0 exp(Rθ j (ζ̃i))

for each θ j ∈Θ;

12 Compute the importance weights z(ζ̃i) =
1
|Θ|∑

|Θ|
j=0

1
q j(ζ̃i)

;

13 for epoch← 1 to E do
14 Compute the features expectation with the sampled trajectories for each initial

condition: f̃ = 1
Z ∑
|�̃�i|
ζ̃i=0

w
ζ̃i

f
ζ̃i

;

15 Calculate the gradient ∇θℒ(θ) = 1
M ∑

M
i=0

[
f̄i(𝒟)− f̃i(�̃�)

]
−2λθ ;

16 Update the reward weights θ ← θ +α∇θℒ(θ);
17 end
18 end

the position in global coordinates, the heading and the speed of the vehicles in the scene. This
information is used to reconstruct the road structure throughout a whole trajectory. The duration
of each trajectory is 4s duration and the sampling time ∆tsim = 0.1s. The chosen merging
scenario is composed of two lanes: the length of the right lane and the left lane are 55m and
110m, respectively, and the width of both lanes is 3.0m, approximately. This means that the
vehicles on the right must change lane to continue its travel. Finally, 100 trajectories are selected
as training data and 50 trajectories as test data. The trajectories are selected from different
locations in the scene to provide a diverse training and test data.

6.4.2 Implementation Details

POMCP and the POMDP model are implemented using POMDP.jl (EGOROV et al.,
2017), a framework for sequential decision making under uncertainty. POMDP.jl is implemented
in Julia, a high-level, dynamic and high-performance language. On the other hand, the environ-
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ment model required to simulate the sampled trajectories, and also the Maximum Entropy IRL
algorithm are implemented using Python. During the simulation, vehicles on the same lane and
behind the ego-vehicle are overridden by IDM to simulate a more realistic interaction behav-
ior. The values of the IDM parameters are δ = 4, gdesired = 1.0m, ttc = 1.0s, amax = 1.0m/s2,
bcom f ort = 2.0m/s2, vdesired = 11.0m/s and bsa f e = 4m/s2. The other vehicles follow their original
trajectories in the dataset. The system containing the simulation environment and algorithms
runs on a Intel Core i7-6500U CPU CPU with 2.50 Hz, a 7.7 GB memory RAM and a NVIDIA
GeForce 930M. The code is available on https://bitbucket.org/juniorars/pomdp_irl/src/master/.

The main POMDP model and POMCP parameters are c = 1.0, γ = 0.99, ∆t = 0.8s,
σ2

acc = 0.05m/s2, σ2
vel = 0.3m/s and H𝒯 = 5. The IDM parameters used in the POMDP model

are the same as of the simulation. Additionally, we need to smooth the computed trajectory, since
the simulation runs at a higher frequency than POMCP. Therefore, we employ a ramp-based
trajectory planning for longitudinal acceleration and lateral speed according to the their current
values as well as the target values computed by the solver. The algorithm runs for 10 iterations,
where the reward weights are trained using 1e4 epochs with a L2 normalization parameter
λ = 0.001 and learning rate α = 0.05.

6.4.3 Baseline methods

To validate our method, we compare the POMDP approach with different models that
do not consider partially observable states. Those models differ in the way they predict the
host-vehicle behavior and are described below:

6.4.3.1 MDP-IDM

This model considers that the host-vehicle always behaves according to IDM. Therefore,
it follows the vehicle in front and does not act cooperatively with the ego-vehicle.

Figure 38 – DR_DEU_Merging_MT in the INTERACTION dataset. The vehicles are moving from right
to left.
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Source: Elaborated by the author.

https://bitbucket.org/juniorars/pomdp_irl/src/master/
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6.4.3.2 MDP Courteous

Unlike the previous model, the MDP Courteous assumes that the host-vehicle always act
cooperatively and gives the right of way to the ego-vehicle until it reaches the target lane. After
that, the host vehicle behaves according to IDM.

6.4.3.3 MDP Constant Speed

In this model, the host vehicle is considered to follow a constant speed until the ego-
vehicle changes lanes. Subsequently, it starts to behave according to IDM.

6.4.3.4 MDP without interaction

It is also important to analyze the effects of the interaction between the ego and other
vehicles. In this sense, we employ an MDP model in which all surrounding vehicles are assumed
to follow a constant speed. As a result, this model lacks the ability of predicting surrounding
vehicles’ deceleration.

To make a fair comparison, the baselines are used to learn their own set of reward weights
θ * using Algorithm 2. Moreover, the set of learning and model parameters are the same as the
ones employed in the POMDP approach as well as the constant action heuristic.

