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RESUMO

MENEZES, A. G. Aprendizado Contínuo de Objetos com Redes Neurais Profundas. 2023.
113 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2023.

O rápido desenvolvimento tecnológico nas últimas décadas aumentou significativamente a
quantidade de dados disponíveis no mundo. Naturalmente, modelos que escalam com o tamanho
dos dados disponíveis, como as redes neurais profundas, tornaram-se a principal estratégia para
vários campos de pesquisa com abundância de dados, como por exemplo visão computacional e
processamento de linguagem natural. Com a grande disponibilidade de dados, a pesquisa sobre
modelos de aprendizado que podem se adaptar de forma incremental a fluxos contínuos de dados
tem sido incentivada. Dessa forma, a área de Aprendizado Contínuo de modelos se apresenta
como o campo que propõe o estudo sobre a capacidade de aprender tarefas consecutivas sem
perder desempenho nas tarefas previamente treinadas. Para a área de visão computacional,
os pesquisadores têm concentrado seus esforços principalmente em tarefas de classificação
incremental, mas a detecção contínua de objetos também merece atenção devido à sua vasta
gama de aplicações em robótica e veículos autônomos. O cenário de detecção incremental é
ainda mais complexo que a simples classificação devido à ocorrência de instâncias de classes
desconhecidas mas que podem aparecer em tarefas subsequentes como uma nova classe a ser
aprendida, resultando em anotações ausentes e conflitos com o rótulo de background. Uma
vez que se apresenta em seus estágios iniciais, a pesquisa em detecção contínua de objetos
ainda oferece várias oportunidades e carece de convenções metodológicas. Desta maneira, esta
tese de doutorado busca investigar esse campo mais detalhadamente e identificar possíveis
vínculos com áreas relacionadas, como aprendizado contínuo geral e a poda de redes neurais.
Especificamente, propusemos a primeira revisão sistemática sobre o tópico, desenvolvemos
duas métricas para melhorar a análise de desempenho em cenários de detecção incremental,
investigamos qual método de seleção de exemplares funciona melhor para estratégias de detecção
contínua de objetos baseadas em replay e exploramos como identificar e penalizar parâmetros
importantes de tarefas que possuam treinamento contínuo. Para validar nossas propostas e
hipóteses, conduzimos experimentos e relatamos resultados comparáveis ao estado da arte
atual em benchmarks populares de detecção (ex: PASCAL VOC) adaptados à configuração
incremental, bem como em conjuntos de dados e aplicações do mundo real. As contribuições
apresentadas nesta tese também foram colocados em prática em duas aplicações. Primeiramente,
elas foram testados no 3rd CLVISION Challenge, onde alcançaram a 3rd posição na trilha de
detecção contínua de instâncias. Em segundo lugar, foram aplicadas na inspeção aérea contínua
de torres de transmissão da TAESA, maior empresa brasileira de transmissão de energia elétrica,
para melhora de suas pipelines de inspeção automatizada.



Palavras-chave: Detecção de Objetos, Aprendizado Contínuo, Detecção de Objetos Incremental,
Replay, Mineração de Parâmetros.



ABSTRACT

MENEZES, A. G. Continual Object Detection with Deep Neural Networks. 2023. 113
p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2023.

The rapid technological development in the past decades has significantly increased the amount
of available data in the world. Naturally, models that scale with the size of the available data,
such as Deep Neural Networks, have become the primary strategy for several research fields
with abundant data (e.g., computer vision and natural language processing). With this large data
availability, research on learning models that can adapt incrementally to continual streams of
data has been encouraged. In this way, the field of Continual Learning proposes to study the
ability to learn consecutive tasks without losing performance on the previously trained ones. In
computer vision, researchers have mainly focused their efforts on incremental classification tasks,
but continual object detection also deserves attention due to its vast range of applications in
robotics and autonomous vehicles. In fact, this scenario is even more complex than conventional
classification, given the occurrence of instances of classes that are unknown at the time but can
appear in subsequent tasks as a new class to be learned, resulting in missing annotations and
conflicts with the background label. Since this field is in its early stages, research in continual
object detection still offers several opportunities and lacks methodology conventions. This Ph.D.
thesis investigates the field more thoroughly and identifies possible links with related areas such
as general continual learning and neural network pruning. Specifically, we proposed the first
systematic review on the topic, developed two metrics for improving the analysis of performance
in incremental detection scenarios, investigated which exemplar selection method works best for
replay-based continual detection strategies, and explored different ways to identify and penalize
important task parameters across sequential updates. To validate our proposals and claims, we
conducted experiments and reported results comparable to the current state-of-the-art in popular
detection benchmarks (i.e., PASCAL VOC) adapted to the incremental setting, as well as in
real-world datasets and applications. The findings presented in this thesis were also put into
practice in two applications. Firstly, they were tested in the 3rd CLVISION Challenge, where we
were able to achieve the 3rd place in the continual instance detection track. Secondly, they were
applied to the continual aerial inspection of transmission towers at TAESA, the largest Brazilian
electric power transmission company, to improve the automation of their inspection pipeline.

Keywords: Object Detection, Continual Learning, Continual Object Detection, Replay, Parame-
ter Mining.
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CHAPTER

1
INTRODUCTION

This introductory chapter provides a brief contextualization of the research area where
this Ph.D. thesis fits in. We discuss some aspects that corroborate our choice for tackling continual
learning problems, especially for the continual object detection task, and demonstrate the
relevance of the research theme. Finally, we introduce our main research questions, hypotheses,
and final objectives.

1.1 Ph.D. Thesis Context

The fast technological development in the past decades has made the amount of available
data increase at significant rates. In fact, the recurrent technical jargon that has been on the news
to characterize this fact is the term Big Data (WALKER, 2014), which concerns, as the name
implies, the manipulation of vast amounts of information. Even so, the degree of change present
in this endless flow of data is only a small representation of how the world is constantly changing
and evolving. To deal with that, our brains have developed several mechanisms to cope with the
necessary adaptation to different experiences (GROSSBERG, 2012). This analogy has not only
guided scientists during their early exploration of the neural principles of learning in the brain
but also inspired the computational modeling of the learning and forgetting functions in artificial
neurons (RATCLIFF, 1990; HASSABIS et al., 2017).

Naturally, with computing power also becoming more available for the academic “masses”,
robust computational models that make use of large amounts of data began to exhibit unprece-
dented results in fields that only humans used to do well, such as vision and natural language
understanding (LECUN; BENGIO; HINTON, 2015). Most of this success comes from the
application of deep neural networks, which are models that, although having most of their theory
dating back to the 80s and early 90s (LECUN et al., 1988; LECUN; BENGIO et al., 1995), have
only risen to be the “go to” technique for machine learning after some groundbreaking results in
2012 (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).
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Deep Neural Networks (DNNs) are computationally distributed models able to learn
representations from raw data through a structure of hierarchical layers, similar to how the
brain handles new information. However, they are a powerful solution only when being used
with data that is carefully shuffled, balanced, and standardized (HADSELL et al., 2020). As
real-world data may come in large streams and vary considerably from what was available
during the initial training, some necessary assumptions for DNNs might not be met. In this case,
they can fail entirely or suffer from a fast decay in performance for early learned tasks when
trained sequentially, which is commonly described as catastrophic forgetting (CF) or catastrophic
interference (ROBINS, 1995).

These circumstances have influenced the introduction of the Continual Learning (CL)
field, in which techniques are mainly refined to deal with different data-dynamic scenarios.
Although the interest in this area has grown notably since 2016 (PARISI et al., 2019), over the
years, several names have been used to refer to the search for models that continually adapt.
Some of them are “incremental learning”, “lifelong learning” and “never-ending learning”. Yet,
the recent desiderata assigned to CL models have become even broader and involve not only
the forgetting aspect but also the scalability, computational efficiency, and fast adaptability fea-
tures (DÍAZ-RODRÍGUEZ et al., 2018). For the context of this thesis, we considered the current
standard expression (a.k.a. continual learning) to frame all previously related nomenclature.

Several applications that deal with streams of images can benefit from having models
that can naturally deal with changing and incremental contexts, such as autonomous cars, UAVs,
and house robots (SHAHEEN et al., 2021). Applications of CL for object detection are the main
focus of this Ph.D., which will be discussed more deeply in the following sections.

1.2 Motivation

Within the context of computer vision, the search for strategies able to deal with the
modeling of a dynamic world is not new (ROSS et al., 2008). Notwithstanding, most of the
current solutions for CL consider the classification task as its main conundrum. In this way,
the task of continual object detection, which involves both learning continually to localize and
classify object samples, is not yet well explored, having its foundational work dating back to
2017 (SHMELKOV; SCHMID; ALAHARI, 2017).

Continual Object Detection (COD) is a more complex task than conventional classifi-
cation since the predictive model needs to deal with situations where new objects, that were
unknown previously, appeared in the previous training data but were not labeled and therefore
considered as “background”. This issue affects the notion of “objectness” of the model and may
interfere with its performance towards either favoring the detection of only previously known
objects or exclusively the new ones. This tradeoff is also in part due to the natural “tug-of-war”
effect that each task creates on the model parameters during training (HADSELL et al., 2020).
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Each task greedily tries to bring the model to the local minima, where the weights will be opti-
mum for giving the best results for the current task. Hence, when processing tasks sequentially,
each task “catastrophically” interferes with the model results for the others, causing the so-called
“forgetting”. An illustration of this process is shown in Figure 1. When the model is optimized
with the losses of several tasks not sequentially but simultaneously, assuming that all task data is
available, the learning process can be treated as a “multitask learning” situation, as depicted in
the last image.

Figure 1 – An illustration of the tug-of-war that results in catastrophic forgetting. (HADSELL et al.,
2020).

Besides alleviating CF, it is usually expected that CL models present other important
characteristics such as forward and backward transfer, fast adaptation, and computational effi-
ciency (DÍAZ-RODRÍGUEZ et al., 2018). Moreover, in addition to being an interesting research
challenge, solutions to COD are relevant from an industry perspective (SHAHEEN et al., 2021).
A few of the main advantages of implementing robust COD solutions are:

∙ Computational and Energy Efficiency: Since the models do not have to be retrained
from scratch each time, energy and computational time can be saved, which favors several
applications with such constraints (e.g., aerial robotics).

∙ Scalability: Considering that often all training data is not available from time t to time
t +1, CL usually provides solutions that focus on retaining only what is essential from
each previous training experience, which favors scalability to process large chunks of data.

∙ Privacy and Edge Computing: Once a model is deployed, the new stream of data may
only be used for updating it locally, which benefits edge computing and many other privacy
concerns.

Research in CL for classification has been the main target of researchers over the years,
which resulted in the investigation of several criteria that favors the adaptation of DNNs to the
class-incremental learning scenario. The proposed solutions include changes in the architecture
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to make it wider (MIRZADEH et al., 2021), the use of different learning paradigms (GAL-
LARDO; HAYES; KANAN, 2021; BEAULIEU et al., 2020) or training regimes (MIRZADEH
et al., 2020), and “plugins” that hinder forgetting (e.g., replay, regularization, and dynamic
architectures) (DELANGE et al., 2021). Nevertheless, for the continual object detection task,
most of the existing solutions are still being proposed on variations of the same regularization
techniques (PENG; ZHAO; LOVELL, 2020; HAO et al., 2019; CHEN; YU; CHEN, 2019). In
this way, we have realized that there is still a gap where one can investigate and explore strategies
for COD taking advantage of what has and has not worked for classification in general CL and
other fields, such as the use of different replay strategies and the insights from the neural network
pruning literature. Also, considering the application aspect, there is still a lack of practical
evaluations and reports of COD models being implemented in the real world.

1.3 Hypotheses and Objectives
Given the aforementioned challenges and opportunities, in this Ph.D. research, we

formulate the following research questions:

Main Research Question 1: Are standard CL metrics enough to represent the gains and losses

in class-incremental object detection ?

Main Research Question 2: Is random replay the most suitable exemplar selection strategy for

replay-based solutions in class-incremental object detection ?

Main Research Question 3: Is parameter mining and freezing a strong baseline for continual

object detection ?

By analyzing techniques used for CL in general and performing a systematic review of
the current literature that involves class-incremental object detection, we recognize the potential
that different architectures and learning paradigms can bring to our application context.

Given these considerations, our main hypotheses for this Ph.D. project are:

Hypothesis 1. Metrics specifically tailored to highlight changes in the stability-plasticity of a

model are more suited to class-incremental object detection than standard CL metrics.

Hypothesis 2. Class-balanced replay buffers are more effective for class-incremental object

detection than using random buffers.

Hypothesis 3. The use of a well-selected parameter mining and freezing strategy can enable

deep neural network models to continually learn how to detect new objects while avoiding

forgetting old ones.

To assess our hypotheses, we delineated a set of objectives to pursue:
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∙ Review the state-of-the-art for continual detection and their research trends.

∙ Investigate the use of different replay techniques specially tailored for class-incremental
object detection.

∙ Evaluate the impact of parameter mining and freezing for continual object detection.

∙ Assess the challenges of applying continual object detection to real-world constrained
scenarios.

By fulfilling our objectives as contributions, we aim to push forward the challenging
field of COD.

1.4 Organization
The remaining topics of this document are structured as follows: we present in Chapter 2

an overview of the technical background needed for understanding the main contributions of
this thesis. Following, in Chapter 3, we present a comprehensive review of the state-of-the-art
(up to 2022) and related works that involve the fields of object detection and COD. Next, we
investigate in Chapter 4 the application of several exemplar replay techniques to COD, followed
by Chapter 5, which elaborates on the use of important parameter mining and freezing strategies
for such a task. For Chapter 6, we explore two scenarios where COD can be applied in the real
world. Finally, for Chapter 7, we discuss our final considerations, contributions, and future work.
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CHAPTER

2
TECHNICAL BACKGROUND

This chapter aims to provide the necessary background for the discussions presented in
this thesis. We start by giving short definitions for some of the used deep learning terminologies
and then proceed to describe broader concepts related to continual learning and object detection.

2.1 Deep Learning

In the search for a learning model that is able to generalize to different types of problems,
deep neural networks have been widely used by researchers due to their robustness and quality
of results in tasks with unstructured data such as images, text, and audio (KRIZHEVSKY;
SUTSKEVER; HINTON, 2012; DEVLIN et al., 2018; OORD et al., 2016). Their core idea
is based on the generality of the simple artificial model of a neuron, called Perceptron, to
perform input-output mapping by changing its weights and bias during the optimization of a loss
function (LECUN; BENGIO; HINTON, 2015).

Single neurons can only map linear functions (HAYKIN, 2010). To surpass that, neurons
usually use nonlinear activation functions and are stacked in interconnected hierarchical layers,
as illustrated in Figure 2, that empower the model to learn complex mapping functions. These
neural networks are called by definition Multilayer Perceptron (MLP), but they can also be
referred to as Feed-Forward Networks or Fully Connected Networks. The intermediary layers
between the input and output are called hidden layers and, when in great number, characterize
the model as a deep neural network.

An artificial neural network with only one hidden layer is capable of representing any
continuous function according to the universal approximation theorem (LECUN; BENGIO;
HINTON, 2015). However, the theorem states neither the number of neurons nor the type of
activation or optimization method. This encouraged the research of techniques that can be used
along with DNNs and bring other inductive biases that facilitate learning the task at hand.
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Figure 2 – MLP architecture with two hidden layers.

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) use the principle of sliding windows (i.e.,
kernels) and cross-correlation in their convolutional layers to extract discriminative feature
maps from all image regions and pass them forward to be processed by neurons in the dense
MLP layers (LECUN et al., 1998). Unlike traditional computer vision pipelines, when using
convolutional layers, it is unnecessary to specify the values within the kernel. Such values are
treated as weights by the neural network and are optimized to precisely extract the patterns that
best characterize each sample. Some advantages of using CNNs are:

∙ The patterns learned by kernels present translation invariance; that is, if the network has
learned to recognize an object in the corner of the image, it will identify the object in any
part of it.

∙ CNNs can learn hierarchical spatial patterns, which means that a first convolutional layer
can learn to locate corners and edges in an image, while a second convolutional layer
uses these discovered patterns as input to recognize more complex shapes, similarly to the
human visual cortex. In this way, a CNN can have several stacked layers to improve its
representation power.

∙ As the feature maps have a smaller dimension than the image itself, the number of
parameters for training is reduced compared to those needed for purely dense MLP
networks.

∙ The weights of the kernels are optimized along with the network itself, so it is not necessary
to introduce human bias in the possible patterns to be detected.
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Due to its strong representation power, CNNs are used effectively as the backbone
of image classifiers, object detectors, and even audio generation by the use of visual spectro-
grams (LECUN; BENGIO; HINTON, 2015; OORD et al., 2016). A typical CNN architecture
used for computer vision tasks has convolutional layers with non-linear activations followed by
pooling operators forming blocks, which can earn an identity of its own (e.g., VGG-Block) (SI-
MONYAN; ZISSERMAN, 2014). Additionally, blocks can be stacked and have top-down
residual connections between them to facilitate gradient flow during optimization as presented
in the residual network (ResNet) architecture (ALLEN-ZHU; LI, 2019). To perform non-linear
operations with the learned presentations, fully connected layers are usually placed on top of the
network, as illustrated by Figure 3.

Figure 3 – CNN architecture exemplified (DESHPANDE, 2017)

2.1.2 Vision Transformers

Transformers are a type of DNN architecture that uses a self-attention mechanism for
learning the relationships in elements of a sequence (VASWANI et al., 2017). Their ability to
scale according to the size of the data and model long-range relations has made it the standard
architecture for text classification, machine translation, and question-answering tasks (KHAN et

al., 2021). Their core structure is based on an encoder-decoder setup as illustrated by Figure 4.

Recently, their success also reached the computer vision field with the adaptation of
its pipeline to process images and videos successfully (CARION et al., 2020; TOUVRON et

al., 2021). By processing an image as a sequence of positioned small patches, the model is
able to encode global relationships of separate parts within an image that convolutions would
struggle to identify (DOSOVITSKIY et al., 2020). In contrast, since they make almost no
assumptions about the structure of the data, the transformer might have difficulties when learning
the inductive biases that CNNs have by default (e.g., translation equivariance). For having
the best of both worlds, several solutions employ pre-trained CNNs as the backbone for large
transformer encoder-decoder blocks (KHAN et al., 2021).
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Figure 4 – A Transformer with two stacked encoders and decoders (ALAMMAR, 2018)

As transformers were designed to work with large unlabeled datasets, they are commonly
pre-trained with pretext tasks in self-supervision setups, which helps to learn rich relationships
between samples, and in this way, generalizable representations. Figure 5 shows an example of
that when the self-supervised vision transformer proposed by (CARON et al., 2021) demon-
strated that object segmentation masks could be obtained from the last attention maps of the
model even when not using any supervision to enforce that.

Figure 5 – DINO‘s attention maps (CARON et al., 2021)

2.2 Continual Learning in Neural Networks
Continual learning, or lifelong learning, has been coined as the ability to learn consec-

utive tasks without forgetting how to perform on the previously trained ones (THRUN, 1995).
Some researchers have pointed out over the years that research on this topic might lead to the
development of an artificial general intelligence (AGI) (SILVER, 2011; CLUNE, 2019) since it
is expected such behavior from intelligent agents.

For the scope of CL, we refer to task as a specific learning goal or problem that the
model is attempting to solve. A CL model is sequentially trained to perform multiple tasks, such
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as recognizing digits, classifying cats and dogs, and detecting street signs. Each of these tasks
would be considered a separate task for the purpose of CL as long as they are presented one
at a time to the model. Unlike multi-task learning, when all the tasks are previously known,
CL considers that new tasks are introduced sequentially and often have the same underlying
structure (CHEN; LIU, 2018).

Formally, a task in CL can be defined as a tuple ti = (Xi,Yi,Pi (x,y)), where i is the task
ID; Xi and Yi are the input and label spaces for the function to be learned; and Pi (x,y) represents
the joint distribution. In this sense, we are interested in the predictive performance of a model on
all tasks {ti| 1≤ i≤ T} it was trained on, while the training is restricted to occur one task at a
time, with no (or restricted) access to data from the previous and subsequent tasks.

As the amount of data available increases over the years and current machine learning
(ML) systems still have poor ability to solve new tasks without being properly retrained, solutions
that involve continual and multi-task learning will become more prevalent (REBUFFI et al.,
2017). Also, as deep learning techniques are the state-of-the-art for several tasks in areas such as
computer vision and natural language processing (REN et al., 2015; DEVLIN et al., 2018), the
adaptation of the ongoing strategies in these fields for the continual paradigm becomes a natural
promising research direction.

Despite not being a new research topic (THRUN, 1995), there is still no consensus on
all the characteristics that a CL model should consider essential (i.e., CL Desiderata) during its
optimization process (ALJUNDI, 2019; MUNDT et al., 2020). Most of the definitions favor a
specific direction based on the researched topic the author is involved. For example, one may
say that constant memory and forward transfer are fundamental for robotics. At the same time,
for recommendation systems, one could argue that online learning and fast adaptation are more
important features. Following this line of thought, for the continual object detection venue and
especially the class-incremental setting, we argue that the following desiderata should be aimed:

∙ Quasi-constant memory: A CL model should work with bounded memory.

∙ Backward Transfer: A CL model should be able to improve the performance of previously
learned tasks by learning a new one.

∙ Forward Transfer: A CL model should have the ability to improve the performance of
future tasks using previously acquired knowledge.

∙ Fast adaptation and recovery: A CL model should be able to adapt quickly to new tasks,
and, in case a class was gracefully forgotten (better described in the work of Ahn et al.

(2019)), the model should recover the previous performance at the same speed.

