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RESUMO

VANNINI, V. Harpia: Um sistema híbrido para missões com VANTs. 2023. 120 p. Tese (Dou-
torado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

Este projeto de doutorado apresenta Harpia, um sistema híbrido de planejamento de inteligência
artificial para VANTs (Veículos Aéreos Não Tripulados) como foco em autonomia. Harpia
tem como objetivo executar tarefas para aplicações de propósito geral com mínima intervenção
humana. Para facilitar o entendimento, o problema abordado é ambientado em uma fazenda
onde o sistema autônomo deve ser capaz de realizar missões com segurança. A arquitetura
do sistema é implementada usando o Sistema Operacional Robótico e inclui funcionalidades
como o replanejamento de tarefas e o planejamento de trajetória com desvio de obstáculos.
O replanejamento pode ocorrer após mudanças na missão em tempo real ou devido a um
comportamento imprevisível do VANT. Harpia combina a Linguagem de Definição de Domínio
de Planejamento para planejamento de tarefas, uma Rede Bayesiana para avaliar a execução da
missão, um algoritmo de K-Vizinhos Mais Próximos para selecionar um planejador de trajetória,
Análise de Componentes Principais e um modelo de Árvore de Decisão para avaliar a saúde
da aeronave. Portanto, a novidade do Harpia concentra-se na robustez para o planejamento
autônomo e o replanejamento da sequência de tarefas e trajetórias para regiões de interesse. As
principais contribuições incluem uma arquitetura de sistema autônomo para planejar missões
com intervenção humana mínima, sem limitações por tarefas específicas e computacionalmente
simples para operar em diversos cenários. Os testes computacionais relatam resultados para
220 cenários simulados, nos quais o Harpia lidou adequadamente com todas as situações, por
exemplo, tomando decisões sobre o replanejamento de tarefas com 97,57% de precisão com base
na saúde da bateria e escolhendo o melhor planejamento de trajetória para cada caso com pelo
menos 95% de precisão.

Palavras-chave: Robótica, Inteligência Artificial, VANT, Sistemas Autônomos.





ABSTRACT

VANNINI, V. Harpia: A Hybrid System for UAV Missions. 2023. 120 p. Tese (Doutorado em
Ciências – Ciências de Computação e Matemática Computacional) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

This doctoral project presents Harpia, a hybrid artificial intelligence planning system for UAVs
(Unmanned Aerial Vehicles) with a focus on autonomy. Harpia aims to perform tasks for
general-purpose applications with minimal human intervention. To facilitate understanding, the
problem addressed is set on a farm where the autonomous system must be capable of carrying
out missions safely. The system architecture is implemented using the Robotic Operating System
(ROS) and includes functionalities such as task re-planning and trajectory planning with obstacle
avoidance. Re-planning can occur after real-time mission changes or due to unpredictable
UAV behavior. Harpia combines the Planning Domain Definition Language (PDDL) for task
planning, a Bayesian Network (BN) for evaluating mission execution, a K-Nearest Neighbors
(KNN) algorithm for selecting a trajectory planner, Principal Component Analysis (PCA), and a
Decision Tree (DT) to assess the health of the aircraft. Therefore, the novelty of Harpia focuses
on robustness for autonomous planning and re-planning of the sequence of tasks and trajectories
for regions of interest. The main contributions include an autonomous system architecture to plan
missions with minimal human intervention, unconstrained by specific tasks, and computationally
simple to operate in diverse scenarios. Computational tests report results for 220 simulated
scenarios, in which Harpia adequately handled all situations, for example, making decisions
about task re-planning with 97.57% accuracy based on battery health and choosing the best
planning trajectory for each case with at least 95% accuracy.

Keywords: Robotics, Artificial Intelligence, UAV, Autonomous Systems.





LIST OF FIGURES

Figure 1 – Estimated values in billion for UAV application in industries. . . . . . . . . 32

Figure 2 – Estimated values by payloads. . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3 – R-CNN schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 4 – Trajectory control architecture . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 5 – Trajectory control architecture . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 6 – Bi-lateral architecture overview . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 7 – Proposed decision flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 8 – Architecture presented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 9 – State Machine in IFA2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 10 – Farm scenarios for planning tasks: regions of interest, no-fly zones and
support bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 11 – Re-planning sequence of actions. The black arrows show the previous se-
quence of actions, and blue arrows indicate the re-planning one with the
removed and added regions. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 12 – Specific routes example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 13 – Possible scenario when scheduling tasks for a farm . . . . . . . . . . . . . 51

Figure 14 – Example of state plan for the planning problem in a farm scenario. . . . . . 53

Figure 15 – Autonomy complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 16 – Problem solution for 2 in 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 17 – ROSPlan Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 18 – Description of the ROS nodes and communication . . . . . . . . . . . . . . 67

Figure 19 – Incomplete PDDL domain and problem for Harpia . . . . . . . . . . . . . . 70

Figure 20 – Risk incurred by the uncertainty related to the state xt . . . . . . . . . . . . . 71

Figure 21 – Elbow method to evaluate K . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 22 – KNN and path planner selection based on some features. . . . . . . . . . . 73

Figure 23 – BN result example where replan is needed. The images show the addition of
new nodes on the BN, setting the actions that happened and calculating the
probability of re-plan for added nodes. . . . . . . . . . . . . . . . . . . . . 74

Figure 24 – Re-planning sequence of actions. The black arrows show the previous se-
quence of actions, and blue arrows indicate the re-planning one. . . . . . . . 76

Figure 25 – PCA components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 26 – Re-planning sequence of actions. The black arrows show the previous se-
quence of actions, and blue arrows indicate the re-planning one. . . . . . . . 79



Figure 27 – CPU Time per Goals, with tendencies lines . . . . . . . . . . . . . . . . . . 86
Figure 28 – CPU Time per Goals, with tendencies lines of re-plans . . . . . . . . . . . . 86
Figure 29 – Quantity of mission re-plan per map . . . . . . . . . . . . . . . . . . . . . 87
Figure 30 – KNN results from simulation . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 31 – Planners Calls per Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 32 – Planner time per ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 33 – Planners ratio per Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 34 – Average planner ratio per map . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 35 – Time consumed to generate a route per map . . . . . . . . . . . . . . . . . 92
Figure 36 – plan x path plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 36 – plan x path plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 37 – Typical curve of battery degradation under different test conditions . . . . . 96
Figure 38 – Mean of Re-plan Calls per Battery Health . . . . . . . . . . . . . . . . . . 96
Figure 39 – Time to identify a fault flight per type of error type . . . . . . . . . . . . . . 98
Figure 40 – Chosen actions per error type . . . . . . . . . . . . . . . . . . . . . . . . . 99



LIST OF ALGORITHMS

Algorithm 1 – Pseudo code for decision-making in Fault Detection . . . . . . . . . . . 80





LIST OF SOURCE CODES

Source code 1 – Domain example - incomplete code turtlebot in PDDL . . . . . . . . 58
Source code 2 – Problem example turtlebot in PDDL . . . . . . . . . . . . . . . . . . 60
Source code 3 – Mission Goal Manager . . . . . . . . . . . . . . . . . . . . . . . . . 68
Source code 4 – Mission Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Source code 5 – Mission Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Source code 6 – Domain Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Source code 7 – Example of Problem Code . . . . . . . . . . . . . . . . . . . . . . . 118





LIST OF TABLES

Table 1 – Contributions with related work based on some specific features. . . . . . . . 45
Table 2 – Probability Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 3 – Flight parameters and types . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 4 – Map information summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 5 – Description of the simulation scenarios . . . . . . . . . . . . . . . . . . . . 84
Table 6 – Unfeasible PFP paths info . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 7 – Planning Algorithms results/performance . . . . . . . . . . . . . . . . . . . 89





LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

BN Bayesian Network

CEP Complex Event Processing

CL Classification Learner

CNN Convolutional Neural Networks

DFD Diagnostic Feature Designer

EKF Extended Kalman Filter

FD Fault Detection

FDD Fault Detection and Diagnosis

FDI Fault Detection and Isolation

FDMAE Fault Detection Model Acceleration Engine

FPGA Field-programmable Gate Array

GNSS Global Navigation Satellite System

GPS Global Positioning System

HGA Hybrid Genetic Algorithm

ICAPS International Conference on Planning and Programming

IFA In-flight Awareness System

IFA2S In-Flight Awareness Augmentation System

IMU Inertial measurement unit

INS Inertial Navigation System

IPC International Planning Competitions

K-NN K-nearest neighbors

LIDAR Light Detection and Ranging

LSTM Long Short-Term Memory Neural Networks

MA-DPCA Moving Average Dynamic Principal Component Analysis

MDP Markov Decision Process

MFCCs Mel-Frequency Cepstral Coefficients

MILP Mixed-Integer Linear Programming

MKAD Multiple Kernel based Anomaly Detection

MOSA Mission Oriented Sensors Array

MTOW Maximum take-off weight



NFZ No-Fly Zone

PCA Pearson Correlation Coefficient

PDDL Planning Domain Definition Language

PFP Potential Field Planning

POMDPs Partially Observable MDPs

R-CNN Region-based Convolutional Neural Networks

RC Ray Casting

ROI Regions of Interest

ROS Robotic Operating System

RTT Rapidly-exploring Random Trees

SLAM Simultaneous Localization and Mapping

SOA Service-Oriented Architecture

SVM Support Vector Machines

UAV Unmanned Aerial Vehicle



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2 Contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3 Challenges and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4 Text Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 UAV Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Safety and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 PROBLEM APPROACHED . . . . . . . . . . . . . . . . . . . . . . 47
3.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 FOUNDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Autonomy of robotic systems . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Robot Operating System - ROS . . . . . . . . . . . . . . . . . . . . . 57
4.3 Problem Definition Domain Language - PDDL . . . . . . . . . . . . 58
4.3.1 Domain code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Problem Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 ROSPlan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Harpia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.1 Harpia overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.2 PDDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.3 PATH PLANNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.4 Risk Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.5 Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



6 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Mission Goal Manager, KNN & Planning Algorithms . . . . . . . . . 85
6.3 Risk Mitigation: Battery-Level & Bayesian Network . . . . . . . . . 93
6.4 Fault Detection and Management . . . . . . . . . . . . . . . . . . . . 97
6.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

APPENDIX A GENERATED TREE . . . . . . . . . . . . . . . . . . . 111

APPENDIX B PROBLEM MODELING IN PDDL . . . . . . . . . . . 113



27

CHAPTER

1
INTRODUCTION

1.1 Motivation

In recent years, Unmanned Aerial Vehicles (UAVs) have permeated various real-world
applications, including agriculture, transport, logistics, and surveillance (ARFAOUI, 2017;
Shakhatreh et al., 2019; DENG et al., 2018). Their increasing prominence is attributed to the
declining cost of UAV construction and the embedded sensors tailored for specific tasks. The
appeal of UAVs lies in their flexibility for data acquisition and cost-effectiveness (ZHANG;
KOVACS, 2012) and, compared against terrestrial sensors or satellites, UAVs offer undeniable
benefits. The recent advancements strengthened their processing capabilities, onboard sensors,
obstacle avoidance autonomy, autopilot systems, and overall flight duration (BAVLE et al., 2018;
TABOR; GUILLIARD; KOLOBOV, 2018; RASTGOO et al., 2018). The work in (Shakhatreh
et al., 2019) reviews several types of research about public and civil UAV applications, reporting
the business chance that arises for manufacturers, investors, and business service providers. It is
estimated a market value of $127 billion for UAV in civil scenarios, reaching more than 100,000
jobs related to unmanned aircraft operations by 2025.

While many studies propose computational architectures for UAVs, a gap exists for
a modular, general-purpose system tailored for UAV mission execution and safety. The ex-
isting solutions are often specialized, lacking modular design and varied autonomy levels in
decision-making. Integrating artificial intelligence resources for UAV planning and scheduling
is still nascent and hinges on the specific application, besides being mandatory for an effective
autonomous decision system. Complex issues must be addressed within UAV operations, such as
sensor malfunctions, unexpected route obstructions, battery failures, and weather unpredictability.
An autonomous system for a UAV must deal with those issues to guarantee flight safety, which
can range from less drastic measures, e.g., a path re-planning, to hard decisions like emergency
landing. The same re-planning measure can be applied for mission and path re-planning during
the current mission execution once goals and tasks change. Thus, a robust autonomous sys-
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tem architecture must fulfill real-time adjustments and intelligent task management as primary
requirements.

Driven by these challenges, this doctoral project aims to craft an intelligent and au-
tonomous general-purpose system for UAVs. The focus is on safety and mission execution,
emphasizing system modularity and robustness. The motivation seeks to design a system that
accomplishes mission without compromising aircraft autonomy and safety. A modular design
ensures such flexibility, providing the necessary robustness to allow a smart adaptation when
external measures change the mission or internal system errors must be mitigated.

1.2 Contextualization
The facilitated access to small electronic components has spurred the growth of the UAV

industry, reaching a broader spectrum of professionals (VEMULAPALLI, 2019). From military
exclusivity, UAVs now cater to small to medium enterprises, be it a local farmer monitoring
crop growth or a construction company inspecting structural integrity. Current UAV mission
planning tools are semi-automated once the users typically determine a sequence of waypoints
and associated actions. Although these tools account for UAV-specific internal metrics, they often
neglect external variables such as environmental changes or have problems dealing with specific
aspects of some missions. For example, the Mission Planner1 system used in (POBKRUT;
EAMSA-ARD; KERDCHAROEN, 2016), like some analog systems like QGround Control2 are
widely used for agricultural applications. These systems allow the operator to access and analyze
mission log files, configure autopilot settings, track the aircraft and its information in real-time,
and create a click-through waypoint path using Google Maps/Bing images. Despite being robust
systems, they do not have route calculation (they only work with a straight-line flight from point
to point) and obstacle avoidance. Their security is based on threshold, which only triggers a
safety measure if any variable exceeds its limit and mission actions are not re-configurable.

The mentioned systems, while robust, lack features like route optimization and obsta-
cle avoidance. Their safety mechanisms are rudimentary, mission adaptability is limited, and
onboarding novel mission protocols is complex. The current project will be contextualized in
developing an autonomous system for planning and scheduling tasks or missions for UAVs. The
tasks will cover various actions for different applications, and the system shall demand minimal
human intervention. The project is also contextualized in the planning and scheduling tasks
or missions within a structured and non-convex environment, where non-convexity stands for
obstacles that must be avoided or regions prohibited for flight. Self-awareness is an inherent
functionality to mitigate failures coming from internal systems. In Artificial Intelligence (AI), the
project is contextualized as a study that demands AI techniques in sub-areas such as reasoning,
planning, and scheduling aimed at autonomous decision-making in real-time.
1 https://ardupilot.org/planner/
2 http://qgroundcontrol.com/



1.3. Challenges and Goals 29

1.3 Challenges and Goals

AI techniques have been employed to develop efficient UAV systems in (GONZALEZ et

al., 2016; RAMIREZ-ATENCIA et al., 2017; STRUPKA; LEVCHENKOV; GOROBETZ, 2017)
with the level of UAV autonomy ranging from a ground control system, with a responsible human
pilot, to a flight fully autonomous. Autonomy for UAVs is challenging since it is expected or
desired that the chances of failure are lower than those accepted for general aviation (WRIGHT,
2014). The development of systems that enhance the level of autonomy for UAVs, by embedding
intelligent in-flight decision-making capacities, remains as a challenge. These autonomous
systems must also be easy to use by non-expert users who can benefit from the autonomous
aspects of their operation in day-to-day tasks. UAV missions are often constrained by time,
geography, and communication (BODIN et al., 2018). Integrating task planning into UAVs
demands (CASHMORE et al., 2015):

• Definition of a domain model aligned with the UAV’s capability and the target environment.

• Ensuring real-time action execution by controllers.

• Adaptive response to environmental changes.

Thus, the research question stated by this thesis is: "Is it possible to develop a system
that integrates AI capabilities for autonomous decision-making within different scenarios where
real-time changes must be addressed with minimum human intervention ?"

Based on such question, the main goal of this thesis is:

• Designing autonomous and risk-aware UAV systems, leveraging reliable decision-making
processes, which will be evaluated in different scenarios.

From this primary goal, this project has three technical aims:

1) Planning: The UAV must plan and re-plan mission and trajectories autonomously without
violating the mission goals and the no-fly zones.

2) Risk mitigation: The UAV must be self-aware of its surroundings to avoid actions that
put it at risk.

3) Self-diagnose: The UAV must be self-aware of its operation. In the event of a failure, the
aircraft must be able to diagnose the faulty component and take safety actions to prevent
damage.
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1.4 Text Organization
This document is organized into chapters in such a way that:

• Chapter 2: reviews of works related to the approaches proposed in this project.

• Chapter 3: describes the problem addressed.

• Chapter 4: presents the foundations and basic concepts used in this project.

• Chapter 5: presents the methods and methodologies used to address the proposed problems
and architecture.

• Chapter 6: reports the results obtained.

• Chapter 7: contain the final remarks of this project.

• Appendix A: presents the generated tree for this project.

• Appendix B: presents complete PDDL code.
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CHAPTER

2
LITERATURE REVIEW

2.1 UAV Applications

The use of UAVs in precision agriculture has been advancing during the last decade with
the increased use of AI techniques. For example, the recent work in (MA et al., 2022) reports
a wheat ear counting method employing UAV, where transfer learning from the ground-based
counting model improves the overall wheat ears counting. The works in (KIM et al., 2019) and
(RADOGLOU-GRAMMATIKIS et al., 2020) review research about using UAV in precision
agriculture. The authors in (KIM et al., 2019) point out the limitations of UAV systems for
agriculture applications, where the mission and path planning must optimize battery and flight
time to accomplish more tasks in crop fields. The review in (RADOGLOU-GRAMMATIKIS et

al., 2020) reports 20 UAV applications for aerial crop monitoring or spraying tasks, analyzing
the UAV systems where the majority presents an architecture design focused on specific purpose
tasks for monitoring and spraying. The authors identify the need for decision support systems.
Both (KIM et al., 2019) and (RADOGLOU-GRAMMATIKIS et al., 2020) mention the lack
of systems handling autonomous operation, decision-making, and risk mitigation for UAVs in
precision agriculture.

In the context of civil applications, the work in (Shakhatreh et al., 2019) reviews UAV
applications in remote sensing, construction inspection, precision agriculture, delivery of goods,
monitoring of road traffic, wireless coverage, and surveillance. It is estimated as a market for UAV
figures around $127 billion, where $45 and $32.4 billion are in civil infrastructure and agriculture,
respectively, with relevant values also estimated for transport, media, and telecommunication in
Figure 1. This leads to a growth in the global UAV payload market (radars, sensors, cameras,
LIDARs, among others) that can achieve $3 billion by 2027, as shown in Figure 2. The authors
highlight the need to have UAVs with embedded software and hardware that can perform remote
sensing in parallel with monitoring possible threats during flight. Mission execution requires
methods for mission planning, where the UAV becomes capable of dealing with potential risks
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without human intervention.

Figure 1 – Estimated values in billion for UAV application in industries.

Source: Shakhatreh et al. (2019).

Figure 2 – Estimated values by payloads.

Source: Shakhatreh et al. (2019).

An example of a civil application is a building inspection. In the article, (JUNG et al.,
2018), a route planning algorithm for inspecting tall structures is developed. The developed
algorithm separates the structure into layers according to their height; for each layer, the method
calculates a specific route according to the samples needed to reconstruct the structure. Another
example in (DENG et al., 2018) is a route planner for monitoring defects in water channels,
where the planner considers the collaboration of a terrestrial robot with the aircraft to cover
the extension of the channels to be monitored. Another possible application for UAVs is their
use in hazardous environments, such as industrial leaks. The authors in (MENG et al., 2018)
report the use of UAVs in a hazardous environment with the aircraft automatically executing the
action of press a safety button in a difficult-to-access location. Another scenario using UAVs
is firefighting, as described in (HAKSAR; SCHWAGER, 2018), where the authors present a
distributed system that uses Monte Carlo to simulate multiple aircraft within the fire environment.
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Deep reinforcement learning generates a decentralized solution that improves the solutions
regardless of the number of aircraft and the size of the forest.

To deal with the inspection of transmission networks, the authors in(BIAN et al., 2018)
propose Region-based Convolutional Neural Networks (R-CNN), shown in Figure3, for the
identification of towers through images. The UAV distance is calculated by identifying the towers,
and a flight path is obtained based on a fixed distance. A Convolutional Neural Networks (CNN)
is also presented in (KOURIS; BOUGANIS, 2018) for autonomous flight, where the C-NN
learns to move around without colliding with obstacles indoors and without needing a map.

Figure 3 – R-CNN schematic

Source: Bian et al. (2018).

Some research focuses on more specific tasks related to the UAV itself. The work
described in (HAMAZA; GEORGILAS; RICHARDSON, 2018) focuses on improving the
aerodynamics of flight according to the study of UAV physics and its sensors. The authors at
(MOHAIMENIANPOUR; VAUGHAN, 2018) create a neural network for image and motion
detection, where the focus is controlling the aircraft through commands identified by the captured
images. However, no real-world application is reported using UAVs. The authors at (SARTORI et

al., 2018) exclusively study estimating aircraft location in real flights on external environments,
improving its dynamics through mathematical modeling. The states are estimated with a filter
based on Extended Kalman Filter (EKF), fed with data from low-cost UAV sensors, such as
compass and barometer. In the work of (SVACHA et al., 2018), a filter is developed to define
the position of the UAV in the three-dimensional axes, using only information from the Inertial
measurement unit (IMU) and data yaw. The authors propose a Riemannian unscented Kalman
filter for estimating aircraft altitude and speed. The system is tested in a closed environment with
20 Vicon cameras 1 to confirm the measures proposed by the filter.

1 http://www.vicon.com/
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The developed algorithm in (ROELOFSEN; GILLET; MARTINOLI, 2015) predicts the
movement of the aircraft being viewed to calculate a diversion route; the authors use computer
vision to detect and avoid other aircraft. The disadvantage is that the system only identifies other
UAVs through an attached marker. For the system to find and divert an aircraft, it needs to have a
marker, which makes it impossible to avoid unknown aircraft. In a similar application, the work
in (SAPKOTA et al., 2016) uses only a monocular camera to identify other aircraft by estimating
the position of the object found.

Another application is the control of multiple UAVs. The authors in (CHUNG et al.,
2016) simultaneously create a take-off, flight, and landing control system for 50 aircraft. In
flight, one of the UAVs is chosen as the leader and given a route, while the other aircraft are
given the command to follow it. The work in (KENMOGNE; DREVELLE; MARCHAND,
2018) describes an approach based on position estimation with multi UVAs cooperation from
acquired images. The method presents better results when compared to the most commonly
used method: EKF. Another work dealing with the trajectory for multiple UAVs is (FALOMIR;
CHAUMETTE; GUERRINI, 2018), which applies a potential fields algorithm for path planning
that avoids obstacles previously known.