6.4.4 Evaluation Metrics

The main metrics used to compare the different approaches are feature deviation and
mean Euclidean distance.

6.4.4.1 Feature deviation

The goal of IRL is to imitate expert demonstrations by computing a feature distribution
similar of the one in the dataset. The feature deviation (FD) can be computed as

ℰFD =
1
M

M

∑
i=1

1
Ni
|f(ζ gt

i )− f(ζ plan
i )|, (6.11)

where M is the number of expert demonstrations and Ni is the length of the i-th trajectory.

6.4.4.2 Mean Euclidean Distance (MED)

The Mean Euclidean Distance (MED) is computed by considering the final position of
the ego-vehicle for a trajectory in the demonstration and the trajectory given by the sampler with
the same initial conditions:

ℰMED =
1
M

M

∑
i=1
||ζi(Ni)

gt−ζi(Ni)
plan||2. (6.12)
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6.4.4.3 Hard Deceleration

It is expected that the ego-vehicle navigates without causing discomfort for surrounding
vehicles. This metric is calculated according to the number of time steps in which the ego-vehicle
causes a hard deceleration ahard <−3.0m/s2 to other vehicles:

ℰHD =
M

∑
i=1

N

∑
j=1

(
aback(N j)

plan < ahard

)
. (6.13)

6.5 Results

6.5.1 Host Vehicle Intention Estimation

The main reason of applying a POMDP to plan trajectories is its ability to estimate
surrounding vehicles’ internal states during the planning. In this section, we present three
common scenarios encountered in merging maneuvers according to the host-vehicle behavior. It
is important to highlight that the belief estimation in all scenarios detailed below is performed in
real data according to the dataset.

Figure 39 – Example scenario in which the host-vehicle decelerates in order to cooperate with the
ego-vehicle.
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(a) Trajectory positions at t = 0s. The ego-vehicle is colored in
red and the host-vehicle is in green. The remaining vehicles
are in blue.
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(b) Estimation of belief about β (left) according to the host-vehicle speed (right).

Source: Elaborated by the author.
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Figure 40 – Example scenario in which the host-vehicle does not give the right of way to the ego-vehicle.
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red and the host-vehicle is in green. The remaining vehicles
are in blue.
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(b) Estimation of belief about β (left) according to the host-vehicle speed (right).

Source: Elaborated by the author.

6.5.1.1 Giving the right of way

Fig. 39 exemplify a situation where the ego-vehicle is approaching the end of its current
lane (Fig. 39a). As we can seen in Fig. 39b, the host-vehicle starts decreasing its speed with
respect to time, which increases the current belief about the host-vehicle cooperativeness. At
t = 1.6s, after two observations, the belief almost converge to β = 1. Estimating that the host-
vehicle is giving the right of way is a valuable information used by the ego-vehicle to plan a lane
change maneuver without forcing the host-vehicle to perform a hard deceleration.

6.5.1.2 Non-cooperative behavior

Sometimes, depending on the position of the ego-vehicle along the road and the gap on
the target lane, the host-vehicle might decide not to giving the right of way. One example of
this situation is depicted in Fig. 40. At the beginning, the host vehicle is traveling with a speed
near to 6.5 m/s. After making the first observation and perceiving that the host-vehicle speed
is increasing, the belief about the β = 1 decreases below to 0.2. At the second observation, the
belief converges to β = 0, meaning that the host-vehicle does not intend to give the right of way
to the ego-vehicle. With this information, the ego-vehicle must decide whether to stay on its
current lane or to increase its speed to avoid forcing the host-vehicle to decelerate abruptly.
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Figure 41 – Example scenario in which the belief about the host-vehicle intention changing after subse-
quent observations.
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6.5.1.3 Changing behavior estimation

The ego-vehicle must also be aware about changes on the host-vehicle behavior, as shown
in Fig. 41. At first, the host-vehicle seems to decrease its speed in order to act cooperatively with
the ego-vehicle. As a consequence, the belief about β = 1 increases. However, at t = 1.6s the
host vehicle starts accelerating, which causes a change in the belief. One possible reason for the
change in the belief is that the host vehicle initially decelerates in order to keep a safe distance
to the vehicle in front. As a result, this action is misinterpreted as an attempt of cooperation.
Nevertheless, this example shows the effectiveness and robustness of the belief estimation
according to the observation uncertainty introduced by σvel , which prevents β to converge at the
beginning of the filtering process.