Also, the ability to identify when a sample object is unknown at test time and decide
whether to learn from it during incremental training is of interest for applications in autonomous
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robots (JOSEPH et al., 2021). This scenario, which is related to other different ML paradigms
(e.g., out-of-distribution detection, open-set, and open-world recognition), might be a pursued
direction for having less human interference in the learning process (MUNDT et al., 2020;
MUNDT et al., 2021).

2.2.1 Continual Learning Scenarios

When working with classical CL benchmarks (LOMONACO; MALTONI, 2017), there
are three general situations in which data might be introduced:

∙ New Instances (NI): New training samples of previously known classes.

∙ New Classes (NC): Only training samples of new classes.

∙ New Instances and Classes (NIC): New training samples from both old and new classes.

When working on classification tasks, the presence of the task ID dictates the space of
possible classes and distributions that can be recognized during test time. Thus, it describes
whether it is possible to create task-specific solutions or if a more general CL strategy is
needed (DELANGE et al., 2021). Following this trend, the CL literature has mostly adopted the
convention from Ven and Tolias (2019) for three general task scenarios:

∙ Task-Incremental Learning: Assumes the model has information about the task ID
during training and testing. The situation allows for task-specific solutions.

∙ Domain-Incremental Learning: Assumes the task ID is not given during test time, but
the structure of the task is maintained. Class labels are usually kept, but the data distribution
might change.

∙ Class-Incremental Learning: Assumes the task ID is not given during test time, and the
model needs to infer it. In this way, the model needs to expand its range of predictions and
incrementally add new classes.

Additionally, Task-Free or Task-Agnostic CL (ALJUNDI; KELCHTERMANS; TUYTE-
LAARS, 2019; NORMANDIN et al., 2021) represents an additional scenario for when the task
labels are not given during either training or testing, which makes it the most challenging scheme.
For that, the model does not have any information on task boundaries and still needs to deal with
data distribution changes.

2.2.2 Continual Learning Evaluation

For evaluating CL models on incremental benchmarks, metrics should assess the desired
characteristics we expect the system to have. To this extent, a CL model, in general, should be
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evaluated not only on its final performance but also on how transferable its knowledge is and how
fast it learns and forgets tasks. The usual procedure adopted by the CL community to comply
with this scheme was first introduced by Lopez-Paz and Ranzato (2017) with three metrics.

Average Accuracy (ACC) is the average final accuracy over all seen T tasks as described
by Equation 2.1.

ACC =
1
T

T

∑
i=1

RT,i (2.1)

Backward Transfer (BWT), as shown by Equation 2.2, is the measure of the influence
that learning a new task has on the tasks learned so far. A negative value for this metric indicates
the forgetting of old classes.

BWT =
1

T −1

T−1

∑
i=1

RT,i−Ri,i (2.2)

Forward Transfer (FWT), as demonstrated in Equation 2.3, represents the impact that
learning a new task will have on the consecutive tasks. A positive forward transfer is an indication
that the model can perform “zero-shot” learning.

FWT =
1

T −1

T

∑
i=2

Ri−1,i− b̄i (2.3)

For these metrics, Ri, j stands for the final test accuracy on task t j after observing the
samples of task ti, and b̄ the test accuracy of each task when trained with random initialization.
The metrics above assume the model has access to all tasks beforehand and can be evaluated on
all T tasks right after it finishes the training in each individual task ti.

For measuring how far an incremental model response is from an ideal setting and
therefore assessing its overall stability-plasticity, Hayes et al. (2018) proposed Ω as the ratio
between the model’s response and the one from the joint-training equivalent (i.e., a model
trained offline with all task data) as shown by Equation 2.4. We will refer to this metric as the
upper-bound ratio.

U pper-bound ratio (Ωall) =
T

∑
t=1

RT,t

R joint, t
(2.4)

Although there are interesting adaptations of these metrics that account for the perfor-
mance of a CL model along each timestep in training time, in an application context, a good
final performance at test time is usually what is considered. Additionally, some other metrics
provide helpful information regarding the whole CL desiderata, such as computational efficiency
and memory size (DÍAZ-RODRÍGUEZ et al., 2018), but we will not explore them in the current
context of this background review.
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2.2.3 Continual Learning Strategies

Research to overcome catastrophic forgetting is as old as the own field of neural net-
works (ROBINS, 1995; RUMELHART, 1992), but previously had its focus on solving the
problem for shallow networks. When dealing with deep architectures, the main methods have
been commonly divided into three families of techniques based on: parameter isolation, regu-
larization, and replay (DELANGE et al., 2021). For a more in-depth description of each group
of techniques, we recommend the reading of CL for classification specialized surveys and re-
views (DELANGE et al., 2021; BELOUADAH; POPESCU; KANELLOS, 2021; HAYES et al.,
2021).

2.2.3.1 Parameter isolation techniques

Parameter isolation strategies aim to mitigate forgetting by specifying parameters to deal
with each individual task. This setup typically requires the freezing of some network parameters
and then either dynamically expanding the network’s capacity (YOON et al., 2017) when new
tasks arrive or learning specific sparse masks (MALLYA; DAVIS; LAZEBNIK, 2018).

One of the base works for this family was proposed by Rusu et al. (2016), where a deep
neural network column of layers is trained to execute a single task. When a new task arrives, the
previously trained weights are frozen, and a new column of layers with a lateral connection to
the first column is added and then trained to execute the new task. Other works also expand on
this strategy to deal with the issues caused by the increased final model size by applying network
pruning and quantization (HUNG et al., 2019). For this family of techniques, it is generally
guaranteed that the network will perform equally well as if it was trained from scratch at the cost
of having a more significant memory footprint. Additionally, models in this group often have the
disadvantage of needing a task oracle to reveal the task ID at test time (DELANGE et al., 2021).

2.2.3.2 Regularization-based techniques

Regularization-based methods introduce strategies to prevent the network parameters
from deviating too much from the learned values that performed well for the old classes. The base
work of Kirkpatrick et al. (2017) proposed the Elastic Weight Consolidation (EWC) strategy,
which first finds important parameters for the learned tasks and then penalizes their changes
when new tasks are presented.

Besides penalty-based regularization, Li and Hoiem (2017) suggested the Learning
Without Forgetting (LwF) strategy in which a copy of the network trained on the base classes
is created and knowledge distillation is applied to transfer the knowledge of the copy to the
network trained on the new data. For this whole family of methods, there is generally no need
for storing old data or changing the current architecture. This is based on the assumption that
the task’s knowledge is included in the weights and can be preserved by either penalizing their
change directly or by constraining the updates for new data using the old activations and logits.
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However, for this group of techniques, performance is often limited compared to other CL
strategies (PELLEGRINI et al., 2019; BEAULIEU et al., 2020).

2.2.3.3 Replay techniques

Methods based on replay, often called rehearsal, store samples from previously seen data
or use generative models to create pseudo-samples that follow the previous data distribution. The
replay samples are then mixed with the ones of the new task to ensure that the data distribution
of the new task does not deviate much from the previously learned data distributions. Following
this line, Rebuffi et al. (2017) proposed the iCaRL strategy in which the samples that best
represent the class means in the feature space are stored and used at test time with a nearest-mean
classifier. In a different way, Lopez-Paz and Ranzato (2017) proposed the Gradient Episodic
Memory (GEM) technique to constrain the model optimization by using replay samples to limit
the gradients for the new task in a way that the approximated loss from the previous tasks will
not increase.

When working with unstructured data (e.g., images and videos), the required memory
buffer to store old samples might be considerably large, making its use impracticable for some
real-world scenarios (PELLEGRINI et al., 2019). Techniques based on pseudo-rehearsal, a.k.a.
generative replay, were established to overcome this limitation. Shin et al. (2017) proposed to
train a generative model on the old data distribution and use it to generate fake samples that
help in mitigating the forgetting of old classes. Although having the downside of the model’s
performance being upper-bounded by the joint training in all tasks (DELANGE et al., 2021),
the replay family has been the most consistently used strategy in real-world applications of
CL (SHAHEEN et al., 2021; SHIEH et al., 2020).

2.2.4 Other Continual Learning Paradigms

Some other learning paradigms have been adjusted to diminish the forgetting of CL
systems by allowing the model to learn the desired adaptability and stability directly from the
data (CACCIA; PINEAU, 2021; HOSPEDALES et al., 2020).

2.2.4.1 Meta-Learning for Continual Learning

Meta-learning, a.k.a. “learning-to-learn”, uses knowledge obtained from learning tasks
to improve the learning of new ones. Because of the general terminology, there are several
perspectives proposed in the literature that relate to the topic, such as transfer learning, AutoML,
and multi-task learning (HOSPEDALES et al., 2020). In the context of neural networks, meta-
learning has been framed as an end-to-end pipeline with two levels where an outer algorithm
adjusts the learning of an inner algorithm so that the outer model objective is improved in
the end. In simpler words, it is the search for inductive biases in a neural network that leads
to the fulfillment of a meta-level objective. This meta-objective can be applied for diverse
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goals such as generalization performance, fast adaptation, or even the avoidance of catastrophic
forgetting (FLENNERHAG et al., 2019).

The application of meta-learning to solve CL meta-objectives has been referred to as
meta-continual learning (CACCIA et al., 2020) and can take different forms. Rajasegaran et al.

(2020) introduced the use of meta-learning for finding a set of generic weights that can generalize
well for all seen tasks by quickly adapting to them at test time with minimum forgetting. Javed and
White (2019) proposed a meta-objective for finding task-independent network representations
that minimize the forgetting of old tasks and accelerate future learning of new ones. Beaulieu et

al. (2020) presented the ANML strategy which uses a neuromodulatory network to modulate
the learning of a base network by gating the neurons in a specific layer during the forward and
backward passes.

2.2.4.2 Self-Supervision for Continual Learning

Self-supervision is the paradigm in which the data generates its own labels and learns
to predict them back as a pretext task. Some examples of pretext tasks are colorizing grayscale
images, predicting the rotation of objects, and matching different augmented views of the same
image (HUANG et al., 2021). The advantage of having the data generate its own supervision
signal is to be able to explore large-scale unlabeled datasets and obtain robust representations
that can be used for other downstream tasks such as image classification, object detection, and
semantic segmentation (JING; TIAN, 2020). Recently, self-supervised pre-trained networks
outperformed their supervised counterpart for downstream tasks of classification and detection
in large benchmarks (CARON et al., 2020; BAR et al., 2021).

In the context of CL, the feature extraction backbone is generally frozen for not allowing
gradual changes in the representations during online updates. This inevitably causes the need
for networks that can produce more general features, which favors the use of self-supervision
in their training. In fact, Gallardo, Hayes and Kanan (2021) showed empirically that self-
supervised pre-trained models provide representations that generalize better for class-incremental
learning scenarios, while Hu et al. (2022) also demonstrated effectiveness in applying self-
supervision sequentially for learning representations from large-scale streaming data. Pham, Liu
and Hoi (2021) proposed a learning structure based on the human brain complementary learning
system, in which a model is optimized via self-supervision on stored samples to produce general
representations that are then refined by supervised learning for quick knowledge acquisition
on the labeled data. Beyond that, Caccia and Pineau (2021) expanded the generality of self-
supervised representations to the meta-learning world by having models optimized to match
different augmented views of the same image and at the same time generate representations that
minimize the forgetting of old classes.
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2.3 Object Detection with Deep Neural Networks

Object detection is a computer vision task that involves the localization and classification
of items of interest in an image. The goal of an object detector is to predict the coordinates of
each bounding box that surrounds the objects of interest and assign a category to it. Previous
to 2012, most solutions related to the topic were based on heuristics and hand-crafted visual
descriptors (VIOLA; JONES, 2001; LOWE, 2004) which limited its application in several
domains. After the success that CNNs had in generating rich features for classification, they
started to compose strategies for the more challenging task of object localization and recogni-
tion (GIRSHICK et al., 2014; GIRSHICK, 2015). Since then, they have presented outstanding
results in large competitions related to the detection task and became their baseline solution (WU;
SAHOO; HOI, 2020).

Object detectors based on DNNs can usually be divided into two modalities: two-stage
and one-stage detectors. Both have in common the presence of a backbone network for providing
useful feature maps to be used in localization and identification of object categories (HUANG et

al., 2021). These features can be resumed in a single 3D tensor extracted directly from the output
of a single layer in a pre-trained architecture (e.g., C4 layer in ResNet-50) or a multi-dimensional
tensor resulting from the gathering of the output of several layers from a top-down architecture
with lateral pathways as in the work of Lin et al. (2017a). The backbones used for detection
tasks are generally deep CNNs pre-trained on large image datasets (e.g., ImageNet) intended for
classification (DENG et al., 2009).

2.3.1 Two-Stage Detectors

This class of detectors uses a separate structure to generate a set of “guesses” of where the
objects are present in the image. These assumptions on the image, also called region proposals
or just proposals, will be then classified into the known categories and have their bounding box
refined to correctly identify the object’s limits. R-CNNs (GIRSHICK et al., 2014) were one of
the first two-stage strategies for object detection and used Selective Search (UIJLINGS et al.,
2013) for selecting its region proposals. The problem with this setup was that every proposal was
processed separately by the CNN for feature extraction, which caused the inference process to be
too slow. In the following work of the same authors, they propose the Fast-RCNN (GIRSHICK,
2015) in which a CNN first processes the image to extract the features maps. Then, the external
proposals are used to select the regions within the feature maps through a Region of Interest
(RoI) pooling layer, to be processed by the classification and regression heads as illustrated in
Figure 6.

In the work of Ren et al. (2015), the authors ceased the use of heuristics for selecting
region proposals by using a separate network called Region Proposal Network (RPN) able to be
optimized specifically for identifying more probable regions of objects within an image. Their
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Figure 6 – Fast-RCNN architecture (GIRSHICK, 2015).

solution used the same structure as Fast-RCNN. Still, it was way faster than its counterpart, which
resulted in it being named Faster-RCNN. Lin et al. (2017a) improved the network backbone
performance in generating robust features to identify smaller objects. Their strategy, called
Feature Pyramid Networks (FPN), exploited the “inherent multi-scale pyramidal hierarchy” that
deep CNNs carry through exploring a top-down architecture with lateral connections that helps
in the propagation of information from the higher layers to the lower ones. An illustration of a
Faster-RCNN with FPN can be seen in Figure 7

Figure 7 – A Faster-RCNN with FPN (HONDA, 2022).

2.3.2 One-Stage Detectors

One-stage models, also known as single-stage detectors, are often faster than their
two-stage counterparts at the cost of having lower predictive performance (HUANG et al.,
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2021). There is no region proposal heuristic or network for this class of models since it usually
considers that every position on the image might have an object, leaving the model to classify
each position as either background or the target category. The You Only Look Once (YOLO)
detector (REDMON et al., 2016) was one of the first successful models to show a good balance
between accuracy and speed by dividing the whole image into a set of grid cells and predicting
the presence of one or more objects in each of them.

Improving on the inferior ability of the first YOLO architecture for detecting smaller
objects, Liu et al. (2016) proposed the Single Shot Multibox Detector (SSD), which made use
of a more elaborated CNN architecture and a set of pre-defined anchors in multiple scales and
aspect-ratios. These additional features helped the model reach a decent performance while
still operating in real time. Building on top of that, Lin et al. (2017b) presented RetinaNet,
which focused on dealing with the large number of negative samples that are generated by the
pre-defined anchors using their Focal Loss. This loss weights down the importance of easy
negative samples while increasing the focus of the network weight updates on the hard ones. The
network also uses FPN in its architecture and has reached results that compare to Faster-RCNN.
An illustration of the general pipeline used in the YOLO and RetinaNet detectors is shown in
Figure 8.
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Figure 8 – The general pipeline throughout the YOLO and RetinaNet architectures.
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Later on, several versions of the YOLO architecture, which are commonly referred to as
the “YOLO family”, have been proposed and optimized for decreasing the gap against two-stage
models regarding mAP performance (GE et al., 2021) while keeping the real-time characteristic.
Moreover, recently a few more elaborated strategies, such as CenterNet (DUAN et al., 2019) and
FCOS (TIAN et al., 2020), that do not make use of either pre-defined anchor boxes or proposals,
have raised the bar for the performance in popular detection benchmarks.

2.3.3 Benchmarks

Training large DNNs requires the availability of large datasets since they tend to be more
accurate as more data gets processed (LECUN; BENGIO; HINTON, 2015). Considering that
annotations for detection are harder to be obtained than just labels for the whole image, the
most popular benchmarks on the topic have become the ones from competitions organized by
resourceful universities or big tech companies. The two most explored are the Pascal VOC (EV-
ERINGHAM et al., 2010) and MS COCO (LIN et al., 2014). Although there are different
versions of the datasets based on the year of the challenges, researchers have adopted the VOC
2007 and COCO 2014 as references. Table 1 displays some statistics related to these benchmarks.

Table 1 – Statistics for the main object detection benchmarks (ZOU et al., 2019).

Dataset VOC 2007 COCO 2014
Number of classes 20 80
Number of training images (train+val) 5,011 123,287
Number of training instances 12,608 896,782
Number of testing images 4,952 81,434
Mean of bounding boxes per each training image 2.51 7.27

Recently, the LVIS dataset (GUPTA; DOLLAR; GIRSHICK, 2019) was released with the
promise of being a more complex (and natural) benchmark due to its vast number of categories
but a low amount of samples in some of them. The dataset has over 164,000 images with more
than 1000 categories and a total of 2.2 million high-quality annotations, which makes it a tough
challenge for generalization on the “long-tailed” categories.

2.3.4 Evaluation

The evaluation of object detection models is conducted by assessing how much each
predicted bounding box misses or hits a ground truth based on a threshold. The equation that
governs this metric is the intersection over union (IOU), also known as the Jaccard Index
(Equation 2.5) in which Bpred is the coordinate of the predicted bounding box and Bgt is the
ground truth equivalent (PADILLA; NETTO; SILVA, 2020). An illustration of these terms is
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shown in Figure 9.

Jaccard Index = IOU =
area(Bpred ∩Bgt)

area(Bpred ∪Bgt)
(2.5)

Figure 9 – Illustration of the Intersection Over Union equation. Image adapted from Padilla, Netto and
Silva (2020).

The threshold value indicates how much overlap is needed to consider that a prediction
was, in fact, a true positive. Then, the comparison of detection models can be made by calculating
the average precision (AP) (i.e., the ratio of true positives over the sum of true positives and false
positives) and average recall (AR) (i.e., the ratio of true positives over the sum of true positives
and false negatives) for a given threshold. Equations 2.6 and 2.7 describe both metrics.

Precision =
T P

T P+FP
=

T P
all detections

(2.6)

Recall =
T P

T P+FN
=

T P
all ground truths

(2.7)

A common value used for the threshold is 0.5 (e.g., AP50). The standard evaluation
procedure is to consider the mean average precision (mAP) at a given threshold for all classes
that a detector is able to recognize. Moreover, for better dealing with false negatives, the mAP

term is commonly assigned as the area under the curve (AUC) of the precision against the
recall curve using the specified threshold (PADILLA; NETTO; SILVA, 2020). In addition to
that determination, for some situations, benchmarks may also use the mean over the average
precision of each class for several thresholds (e.g., mAP@[.5 : .95]) (LIN et al., 2014) to indicate
a more stable performance.
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CHAPTER

3
CONTINUAL OBJECT DETECTION: A

LITERATURE REVIEW

In this chapter, we present the results of a thorough systematic review of the class-
incremental object detection methods, benchmarks, and evaluation procedures. As a reference,
the following review was accepted for publication in the Neural Networks journal in 2022 and
took into account all important works that had been done in the field up to March 2022.

3.1 Introduction

The general goal of the continual learning paradigm for object detection is to learn a
sequence of tasks [t1, t2, t3, ...] and have a model able to successfully localize and identify all the
involved classes from the tasks at test time as illustrated by Figure 10.

Task 1 Task 2

Old Classes

New ClassesTraining

T1~(X1,Y1)

Time

... Tn

... Tn

Evaluation

T2~(X2,Y2) Ttest ~(X1,X2,Xn)

Figure 10 – A generic class-incremental scenario for object detection.
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The area of applications of continual learning methods to object detection is still young
and in active development (SHMELKOV; SCHMID; ALAHARI, 2017; PENG; ZHAO; LOVELL,
2020; YANG; ZHOU; WANG, 2021). Strategies developed so far are mostly split into two large
pools: Class-Incremental Object Detection (CIOD) and Domain-Incremental Object Detection
(DIOD). The former looks at problems where the model has learned the representation of base
classes and then needs to extend its prediction power over new unknown classes sequentially.
The latter is formed by solutions to problems where the classes are fixed, but their distribution
can change over time. In this situation, the model needs to be able to identify the classes in both
contexts correctly (KUNDU et al., 2020).

For DIOD, a recent competition showed through their winning solutions that general
strategies that account mainly for classification biases might suffice (e.g., simple random replay,
using larger networks) even in challenging scenarios (LI et al., 2022; ACHARYA; KANAN, 2021;
ZHAI; LIU, 2021). For that, we advise the reader to analyze the general findings and discussions
present in related surveys and review papers that reference this CL setting (HADSELL et al.,
2020; PARISI et al., 2019; DELANGE et al., 2021). Contrastively, we argue that the CIOD
paradigm needs a more specific treatment due to its inherent challenges and complexity

The task of incrementally adding classes to a trained detector is considered of substantial
importance for several applications that deal with memory and computational constraints (SHA-
HEEN et al., 2021). The main issue that makes detection a more difficult task than only clas-
sification for class-incremental scenarios is that the same image can have several instances of
different objects that are unknown apriori. Since these objects are not identified, the network
learns to treat their visual cues as background instances. Later, when images of the unknown
instances present before are shown as a new class, the model tends to either not converge to a
decent solution or only prioritize the learning of the new category. In other words, this label
conflict favors the interference on the weights specific to each task within the network.