The primary orientation sensor of UAVs is the GPS; however, in some applications, it is
desired to fly indoors where the GPS does not work. Thus, studies have focused on developing
systems that do not depend on this sensor. In (BAVLE et al., 2018), a particle filter is proposed
to estimate location, using Simultaneous Localization and Mapping (SLAM) and deep-learning.
The authors in (GHASEMLOU; OKANE; SHELL, 2018) study a sensor’s feasibility, usability,
and importance in case of damage in flight. The authors used label maps to model each modifi-
cation in the set of sensors and actuators. As this map grows exponentially, it was necessary to
sample all the maps and use a decision tree classifier. The classifier determines if a branch is
not critical and can be deleted, returning a tree with the information about observations/actions
that are most important. The work in (CARRIO et al., 2018) reports an embedded system for
obstacle avoidance that collects the depth maps and, with the help of deep-learning, learns to
dodge obstacles for different types of aircraft. One of the advantages of the developed algorithm
is to handle trajectories within 3D maps. The authors in (ARANTES et al., 2016) apply a hybrid
method combining genetic algorithms with Voronoi diagrams to solve the non-convex path
planning with risk allocation. The technique finds satisfactory solutions within a few seconds,
generating trajectories to avoid many obstacles within different scenarios.

The authors in (ARANTES et al., 2019) introduce a Mixed-Integer Linear Program-
ming (MILP) formulation that finds optimal solutions for complex maps within a reduced
computational time. Harpia will apply metaheuristics approaches once the systems must find
solutions within a short time. Model control predictive is applied by (LUIS; VUKOSAVLJEV;
SCHOELLIG, 2020) to develop a parallel method for path planning of multiple robots handling
collision avoidance and re-planning in real-time. The authors evaluated the system through
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Matlab simulations with satisfactory results when mitigating collisions within short periods. A
hybrid evolutionary algorithm is described in (SOUZA; TOLEDO, 2020) without handling the
chance constraint with risk allocation. The method combines the evolutionary approach and
the ray casting technique for obstacle avoidance, reporting a satisfactory performance for path
planning within a short time.

The authors in (CAMPO; LEDEZMA; CORRALES, 2020) propose a low-cost UAV
system for crop data acquisition, handling issues such as wind and battery consumption. A
path planning system optimizes the coverage paths, comparing wavefront, Dijkstra, and spiral
algorithms. A task planning system for UAV in (SUN; WANG; ZHANG, 2020) executes plant
protection tasks, e.g., sowing or pesticide spraying. Dragonfly algorithm is applied to achieve near-
optimal schedules for a set of 20 instances generated from real-world data. In (LINDQVIST et al.,
2022), it is presented a hardware and software architecture for a legged-aerial autonomous system
applied to missions in underground areas. In the autonomous aerial system, an artificial potential
field formulation and the so-called deepest-point heading regulation technique, employing a 3D
Light Detection and Ranging (LIDAR) for clustering points, allows an efficient reactive behavior
for obstacle avoidance. UAV is transported by the legged ground robot, which uses a SLAM
system to be aware of its localization. It is a complex system framework whose reported results
show its capability to execute missions autonomously within underground areas.

The work in (SONG; PARK; PARK, 2022) approaches the task assignment for UAVs
by introducing a multi-objective mathematical model, where system design aspects such as
the location of base stations, number of UAVs in each station, and UAV schedules for mission
execution are also defined. The proposed solution must work under a disaster management
situation. Therefore, a two-phase method is applied to deal with the computational complexity
and improve accuracy when solving the proposed multi-objective model.

2.2 Architectures

Some works in the literature present hardware/software architectures for UAVs. An
architecture is proposed in (GUNETTI; DODD; THOMPSON, 2010) for UAVs using parallel and
associative memory, preference-based deliberation, belief maintenance, goal decomposition, and
adaptation through a generalization from experience. These aspects provide a robust architecture
for autonomous flight. Three agents are defined and called planner, executor, and mission
manager, allowing them to perform actions such as target analysis, target attack, orbit in a
position, search in an area, and transit between points. These functionalities are tested in
simulation software.

The authors in (BADRA; AïELLO; CHAUDEMAR, 2023) explore the modeling of
Unmanned Aerial Vehicle (UAV) missions using a Model-Based Systems Engineering (MBSE)
approach. The complexity of UAV missions requires new techniques for effective design and
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understanding. The paper employs a bottom-up approach, starting with a specific surveillance
mission modeled in Simulink Stateflow. Through semantic clarification and multiple simulations,
a generalized model is developed that ensures consistency and reusability for any UAV mission.
The ARCADIA/Capella methodology is applied for operational, functional, logical, and physical
analyses, providing a comprehensive multi-viewpoint representation of the UAV mission.

A predictive control system is described in (PRODAN et al., 2013) for UAV trajectories,
considering external disturbances to the flight. The control system has two main modules: the
faster one runs incorporated in the UAV, while the slower one runs from the ground station. The
onboard system controls the UAV’s dynamics, and the ground station system plans the entire
trajectory. Another architecture is presented in Figure 4 for UAV trajectory control as described
in (RAMASAMY et al., 2016), based on a laser obstacle warning and avoidance system. The
developed architecture allows the perception and avoidance of obstacles, having three main
algorithms: one focused on trajectory prediction, another dedicated to estimating the collision of
detected obstacles, and the third focused on collision prevention planning.

Figure 4 – Trajectory control architecture

Source: Ramasamy et al. (2016).

The Mission Oriented Sensors Array (MOSA) system is introduced as being responsible
for the trajectory execution in (FIGUEIRA et al., 2013) as illustrated in Figure 5. MOSA can
dynamically adjust itself to mission characteristics, choosing sensors that are more adapted to
each situation. It is a system focused on fulfilling the mission. The authors in (FIGUEIRA et al.,
2015) apply MOSA as a reference to design a system that automatically produces thematic maps.
A semi-autonomous architecture is proposed in (WOPEREIS et al., 2015) as shown by Figure 6.
The main objective is to have variable safety distances with the user’s permission. Thus, allowing
the aircraft to reach the destination becomes possible, avoiding obstacles where this would not
be possible without increasing the risk of collision. The authors in (XUE et al., 2016) present
a hardware/software architecture for automatic navigation and spraying in crop fields. In this
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Figure 5 – Trajectory control architecture

Source: Figueira et al. (2015).

Figure 6 – Bi-lateral architecture overview

Source: Wopereis et al. (2015).

case, the flight and spray control systems are built into an uncrewed helicopter. However, path
planning is done from the ground station that reports mission data to flight control, which will
follow the waypoints and send a signal to start the spray control system. The onboard computer
reports the real-time status of the spray system to the ground station.

A generic system, based on computer vision, is described in (ALSALAM et al., 2017) to
control the UAV in applications such as spraying in agricultural fields and pest detection, among
others. The current waypoints may change in these scenarios, and path corrections are performed
autonomously during flight. The proposed level of autonomy for the onboard system makes it
possible to detect the location of weeds or pests and spray locally instead of passing through
the entire crop field. The decision-making system is shown in Figure 7. The system encodes
an Observation, Orientation, Decision, and Action loop. The hardware is designed to control
a quadcopter using a companion computer Odroid U3+ integrated autopilot (Pixhawk) and an
Arduino micro. Robotic Operating System (ROS) packages are also used to develop navigation,
camera, and sensing nodes.
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Figure 7 – Proposed decision flow

Source: Alsalam et al. (2017).

The UAV architecture proposed by (BOUBETA-PUIG et al., 2018) supports real-time
decision-making, which integrates Complex Event Processing (CEP) with a Service-Oriented
Architecture (SOA). The system handles critical situations in which the CEP processes and
evaluates many events in real time. SOA allows the system to handle data from different sources
and domains. The hardware architecture uses a DJI F-450 UAV, ArduPilot APM 2.6 autopilot,
a Raspberry Pi 2 companion computer, and message queue telemetry transport. The authors
(YAN; LI; CHEN, 2018) introduce a hardware/software architecture for the navigation system
focused on redundancy. The hardware integrates two high-performance DSP-type FPGAs and
various subsystems, such as the Inertial Navigation System (INS) and the Global Navigation
Satellite System (GNSS). A dual navigation computer and a fault-tolerant filtering algorithm
are applied. The system uses a federated filter, an ideal filter for decentralized merging based
on information sharing. This filter is robust and used in the described two-level system for the
navigation system, with two subfilters for location sensors, using EKF to merge the outputs of
the subfilters to obtain the final result of the filter. Thus, one or more filters are dedicated to
sensors operating in parallel and a primary fusion filter.

The work in (USACH et al., 2018) focuses on safety and presents an architecture for
remotely piloted aircraft. The architecture differentiates event monitoring and contingency
decision-making by evaluating the best contingency management policy through formal methods.
Three classifications are presented. The first is Fault Tolerance, where there is a tolerance for
the aircraft to continue flying in non-ideal conditions. The second is Risk Mitigation, where
safeguards are added to lessen the severity or probability of the consequence of the failure. The
third is Flight Termination, which means immediately aborting the flight in the most severe
failure cases. The work proposes an architecture according to DO-1782 with four main modules:

2 Compliance Testing | Expert Certification Support
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• Safety Monitor that monitors the occurrence of 5 failures: failure in communication with
the radio, loss of GPS, loss of aircraft control, traffic alert, and alert of violation of mission
regions (NFZ).

• Contingency Manager who chooses a security measure to lessen the risks.

• Mission Manager which is the executor of actions.

• Flight Termination Systems which is the system capable of triggering safety measures in
any situation on the aircraft.

The authors of (POIESI; CAVALLARO, 2018) present a communication architecture
between multiple UAVs, aiming to follow a single target by sharing the computational vision.
The work also presents the dynamics of multiple UAVs when flying together without GPS. For
the aircraft to fly without colliding, each uses its view centered on a target and maintains the
relative distance of its two nearest neighbors to deduce its steering commands. The authors of
(SAMPEDRO et al., 2018) developed an architecture for indoor environments that combines
laser sensor readings with deep reinforcement learning. The neural network receives the distance
data filtered from the laser and in its output layer and returns linear speeds to the aircraft. The
objective is to create a reactive flight for rotary wing UAVs with two main focuses: reaching the
objective waypoint and ensuring real-time obstacle avoidance.

A Service-Oriented Architecture is implemented in (ARANTES, 2019) with different
mission and security modules as illustrated in Figure 8. These modules are based on the defini-
tions presented in (FIGUEIRA, 2016; MATTEI, 2015). Mission-Oriented Sensor Array (MOSA),
as already mentioned, is a system focused on mission with the function of controlling four
main aspects in SOA: (i) the behavior of the mission according to its objective; (ii) the input of
data from the sensors; (iii) the planning of routes with obstacle avoidance; (iv) the communi-
cation with other subsystems. In-flight Awareness System (IFA) is a multiple failure diagnosis
system described in (MATTEI, 2015), where simulation results with SimuLink are reported.
In (ARANTES, 2019), MOSA and IFA systems were implemented in Java, with IFA having
priority over the MOSA system, which means that IFA takes control of the mission when a
failure is identified. The failure cases analyzed were battery problems, weather conditions, GPS
failure, MOSA system corruption, and autopilot non-functioning. These failures were analyzed
by violating previously defined thresholds for specific security parameters.

The work in (MATTEI et al., 2021) extends the IFA, proposing a novel onboard system
called In-Flight Awareness Augmentation System (IFA2S) to improve flight safety. The system
introduces a top-down control structure and a state machine, as shown by Figure 9 to allow
IFA2S solutions assessment. IFA2S stays in an Idle state, waiting for an event that leads to a
state change based on the likelihood of hazards from a range of parameter values. The authors
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Figure 8 – Architecture presented

Source: Arantes (2019).

simulated the system considering threat situations like a failure in aircraft systems, air collision,
bad weather, low or abnormal altitude, flight over non-fly zones, and emergency landing.

Figure 9 – State Machine in IFA2S

Source: Mattei et al. (2021).

2.3 Safety and Security

The work in (HIRECHE et al., 2018) explores the application of Bayesian Network (BN)
in fault diagnosis and decision-making for autonomous systems. The article introduces various
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case studies, including monitoring GPS systems for accuracy and reliability, tracking applications
with error mitigation, and resource-aware monitoring for optimizing performance. It delves into
learning BN parameters from incomplete data. The article also investigates decision-making
mechanisms’ implementation based on BN models, presenting speed-up results and resource
utilization for FPGA platforms. Ultimately, it suggests a co-design approach for integrating
hardware-accelerated diagnosis with software-based decision-making for mission managers in
autonomous systems, emphasizing adaptability and real-time responsiveness within swarming
UAV networks.

The real-time detection and identification of the root causes of operational anomalies
in UAVs have become essential to prevent mishaps and ensure post-event forensic analysis. In
(SADHU; ZONOUZ; POMPILI, 2020), the authors developed novel deep learning architectures,
harnessing the power of CNNs and Long Short-Term Memory Neural Networks (LSTM) to
detect and classify drone miss-operations based on raw sensor data. Unlike traditional model-
based methods, these architectures focus on a data-driven approach, utilizing UAV IMU sensor
data. Such methods are advantageous as they can decipher complex, nonlinear patterns within the
sensor data without manual feature design, providing insights into UAV behavior under potential
crash events.

The research in (WANG et al., 2020) addresses the safety concerns of unmanned aerial
vehicles, particularly their higher accident rate due to the absence of real-time pilot control,
introducing the Fault Detection Model Acceleration Engine (FDMAE). This solution combines
the deep learning capabilities of Long Short-Term Memory (LSTM) networks with a model
pruning technique based on Principal Component Analysis (PCA) to optimize computational effi-
ciency. The pruned model is integrated into an airborne Field-Programmable Gate Array (FPGA)
platform, offering a promising avenue for real-time UAV fault detection while considering the
size, weight, and power consumption constraints inherent in UAV applications.

In (ALOS; DAHROUJ; DAKKAK, 2020), the authors introduce an innovative unsuper-
vised algorithm designed to evaluate UAV behavior and thereby enhance its safety. The extraction
of values that characterize the relationships between pairs of UAV variables is central to their
approach, explicitly focusing on the Pearson Correlation Coefficient (PCA), the Y-intercept, and
the linear regression slope. The algorithm employs a PCA-based anomaly detection system to
pinpoint abnormal flights and the variables contributing to potential faults. The method was
experimentally tested on the synthetic dataset and demonstrated comparable efficacy against
the state-of-the-art Multiple Kernel based Anomaly Detection (MKAD) method. The proposed
method did not need a sizable training dataset, which underscores the potential advantages of
unsupervised algorithms in UAV anomaly detection.

In their research on mission-critical autonomous flights, the authors in (AHMAD et

al., 2022) propose an intelligent framework for automated failure prediction, detection, and
classification. They emphasize the importance of ensuring the safety and reliability of aerial
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vehicles, typically addressed through redundant hardware, and highlight the value of analytical
redundancy. The study introduces a multi-layered machine learning pipeline that processes
the ALFA dataset containing flight sensor data. This pipeline consists of data transformation,
preprocessing, feature selection, and LSTM-based failure prediction, followed by classification
using sliding window-based data aggregation and decision trees. The research emphasizes the
importance of selecting relevant features for accurate failure prediction, with LSTM networks
chosen due to their efficacy in handling time series data. The framework successfully detected
failures with 100% accuracy in tests and demonstrated the capability to predict failures on
average within one-tenth of a second of their occurrence.

The research in (BASKAYA; BRONZ; DELAHAYE, 2017) delves into the challenge of
Fault Detection and Diagnosis (FDD) for small UAVs in an environment increasingly populated
with these devices, necessitating enhanced safety measures. Noting the hardware limitations of
UAVs, the authors recommend analytical redundancy over traditional hardware redundancy. Their
study thoroughly examines both model-based and data-driven FDD methods. While model-based
methods rely on accurate aircraft models and might be unsuitable due to uncertainties in small
UAVs, data-driven methods, particularly machine learning, emerge as attractive alternatives.
They employ Support Vector Machines (SVM) complemented by Principle Component Analysis
(PCA) to distill the data by reducing feature space dimensions and optimizing the detection
process. Using simulated gyro and accelerometer data, they demonstrate SVM’s proficiency in
distinguishing between standard and faulty flight conditions. With PCA aiding in data simplifica-
tion and feature prioritization, their findings validate SVM’s precision in fault detection. The
study concludes with an emphasis on further exploration into controller diagnosis interaction,
multi-fault classification, and SVM’s real-time training possibilities.

The work in (LI; LI; ZHONG, 2016) emphasizes the significance of Fault Detection
and Isolation (FDI) for ensuring UAV flight safety. Recognizing the challenges in constructing
precise physical models for UAV flight control due to variable parameters and wind disturbances,
the paper highlights the limitations of model-based FDI methods, which often require accurate
models for effective implementation. The authors propose a data-driven FDI scheme using Mov-
ing Average Dynamic Principal Component Analysis (MA-DPCA) to address these limitations.
This scheme captures dynamic relations between system variables for enhanced fault detection
from the historical UAV data. For fault isolation, they introduce the concept of contribution
analysis. Simulations using a fixed-wing UAV in a steady flight state validate the efficacy of
the MA-DPCA approach, particularly highlighting its prowess in fault detection. However, the
method’s current limitation to steady flight states is acknowledged, with ongoing research aimed
at extending its applicability to maneuver flights.

The authors in (KHAN et al., 2019) propose real-time anomaly detection for (UAVs),
which challenge traditional methods reliant on well-defined features by embracing data-driven
techniques. They highlight the utility of the isolation forest algorithm, evidenced by its exemplary
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performance with the Aero-Propulsion System Simulation dataset and real-time UAV exper-
iments. A pivotal Principal Component Analysis (PCA) analysis revealed specific anomalies
during UAV take-off and hovering. Assisted by the visualization power of the violin plot, they
offered a detailed statistical examination of these anomalies. This research underscores the
imperative for adaptive, real-time anomaly detection strategies in the UAV sphere, combined
with the analytical prowess of PCA.

In (BALDINI et al., 2023), the authors introduced UAV-FD, an innovative dataset
designed to foster the advancement and verification of Fault Detection (FD) algorithms tailored
for multi-rotor drones. Utilizing MATLAB for data processing, they harnessed the Diagnostic
Feature Designer (DFD) for feature extraction and subsequently trained an array of classifiers
using the Classification Learner (CL). A significant aspect of their approach was the application
of Principal Component Analysis (PCA) to condense the feature space. Despite this reduction,
non-linear classifiers, particularly the Support Vector Machines (SVMs), demonstrated notable
accuracy. The research spotlighted a quadratic SVM classifier, fine-tuned via ANOVA on a
chosen set of 51 features, which achieved an impressive 98.5% accuracy. The study also delved
into the utility of a binary classification tree, revealing key influential variables. Recognizing the
imperative to mitigate false positives in aeronautics, the authors discussed the computational
intricacies faced in real-world UAV applications.

(KOłODZIEJCZAK et al., 2023) incorporated Principal Component Analysis (PCA) and
tree algorithms to streamline and enhance the fault detection process, comparing model-based
approaches with data-driven ones. The tree algorithms provided structured decision-making
based on feature importance derived from the acoustic data. The study highlighted potential
pitfalls in real-world applications, such as unrealistic assumptions and extended data frames,
and advanced the acoustic FDI system for drones, particularly emphasizing the significance of
Mel-Frequency Cepstral Coefficients (MFCCs) in fault detection.

2.4 Conclusion

Harpia approaches risk mitigation as (HIRECHE et al., 2018) by applying Bayesian
Network to decide autonomously about re-planning based on battery health. The path planning
system in Harpia will also deal with obstacle avoidance, executing online path re-planning. How-
ever, we are not assuming a dynamic scenario like the one described in (LUIS; VUKOSAVLJEV;
SCHOELLIG, 2020). Harpia deals with non-fly zones similar to (MATTEI et al., 2021), but
without defining all those risk requirements or using a state machine for autonomous behavior.
Our autonomous system avoids obstacles or non-fly areas by solving a non-convex path planning
problem similar to (ARANTES et al., 2016), (ARANTES et al., 2019) and (SOUZA; TOLEDO,
2020).

The system proposed in this thesis will generate mission planning aiming at autonomous
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execution such as (CAMPO; LEDEZMA; CORRALES, 2020; SUN; WANG; ZHANG, 2020).
However, we advance from these previous works by including Bayesian Networks (BN) and K-
nearest neighbors (K-NN) classifiers to improve mission and path planning decisions. Different
from (SONG; PARK; PARK, 2022), we are not using mathematical formulation aiming to reduce
the computational complexity of the overall embedded system.

This work proposes a real-time fault identification based on data analysis as proposed
in (SADHU; ZONOUZ; POMPILI, 2020; WANG et al., 2020; KHAN et al., 2019). Previous
research efforts, such as (SONG; PARK; PARK, 2022), have a PCA algorithm primarily focused
on leveraging mathematical formulations to reduce computational complexity. In contrast, our
work resembles (KHAN et al., 2019), using PCA to increase the accuracy of fault detection and
identification. One of the main differences between this work and (KHAN et al., 2019) is that
it uses data from a specific sensor, and our project uses native information from the auto-pilot,
returning a more reusable result.

The systems in (PRODAN et al., 2013; RAMASAMY et al., 2016; XUE et al., 2016;
ALSALAM et al., 2017; MA et al., 2022; ZHANG; LI; DONG, 2022; LINDQVIST et al., 2022)
accomplish a specific type of task, where considerations about planning several tasks are not
addressed. Harpia proposes a robust planning system where different tasks can be autonomously
executed.

Table 1 summarizes the main features covered by Harpia against those reviewed in
this chapter. Mission means those papers whose UAV systems deal with Mission Planning
autonomously, and the same idea applies to Path for works reporting systems with Path Planning.
It is also listed papers in Risk Mitigation for those impending mission failure or path hazards,
Non-Convex for result in environments with obstacles or non-fly zones, and Fault Detection
means those papers whose UAV can identify a hardware failure from internal sensors.
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Table 1 – Contributions with related work based on some specific features.

Reference Mission Risk Mitigation Path Non-Convex Fault Detection
(MA et al., 2022) No No Yes No No
(SONG; PARK; PARK, 2022) Yes No No No No
(LINDQVIST et al., 2022) Yes No Yes Yes No
(ZHANG; LI; DONG, 2022) No Yes Yes Yes No
(MATTEI et al., 2021) No Yes Yes Yes Yes
(SOUZA; TOLEDO, 2020) No Yes Yes Yes No
(CAMPO; LEDEZMA; CORRALES, 2020) No No Yes No No
(SUN; WANG; ZHANG, 2020) Yes No Yes No No
(ARANTES et al., 2019) No Yes Yes Yes No
(HIRECHE et al., 2018) Yes Yes No No Yes
(ALSALAM et al., 2017) Yes No Yes No No
(ARANTES et al., 2016) No Yes Yes Yes No
(RAMASAMY et al., 2016) No Yes Yes Yes No
(XUE et al., 2016) Yes No No No No
(PRODAN et al., 2013) Yes No Yes No No
(WANG; WILLIAMS, 2015) No No No No Yes
(ALOS; DAHROUJ; DAKKAK, 2020) No No No No Yes
(SADHU; ZONOUZ; POMPILI, 2020) No No No No Yes
(AHMAD et al., 2022) No No No No Yes
(BASKAYA; BRONZ; DELAHAYE, 2017) No No No No Yes
(LI; LI; ZHONG, 2016) No No No No Yes
(KHAN et al., 2019) No No No No Yes
(BALDINI et al., 2023) No No No No Yes
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CHAPTER

3
PROBLEM APPROACHED

This chapter describes the problem addressed by considering two aspects. First, to
facilitate understanding, the main aspects of the problem are described in the context of an
application in agriculture. Next, the problem is described by characterizing the sub-problems
that must be addressed to develop the proposed autonomous system.