6.5.2 Performance on the Test Set

This section presents the results on the test set of our proposed method as well as of the
baselines described in Section 6.4.3. Since POMCP is an any-time, sample-based solver, we run
the experiments for three times and then the mean of the metrics are calculated, as shown in
Table 12. We found that three runs of experiments are enough as the solver produces very similar
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Table 12 – Results on the test set.

fv fm fi fg f j fl fc MED (m) Hard Deceleration

POMDP
0.025±
0.034

0.042±
0.048

0.047±
0.26

0.036±
0.066

0.072±
0.11

0.15±
0.27

0.000±
0.000

1.37±
0.94 7.67

MDP-IDM
0.026±
0.036

0.043±
0.049

0.047±
0.27

0.037±
0.065

0.073±
0.10

0.16±
0.24

0.000±
0.000

1.48±
1.01 8.33

MDP Courteous
0.028±
0.039

0.043±
0.048

0.050±
0.28

0.037±
0.064

0.074±
0.11

0.16±
0.24

0.000±
0.000

1.54±
1.05 9.67

MDP
Const. Speed

0.028±
0.038

0.044±
0.049

0.051±
0.30

0.036±
0.062

0.075±
0.11

0.15±
0.23

0.000±
0.000

1.59±
1.11 10.67

MDP w/o inter.
0.028±
0.038

0.044±
0.049

0.049±
0.27

0.037±
0.064

0.075±
0.12

0.16±
0.24

0.000±
0.000

1.58±
1.16 9.00

behaviors at each run.

6.5.2.1 Feature Deviation

As we can see in Table 12, our proposed method presents the best results when compared
to the baselines, except for fl . The probable reason for this result is that the POMDP sampler
can plan better trajectories according to the current rewards, because of its ability to estimate the
host-vehicle intention. The main consequence is the achievement of learned weights that better
describe human drivers behavior, even on the test set.

6.5.2.2 Mean Euclidean Distance (MED)

Our method also present the best result when the MED is considered. This is in accor-
dance with the feature deviation metric, showing that the chosen features can capture the human
driving styles present in the dataset.

6.5.2.3 Hard Deceleration

This result shows that the POMDP planner is the best method to avoid causing back
vehicles hard deceleration when compared to the baselines. This result is important since one
of the main goal of autonomous vehicles is to join another vehicles in a smooth way, without
causing discomfort to them.

It important to note that, at first glance, the results seem to be very similar among all
methods. However, as stated in Section 6.4.1, all trajectories in the dataset have a duration of
4s. As a consequence, the planner can compute only four actions according to ∆t = 0.8. The
results difference would probably be more significant if a dataset with longer trajectories were
considered.

6.5.3 The Effect of Heuristic

In this section, we analyze the effect of the constant action heuristic on the ego-vehicle
learned behavior when compared to a random rollout policy heuristic. The two models with
better results in the previous section are chosen in this analysis, which can be seen in Table 13.
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Table 13 – Results of the POMDP and MDP-IDM models with and without constant action heuristic.

fv fm fi fg f j fl fc MED (m) Hard Deceleration
POMDP
w/ heur.

0.025±
0.034

0.042±
0.048

0.047±
0.26

0.036±
0.066

0.072±
0.113

0.15±
0.27

0.000±
0.000

1.37±
0.94 7.67

POMDP
w/o heur.

0.028±
0.036

0.043±
0.048

0.058±
0.31

0.038±
0.065

0.076±
0.154

0.15±
0.24

0.000±
0.000

1.66±
1.18 12.00

MDP-IDM
w/ heur.

0.026±
0.036

0.043±
0.049

0.047±
0.27

0.037±
0.065

0.073±
0.105

0.16±
0.24

0.000±
0.000

1.48±
1.02 8.33

MDP-IDM
w/o heur.

0.027±
0.039

0.043±
0.048

0.051±
0.28

0.037±
0.063

0.066±
0.100

0.16±
0.24

0.000±
0.000

1.52±
1.04 10.00

The results show that the performance of both methods drops performance without our
proposed heuristic. However, the POMDP approach is more affected than the MDP-IDM when
the heuristic is not applied, presenting the worse results even when compared to other methods
in Table 12. One possible reason is that POMDPs presents high computation complexity, since
the belief tree are expanded according to chosen actions and also sampled observations. As a
consequence, this complexity prevents the POMDP solver to converge to good policies when a
proper heuristic is not employed. Therefore, this result shows the effectiveness of our proposed
heuristic to estimate the value at leaf nodes of the belief tree.