Figure 11 exemplifies the process of incrementally learning some classes in sequence.
Figures 11a and 11b show an example of two classes being learned separately, whilst Figure
11c shows the new class from task t2 being learned after t1. At last, Figure 11d shows a third
class from task t3 being added to the model. To exemplify why CIOD is considered a harder
task than classification, the class “person” for the first learning task represented in Figure 11a is
considered as background on the second task annotations as shown by Figure 11b. This naturally
results in a label conflict that might induce catastrophic forgetting and harm the final detection
performance.

Although still in its first steps, the CIOD field has a more established corpus of strategies,
and some of them can also be applied within the domain-incremental option (KUNDU et al.,
2020; LI et al., 2022). The first proposed strategy for CIOD dates back to 2017 in the seminal
paper written by Shmelkov, Schmid and Alahari (2017). Since then, several methods have been
presented with the goal of tackling forgetting while making DNNs localize and recognize classes
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(a) Learning t1 (b) Learning t2

(c) Incrementally learning t2 after t1 (d) Incrementally learning a t3 after [t1, t2].

Figure 11 – Examples of learning separately some task t1 and t2; and incrementally learning [t1, t2, t3].

incrementally. For a more concise way of analyzing all the recent contributions to this field, we
performed a systematic review of all the papers that included evaluations within the scope of
continual object detection for class-incremental scenarios.1

3.2 Considerations about the Literature Review

For gathering the most influential work related to the CIOD field, we took advantage
of the fact that the initial paper of Shmelkov, Schmid and Alahari (2017) presented a solid
baseline for the problem, which indirectly guided the field to always make comparisons to it.
In this way, we chose to perform a snowballing literature review followed by the guidelines
described on Wohlin (2014). In this review technique, a paper (or a set of papers) has its citations
and references explored in a forward and backward iterative process in order to find all works
1 Even though the most used term in the literature for models that are able to detect new classes

incrementally is “incremental object detection”, we adopt as a reference in this Ph.D. thesis a more
specific treatment (i.e., CIOD) to not confuse with strategies that only deal with domain-incremental
scenarios.



46 Chapter 3. Continual Object Detection: A Literature Review

that deal with the topic of interest. A general description of the review pipeline is described in
Figure 12.

Start Literature
Search

Find initial set of
important papers

Are there more
papers ?

Yes

Stop!

No

Snowballing

Backward Process 
Looks at the references

Forward Process 
Looks at the citations

Figure 12 – The adopted snowballing review process.

Since the research field is reasonably new, some relevant work will certainly be placed
first on arXiv as pre-prints. Because of that, we decided to use the Google Scholar database for
checking the citations and references since they aggregate all the results from pre-print sources
(e.g., arXiv and bioRxiv) to several popular scientific databases such as IEEE Xplore, ACM
Digital Library, Scopus, and Science Direct.

3.2.1 Research Questions

With this review, we aimed to answer the following research questions regarding CIOD:

RQ1: What are the main benchmarks?

RQ2: What are the main metrics?

RQ3: What are the main proposed strategies and their differences?

RQ4: What is the current state-of-the-art with respect to performance?

3.2.2 Inclusion and Exclusion criteria

For starting the forward and backward process inherent to the snowballing technique, we
considered the following inclusion criteria:

X Papers that cited Shmelkov, Schmid and Alahari (2017) or appeared in its reference list.

Then, we iteratively checked all the papers that made citations (up to March 2022) or
appeared in the reference list of the first pool of gathered papers and proceeded in a loop until no
more studies could be considered. At the same time, for selecting the works that mattered to this
proposal from this large set, we established the following exclusion criteria:
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× Paper was not written in English.

× Paper did not propose a technique, benchmark or metric related to the CIOD paradigm.

× Paper did not go under the peer-review process or, if published as pre-print online, did not
have citations.

As stated above, we adopted the requirement for citations as a quality measure only for
the works published as pre-prints online. This strategy was adopted considering that the CIOD
field is recent (i.e., many papers are placed as pre-prints before being published), and we value
public acceptance as a way to evaluate the paper‘s integrity. After analyzing all related work,
26 research papers followed the criteria and provided answers to the aspects indicated by the
aforementioned research questions.

3.2.3 Literature Review Results

In this section, we proceed with the discussion of the review results and the formulation
of answers to each research question.

3.2.3.1 RQ1: What are the main benchmarks ?

To account for the realism assumption needed for CL, researchers have focused on adapt-
ing current large-scale object detection benchmarks to the class incremental setting. Differently
from CL for classification, where images are labeled with only one class and are presented to
the model once, for CIOD, one image can have several objects with some (or several) of them
unknown at the annotation time.

As an alternative to simulate this scenario, researchers modify the model‘s dataloader,
allowing it to see only images with objects from the classes of interest, making sure to omit
the annotations related to the classes that are not part of the current task. Thus, the likelihood
an image will be presented to the model more than once depends on the number of annotated
classes in the image and which classes are included in the task. Intuitively, for this setting, the
models face an extreme situation where the training data for the subsequent tasks might not
share the same label space as the previous tasks. As a result, the model sees the same image
with different annotations, making it difficult to find feature representations that generalize well
across previous and future tasks.

Most of the CIOD strategies that are presented in Sections 3.2.3.3 were compared
using the adaptation of the traditional VOC and COCO benchmarks, with the introduction of
classes sequentially in single units or pre-defined groups of multiple classes. One caveat of
this setting is that the choice of classes that are part of a task impacts the model‘s predictive
performance. For example, as discussed by Peng, Zhao and Lovell (2020), when working on
the VOC benchmark (20 classes) with a training setting of 19+1 (i.e., learning 19 classes at
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once and one incrementally), learning the class “person” incrementally is a harder task than
learning the object “TV”. This occurs because the person object appears more times (i.e., has
more images associated with it) and constantly occurs with other category objects in the same
image, which, for this learning scenario, results in 40.87% of missing annotations.

For standardization, the incremental versions of the VOC dataset are generated by sorting
the classes alphabetically and generally splitting the dataset into four different scenarios, as
illustrated by Figure 13.

VOC Base Classes 1-10

VOC Base Classes 1-15

VOC Base Classes 1-19

VOC Incremental Classes 11-20

VOC Incremental Classes 16-20

VOC Incremental  
Class 20

VOC Incremental Classes 5-10VOC Base Classes 1-5 VOC Incremental Classes 11-15 VOC Incremental Classes 16-20

Figure 13 – Description of some of the adopted incremental scenarios for the Pascal VOC 2007 dataset.

For the incremental scheme of the COCO dataset, classes are ordered following the ID of
the original labels and usually split in half to create a unique scenario with 40 classes for training
the base model and 40 to be added sequentially at once as shown in Figure 14.

COCO Base Classes 1-40

COCO Incremental Classes 41-80

Figure 14 – Description of an incremental scenario with MS COCO 2014 dataset.

For fair comparisons using the two popular large-scale benchmarks, researchers usually
train the network using 40k and 400k iterations, respectively, for the VOC and COCO when
learning the first task with the most classes. In the following incremental steps, the model is
trained using 5k-10k iterations when only one class is added and the same number of iterations
as the first step if learning multiple classes at once.

Besides the aforementioned benchmarks, some authors used the same incremental-style
adaptation with popular and private large-scale datasets specific to other tasks, such as remote
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sensing (DOTA and DIOR) (CHEN et al., 2020) and autonomous driving (ITRI-DriveNet-60
and KITTI) (SHIEH et al., 2020; RAMAKRISHNAN et al., 2020).

Although not well explored, there were a few benchmarks specifically designed for
evaluating CIOD solutions. Hao, Fu and Jiang (2019) introduced a large-scale dataset of vending
machine products, named Take Goods from Shelves (TGFS), with 38k images and 24 possible
categories. This benchmark also has three coarse classes that cover the categories meant to
instigate class-incremental detection solutions to retail problems. However, until the date of this
review was written, it was not publicly available. Wang et al. (2021b) proposed an egocentric
video dataset that focused on capturing objects and scenes present in the daily life of a university
student. The benchmark, named Objects Around Krishna (OAK), was created for online continual
object detection tasks. For the online continual setting, a continuous temporal stream (i.e., video)
is given to the model, which can only learn from it through one training experience. Afterwards,
some frames are extracted and used for continual evaluation of the model’s performance in the
subsequent learning experiences. As new annotated objects arrive, the model needs to learn them
incrementally throughout the streaming experience. Considering the reality aspect of the task,
this benchmark brings a more plausible and difficult scenario for a real-world mobile robot.

3.2.3.2 RQ2: What are the main metrics ?

The evaluation for CIOD has followed the same structure of traditional object detection
with the use of mAP@.5 for nearly all benchmarks and mAP@0.5−0.95 for COCO like datasets.
However, some researchers noticed that directly comparing the mAP performance of techniques
on the same benchmark would not assess their real efficiency since changes in the training regime
and even framework could cause the same method to present different results. To comply with
that, the difference and the ratio against the upper-bound (i.e., joint-training with all classes
at once) have been commonly used for comparisons (LIU et al., 2020; ACHARYA; HAYES;
KANAN, 2020) since they represent how the performance would be in case data could be fully
accumulated and create a common ground between techniques (i.e., how far we are from the
ideal response). Yet, the gap against the joint-training is only meaningful when both methods
are implemented within the same training regime and framework since only in this situation it
is possible to ascertain which single components really contributed to narrowing the gap. Most
researchers do not consider this setting and pick up results from different papers to compare
against their joint-training outcomes, which does not give more information than checking their
single mAP results.

Beyond that, Chen, Yu and Chen (2019) proposed the use of a Fmap metric, inspired by
the F1− score, in which they calculate the harmonic mean between the mAP values of old and
new classes as described by Equation 3.1.

Fmap =
2 mAPold mAPnew

mAPold +mAPnew
(3.1)
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Yang, Zhou and Wang (2021) introduced a metric called Stability-Plasticity-mAP
SPmAP that considers how much the incremental learning process affects the average stability
and plasticity of a detector. Their metric takes into consideration the mean differences of the
incremental model against the upper-bound for the old and new classes as shown by Equation 3.2.

SPmAP =
Stability+Plasticity

2 +mAPdi f

2
(3.2)

Stability =
1

Nold_classes

Nold_classes

∑
i=1

(mAPjoint,i−mAPinc,i)

Plasticity =
1

Nnew_classes

Nall_classes

∑
i=Nold_classes+1

(mAPjoint,i−mAPinc,i)

mAPdi f =
1

Nall_classes

Nall_classes

∑
i=1

(mAPjoint,i−mAPinc,i)

We also believe that CIOD models can only be compared when the join-training results of
their architecture are available. However, only looking at the discrepancy between the incremental
and joint-training models does not lead to the understanding of which specific aspects of the
strategy are failing. The aforementioned metrics are helpful, but they lack the specificity for
identifying where the incremental model should pay attention. To circumvent that, we propose
two separate metrics that compare and scale the final incremental mAP values for each class
against the joint-training separately for the old and new categories. These metrics are defined as
the rate of stability (RSD) and plasticity (RPD) deficits as described in Equations 3.3 and 3.4.

RSD =
1

Nold_classes

Nold_classes

∑
i=1

mAPjoint,i−mAPinc,i

mAPjoint,i
*100 (3.3)

RPD =
1

Nnew_classes

Nnew_classes

∑
i=Nold_classes+1

mAPjoint,i−mAPinc,i

mAPjoint,i
*100 (3.4)

Our metrics allow the direct interpretation of how much an incremental model compares
to the upper-bound in remembering old classes and learning the new ones (e.g., the model has
a 10% worse performance for recognizing previous classes, but only a 2% deficit for learning
new categories when compared to the upper-bound). Therefore, for this context, a CIOD strategy
should aim not only to reach a decent final mAP value and high upper-bound ratio but also
to keep low and balanced stability and plasticity deficits. Additionally, the ratios can assume
negative values, indicating that the incremental model has performed better than joint-training
for some classes and reinforcing the relationship with standard CL metrics such as BWT. We
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applied the rate of plasticity and stability deficits along with the upper-bound difference during
the performance analysis of Section 3.2.3.4.

3.2.3.3 RQ3: What are the main proposed strategies and their differences ?

For dissecting the contributions of each paper, we evaluated the selected works on their
choice of strategy to mitigate forgetting, used architecture and backbone, benchmarks, and
evaluation methods. The results are presented in Table 2 with some colored cells to aid in the
analysis.

Additionally, to better examine the main contributions of each paper, we organized their
takeaways primarily based on the type of chosen strategy to prevent forgetting. Considering that
several papers applied more than one, we clustered them based on the strategy pointed to be their
main highlight and attempted to present the takeaways for each selected topic in chronological
order.

Knowledge Distillation

Knowledge Distillation, as mentioned previously, can be used as a regularization method
by enforcing the incremental model in task ti+1 to account for the model’s previous states and
outputs obtained when training for task ti (LI; HOIEM, 2017).

Shmelkov, Schmid and Alahari (2017) introduced the first work to deal with the CIOD
problem through the use of “vanilla” knowledge distillation. The authors adapted the Fast-RCNN
architecture to learn incrementally by using a copy of the network trained on the base classes as
the teacher and another as the student. The teacher has its weights frozen and the student has to
not only detect the newly introduced categories but also repeat the distribution of responses of
the frozen teacher. This behavior is achieved by using an additional regularization loss based
on the bounding box predictions and logits produced by both networks, inspired by the work of
Li and Hoiem (2017). They chose to go with a strategy that used external proposals instead of
learned ones because of their supposed class-agnostic robustness (GIRSHICK, 2015). Since they
were the first to propose a strategy for this problem, most consecutive papers built solutions on
top of their regularization approach and compared them to it.

Hao et al. (2019) adapted the Faster-RCNN architecture to the CIOD context with the
expansion of the RPN to consider the new class as foreground. They evaluated the classification
results using a fully connected network and a nearest prototype classifier. Additionally, they
artificially avoided the possibility of background label conflict between old and new data by
excluding images that contained objects from multiple class groups, which is unreal for a real-
world setting. In a similar strategy, Chen et al. (2020) expanded the RPN for dealing with
new classes and used knowledge distillation on the outputs of a teacher network to allow the
model to detect remote sensing objects incrementally with minimum forgetting using the specific
domain datasets proposed by Li et al. (2020) and Xia et al. (2018). Zhou et al. (2020) applied
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Table 2 – Class-Incremental Object Detection main papers

References Strategy Benchmark Backbone Object Detector Evaluation

Shmelkov, Schmid and Alahari (2017) (ILOD) Knowledge Distillation
VOC 2007
COCO 2014 ResNet-50 Fast-RCNN

Multiple Classes
Sequential Classes

Li et al. (2018) (MMN) Parameter Isolation VOC 2007 VGG-16 SSD-300
Multiple Classes
Sequential Classes

Guan et al. (2018) Pseudo-Labels
VOC 2007
TSD-MAX Darknet-19 Yolo-V2 Multiple Classes

Hao et al. (2019) (CIFRCN) Knowledge Distillation
VOC 2007
COCO 2014 ResNet-101

Faster-RCNN +
Nearest Neighbor

Multiple Classes
Sequential Classes

Chen, Yu and Chen (2019) Knowledge Distillation VOC 2007 ResNet Faster-RCNN
Multiple Classes
Sequential Classes

Li et al. (2019) (RILOD)
Knowledge Distillation
External Data

VOC 2007
iKitchen ResNet-50 RetinaNet

Multiple Classes
Sequential Classes

Hao, Fu and Jiang (2019) (FCIOD)
Knowledge Distillation
Replay

TGFS ResNet-101 Faster-RCNN Multiple Classes

Liu et al. (2020) (IncDet)
Pseudo-Labels
EWC

VOC 2007
COCO 2014 ResNet-50

Fast-RCNN
Faster-RCNN

Multiple Classes
Sequential Classes

Acharya, Hayes and Kanan (2020) (RODEO) Replay
VOC 2007
COCO 2014 ResNet-50 Fast-RCNN Sequential Classes

Peng, Zhao and Lovell (2020) (Faster ILOD) Knowledge Distillation
VOC 2007
COCO 2014 ResNet-50 Faster-RCNN

Multiple Classes
Sequential Classes

Zhou et al. (2020) Knowledge Distillation
VOC 2007
COCO 2014 ResNet-50 Faster-RCNN

Multiple Classes
Sequential Classes

Zhang et al. (2020) (DMC)
Knowledge Distillation
External Data

VOC 2007
ResNet-50 /
ResNet-34 RetinaNet Multiple Classes

Liu et al. (2020) (AFD)
Knowledge Distillation
Replay

KITTI / Kitchen
VOC 2007
COCO 2014
Comic / Watercolor

SE-ResNet-50 Faster-RCNN Multiple Classes

Yang et al. (2020)
Pseudo-Labels
Knowledge Distillation

VOC 2007
COCO 2014 ResNet-50 Faster-RCNN

Multiple Classes
Sequential Classes

Shieh et al. (2020) Replay
VOC 2007
ITRI-DriveNet-60 Darknet-53 Yolo-V3 Multiple Classes

Ramakrishnan et al. (2020) (RKT) Knowledge Distillation
VOC 2007
VOC 2012
KITTI

ResNet Fast-RCNN
Multiple Classes
Sequential Classes

Chen et al. (2020) Knowledge Distillation DOTA / DIOR
Custom with
FPN

Custom with
two stages Multiple Classes

Peng et al. (2021) (SID) Knowledge Distillation
VOC 2007
COCO 2014 ResNet-50

CenterNet
FCOS

Multiple Classes
Sequential Classes

Joseph et al. (2021) (ORE)
Pseudo-Labels
Replay

VOC 2007 ResNet-50
Faster-RCNN +
Nearest Neighbor Multiple Classes

Yang, Zhou and Wang (2021) Knowledge Distillation
VOC 2007
COCO 2014 ResNet-50 Faster-RCNN

Multiple Classes
Sequential Classes

Yang et al. (2021) Replay VOC 2007 ResNet-50 Faster-RCNN Multiple Classes

Kj et al. (2021) (Meta-ILOD)
Knowledge Distillation
Replay Meta-Learning

VOC 2007
COCO 2014 ResNet-50 Faster-RCNN

Multiple Classes
Sequential Classes

Haq et al. (2021) Knowledge Distillation VOC 2007 Darknet-53 Yolo-V3 Sequential Classes

Zhang et al. (2021) Parameter Isolation VOC 2007
Darknet-53 +
ResNet Yolo-V3 Sequential Classes

Dong et al. (2021)
Knowledge Distillation
External Data

VOC 2007
COCO 2014 ResNet-50 Faster-RCNN

Multiple Classes
Sequential Classes

Wang et al. (2021b) - OAK ResNet-50 Faster-RCNN Sequential Classes
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distillation on the detection heads and RPN outputs along with a supplementary sampling strategy
to select proposals that tend to be from the foreground classes. Ramakrishnan et al. (2020), on
the other hand, hypothesized that the relationship between region proposals and the ground truth
annotations encoded the detector‘s knowledge. In this way, the authors introduced a strategy to
select proposals based on this relation and applied distillation on the filtered samples. Haq et

al. (2021) evaluated distilling knowledge only on the logits for the YOLO-V3 architecture in a
setting with only two classes and showed better results than other CL strategies.

Beyond the basic distillation of the detector outputs, several methods proposed addition-
ally to distill intermediate features of the base model. Chen, Yu and Chen (2019) presented the
first work that made use of this type of distillation through what they named a “hint loss”. Their
final loss also considered the prediction confidence of the initial model for regularization, but
the final performance seemed to suffer from plasticity issues. Peng, Zhao and Lovell (2020)
made use of the Faster-RCNN and introduced an additional adaptive distillation step on the
features and RPN outputs. They further investigated the negative impact that having old class
objects within the new class images has on the performance of the RPN and concluded that
it was not that significant, which explains why Faster-RCNN networks generalize better than
solutions with external proposals. Peng et al. (2021) presented the use of distillation not only on
intermediate features, but also on the relations (distances) between features of different samples
for anchor-free object detectors. Yang, Zhou and Wang (2021) proposed the preservation of
channel-wise, point-wise, and instance-wise correlations between some feature maps of the
teacher and student networks in order to maintain the performance on the old classes while
optimizing for the new ones.

Replay

Replay strategies usually prevent forgetting by storing samples (or trained generative
models) from each previous task to balance the training for the subsequent tasks. In this sense,
Hao, Fu and Jiang (2019) employed the use of a small buffer of samples along with logits
distillation to perform better than its competitors in the incremental learning of common objects
from vending machines. Shieh et al. (2020) proposed the use of experience replay with different
buffer sizes and the YOLO-V3 architecture for the problem of adding multiple classes at
once to an object detector. They evaluated their approach in a common benchmark and on a
private autonomous driving dataset. Acharya, Hayes and Kanan (2020) suggested using product
quantization to compress feature maps without losing their fine-grained resolution and saving
them on a buffer, which allowed for keeping a low-memory profile while performing well on
some incremental benchmarks. Liu et al. (2020) presented the use of an adaptive exemplar
sampling for selecting replay instances and proposed different ways of applying the attention
mechanism within the feature distillation procedure as a strategy to hinder forgetting. They
evaluated their approach on various benchmarks and diverse scenarios in which the incremental
data did not share the same domain as the base classes. Yang et al. (2021) proposed the use of



54 Chapter 3. Continual Object Detection: A Literature Review

a pre-trained language model to constrain the topology of the feature space within the model
and capture the nuances of semantic relations associated with each class name. Their solution
was meant to be used for open-world object detection. Still, it could also deal with incremental
detection by using a replay buffer with prototypes for each class to prevent forgetting old
categories.