3.1 General Description

Suppose a drone’s actions on a farm include plantation imaging and spraying biological
agents, as shown in Figure 10a. The regions R[1...5] represent spraying areas, and the colors
indicate the type of biological agent to be applied. The monitoring and spraying actions may
require multiple flights, which also demand some stop-by support base areas B[1...3] to recharge
the battery, fill the tank with biological agents, or process images.

The re-planning of actions can happen online for an unforeseen situation, such as adding
or excluding some actions by the user or an action for risk mitigation. The path planning occurs
within a static and non-convex scenario. It means we know the map, its areas of interest, and
no-fly zones in advance. This is a pretty realistic scenario when handling drones on farms. Thus,
besides the mission planning problem, we are also solving a non-convex path planning problem
with stay-in and stay-out areas similar to (ARANTES et al., 2019).

In the presence of a reliable communication link between the ground station and the em-
bedded system of the UAV, it is possible to update the information about the map and mission in
real-time. Our system covers these aspects when planning tasks and paths, reaching a reasonable
level of self-awareness for the UAV regarding its surroundings and internal functioning. The
present research focuses on a system designed for autonomy in dealing with external and internal
events. We illustrate that aspect in our current architecture’s implementation for a scenario
where the following constraints must be handled: (i) battery needs a recharge (internal event);
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(a) Map 1 (b) Map 2

(c) Map 3

Figure 10 – Farm scenarios for planning tasks: regions of interest, no-fly zones and support bases.

(ii) obstacle avoidance must be handled (external event), (iii) trajectories must be re-planned
when new goals are added or removed from the current plan (external event); (iv) measures
must be taken (emergency landing or return to base) when the system identifies an anomalous
flight pattern that could be dangerous to the aircraft or the environment (internal event). On the
other hand, the details about how a specific sensor should be implemented or integrated into our
architecture are not the main points of this work.

In this scenario, an autonomous UAV system must satisfy some basic requirements:

1) The UAV must autonomously plan and re-plan the execution of such tasks.

2) The path planning has to be done without violating non-fly zones.

3) The UAV has to be aware of its surroundings and avoid actions that put itself at risk.
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4) The UAV must execute safety actions to avoid damages.

Two types of planning are considered here: mission planning and path planning. The
mission planning will define the sequence of execution for each task within the areas of interest.
In this work, the following requirements must be fulfilled for mission planning:

1) The non-fly zones, bases, and areas of interest are previously known.

2) Non-fly zones, bases, and areas of interest can be added or removed during the mission
execution, demanding a mission re-planning as illustrated by Figure 11.

3) The mission planned can be aborted when the autonomous system takes the safety mea-
sures.

R6

R1

R2

R3R4
R5

(a) Current Mission Planning

R6

R1

R2

R3R4
R5

(b) Mission Re-Planning

Figure 11 – Re-planning sequence of actions. The black arrows show the previous sequence of actions,
and blue arrows indicate the re-planning one with the removed and added regions.

Figure 11a shows the current mission plan with a mission re-planning demanded when
the UAV was in region R3. At this point, regions R4 and R6 were removed from the current plan,
with R1 and R2 being added, leading to the re-planning shown in Figure 11b.
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The path planning defines the trajectory with two types of routes, named specific routes
and routes between regions. The specific route defines a pattern customized to be executed when
a specific task is executed. For example, a patter of trajectory that allows one to take pictures or
spray insecticides in a given region of interest, as illustrated in Figure 12.

Figure 12 – Specific routes example

(a) Imaging route

(b) Pulverizing route

Source: Elaborated by the author.

These routes can be defined by specific planners that depend on variables such as the
type of plantation, type of biological input or insecticide to be sprayed, image accuracy, and
camera information, among others. Therefore, these routes can be previously defined since they
will be inputs to our autonomous system. Thus, we do not employ a path-planning method for
such routes, which will be input provided to our system by the users. For this reason, we create
specific routes to simulate an action in a region of interest.

On the other hand, the routes between the regions of interest are defined online, where
the mission planner must trigger a route planning and re-planning algorithm. These routes are
planned in a structured and non-convex environment. This means that the route planner between
regions of interest must deal with the no-fly zones (No Flight Zones - NFZ) in Figure 10. The
system proposed here can incorporate one of the three available algorithms: Hybrid Genetic
Algorithm (HGA) - (SOUZA; TOLEDO, 2020), Rapidly-exploring Random Trees (RTT), and
Potential Field Planning (PFP) - (SAKAI et al., 2018). Figure 13 illustrates paths between regions
of interest.

The UAV is a critical system since it can cause damage to people or property, therefore,



3.2. Problem Definition 51

Figure 13 – Possible scenario when scheduling tasks for a farm

Source: Arantes (2017).

we need to provide contingency plans. These plans are measures to take in case any situation
deviates from the expected one. There are some basic actions that every aircraft should perform
in the event of a failure:

• Emergency landing: In some situations, it is impossible to return to the take-off point or
flight to a support base. In this case, the system must trigger a route planner that lands the
aircraft in a safe region.

• Vertical Land: In the case of rotary-wing UAVs, in some extreme cases, it is possible to
stop the aircraft and land it exactly where it is, avoiding further damage.

Considering that more than one failure can occur, it is necessary to have a decision
system to choose which safety action is most appropriate for the current scenario. According to
(RUSSELL; NORVIG, 2016), decision problems can be solved with Decision Networks based
on Bayesian networks, Markov Decision Process (MDP) (MDP) and with Partially Observable
MDPs (POMDPs). Thus, related approaches were proposed for a decision-making method that
is capable of providing the autonomous system the necessary self-awareness.

3.2 Problem Definition

The present section mathematically states the mission and path-planning problems our
autonomous system addresses. First, we define next the mission planning problem.

Definition 1. The mission planning problem, illustrated in a farm scenario as previously de-
scribed, aims to find a solution S ∗ = ⟨x∗,u∗⟩ from ⟨x,u,I ,M ,P,J ⟩ such as:
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• x = [x0,x1, ...,xT−1]: variables of the UAV states through the time steps t = 0, ...,T −1.

• u = [u0,u1, ...,uT−1]: variables of controls (ut) applied in UAV through the time steps.

• I = ⟨x̄0,Σx0⟩ initial conditions with x0 ∼N (x̄0,Σx0).

• M = ⟨A,B,Σwt ⟩ stochastic plant model: xt+1 = Axt +But +ωt , where ωt is an additive
noise with ωt ∼N (0,Σwt ).

• P: State Plan (see Def. 2).

• J : objective function to be optimized.

Definition 2. The state plan is given by the tuple P = ⟨E ,C ,A ⟩, where:

• E = {e0,e1, ...}: set of discrete events ei ∈ E .

• C = {r1,r2, ...}: constraints related to the plant state through the time steps. [C lb
r ,C ub

r ],
for events.

• A = {a1,a2, ...}: set of actions with each action a ∈A happening between two events.

Figure 14 illustrates events, constraints and episodes for our planning problem, where
we have a directed acyclic graph with events drawn as vertices and episodes as rectangles. The
episode is a constraint with a =

〈
eS

a,e
E
a ,Πa,Ra

〉
, where eS

a and eE
a are the initial and final event

for the episode a. The set Πa has the time steps when episode a is activated, and Ra summarizes
the set of constraints to be satisfied. The authors in (ONO; WILLIAMS; BLACKMORE, 2013)
report three episodes of interest:

1. Start-in (a ∈A S): xt ∈ Ra holds in the episode beginning.

2. End-in (a ∈A E): xt ∈ Ra holds at the episode ending

3. Remain-in (a ∈A R): xt ∈ Ra while the episode is activated.

For example, in figure 14, the event e2 triggers the action "clean-camera" with
〈
eS

2,e
E
2 ,Π2,R2

〉
,

where the plan will define eS
2 and eE

2 as the initial and final event for the episode trigged by action
"clean-camera" and the set Π2 of related time steps when "clean-camera" is activated. Also, the
mission plan must not violate any constraints R2 for such an event.

The path-planning problem will handle the obstacle avoidance through the previously
defined non-fly zones. The trajectory will take into account the risk of violate a non-fly zone,
which will be described using chance-constraints as follows:
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Figure 14 – Example of state plan for the planning problem in a farm scenario.

Definition 3. The non-convex path planning problem with chance-constraints is stated as:

Minimize Θ() = ∑
t
∥ut∥ (3.1)

where:

xT = xgoal (3.2)

xt+1 = Axt +But +ωt ∀(t) (3.3)

ωt ∼N (0,Σwt ) ∀(t) (3.4)

xt ∈ I j⇔
∧

i∈HI
j

hT
i xt ≤ gi (3.5)

xt ∈O j⇔
∨

i∈HO
j

hT
i xt ≥ gi (3.6)

The objective function (3.1) can minimize some metrics related to the control, while con-
straints (3.2) define the goal as the last state of the UAV when planning a trajectory. Constraints
(3.5) and (3.6) describe hyperplane defining convex regions for stay-out (obstacles or non-fly
zones) and stay-in (landing spots) regions. Stay-out is a disjunction of linear constraints, while
stay-in is established as the conjunction of linear constraints. The plan obtained from the State
Plan in Def. 2 will demand the resolution of several path planning problems, as stated in Def. 3,
during its execution.
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3.3 Final Remarks
This chapter discussed and stated the problem of autonomous UAV systems through

an example based on a farm scenario. We introduced a general description of the problem,
where the need for obstacle avoidance, mission, and path re-plans are stated. The relevance of
defining regions of interest and no-fly zones for path planning was emphasized. Furthermore, we
underscored the significance of path planning in static and non-convex scenarios. We elaborated
on the essence of UAV’s self-awareness, where the autonomy must handle external and internal
events. Since it is a complex problem, we state the requirements assumed in this project to build
what is named here as an autonomous system, focusing on the UAV’s capabilities in planning,
executing, and responding to failures.

Lastly, we delved into the formal problem definition by presenting equations that en-
capsulate the mission and path planning problems in a farm scenario. The chapter offered a
mathematical understanding of the path planning problem, highlighting the significance of con-
straints, episodes, and regions. As drones become increasingly prevalent in agriculture and other
sectors, the challenges associated with autonomous systems become more complex. This chapter
aimed to shed light on the challenges addressed by this study, offering insights into robust and
efficient autonomous UAV systems proposed by our study.
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CHAPTER

4
FOUNDATIONS

This chapter presents the foundations proposed to deal with the problem described in
chapter 3. The foundations focus on the following main aspects to develop an autonomous
system:

• Autonomy

• Code reusability.

• Programming language independence.

• Modularity with ease of communication between modules.

• Robust task planning.

• Aircraft Safety.

4.1 Autonomy of robotic systems
The definition of autonomy in the Michaelis dictionary is given by:

• Ability to self-govern, to direct itself by its laws or its own will; sovereignty

• Own faculty of some institutions regarding the decision on organization and norms of
behavior, without bending or being influenced by external impositions.

• Moral or intellectual freedom of the individual; personal independence; right to make
decisions freely.

The authors in (RUSSELL; NORVIG, 2016) state the concept of autonomy for an agent
in Artificial Intelligence (AI) as the ability to deal with partial or incorrect prior knowledge
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through learning. Thus, when we refer to an autonomous robotic system, it can plan, control,
and act with minimal human interaction. Autonomy is often confused with automatic when
we restrict autonomy to a single aspect of the system, such as locomotion autonomy. Several
definitions of levels of autonomy have been created, and the authors at (BLASCH, 2018) present
some types of levels of autonomy:

A) National Institute of Standards and Technology (NIST): separated the levels into two
categories. First, the cognitive defines how much the system can understand its environment
from its sensors. According to the perceptive ––the level grows when the robot has a greater
capacity to transform data into information.

B) The NATO standards: performance metrics for contextual autonomy (mission and oper-
ational environment) and non-contextual autonomy (external events). System autonomy
should address control, communication, mission, and interface.

C) The Society of Automotive Engineers (SAM): evaluates autonomy levels incrementally,
considering the lowest autonomy level 0, where full human interaction is required, up to
level 5, where no interaction is required.

D) ALFUS Contextual Autonomy Capability (CAC): classifies the autonomy complexity
factors in three axes, namely environment factors, mission requirements, and the complex-
ity in human-machine interaction as represented in Figure 15. In this case, four automation
characteristics are considered: perception, modeling, planning, execution, and mission.

In this work, we chose to work with the three axes of autonomy represented in Figure
15. Therefore, the methodology adopted here consists of moving forward within a dynamic
environment with mission planning and embedded knowledge.

Figure 15 – Autonomy complexity

Source: Blasch (2018).
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4.2 Robot Operating System - ROS
We employed the Robot Operating System (ROS) since it meets the aspects of code

reusability, programming language independence, and modularity through an easy way to keep
robust communication between modules. Given the wide variety of robots, hardware, and sensor
functionality types, creating robotics software becomes daunting. ROS provides a modular
layer of structured communication, connecting the robot to its peripherals and facilitating the
programming of robotic systems (QUIGLEY et al., 2009). ROS is not an operating system per
se, but it is structured to provide resources for the deployment of high-level robotic systems,
meeting four fundamental implementation concepts:

1) Nodes: These are executable processes, making ROS modular, where each node represents
a software module. The nodes communicate through the exchange of messages.

2) Messages: Messages are data structures that can be primitive types (integer, boolean,
string, etc.), arrays of types, and also composed of other types of message. To convey these
messages, nodes publish messages in threads.

3) Topics: These are logical structures, so nodes can publish data and/or subscribe to topics
for reading data. There are no limits on how many nodes can publish and subscribe to
topics, and there are no limits on nodes per topic.

4) Services: Services are particular types of nodes analogous to web services. Such services
receive a request when called and return a response. This type of node was created to work
with synchronous actions.

ROS was created in 2007 by a group of researchers at Stanford with its first version was
released in 20091, and since then, it has been widely used in robotics. Its structure facilitates
communication between components of a robot and between different robots, making possible
the interaction of different ecosystems for a single purpose.

Many robotics projects use ROS (DENG et al., 2018; SARTORI et al., 2018; SAMPE-
DRO et al., 2018; MOHAIMENIANPOUR; VAUGHAN, 2018; VANEGAS et al., 2016; WOP-
EREIS et al., 2015; JIANG; ELBAUM; DETWEILER, 2013; SAPKOTA et al., 2016; CHUNG
et al., 2016) as previously mentioned.

1 information taken from: https://www.ros.org/ accessed on August 15, 2023
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4.3 Problem Definition Domain Language - PDDL

Problem Definition Domain Language (PDDL) is a descriptive language created and
updated in International Planning Competitions (IPC) since 1998 (FOX; LONG, 2003). PDDL
aims to allow robust planning of tasks by stating a syntax that facilitates this. Its syntax was
inspired by the Lisp language and had two main execution codes: domain and problem. The
domain code describes the environment and the rules to be followed, and the problem code
presents the initial state, the desired final state, and the search metric.

PDDL is processed through solvers, and no exclusive compiler exists to find an action
plan. IPC was organized in Delft, Netherlands, in 2018 within the International Conference
on Planning and Programming (ICAPS)2. The objective of the competition was to promote
and highlight planning challenges, introducing new problems as a reference for future research.
Researchers created different solvers for a set of problems made available more efficiently,
according to the parameters defined by the competition.

4.3.1 Domain code

The code 1 is an example of the domain structures: define, requirements, types, predi-
cates, and functions. The structure define determines the document type (domain or problem)
and its name. The requirements are the characteristics used in the domain that are checked by
the solver at the beginning to confirm if it is possible to solve the problem. The types section
allows object typing, and the language allows object hierarchy.

In predicates, all types of Boolean predicates are declared, defined by a name, being
a tuple of variables with their respective types. Functions are declared in functions similarly
to predicates, but while predicates represent a boolean value, functions have numerical values.
Actions are the transition between states and within the actions, parameters represent the values
to be manipulated. The precondition specifies all necessary conditions for an action being
performed, which means the state the system must be in to allow an action. The state after the
action is described in effect.

Source code 1 – Domain example - incomplete code turtlebot in PDDL

1: ( d e f i n e ( domain t u r t l e b o t _ e x a m p l e )

2: ( : requ irement s : s t r i p s : t y p i n g : d i s j u n c t i v e − p r e c o n d i t i o n s )

3: ( : t y p e s
4: r o b o t

5: waypo in t

6: f l o o r

7: )

8: ( : p r e d i c a t e s

2 https://ipc2018.bitbucket.io/ accessed January 28, 2020
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9:

10: ; ; r o b o t p r e d i c a t e s

11:

12: ( p e r s o n _ g r e e t e d ? v − r o b o t )

13: ( p e r s o n _ g u i d e d ? v − r o b o t )

14: ( r o b o t _ a t ? v − r o b o t ?wp − waypo in t )

15: ( undocked ? v − r o b o t )

16: ( docked ? v − r o b o t )

17: ; ; [ . . . ]

18:

19: ; ; w a y p o i n t & f l o o r p r e d i c a t e s

20:

21: ( d o c k _ a t ?wp − waypo in t )

22: ( w a y p o i n t _ a t _ f l o o r ?wp − waypo in t ? f l − f l o o r )

23: ( e l e v a t o r _ a c c e s s _ w a y p o i n t ?wp − waypo in t )

24: ( v i s i t e d ?wp − waypo in t )

25: ; ; [ . . . ]

26: )

27:

28: ; ; Move t o any w a y p o i n t , a v o i d i n g t e r r a i n

29: ( : a c t i o n g o t o _ w a y p o i n t

30: :parameters ( ? v − r o b o t ? from ? t o − waypo in t ? f l − f l o o r )

31: : p r e c o n d i t i o n ( and
32: ( undocked ? v )

33: ( o u t s i d e _ e l e v a t o r ? v )

34: ( r o b o t _ a t ? v ? from )

35: ( w a y p o i n t _ a t _ f l o o r ? from ? f l )

36: ( w a y p o i n t _ a t _ f l o o r ? t o ? f l )

37: ( h a l l w a y _ w a y p o i n t ? from )

38: ( h a l l w a y _ w a y p o i n t ? t o )

39: ( a l l o w e d _ g o t o _ w a y p o i n t ? v )

40: )

41: : e f f e c t ( and
42: ( r o b o t _ a t ? v ? t o )

43: ( not ( r o b o t _ a t ? v ? from ) )

44: ( not ( a l l o w e d _ g o t o _ w a y p o i n t ? v ) )

45: )

46: )

47: ( : a c t i o n g u i d e _ p e r s o n

48: :parameters ( ? v − r o b o t ?wp − waypo in t )

49: : p r e c o n d i t i o n
50: ( and
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51: ( undocked ? v )

52: ( o u t s i d e _ e l e v a t o r ? v )

53: ( r o b o t _ a t ? v ?wp )

54: ( p e r s o n _ g r e e t e d ? v )

55: ( d e s t i n a t i o n _ w a y p o i n t ?wp )

56: )

57: : e f f e c t ( and
58: ( p e r s o n _ g u i d e d ? v )

59: ( a l l o w e d _ g o t o _ w a y p o i n t ? v )

60: )

61: ) )

In code 1, the :requirements define:

1) :strips - Allows the use of basic add and delete effects.

2) :typing - Allows the use of types for objects. Typing is similar to classes and sub-classes
in Object Oriented Programming.

4) :disjunctive-preconditions- Allows use of or in goals and preconditions.

4.3.2 Problem Code

The code 1 shows an example of a problem in PDDL, available in the ROSPlan examples
repository3.

In the problem, after defining it as a problem and its name in define, it must be related to
its domain. In objects, we instantiate objects within their respective types. The system’s initial
state is declared in init, using predicates and functions specified in the domain. In the same way,
goal declares the state you want to reach.

Source code 2 – Problem example turtlebot in PDDL

1: ( d e f i n e ( problem t u r t l e b o t _ e x a m p l e _ t a s k )

2: ( :domain t u r t l e b o t _ e x a m p l e )

3: ( : o b j e c t s
4: k i n b a − r o b o t

5: wp0−0 wp0−1 wp0−2 wp0−3 wp0−4 wp0−5 wp0−6 wp1−6 wp1−7 wp1−8 − waypo in t

6: f l 0 f l 1 − f l o o r

7: )

8: ( : i n i t
9: ( r o b o t _ a t k i n b a wp0−0 )

10: ( docked k i n b a )

3 https://github.com/KCL-Planning/rosplan demos accessed on August 15, 2023
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11: ( o u t s i d e _ e l e v a t o r k i n b a )

12: ( a l l o w e d _ g o t o _ w a y p o i n t k i n b a )

13:

14: ( d o c k _ a t wp0−0 )

15:

16: ( e l e v a t o r _ w a y p o i n t wp0−6 )

17: ( e l e v a t o r _ w a y p o i n t wp1−6 )

18: ( c u r r e n t _ e l e v a t o r _ w a y p o i n t wp0−6 )

19:

20: ( e l e v a t o r _ a c c e s s _ w a y p o i n t wp0−5 )

21: ( e l e v a t o r _ a c c e s s _ w a y p o i n t wp1−7 )

22:

23:

24: ( g r e e t i n g _ w a y p o i n t wp0−1 )

25: ( d e s t i n a t i o n _ w a y p o i n t wp1−8 )

26:

27: ( h a l l w a y _ w a y p o i n t wp0−0 )

28: ( h a l l w a y _ w a y p o i n t wp0−1 )

29: ( h a l l w a y _ w a y p o i n t wp0−2 )

30: ( h a l l w a y _ w a y p o i n t wp0−3 )

31: ( h a l l w a y _ w a y p o i n t wp0−4 )

32: ( h a l l w a y _ w a y p o i n t wp0−5 )

33: ( h a l l w a y _ w a y p o i n t wp1−7 )

34: ( h a l l w a y _ w a y p o i n t wp1−8 )

35:

36: ( w a y p o i n t _ a t _ f l o o r wp0−0 f l 0 )

37: ( w a y p o i n t _ a t _ f l o o r wp0−1 f l 0 )

38: ( w a y p o i n t _ a t _ f l o o r wp0−2 f l 0 )

39: ( w a y p o i n t _ a t _ f l o o r wp0−3 f l 0 )

40: ( w a y p o i n t _ a t _ f l o o r wp0−4 f l 0 )

41: ( w a y p o i n t _ a t _ f l o o r wp0−5 f l 0 )

42: ( w a y p o i n t _ a t _ f l o o r wp0−6 f l 0 )

43: ( w a y p o i n t _ a t _ f l o o r wp1−6 f l 1 )

44: ( w a y p o i n t _ a t _ f l o o r wp1−7 f l 1 )

45: ( w a y p o i n t _ a t _ f l o o r wp1−8 f l 1 )

46:

47: )

48: ( : g o a l ( and
49: ( p e r s o n _ g u i d e d k i n b a )

50: ( p e r s o n _ g r e e t e d k i n b a )

51: ( docked k i n b a )

52:
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53: ) ) )

The problem starts with the robot (defined as kinba) at waypoint 0 ((robot at)), parked
(docked) at waypoint 0 (dock at). As the predicates are unrelated, it is necessary to define that the
robot is at a point and is simultaneously parked at a point. This is due to the language structure
that allows to relax rules to facilitate finding a plan. If the action undock did not have the effect
(not (docked ?v)) the robot would be both parked and moving.