6.6 Final Considerations
This chapter presents a variation of the Maximum Entropy IRL algorithm that uses a

POMDP online solver to sample trajectories in order to estimate the gradients of reward weights.
By modeling the IRL problem as a POMDP, we achieves a better learning performance compared
to baselines that consider a fully observable state space. This result is highly impacted by the
POMDP model capability of estimating host-vehicles intention during merging maneuvers. More-
over, the presented constant action heuristic improves the POMDP performance by alleviating
the computation complexity. As a result, our MEIRL-POMDP algorithm outperformed IRL
approaches that are modeled as an MDP problem.
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CHAPTER

7
CONCLUSION

In this thesis, we have proposed a diversity of models capable of dealing with the
uncertainty inherent to decision-making for autonomous vehicles. The proposed models are
based on specific urban scenarios encountered in the autonomous driving field. Moreover, we
have presented algorithms capable of automatically learning human driving behaviors from
expert human trajectories. In this chapter, we analyze the contributions of each method proposed
throughout this thesis and propose future work to improve each approach as well.

Chapter 3 presents a POMDP model to compute the acceleration of autonomous vehicle
at signalized intersections, in which the information about the traffic light color is assumed
as partially observable. The model is able to produce satisfactorily results in different initial
conditions and proved to perform better than approaches which do not consider the erroneous
measurements coming from sensors. For future work, the authors intend to evaluate the duration
of each phase (color) using data from real traffic light systems during different periods of the day
as well as diverse traffic conditions in order to improve the robustness of the proposed model.

Chapter 4 details a POMDP model to calculate longitudinal and lateral actions on multi-
lane roads in the presence of surrounding vehicles. The POMDP model uses sensor information
to estimate ongoing lane changes performed by other vehicles, which aided the planning of safe
trajectories. Moreover, a motion model is proposed in order to predict surrounding vehicles speed
during the interaction with the ego and other vehicles. For future work, a model considering
different behavior during overtaking, such as velocity increasing, will be pursued. The model
might assume a target speed during overtaking or even a difference between the ego-vehicle
speed and the speed of the vehicle being overtaken.

Chapter 5 presents a variation of the Maximum Entropy IRL to deal with continuous
state spaces as well as interaction between vehicles in a merge scenario. A trajectory sampling
approach is proposed in order to adapt the sampling strategy to regions of greater rewards,
which guides the reward function to the optimality according to the expert demonstrations. The
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results show that our method outperformed models such as IDM and MOBIL as well as typical
polynomial curve-based sampling for IRL.

Chapter 6 shows an extension of the sampling strategy proposed in Chapter 5, in which
more complex behaviors of surrounding vehicles during merging is assumed. In this regard, a
POMDP model is presented, which considers the unobserved intention of surrounding vehicles
of giving (or not giving) the right of way to the ego-vehicle. This assumption proved to improve
the performance of the learning algorithm when compared to deterministic approaches that
consider that the behavior of surrounding vehicles are fully observable. Currently, our method
assumes a simple ramp-based trajectory planner to smooth the actions planned by the POMDP
solver. This might sometimes lead to unnecessary control efforts and poor smooth trajectories,
since the resulting longitudinal acceleration and lateral speed curves does not have higher
derivatives. Therefore, the employment of more refined trajectory planners will be seek in future
work. Additionally, the model assumes perfect knowledge of IDM parameters of the vehicles
overridden by the simulator. In future work, we intend to analyze how the robustness of the
model is affected by the chosen parameters. Moreover, the chosen features have great impact on
the learned behavior, thus it is difficult to know whether those features are the best choice. In
this regard, methods using deep learning approaches in which the features can be automatically
learned by a neural network will be pursued.

Although the combination of IRL and POMDP (MDP) methods has presented satis-
factorily results in the proposed scenarios, a point of attention is that those methods are very
computational complex. Moreover, each model is dedicated to one specific scenario, which
makes it difficult to extrapolate the models to unseen environments. Therefore, more studies
might be carried on to know whether the proposed methods are applicable in real-world situations.
For future work, we intend to explore models that can be generalized easier to other domains.
One potential improvement might be to learn a generic dynamic model from data using deep
learning and then learning the underlying reward function through IRL. Moreover, we intend
to implement the solutions in the autonomous vehicle CaRINA II to verify their effectiveness
in real domains. This vehicle is a Fiat Palio Adventure Dualogic, adapted with sensors and
actuators that enable autonomous operation. CaRINA II’s software architecture is implemented
using Robot Operating System (ROS), a collection of software frameworks for robotic systems
development. CARINA II has a perception module used to detect static and moving obstacles
along with path planning and control algorithms, which will be used to generate low level signals
(steering angle and acceleration) from the decision making module. The tests are intended to be
made in a controlled environment in order to avoid dealing with dangerous situations.
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ŚWIECHOWSKI, M.; GODLEWSKI, K.; SAWICKI, B.; MAŃDZIUK, J. Monte carlo tree
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