Parameter Isolation

Parameter isolation solutions work by the assumption that the knowledge to perform
tasks after training is purely within the model’s weights. To prevent the current task’s knowledge
from vanishing in future updates, the model could have its parameters frozen and architecture
modified to account for the new learning experiences (RUSU et al., 2016).

Li et al. (2018) introduced a simple strategy for dealing with forgetting based on
“mining” important network parameters and freezing them. For each task, they sorted the weight
parameters by their magnitude and stored their values and positions in a memory buffer so that
when training for the next task, the parameters would be reset to their original values. Zhang et al.

(2021) proposed a compositional architecture based on the mixture of compact expert detectors.
They trained a YOLO-V3 network using a sparse mechanism for each detection task and then
applied the pruning technique suggested by Liu et al. (2017) to eliminate unimportant channels
and residual blocks. For selecting which expert to forward the inputs to, they used a ResNet-50
classifier as the “oracle”. Both strategies presented interesting results since the final model was
able to keep a low memory footprint and little to no forgetting of old classes. Yet, their proposed
solutions were only evaluated in limited scenarios (e.g., only three incremental tasks), making it
difficult to compare to other techniques.

Pseudo-Labels

Considering that several issues of the CIOD setting are caused by the lack of annotations
in new tasks that account for the old “already-known” classes, generating “fake-labels” based on
the current knowledge of the model about these old classes proved to be a valuable alternative.

Guan et al. (2018) showed that when the base classes instances are also present in the
images of the incremental categories, self-labeling using the own model could be a good enough
strategy for dealing with forgetting. Liu et al. (2020) identified that pseudo-labels are an essential
step when one wants to regularize the weight of a network with EWC. Moreover, they also
introduced a novel Huber regularization loss for constraining the gradients of each parameter
based on their relevance to the old classes. Yang et al. (2020) presented the use of pseudo-labels
on the new classes images along with the application of general feature and output distillation
and the learning of a residual model to compensate for the discrepancies between the teacher
and student networks. Joseph et al. (2021) suggested the application of self-labeling to identify
potential unknown objects on an image for open-world object detection. To prevent forgetting,
they save a replay buffer with class prototypes and apply contrastive clustering in the feature
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space so that new classes can be added sequentially.

External Data

Also, to compensate for the possible differences in class distribution between the old and
new tasks, some strategies considered using proper external data instead of storing samples or
generating fake labels for the new task‘s images.

Li et al. (2019) used a one-stage detector (RetinaNet) and not only distilled the knowl-
edge of outputs and intermediate features but also idealized a way to automatically collect and
annotate new data from search engines such as the Google Image Search tool. These images
were then used during the incremental training and testing schemes for improved performance.
Zhang et al. (2020) proposed the independent training of one-stage networks on the base and
new classes and the further transfer of their specific knowledge to a new separate network via
knowledge distillation using an external unlabeled dataset. Dong et al. (2021) explored the
scenario of non co-occurrence of old classes in new task images. They proposed a blind sampling
strategy to select samples from large labeled in-the-wild datasets (e.g., COCO). To prevent
forgetting, they designed a distillation strategy based on the remodeled output of the detection
head, RoI masks on the image-level, and heatmaps on the instance level.

Meta-Learning

As described previously, Meta-Learning can be used to contain the model’s forgetting by
framing it as a meta-level objective to the network. For this purpose, Kj et al. (2021) produced a
hybrid strategy that relied on knowledge distillation, replay, and meta-learning to avoid forgetting.
Along with the use of knowledge distillation on the outputs and backbone features, they used the
gradient conditioning technique proposed by Flennerhag et al. (2019) to regularize the weight
updates on some layers of the detector RoI head. This technique allowed fast adaptation to new
tasks by fine-tuning the model with data from new classes and a few samples of old ones stored
on a replay buffer.

Regarding the backbones used, the ResNet50 pre-trained on ImageNet-1k was the most
used feature extractor for two-stage detectors and even some one-stage solutions (e.g., RetinaNet,
Centernet and FCOS). Strategies that involved the YOLO architecture used mostly variations of
the Darknet backbone. Considering that the ResNet50 was the backbone of the first work in the
field, we believe that most posterior works followed this structure for making fair comparisons.
In all papers, the weights of the backbone were not kept fixed even during the incremental
learning steps to allow the fine-tuning of the feature extractor.

Several works used two-stage detectors and expanded the RPN network to account for the
changes in the notion of “objectness”. Interestingly, the strategies focused on one-stage detectors
did not propose specific mechanisms to prevent the drift in the background representation. These
works seemed to prefer the use of one-stage solutions solely by their performance on the initial
benchmark and improved inference speed (LI et al., 2019; PENG et al., 2021).
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Nearly all methods were implemented in Pytorch, while only three claimed to use
other frameworks, such as Tensorflow (SHMELKOV; SCHMID; ALAHARI, 2017; ZHOU
et al., 2020) or MatConvNet (LI et al., 2018). In addition, some papers open-sourced their
implementations, but we noticed a consistent lack of documentation in their repositories, which
difficult the reproducibility and standardization of results (see Section 3.3 for a discussion on
the lack of standards). For a new practitioner in CIOD, we point the readers to the efforts made
by Joseph et al. (2021) and Kj et al. (2021) to share their Pytorch implementations2,3 built on
top of Detectron2 (WU et al., 2019b) as starting points. For a reader more versed in Tensorflow,
and who would be willing to analyze the field’s “base” work, the original implementation of
Shmelkov, Schmid and Alahari (2017) is also publicly available4.

3.2.3.4 RQ4: What is the current state-of-the-art with respect to performance ?

For performing an investigation on which strategies have worked better for CIOD,
we need to find common ground among them. Yet, there are no standards for frameworks,
architecture backbones, and training regimes concerning paper reimplementations. Some papers
tried to replicate the number of iterations, learning rates, and procedures used by Shmelkov,
Schmid and Alahari (2017), but there is a clear difference in the obtained results that can be seen
mainly for the joint training cases that used the same architecture (PENG; ZHAO; LOVELL,
2020; HAO et al., 2019). In this way, it is difficult to state that some results are better than others
because of the proposed policies and not due to the better selection of hyperparameters, which
has been shown previously to highly influence generalization in the CL setting (MIRZADEH
et al., 2020). Therefore, using a consistent evaluation procedure is essential for identifying the
most promising directions in the field.

Tables 3, 4 and 5, present the results of each paper that was evaluated on the PASCAL
VOC 2007 and MS COCO 2014 following the main benchmarks described in Section 3.2.3.1 for
when multiple and singles classes are added sequentially. The metrics proposed in Section 3.2.3.2
are used for evaluating the real impact of each strategy according to their upper bound. Because
our metrics also need access to the mAP of each class for both the incremental and joint-training
models, some previously discussed works have a † symbol that indicates that the paper only
provided the mean mAP value for the old and new classes in groups for each setting.

In Table 3, by looking at the final mAP and the values of the upper-bound ratios for all
incremental scenarios, it is possible to conclude that for the VOC benchmark, as more classes are
added at once, the more complex the task becomes for the detectors. Strategies based on pseudo-
labels and replay demonstrated consistent results. In contrast, pure knowledge distillation-based
techniques struggled more and had an average plasticity deficit of more than 10%, which might
be an indication that this type of regularization needs to be adjusted carefully to not harm the
2 https://github.com/JosephKJ/iOD
3 https://github.com/JosephKJ/OWOD
4 https://github.com/kshmelkov/incremental_detectors
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Table 3 – VOC 2007 results for one or multiple classes added at once

VOC 2007 Incremental (1-19 + 20)

Paper Final mAP Ωall ↑ RSD (%) ↓ RPD (%) ↓

Shmelkov, Schmid and Alahari (2017) (ILOD) 68.40 0.980 1.90 21.11
Li et al. (2018) (MMN) 77.50 0.991 1.09 -4.24
Li et al. (2019) (RILOD) 65.00 0.870 10.93 48.67
Peng, Zhao and Lovell (2020) (Faster ILOD)† 68.56 0.972 0.60 44.27
Zhou et al. (2020)† 69.60 0.991 -0.45 24.82
Zhang et al. (2020) (DMC) 70.80 0.948 4.80 12.33
Yang et al. (2020) 72.13 0.977 0.93 29.14
Shieh et al. (2020) 68.90 0.941 3.41 53.56
Ramakrishnan et al. (2020) (RKT) 67.20 0.984 1.00 14.29
Peng et al. (2021) (SID)† 68.30 0.954 4.61 4.61
Joseph et al. (2021) (ORE) 68.89 0.977 1.66 14.51
Yang et al. (2021)† 69.82 0.990 0.41 11.64
Yang, Zhou and Wang (2021) 69.70 0.973 2.11 12.17
Kj et al. (2021) (Meta-ILOD) 70.20 0.934 5.82 21.74
Dong et al. (2021)† 72.20 0.999 -1.38 29.88

VOC 2007 Incremental (1-15 + 16-20)

Paper Final mAP Ωall ↑ RSD (%) ↓ RPD (%) ↓

Shmelkov, Schmid and Alahari (2017) (ILOD) 65.90 0.944 3.60 12.33
Liu et al. (2020) (IncDet)† 70.40 0.954 0.44 12.12
Peng, Zhao and Lovell (2020) (Faster ILOD)† 67.94 0.963 -3.60 25.44
Yang et al. (2020) 69.71 0.944 1.92 17.75
Peng et al. (2021) (SID)† 62.20 0.869 13.13 13.13
Joseph et al. (2021) (ORE) 68.51 0.972 0.44 10.71
Yang et al. (2021)† 69.93 0.992 -3.55 13.93
Yang, Zhou and Wang (2021) 66.50 0.929 5.56 11.92
Kj et al. (2021) (Meta-ILOD) 67.80 0.902 6.58 20.62
Dong et al. (2021)† 65.30 0.903 2.49 31.67

VOC 2007 Incremental (1-10 + 11-20)

Paper Final mAP Ωall ↑ RSD (%) ↓ RPD (%) ↓

Shmelkov, Schmid and Alahari (2017) (ILOD) 63.10 0.904 7.66 11.42
Guan et al. (2018) 68.80 0.922 11.06 4.68
Chen, Yu and Chen (2019)† 33.50 0.474 47.05 69.02
Li et al. (2019) (RILOD) 67.90 0.909 10.42 7.67
Liu et al. (2020) (IncDet)† 70.80 0.959 4.52 1.18
Peng, Zhao and Lovell (2020) (Faster ILOD)† 62.16 0.881 -4.79 28.50
Zhou et al. (2020)† 61.80 0.880 9.16 14.89
Zhang et al. (2020) (DMC) 68.30 0.914 7.63 11.29
Yang et al. (2020) 66.21 0.897 5.98 14.74
Shieh et al. (2020) 65.50 0.895 8.78 14.04
Ramakrishnan et al. (2020) (RKT) 63.10 0.924 1.25 13.85
Peng et al. (2021) (SID)† 59.80 0.835 16.48 16.48
Joseph et al. (2021) (ORE) 64.58 0.916 14.76 2.01
Yang et al. (2021)† 64.96 0.921 14.86 0.89
Yang, Zhou and Wang (2021) 66.10 0.923 7.29 8.02
Kj et al. (2021) (Meta-ILOD) 66.30 0.882 8.51 15.07
Dong et al. (2021)† 59.90 0.828 20.33 13.97
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learning of new categories. Nevertheless, for the settings with 5 and 10 classes added at once,
although the initial baseline from Shmelkov, Schmid and Alahari (2017) presented a final mAP

often below its competitors, it also offered a good balance of stability and plasticity according to
its upper-bound, which contributes to why this technique is still relevant for comparisons.

Probably due to the increased complexity when working with several online updates,
there were not many solutions to the sequential setting compared to its counterpart scenario,
as shown in Table 4. For when only five classes were being added sequentially, the parameter
isolation strategy of Li et al. (2018) demonstrated outstanding performance in the final mAP and
stability-plasticity metrics. Also, in their unique participation, the RODEO method from Acharya,
Hayes and Kanan (2020) confirmed that replay is a suitable tool for dealing with consecutive
one-class updates. Interestingly, the IncDet strategy from Liu et al. (2020) performed well on
the setup of multiple groups being added sequentially but seemed to fail when learning single
classes alone. This may be related to how strongly the regularization penalty was adjusted to
prevent the parameters from deviating much from the previously known distribution. In general,
although having the same number of classes, the final mAP was clearly lower in this setting when
compared to adding multiple categories at once. This corroborates that the “tug-of-war” on the
parameters is happening actively in each new class network update.

Table 4 – VOC 2007 results for one or a group of classes added sequentially

VOC 2007 Incremental (1-15 + 16 + ... + 20)

Paper Final mAP Ωall ↑ RSD (%) ↓ RPD (%) ↓

Shmelkov, Schmid and Alahari (2017) (ILOD) 62.40 0.894 6.89 22.56
Li et al. (2018) (MMN) 76.00 0.972 2.21 4.48
Liu et al. (2020) (IncDet)† 67.60 0.916 1.12 35.87
Yang et al. (2020) 59.62 0.807 7.98 56.45
Peng et al. (2021) (SID)† 48.90 0.683 31.70 31.70
Kj et al. (2021) (Meta-ILOD) 65.70 0.874 8.77 25.08

VOC 2007 Incremental (1-10 + 11 + ... + 20)

Paper Final mAP Ωall ↑ RSD (%) ↓ RPD (%) ↓

Chen, Yu and Chen (2019)† 33.50 0.474 47.05 69.02
Acharya, Hayes and Kanan (2020) (RODEO)† 63.72 0.887 13.78 8.95
Zhou et al. (2020)† 46.20 0.658 22.46 45.82

VOC 2007 Incremental (1-5 + 6-10 + 11-15 + 16-20)

Paper Final mAP Ωall ↑ RSD (%) ↓ RPD (%) ↓

Hao et al. (2019) (CIFRCN) 48.50 0.694 36.62 12.09
Liu et al. (2020) (IncDet)† 62.60 0.848 11.58 21.67
Yang et al. (2020) 49.05 0.664 38.50 3.00
Ramakrishnan et al. (2020) (RKT) 52.90 0.775 20.56 29.23
Peng et al. (2021) (SID)† 36.20 0.506 49.44 49.44
Yang, Zhou and Wang (2021) 27.66 0.386 66.30 44.77

Considering the results for the COCO incremental benchmark exhibited in Table 5,
techniques based on Faster-RCNN and feature distillation presented decent results. Even though
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the number of classes is higher than in the VOC benchmark, the upper-bound ratio shows that as
the network is updated all at once, the forgetting condition is not as strong as in the sequential
update example. Beyond that, methods based on self-labeling demonstrated results that justify
their effectiveness for dealing with scenarios where a substantial number of classes was already
introduced.

Table 5 – MS COCO 2014 results for multiple classes being added at once

MS COCO Incremental (1-40 + 41-80)

Paper mAP@.5 mAP@[.5, .95] Ωall [@.5] ↑

Shmelkov, Schmid and Alahari (2017) (ILOD) 37.40 21.30 0.982
Liu et al. (2020) (IncDet)† 49.30 29.70 0.978
Peng, Zhao and Lovell (2020) (Faster ILOD)† 40.10 20.64 0.939
Zhou et al. (2020)† 36.80 22.70 0.868
Yang et al. (2020) 43.75 24.23 0.882
Peng et al. (2021) (SID)† 41.60 25.20 0.885
Yang, Zhou and Wang (2021) 44.62 - 0.854
Kj et al. (2021) (Meta-ILOD) 40.50 23.80 0.794
Dong et al. (2021)† 40.90 22.50 0.893

Overall, it is clear that all methods suffered from some aspect of forgetting and were
limited to the joint-training baseline in all benchmarks. It is important to mention that this might
not always be the case and that some CL strategies may surpass this baseline, which has been
the case for some based on parameter freezing mechanisms (YOON et al., 2017). The RKT
strategy proposed by Ramakrishnan et al. (2020) was the best knowledge distillation method on
the benchmarks it participated; however, most of the pure distillation-based techniques presented
low plasticity probably due to the constraints imposed on the original weights. The IncDet model,
which involved EWC regularization and pseudo-labeling, showed the most consistent results in
all evaluated benchmarks. Yet, some strategies based on parameter isolation and replay that did
well in individual benchmarks, such as MMN and ORE, demonstrated that there is still room for
exploring alternatives and possibly combining them.

Regarding architecture choice, although one-stage detectors have fast inference and
show predictive performance on par with their two-stage counterpart, there is no evidence (and
analysis) that one family of detectors can be more prone to forgetting or adaptability than the
other. By considering the takeaways from Section 3.2.3.3, most CIOD methods were built on top
of regular strategies already used for CL and performed decently for the evaluated benchmarks.
Nonetheless, methods that presented both novelty and effectiveness, such as ORE (JOSEPH et

al., 2021) and the one from Yang et al. (2021), were in fact optimizing for open-world detection.
This can be a fair indication that such a related field can be further explored in the context of
incremental detection.

This review did not consider other desired characteristics for the CL desiderata, such
as the low memory footprint, which usually tends to overthrow parameter isolation strategies
and fast adaptability to new categories. The meta-learning hybrid method from Kj et al. (2021)



60 Chapter 3. Continual Object Detection: A Literature Review

presented results slightly superior to other knowledge distillation techniques. Regardless, the
method quickly adapted to new tasks using only 10 replay samples for each category during
fine-tuning. In this way, considering the CL desiderata for object detection discussed in Chapter 2,
meta-learning hybrid methods can play an interesting role in class-incremental scenarios and
should be investigated more.

3.3 Trends and Research Directions

Considering the main takeaways of the performed systematic review, in this section, we
briefly discuss some of the observed trends and possible research directions in the CIOD field.

Realistic CIOD benchmarks: Although CIOD strategies have been producing encour-
aging results with respect to the joint-training baseline, most of the benchmarks used to evaluate
such techniques are adaptations of conceivable real scenarios. An agent that is interacting and
learning from a visual stream of data continuously can face new classes, that were not known
previously, as well as changes in data and even label distribution. Also, depending on how much
computing is available, situations for learning from one pass through the data (i.e., continual
online learning) might be needed and explored. This leaves room for researchers to elaborate
and propose benchmarks that improve on the potential generality and applicability of CIOD.

Hybrid methods can prevent more forgetting: The best-performing solutions to the
class-incremental problem in object detection involved a combination of techniques to avoid
catastrophic forgetting. This outcome agrees with the findings from other computer vision
tasks (QU et al., 2021) and corroborates with the fact that even the brain has multiple ways
to prevent subtle task interference (HASSABIS et al., 2017). One key point common to most
hybrid methods was the fine-tuning of new classes given the representation of old categories
using pseudo-labels or replay samples. This fine-tuning resulted in better results but can require
a large buffer of samples and, similarly, an extensive hyperparameter search which might prevent
its application in the real world.

Knowledge Distillation may (or may not) be all you need: It is straightforward to
notice from Table 2 that most proposed strategies in the CIOD field use knowledge distillation as
their primary mechanism to mitigate the effects of catastrophic forgetting. Comparing the results
of the selected papers on the PASCAL VOC 2007 and MS COCO incremental benchmarks
considering the metrics that assess the stability-plasticity of solutions, the differences between
a recently proposed distillation technique such as the one from Peng et al. (2021) and the first
work of Shmelkov, Schmid and Alahari (2017) are subtle. This either means that researchers
might have been overfitting their solutions to the benchmarks or that simple logits and bounding
box distillation are a considerably strong baseline. We believe the latter to be a more reasonable
explanation.

Self-supervised learning for robust representations: Self-supervised learning has
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shown promising results for various closely related tasks, including continual classification,
few-shot object detection, and weakly supervised object detection (BAR et al., 2021; HU et

al., 2022; HUANG et al., 2021). Still, there seems to be a lack of papers that focus on the
possible contributions to the field of continual object detection. Assuming the generalization
power normally associated with self-supervised representations, their exploration in the context
of CIOD can be expected.

Efforts on meeting the CL Desiderata for object detection: The majority of the cur-
rently published CL research is done focusing on improving the last 0.01% of performance,
sometimes considering unrealistic scenarios (e.g., use of task labels at test time). However, for
real-world focused applications, strategies should also contemplate practical implementation
aspects such as the computational burden and frequency of updates for the model. For class-
incremental detectors, the desiderata described in Chapter 2 give an intuition of the main aspects
that future research could focus on in order to increase practical adoption for researchers in
academia and industry.

Standardization of implementations for CIOD: Research in CIOD suffers from poor
standardization and has not fully adopted the advent already developed by the CL community
for reproducibility, such as the Avalanche and Continuum libraries (LOMONACO et al., 2021;
DOUILLARD; LESORT, 2021). Besides that, there is no standard implementation for most of
the discussed solutions to leverage fair comparisons. Although some available implementations
are provided using the Detectron2 framework or its old form (PENG; ZHAO; LOVELL, 2020;
JOSEPH et al., 2021; KJ et al., 2021), the interpretation of the changes to the original framework
that are needed to reach the same results is often difficult due to the abstract structure of the
repository. One step towards improving on this issue is the open-sourcing of the code for the
regular baselines evaluated when proposing a new benchmark. Ideally, the implementation should
envision using a well-established framework specific to the field, where a better description of
the differences and human-readable code can be maintained. Nevertheless, the metrics proposed
in this paper are also available as a tool for performing honest comparisons between solutions
for the same benchmark.