The problem seeks as a final state having a person guided, person greeted, and parked
(docked), where all objectives must be achieved. In Figure 16, the planner’s response is presented
through text and visual form.

Figure 16 – Problem solution for 2 in 1

Source: Elaborated by the author.

The PDDL language is used in (KUHNER et al., 2018) with the authors describing
an adaptive interface with goal setting, where the user establishes the general objective with
high-level commands. In (STEENSTRA, 2019), a PDDL-based system is developed for task
planning of an autonomous underwater vehicle, considering positioning uncertainty and limited
communication with the agent.

4.4 ROSPlan
ROSPlan is an architecture that incorporates job planning into the ROS system (CASH-

MORE et al., 2015). This tool has two main components shown in Figure 17, Knowledge Base
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and Planning System.

• Knowledge Base: Collection of interfaces intended to store the current environment
variables as a PDDL model. It automatically generates problem files in PDDL and translates
actions from PDDL to actions in ROS system, notifying the planner if the environment
changes.

• Planning System: It is responsible for planning management. This is done by generating
the problem according to the available information from the Knowledge Base, transferring
the problem instance to the planner, performing the parsing of the generated plan, and
sending it to the platform as actions.

The main processes of the Planning System are shown in Figure 17 and described below:

• Problem Generator: Responsible for automatically generating a problem in PDDL,
publishing it in a ROS topic, or saving it in a file.

• Planner: Communication interface with the solver that sends the specified problem and
publishes the result of the planner (action plan) in a topic or file.

• Plan Parser: Module that converts the PDDL file plan into ROS messages for execution.

• Plan Dispatch: It encapsulates the execution of the plan in process, executes the service
related to the plan, and returns an error message if it occurs.

ROSPlan does not have a specific solver for PDDL; the system is modular and allows
the user to choose the solver that best suits the problem.

4.5 Final Remarks

In this chapter, we proposed the necessary basic concepts to address the challenges
outlined in Chapter 3. Key concepts for developing an autonomous system include autonomy,
code reusability, programming language independence, modularity with seamless communication
between modules, robust task planning, and aircraft safety.

The concept of autonomy, as discussed in the Michaelis dictionary and literature (RUS-
SELL; NORVIG, 2016; BLASCH, 2018), was explored by highlighting its various dimensions
and levels. We adopted a three-axis approach to autonomy, considering environmental factors,
mission requirements, and complexity in human-machine interaction. This approach forms
the foundation for our methodology’s dynamic environment, mission planning, and embedded
knowledge.
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Figure 17 – ROSPlan Architecture

Source: Sanelli et al. (2017).

To implement our methodology, we used the Robot Operating System (ROS), a powerful
framework that aligns with our objectives of code reusability, programming language indepen-
dence, and modularity. ROS’s architecture, including nodes, messages, topics, and services,
facilitates seamless communication between different components of a robotic system and across
diverse robots.

Furthermore, we introduced the Problem Definition Domain Language (PDDL) as a
descriptive language to model planning problems. PDDL provides a structured syntax for defining
the environment, rules, initial and final states, and search metrics. It has been widely used in the
planning community and complements our methodology by enabling robust task planning.

The ROSPlan architecture was presented as a pivotal component of our methodology,
integrating job planning into the ROS ecosystem. The Knowledge Base and Planning System
components work synergistically to manage knowledge representation, problem generation,
planning, and plan execution. ROSPlan’s flexibility allows users to choose the most suitable
PDDL solver for their problem.

In summary, our methodology combines the richness of autonomy, the flexibility of
ROS, and the expressiveness of PDDL to create a holistic approach to developing autonomous
systems capable of robust task planning and execution. The following chapters will delve into the
practical implementation and evaluation of this methodology in the context of specific robotic
applications.
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CHAPTER

5
METHODOLOGY

This chapter presents the methodology proposed to deal with the problem described in
chapter 3 using the materials presented in chapter 4.

In this chapter, we introduce Harpia, an autonomous system designed for UAV operations.
Harpia operates seamlessly from a ground station or as an embedded system within the UAV
platform, excelling in decision-making and independent execution of missions. Its capabilities
encompass advanced features such as meticulous mission planning, adaptive diagnostics, and
real-time risk mitigation. Developed on the Robot Operating System (ROS), Harpia integrates
Planning Domain Definition Language (PDDL) for task planning, K-Nearest Neighbors (KNN)
for dynamic path planning, Bayesian Networks for risk assessment, and fault detection using
Principal Component Analysis (PCA) and Decision Tree classification. This chapter comprehen-
sively overviews Harpia’s architecture, functionalities, and role in advancing UAV operations’
autonomy.

5.1 Harpia

This section describes the proposed autonomous system, Harpia, which can run from
a ground station or be embedded in the UAV platform. The UAV with Harpia embedded can
operate without a communication link with the ground station. In this case, our system can
replace the pilot for designed decision-making and assume some behaviors for critical situations,
e.g., performing an emergency landing or returning to base.

The current decision-making features of Harpia improve flight safety, facilitate handling
UAV operations, and increase the efficiency of carrying out missions. Mission safety improves
since Harpia defines the mission plan and the related trajectories, taking into account obstacle
avoidance as an external factor and battery health as an internal one. Besides the risk mitigation
component, the system continuously evaluates flight health to detect internal problems.
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The operation of the UAV under Harpia becomes easy once the pilot only needs to set the
necessary inputs, launch Harpia system with some commands, and start the UAV. Next, Harpia
autonomously carries out the mission plan and its execution. Finally, the efficiency of carrying
out missions arises from the system’s ability to generate optimized plans using PDDL to describe
the scenario of a current mission.

5.1.1 Harpia overview

In the current commercial solutions, the pilot is usually in charge of the UAV flight. For
example, the scenarios described in Figure 10 would generate one mission for each region, with
the user defining the missions’ execution sequence and the pilot controlling each flight. There is
a need for commercial systems that execute repetitive missions without the pilot guidance, as
reported in (COHN et al., 2017).

There are tailor-made commercial solutions for in-flight diagnostics of UAV systems.
Still, the authors in (NOUACER et al., 2020) report the demand for autonomous and adaptive
diagnostics systems. Such systems can improve robustness, reduce costs, and increase autonomy.
Our system advances by adding more autonomy to plan and re-plan missions and trajectories
and monitoring UAV safety.

Harpia system is developed on ROS following figure 18 architecture. The requirement to
embed Harpia onboard is a companion computer, such as a Raspberry Pi model B or a similar
one, with at least 4GB SDRAM. In the presence of a reliable link between the ground station
and the UAV, we do not need to embed the proposed system. In this case, Harpia can run using a
regular laptop at the ground station. On the other hand, if the communication link is unreliable,
Harpia can be embedded in single-board computers, as mentioned. However, we must highlight
that the system is currently running from a ground station, and its embedded version will be
validate as a future work

The systems in ROS nodes are:

• ROSPlan: We add here the Kings College’s system ROSPlan , describe in (SANELLI et

al., 2017), to use the available PDDL structure and solvers.

• Decision Support & Making: Manage the mission plan and execution.

– Mission Planning: Calls ROSPlan features for mission planning.

– Risk Mitigation: A Bayesian Network (BN) was developed to decide about keeping
the plan execution, re-planning actions, or abort the current plan.

– Mission Goal Manager: Updates goals since users may add or remove them.
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Figure 18 – Description of the ROS nodes and communication

• Path Planners: This module interfaces with different path planners. The K-nearest neigh-
bor (KNN) algorithm was employed as a machine learning approach to select a planner
for each scenario.

• Fault Detection: Supervises flight safety using combined PAC-Tree algorithms to identify
anomalous flight patterns.

Algorithms 3-5 summarize the iterations among ROS nodes in Harpia responsible for
the Mission. The Mission Goal Manager (Algorithm 3) feeds the knowledge base to create
the PDDL domain by sending the input data: UAV Info, Map, and Goals. UAV Info has the
hardware attributes of the aircraft,e.g., avionics system and sensor features, which depend on the
UAV platform employed and the mission executed. Map describes the current environment (map
area, no-fly zones, support bases), and Goals have the regions of interest to be reached and the
actions to be executed. We integrate all these Harpia Interface inputs using ROS. Mission Goal
Manager will update inputs and the ROSPlan knowledge base, while Mission Planning returns
true. In Algorithm 4, the Mission Planning node calls ROSPlan to generate the problem and a
plan to solve it.

If the problem or plan generations do not succeed, we have a problem, and the Mission
Goal Manager will receive False reporting to the system. For instance, the users can receive
a message telling them that it is not possible to execute the mission with the current data. If
everything works, Mission Planning will execute ROSPlan to dispatch an action to Mission
Manager. In Algorithm 5, the Risk Mitigation system is called to verify if the action can be
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executed.

At this point, BN will evaluate the feasibility of the current sequence of actions. If there
is a problem, the system will try to re-plan the mission by calling ROSPlan again with the
current UAV state. If it is not possible to generate a new plan, Mission Planning will receive
false and report that plan generation does not succeed to Mission Goal Manager. Otherwise,
we have re-planned the mission, and Mission Manager will execute the plan actions. Next, we
describe how PDDL, BN, path planning, and fault detecion algorithms work in Harpia.

Source code 3 – Mission Goal Manager

1: ROSPLAN . knowledge base(UAV , Map , Goals)

2: while ( Mission_Planning ()):

3: UAV ,MAP ,Goals = updateInput ()

4: ROSPLAN . knowledge_base (UAV , Map , Goals)

Source code 4 – Mission Planning

1: stop = False

2: if( problem == ROSPLAN . generateProblem ()):

3: if(plan == ROSPLAN . generatePlan ( problem ):

4: while (not stop):

5: action = ROSPLAN . actionDispatch (plan)

6: if( action is Null):

7: stop = True

8: else

9: stop = Mission_Manager ( action .plan)

10: return stop

Source code 5 – Mission Manager

1: fault = Mission_Fault_Detection ( action .plan)

2: if (fault):

3: replan = ROSPLAN . generatePlan (problem , action , plan)

4: if(not replan ):

5: return False

6: Do_Action ( action .plan)

7: return False
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5.1.2 PDDL

The task planning problem is solved using the PDDL2.1 language, which is expressive
enough for domain and problem definition (FOX; LONG, 2003). Figure 19a gives an overview
of the domain, where we assume high-level planning to schedule actions. For instance, the UAV
must load the right input for spraying. The battery must be enough to execute the trajectory, and
the on-board camera must usually be clean after a spraying action.

PDDL2.1 allows us to properly define the domain and actions for a constrained plan,
where the UAV can verify preconditions before performing actions. This will prevent the aircraft
from flying without enough battery, leading it to recharge it in a support base (go_to_base).
UAV autonomously goes to the base and loads the battery as often as necessary to carry out a
mission.

Figure 19b illustrates the model for a problem. Our system establishes the communication
between the user and ROSPlan. As mentioned, the user only needs to provide information about
the map, mission goals, and UAV hardware. The system updates the knowledge base for each
mission request, calls for a plan, and the planned dispatch. In this example, the mission objectives
are to capture the images of regions three to six. We only add the distances between the goals’
regions and the bases to avoid unnecessary complexity while searching for a planned schedule.

5.1.3 PATH PLANNING

The Path Planning system will receive origin, destination, and obstacle positions to
calculate a feasible route. It is called by Do_Action() in Algorithm 5 with trajectories being
requested through go_to actions. The trajectory can be generated by one of the three available
algorithms: Hybrid Genetic Algorithm (HGA) - (SOUZA; TOLEDO, 2020), Rapidly-exploring
Random Trees (RRT) and Potential Field Planning (PFP) - (SAKAI et al., 2018).

We made changes in RRT and PFP algorithms to address obstacle avoidance. RRT
applies Ray Casting (RC) algorithm to check collisions following the same approach introduced
in (SOUZA; TOLEDO, 2020) for HGA. The Ray Casting (RC) algorithm is used in computer
graphic applications since it traces rays from a source and finds the nearest point blocking the
beam. Polygons represent non-fly zones or obstacles in our scenarios, and RRT will avoid such
polygons by using RC to validate the waypoints sampled when building branches. In this context,
RC traces horizontal rays from each waypoint and calculates the number of intersections with
the polygon.

In RRT, we first define the Ray Cast Point (RCP) to verify a waypoint inside the obstacle.
If the ray intercepted the polygon an odd number of times, the waypoint is inside the area; if it
blocked an even number, the waypoint is outside the area, as summarized by expression (5.1).
Next, Ray Cast Segment (RCS) checks if there are intersections between the segment of two
consecutive waypoints and the polygons, as stated by expression (5.2):
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(a) PDDL Domain overview (b) PDDL Problem overview

Figure 19 – Incomplete PDDL domain and problem for Harpia

RCP(xs,O j) =

1 , if xs ∈O j

0 , otherwise
(5.1)

RCS(xs,xs+1,O) =
|O|

∑
j=0
|xs,xs+1

⋂
O j| (5.2)

where xs and xs+1 are two consecutive waypoints defining the segment xs,xs+1, and O is
the set of obstacle with O j ∈O.
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Equations 5.4 and 5.6 calculate the repulsive field in PFP algorithm, whose novelty is
the inclusion of chance-constrains.

PF(xt) = RP(xt)+AP(xt) (5.3)

AP(xt) =
d(xt ,D)

d(O,D)
(5.4)

RP(xt) =
|O|

∑
j=1

(Pr(xt ∈ ZO j)) (5.5)

Pr(xt ∈ ZO j) = 1−F(xt) (5.6)

Equation 5.3 adds up attractive and repulsive potentials in Equations 5.4 and 5.6, re-
spectively. Euclidean distance d(A,B) measures the UAV’s position (xt) from the destination D,
where O is the origin. The repulsive field applies chance constraints as reported in (ARANTES
et al., 2019); thus, the probability of collision with an obstacle Zi

Φn is given by Pr, and Φ is the
set of obstacles. Equation 5.3 indicates how to find Pr from the cumulative distribution function
F(xt) as illustrated by Figure 20 for a normal distribution.

Figure 20 – Risk incurred by the uncertainty related to the state xt .

Each algorithm produces feasible routes at different run times and generates a path
with distinct advantages. Moreover, the path planning system chooses the path planner based
on each specific situation, where the variables analyzed to make a choice are battery health,
obstacle amount between the regions and the distance (in a straight line) between the origin and
destination points.

K-Nearest Neighbors (KNN) technique selects the path planners based on the data about
the path to be planned. KNN is a supervised machine learning algorithm for classification
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problems, which classifies a data point based on its proximity of neighbors belonging to some
classes. The algorithm calculates the distance between data points and selects the ’k’ closest
points, where ’k’ is a pre-defined number, to determine new data classification. The classification
can be done, e.g., by voting or weights related to the distance from the K’s nearest neighbors.

Our path-planning system employs the KNN classifier to decide which path-planning
algorithm to use based on specific variables. The classifier considers the variables battery health
(b), time to run the algorithm (t), ratio (r, see Equation 5.9), route length (l), the quantity of
waypoints (q). We used the elbow method to determine the optimal value of ’k’, which involves
plotting the variation in the percentage of variance explained concerning the number of clusters.
As ’k’ increases, the variance explained increases until adding more clusters doesn’t fit the data
better. This inflection point, resembling an "elbow" in the plot, providing an optimal value for
’k’, which returned K = 5 in our study as shown by Figure 21. In this way, by training the KNN
classifier on trajectories generated by each path planner for various origins and destinations, we
can discern patterns and tendencies in the choice of algorithms for different scenarios.

f itness = a+ t + r+ l +q (5.7)

a = b∗ r (5.8)

r =
∑

n
i=1 d(xi,xi+1)

d(O,D)
(5.9)

ς̂ =
σ −min(σ)

max(σ)−min(σ)
,∀σ ∈ {a, t,r, l,q} (5.10)

Figure 22 shows the tendencies in the choice of each algorithm. For example, HGA is
usually chosen when there are fewer obstacles, PFP is chosen for medium distances, and RRT is
for longer distances.

5.1.4 Risk Mitigation

In this section, we describe using the Bayesian Network to mitigate the risk of the mission
plan failing due to a lack of battery. The battery consumption becomes high for some reasons,
such as an increase in the distance to flight when new areas of interest or obstacles are added,
greater resistance in the air caused by wind, and rate consumption higher than estimated due to
battery malfunction.

The Bayesian Network (BN) is a semantic representation of probabilistic models, struc-
tured as a directed graph (RUSSELL; NORVIG, 2016). The nodes and edges represent variables
and conditional dependency between nodes, respectively. Bayesian networks can handle anomaly
detection, classification, and clustering, among other tasks in machine learning.

Harpia calls a BN within the Risk Mitigation system every time ROSPlan activates an
action. The idea is to verify the plan’s feasibility based on the battery level. Figure 23 shows the
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Figure 21 – Elbow method to evaluate K

Figure 22 – KNN and path planner selection based on some features.

incremental build process of the BN, which is related to the next action to be performed, e.g.,
BN is initiated before the drone takes a picture in region 2.

Table 2 has the probability distribution employed, based on the Li-ion discharge voltage
curve, where Y is the percentage of available battery to execute the plan’s selected action, and
P(Y) is the chance of executing such action without a re-planning. For example, we can have
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(a) 1st Node (b) 2nd Node added (c) 3rd Node added

(d) 4th Node added (e) 5th Node added

Figure 23 – BN result example where replan is needed. The images show the addition of new nodes on
the BN, setting the actions that happened and calculating the probability of re-plan for added
nodes.

Y = 85%, meaning a battery with 85% of the full capacity, where P(Y)=0.95 is the chance of
executing the selected action following the current plan.

Thus, if the probability of executing an action is greater or equal to keeping the plan, BN
evaluates the plan. BN adds a new child node as the next action and adjusts the previous action
as evidence. The process will continue for the whole plan or if a node evaluation demands a
re-plan. Figure 23 shows when the probability of success for an action is smaller than the drone’s
probability of not accomplishing an action in the future. At this point, the system stops the BN
process and triggers a re-plan.

In Figure 24, we have a scenario where the system decides to re-plan in two different
points after it calls the BN. In Figure 24a, the black arrows represent the original plan, but the BN
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Table 2 – Probability Distribution

Battery Probability Battery Probability
0<Y<15 0.20 15<=Y<30 0.50

30<=Y<60 0.75 60<=Y<80 0.85
- - 80<=Y<=100 0.95

identifies the need to recharge before completing such a plan. This happens since the percentage
of battery consumption becomes greater than expected, which means a low available battery as
the UAV reaches region R2, leading to the re-planning of the current sequence of actions.

The new plan is shown in blue, where the UAV will go to the base after the action in R4
to recharge the battery, mitigating a future hazard. We assume that the battery is not working
as expected, which means the discharge rate is not following the desired behavior, e.g., due to
wind resistance, an increase in the previous path to avoid obstacles, or even a battery failure.
Thus, when the aircraft arrives at R3 in Figure 24b, ROSPlan dispatches another action, and
the BN identifies that it is impossible even to reach R4. Next, a second re-plan is called, with
the system deciding on another battery recharge. If a re-planning operation is initiated and the
aircraft’s battery level is at or below 20%, the system will direct the aircraft to the nearest base
for recharging before proceeding with the actual re-planning process.

5.1.5 Fault Detection

The erratic flight behavior arises when anomalous values are constantly detected from
flight data like roll, pitch, yaw, heading, roll rate, pitch rate, yaw rate, climb rate, and throttle per-
centage. Those values change for different reasons, such as wind gusts or internal malfunctioning
in UAV engines.

PCA and Decision Tree

In our study of fault detection during flights, we simulated 540 flights and introduced
noise or errors for 135 of them. Table 3 shows the flight scenarios considered for simulation.
An error generator was employed to simulate real-world inaccuracies in measurements and
controls. This generator introduces Gaussian noise, modulating the disturbances based on the
nature of each parameter and the intended type of error. The Gaussian noise is formulated using
the random.gauss(mean, deviation) function from Python’s standard library. Disturbances and
their respective Gaussian specifications are as follows:

• For orientation parameters like pitch, roll, yaw, and heading: Gaussian noise is
added with a mean of 0.0 and a standard deviation of 10.0.

• For rate parameters such as rollRate, pitchRate, yawRate, and altitudeRelative:
The noise has a mean of 0.0 and a standard deviation of 5.0.
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(a) First Re-plan

R6

R1

R2

R3R4
R5

(b) Second Re-plan

Figure 24 – Re-planning sequence of actions. The black arrows show the previous sequence of actions,
and blue arrows indicate the re-planning one.

• For thrust-related parameters throttlePct and climbRate: The disturbance is character-
ized by a mean of 0 and a standard deviation of 0.5.

• For groundSpeed: A Gaussian noise with a mean of 0.0 and a standard deviation of 1.5 is
utilized.

In a Gaussian distribution with the above specifications, approximately 68.2% of the val-
ues will fall within one standard deviation from the mean, indicating that most of the disturbances
will be bounded by the specified deviation values.

We propose a machine-learning system that employs Principal Component Analy-
sis(PCA) since such a technique applies a dimensional reduction over the dataset from a higher
space to a low dimension space. The advantage is to keep relevant relationships among variables
or patterns from the original dataset. PCA also has the advantage of unsupervised learning since
it does not need to know the value or label of target variables.

In this work, PCA assesses flight data to extract two components from the variables
roll, pitch, yaw, heading, roll rate, pitch rate, yaw rate, climb rate, and throttle percentage, as
illustrated in Figure 25.
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Flight Type Main Parameter Start Altitude(m) End Altitude(m)

Takeoff and landing
Takeoff Alt: 5 m
Takeoff Alt: 15 m
Takeoff Alt: 30 m

Hovering
Hovering Alt: 5 m
Hovering Alt: 15 m
Hovering Alt: 30 m

Forward flight
Distance: 10 m 15 m 10 m
Distance: 15 m 50 m 30 m
Distance: 5 m 7 m 5 m

Backward flight
Distance: 10 m 15 m 10 m
Distance: 15 m 50 m 30 m
Distance: 5 m 7 m 5 m

Left flight
Distance: 10 m 15 m 10 m
Distance: 15 m 50 m 30 m
Distance: 5 m 7 m 5 m

Right flight
Distance: 10 m 15 m 10 m
Distance: 15 m 50 m 30 m
Distance: 5 m 7 m 5 m

Circular flight
Radius: 5 m
Radius: 15 m
Radius: 20 m

Climbing and descending
Start: 10 m End: 5 m
Start: 20 m End: 10 m
Start: 50 m End: 30 m

Figure-8 flight Radius 50
Table 3 – Flight parameters and types

The PCA components allowed us to plot and discern between standard flights and flights
with errors. As observed in Figure 26a, even though there are 405 error-free flights, they cluster
closely with two centers in the plot. In contrast, the 25% of flights with errors scatter widely.
Thus, we defined a distance threshold for each flight data point to determine the severity of the
error, as shown in Figure 26b.

Next, we use a decision tree classifier model to identify an error based on the UAV’s
parameters, as shown in Appendix A. A decision tree is a machine-learning approach that struc-
tures the knowledge learned through a hierarchy of decisions, refined until the final classification
or regression result is obtained. The structuring approach allows us to better understand the
decision-making process in a classification or regression problem.

The decision tree is a supervised learning algorithm, and we evaluated its performance on
two distinct datasets: scaled UAV values and PCA-reduction values. Each dataset was partitioned
into training and test subsets, allocating 80% of the data for training and the remaining 20% for
validation. This configuration thoroughly assessed the model’s efficacy on previously unseen
data. For the UAV dataset, the classifier achieved:
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Figure 25 – PCA components

Source: Elaborated by the author.