Overcoming the overestimation of results: As also found in a recent survey for few-
shot object detection (HUANG et al., 2021), most works evaluated on the VOC and COCO
datasets are using their training and validation splits for fitting the models and the testing set
for selecting hyperparameters. This can lead to an overestimation of results and generalization
problems when selecting techniques for good performance in the real world. A straightforward
fix would be to use the original train/val/test splits as indicated by the datasets organizers and
not perform contradictory actions to favor the proposed methods. Yet, as most researchers are
using this setup to report their performance on the current benchmarks, it is sadly expected that
the follow-up papers still keep the same choice of splits. We believe researchers should be more
careful when proposing and evaluating their strategies for new incremental benchmarks to ensure



62 Chapter 3. Continual Object Detection: A Literature Review

a not biased outcome.

3.4 Related fields

Some related computer vision tasks already involve components that deal with incre-
mental object detection in their pipeline. This section discusses a few of them shortly to make it
possible for the readers to connect with other fields that can inspire and contribute to the current
research of continual object detectors.

Open-World Object Detection

The set of possible objects a detector can encounter at test time in the wild is limitless.
For dealing with the unknown and adapting to it, the field of open-world object detection has
emerged as a possible solution to unify the paradigms of open-set and open-world recognition to
class-incremental learning with object detectors (MUNDT et al., 2020; BENDALE; BOULT,
2015). The solutions in this category are usually the combination of a structure to detect out-of-
distribution samples (i.e., unknown objects) and a specific module to allow learning from them
in an incremental manner. By modeling the unknown, researchers believe it is possible to reduce
the label conflict and therefore enable more autonomous detection pipelines (JOSEPH et al.,
2021).

Incremental Few-shot object detection

When learning incrementally in robotics applications, models can be required to learn
from data streams with only a few batches and several unseen classes. This scenario makes
it difficult to apply the traditional batch learning used with neural networks and therefore
needs a particular solution. The field of Incremental Few-Shot Object Detection (iFSD) looks
for fast adaption of a trained network in situations of a low-data regime for learning novel
classes (PEREZ-RUA et al., 2020). This scenario is naturally more difficult than the plain CIOD
paradigm since it assumes no large dataset is provided. Arguably, the current results on their
benchmarks show a trend to focus more on the adaption to new classes than on avoiding the
forgetting of old ones (LI et al., 2021). This might indicate that research should be directed first
at how to solve a less complicated problem (i.e., class-incremental object detection with large
batches), which can give hints on how to move forward to more complex scenarios.

Continual Semantic Segmentation

The field of Continual Semantic Segmentation deals with the same difficulties of contin-
ual object detection (e.g., background label conflict) but at the pixel level. Most of the current
solutions that have excelled in the field involve the techniques described in this review, such as
pseudo-labeling (DOUILLARD et al., 2021) and knowledge distillation (MICHIELI; ZANUT-
TIGH, 2019; CERMELLI et al., 2020). Its application has a direct impact on real-world robotics
navigation and should always be looked at closely by CIOD researchers for insights.
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Zero-shot Object Detection

The Zero-Shot Object Detection paradigm consists of learning to detect new categories
that are not present in the training set by using non-visual features that describe them (BANSAL
et al., 2018). Specifically, a pre-trained language model was originally used to model the
semantics associated with the class labels. These relations were then used to guide the learning
and inference of new unseen classes by a detector. The method proposed by Yang et al. (2021),
which was described in Section 3.2.3.3, combined a zero-shot strategy with exemplar replay and
showed decent results not only for open-world recognition (their primary goal) but also for some
CIOD benchmarks. This might be an indication that innovations can be appropriately adapted
and shared among these fields.

3.5 Final Considerations
This systematic review investigated how continual learning solutions have been applied

to object detection tasks covering the topic‘s most explored benchmarks, metrics, and strategies.

For the literature review, we analyzed the reported performance of the leading papers
in two popular benchmarks for the class-incremental scenario with the lens of a new metric
explicitly proposed to look at how well a detector adapts and maintains its internal knowledge. We
found out that even though most of the current research appeals to the single use of regularization-
based techniques, specifically knowledge distillation, the methods that presented the best overall
results on the evaluated benchmarks usually combine such techniques with replay, self-labeling,
and meta-learning.

Finally, we discussed some of the main trends in the field, pitfalls and how researchers
may avoid them, and a few related tasks that can inspire the proposal of new methods and
possible future research intersections.
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CHAPTER

4
EXEMPLAR REPLAY FOR CONTINUAL

OBJECT DETECTION

In this chapter, we investigate various methods for selecting exemplars to be used in
replay-based solutions for COD.

4.1 Introduction

Within the field of machine learning, CL has become a cornerstone for real-world
applications, allowing models to adapt and learn from new data incrementally without forgetting
previously learned knowledge. Among the various strategies for CL, replay has become the
most widely-used approach due to its fast setup and guaranteed performance against catastrophic
forgetting, even though it is not as explored as its counterparts in academia (ROLNICK et al.,
2019; PELLEGRINI et al., 2020; PELLEGRINI et al., 2022). In replay-based CL, a small subset
of representative samples, known as exemplars, are stored with their annotations in a memory
buffer and periodically revisited to minimize forgetting. This enables the model to refresh its
“memory” of previous tasks, thus maintaining performance on earlier learned objectives while
simultaneously adapting to new tasks (RATCLIFF, 1990).

Despite the prevalent use of replay in practical applications, there remains an open
question regarding the optimal employment of replay for specific fields such as COD. When
selecting replay samples, object detection poses distinct objectives compared to classification
tasks since the rehearsal can take into account specific detection aspects, such as the unbalanced
nature of the task and the different number of object instances in each image. Consequently, the
exemplar selection and replay strategies that work well for classification might not be sufficient
or the best fit when directly applicable to object detection. The absence of clear guidelines for
replay in COD highlights the need for tailored solutions and research to adequately address this
gap.
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In this chapter, we investigate the use of different strategies to populate replay buffers in
order to optimize the final performance of a COD task that involves class-incremental learning.
By considering the unique challenges of COD, we aim to shed light on the best practices for
replay in this context, offering guidance and methodologies that can be generalized to real-world
applications.

4.2 Related Work

Different strategies have been traditionally employed for replay-based CL in classification
tasks, such as the use of a random or class-balanced sample picker (HAYES et al., 2021). Yet,
there are more elaborated strategies, such as selecting samples that are closer or farther from
the mean-of-features of each class (REBUFFI et al., 2017) or populating the buffer by checking
whether the current sample produces a higher or lower loss (HAYES; KANAN, 2021), which
can serve as a proxy of how informative it is and therefore its importance.

In the realm of analyzing different ways to populate a replay buffer, a recent investigation
on the use of replay for language learning tasks indicated that sampling from the global data
distribution provides the best results for text classification, while a method that provides a
balanced memory composition per task performs better for question answering (ARAUJO et al.,
2022).

For image classification benchmarks, Buzzega et al. (2021) proposed different simple
tricks by patching naive experience replay. The tricks included using a reservoir strategy, a class-
balanced and loss-aware sampler, and known strategies such as bias correction and exponential
LR decay (WU et al., 2019a; LI; ARORA, 2019). Their results showed that simple strategies
can be effective when there is room for replay in vision tasks.

A few works were identified and described previously in Chapter 3 which investigated
replay solutions for COD. In summary, these studies explored the idea of using replay combined
with other CL strategies highlighting the gains of the final approach, and did not focus on the
effect that replay alone would have in their context. For populating the buffers, most of them
depended on using reservoir buffers fulfilled randomly either differing by the final buffer size or
adding a compression mechanism to the stored samples (HAO; FU; JIANG, 2019; SHIEH et al.,
2020; ACHARYA; HAYES; KANAN, 2020).

More recently for COD, Liu et al. (2023) proposed to calibrate each new task distribution
by populating a replay buffer with samples that reduce the Kullback Leibler (KL) divergence
between the original category distribution and the replay subset. They reported results using a
transformer-based architecture and several other components to mitigate forgetting and credited
part of the final performance gain to the ability to preserve the initial category distribution across
tasks.



4.3. Methodology 67

4.3 Methodology

Based on the current literature for replay-based CL and existing solutions for COD, we
propose the investigation of efficient strategies for populating a replay buffer in this context. For
the following experiments, we adopt a task-balanced reservoir buffer filled sequentially with
data from the previous task. We consider a real-world constrained scenario in which the buffer
size is limited to 10% of the number of samples of the initial task. The following strategies are
investigated:

∙ Random Buffer: The buffer is filled by samples that are drawn randomly from the pool
of samples of the previous task. This is the standard baseline for replay-based CL.

∙ Class-Balanced Buffer: Buffer is initialized so at least N samples from each class for the
previous task are present for the next training experience. N is defined by the final buffer
size divided by the number of seen classes and is adjusted for every task.

∙ Max-Instance Buffer: Considering that each image can have several annotated objects,
samples are selected based on the maximum amount of present object instances.

∙ Max-Loss and Min-Loss Buffers (HAYES; KANAN, 2021): Buffer is initiated with a
set of samples chosen by ranking the ones that produced the maximum or minimum loss
for the currently trained model.

∙ Distribution Matcher Buffer (LIU et al., 2023): Buffer is populated with samples that
reduce the KL divergence between the current task and the replay buffer distribution.

4.3.1 Evaluation Benchmark

The benchmark for evaluation was the incremental version of the Pascal VOC dataset
using the 2-step learning protocol used by the majority of works in the area (MENEZES et al.,
2023). We investigated the scenarios in which the last 10 classes and 5 classes are added at
once or sequentially, as described in depth in the evaluated benchmarks presented in Chapter 3.
Figures 15a and 15b show the distribution of images and boxes per class for the dataset. As
for the evaluation metrics, we opted to report the final performance using the final mAP, as
well as the upper-bound ratio (Ωall), and the COD-specific metrics RSD and RPD, which were
previously introduced in Chapter 3.

4.3.2 Implementation Details

Following the trend of other researchers who evaluated replay strategies, we opted to use
the Faster-RCNN architecture without FPN Peng, Zhao and Lovell (2020), Joseph et al. (2021).
The training hyperparameters followed the original setup used by Shmelkov, Schmid and Alahari
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Figure 15 – Distribution of images and bounding boxes per class.

(2017), where for the first task, the model is trained for 40k iterations with SGD and a LR of
0.01, and then, for the second task, the LR drops to 10% of its value. The model is then trained
for 40k iterations when multiple classes are added at once or for 5k steps when individual classes
are processed. The code for training the network and populating the buffer was written in Python
and used the Pytorch Lightning (FALCON, 2019) framework.

To account for the inherent randomness in training neural network models and verifying
the results’ accuracy, we report results after averaging five runs with different seeds and conduct
Wilcoxon signed-rank tests for each strategy pair.
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4.4 Results

Table 8 summarizes the results obtained when training and evaluating each incremental
scenario using the PASCAL VOC benchmark. The result for the 10+10 setting indicates that the
best-performing scenario happened when the class-balanced buffer was applied since it produced
the least decrease in stability and deficits as well as a higher overall Ωall . The second-best was
the application of the distribution-matcher strategy, followed by the max-instance optimized
buffer. However, when considering a 95% confidence interval for the chosen non-parametric test,
Table 6 pointed out that there might not be a statistical difference for the result of the distribution-
matcher, random, and max-loss strategies since their p− value was above the threshold of 0.05.
We hypothesize that, by drawing samples randomly from the initial task a sufficient number
of times (i.e., 10% of the initial task sample size), the buffer will end up following the initial
distribution and performing similarly.

Table 6 – P-values from the Wilcoxon signed-rank test for each pair of models in the 10+10 setting

max_loss min_loss dist_matcher max_instance random balanced
max_loss - - - - - -
min_loss 0.0 - - - - -

dist_matcher 0.7518 0.0 - - - -
max_instance 0.0004 0.0 0.0015 - - -

random 0.1316 0.0 0.1290 0.0001 - -
balanced 0.0089 0.0 0.0013 0.0 0.0 -

For the scenario in which 5 classes were added, the class-balanced buffer also presented
the best results, followed by the randomly populated and distribution-matched buffer. By ana-
lyzing the p− value shown for the model pairs in Table 7, we checked that there may not be a
statistical difference among the results of the distribution-matched, max-instance, and max-loss
strategies. Considering the nature of the data on the benchmark and its natural class unbalance
shown by Figure 15a, there could be an overlap of the chosen images for the buffers since the
increase of object instances in an image makes it more likely to be chosen for the max-instance
strategy and can also impact on the loss of the model, which would make it be chosen for the
max-loss optimized buffer.

Table 7 – P-values from the Wilcoxon signed-rank test for each pair of models in the 15+5 setting

max_loss min_loss dist_matcher max_instance random balanced
max_loss - - - - - -
min_loss 0.0153 - - - - -

dist_matcher 0.0689 0.0 - - - -
max_instance 0.0944 0.0007 0.5958 - - -

random 0.0015 0.0 0.0144 0.001 - -
balanced 0.0002 0.0 0.0 0.0 0.0023 -
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For the scenario in which classes are added sequentially, the class-balanced buffer
performed consistently better than the randomly populated buffer both when 5 and 10 classes
were added individually. However, the model‘s general performance in this scenario was still
lower than when all the class data was available for the incremental step. This bottleneck was
also noted in the results of the other methods discussed in Chapter 3. In this situation, models
usually struggle to find optimal solutions when not having knowledge of all objects present on
the task. Additionally, by comparing the final RSD and RPD against the results of more complex
techniques in the same benchmark, tailored specifically for several sequential updates (i.e., Table
4 in Chapter 3), we see that a well-thought replay strategy can be a simple and powerful baseline
against most of the recently proposed strategies.

The final performance presented by the class-balanced buffer in all scenarios was consis-
tently superior, even against more elaborated strategies based on matching the final distribution
of the buffer. One possible factor for this finding is that, since we proposed an experiment with
limited buffer size and the benchmark is naturally class-unbalanced, there is a higher chance
of drawing samples with the more frequent classes on the distribution-matcher and random
strategies. This helps the model maintain predictive performance on these objects in subsequent
tasks, with the drawback of not producing a solution to remember long-tailed classes, which is
something directly addressed by the class-balanced method. We also believe this to be one of the
main reasons why the buffer that maximized for the number of object instances and the samples
with the minimum loss did not produce competitive results, since they might have focused more
likely on less diverse images with several instances of the same object, which can naturally
produce a smaller loss.

In general, the mAP result for the scenario where 5 classes were added, on average, was
higher than the counterpart with 10 classes. Some influential factors can be the use of a stronger
base model, since it was trained with data from 15 classes instead of 10 classes, and the use of a
larger replay buffer, since we considered a replay buffer size of 10% of the initial task‘s data.
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Table 8 – Performance of FasterRCNN on the Incremental PASCAL VOC Benchmark for different replay strategies.

10 + 10 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP Ωall ↑ RSD (%) ↓ RPD (%) ↓
Upper-bound 68.75 79.42 72.32 49.68 43.64 79.24 81.56 85.65 49.75 72.56 61.84 82.77 82.85 80.02 78.75 34.52 66.82 66.05 77.89 69.29 69.2 - - -
First 10 41.96 70.14 47.99 33.84 31.00 64.84 66.70 70.20 38.09 54.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 26.0 - - -
New 10 30.55 0.99 7.33 1.73 0.00 1.65 1.98 2.97 0.00 0.00 51.16 52.13 74.77 66.00 74.19 24.61 43.72 56.09 64.83 55.47 30.5 - - -
Fine Tunning +
Class-Balanced Buffer 63.41 69.48 63.53 46.70 34.69 70.24 74.30 71.33 30.45 59.81 47.33 66.05 74.53 71.56 73.29 23.62 54.04 58.47 68.68 54.80 58.8 0.85 14.26 15.68

Fine Tunning +
Random Buffer 57.94 65.86 60.25 42.02 29.63 63.93 74.13 71.37 29.30 51.09 42.83 66.99 75.10 70.76 72.86 22.96 47.79 55.88 65.58 53.29 56.0 0.81 19.81 18.33

Fine Tunning +
Max Instance Buffer 58.46 64.21 58.45 43.88 33.98 70.70 76.56 47.55 38.69 58.14 43.97 54.97 76.70 71.07 73.06 24.86 52.91 57.25 67.75 55.06 56.4 0.82 19.08 17.81

Fine Tunning +
Max-Loss Buffer 55.61 62.92 58.56 41.71 27.51 67.75 70.98 74.16 33.42 50.82 45.43 66.70 74.81 70.24 71.80 23.09 46.71 55.57 66.82 54.69 56.0 0.81 20.12 18.06

Fine Tunning +
Min-Loss Buffer 57.44 54.97 57.48 27.03 22.59 59.44 66.87 40.84 17.19 33.37 45.90 54.76 76.47 71.15 73.96 24.98 46.03 55.97 66.26 53.49 50.3 0.73 35.47 19.06

Fine Tunning +
Distibution Matcher Buffer 59.22 60.34 61.98 42.36 28.14 65.96 71.22 73.41 22.66 54.52 45.58 69.81 76.45 71.11 73.23 24.86 47.23 58.11 68.26 56.24 56.5 0.82 20.64 15.89

10 + 11 ... + 20 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP Ωall ↑ RSD (%) ↓ RPD (%) ↓
Sequential Fine Tunning
from class 11 to 20 2.43 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.36 49.47 3.1 0.04 98.19 92.96

Sequential Fine Tunning +
Class-Balanced Buffer 61.74 73.45 58.38 46.55 35.74 70.55 72.07 70.39 32.27 55.90 15.17 38.49 50.86 57.54 47.12 22.34 50.61 55.74 49.15 54.36 50.9 0.74 15.25 37.51

Sequential Fine Tunning +
Random Buffer 64.45 72.55 60.84 46.46 40.21 71.11 77.36 73.87 34.99 51.39 13.89 36.27 37.24 45.39 45.31 10.78 36.43 24.82 36.98 53.48 46.7 0.68 12.92 52.08

15 + 5 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP Ωall ↑ RSD (%) ↓ RPD (%) ↓
Upper-bound 68.75 79.42 72.32 49.68 43.64 79.24 81.56 85.65 49.75 72.56 61.84 82.77 82.85 80.02 78.75 34.52 66.82 66.05 77.89 69.29 69.2 - - -
First 15 44.35 64.88 44.87 23.14 18.30 61.26 63.53 69.47 32.29 50.43 38.31 66.39 73.44 71.11 55.91 0.00 0.00 0.00 0.00 0.00 38.9 - - -
New 5 5.53 18.64 8.25 1.32 0.00 0.00 2.89 10.21 0.00 0.99 0.99 0.99 11.88 14.12 0.00 34.55 46.36 65.50 49.16 66.35 16.9 - - -
Fine Tunning +
Class-Balanced Buffer 60.22 79.98 66.52 46.75 41.72 73.98 78.64 81.51 32.92 67.92 57.11 76.37 79.43 77.17 67.71 33.22 61.99 68.36 74.34 65.22 64.6 0.93 7.79 3.31

Fine Tunning +
Random Buffer 60.83 78.67 62.84 42.08 33.49 63.97 78.39 79.03 33.01 59.94 55.25 74.82 78.74 77.23 69.42 33.22 60.08 65.64 73.33 65.07 62.3 0.90 11.67 4.98

Fine Tunning +
Max Instance Buffer 49.37 79.45 64.67 41.41 41.87 68.85 79.97 49.49 34.85 54.78 58.82 45.43 79.15 75.93 72.30 30.92 56.07 66.62 73.77 65.37 59.5 0.86 16.62 6.31

Fine Tunning +
Max-Loss Buffer 50.84 78.84 63.94 35.47 39.26 66.47 77.62 76.35 33.71 48.37 55.84 65.27 79.17 77.75 67.39 33.88 58.66 67.39 73.95 67.36 60.9 0.88 14.7 3.85

Fine Tunning +
Min-Loss Buffer 57.51 68.63 65.44 37.02 26.35 67.26 76.12 73.34 18.05 63.65 26.67 67.02 77.56 69.53 49.58 31.83 56.76 65.53 70.40 65.44 56.7 0.82 21.7 7.12

Fine Tunning +
Distibution Matcher Buffer 55.86 77.02 64.52 42.20 33.19 71.64 76.93 78.54 29.76 53.01 45.99 73.13 80.26 75.33 68.13 32.95 57.63 66.90 73.03 65.87 61.1 0.88 13.81 5.26

15 + 11 ... + 20 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP Ωall ↑ RSD (%) ↓ RPD (%) ↓
Sequential Fine Tunning
from class 16 to 20 6.19 13.22 1.89 1.88 0.99 3.62 10.62 2.92 0.00 2.90 0.99 0.99 4.86 9.27 0.99 6.68 7.86 12.29 11.67 51.94 7.6 0.11 97.1 64.81

Sequential Fine Tunning +
Class-Balanced Buffer 64.26 80.83 67.41 45.13 42.45 71.17 79.95 82.75 39.87 65.28 59.51 75.43 80.46 77.26 73.96 20.81 55.17 51.43 63.92 45.09 62.1 0.90 6.08 22.6

Sequential Fine Tunning +
Random Buffer 62.95 80.63 66.73 44.91 42.82 72.98 80.86 84.21 39.77 64.86 57.48 79.95 81.39 78.44 75.70 11.23 49.43 25.35 40.57 47.01 59.4 0.86 5.31 40.77
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4.5 Final Considerations
This chapter elaborated on the most intuitive and beneficial ways to populate a replay

buffer for COD. The obtained results indicated that, although randomly-populated buffers are
still a strong baseline, for the Incremental VOC benchmark, class-balanced buffers present
statistically superior performance. Additionally, the performance when classes were introduced
sequentially showed that such buffers are a simple and efficient solution when compared to
the results on the same benchmark discussed in Chapter 3. Another consideration against the
use of more complex continual learning techniques is the computational time they may require
for execution. A recent paper for CL in classification showed that several CL solutions are too
computationally expensive for realistic budgeted deployment, which might also hold true for
COD solutions (PRABHU et al., 2023). In this sense, due to its simplicity and effectiveness, we
argue that comparisons against replay strategies, especially using a class-balanced buffer, should
always be performed when proposing strategies for COD.