• Accuracy: 0.9319

• Precision: 0.9323

• Recall: 0.9319

• F1-score: 0.9321

In contrast, when trained on the PCA values, the model’s performance exhibited a
remarkable improvement:

• Accuracy: 0.9954

• Precision: 0.9954

• Recall: 0.9954

• F1-score: 0.9954

Comparing the outcomes, it is evident that the Decision Tree classifier achieved superior
results with the PCA values. This suggests that the PCA transformation might better represent
this classification task compared to the raw scaled UAV values.
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(a) Simulation values (b) Class by PCA values

Figure 26 – Re-planning sequence of actions. The black arrows show the previous sequence of actions,
and blue arrows indicate the re-planning one.

Fault Detection Module

Our system introduces an additional verification step to mitigate the risk of misidentifying
normal conditions as faults (such as when a UAV encounters a warm air pocket) and avoid
unwarranted mission interruptions. This module employs two user-defined time windows: ∆t

to appraise the occurrence of a flag given by the PCA-Tree combination and τ to inspect the
consistency of percentage errors during the flight. For each time interval ∆t , the module discerns
and quantifies the instances of various error types, categorized as:

• α – percentage of noise.

• γ – percentage of mild conditions.

• β – percentage of abnormal conditions.

• λ – weighting factor of each identified problem.

The decision criteria follows, based on the (α,γ,β ,λ ) values estimated during ∆t :



80 Chapter 5. Methodology

Algorithm 1 – Pseudo code for decision-making in Fault Detection

if α ≤ 0.7,β = 0.0 and γ ≤ 0.05 then
∆t ← 0

else if α > 0.7,β = 0.0, and 0.05 < γ ≤ 0.1 then
∆t ← λ 0

else if 0.1 < γ ≤ 0.4 then
∆t ← λ 1

else if β < 0.05 and 0.4 < γ ≤ 0.6 then
∆t ← λ 2

else if β < 0.1 or γ > 0.6 then
∆t ← λ 3

else if β < 0.2 then
∆t ← λ 4

else
∆t ← λ 5

end if

The parameter ∆ represents a specific λ value, and τ is the secondary time window, with
t being the current time and the function f () formulated as:

f (t) =
t

∑
i=t−τ

∆i (5.11)

∆i denotes the value at time i which will be in a time window from τ= t− τ to t. The
outcome of f (t) within this window is pivotal for identifying anomalies. If f (t) relies between
λ 4.25 and λ 4.5 (exclusive), an anomaly warning is presented. If f (t) escalates to λ 4.5 + 1 or
beyond, the user is prompted to either continue or check for false positives. If no user action is
detected within 30 seconds or if the user agrees to abort, we have the following situations:

• The UAV is instructed to land instantly if f (t) surpasses 1.5×λ 5.

• Otherwise, the UAV endeavors to return to its base. In case of any complications with the
go_to_base() function, an emergency landing is triggered.

5.2 Final Remarks

This chapter further expanded upon the methodologies, tools, and concepts for developing
our autonomous system, building upon the previously established foundations of autonomy,
code reusability, and programming language independence. Incorporating the KNN classifier
underscores the importance of adaptive decision-making in selecting path-planning algorithms
according to specific demands for trajectories. The system optimizes its path-planning choices by
accounting for variables such as runtime, route length, and quantity of waypoints. The Mission
Goal Manager system applies a KNN method to choose better path planners, where KNN and
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planner are described. Risk Mitigation considers battery consumption with a BN introduced
to forecast the need for re-planning, aiming to recharge the battery. For Fault Detection, we
simulated flight scenarios with intentionally introduced errors; thus, it was possible to showcase
the robustness and adaptability of our proposed solution. With the Gaussian noise simulations,
the explained process of error generator provides a realistic approach to modeling real-world
inaccuracies. PCA and Decision Tree algorithms allow our system to achieve error detection
precisely.
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CHAPTER

6
RESULTS

6.1 Introduction

The primary objective of this research was to comprehensively analyze the performance
and behavior of the proposed autonomous system for drones under different mission scenarios.
The main idea is to provide valuable insights into how the drone’s system can achieve goals,
handle errors, and manage faults. The results herein present a detailed overview of these findings,
offering a holistic and granular view of the system’s capabilities and potential shortcomings.

Harpia’s systems are tested through extensive simulations in some scenarios, and we
focused on evaluating how Risk Mitigation, Fault Detection, and Mission Goal Manager perform
and interact with the other systems under specific challenges. We evaluate Risk Mitigation
through different battery health conditions during the flight, a usual situation when dealing with
drone missions. Fault Detection is simulated for the drone showing erratic flight behavior, which
wind gusts or internal engine problems might provoke. The Mission Goal Manager must deal
with changes in the mission during the flight when the ground station decides in real time to add
or remove goals, another current demand for drone systems.

We report simulation results for a real-world quad-copter with the following configuration:
9 kg of Maximum take-off weight (MTOW), 5 m/s of topl cruising speed, 40 min of MTOW
autonomy, and 7.0 g/w of MTOW Efficiency. Simulations will not replace the potential findings in
real-world scenarios, and we tried to reduce such impact by using the real-world model provided
by the Gazebo simulator. Thus, Gazebo PX4 Firmware is employed for drone simulation, and the
POPF solver is executed to plan actions in PDDL 4.1. The Gazebo simulator executes 220 flights
to gather the necessary data for our research, where these flight simulations spanned various
scenarios.

The three distinct maps that define our simulation scenarios are in Figure 10, Section 3.1.
Table 4 summarizes the number of Regions of Interest (ROI), Non-Fly Zones (NFZ), support
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bases (Bases), the average distance in a straight line between all regions of the map (Avg. Dist)
and the total of flight simulations for each map (Simulations).

Table 4 – Map information summary

Map ROI NFZ Bases Avg. Dist. (m) Simulations
1 12 1 3 2300 60
2 6 15 3 550 80
3 6 6 3 150 80

Table 5 shows the basic configurations applied during simulations for each map. We have
the number of Initial Goals (IG) of the mission and the label (number) of each initial goal region
(IRG) in the map. Next, it is shown the label of each Added Region Goal (ARG) and Removed
Region Goal (RRG) during the mission. Finally, we introduce noise during the flight to simulate
fault detection. The last row shows three types of noise named Noise Type (NT): 1, 2, and 3.
We explain each type of noise in Section 6.4. For example, let’s assume the two configurations
below:

C1: [IG, IRG, ARG, RRG, NT] = [2,(2,4),-,-,1]

C2: [IG, IRG, ARG, RRG, NT] = [2,(4,5),(1,2,6),4,-]

Configuration C1 states a simulation with two initial goals (IG) labeled as numbers 2
and 4 within the Map (IRG), and there is a noise type 1 (NT) being applied during the flight.
There is no addition or removal of regions in C1. Configuration C2 defines a simulation with two
initial goal (IG) labeled as 4 and 5 (IRG) with the addition of regions 1, 2, and 6 (ARG) and the
removal of region 4 (RRG). Noise is not applied in C2.

The addition of new regions labeled in ARG always happens after the first initial goal (IG)
has been reached and the action to be performed in such region is concluded. The same procedure
happens if a configuration only removes a region (RRG) without adding others. However, for
configurations simultaneously adding and removing regions, adding new regions happens after
the action performed in the first initial goal has been concluded. A re-planning is done to deal
with the new regions, and the drone heads to the next goal region. The request to remove regions
occurs after the action conclusion in the next goal set in the first re-planning. At this point,
another re-planning occurs for the new scenario with removed regions.

Table 5 – Description of the simulation scenarios

IG 2 4 6
IRG 1,2 2,3 3,4 4,5 1,6 2,4 3,5 1,2,3,4 2,3,4,5 3,4,5,6 4,5,6,1 5,6,1,2 6,1,2,3 1,3,4,6 1,2,3,4,5,6
ARG - 1 - 1,2,6 - - - - 1,6 - 2,3 - - - - - 5 - - -
RRG - - 3 4 - - - - - 5,6 2,3,4 - - - - 4,5,6 4,5,6 - - -
NT - - - - 1 2 3 - - - - 1 2 3 - - - 1 2 3
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6.2 Mission Goal Manager, KNN & Planning Algorithms
The present section reports the results related to the mission planning and path planning

problems that Harpia must face in the three maps. The solver POPF is applied to generate
feasible plans for the mission planning problem, while KNN is employed to choose the better
planner (HGA, PFP, or RRT) to solve the path planning problem. Thus, we evaluate the response
provided by the Mission Goal Manager that will also trigger the Mission Planning and Path
Planning systems. Next, we summarize the main features considered in Table 5:

• The missions have different numbers of goals, with a subset dedicated to error simulations
with errors (noise) incorporated for nine flights.

• Two missions have new goals added by users from the ground station.

• Three flights have users removing original goals from the ground station.

• Three flights encompassing both added and removed goals.

• Three flights have noise added to the simulation.

We collected the following data for every simulated flight:

• The plans generated for the mission.

• CPU time required for plan generation.

• Calculated Bayesian Network outcomes.

• Any need for re-planning during the mission.

• Every selection made by the KNN planner and the corresponding input values.

• The efficiency of the routes generated by the planner.

A total of 220 flight simulation was conducted, with 40 missions demanding a re-plan. A
critical consideration in planning and re-planning the missions is the time expended by POPF
solver formulating a plan. POPF operates as a non-deterministic algorithm, meaning it can not
find a plan on the first try. Thus, Harpia will call the planner repeatedly until it generates a
feasible plan, which can impact computational time based on the number of interactions between
the Mission Goal Manager and POPF solver. Figure 27 and 28 show the average time spent on
each map when the number of goals increases and a trend line. Figure 27 has the numbers for all
plans and re-plans done, while 28 shows the figures only for re-plans.

There is no relevant time difference for only re-plans against all plans and re-plans.
In both cases, the solver POPF requires more time when time and distance increase, thereby
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Figure 27 – CPU Time per Goals, with tendencies lines

Source: Elaborated by the author.

Figure 28 – CPU Time per Goals, with tendencies lines of re-plans

Source: Elaborated by the author.
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intensifying the mission problem’s complexity. On the other hand, even with the constraints
introduced by adding or removing goals, the time dedicated to devising new actions for the drone
never exceeds 0.85 seconds. Figure 29 shows the number of re-plans executed when adding or
pulling out goals during the mission execution.

Figure 29 – Quantity of mission re-plan per map

Source: Elaborated by the author.

Map 3 exhibits a higher number of re-plans compared to Maps 1 and 2. This difference
arises due to the shorter distances in Map 3, leading to a larger tree of possibilities explored by
the planner. Consequently, the planner occasionally encounters dead-ends, demanding additional
iterations. However, the number of interactions between the Mission Goal Manager and POPF
solver did not threaten the overall computational performance for real-time decision-making.

Figure 30 has the distribution of algorithms selected for each request of the path planning
system during the simulation. We counted a total of 2204 total requests for path planning during
all simulations. The path planning system, based on KNN classification, chose Hybrid Genetic
Algorithm (HGA) for 52.8% of the simulations, followed by PFP with 32.7%, and RRT with
14.5%. The accuracy of KNN algorithm achieved 84.1% with 15.9% infeasible routes returned
by the selected planners.

The number of obstacles (obst_qty) and the estimated distance among goals (distance_-
straight_line) impact the path planner chosen by KNN as shown in Figure 30. KNN chooses
HGA more often when there are no obstacles, mainly for short and average distances, while
RRT appears to solve path planning problems with obstacles for all distances of goals. Finally,
KNN selects PFP when we have obstacles and short distances among goals. However, it’s
noteworthy that the PFP generated all infeasible routes. Whenever infeasibility arose, the system
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Figure 30 – KNN results from simulation

Source: Elaborated by the author.

immediately selected RRT as a replacement planner once it performed better, finding viable
trajectories quickly.

Table 6 gives some insights about the infeasible paths returned by PFP, where the method
found only infeasible routes in Map 2 and 3. We have the number of infeasible paths (Paths)
generated, the average amount of obstacles (Avg. Obst) from the start point in a region to the
endpoint in the next region of the path planning, the average distance between regions (Avg. Reg
Dist), and the average battery charge (Avg. Battery) at the moment that PFP is executed. The
column Avg Reg Dist gives the average values based on a straight line from one region to another.
Thus, we can see that PFP could not return a trajectory even with only one or two obstacles
being avoided and enough battery to execute a trajectory. The average distance between regions
seems not to be the reason once PFP failed for Map 2 with 590.45 m on average and Map 3 with
181.25 m.

Table 6 – Unfeasible PFP paths info

Map Paths Avg. Obst Avg. Reg Dist Avg Battery
2 149 1.483 590.45 79.342281
3 202 1.504950 181.25 75.262375

Table 7 summarizes the results for each path planner with feasible trajectories across the
different maps. Avg. Obst shows the average amount of obstacles between two regions, as stated
in Table 6. Avg. Route Dist gives the average length of the planned path, while Avg. Battery
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Planner Map Avg. # Obst Avg. Route Dist. (m) Avg. of Waypoints Ratio (%) Planner time(s)
1 0.0 1781.24 7.7 1.13 120.08
2 0.0 300.69 6.3 1.16 120.19HGA
3 0.02 97.36 6.02 1.16 120.18
2 1.53 707.87 34.9 1.10 23.57

PFP
3 1.54 184.11 10.0 1.16 3.05
1 0.60 3179.97 154.34 1.25 0.65
2 1.47 646.24 34.19 1.27 1.02RRT
3 1.4 182.93 15.78 1.99 1.04

Table 7 – Planning Algorithms results/performance

also shows the battery charge to plan the path. Avg. of Waypoints has the mean of waypoints
each method spends when returning a trajectory.

The HGA is typically invoked when there are no or fewer obstacles, while KKN triggers
RRT and PFP to handle obstacle avoidance. HGA returned, on average, long trajectories for Map
1 that are expected once it is the widest map; however, generates trajectories with few waypoints
for all Maps. RRT returns long trajectories for all maps, mainly for Map 3; therefore, building
trajectories with many waypoints. These values of RRT are explained by the need to deviate
from obstacles once it is the planner more often called for obstacle avoidance. HGA runs for
120 sec, while RRT and PFP run until they find a trajectory. RRT has the advantage of being the
fastest planner for all maps. PFP offers a commendable balance between path length, time, and
number of waypoints but failed to return feasible solutions within 15.9% of the maps. Figure 31
shows the number of Path Planning system calls from KNN in the Mission Goal system.

Figure 31 – Planners Calls per Map

Source: Elaborated by the author.
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KNN did not select PFP for path planning in Map1, making 260 and 111 calls for Map
2 and 3, respectively. Thus, PFP can be a planner not adjusted to handle long distances, which
is the case for Map1. KNN employs HGA and RRT in all maps, with HGA being called by a
similar number of times and RRT executed more than 500 times for Map 1 and around 300 for
Map 2 and 3.

We state Ratio to compare the length of paths planned against the distance using a straight
line between two regions, described by Equation 6.1:

Ration(%) =
R

∑
i=1

R

∑
j=1
i ̸= j

1
Πi, j

(
P

∑
p=1

π
p
i, j

)
(6.1)

• R: set of region in the map.

• P: number of paths.

• π
p
i, j: length of path p from region i to j.

• Πi, j: straight line distance from region i to j.

In Figure 32, we compare the ratio values and the time spent to plan the trajectory. All
planners take more time to find paths with better ratios, so more straight trajectories can be
time-consuming. HGA is shown but we most remember that it is always executed for 120s.

Figure 32 – Planner time per ratio

Source: Elaborated by the author.



6.2. Mission Goal Manager, KNN & Planning Algorithms 91

The ratio by Map is shown in Figure 33, where most ratio values are below 3.0 for all
planners. RRT had some problems finding low ratios for Map 3, which makes sense based on its
path lengths shown in Table 7. Thus, the KNN selects a planner that returns a straight trajectory
the majority of times. In this case, the planners avoid large detours from obstacles, even for maps
with different dimensions and quantities of NFZ and ROI.

Figure 33 – Planners ratio per Map

Source: Elaborated by the author.

Figure 33 compares the ratio with the straight-line distances. We can see now why RRT
has problems finding a low ratio. RRT has problems finding a more straight trajectory for short
distances between regions but has no problem for long distances. HGA also has no problems
in returning a straight trajectory for long distances. PFP has a low ratio in most results but is
limited to distances below 1000.

Finally, Figure 34 brings the ratio mean for each planner and map. The deviation from a
straight line did not exceed 20% on average for HGA and PFP for all maps. RRT is the exception,
with a deviation above 20% for Map 1 and 2 and a huge deviation in Map 3.

Figure 35 presents the CPU time for each planner and map, with HGA excluded from
the analysis due to its imposed time limit of 120s. Furthermore, the PFP was not selected as
a planner in Map 1. PFP requires more computation time in Map 2, which is attributed to the
higher number of obstacles in that particular map. Conversely, RRT planner exhibits consistent
behavior between Map 2 and 3. It has to avoid a single No-Fly Zone in Map 1, generating routes
with a marginally shorter execution time, approximately 0.3 seconds less than in maps containing
multiple obstacles.
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Figure 34 – Average planner ratio per map

Source: Elaborated by the author.

Figure 35 – Time consumed to generate a route per map

Source: Elaborated by the author.

Figure 36 illustrates the path information during a mission. Let’s consider Cn as follows:
Cn : [2,(1,2,3,4),−,−,−], and the plan generated, represented by the white arrows in Figure
36a. KNN must select a planner to reach the first Region of Interest (ROI), as shown in Figure
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36b, with no obstacles to avoid, a battery level of 100%, and a straight-line distance of 323.77m.
HGA is chosen and generates a feasible route with a length of 446.64m and a ratio of 37%,
shown by the red line.

This process is repeated in Figures 36c and 36f. In Figures 36d and 36g, the KNN invokes
the PFP, but it returns an infeasible route, specifically, a route in which the last waypoint’s distance
to the destination waypoint exceeds 10m. When an infeasible route is returned, the system calls
upon the RRT planner, as shown in Figures 36e and 36h.

6.3 Risk Mitigation: Battery-Level & Bayesian Network

Risk Mitigation system in Harpia employs a Bayesian Network (BN) to evaluate the
battery consumption and decide the need for a mission re-planning. Thus, battery consumption
is evaluated through flight simulations under four distinct battery health conditions: 100%,
70%, 50%, and 30%. Thus, the simulations in Table 5 are executed for each one of the battery
conditions. Figure 37 illustrates different temperature conditions that change the battery’s
capacity.

In our simulation, under a battery health of 100%, the drone can achieve a flight duration
of 40 minutes. As the battery health decreases, the flight time is impacted; e.g., the drone’s flight
duration is reduced to 28 minutes at 70% battery health. When the battery health drops to 50%,
the flight time further decreases to 20 minutes, and at 30% battery health, the drone can only keep
a flight for 12 minutes. A total of 20 flights were simulated for each of the battery conditions.

Thus, we assessed the responsiveness of the Mission Manager through ROSPlan (Mission
Planning) and BN to detect issues and re-plan actions through four distinct battery health levels.
For example, if a drone is designed to fly for 40 minutes but operates with 50% of battery health
and a discharge rate twice the usual, its flight duration would be reduced to 20 minutes. However,
the minimum distance between the launch site, region, and base is around 3km in Map 1, and
such distance becomes unfeasible for a drone with only 30% battery health available to reach a
base. Therefore, we resume our testing with the 30% battery health scenario only to Map 2 and
Map 3.

There is no need for mission re-planning when the drone works with 100% of battery
health in all maps, and re-plan did not happen when battery is less than 20%. We assume as a
critical level when the battery falls below 20%, which is often for flight simulations with battery
health set as 30%. In this case, spending time calling the solver and waiting for the re-planing is
not the best decision. Therefore, the system sends the drone to execute a detour to the nearest
base, proceeding with the previous plan after recharge.

Figure 38 demonstrates an increase in re-planning calls as battery health diminishes from
70% to 30%. Map 1 has only one NFZ but within a wide area (2300m); therefore, the BN and
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(a) Plan (b) 1st Path

(c) 2nd Path (d) 3rd Path

Figure 36 – plan x path plan

re-planning system of Harpia takes a little more than 0.5s to re-plan the mission, which also
happens for Map 2, when plenty of battery charge is available (70%) in both cases. This short
time for re-planning indicates that POPF solver had no problem easily finding a new plan. Map
3 witnessed no re-planning at 70% battery health since the maximal distance between interest
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(e) 3rd Path (f) 4th Path

(g) 5th Path (h) 5th Path

Figure 36 – plan x path plan

zones is only 440m, and the flight capacity stands at 28 minutes.

There is a relevant increase in re-planning for battery health levels of 50% and 30%
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Figure 37 – Typical curve of battery degradation under different test conditions

Source: Zubi et al. (2020).

as expected. However, the battery reaches a critical level below 20% more often for flight
simulations with 30%, when the BN did not call a re-plan and the drone only makes a detour to
the nearest base. This explains the reduction in the calls from 50% to 30% of battery health.

Figure 38 – Mean of Re-plan Calls per Battery Health

Source: Elaborated by the author.
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6.4 Fault Detection and Management
Fault Detection system must deal with the drone showing erratic flight behavior, which

wind gusts or internal engine problems might provoke. The proposed PCA and Decision tree
integration is applied as part of Fault Detection system to identify erratic flights. In situations
where faults were detected, we recorded additional data:

• The time of the fault diagnoses.

• Type and percentage of errors for the corresponding time window.

• Historical data from previous time windows.

• The corrective action suggested by the system.

• Any user’s feedback, particularly if they decided to continue the mission, signaling that the
UAV was not perceived as in any immediate danger. The idea is to identify if the detected
error was a false positive.

We introduced different levels of Gaussian noise in some simulations to assess the
system’s capability when identifying non-expected behaviors. Thus, the standard deviation of
the Gaussian distribution was varied to simulate disturbances by adding three types of noise. The
Noise Type 1 was added using the parameter specifications next:

• For parameters such as pitch, roll, yaw, and heading: Gaussian noise with mean
0.0 and standard deviation 3.0.

• For parameters like rollRate, pitchRate, yawRate, and altitudeRelative: Gaus-
sian noise with mean 0.0 and standard deviation 2.0.

• For parameters throttlePct and climbRate: Gaussian noise with mean 0 and a standard
deviation 0.2.

• For all other parameters: Gaussian noise with mean 0 and standard deviation 0.8.

Noise Type 2 was set as follows:

• For parameters such as pitch, roll, yaw, and heading: Gaussian noise with mean 0
and standard deviation 7.0.

• For parameters like rollRate, pitchRate, yawRate, and altitudeRelative: Gaus-
sian noise with mean 0 and standard deviation 5.0.

• For parameters throttlePct and climbRate: Gaussian noise with mean of 0 and a
standard deviation of 0.5.
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• For all other parameters: Gaussian noise with mean 0 and standard deviation 1.5.

Finally, the Noise Type 3 was considerably accentuated as follows:

• For parameters like pitch, roll, yaw, and heading: Gaussian noise with mean 0 and
standard deviation 15.0 is added.

• For parameters such as rollRate, pitchRate, yawRate, and altitudeRelative:
The Gaussian noise with mean 0 and standard deviation 7.0.