It is also worth mentioning the importance of evaluating results through the lens of
specific metrics, such as RSD and RPD. Incremental tasks may have a different number of
new object classes and only looking at the final mAP and even Ωall can be deceiving since the
worsening of performance in one introduced class may not be enough to change the structure
of these general metrics. Yet, by using criteria that individually scrutinize the difference in
performance for the old and new task conditions, the strategies’ final performance can be
thoroughly evaluated.
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CHAPTER

5
EFFICIENT PARAMETER MINING AND

FREEZING FOR CONTINUAL OBJECT
DETECTION

This chapter describes the investigation of efficient ways to mine, freeze, and penalize
the change of important parameters of detector models when trained for COD tasks.

5.1 Introduction

Within computer vision, object detection is a fundamental task aiming at identifying
and locating objects of interest within an image. Historically, two-stage detectors, comprising
a region proposal network followed by a classification stage, were the norm, but they often
suffer from increased complexity and slower run-time (ZOU et al., 2019). The emergence of
one-stage detectors, which combine these stages into a unified framework, has allowed for more
efficient and often more accurate detection (TIAN et al., 2020; LIN et al., 2017b). In this context,
incremental learning strategies for object detection can further complement one-stage detectors
by facilitating the continuous adaptation of the model to new tasks or classes, making it highly
suitable for real-world applications where the object landscape may change over time (LI et al.,
2019; HAQ et al., 2021).

Recent works have concluded that catastrophic forgetting is enlarged when the magnitude
of the calculated gradients becomes higher for accommodating the new knowledge (MIRZADEH
et al., 2021; HADSELL et al., 2020). Since the new parameter values may deviate from the
optimum place that was used to obtain the previous performance, the overall mAP metrics can
decline. Traditionally in CL for classification, researchers have proposed to tackle this problem
directly by applying regularization schemes, often preventing important neurons from updating
or artificially aligning the gradients for each task. Such techniques have shown fair results
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at the cost of being computationally expensive since network parameters are mostly adjusted
individually (KIRKPATRICK et al., 2017; CHAUDHRY et al., 2018).

To account for the changes and keep the detector aligned with their previous perfor-
mances, most works in COD mitigate forgetting with regularization schemes based on complex
knowledge distillation strategies and their combination with replay or the use of external data, as
shown in the review presented in Chapter 3. However, we argue that the results presented by the
solo work of Li et al. (2018) indicate that there is room to investigate further parameter-isolation
schemes for COD. For such strategies, the most important neurons for a task are identified,
and their changes are softened across learning updates in order to protect the knowledge from
previous tasks.

In this chapter, we investigate different ways to identify and penalize the change in
weights for sequential updates of a detector. By intelligently freezing these significant neurons,
one might be able to avoid catastrophic forgetting and foster a more efficient and robust final
model.

5.2 Related Work

The concept of using priors to identify the importance of the weights and protect them
from updating is not new in CL. Kirkpatrick et al. (2017) proposed a regularization term on the
loss function that penalizes the update of important parameters. These parameters are estimated
by calculating the Fish information matrix for each weight, which considers the distance between
the current weight values and the optimal weights obtained when optimizing for the previous
task. Zenke, Poole and Ganguli (2017) similarly regularized the new learning experiences but
kept an online estimate of the importance of each parameter. Both strategies compute the change
needed for each individual parameter, which can be computationally challenging for large-scale
detectors.

Also, on the verge of regularization, Li and Hoiem (2017) saved a copy of the model
after training for each task and, when learning a new task, applied knowledge distillation on
the outputs to make sure the current model could keep responses close to the ones produced
in previous tasks. Such a strategy was adapted for COD in the work of Shmelkov, Schmid and
Alahari (2017), which proposed to distill knowledge from the final logits and bounding box
coordinates. Li et al. (2019) went further and introduced an additional distillation on intermediate
features for the network. Both strategies have been used in several subsequent works in COD as
strong baselines for performance comparison.

In CL for classification, Mallya and Lazebnik (2018) conceptualized PackNet, which
used concepts of the neural pruning literature for applying an iterative parameter isolation
strategy. It first trained a model for a task and pruned the lowest magnitude parameters, as they
were seen as the least contributors to the model‘s performance. Then, the left parameters were
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fine-tuned on the initial task data and kept frozen across new learning updates. Such a strategy
is usually able to mitigate forgetting, through the cost of lower plasticity when learning new
tasks. Similarly, Li et al. (2018) proposed a strategy, in this chapter denoted as MMN, to “mine”
(i.e., identify) important neurons for the incremental learning of object detectors. Their method
involved ranking the weights of each layer in the original model and retaining (i.e., fixing the
value of) the Top-K neurons to preserve the discriminative information of the original classes,
leaving the other parameters free to be updated but not zeroed, as initially proposed by PackNet.
The importance of each neuron is estimated by sorting them based on the absolute value of their
weight. The authors evaluated this strategy with variations of the percentage of neurons to be
frozen and found that a 75% value was ideal for a stability-plasticity balance within the model.
Although simple, the final described performance was on par with the state-of-the-art of the time
(SHMELKOV; SCHMID; ALAHARI, 2017).

The above parameter-isolation strategies for CL consider that the most important individ-
ual neurons will present the highest absolute weight values and must be kept unchanged when
learning new tasks. This is a traditional network pruning concept and is commonly treated as a
strong baseline (LECUN; DENKER; SOLLA, 1989; LI et al., 2016). However, Neural Network
Pruning strategies have evolved to also consider the filter and layer-wise dynamics. For that, the
importance of a filter or layer can be obtained by analyzing the feature maps after the forward
pass of a subset of the whole dataset. Then, they can be ranked and pruned based on criteria such
as proximity to zero, variation inter samples, or information entropy (LIU; WU, 2019; LUO;
WU, 2017; WANG et al., 2021a). Even so, the available network capacity will be dependent on
the number of involved tasks since important parameters are not allowed to change.

5.3 Methodology

From our review of the related work, we realized that there was room for investigating
different ways to select the most important weights across learning experiences. Based on the
recent neural pruning literature, we explore four different ways to identify important parameters
to be kept intact across sequential updates. The following criteria are used to determine the
importance of each network layer after forwarding a subset of images from the task data and
analyzing the generated feature maps:

∙ Highest mean of activation values: Rank and select the layers with filters that produced
the highest mean of activations.

I(layeri) =
1
N

N

∑
k=1

F(xk) (5.1)

∙ Highest median of activation values: An alternative that considers the highest median
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of activations instead of the mean.

I(layeri) = Med(F(xk)) (5.2)

∙ Highest variance: For this criterion, we consider that filters with higher standard deviation
in the generated feature maps across diverse samples are more important and their layers
should be kept unchanged.

I(layeri) =

√√√√ 1
N

N

∑
k=1

(F(xk)−µ)2 (5.3)

∙ Highest information entropy: Rank and select the layers based on the highest information
entropy on their feature maps.

I(layeri) =−
N

∑
k=1

P(F(xk)) log2 P(F(xk)) (5.4)

where N is the number of images in the subset; F(xk) is the flattened feature map; Med is
the median of the feature map activations; µ is mean of the feature map activations; P is the
probability distribution of a feature map.

Additionally, in a separate investigation, we explore whether relaxing the fixed weight
constraint proposed by MMN can allow the model to be more plastic while keeping decent
performance on previous tasks. For that, we propose to simply adjust the changes to the mined
task-specific parameters during the training step by multiplying the gradients calculated in the
incremental step by a penalty value. By allowing them to adjust the important weights in a
minimal way (i.e., with a penalty of 1% or 10%) across tasks, we hypothesize that the model
will be able to circumvent capacity constraints and be more plastic.

For the proposed layer-mining criteria, we check which percentage (i.e., 25, 50, 75, 90)
of frozen layers would give the best results. Figure 16 describes the proposed experimental
pipeline.

5.3.1 Evaluation Benchmark

The incremental version of the Pascal VOC dataset with a 2-step learning protocol, also
used in Chapter 4, was chosen as the evaluation benchmark. However, differently from the last
chapter, we set the incremental step to either contain data from only the last class or the last 10
classes. For the metrics, we reported the final performance using the averaged mAP, as well as
the upper-bound ratio Ωall , and the COD-specific metrics RSD and RPD.

5.3.2 Implementation Details

We opted to explore the RetinaNet one-stage detector using a frozen ResNet50 with an
unfrozen FPN backbone. The selected freezing criteria is therefore only applied to the neck (i.e.,
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Figure 16 – Mining important parameters for efficient incremental updates.

FPN) and head of the model. The training settings are similar to the ones proposed by Shmelkov,
Schmid and Alahari (2017) and also used in Chapter 4 in which the learning of the Pascal VOC
benchmark is performed in two incremental steps. The model is trained with SGD for 40k steps
with an LR of 0.01 for learning the first task and then with an LR of 0.001 for more 40k steps
when 10 classes were added or 5k steps when only data from the last class is presented. The
code for training the network was written in Python and used the MMDetection toolbox for
orchestrating the detection benchmark and evaluation procedure (CHEN et al., 2019). The main
followed steps are depicted below in Algorithm 1.

As for the baselines, we consider the results reported on the work of Li et al. (2019)
for the ILOD and RILOD strategies which also made use of the RetinaNet with ResNet50
as the backbone in a similar training setting. We also compare the results against our own
implementation of the MMN strategy from Li et al. (2018) as well as the upper bound when all
data is available for training the model. To account for the randomness associated with neural
networks, we report the performance of each strategy after the averaging of three runs with
different seeds.

5.4 Results

Table 9 describes the performance of each strategy for the 19+1 scenario, while Table
10 reports the results for the 10+10 alternative.

For the scenario in which the model was presented with data from only the last class,
we noticed that the final mAP and Ωall would heavily benefit models that were more stable than
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Algorithm 1 – Incremental training with parameter mining and freezing for COD
1: M: Model to be trained
2: Tasks: List of learning experiences
3: S: Type of mining strategy
4: L: Percentage L of frozen layers or parameters
5: P: Percentage of gradient penalty
6: C: Criteria for freezing the layers
7: N: Percentage of samples from Taski to be used for calculating freezing metrics
8: i← 0
9: for i in range(length(Tasks)) do:

10: Train model M with data from Taski
11: if S = gradient_mining then
12: Dump previous gradient hooks
13: Attach a hook with the gradient penalty P to the selected percentage L of parameters
14: end if
15: if S = layer_ f reezing then
16: Reset requires_grad of the parameters in each layer
17: Freeze a percentage L of the layers given the chosen criteria C using statistics from

the feature maps obtained after forwarding the N selected samples
18: end if
19: Fine-tune in Taski for 1k steps to regularize parameters for the next learning experience
20: i← i+1
21: end for
22: return M

Table 9 – Results when learning the last class (TV monitor)

19 + 1 aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP Ωall ↑ RSD (%)↓ RPD (%) ↓
Upper-bound 73.5 80.6 77.4 61.2 62.2 79.9 83.4 86.7 47.6 78 68.1 85.1 83.7 82.8 79.1 42.5 75.7 64.9 79 76.2 73.4 - - -
First 19 77 83.5 77.7 65.1 63 78.1 83.6 88.5 55.2 79.7 71.3 85.8 85.2 83 80.2 44.1 75.2 69.7 81.4 0 71.4 - - -
New 1 48 61.2 27.6 18.1 8.1 58.7 53.4 17.1 0 45.9 18.2 31.9 59.9 62.2 9.1 3.4 42.9 0 50.3 63.8 34.0 - - -
ILOD 61.9 78.5 62.5 39.2 60.9 53.2 79.3 84.5 52.3 52.6 62.8 71.5 51.8 61.5 76.8 43.8 43.8 69.7 52.9 44.6 60.2 0.81 18.01 45.66
RILOD 69.7 78.3 70.2 46.4 59.5 69.3 79.7 79.9 52.7 69.8 57.4 75.8 69.1 69.8 76.4 43.2 68.5 70.9 53.7 40.4 65.0 0.87 10.90 51.28

MMN

25 71.8 78.8 66.5 48.5 48.6 73.4 78.8 77.1 9.1 76.5 52.3 74.7 82.4 76.3 62.3 21.5 65.9 20.9 68.2 45.6 60.0 0.82 17.06 41.70
50 73.4 79 71.5 51 53.4 73.4 81.6 78.5 13.9 73.5 54.5 76.7 83.2 79.1 64 27.7 66.8 36.3 69.4 43 62.5 0.85 13.23 45.24
75 74.8 79.3 72.9 54.9 54 73.9 82 85 25.4 77.2 60 81.8 83.5 80.2 70.1 35.9 68 49.7 67.8 39.3 65.8 0.90 8.25 50.29
90 76.5 82.4 74.4 58.4 57.9 74.2 82.3 86.7 35.7 77.6 65.1 83.7 83.8 82.2 72.5 37 73.2 58.5 71.5 33.7 68.4 0.93 4.15 57.92

Gradient
penalty
of 1%

25 71.9 78.8 66.5 48.6 48.5 73.4 78.8 77.1 9.1 76.5 52.3 74.6 82.4 76.3 62.3 21.5 65.9 20.7 68 45.5 59.9 0.82 17.08 41.84
50 73.3 79 71.4 51 53.3 73.4 81.6 78.4 13.8 73.5 54.4 76.7 83.2 79 64 27.4 66.8 34.7 69.3 43 62.4 0.85 13.43 45.24
75 75 79.3 72.9 54.9 54 73.8 82 84.9 25.3 77.2 59.8 81.8 83.5 80.1 70.1 35.8 67.9 49.3 67.8 39.4 65.7 0.90 8.32 50.15
90 76 82.1 74.4 57.3 57.3 74.1 82.1 85.9 34 77.4 63.4 82.9 83.4 82 72.1 37.1 72.4 57.1 70.5 34.3 67.8 0.92 5.01 57.10

Gradient
penalty
of 10%

25 71.8 78.6 66.5 48 48.5 73.4 78.8 77.1 9.1 76.5 52.2 74.1 82.4 76.2 62.2 21 65.6 19.9 68.2 45.4 59.8 0.81 17.31 41.97
50 73.1 78.8 71.3 49.6 53.3 74.5 81.5 78.3 11.4 73.4 54 76.4 82.8 76.8 63.8 27 66.4 33.4 68.6 43.8 61.9 0.84 14.13 44.15
75 73.9 79.2 72.9 53.5 54.2 73.4 81.8 79.6 22 76.9 58.4 81.6 83.3 79.8 69.3 33.6 67.4 47.2 67.4 39.4 64.7 0.88 9.75 50.15
90 76.2 81.8 73.6 55.9 57 73.2 81.2 84.6 30.3 76.9 60.7 82.4 83.6 81.1 71.1 36.3 68.3 56 67 37.2 66.7 0.91 6.76 53.15

Freezing
based on
mean

25 75.1 78.8 71.6 57.3 54.3 75.3 81.1 78.6 27.5 77 60.4 80.8 82.5 79.6 70.5 32.5 72.3 57.3 74.1 31.3 65.9 0.90 7.52 61.19
50 75.3 78.6 72 57.7 53.8 74.7 81 79 27 74.7 62.5 77.8 82.7 77.5 70.5 33.1 72 56.5 73.1 32.4 65.6 0.89 8.03 59.69
75 76 79.5 73.2 58 57 75.8 81.6 84.4 27.3 77.3 64.8 82.1 82.7 80.4 71.5 36 72.7 57.4 74.8 25.2 66.9 0.91 5.66 69.50
90 76.2 81.3 71.9 60.8 49.9 75.7 82.8 86.2 24.8 76.5 69.4 82 82.9 80.9 68.5 26.2 71.9 60.3 79.4 41.7 67.5 0.92 6.01 47.02

Freezing
based on
median

25 75.1 78.7 71.7 57.3 54.4 74.8 81.2 78.7 27.4 76.9 60.1 80.8 82.5 79.3 70.6 32.3 72.5 57.3 73.6 31.3 65.8 0.90 7.62 61.19
50 75.3 78.8 72.3 57.7 56.7 74 81.6 79.4 26.5 76.9 63.1 81.8 82.6 78.9 70.8 34.7 72.8 56.2 72.9 24.4 65.9 0.90 7.06 70.59
75 78 79.6 73.2 57.1 55.7 76.1 82.6 86.1 38.3 77.2 65.8 83.1 82.4 80.5 73.7 38.5 71.6 60.5 75.4 31.2 68.3 0.93 4.02 61.32
90 77.4 82.1 72.7 61.3 50.3 77.2 82.9 85.8 28.8 76.4 69.5 82 82.8 81.2 68.5 27.5 71.7 60.4 79.1 39.6 67.9 0.92 5.29 49.88

Freezing
based on
std

25 75.1 78.9 71.6 57.3 54.3 75.3 81.1 78.6 27.5 77 60.4 80.8 82.5 77.4 70.5 32.4 72.3 57.3 74 31.5 65.8 0.90 7.68 60.92
50 75.1 78.9 71.6 57.2 54.3 75.3 81.1 78.7 27.5 77 60.4 80.7 82.5 77.4 70.5 32.3 72.3 57.3 74 31.4 65.8 0.90 7.70 61.05
75 75.7 79.1 72.9 57.1 56.4 75.2 81.4 79.3 25.2 77.4 61.5 81.6 82 79.5 70.6 33.7 72.9 56.1 74.5 27.9 66.0 0.90 7.12 65.82
90 77.6 79.9 73.5 57.3 56.6 77.7 82.8 86.2 38.2 77.1 65.9 82.8 82.5 80.2 73.7 39 72.4 61.5 76 31.5 68.6 0.94 3.62 60.92

Freezing
based on
entropy

25 75.5 79.4 72.7 56.2 57.2 74.8 81.9 84.7 28.9 77.9 62 81.4 83.1 81.1 71.6 35.3 68.4 54.7 69 40.7 66.8 0.91 6.86 48.38
50 76.8 81.6 72.5 57 52.2 74.7 83.2 78.3 22.2 73.8 63.7 78.1 81.3 80 70.7 25.3 71 45.4 74.4 57 66.0 0.90 9.27 26.17
75 76.9 81.8 71.9 61.4 50.4 76 82.7 86 29.5 76 69.6 82.3 82.9 80.7 68.6 26.7 72.1 60.9 79.6 40.5 67.8 0.92 5.41 48.65
90 77.4 81.9 72.3 61.4 50.2 76.3 82.9 85.7 30 76 69.6 82.2 82.5 81.2 68.5 27.4 72 60.7 79.4 38.2 67.8 0.92 5.29 51.79

plastic since there was a clear imbalance in the number of represented classes (i.e., 19→ 1) for
the incremental step. With that in mind, we analyzed the results that better balanced the decrease
in RSD and RPD since, by splitting the deficits in performance, it is clearer to understand the
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ability to forget and adapt in each model. By comparing the results of the application of gradient
penalty with respect to freezing the neurons with the highest magnitude (i.e., MMN in Table 9),
we see that allowing the extra plasticity did not produce broad effects in performance. However,
when 90% of the weights were mined, the extra adjustments introduced by using 1% of the
calculated gradients allowed the model to beat MMN. Regarding the results of layer-mining,
freezing based on information entropy presented a better balance in RSD and RPD, even against
more established techniques such as ILOD and RILOD. For most of the results, increasing the
percentage of frozen layers gave a lower deficit in stability with the caveat of increasing the
difference in mAP against the upper bound for the new learned class.

Overall, leaving a lower percentage of parameters frozen across updates for the methods
that worked on individual neurons made their networks more adaptable. Yet, this hyperparameter
for the layer-freezing methods did not greatly affect the learning of the new class but had a
significant impact on the detection of classes that had been learned previously.

For the 10+ 10 scenario, the final mAP and Ωall became more relevant as there was
an equal representation of classes for their calculations. Results for applying a penalty to the
gradient of selected neurons showed a slightly superior performance compared to completely
freezing them. This was especially true in all scenarios where a 10% penalty was applied. For
this benchmark, freezing 25% of the layers based on information entropy yielded the best results,
followed by using the median of the activations to the same percentage of frozen layers. However,
the final mAP and Ωall indicate that these simply arranged strategies might have a difficult time
competing against traditional methods when processing a benchmark with more complexities.
Nonetheless, they can still serve as a quick and strong baseline when compared to fine-tuning
and MMN due to ease of implementation.

Overall for the 10+ 10 scenario, all evaluated strategies produced comparable final
in terms of mAP and Ωall . Nevertheless, the best outcomes were observed when freezing or
penalizing 50% or less of the parameters. Since most detectors based on deep neural networks are
overparameterized and not optimized directly for sparse connections, freezing more than 50% of
available parameters or layers might affect highly the network capacity for learning new objects.
We believe this to be true mainly for learning new tasks with imbalanced category sets and
objects that do not present visual similarities with the ones previously learned. The Incremental
Pascal VOC benchmark not only presents an imbalanced occurrence of each category (Table 15
in Chapter 4) but also a considerable semantic difference for the labels of the two tasks, with the
first having more instances from outdoor environments and the second focusing on instances
from indoor scenes. This can be further investigated by exploring task-relatedness as a way to
define the parameters that determine how layer-freezing should take place between updates.