• For parameters throttlePct and climbRate: Gaussian noise with mean of 0 and stan-
dard deviation of 1.0.

• For all other parameters: Gaussian noise with mean 0 and standard deviation 3.0.

Figure 39 has a boxplot about the time the system requires to detect a flight fault. Given
the system conditions detailed in Section 5.1.5, Harpia demonstrated an aptitude to identify
and respond to flight errors, particularly as error magnitude increased. Some anomalous data in
Figure 39 took around 60s to be certified as type 1 noise. Most type 1 noise detection happens
from 30 to 40s sec and has a maximum value of 50s. Noises of types 2 and 3 classifications
occur more stable, with type 2 being identified around 20s and type 3 around 10s.

Figure 39 – Time to identify a fault flight per type of error type

Source: Elaborated by the author.

Figure 40 outlines the system’s actions for each error type: return to base or land in a
nearby area. The system’s responses aligned with expectations by selecting the nearest base for
all the low noise-affected flights and deciding for immediate landing in the case of severe noise.
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Figure 40 – Chosen actions per error type

Source: Elaborated by the author.

In the simulation with Noise Type 1, the system triggers an action return to base 33 times
out of 33 simulations with no land action performed. The lack of land action is an expected
answer from the system for a low noise level. Noise Type 2 triggered a return to base action
eight times and a land action 25 times, which indicates a level of disturbance demanding a land
action more often. This behavior is expected since the Gaussian distribution for Type 2 can
generate values akin to noise Type 1 and Type 3. Finally, Noise Type 3 produced the opposite
result from those seen in simulations with Type 1 noise. There is now a higher need for land
action by executing such action 33 times without any return to base action triggered.

6.5 Summary of Results

This chapter reports results by simulating a real-world quad-copter employing Gazebo
PX4 Firmware and the POPF solver in a PDDL 4.1 environment. The chosen drone model
showcased an efficient velocity of 5.0m/s, and a commendable forty minutes of battery autonomy.
A total of 220 flights were simulated, covering diverse battery health levels and mission goals
within three maps. The aim was to evaluate the Mission Goal Manager, Risk Mitigation, and
Fault Detection systems in Harpia.

In the Mission Goal Manager, the planning and re-planning times remained enough to
formulate a feasible plan or re-plan and generate new trajectories for such mission changes.
The results indicate that the time for planning actions never surpassed 0.85 seconds. Battery
health significantly influenced flight feasibility and the need for re-planning, posing a challenge
for the Risk Mitigation system. Lower battery health levels (30% and 50%) witnessed more
re-planning calls, especially in larger maps. Notably, even with the increase in re-planning calls,



100 Chapter 6. Results

the mean re-planning duration remained consistent, reflecting the system’s robustness. Fault
Detection system was tested against different types of disturbances, introducing varying levels of
Gaussian noise. The results indicate a proactive system response, adeptly handling errors, with
actions ranging from proceeding to the nearest base for mild disturbances to initiating immediate
landings for severe ones. The classification of error types done by the PCA and Decision tree
methods satisfactorily addressed the challenge of identifying possible threats.

KNN is another machine learning approach that satisfactorily addressed the challenge
of choosing the path planning planner. The method selected the Hybrid Genetic Algorithm
(HGA) that dominated with a 52.8% selection rate, outperforming PFP and RRT. However, the
KNN algorithm’s accuracy stood at 84.1%, indicating a certain degree of infeasibility. Notably,
PFP, despite showing a good balance between time and ratio, failed to produce a feasible route
occasionally, which sum up 15.9% of the infeasible routes. On the other hand, besides producing
long paths, RRT is the best to find paths, mainly when obstacle avoidance is necessary quickly.

In summary, the advanced drone system exhibits a promising performance profile, espe-
cially in challenging mission scenarios. The analysis not only underscores its strengths but also
pinpoints areas that could benefit from further enhancements. As drone technology continues to
evolve, these insights will be invaluable in ensuring safe, efficient, and reliable UAV operations.
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CHAPTER

7
FINAL REMARKS

This doctorate thesis extensively explored an advanced drone system’s performance and
behavior across various mission scenarios. Our research aimed to bridge the gap between the
challenges of developing autonomous drones and the goals of enabling them to adapt to real-time
changes with minimal human intervention. In this concluding section, we synthesize the main
findings and their implications for the overarching question: Is it possible to develop a system
that integrates AI capabilities for autonomous decision-making within different scenarios where
real-time changes must be addressed with minimum human intervention?

Our journey began by identifying the critical challenges that autonomous drone sys-
tems face. These challenges included optimizing mission management, ensuring efficient path
planning, and enhancing fault detection and response mechanisms.

Firstly, our research aimed to comprehensively analyze the impact of varying battery
health levels on mission feasibility. The results unequivocally demonstrated that battery health
is pivotal to mission success. As battery health declined, the system responded with increased
re-planning, showcasing its ability to adapt to changing conditions autonomously.

Secondly, we sought to understand the efficiency of the path-planning algorithms used in
autonomous drones. Utilizing a K-nearest neighbors (KNN) classifier for algorithm selection
played a central role in achieving this goal. The Hybrid Genetic Algorithm (HGA) emerged as
the predominant choice, but the occasional infeasibility uncovered by the KNN, reveals that PFP
algorithms underscored the need for further refinements.

Lastly, we aimed to investigate the system’s fault detection and response capabilities
under various disturbance levels. The simulation results showed the system’s aptitude for iden-
tifying anomalies and responding accordingly. The system’s adaptability was evident in its
choice between returning to base or initiating emergency landings, mirroring the severity of the
disturbances.

Is it possible to develop a system integrating AI capabilities for autonomous decision-
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making within different scenarios with minimal human intervention? Our findings suggest that it
is indeed possible. The drone system exhibited a remarkable capacity to autonomously address
the challenges posed by real-time changes. As demonstrated in our extensive simulations, the
robustness and efficiency of the system’s autonomous decision-making capabilities align with
the overarching goal of minimizing human intervention.

The system’s ability to adapt to fluctuating battery health, select suitable path-planning al-
gorithms, and respond effectively to disturbances illustrates its potential to operate autonomously
across diverse scenarios. These results indicate a promising path toward developing advanced
drone systems to make real-time intelligent decisions, reducing the need for continuous human
oversight.

As we conclude this thesis, we acknowledge that there is still work to transition these
findings from simulations to real-world applications. Nevertheless, the foundations here provide
a compelling case for the continued development and refinement of autonomous drone systems.
These systems hold immense potential in areas such as surveillance and delivery services and in
addressing broader societal challenges and opportunities.

In summary, this doctorate thesis has illuminated the path toward autonomous drone
systems that can navigate complex scenarios with minimal human intervention. The fusion of
AI capabilities and real-time decision-making is within reach, promising a future where drones
operate seamlessly and effectively across many dynamic environments.

All the documentation and code implementations are available on GitHub1 to facilitate
the dissemination and utilization of the research outcomes. Interested researchers, developers, and
enthusiasts can access the repository to delve into the specifics of the autonomous drone system’s
modeling and algorithms. This open-access approach encourages collaboration, transparency, and
further advancements in autonomous drone systems. The GitHub repository is a valuable resource
for those interested in exploring, replicating, or building upon the insights and methodologies
presented in this doctoral thesis.

1 <https://github.com/vvannini/harpia>

https://github.com/vvannini/harpia
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APPENDIX

A
GENERATED TREE

PC2 ≤ 0.423
gini = 0.196

samples = 100.0%
value = [0.027, 0.049, 0.029, 0.895]

class = abnormal

PC2 ≤ -0.638
gini = 0.11

samples = 94.6%
value = [0.014, 0.025, 0.018, 0.943]

class = abnormal

True

PC2 ≤ 3.694
gini = 0.663

samples = 5.4%
value = [0.244, 0.472, 0.226, 0.058]

class = noise

False

PC2 ≤ -3.881
gini = 0.655

samples = 4.8%
value = [0.272, 0.475, 0.207, 0.046]

class = noise

PC2 ≤ -0.101
gini = 0.018

samples = 89.7%
value = [0.0, 0.001, 0.008, 0.991]

class = abnormal

PC2 ≤ -4.042
gini = 0.042

samples = 1.1%
value = [0.979, 0.021, 0.0, 0.0]

class = normal

PC2 ≤ -1.889
gini = 0.556

samples = 3.8%
value = [0.071, 0.604, 0.267, 0.059]

class = noise

gini = 0.0
samples = 1.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 0.14
gini = 0.367

samples = 0.1%
value = [0.758, 0.242, 0.0, 0.0]

class = normal

PC1 ≤ -1.252
gini = 0.397

samples = 0.0%
value = [0.273, 0.727, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 2.442
gini = 0.262

samples = 1.9%
value = [0.13, 0.849, 0.021, 0.0]

class = noise

PC1 ≤ 0.998
gini = 0.589

samples = 1.8%
value = [0.008, 0.345, 0.527, 0.12]

class = mild

PC2 ≤ -3.506
gini = 0.144

samples = 1.7%
value = [0.053, 0.923, 0.024, 0.0]

class = noise

PC2 ≤ -2.501
gini = 0.461

samples = 0.3%
value = [0.64, 0.36, 0.0, 0.0]

class = normal

PC1 ≤ 1.442
gini = 0.381

samples = 0.2%
value = [0.256, 0.744, 0.0, 0.0]

class = noise

PC2 ≤ -2.035
gini = 0.092

samples = 1.4%
value = [0.02, 0.952, 0.028, 0.0]

class = noise

PC1 ≤ -2.105
gini = 0.14

samples = 0.2%
value = [0.076, 0.924, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 1.027
gini = 0.089

samples = 0.2%
value = [0.047, 0.953, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.2%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -3.584
gini = 0.49

samples = 0.0%
value = [0.429, 0.571, 0.0, 0.0]

class = noise

PC2 ≤ -3.704
gini = 0.375

samples = 0.0%
value = [0.75, 0.25, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 1.327
gini = 0.5

samples = 0.0%
value = [0.5, 0.5, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ -3.307
gini = 0.044

samples = 1.3%
value = [0.022, 0.978, 0.0, 0.0]

class = noise

PC1 ≤ 0.255
gini = 0.375

samples = 0.2%
value = [0.0, 0.75, 0.25, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 2.036
gini = 0.031

samples = 1.3%
value = [0.016, 0.984, 0.0, 0.0]

class = noise

gini = 0.0
samples = 1.2%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -2.979
gini = 0.35

samples = 0.1%
value = [0.226, 0.774, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ -1.115
gini = 0.5

samples = 0.1%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 0.071
gini = 0.346

samples = 0.1%
value = [0.0, 0.222, 0.778, 0.0]

class = mild

PC2 ≤ -2.011
gini = 0.153

samples = 0.0%
value = [0.0, 0.083, 0.917, 0.0]

class = mild

PC2 ≤ -1.927
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

PC1 ≤ -0.212
gini = 0.444

samples = 0.0%
value = [0.0, 0.333, 0.667, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 2.546
gini = 0.07

samples = 0.2%
value = [0.964, 0.036, 0.0, 0.0]

class = normal

PC1 ≤ 3.652
gini = 0.208

samples = 0.1%
value = [0.118, 0.882, 0.0, 0.0]

class = noise

PC2 ≤ -2.729
gini = 0.48

samples = 0.0%
value = [0.6, 0.4, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -2.031
gini = 0.32

samples = 0.0%
value = [0.8, 0.2, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -1.045
gini = 0.459

samples = 1.1%
value = [0.003, 0.096, 0.701, 0.2]

class = mild

PC2 ≤ -1.14
gini = 0.41

samples = 0.7%
value = [0.016, 0.722, 0.263, 0.0]

class = noise

PC1 ≤ -2.073
gini = 0.271

samples = 0.7%
value = [0.004, 0.137, 0.843, 0.016]

class = mild

PC1 ≤ 0.317
gini = 0.517

samples = 0.4%
value = [0.0, 0.022, 0.445, 0.533]

class = abnormal

PC1 ≤ -4.425
gini = 0.117

samples = 0.0%
value = [0.062, 0.938, 0.0, 0.0]

class = noise

PC1 ≤ 0.539
gini = 0.181

samples = 0.7%
value = [0.0, 0.082, 0.901, 0.017]

class = mild

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -1.137
gini = 0.072

samples = 0.5%
value = [0.0, 0.016, 0.963, 0.021]

class = mild

PC2 ≤ -1.536
gini = 0.463

samples = 0.1%
value = [0.0, 0.364, 0.636, 0.0]

class = mild

PC1 ≤ -1.778
gini = 0.034

samples = 0.5%
value = [0.0, 0.017, 0.983, 0.0]

class = mild

PC1 ≤ -0.078
gini = 0.426

samples = 0.0%
value = [0.0, 0.0, 0.692, 0.308]

class = mild

PC2 ≤ -1.556
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

PC2 ≤ -1.884
gini = 0.012

samples = 0.5%
value = [0.0, 0.006, 0.994, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 0.086
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.5%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ -0.801
gini = 0.49

samples = 0.0%
value = [0.0, 0.0, 0.429, 0.571]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC1 ≤ 0.655
gini = 0.266

samples = 0.1%
value = [0.0, 0.842, 0.158, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ -1.728
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ -1.269
gini = 0.409

samples = 0.3%
value = [0.0, 0.03, 0.24, 0.73]

class = abnormal

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ -2.239
gini = 0.266

samples = 0.1%
value = [0.0, 0.158, 0.842, 0.0]

class = mild

PC1 ≤ 0.07
gini = 0.178

samples = 0.2%
value = [0.0, 0.0, 0.099, 0.901]

class = abnormal

PC2 ≤ -0.771
gini = 0.375

samples = 0.0%
value = [0.0, 0.75, 0.25, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.2%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC2 ≤ -0.884
gini = 0.472

samples = 0.1%
value = [0.0, 0.0, 0.381, 0.619]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 0.265
gini = 0.305

samples = 0.0%
value = [0.0, 0.0, 0.188, 0.812]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC2 ≤ -0.742
gini = 0.48

samples = 0.0%
value = [0.0, 0.0, 0.6, 0.4]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC1 ≤ 4.642
gini = 0.066

samples = 0.4%
value = [0.027, 0.966, 0.007, 0.0]

class = noise

PC1 ≤ 1.889
gini = 0.473

samples = 0.3%
value = [0.0, 0.383, 0.617, 0.0]

class = mild

PC1 ≤ 1.083
gini = 0.014

samples = 0.4%
value = [0.0, 0.993, 0.007, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC2 ≤ -1.263
gini = 0.245

samples = 0.0%
value = [0.0, 0.857, 0.143, 0.0]

class = noise

gini = 0.0
samples = 0.4%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 1.302
gini = 0.464

samples = 0.1%
value = [0.0, 0.635, 0.365, 0.0]

class = noise

PC1 ≤ 3.405
gini = 0.249

samples = 0.2%
value = [0.0, 0.145, 0.855, 0.0]

class = mild

PC2 ≤ -1.009
gini = 0.133

samples = 0.0%
value = [0.0, 0.071, 0.929, 0.0]

class = mild

PC2 ≤ -0.792
gini = 0.266

samples = 0.1%
value = [0.0, 0.842, 0.158, 0.0]

class = noise

PC2 ≤ -1.07
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 1.692
gini = 0.49

samples = 0.0%
value = [0.0, 0.571, 0.429, 0.0]

class = noise

PC1 ≤ 1.385
gini = 0.32

samples = 0.0%
value = [0.0, 0.8, 0.2, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -1.011
gini = 0.042

samples = 0.1%
value = [0.0, 0.021, 0.979, 0.0]

class = mild

PC2 ≤ -0.857
gini = 0.219

samples = 0.0%
value = [0.0, 0.875, 0.125, 0.0]

class = noise

PC1 ≤ 2.166
gini = 0.245

samples = 0.0%
value = [0.0, 0.143, 0.857, 0.0]

class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 3.662
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 0.538
gini = 0.56

samples = 0.8%
value = [0.0, 0.071, 0.422, 0.507]

class = abnormal

PC2 ≤ 0.066
gini = 0.009

samples = 88.9%
value = [0.0, 0.0, 0.004, 0.996]

class = abnormal

PC1 ≤ -1.578
gini = 0.22

samples = 0.4%
value = [0.0, 0.053, 0.068, 0.879]

class = abnormal

PC1 ≤ 2.096
gini = 0.449

samples = 0.5%
value = [0.0, 0.085, 0.707, 0.207]

class = mild

PC1 ≤ -2.408
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

PC1 ≤ 0.446
gini = 0.033

samples = 0.3%
value = [0.0, 0.0, 0.017, 0.983]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.3%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC2 ≤ -0.432
gini = 0.375

samples = 0.0%
value = [0.0, 0.0, 0.25, 0.75]

class = abnormal

PC1 ≤ 0.462
gini = 0.444

samples = 0.0%
value = [0.0, 0.0, 0.667, 0.333]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 0.49
gini = 0.5

samples = 0.0%
value = [0.0, 0.0, 0.5, 0.5]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 1.439
gini = 0.119

samples = 0.3%
value = [0.0, 0.064, 0.936, 0.0]

class = mild

PC1 ≤ 3.236
gini = 0.529

samples = 0.2%
value = [0.0, 0.13, 0.241, 0.63]

class = abnormal

gini = 0.0
samples = 0.2%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 1.568
gini = 0.313

samples = 0.1%
value = [0.0, 0.194, 0.806, 0.0]

class = mild

PC2 ≤ -0.321
gini = 0.219

samples = 0.0%
value = [0.0, 0.875, 0.125, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -0.276
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noisePC2 ≤ -0.597

gini = 0.188
samples = 0.1%

value = [0.0, 0.0, 0.105, 0.895]
class = abnormal

PC1 ≤ 3.882
gini = 0.492

samples = 0.0%
value = [0.0, 0.438, 0.562, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 2.319
gini = 0.105

samples = 0.1%
value = [0.0, 0.0, 0.056, 0.944]

class = abnormal

PC2 ≤ -0.428
gini = 0.375

samples = 0.0%
value = [0.0, 0.0, 0.25, 0.75]

class = abnormal

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ -1.59
gini = 0.003

samples = 88.3%
value = [0.0, 0.0, 0.001, 0.999]

class = abnormal

PC1 ≤ 0.562
gini = 0.54

samples = 0.6%
value = [0.015, 0.031, 0.433, 0.521]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 3.387
gini = 0.002

samples = 88.3%
value = [0.0, 0.0, 0.001, 0.999]

class = abnormal

PC1 ≤ 0.585
gini = 0.002

samples = 88.3%
value = [0.0, 0.0, 0.001, 0.999]

class = abnormal

PC2 ≤ -0.034
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 75.8%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC1 ≤ 1.975
gini = 0.014

samples = 12.5%
value = [0.0, 0.0, 0.007, 0.993]

class = abnormal

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 12.4%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormalgini = 0.0

samples = 0.0%
value = [0.0, 1.0, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ -1.639
gini = 0.272

samples = 0.3%
value = [0.011, 0.044, 0.099, 0.846]

class = abnormal

PC1 ≤ 2.06
gini = 0.415

samples = 0.3%
value = [0.019, 0.019, 0.728, 0.233]

class = mild

PC1 ≤ -2.577
gini = 0.521

samples = 0.0%
value = [0.077, 0.308, 0.615, 0.0]

class = mild

PC1 ≤ 0.475
gini = 0.025

samples = 0.2%
value = [0.0, 0.0, 0.013, 0.987]

class = abnormal

PC2 ≤ 0.312
gini = 0.32

samples = 0.0%
value = [0.2, 0.8, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.2%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC2 ≤ 0.323
gini = 0.375

samples = 0.0%
value = [0.0, 0.0, 0.25, 0.75]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.2%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 3.35
gini = 0.464

samples = 0.1%
value = [0.059, 0.059, 0.176, 0.706]

class = abnormal

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC1 ≤ 3.952
gini = 0.56

samples = 0.0%
value = [0.2, 0.2, 0.6, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 4.663
gini = 0.5

samples = 0.0%
value = [0.5, 0.5, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC2 ≤ 1.778
gini = 0.568

samples = 4.2%
value = [0.052, 0.583, 0.29, 0.074]

class = noise

PC2 ≤ 4.032
gini = 0.148

samples = 1.2%
value = [0.919, 0.081, 0.0, 0.0]

class = normal

PC1 ≤ 0.951
gini = 0.584

samples = 2.1%
value = [0.004, 0.289, 0.556, 0.151]

class = mild

PC1 ≤ 2.34
gini = 0.232

samples = 2.1%
value = [0.099, 0.87, 0.031, 0.0]

class = noise

PC1 ≤ -2.313
gini = 0.491

samples = 1.2%
value = [0.002, 0.106, 0.67, 0.222]

class = mild

PC2 ≤ 1.162
gini = 0.537

samples = 0.9%
value = [0.007, 0.556, 0.391, 0.047]

class = noise

PC1 ≤ -4.55
gini = 0.061

samples = 0.1%
value = [0.031, 0.969, 0.0, 0.0]

class = noise

PC2 ≤ 0.903
gini = 0.418

samples = 1.1%
value = [0.0, 0.037, 0.723, 0.239]

class = mild

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 0.243
gini = 0.497

samples = 0.5%
value = [0.0, 0.0, 0.462, 0.538]

class = abnormal

PC1 ≤ 0.818
gini = 0.191

samples = 0.7%
value = [0.0, 0.062, 0.896, 0.041]

class = mild

PC1 ≤ -1.263
gini = 0.322

samples = 0.3%
value = [0.0, 0.0, 0.202, 0.798]

class = abnormal

PC2 ≤ 0.448
gini = 0.101

samples = 0.2%
value = [0.0, 0.0, 0.946, 0.054]

class = mild

PC1 ≤ -1.486
gini = 0.219

samples = 0.1%
value = [0.0, 0.0, 0.875, 0.125]

class = mild

gini = 0.0
samples = 0.2%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ 0.649
gini = 0.5

samples = 0.0%
value = [0.0, 0.0, 0.5, 0.5]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 0.61
gini = 0.444

samples = 0.0%
value = [0.0, 0.0, 0.333, 0.667]

class = abnormal

PC1 ≤ 0.329
gini = 0.037

samples = 0.2%
value = [0.0, 0.0, 0.981, 0.019]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ 0.648
gini = 0.444

samples = 0.0%
value = [0.0, 0.0, 0.667, 0.333]

class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ -1.969
gini = 0.155

samples = 0.7%
value = [0.0, 0.039, 0.917, 0.043]

class = mild

PC2 ≤ 1.388
gini = 0.496

samples = 0.0%
value = [0.0, 0.545, 0.455, 0.0]

class = noise

PC2 ≤ 1.273
gini = 0.375

samples = 0.0%
value = [0.0, 0.75, 0.25, 0.0]

class = noise

PC2 ≤ 1.07
gini = 0.134

samples = 0.6%
value = [0.0, 0.027, 0.929, 0.044]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ -0.081
gini = 0.343

samples = 0.1%
value = [0.0, 0.0, 0.78, 0.22]

class = mild

PC2 ≤ 1.717
gini = 0.073

samples = 0.5%
value = [0.0, 0.032, 0.962, 0.005]

class = mild

PC1 ≤ -0.87
gini = 0.495

samples = 0.1%
value = [0.0, 0.0, 0.55, 0.45]

class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC1 ≤ -1.825
gini = 0.035

samples = 0.5%
value = [0.0, 0.012, 0.982, 0.006]

class = mild

PC1 ≤ -1.542
gini = 0.375

samples = 0.0%
value = [0.0, 0.25, 0.75, 0.0]

class = mild

PC1 ≤ -1.875
gini = 0.32

samples = 0.0%
value = [0.0, 0.2, 0.8, 0.0]

class = mild

PC1 ≤ 0.737
gini = 0.024

samples = 0.5%
value = [0.0, 0.006, 0.988, 0.006]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 1.104
gini = 0.013

samples = 0.5%
value = [0.0, 0.0, 0.994, 0.006]

class = mild

PC1 ≤ 0.756
gini = 0.278

samples = 0.0%
value = [0.0, 0.167, 0.833, 0.0]

class = mild

PC2 ≤ 1.094
gini = 0.219

samples = 0.0%
value = [0.0, 0.0, 0.875, 0.125]

class = mild

gini = 0.0
samples = 0.4%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 0.457
gini = 0.245

samples = 0.0%
value = [0.0, 0.143, 0.857, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 1.692
gini = 0.519

samples = 0.5%
value = [0.006, 0.29, 0.625, 0.08]

class = mild

PC1 ≤ 4.826
gini = 0.11

samples = 0.3%
value = [0.008, 0.942, 0.05, 0.0]

class = noise

PC1 ≤ 1.299
gini = 0.5

samples = 0.2%
value = [0.0, 0.486, 0.514, 0.0]

class = mild

PC1 ≤ 3.755
gini = 0.461

samples = 0.3%
value = [0.01, 0.147, 0.706, 0.137]

class = mild

PC2 ≤ 1.041
gini = 0.224

samples = 0.1%
value = [0.0, 0.128, 0.872, 0.0]

class = mild

PC2 ≤ 0.581
gini = 0.202

samples = 0.1%
value = [0.0, 0.886, 0.114, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 1.157
gini = 0.469

samples = 0.0%
value = [0.0, 0.625, 0.375, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 0.509
gini = 0.444

samples = 0.0%
value = [0.0, 0.333, 0.667, 0.0]

class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 0.438
gini = 0.444

samples = 0.0%
value = [0.0, 0.667, 0.333, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 0.705
gini = 0.372

samples = 0.3%
value = [0.0, 0.075, 0.774, 0.151]

class = mild

PC1 ≤ 4.903
gini = 0.198

samples = 0.0%
value = [0.111, 0.889, 0.0, 0.0]

class = noise

PC1 ≤ 2.178
gini = 0.47

samples = 0.1%
value = [0.0, 0.0, 0.622, 0.378]

class = mild

PC1 ≤ 1.99
gini = 0.219

samples = 0.2%
value = [0.0, 0.125, 0.875, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 3.124
gini = 0.476

samples = 0.1%
value = [0.0, 0.0, 0.391, 0.609]

class = abnormal

PC1 ≤ 2.303
gini = 0.124

samples = 0.0%
value = [0.0, 0.0, 0.067, 0.933]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ 0.589
gini = 0.444

samples = 0.0%
value = [0.0, 0.0, 0.333, 0.667]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ 0.999
gini = 0.49

samples = 0.0%
value = [0.0, 0.429, 0.571, 0.0]

class = mild

PC1 ≤ 3.502
gini = 0.046

samples = 0.1%
value = [0.0, 0.024, 0.976, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 3.657
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC2 ≤ 1.282
gini = 0.095

samples = 0.3%
value = [0.0, 0.95, 0.05, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 2.412
gini = 0.284

samples = 0.1%
value = [0.0, 0.829, 0.171, 0.0]

class = noise

gini = 0.0
samples = 0.2%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 1.053
gini = 0.069

samples = 0.1%
value = [0.0, 0.964, 0.036, 0.0]

class = noise

PC1 ≤ 3.403
gini = 0.408

samples = 0.0%
value = [0.0, 0.286, 0.714, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ -3.288
gini = 0.131

samples = 1.9%
value = [0.035, 0.931, 0.035, 0.0]

class = noise

PC2 ≤ 2.503
gini = 0.474

samples = 0.2%
value = [0.614, 0.386, 0.0, 0.0]

class = normal

PC2 ≤ 2.568
gini = 0.346

samples = 0.0%
value = [0.778, 0.222, 0.0, 0.0]

class = normal

PC2 ≤ 1.913
gini = 0.114

samples = 1.9%
value = [0.024, 0.94, 0.035, 0.0]

class = noise

PC1 ≤ -3.983
gini = 0.48

samples = 0.0%
value = [0.6, 0.4, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 0.296
gini = 0.44

samples = 0.2%
value = [0.0, 0.673, 0.327, 0.0]

class = noise

PC2 ≤ 3.57
gini = 0.068

samples = 1.7%
value = [0.027, 0.965, 0.008, 0.0]

class = noise

PC1 ≤ -1.454
gini = 0.459

samples = 0.1%
value = [0.0, 0.357, 0.643, 0.0]

class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 1.895
gini = 0.18

samples = 0.1%
value = [0.0, 0.1, 0.9, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ 1.909
gini = 0.444

samples = 0.0%
value = [0.0, 0.333, 0.667, 0.0]

class = mild

PC1 ≤ -0.906
gini = 0.444

samples = 0.0%
value = [0.0, 0.667, 0.333, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 1.906
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 2.01
gini = 0.038

samples = 1.6%
value = [0.011, 0.98, 0.009, 0.0]

class = noise

PC1 ≤ 1.227
gini = 0.401

samples = 0.1%
value = [0.278, 0.722, 0.0, 0.0]

class = noise

PC2 ≤ 1.989
gini = 0.026

samples = 1.5%
value = [0.004, 0.987, 0.009, 0.0]

class = noise

PC2 ≤ 2.932
gini = 0.245

samples = 0.1%
value = [0.143, 0.857, 0.0, 0.0]

class = noise

PC1 ≤ -0.089
gini = 0.229

samples = 0.1%
value = [0.0, 0.868, 0.132, 0.0]

class = noise

PC1 ≤ 1.616
gini = 0.008

samples = 1.4%
value = [0.004, 0.996, 0.0, 0.0]

class = noise

PC1 ≤ -1.076
gini = 0.486

samples = 0.0%
value = [0.0, 0.583, 0.417, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 1.3%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 3.353
gini = 0.1

samples = 0.1%
value = [0.053, 0.947, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ -2.133
gini = 0.071

samples = 0.1%
value = [0.037, 0.963, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ -2.365
gini = 0.5

samples = 0.0%
value = [0.5, 0.5, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 4.262
gini = 0.278

samples = 0.1%
value = [0.167, 0.833, 0.0, 0.0]

class = noise

PC2 ≤ 2.63
gini = 0.081

samples = 0.1%
value = [0.957, 0.043, 0.0, 0.0]

class = normal

PC2 ≤ 2.387
gini = 0.117

samples = 0.1%
value = [0.062, 0.938, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 3.498
gini = 0.5

samples = 0.0%
value = [0.5, 0.5, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 2.788
gini = 0.48

samples = 0.0%
value = [0.6, 0.4, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 0.708
gini = 0.476

samples = 0.2%
value = [0.609, 0.391, 0.0, 0.0]

class = normal

gini = 0.0
samples = 1.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ -1.773
gini = 0.357

samples = 0.1%
value = [0.233, 0.767, 0.0, 0.0]

class = noise

PC2 ≤ 3.718
gini = 0.044

samples = 0.1%
value = [0.977, 0.023, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC2 ≤ 4.024
gini = 0.057

samples = 0.1%
value = [0.029, 0.971, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 4.027
gini = 0.5

samples = 0.0%
value = [0.5, 0.5, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noisePC1 ≤ 1.324

gini = 0.32
samples = 0.0%

value = [0.8, 0.2, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal
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PC2 ≤ 0.423
gini = 0.196

samples = 100.0%
value = [0.027, 0.049, 0.029, 0.895]

class = abnormal

PC2 ≤ -0.638
gini = 0.11

samples = 94.6%
value = [0.014, 0.025, 0.018, 0.943]

class = abnormal

True

PC2 ≤ 3.694
gini = 0.663

samples = 5.4%
value = [0.244, 0.472, 0.226, 0.058]

class = noise

False

PC2 ≤ -3.881
gini = 0.655

samples = 4.8%
value = [0.272, 0.475, 0.207, 0.046]

class = noise

PC2 ≤ -0.101
gini = 0.018

samples = 89.7%
value = [0.0, 0.001, 0.008, 0.991]

class = abnormal

PC2 ≤ -4.042
gini = 0.042

samples = 1.1%
value = [0.979, 0.021, 0.0, 0.0]

class = normal

PC2 ≤ -1.889
gini = 0.556

samples = 3.8%
value = [0.071, 0.604, 0.267, 0.059]

class = noise

gini = 0.0
samples = 1.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 0.14
gini = 0.367

samples = 0.1%
value = [0.758, 0.242, 0.0, 0.0]

class = normal

PC1 ≤ -1.252
gini = 0.397

samples = 0.0%
value = [0.273, 0.727, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 2.442
gini = 0.262

samples = 1.9%
value = [0.13, 0.849, 0.021, 0.0]

class = noise

PC1 ≤ 0.998
gini = 0.589

samples = 1.8%
value = [0.008, 0.345, 0.527, 0.12]

class = mild

PC2 ≤ -3.506
gini = 0.144

samples = 1.7%
value = [0.053, 0.923, 0.024, 0.0]

class = noise

PC2 ≤ -2.501
gini = 0.461

samples = 0.3%
value = [0.64, 0.36, 0.0, 0.0]

class = normal

PC1 ≤ 1.442
gini = 0.381

samples = 0.2%
value = [0.256, 0.744, 0.0, 0.0]

class = noise

PC2 ≤ -2.035
gini = 0.092

samples = 1.4%
value = [0.02, 0.952, 0.028, 0.0]

class = noise

PC1 ≤ -2.105
gini = 0.14

samples = 0.2%
value = [0.076, 0.924, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 1.027
gini = 0.089

samples = 0.2%
value = [0.047, 0.953, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.2%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -3.584
gini = 0.49

samples = 0.0%
value = [0.429, 0.571, 0.0, 0.0]

class = noise

PC2 ≤ -3.704
gini = 0.375

samples = 0.0%
value = [0.75, 0.25, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 1.327
gini = 0.5

samples = 0.0%
value = [0.5, 0.5, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ -3.307
gini = 0.044

samples = 1.3%
value = [0.022, 0.978, 0.0, 0.0]

class = noise

PC1 ≤ 0.255
gini = 0.375

samples = 0.2%
value = [0.0, 0.75, 0.25, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 2.036
gini = 0.031

samples = 1.3%
value = [0.016, 0.984, 0.0, 0.0]

class = noise

gini = 0.0
samples = 1.2%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -2.979
gini = 0.35

samples = 0.1%
value = [0.226, 0.774, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ -1.115
gini = 0.5

samples = 0.1%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 0.071
gini = 0.346

samples = 0.1%
value = [0.0, 0.222, 0.778, 0.0]

class = mild

PC2 ≤ -2.011
gini = 0.153

samples = 0.0%
value = [0.0, 0.083, 0.917, 0.0]

class = mild

PC2 ≤ -1.927
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

PC1 ≤ -0.212
gini = 0.444

samples = 0.0%
value = [0.0, 0.333, 0.667, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 2.546
gini = 0.07

samples = 0.2%
value = [0.964, 0.036, 0.0, 0.0]

class = normal

PC1 ≤ 3.652
gini = 0.208

samples = 0.1%
value = [0.118, 0.882, 0.0, 0.0]

class = noise

PC2 ≤ -2.729
gini = 0.48

samples = 0.0%
value = [0.6, 0.4, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -2.031
gini = 0.32

samples = 0.0%
value = [0.8, 0.2, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -1.045
gini = 0.459

samples = 1.1%
value = [0.003, 0.096, 0.701, 0.2]

class = mild

PC2 ≤ -1.14
gini = 0.41

samples = 0.7%
value = [0.016, 0.722, 0.263, 0.0]

class = noise

PC1 ≤ -2.073
gini = 0.271

samples = 0.7%
value = [0.004, 0.137, 0.843, 0.016]

class = mild

PC1 ≤ 0.317
gini = 0.517

samples = 0.4%
value = [0.0, 0.022, 0.445, 0.533]

class = abnormal

PC1 ≤ -4.425
gini = 0.117

samples = 0.0%
value = [0.062, 0.938, 0.0, 0.0]

class = noise

PC1 ≤ 0.539
gini = 0.181

samples = 0.7%
value = [0.0, 0.082, 0.901, 0.017]

class = mild

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -1.137
gini = 0.072

samples = 0.5%
value = [0.0, 0.016, 0.963, 0.021]

class = mild

PC2 ≤ -1.536
gini = 0.463

samples = 0.1%
value = [0.0, 0.364, 0.636, 0.0]

class = mild

PC1 ≤ -1.778
gini = 0.034

samples = 0.5%
value = [0.0, 0.017, 0.983, 0.0]

class = mild

PC1 ≤ -0.078
gini = 0.426

samples = 0.0%
value = [0.0, 0.0, 0.692, 0.308]

class = mild

PC2 ≤ -1.556
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

PC2 ≤ -1.884
gini = 0.012

samples = 0.5%
value = [0.0, 0.006, 0.994, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 0.086
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.5%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ -0.801
gini = 0.49

samples = 0.0%
value = [0.0, 0.0, 0.429, 0.571]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC1 ≤ 0.655
gini = 0.266

samples = 0.1%
value = [0.0, 0.842, 0.158, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ -1.728
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ -1.269
gini = 0.409

samples = 0.3%
value = [0.0, 0.03, 0.24, 0.73]

class = abnormal

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ -2.239
gini = 0.266

samples = 0.1%
value = [0.0, 0.158, 0.842, 0.0]

class = mild

PC1 ≤ 0.07
gini = 0.178

samples = 0.2%
value = [0.0, 0.0, 0.099, 0.901]

class = abnormal

PC2 ≤ -0.771
gini = 0.375

samples = 0.0%
value = [0.0, 0.75, 0.25, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.2%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC2 ≤ -0.884
gini = 0.472

samples = 0.1%
value = [0.0, 0.0, 0.381, 0.619]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 0.265
gini = 0.305

samples = 0.0%
value = [0.0, 0.0, 0.188, 0.812]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC2 ≤ -0.742
gini = 0.48

samples = 0.0%
value = [0.0, 0.0, 0.6, 0.4]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC1 ≤ 4.642
gini = 0.066

samples = 0.4%
value = [0.027, 0.966, 0.007, 0.0]

class = noise

PC1 ≤ 1.889
gini = 0.473

samples = 0.3%
value = [0.0, 0.383, 0.617, 0.0]

class = mild

PC1 ≤ 1.083
gini = 0.014

samples = 0.4%
value = [0.0, 0.993, 0.007, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC2 ≤ -1.263
gini = 0.245

samples = 0.0%
value = [0.0, 0.857, 0.143, 0.0]

class = noise

gini = 0.0
samples = 0.4%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 1.302
gini = 0.464

samples = 0.1%
value = [0.0, 0.635, 0.365, 0.0]

class = noise

PC1 ≤ 3.405
gini = 0.249

samples = 0.2%
value = [0.0, 0.145, 0.855, 0.0]

class = mild

PC2 ≤ -1.009
gini = 0.133

samples = 0.0%
value = [0.0, 0.071, 0.929, 0.0]

class = mild

PC2 ≤ -0.792
gini = 0.266

samples = 0.1%
value = [0.0, 0.842, 0.158, 0.0]

class = noise

PC2 ≤ -1.07
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 1.692
gini = 0.49

samples = 0.0%
value = [0.0, 0.571, 0.429, 0.0]

class = noise

PC1 ≤ 1.385
gini = 0.32

samples = 0.0%
value = [0.0, 0.8, 0.2, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -1.011
gini = 0.042

samples = 0.1%
value = [0.0, 0.021, 0.979, 0.0]

class = mild

PC2 ≤ -0.857
gini = 0.219

samples = 0.0%
value = [0.0, 0.875, 0.125, 0.0]

class = noise

PC1 ≤ 2.166
gini = 0.245

samples = 0.0%
value = [0.0, 0.143, 0.857, 0.0]

class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 3.662
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 0.538
gini = 0.56

samples = 0.8%
value = [0.0, 0.071, 0.422, 0.507]

class = abnormal

PC2 ≤ 0.066
gini = 0.009

samples = 88.9%
value = [0.0, 0.0, 0.004, 0.996]

class = abnormal

PC1 ≤ -1.578
gini = 0.22

samples = 0.4%
value = [0.0, 0.053, 0.068, 0.879]

class = abnormal

PC1 ≤ 2.096
gini = 0.449

samples = 0.5%
value = [0.0, 0.085, 0.707, 0.207]

class = mild

PC1 ≤ -2.408
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

PC1 ≤ 0.446
gini = 0.033

samples = 0.3%
value = [0.0, 0.0, 0.017, 0.983]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.3%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC2 ≤ -0.432
gini = 0.375

samples = 0.0%
value = [0.0, 0.0, 0.25, 0.75]

class = abnormal

PC1 ≤ 0.462
gini = 0.444

samples = 0.0%
value = [0.0, 0.0, 0.667, 0.333]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 0.49
gini = 0.5

samples = 0.0%
value = [0.0, 0.0, 0.5, 0.5]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 1.439
gini = 0.119

samples = 0.3%
value = [0.0, 0.064, 0.936, 0.0]

class = mild

PC1 ≤ 3.236
gini = 0.529

samples = 0.2%
value = [0.0, 0.13, 0.241, 0.63]

class = abnormal

gini = 0.0
samples = 0.2%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 1.568
gini = 0.313

samples = 0.1%
value = [0.0, 0.194, 0.806, 0.0]

class = mild

PC2 ≤ -0.321
gini = 0.219

samples = 0.0%
value = [0.0, 0.875, 0.125, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ -0.276
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noisePC2 ≤ -0.597

gini = 0.188
samples = 0.1%

value = [0.0, 0.0, 0.105, 0.895]
class = abnormal

PC1 ≤ 3.882
gini = 0.492

samples = 0.0%
value = [0.0, 0.438, 0.562, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 2.319
gini = 0.105

samples = 0.1%
value = [0.0, 0.0, 0.056, 0.944]

class = abnormal

PC2 ≤ -0.428
gini = 0.375

samples = 0.0%
value = [0.0, 0.0, 0.25, 0.75]

class = abnormal

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ -1.59
gini = 0.003

samples = 88.3%
value = [0.0, 0.0, 0.001, 0.999]

class = abnormal

PC1 ≤ 0.562
gini = 0.54

samples = 0.6%
value = [0.015, 0.031, 0.433, 0.521]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 3.387
gini = 0.002

samples = 88.3%
value = [0.0, 0.0, 0.001, 0.999]

class = abnormal

PC1 ≤ 0.585
gini = 0.002

samples = 88.3%
value = [0.0, 0.0, 0.001, 0.999]

class = abnormal

PC2 ≤ -0.034
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 75.8%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC1 ≤ 1.975
gini = 0.014

samples = 12.5%
value = [0.0, 0.0, 0.007, 0.993]

class = abnormal

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 12.4%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormalgini = 0.0

samples = 0.0%
value = [0.0, 1.0, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ -1.639
gini = 0.272

samples = 0.3%
value = [0.011, 0.044, 0.099, 0.846]

class = abnormal

PC1 ≤ 2.06
gini = 0.415

samples = 0.3%
value = [0.019, 0.019, 0.728, 0.233]

class = mild

PC1 ≤ -2.577
gini = 0.521

samples = 0.0%
value = [0.077, 0.308, 0.615, 0.0]

class = mild

PC1 ≤ 0.475
gini = 0.025

samples = 0.2%
value = [0.0, 0.0, 0.013, 0.987]

class = abnormal

PC2 ≤ 0.312
gini = 0.32

samples = 0.0%
value = [0.2, 0.8, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.2%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC2 ≤ 0.323
gini = 0.375

samples = 0.0%
value = [0.0, 0.0, 0.25, 0.75]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.2%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 3.35
gini = 0.464

samples = 0.1%
value = [0.059, 0.059, 0.176, 0.706]

class = abnormal

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC1 ≤ 3.952
gini = 0.56

samples = 0.0%
value = [0.2, 0.2, 0.6, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 4.663
gini = 0.5

samples = 0.0%
value = [0.5, 0.5, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC2 ≤ 1.778
gini = 0.568

samples = 4.2%
value = [0.052, 0.583, 0.29, 0.074]

class = noise

PC2 ≤ 4.032
gini = 0.148

samples = 1.2%
value = [0.919, 0.081, 0.0, 0.0]

class = normal

PC1 ≤ 0.951
gini = 0.584

samples = 2.1%
value = [0.004, 0.289, 0.556, 0.151]

class = mild

PC1 ≤ 2.34
gini = 0.232

samples = 2.1%
value = [0.099, 0.87, 0.031, 0.0]

class = noise

PC1 ≤ -2.313
gini = 0.491

samples = 1.2%
value = [0.002, 0.106, 0.67, 0.222]

class = mild

PC2 ≤ 1.162
gini = 0.537

samples = 0.9%
value = [0.007, 0.556, 0.391, 0.047]

class = noise

PC1 ≤ -4.55
gini = 0.061

samples = 0.1%
value = [0.031, 0.969, 0.0, 0.0]

class = noise

PC2 ≤ 0.903
gini = 0.418

samples = 1.1%
value = [0.0, 0.037, 0.723, 0.239]

class = mild

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 0.243
gini = 0.497

samples = 0.5%
value = [0.0, 0.0, 0.462, 0.538]

class = abnormal

PC1 ≤ 0.818
gini = 0.191

samples = 0.7%
value = [0.0, 0.062, 0.896, 0.041]

class = mild

PC1 ≤ -1.263
gini = 0.322

samples = 0.3%
value = [0.0, 0.0, 0.202, 0.798]

class = abnormal

PC2 ≤ 0.448
gini = 0.101

samples = 0.2%
value = [0.0, 0.0, 0.946, 0.054]

class = mild

PC1 ≤ -1.486
gini = 0.219

samples = 0.1%
value = [0.0, 0.0, 0.875, 0.125]

class = mild

gini = 0.0
samples = 0.2%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ 0.649
gini = 0.5

samples = 0.0%
value = [0.0, 0.0, 0.5, 0.5]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 0.61
gini = 0.444

samples = 0.0%
value = [0.0, 0.0, 0.333, 0.667]

class = abnormal

PC1 ≤ 0.329
gini = 0.037

samples = 0.2%
value = [0.0, 0.0, 0.981, 0.019]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ 0.648
gini = 0.444

samples = 0.0%
value = [0.0, 0.0, 0.667, 0.333]

class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ -1.969
gini = 0.155

samples = 0.7%
value = [0.0, 0.039, 0.917, 0.043]

class = mild

PC2 ≤ 1.388
gini = 0.496

samples = 0.0%
value = [0.0, 0.545, 0.455, 0.0]

class = noise

PC2 ≤ 1.273
gini = 0.375

samples = 0.0%
value = [0.0, 0.75, 0.25, 0.0]

class = noise

PC2 ≤ 1.07
gini = 0.134

samples = 0.6%
value = [0.0, 0.027, 0.929, 0.044]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ -0.081
gini = 0.343

samples = 0.1%
value = [0.0, 0.0, 0.78, 0.22]

class = mild

PC2 ≤ 1.717
gini = 0.073

samples = 0.5%
value = [0.0, 0.032, 0.962, 0.005]

class = mild

PC1 ≤ -0.87
gini = 0.495

samples = 0.1%
value = [0.0, 0.0, 0.55, 0.45]

class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

PC1 ≤ -1.825
gini = 0.035

samples = 0.5%
value = [0.0, 0.012, 0.982, 0.006]

class = mild

PC1 ≤ -1.542
gini = 0.375

samples = 0.0%
value = [0.0, 0.25, 0.75, 0.0]

class = mild

PC1 ≤ -1.875
gini = 0.32

samples = 0.0%
value = [0.0, 0.2, 0.8, 0.0]

class = mild

PC1 ≤ 0.737
gini = 0.024

samples = 0.5%
value = [0.0, 0.006, 0.988, 0.006]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 1.104
gini = 0.013

samples = 0.5%
value = [0.0, 0.0, 0.994, 0.006]

class = mild

PC1 ≤ 0.756
gini = 0.278

samples = 0.0%
value = [0.0, 0.167, 0.833, 0.0]

class = mild

PC2 ≤ 1.094
gini = 0.219

samples = 0.0%
value = [0.0, 0.0, 0.875, 0.125]

class = mild

gini = 0.0
samples = 0.4%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 0.457
gini = 0.245

samples = 0.0%
value = [0.0, 0.143, 0.857, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 1.692
gini = 0.519

samples = 0.5%
value = [0.006, 0.29, 0.625, 0.08]

class = mild

PC1 ≤ 4.826
gini = 0.11

samples = 0.3%
value = [0.008, 0.942, 0.05, 0.0]

class = noise

PC1 ≤ 1.299
gini = 0.5

samples = 0.2%
value = [0.0, 0.486, 0.514, 0.0]

class = mild

PC1 ≤ 3.755
gini = 0.461

samples = 0.3%
value = [0.01, 0.147, 0.706, 0.137]

class = mild

PC2 ≤ 1.041
gini = 0.224

samples = 0.1%
value = [0.0, 0.128, 0.872, 0.0]

class = mild

PC2 ≤ 0.581
gini = 0.202

samples = 0.1%
value = [0.0, 0.886, 0.114, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 1.157
gini = 0.469

samples = 0.0%
value = [0.0, 0.625, 0.375, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 0.509
gini = 0.444

samples = 0.0%
value = [0.0, 0.333, 0.667, 0.0]

class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 0.438
gini = 0.444

samples = 0.0%
value = [0.0, 0.667, 0.333, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 0.705
gini = 0.372

samples = 0.3%
value = [0.0, 0.075, 0.774, 0.151]

class = mild

PC1 ≤ 4.903
gini = 0.198

samples = 0.0%
value = [0.111, 0.889, 0.0, 0.0]

class = noise

PC1 ≤ 2.178
gini = 0.47

samples = 0.1%
value = [0.0, 0.0, 0.622, 0.378]

class = mild

PC1 ≤ 1.99
gini = 0.219

samples = 0.2%
value = [0.0, 0.125, 0.875, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 3.124
gini = 0.476

samples = 0.1%
value = [0.0, 0.0, 0.391, 0.609]

class = abnormal

PC1 ≤ 2.303
gini = 0.124

samples = 0.0%
value = [0.0, 0.0, 0.067, 0.933]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ 0.589
gini = 0.444

samples = 0.0%
value = [0.0, 0.0, 0.333, 0.667]

class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 0.0, 1.0]
class = abnormal