Interestingly, as also shown in the final evaluation remarks of the PackNet strategy
for classification, the final performance of the incremental model can be weakened since it
only uses a fraction of the entire parameter set to learn new tasks (DELANGE et al., 2021).
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Table 10 – Results when learning the last 10 classes

10 + 10 aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP Ωall ↑ RSD (%) ↓ RPD (%) ↓
Upper-bound 73.5 80.6 77.4 61.2 62.2 79.9 83.4 86.7 47.6 78 68.1 85.1 83.7 82.8 79.1 42.5 75.7 64.9 79 76.2 73.4 - - -
First 10 79.2 85.6 76.5 66.7 65.9 78.9 85.2 86.6 60.2 84.7 0 0 0 0 0 0 0 0 0 0 38.5 - - -
New 10 0 0 0 0 0 0 0 0 0 0 74.6 85.7 86.1 79.9 79.8 43.9 76.3 68.5 80.5 76.3 37.6 - - -
ILOD 67.1 64.1 45.7 40.9 52.2 66.5 83.4 75.3 46.4 59.4 64.1 74.8 77.1 67.1 63.3 32.7 61.3 56.8 73.7 67.3 62.0 0.84 17.65 13.48
RILOD 71.7 81.7 66.9 49.6 58 65.9 84.7 76.8 50.1 69.4 67 72.8 77.3 73.8 74.9 39.9 68.5 61.5 75.5 72.4 67.9 0.93 7.59 7.29

MMN

25 59.2 37.4 38.7 33.3 17.2 46.3 52.9 57.5 5.9 45.7 62.9 73.6 76 68.8 77.1 37.6 62.9 60.9 72.5 73.5 53.0 0.72 45.84 9.72
50 65.0 42.7 43.4 37.6 19.8 53.1 58.5 58.5 6.0 46.0 59.4 72.6 73.1 69.5 75.5 35.7 60.0 59.2 69.2 71.7 53.8 0.73 40.89 12.44
75 61.5 40.3 49.0 35.8 19.5 48.0 54.8 52.3 10.5 44.0 62.5 71.0 74.1 68.4 75.6 36.2 59.6 61.3 69.6 70.7 53.2 0.73 42.91 12.00
90 67.2 24.9 56 39.9 31.2 59.1 62.2 64.6 6.5 53.4 34.1 53.5 35.2 63.1 72.1 27.5 30 45.3 61.9 62.9 47.5 0.65 36.18 34.27

Gradient
penalty
of 1%

25 59.2 37.4 38.5 33.3 17.1 46.1 52.8 57.6 5.9 45.8 62.9 73.5 76.1 68.6 77.1 37.4 62.9 61 72.6 73.5 53.0 0.72 45.90 9.74
50 64.9 43.9 43.3 37.2 19.3 53.1 58.4 58.4 5.6 46.0 59.3 72.7 73.1 69.6 75.6 35.8 60.2 59.2 69.4 71.8 53.8 0.73 40.91 12.34
75 63.6 41.0 49.9 36.7 19.6 48.4 57.0 53.0 10.5 43.9 61.9 71.5 74.3 67.9 75.4 35.8 59.5 61.1 69.4 70.4 53.5 0.73 41.84 12.23
90 67.2 25.1 55.2 41 30.1 58.9 62.2 63.9 5 52.9 38.2 55 44.5 64.9 72.5 28.6 35 47.7 62.6 64.4 48.7 0.66 36.66 30.49

Gradient
penalty
of 10%

25 59 36.8 36.5 33 16.5 46 52.7 56.8 5.8 45.8 63.1 73.7 76.5 68.6 77.1 37.9 63.2 61.1 73 73.3 52.8 0.72 46.55 9.48
50 67.2 44 43.5 38 20.4 51.8 60.8 60.5 4.7 46.5 59.1 72.7 73.2 68.9 75.6 34.7 59.6 59 69.8 71 54.1 0.74 39.94 12.74
75 66.5 44.1 50.8 37.0 19.5 52.1 57.2 56.1 8.3 46.2 60.4 70.2 73.0 68.7 75.4 35.4 59.3 58.7 69.3 70.9 53.9 0.73 39.93 13.08
90 67.6 25.8 50.6 39.5 24.9 57.2 61.5 58.5 4.7 47.6 57.2 68.1 69.8 70.7 75.3 34.0 55.1 57.7 68.3 69.3 53.2 0.72 39.88 15.24

Freezing
based on
mean

25 63 48.4 57.3 36.1 19.9 57.1 49.8 66 7.7 45 54 64 64 70.4 72.1 33.9 49.7 58.6 62.1 66.6 52.3 0.71 38.18 19.31
50 63.4 48.6 58 39.1 19 57.4 50 66.2 8.4 44.3 53.8 63.3 63.8 70.3 72.2 33.2 49.8 58.5 61.6 67.1 52.4 0.71 37.63 19.56
75 58.8 49.1 55.6 41.1 17.5 58.1 43.5 67.5 11 43.3 47 66 54.3 70 70.2 32.4 47.4 58.8 51 67.5 50.5 0.69 38.84 23.51
90 54.2 49.7 51.2 39.8 23.9 60.1 44.1 70.7 14.2 46.6 24.1 57.9 46.7 63.5 59.3 28.8 42 58.4 43.8 59.4 46.9 0.64 37.61 34.51

Freezing
based on
median

25 60.9 48.3 57.8 34.3 23 57.3 43.8 65.7 10.4 46.2 55.1 65.2 67.7 71.3 72.8 33.9 52.8 59.3 65 68.3 53.0 0.72 38.54 17.13
50 58.5 48.8 55.4 41.5 18.7 58.4 43.8 70.5 11 41.9 53.7 66.8 54.2 71.2 71.8 35.1 49.4 59.6 52.6 68.7 51.6 0.70 38.43 20.99
75 54.6 48.9 52.7 38.4 24.6 59.3 44.1 70.9 14.1 47.2 29.4 58.7 49.5 63.6 60.4 29 42.8 58.6 45.8 59.9 47.6 0.65 37.57 32.62
90 53.6 42.4 51.9 38 23.8 60.1 44.1 71.3 14.4 47.5 28 58.7 49 64.7 60.1 25.4 42.3 58.4 46.8 59.7 47.0 0.64 38.62 33.25

Freezing
based on
std

25 62.7 48.5 57.4 36.2 19.6 57.1 49.8 66.1 7.6 45.2 54.1 64.1 64 70.2 72.2 33.9 49.8 58.4 62.1 66.4 52.3 0.71 38.20 19.34
50 62.6 48.4 56.8 38.5 19.2 57.8 50 65.9 7 45.1 52.9 63.8 63.7 70.2 71.8 32.8 49.9 57.7 60.7 66.4 52.1 0.71 38.05 20.06
75 62.1 47.3 57.8 38.8 19.5 58.2 50.1 65.3 8.5 44.6 53.4 62.7 64 69.9 71.5 31.7 51.1 57.1 60.8 65.1 52.0 0.71 37.93 20.41
90 57.2 40.8 55 29.8 11.5 57.3 44.2 65.5 10.8 41.7 39.6 58.9 55.3 62.2 68.9 33.3 55.2 60 54.4 64.1 48.3 0.66 43.16 25.24

Freezing
based on
entropy

25 68.3 42.3 49.8 42.1 15.3 53.3 60.8 60.9 4.8 51.4 49.9 71.4 72.4 71 75.5 36.2 53.5 57.5 70.4 70.2 53.9 0.73 38.36 14.87
50 60.8 34.1 48.2 30.1 32 51.8 42.2 56.9 14.9 45.3 55.7 63 67.5 66.5 73 32.5 46.9 58.8 62.3 67.4 50.5 0.69 42.82 19.56
75 61.2 31.9 49.4 32.8 29.2 55.7 46.5 57.4 10.6 47.7 55.8 66.6 65.4 64.5 71.8 30.8 45.7 57.7 63.8 66.4 50.5 0.69 41.99 20.25
90 54.6 53.6 63.8 46.0 24.4 55.9 53.4 69.4 20.0 51.6 31.4 53.7 49.1 59.2 40.0 7.5 31.0 55.0 41.1 34.8 44.8 0.61 32.43 45.58

However, this tradeoff is necessary to ensure stable performance in the tasks that were initially
learned. Considering the necessity for quick adaptation in constrained environments, having
a hyperparameter to adjust the plasticity of the model can be used as a feature to preserve the
performance in previous scenarios and slightly adjust the network to the new circumstances.
This feature can be especially beneficial when new updates with mixed data (i.e., old and new
samples) are expected in the future.

5.5 Final Considerations

In this chapter, we discussed different ways to mitigate forgetting when learning new
object detection tasks by using simple criteria to freeze layers and adjust how important pa-
rameters should be updated. We found that mining and freezing layers based on feature map
statistics, particularly on their information entropy, yielded better results than freezing individual
neurons when updating the network with data from a single class. However, when introducing
data from several classes, the simple arrangements brought by the layer-freezing strategy were
not as successful. The layer-freezing strategy’s performance was on par with mining individual
neurons, but not on par with more traditional and complex knowledge-distillation methods such
as ILOD and RILOD. Additionally, results also showed that applying individual penalties to the
gradients of important neurons did not significantly differ from the possibility of freezing them.

As a future line of work, it may be beneficial to explore fine-grained freezing solutions
that involve mining and freezing individual convolutional filters based on their internal statistics.
Hybrid techniques that balance learning with the use of experience replay could also be proposed
to prevent forgetting and adapt more quickly to new scenarios. Furthermore, it would be useful to
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investigate measures of task-relatedness as a means of defining the freezing coefficients among
sequential updates.
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CHAPTER

6
CONTINUAL OBJECT DETECTION IN

REAL-WORLD SETTINGS

This chapter reports two practical applications regarding Continual Object Detection in
which we evaluated strategies and engineering solutions. The first section presents our approaches
for the 3rd Track (Continual Instance Object Detection) of the 3rd CLVISION Challenge at CVPR
2022. Using a combination of knowledge distillation and balanced replay, our team secured the
third position out of all participants in the challenge. The second section elaborates on the first
incremental benchmark and evaluation scenario for COD using aerial inspection data.

6.1 Introduction

When training object detection models for real-world applications, large and specific
datasets are often required. When a new dataset arrives, in cases of unseen classes or gradually
changing data patterns, incremental training and adaptation become of vast importance. This
is especially relevant for applications such as robotics, industry inspections, and autonomous
vehicles since these scenarios may have restrictions on data privacy and available computational
power for retraining (SHAHEEN et al., 2022).

Despite its importance, most of the existing solutions for continual learning in computer
vision have focused on classification scenarios, while object detection in an incremental manner
remains a more challenging task. This is also reflected in the number of competitions that
were proposed recently for computer vision conferences and workshops, and the number of
participants for each of them (LOMONACO et al., 2022; BAE et al., 2020; PELLEGRINI et al.,
2022).

As discussed in the systematic review presented in Chapter 3, incremental learning
strategies for object detection are often divided into class-incremental and domain-incremental
instances. However, in the realm of the real world, where possibilities are endless, models
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may need to deal with situations that combine both challenges. The following sections explore
solutions for COD in two real-world tasks in which the model needs to incorporate the knowledge
of new object classes and adjust to changes in existing classes without requiring complete
retraining on all the data.

6.2 Continual Egocentric Perception

6.2.1 Context

Several robotics and augmented reality applications require that perception models (e.g.,
computer vision models for visual understanding) run successfully in a first-person perspective,
also known as egocentric (GRAUMAN et al., 2022). Such a scenario is challenging since most of
the available visual data in the world comes from datasets in the traditional form of a “spectator”
or third-person view. The captured footage of an agent engaging with its environment often
features unusual poses and varying illumination, making low-level visual tasks and contextual
interpretation of human actions more challenging. Additionally, an agent can experience new
scenarios and situations daily, making this context an interesting test-bed for models that can
deal with such fast-changing scenarios.

To encourage research on the frontiers of egocentric perception, the 3rd CLVISION
Challenge at CVPR 2022 proposed the exploration of a massive-scale egocentric dataset for
detecting objects from a continual learning perspective. In this context, the challenge presented
three possible tracks involving continual learning for object recognition, with Track 3 focusing
on continual instance-level object detection. The 34 registered teams for this track were required
to handle five learning experiences containing a total of 1111 different objects, with the final
solutions constrained to use only pre-trained methods on the ImageNet-1K, COCO, or LVIS
datasets. Other constraints related to the final solution included:

1. Max model size: 70M parameters.

2. Max replay buffer size: 5000 samples.

3. The model needed to finish its training and evaluation under 24 hours on the reference
server 1.

4. No test time training or augmentation.

5. The solution must not use information regarding the category of instances nor the video
ID at test time.

1 The reference server was an AMD EPYC 7282, 128 GB RAM @ 2666 MHz with SSD and an Nvidia
Quadro RTX 5000.
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6.2.2 Ego4D dataset

The dataset used for this challenge is an adaptation of the Ego4D dataset (GRAUMAN et

al., 2022), released by Meta, for the incremental setting called EgoObjects. The dataset features
first-person videos of people handling objects in their daily lives. The videos were broken into
frames and split into training and testing sets containing no data leakages. Through their API,
which was made available by the competition organizers, the training set could also be easily
split into training and validation. An example of the images present on the dataset is shown in
Figure 17.

Figure 17 – Samples from the EgoObjects dataset.

The challenging aspect of incremental learning in this context is that each experience can
present new classes as well as training samples from previous learning experiences. This mix
of class and domain-incremental scenarios was proposed as a way to represent how continual
learning would have to be explored in a real-world situation.

6.2.3 Methodology

Considering the aforementioned data and constraints, in this section, we describe the
main components of our proposed solution for the challenge. The Avalanche library, a Pytorch-
based framework for CL (LOMONACO et al., 2021), was used to load the challenge data and
structure the CL strategy.

6.2.3.1 Architecture and training settings

For the neural network architecture, we chose the Fully Convolutional One-Stage Object
Detector (TIAN et al., 2020) using a ResNet50 with FPN as the backbone from torchvision2.
The model was pre-trained on the COCO train2017 dataset (LIN et al., 2014) and had only its
head changed to be able to detect all the 1111 possible objects.

For the optimizer and learning rate across experiences, we applied SGD with a 0.05 LR
and momentum of 0.9. The LR scheduler was set to be linear with a warmup of 1000 iterations,
as in the general template given for the competition. The scheduler was applied only to the
first epoch of the first experience and kept the LR stable across the whole training execution.
Although this scheduler was chosen for our final solution, some preliminary tests using a StepLR
2 https://pytorch.org/vision/0.12/models.html
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starting at 0.01, decreasing by 50% every 10,000 steps, and restarting at each experience also
showed a decent performance. Yet, we did not have time to explore diverse solutions based on
this last setup.

Other general training settings were:

∙ Number of Epochs: 5.

∙ Image size: images were limited to 800 on the largest size and 600 on the shortest.

∙ Training batch size: 4.

∙ Validation batch size: 16.

∙ Transforms: Random Horizontal flip with 50% of probability.

For evaluation, the average of the mAP scores across experiences was used, here denoted
as Experience Average Precision (EAP). Since the initial metric calculates the mean of the AP
across class instances in every single experience, class-imbalanced experiences would not hurt
the final performance as much.

6.2.3.2 Balanced Experience Replay

Considering the maximum buffer size and that the number of images for each object
instance was highly unbalanced (e.g., some with more than 100 instances, others with 15), we
proposed the use of a balanced replay buffer.

After the first experience, the replay buffer was initialized so that at least N samples from
each class for the previous experience were present for the next task. In this case, N is the buffer
size available for the task divided by the number of different object instances in it. The buffer
size was defined by the maximum buffer size divided by the number of tasks seen so far.

Using such a strategy instead of an experience replay buffer based on reservoir sampling
resulted in an increase from 34.6 to 40.8 on the final leaderboard metric (average mAP across
experiences).

6.2.3.3 Knowledge Distillation from Features and Outputs

Following the basic distillation procedure for incremental object detection introduced
by Shmelkov, Schmid and Alahari (2017) and the following advances proposed by Chen, Yu
and Chen (2019), we regularized the learning of each new experience by distilling knowledge
from a saved version of the model trained on the previous experiences. The distilled knowledge
came from the L2 loss, here named penalty, applied to the head (logits, bounding boxes, and
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“center-ness” of objects) and intermediate features (layer2.3.relu, layer3.3.relu, and layer4.2.relu)
for both models as described by Equations 6.1 and 6.2.

Lhead =
1
3 ∑

j

1
M

M

∑
i=1
||yteacher

j (xi)− ystudent
j (xi)||2 (6.1)

L f eat =
1
3 ∑

k

1
M

M

∑
i=1
||F teacher

k (xi)−Fstudent
k (xi)||2 (6.2)

where y was the output of a head j, F were the feature activations from a layer k and xi was a
sample from a batch M for the current experience. The final penalty was calculated by adjusting
the weight for the L f eat , as shown in Equation 6.3 since the losses were on different scales. We
found that a λ of 10 was able to balance the contribution of the two terms.

Lpenalty = λ L f eat +Lhead (6.3)

The final loss used to update the weights was the original LFCOS, obtained when training
the student detector, summed by the scaled penalty value as described in Equation 6.4.

Loss = LFCOS +α Lpenalty (6.4)

α was a parameter to calibrate the current model‘s stability-plasticity considering the
previous one. Most distillation solutions in continual object detection use the value of 1 as
reference (PENG; ZHAO; LOVELL, 2020; CHEN; YU; CHEN, 2019), but we found that the
value of 0.5 had better performance for the final validation metric. This distillation setting resulted
in an increase from 40.8 to 41.69 AP, as shown by our final performance on the leaderboard.

6.2.4 Results

Table 11 presents the final mAP after each experience and the final EAP for the top 3
submissions. Additionally, Table 12 presents a summary of the design choices of each ranked
solution on the track.

Table 11 – mAP after each experience and final EAP

Team E0 E1 E2 E3 E4 EAP
Tencent Youtu Lab (1st) 0.2330 0.3953 0.5459 0.7021 0.8560 0.5465
NUSA*STAR (2nd) 0.1505 0.3044 0.4550 0.6079 0.7537 0.4543
Our solution (3rd) 0.1474 0.2909 0.4232 0.5539 0.6691 0.4169

The winning solution used experience replay and knowledge distillation on the heads and
features, along with a more recent and robust detector and backbone. The runner-up proposed a
hybrid replay and architectural solution based on a multi-head FasterRCNN and Non-Maximum
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Table 12 – Description of each final ranked solution

Team Base Detector Backbone
Pretraining

Dataset Replay Distillation AP AP50

Tencent Youtu Lab (1st) VarifocalNet Res2Net101 COCO Experience X 54.7 61.2
NUSA*STAR (2nd) Faster R-CNN ResNet50 LVIS Video 45.4 56.0
Our solution (3rd) FCOS ResNet50 COCO Instance X 41.7 51.1

Supression (NMS) for fusing the detected objects. Although our solution did not place as well as
the winner, we managed to beat the 4th place by around 3-4 mAP points.

As discussed in the final competition report for all tracks, even though populating and
selecting important samples for the replay buffer takes computational time that could be used
for employing more complex solutions, a properly tuned replay strategy was crucial to prevent
forgetting and obtain a good balance between stability and plasticity in all solutions for the
detection tracks (PELLEGRINI et al., 2022).

6.2.4.1 Failed attempts to improve the results

We evaluated several strategies to improve the incremental detector’s final performance.
Due to the considerable computational time required when training large detectors, most of the
experiments were executed for 5 epochs to briefly check their effectiveness. Some of the attempts
are described below:

∙ Adam optimizer: The optimizer presented decent initial performance but was less stable
than SGD for higher LRs and thus had worse validation metrics for 5 epochs.

∙ Learning Rate Finder + One Cycle Policy (SMITH, 2017): Strategy presented good
learning performance but had lower validation metrics than plain SGD with LinearLR and
warmup iterations.

∙ Larger images: Training with larger images (Max 1333 x Min 800) showed better vali-
dation results but impacted the total used memory and training time. Thus, we kept the
smaller setup to comply with the evaluation server memory and time constraints.

∙ More epochs: Considering the increase in computational time brought by the distillation
component, we limited the training to 5 epochs to comply with the constraints mentioned
above. However, some initial tests pointed out that training for more than 5 epochs would
not result in any considerable gains in performance. This might also be related to using a
LinearLR that does not change across all the experiences.

∙ Different Augmentations: We applied some “stronger” augmentations, such as random
distortions and IOU crops, but the final validation metrics were affected negatively.
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It is worth noting that other exploratory experiments utilizing techniques from other
chapters have been omitted due to our inability to duplicate the same conditions as the initial
experiments. This was mainly because the test set for the competition was unavailable up to this
manuscript‘s writing, and the evaluation server was not reachable.

6.3 Continual Detection for Aerial Inspection of Trans-
mission Towers

6.3.1 Context

Preventive inspections of transmission towers are essential to ensure the safety of civilians
and workers as well as evaluate the lifecycle of their components. This entails a thorough
examination of their various parts, such as insulator strings, conductor cables, lightning rods,
and spans, to detect any defects or irregularities that may pose risks.

These inspections are often performed by onsite specialists using binoculars or Unmanned
Aerial Vehicles (UAVs), as shown in Figure 18, for first capturing video footage and then
categorizing the health aspect of each component. Automating such tasks by the use of drones
equipped with perception modules (i.e., object detection algorithms) has been largely approached
in the industry setting (NIKOLIC et al., 2013; SCHOFIELD; LORENZEN; EBEID, 2020).

Figure 18 – Real UAV flight during an inspection.

Since some automation pipelines depend on the detection being performed in real-time
on the device, the inference speed, as well as the incremental aspect of updating the list of
objects of interest, needs to be taken into account. For that, the use of models with slimmer
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architecture (e.g., one-stage detectors) equipped with CL strategies may be a reasonable solution
for leveraging such applications.