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ 0.999
gini = 0.49

samples = 0.0%
value = [0.0, 0.429, 0.571, 0.0]

class = mild

PC1 ≤ 3.502
gini = 0.046

samples = 0.1%
value = [0.0, 0.024, 0.976, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC1 ≤ 3.657
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC2 ≤ 1.282
gini = 0.095

samples = 0.3%
value = [0.0, 0.95, 0.05, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 2.412
gini = 0.284

samples = 0.1%
value = [0.0, 0.829, 0.171, 0.0]

class = noise

gini = 0.0
samples = 0.2%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 1.053
gini = 0.069

samples = 0.1%
value = [0.0, 0.964, 0.036, 0.0]

class = noise

PC1 ≤ 3.403
gini = 0.408

samples = 0.0%
value = [0.0, 0.286, 0.714, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ -3.288
gini = 0.131

samples = 1.9%
value = [0.035, 0.931, 0.035, 0.0]

class = noise

PC2 ≤ 2.503
gini = 0.474

samples = 0.2%
value = [0.614, 0.386, 0.0, 0.0]

class = normal

PC2 ≤ 2.568
gini = 0.346

samples = 0.0%
value = [0.778, 0.222, 0.0, 0.0]

class = normal

PC2 ≤ 1.913
gini = 0.114

samples = 1.9%
value = [0.024, 0.94, 0.035, 0.0]

class = noise

PC1 ≤ -3.983
gini = 0.48

samples = 0.0%
value = [0.6, 0.4, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 0.296
gini = 0.44

samples = 0.2%
value = [0.0, 0.673, 0.327, 0.0]

class = noise

PC2 ≤ 3.57
gini = 0.068

samples = 1.7%
value = [0.027, 0.965, 0.008, 0.0]

class = noise

PC1 ≤ -1.454
gini = 0.459

samples = 0.1%
value = [0.0, 0.357, 0.643, 0.0]

class = mild

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 1.895
gini = 0.18

samples = 0.1%
value = [0.0, 0.1, 0.9, 0.0]

class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

PC2 ≤ 1.909
gini = 0.444

samples = 0.0%
value = [0.0, 0.333, 0.667, 0.0]

class = mild

PC1 ≤ -0.906
gini = 0.444

samples = 0.0%
value = [0.0, 0.667, 0.333, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 1.906
gini = 0.5

samples = 0.0%
value = [0.0, 0.5, 0.5, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 2.01
gini = 0.038

samples = 1.6%
value = [0.011, 0.98, 0.009, 0.0]

class = noise

PC1 ≤ 1.227
gini = 0.401

samples = 0.1%
value = [0.278, 0.722, 0.0, 0.0]

class = noise

PC2 ≤ 1.989
gini = 0.026

samples = 1.5%
value = [0.004, 0.987, 0.009, 0.0]

class = noise

PC2 ≤ 2.932
gini = 0.245

samples = 0.1%
value = [0.143, 0.857, 0.0, 0.0]

class = noise

PC1 ≤ -0.089
gini = 0.229

samples = 0.1%
value = [0.0, 0.868, 0.132, 0.0]

class = noise

PC1 ≤ 1.616
gini = 0.008

samples = 1.4%
value = [0.004, 0.996, 0.0, 0.0]

class = noise

PC1 ≤ -1.076
gini = 0.486

samples = 0.0%
value = [0.0, 0.583, 0.417, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 0.0, 1.0, 0.0]
class = mild

gini = 0.0
samples = 1.3%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 3.353
gini = 0.1

samples = 0.1%
value = [0.053, 0.947, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ -2.133
gini = 0.071

samples = 0.1%
value = [0.037, 0.963, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ -2.365
gini = 0.5

samples = 0.0%
value = [0.5, 0.5, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 4.262
gini = 0.278

samples = 0.1%
value = [0.167, 0.833, 0.0, 0.0]

class = noise

PC2 ≤ 2.63
gini = 0.081

samples = 0.1%
value = [0.957, 0.043, 0.0, 0.0]

class = normal

PC2 ≤ 2.387
gini = 0.117

samples = 0.1%
value = [0.062, 0.938, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC1 ≤ 3.498
gini = 0.5

samples = 0.0%
value = [0.5, 0.5, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 2.788
gini = 0.48

samples = 0.0%
value = [0.6, 0.4, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ 0.708
gini = 0.476

samples = 0.2%
value = [0.609, 0.391, 0.0, 0.0]

class = normal

gini = 0.0
samples = 1.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC1 ≤ -1.773
gini = 0.357

samples = 0.1%
value = [0.233, 0.767, 0.0, 0.0]

class = noise

PC2 ≤ 3.718
gini = 0.044

samples = 0.1%
value = [0.977, 0.023, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

PC2 ≤ 4.024
gini = 0.057

samples = 0.1%
value = [0.029, 0.971, 0.0, 0.0]

class = noise

gini = 0.0
samples = 0.1%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

PC2 ≤ 4.027
gini = 0.5

samples = 0.0%
value = [0.5, 0.5, 0.0, 0.0]

class = normal

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noisePC1 ≤ 1.324

gini = 0.32
samples = 0.0%

value = [0.8, 0.2, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.1%

value = [1.0, 0.0, 0.0, 0.0]
class = normal

gini = 0.0
samples = 0.0%

value = [0.0, 1.0, 0.0, 0.0]
class = noise

gini = 0.0
samples = 0.0%

value = [1.0, 0.0, 0.0, 0.0]
class = normal
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APPENDIX

B
PROBLEM MODELING IN PDDL

Source code 6 – Domain Code

1: ( d e f i n e ( domain h a r p i a )
2:
3: ( : requ irement s : t y p i n g : s t r i p s

: d i s j u n c t i v e − p r e c o n d i t i o n s : e q u a l i t y )
4:
5: ( : t y p e s
6: r e g i o n − o b j e c t
7: ba se − r e g i o n )
8:
9:

10:
11: ( : f u n c t i o n s
12:
13:
14: ; ; V a r i a v e l q c o n t r o l a b a t e r i a em porcen tagem

15: ( b a t t e r y − a m o u n t )
16: ; ; q u a n t i d a d e de insumo

17: ( inpu t−amoun t )
18: ; ; v e l o c i d a d e de c a r r e g a r a b a t e r i a em porcen tagem por

segundos

19: ( r e c h a r g e − r a t e − b a t t e r y )
20: ; ; v e l o c i d a d e de d e s c a r r e g a r a b a t e r i a

21: ( d i s c h a r g e − r a t e − b a t t e r y )
22: ; ; c a p a c i d a d e maxima b a t e r i a

23: ( b a t t e r y − c a p a c i t y )
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24: ; ; c a p a c i d a d e maxima de insumo

25: ( i n p u t − c a p a c i t y )
26: ; ; v e l o c i d a d e de r e a b a s t e c e r o insumo

27: ( r e c h a r g e − r a t e − i n p u t )
28: ; ; d i s t a n c i a e n t r e r e g i o e s em m e t r os

29: ( d i s t a n c e ? f r o m − r e g i o n − r e g i o n ? t o − r e g i o n − r e g i o n )
30: ; ; v e l o c i d a d e em m/ s

31: ( v e l o c i t y )
32: ( p i c t u r e − p a t h − l e n ? r e g i o n − r e g i o n )
33: ( p u l v e r i z e − p a t h − l e n ? r e g i o n − r e g i o n )
34: ( t o t a l − g o a l s )
35: ( g o a l s − a c h i v e d )
36: ( m i s s i o n − l e n g t h )
37:
38: )
39:
40: ( : p r e d i c a t e s
41:
42: ( b e e n − a t ? r e g i o n − r e g i o n )
43: ; ; s e e s t a carregando um insumo

44: ( c a r r y )
45: ; ; e s t a em uma r e g i a o

46: ( a t ? r e g i o n − r e g i o n )
47: ; ; s e pode p u l v e r i z a r

48: ( c a n − s p r a y )
49: ; ; s e pode c a r r e g a r / d e s c a r r e g a r

50: ( c a n − r e c h a r g e )
51: ; s e j á t i r o u a f o t o

52: ( t aken−image ? r e g i o n − r e g i o n )
53: ; s e p u l v e r i z o u

54: ( p u l v e r i z e d ? r e g i o n − r e g i o n )
55: ; ( canGo )

56: ( c a n − t a k e − p i c )
57: ( i t s − n o t − b a s e ? r e g i o n − r e g i o n )
58: ( p u l v e r i z e − g o a l ? r e g i o n − r e g i o n )
59: ( p i c t u r e − g o a l ? r e g i o n − r e g i o n )
60: ( hw−ready ? from − r e g i o n ? t o − r e g i o n )
61:
62: ; ( can−go−to−base )
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63: ; ( h a s − p u l v e r i z e − g o a l )

64: ; ( h a s − p i c t u r e − g o a l )

65: ; ( at−move )

66:
67: )
68:
69:
70: ( : a c t i o n go_ to
71: :parameters (
72: ? f r o m − r e g i o n − r e g i o n
73: ? t o − r e g i o n − r e g i o n )
74: : p r e c o n d i t i o n ( and
75: ( a t ? f r o m − r e g i o n )
76: ( > ( b a t t e r y − a m o u n t ) (+ (* ( / ( d i s t a n c e ? f r o m − r e g i o n

? t o − r e g i o n ) ( v e l o c i t y ) ) ( d i s c h a r g e − r a t e − b a t t e r y ) ) 15) )
77: )
78: : e f f e c t ( and
79: ( not ( a t ? f r o m − r e g i o n ) )
80: ( b e e n − a t ? t o − r e g i o n )
81: ( a t ? t o − r e g i o n )
82: ( d e c r e a s e ( b a t t e r y − a m o u n t )
83: (*
84: ( /
85: ( d i s t a n c e ? f r o m − r e g i o n ? t o − r e g i o n

)
86: ( v e l o c i t y )
87: )
88: ( d i s c h a r g e − r a t e − b a t t e r y )
89: )
90:
91: )
92: ( i n c r e a s e ( m i s s i o n − l e n g t h ) ( d i s t a n c e ?

f r o m − r e g i o n ? t o − r e g i o n ) )
93: )
94: )
95:
96: ( : a c t i o n t a k e _ i m a g e
97: :parameters (
98: ? r e g i o n − r e g i o n
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99: )
100: : p r e c o n d i t i o n ( and
101: ( a t ? r e g i o n )
102: ( p i c t u r e − g o a l ? r e g i o n )
103: ( > ( b a t t e r y − a m o u n t )
104: (*
105: ( /
106: 1000
107: ( v e l o c i t y )
108: )
109: ( d i s c h a r g e − r a t e − b a t t e r y )
110: )
111: )
112: )
113: : e f f e c t ( and
114: ( t aken−image ? r e g i o n )
115: ( i n c r e a s e ( m i s s i o n − l e n g t h ) 1000)
116: ( d e c r e a s e ( b a t t e r y − a m o u n t )
117: (*
118: ( /
119: 1000
120: ( v e l o c i t y )
121: )
122: ( d i s c h a r g e − r a t e − b a t t e r y )
123: )
124: )
125: )
126: )
127: ( : a c t i o n p u l v e r i z e _ r e g i o n
128: :parameters (
129: ? r e g i o n − r e g i o n )
130: : p r e c o n d i t i o n ( and
131: ( a t ? r e g i o n )
132: ( p u l v e r i z e − g o a l ? r e g i o n )
133: ( > ( inpu t−amoun t ) 0 )
134: ( > ( b a t t e r y − a m o u n t )
135: (*
136: ( /
137: 314
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138: ( v e l o c i t y )
139: )
140: ( d i s c h a r g e − r a t e − b a t t e r y )
141: )
142: )
143: )
144: : e f f e c t ( and
145: ( p u l v e r i z e d ? r e g i o n )
146: ( i n c r e a s e ( m i s s i o n − l e n g t h ) 314)
147: ( d e c r e a s e ( i npu t−amoun t ) 1 )
148: ( d e c r e a s e ( b a t t e r y − a m o u n t )
149: (*
150: ( /
151: 314
152: ( v e l o c i t y )
153: )
154: ( d i s c h a r g e − r a t e − b a t t e r y )
155: )
156: )
157: )
158: )
159: ( : a c t i o n r e c h a r g e _ b a t t e r y
160: :parameters ( ? ba se − base )
161: : p r e c o n d i t i o n ( and
162: ( a t ? base )
163: ; (< ( b a t t e r y − a m o u n t ) 60)

164: )
165: : e f f e c t
166: ( and
167: ( a s s i g n ( b a t t e r y − a m o u n t ) ( b a t t e r y − c a p a c i t y ) )
168: )
169: )
170:
171: ( : a c t i o n r e c h a r g e _ i n p u t
172: :parameters ( ? ba se − base )
173: : p r e c o n d i t i o n ( and
174: ( a t ? base )
175: ( < ( inpu t−amoun t ) ( / ( i n p u t − c a p a c i t y ) 2 ) )
176: )
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177: : e f f e c t
178: ( and
179: ( a s s i g n ( i npu t−amoun t ) ( i n p u t − c a p a c i t y ) )
180: )
181: )
182: )

Source code 7 – Example of Problem Code

1: ( d e f i n e ( problem t a s k )
2: ( :domain h a r p i a )
3: ( : o b j e c t s
4: r e g i o n _ 1 r e g i o n _ 2 r e g i o n _ 3 r e g i o n _ 4 r e g i o n _ 5 r e g i o n _ 6

r e g i o n _ 7 r e g i o n _ 8 r e g i o n _ 9 r e g i o n _ 1 0 r e g i o n _ 1 1 r e g i o n _ 1 2 −
r e g i o n

5: base_1 base_2 base_3 base_4 − base
6: )
7: ( : i n i t
8: ( b e e n − a t r e g i o n _ 2 )
9: ( b e e n − a t r e g i o n _ 3 )

10:
11:
12: ( a t r e g i o n _ 3 )
13:
14:
15:
16: ( t aken−image r e g i o n _ 2 )
17:
18:
19:
20:
21:
22: ( p i c t u r e − g o a l r e g i o n _ 2 )
23: ( p i c t u r e − g o a l r e g i o n _ 3 )
24: ( p i c t u r e − g o a l r e g i o n _ 1 )
25:
26:
27: (= ( b a t t e r y − a m o u n t ) 79)
28:
29: (= ( inpu t−amoun t ) 0 )
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30:
31:
32: (= ( d i s c h a r g e − r a t e − b a t t e r y ) 0 . 0 4 2 )
33:
34: (= ( b a t t e r y − c a p a c i t y ) 100)
35:
36: (= ( i n p u t − c a p a c i t y ) 3 )
37:
38:
39: (= ( d i s t a n c e r e g i o n _ 2 r e g i o n _ 3 ) 1 3 5 2 . 2 5 )
40: (= ( d i s t a n c e r e g i o n _ 2 base_1 ) 1 8 3 5 . 5 9 )
41: (= ( d i s t a n c e r e g i o n _ 2 base_2 ) 1 8 7 0 . 2 6 )
42: (= ( d i s t a n c e r e g i o n _ 2 base_3 ) 2 2 9 2 . 6 6 )
43: (= ( d i s t a n c e r e g i o n _ 2 base_4 ) 1 0 4 3 . 4 2 )
44: (= ( d i s t a n c e r e g i o n _ 3 r e g i o n _ 2 ) 1 3 5 2 . 2 5 )
45: (= ( d i s t a n c e r e g i o n _ 3 base_1 ) 2 7 7 5 . 4 2 )
46: (= ( d i s t a n c e r e g i o n _ 3 base_2 ) 1 1 2 3 . 6 7 )
47: (= ( d i s t a n c e r e g i o n _ 3 base_3 ) 3 2 4 1 . 3 8 )
48: (= ( d i s t a n c e r e g i o n _ 3 base_4 ) 8 2 1 . 2 3 9 )
49: (= ( d i s t a n c e base_1 r e g i o n _ 2 ) 1 8 3 5 . 5 9 )
50: (= ( d i s t a n c e base_1 r e g i o n _ 3 ) 2 7 7 5 . 4 2 )
51: (= ( d i s t a n c e base_1 base_2 ) 2 4 7 4 . 1 2 )
52: (= ( d i s t a n c e base_1 base_3 ) 3 5 1 3 . 1 1 )
53: (= ( d i s t a n c e base_1 base_4 ) 2 8 2 8 . 6 7 )
54: (= ( d i s t a n c e base_2 r e g i o n _ 2 ) 1 8 7 0 . 2 6 )
55: (= ( d i s t a n c e base_2 r e g i o n _ 3 ) 1 1 2 3 . 6 7 )
56: (= ( d i s t a n c e base_2 base_1 ) 2 4 7 4 . 1 2 )
57: (= ( d i s t a n c e base_2 base_3 ) 4 1 0 0 . 5 5 )
58: (= ( d i s t a n c e base_2 base_4 ) 1 8 7 2 . 0 6 )
59: (= ( d i s t a n c e base_3 r e g i o n _ 2 ) 2 2 9 2 . 6 6 )
60: (= ( d i s t a n c e base_3 r e g i o n _ 3 ) 3 2 4 1 . 3 8 )
61: (= ( d i s t a n c e base_3 base_1 ) 3 5 1 3 . 1 1 )
62: (= ( d i s t a n c e base_3 base_2 ) 4 1 0 0 . 5 5 )
63: (= ( d i s t a n c e base_3 base_4 ) 2454)
64: (= ( d i s t a n c e base_4 r e g i o n _ 2 ) 1 0 4 3 . 4 2 )
65: (= ( d i s t a n c e base_4 r e g i o n _ 3 ) 8 2 1 . 2 3 9 )
66: (= ( d i s t a n c e base_4 base_1 ) 2 8 2 8 . 6 7 )
67: (= ( d i s t a n c e base_4 base_2 ) 1 8 7 2 . 0 6 )
68: (= ( d i s t a n c e base_4 base_3 ) 2454)
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69: (= ( d i s t a n c e r e g i o n _ 1 r e g i o n _ 2 ) 2 6 5 9 . 3 1 )
70: (= ( d i s t a n c e r e g i o n _ 1 r e g i o n _ 3 ) 2 4 7 4 . 4 8 )
71: (= ( d i s t a n c e r e g i o n _ 1 base_1 ) 2 1 3 7 . 4 8 )
72: (= ( d i s t a n c e r e g i o n _ 1 base_2 ) 1 4 2 1 . 3 9 )
73: (= ( d i s t a n c e r e g i o n _ 1 base_3 ) 4 9 3 0 . 2 1 )
74: (= ( d i s t a n c e r e g i o n _ 1 base_4 ) 3 0 9 2 . 5 6 )
75: (= ( d i s t a n c e r e g i o n _ 2 r e g i o n _ 1 ) 2 6 5 9 . 3 1 )
76: (= ( d i s t a n c e r e g i o n _ 3 r e g i o n _ 1 ) 2 4 7 4 . 4 8 )
77: (= ( d i s t a n c e base_1 r e g i o n _ 1 ) 2 1 3 7 . 4 8 )
78: (= ( d i s t a n c e base_2 r e g i o n _ 1 ) 1 4 2 1 . 3 9 )
79: (= ( d i s t a n c e base_3 r e g i o n _ 1 ) 4 9 3 0 . 2 1 )
80: (= ( d i s t a n c e base_4 r e g i o n _ 1 ) 3 0 9 2 . 5 6 )
81:
82: (= ( v e l o c i t y ) 3 . 5 )
83:
84: (= ( p i c t u r e − p a t h − l e n r e g i o n _ 1 ) 1000)
85:
86:
87:
88:
89: (= ( m i s s i o n − l e n g t h ) 0 )
90:
91: )
92: ( : g o a l ( and
93: ( t aken−image r e g i o n _ 3 )
94: ( a t base_1 )
95: ( t aken−image r e g i o n _ 1 )
96: ) )
97: ( : m e t r i c minimize ( m i s s i o n − l e n g t h ) )
98: )
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