6.3.2 Methodology

6.3.2.1 TAESA Transmission Towers Dataset

The detection of transmission towers and their components using aerial footage from
drones is an essential step for executing inspection missions in transmission facilities (TAKAYA
et al., 2019). Besides the advantages in staff safety and the cost of the inspection, the use of UAVs
for this task is also known to have a positive impact on the standardization of the acquisition
process. However, there is a lack of successful reports of general applications in this field since it
inherently involves several challenges related to acquiring training data, having to deal with large
domain discrepancies (i.e., electric transmission towers can be located anywhere in a country),
and the necessity to update the detector every time a new accessory or tower needs to be mapped.

To aid in the proposal of solutions for some of the listed issues, we introduce the
TAESA Transmission Towers Dataset. It consists of aerial images from several drone inspections
performed on energy transmission sites maintained by the TAESA company in Brazil. The full
dataset has records from different transmission sites from four cities with different soil and
vegetation conditions. In this way, the incremental benchmark was organized into four different
learning tasks, each representing data from a specific transmission site, as illustrated by Figure
19.

Each task can have new classes that were not introduced before and new visuals for a
previously introduced object, making it a challenging “data-incremental” benchmark. In addition,
different from most artificial benchmarks, images were annotated by several people using a
reference sheet of the possible classes that could be present. For that, the possibility of missing
annotations and label conflict in posterior tasks was reduced. A summary of the dataset with
respect to the number of images and objects, with their description, for each task can be seen in
Tables 13 and 14.

Table 13 – ID for each class in the TAESA dataset.

Class Label Description
0 Classic Tower
1 Insulator
2 Yoke Plate
3 Clamper
4 Ball Link
5 Anchoring Clamp
6 Guyed Tower
7 Support Tower
8 Anchor Tower
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Table 14 – TAESA Dataset Summary.

N∘ of Boxes per label

Scenario Set
N∘ of

Images 0 1 2 3 4 5 6 7 8
Total
Boxes

Task 1
Training 526 690 2228 482 119 381 528 - - - 4428
Validation 67 78 245 55 16 29 49 - - - 472
Testing 69 91 252 49 10 42 60 - - - 504

Task 2
Training 431 86 950 260 4 - - 20 429 8 1757
Validation 55 14 120 32 - - - 2 55 - 223
Testing 55 2 120 29 1 - - 3 55 - 210

Task 3
Training 308 5 726 269 39 - - 303 - 4 1346
Validation 39 3 92 31 5 - - 36 - - 167
Testing 39 1 89 33 6 - - 38 - - 167

Task 4
Training 227 5 1242 357 - 770 83 - - 234 2691
Validation 28 2 165 50 - 98 12 - - 29 356
Testing 29 - 177 52 - 112 11 - - 29 381

Figure 19 – Sample of images of each task for the TAESA Transmission Towers Dataset.

6.3.2.2 Implementation Details

For making evaluations on the proposed incremental benchmark, we use the same training
setting and steps proposed in Chapter 5 in which a RetinaNet model with a ResNet50-FPN
backbone is used for continual training, and different freezing and penalty strategies are tested.
The model was trained for 40k steps for the initial task, which has more images and classes, and
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subsequently for 5k steps in each new task, using the same hyperparameters described in Chapter
5. As for the baseline, we compare it against the fine-tuning without any CL strategy, the use of
individual neuron freezing as in the work of Li et al. (2018) denoted as MMN, task-balanced
random reservoir replay with a buffer size of 10% of the first task‘s size, and the upper-bound
defined by training with all the available images.

We report the results as the average of three runs with different seeds when learning each
task sequentially. The performance is measured by the final mAP, with different thresholds, and
mAP[.50] after learning all tasks, as well as with their upper-bound ratios ΩmAP and ΩmAP[.50].
To account for a model’s stability and plasticity, we have modified the existing RSD and RPD

metrics to consider tasks instead of individual classes. In this evaluation scenario, RSD measures
the performance deficit against the upper-bound in all tasks up to the last one, while RPD

evaluates the performance deficit against the last learned task.

6.3.3 Results

Table 15 summarizes the results on the proposed benchmark with the green color
highlighting metrics related to mAP and blue for mAP[.50]. As the benchmark involves class-
incremental and domain-incremental aspects, we noticed that when there is little drift in the
appearance of previously known objects that show up in the new task images, these instances
reinforce the “old knowledge” and can be considered as a small case of replay. This can be
checked by the fact that the forgetting in the fine-tuning approach is “soft” when compared to
other artificial benchmarks, such as Incremental Pascal VOC, in which classes that do not appear
in further training sets are completely forgotten. Furthermore, the benchmark was organized in a
way that minimized label conflicts, leading to less interference in the weights assigned to each
class.

Applying a penalty to the gradients of important parameters improved the results of
leaving them frozen (i.e. MMN) in all scenarios. The best results were seen when applying a
1% of the penalty to 50% or more of the important weights. Due to a slight imbalance between
the number of available data and classes in each task and the fact that the first task had more
learning steps, it was found that keeping most of the old weights unchanged, or slightly adjusting
them to new tasks, proved to be effective for average performance. However, when checking the
performance in the intermediate tasks (i.e., Tasks 2 and 3) and comparing them to the fine-tuning
and upper-bound results, we see that forgetting still occurs, but to a lesser extent than in the other
evaluated methods.

Selecting the most important layers based on information entropy was the most impartial
in terms of the percentage of layers chosen, and generally yielded superior outcomes compared
to other statistical measures. Yet, freezing 75% of the layers based on the mean of feature map
activations seemed to produce the best results, achieving a good balance in the final ΩmAP and
ΩmAP[.50], although it significantly impacted knowledge retention in intermediate tasks The other
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Table 15 – Results for incremental training on the TAESA Benchmark

Task 1 Task 2 Task 3 Task 4 Final Eval

% Feature mAP mAP[.50] mAP mAP[.50] mAP mAP[.50] mAP mAP[.50]
Average

mAP
Average

mAP [.50] ΩmAP ↑ ΩmAP[.50] ↑ RSDmAP ↓ RPDmAP ↓

Freeze

25

mean 43.7 67.9 5.6 13.5 13.3 24.1 35.1 60.8 24.4 41.6 0.55 0.60 51.18 28.22
median 43.8 65.4 9.7 21 15.2 36.9 37.9 64.5 26.6 47.0 0.60 0.67 46.48 22.49

std 41.7 62.5 10.5 21.6 19.3 32.9 38.6 64.9 27.5 45.5 0.62 0.65 44.28 21.06
entropy 41.2 61.4 15.6 30.3 21 34.7 39.8 67.1 29.4 48.4 0.66 0.69 39.33 18.61

50

mean 44.0 69.6 5.8 13.9 11.8 23.2 35 61 24.2 41.9 0.55 0.60 51.96 28.43
median 43.3 64.7 10.5 22.5 14.8 26.3 37.2 62.6 26.5 44.0 0.60 0.63 46.52 23.93

std 41.4 64.4 10.9 22.8 19.8 34.3 38.4 64.9 27.6 46.6 0.62 0.67 43.77 21.47
entropy 41.0 61.8 16.6 31.5 22.2 37.8 39 65.9 29.7 49.2 0.67 0.71 37.77 20.25

75

mean 47.9 71.4 3.5 9.8 12.4 24.1 31 55.3 31.4 49.0 0.71 0.70 50.28 36.61
median 45.9 65.3 6.8 17.5 17.4 30.6 32.9 60 30.9 48.7 0.70 0.70 45.37 32.72

std 44.1 63.2 10.8 24 19.3 32.5 34.4 62.1 30.5 48.7 0.69 0.70 42.14 29.65
entropy 43.7 63.1 11.6 21.9 22.5 38.5 36.6 62.3 30.4 48.7 0.69 0.70 39.33 25.15

90

mean 46.2 69.9 6.8 13.9 9.9 20.7 23.3 44.9 21.6 37.4 0.49 0.54 50.95 52.35
median 45.4 68.8 8.6 22.8 15.8 29.9 25 48.5 23.7 42.5 0.53 0.61 45.62 48.88

std 44.8 68.6 13.1 27.6 18.4 33.4 25.7 49.7 25.5 44.8 0.58 0.64 40.54 47.44
entropy 45.6 67.0 13.9 28.5 19.5 33.8 28.4 53 26.8 45.6 0.61 0.65 38.43 41.92

Grad

25
0.1 44.2 67.8 7.5 16.6 20 34.5 37.2 64.4 27.2 45.8 0.61 0.66 44.14 23.93

0.01 29.2 65.7 8.8 18 19.9 34.1 37.9 64.7 24.0 45.6 0.54 0.65 54.84 22.49

50
0.1 45.7 69.7 9.7 21.4 18.8 32.6 35.2 61.7 27.4 46.4 0.62 0.67 42.16 28.02

0.01 45.4 67.9 11.2 23.1 20 34.9 37.1 64.3 28.4 47.5 0.64 0.68 40.28 24.13

75
0.1 47.5 70.6 9.7 23 18.5 31.6 31.5 57.7 26.8 45.7 0.61 0.66 40.97 35.58

0.01 47.0 71.6 21.1 36.5 19.2 32.6 32.3 59.4 29.9 50.0 0.67 0.72 31.96 33.95

90
0.1 48.7 72.9 15.6 31.1 17.7 32 28 53.1 27.5 47.3 0.62 0.68 36.09 42.74

0.01 49.2 73.5 20.4 39.4 18 32.3 27.9 53.7 28.9 49.7 0.65 0.71 31.69 42.94

MMN

25 - 44.6 68.0 5.1 12.2 17.8 31.3 33.5 60 25.3 42.9 0.57 0.62 47.36 31.49
50 - 47.3 69.7 4.2 10.1 17.4 31.7 31.5 58 25.1 42.4 0.57 0.61 46.33 35.58
75 - 49.4 72.7 6.7 15.9 15.5 28.8 28.1 52.1 24.9 42.4 0.56 0.61 44.16 42.54
90 - 48.6 72.0 10.4 18.6 14.2 26.8 13.8 32.5 21.7 37.5 0.49 0.54 42.97 71.78

Fine tuning - - 44.2 66.6 5.4 12.8 12 23.5 34.9 61.5 24.1 41.1 0.54 0.59 52.02 28.63
Experience Replay - - 46.7 71.3 21.5 37.8 24.9 40.6 42.5 71.9 33.9 55.4 0.77 0.80 27.40 13.09
Ground Truth - - 56.8 83.2 35.7 58.1 35.8 62.1 48.9 75.3 44.3 69.7 - - - -

layer-freezing methods attained similar results, but with less forgetting in the intermediate tasks.
This highlights the necessity to look at the big picture and not only specific metrics based on
averages.

Although the full benchmark seemed challenging by having to deal with new classes and
domains, the initial task’s diverse and abundant data helped prepare the model to learn with small
adjustments in new task scenarios. All evaluated strategies performed better than fine-tuning and
MMN baselines but fell behind the results achieved through experience replay. For scenarios
where saving samples is not feasible, a hybrid strategy involving parameter isolation and fake
labeling may help reduce the gap in performance against replay methods. Nevertheless, when
possible, combining these methods with parameter-isolation strategies can be seen as a promising
direction for investigation.

6.4 Final Considerations

In this chapter, we described our strategies for real-world applications that involved COD
in perception and an aerial inspection benchmark.

For the first part, as shown by our ablation studies, the catastrophic forgetting effects
when training incrementally with the Ego4D dataset could be mitigated. For that, the best setting
happened when using an experience replay buffer balanced by the number of tasks and different
categories in each experience, along with a knowledge distillation component applied to the
features and head outputs.

For the second part, we explored different freezing strategies and penalties for important
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parameters in order to be able to learn and adapt incrementally to new power transmission sites.
The use of the entropy criteria for selecting which layers to freeze, instead of freezing individual
weights, showed promising results even when only 25% of them were frozen across sequential
updates. The obtained results were on par with a replay-based strategy, making layer-mining, as
well as the proposal of hybrid approaches involving it, an interesting research topic for further
exploration.

Considering the possible future directions for the ones who want to develop solutions
to the same benchmarks, we believe that strategies that account for the label-conflict problem
when they occur, such as self-labeling, and more advanced architectures and losses such as the
VarifocalNet (ZHANG et al., 2021) and Swin (LIU et al., 2021) can be promising mainly if
there are no or few initial constraints to the evaluated benchmark (e.g., number of parameters
and training time). Additionally, to more strongly validate the effectiveness of layer-freezing for
applications in COD, we should make comparisons against newer and more complex strategies
taking into consideration other training perspectives such as the use of memory and computational
time.
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CHAPTER

7
CONCLUSION

In this final chapter, we present our concluding thoughts on this Ph.D. thesis and its
contributions to the field of COD.

7.1 Final Considerations

Despite the fact that data availability has increased exponentially over the years, the time
and processing power it takes to learn from such data can still be limited for several applications.
This highlights the importance of the COD field in a world where machines require perception to
plan and act in conjunction with humans. In relation to the objectives and hypotheses introduced
in Chapter 1, some key considerations can be emphasized:

Hypothesis 1. Metrics specifically tailored to highlight changes in the stability-plasticity of a

model are more suited to class-incremental object detection than standard CL metrics.

Chapters 3 and 4 touch on the necessity of more specific metrics to deal with COD
scenarios. The proposed metrics introduced in Chapter 3 (RSD and RPD) give a simple way to
compare methods regarding their ability to retain and acquire new knowledge through sequential
updates. These metrics are particularly useful when there is an imbalance between the number of
classes and available images for each incremental task with respect to the previous ones. This is
because the average mAP, and consequently ΩmAP generally used for CIOD, can mask the lack
of ability to learn new classes or retain old knowledge by smoothing through the average result.
Additionally, RSD and RPD can be adapted to represent the changes in stability and plasticity
for scenarios with several incremental tasks, as shown in Chapter 6.

Based on our subjective analysis, the experiments conducted confirm our first hypothesis
that metrics specifically tailored to highlight changes in the stability-plasticity (i.e., RSD and
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RPD) are generally more suitable for evaluating COD results than the general average and
forgetting metrics.

Hypothesis 2. Class-balanced replay buffers are more effective for class-incremental object

detection than using random buffers.

In Chapter 4, we explored different ways to populate replay buffers for CIOD. Object
detection poses inherent challenges, such as handling highly imbalanced tasks and diverse data.
We found that the class-balanced replay buffer delivered the most consistent results across all
evaluated scenarios for the Incremental Pascal VOC benchmark, demonstrating significant differ-
ences when compared to randomly populated buffers and other detection-optimized methods.
Furthermore, in the first section of Chapter 6, we presented results that supported these findings
for more practical applications of COD in the real world. With these scenarios in mind, we are
confident that the given hypothesis holds true and recommend that COD researchers take it into
account when evaluating their methods.

Hypothesis 3. The use of a well-selected parameter mining and freezing strategy can enable

deep neural network models to continually learn how to detect new objects while avoiding

forgetting old ones.

Two different strategies for identifying, freezing, and updating important weights during
incremental learning steps were assessed in Chapter 5 and the second application reported
in Chapter 6. The findings suggest that freezing layers based on their feature map activation
statistics, and applying a gradient penalty to important weights instead of completely freezing
them, can serve as strong baselines, particularly when dealing with tasks with fewer label conflicts
and added classes. The obtained results outperformed the baseline where mined neurons were
kept frozen, as proposed by Li et al. (2018), in both the 19+1 Incremental VOC and TAESA
benchmarks, but fell short of the use of experience replay and more complex regularization
techniques in the 10+10 scenario for the Incremental VOC benchmark. While we believe that
these strategies confirm the hypothesis when compared to other competitive baselines, we also
believe that there is still room for improvement and exploration, particularly when combining
these strategies with other CL methods.

Overall, there are limitations regarding the coverage of our experimental claims since we
opted to evaluate mostly in controlled scenarios. The CIOD-specific metrics rely on calculations
using the raw class-wise or task-wise mAP values after detection and their upper-bound reference.
While we used these metrics in Chapter 3 to compare methods that displayed their full results
in the Incremental Pascal VOC benchmark and some in COCO, it is challenging to accurately
compare the results of these metrics for papers reporting results in larger datasets like LVIS.
This is because researchers usually report only the final average mAP. As we have stated many
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times in this thesis, it might be misleading to only report the final mAP or upper-bound ratio,
and results should be interpreted with caution. To ensure fair comparisons, we suggest that
researchers always evaluate their COD strategies with respect to plasticity and stability in a
comparable way.

When developing new methods for CIOD, it is important to consider the use of class-
balanced buffers as a starting point for comparison. However, it is crucial to keep in mind that
these buffers rely heavily on the assumption that the model can store samples during learning
updates. While storage may be a more cost-effective solution in some applications, there may
be situations where rehearsing old data is not possible. In such cases, strategies that are based
on parameter isolation and regularization may be the only viable option. Therefore, we suggest
that experience replay for CIOD should always be considered when evaluating new strategies,
but researchers should carefully assess when it is appropriate and develop strategies that are not
solely dependent on it.

Limitations around parameter isolation can be related to the manual adjustment of a
network’s stability and plasticity abilities through the percentage of parameters/layers to be
frozen, which can be useful in some situations but not practical in others. Furthermore, such
simple techniques are a great choice against more computationally expensive strategies such as
EWC or LWF, but may be not suitable for non-stationary tasks in which the importance of the
weights and layers may change over time. To address that, the proposal of hybrid methods that
deal with these scenarios can be considered for a more versatile solution.

In summary, for this thesis, we presented: a systematic review that helped organize and
evaluate what had been done in the field of COD; an evaluation of how exemplar replay could be
better utilized for the incremental learning of detectors; an exploration of different ways to mine,
freeze and update important parameters of a network in order to deal with sequential learning;
two indicative applications of how continual detection can and is used in the real world. We
believe the individual works that formed this thesis are of great importance for future researchers
who will build upon current solutions in the COD field.

Regarding future work and directions, we suggest that researchers should explore solu-
tions beyond mainstream techniques. It is also important to consider approaches that have been
successful in other fields, like open-vocabulary and open-world detection. Our investigations and
the results we reported in Chapters 5 and 6 lead us to believe that simple techniques focused on
model parameters and architectural changes should not be ignored, as they provide strong base-
lines for the COD task. However, we recognize the limitations of our work and suggest that future
research should include large-scale detection benchmarks, such as the LVIS dataset(GUPTA;
DOLLAR; GIRSHICK, 2019), to test new hypotheses in the context of COD. Besides that,
applying self-supervision techniques in order to create object-agnostic representations, as already
investigated in open-world object detection, can be a promising direction since it detaches the
discrimination and localization aspect of the learning paradigm, which can be further explored
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by COD strategies.

7.2 Contributions

As direct contributions from this thesis to the research community, we name the follow-
ing:

∙ The first review in COD through the paper entitled: “Continual Object Detection: A Review
of Definitions, Strategies, and Challenges” published in Neural Networks in 2023.

∙ The proposal of two metrics (i.e., RSD and RPD) for the more thorough evaluation of
COD pipelines.

∙ A solution that got 3rd place for Track 3 (Continual Instance Detection) on the CLVISION
Challenge at CVPR 2022.

∙ The paper “Exemplar Replay Evaluation for Continual Object Detection” to be sent for
review.

∙ The paper “Efficient Parameter Mining and Freezing for Continual Object Detection” to
be sent for review.

Not directly related to this Ph.D. thesis, we had a few other contributions to academia
and the Brazilian machine learning research field during the graduate program, such as:

∙ The writing of the book in Portuguese: “Ciência de Dados: Fundamentos e Aplicações”
with Prof. André C. P. L. F. de Carvalho and prof. Robson Parmezan to be published by
Editora Grupo Gen at the end of 2023.

∙ The paper accepted for publication at IEEE Access entitled “Sim-to-Real Transfer for
Object Detection in Aerial Inspections of Transmission Towers” with researchers from the
Eldorado Research Institute.

∙ The paper accepted for presentation at the “Open Innovation Week 2023”, entitled “A
Framework for Multi-Rotor UAV Image Inspection of Transmission Towers” with re-
searchers from the Eldorado Research Institute.

∙ The teaching of the course “Advanced Topics in Intelligent Systems: Deep Learning” in
the Big Data and Intelligent Systems Specialization at SENAI Paraná in 2020.

∙ The teaching of the course “Introduction to AI with Computer Vision” within the national
“SmartCities” project of the city Canaa dos Carajás in partnership with CEMEAI 2021.
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∙ The preparation of the base material for the “Data pre-processing and preparation” and
“Deep Learning” courses for the Master in Business Intelligence at SENAI Paraná in 2021.

∙ The participation in three Bachelor Thesis Committees from 2020-2023.

∙ The review of several papers for prestigious conferences and journals such as KDD, ECML,
BRACIS, and Neural Networks from 2020-2023.

∙ The supervision of Davi Filetti and Pedro Conrado in their undergraduate research.

∙ The work as a teacher assistant for the “Machine Learning” and “Data Science Fundamen-
tals” courses at the University of São Paulo in 2021 and 2022.

∙ The presentation of a workshop entitled “Artificial Intelligence and Neuroimaging” for the
Medical League in Neurosurgery of Sergipe in 2020.

∙ The presentation of a tutorial at Python Nordeste entitled “Object Detection: From Zero to
Hero” in 2022.

∙ The development of the machine learning backend of the NeuroKeypoint AR 2.0 app
for allowing the precise inspection of brain lesions in real-time with a camera using
pre-operative images, face registration, and augmented reality. The paper describing the
approach is still in progress.
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