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RESUMO

JUSTO, V. H. S. Um algoritmo de deformação de trajetória para veículos inteligentes.
2023. 93 p. Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2023.

Veículos autônomos exigem algoritmos de planejamento robustos para calcular a sequência de
movimentos de um ponto de partida a um objetivo final, considerando as restrições do ambiente.
É desafiador garantir manobras seguras em todos os cenários de tráfego possíveis e o módulo de
planejamento de movimento recalcula as trajetórias inicialmente planejadas quantas vezes forem
necessárias para resolver essas situações complexas. No entanto, o custo computacional aumenta
quando o processo de planejamento é repetido muitas vezes para a mesma tarefa e as soluções
atuais não permitem vincular as preferências do usuário ao comportamento de movimento
do veículo. Uma alternativa é gerar novas trajetórias com base em trajetórias planejadas já
disponíveis. Propomos um algoritmo que leva em conta fórmulas de Lógica Temporal de Sinal
(STL) que representam as restrições impostas pelo usuário para modificar trajetórias inválidas
e orientar o planejamento do movimento a respeitar requisitos de segurança como distância
mínima a obstáculos estáticos ou entre veículos. Usamos um planejador baseado em reticulados
para gerar caminhos candidatos e incluímos um recurso de multi-resolução para gerar quantos
reticulados forem necessários dependendo do contexto. Então, o valor de robustez STL quantifica
o nível de respeito que os caminhos iniciais têm pelas especificações STL e ativa o processo
de reparo que gera novos reticulados com base no caminho inicial selecionado. A medida de
robustez também define uma nova resolução para gerar reticulados e influencia a função custo
para garantir a seleção do caminho que mais respeita as fórmulas STL. A versão deformada do
reticulado inicial é usada para gerar a trajetória para um horizonte de planejamento especificado
usando uma abordagem de simulação. O custo computacional da estratégia de reparo proposta é
menor do que recalcular a trajetória completa do zero e é especialmente conveniente quando não
há muitas violações de regras próximas à região do objetivo.

Avaliamos nossa abordagem usando as ferramentas automotivas do simulador de robôs Webots
considerando diferentes cenários de tráfego envolvendo desvio de obstáculos. A eficiência do
nosso método é demonstrada comparando trajetórias usando restrições STL com trajetórias que
não consideram regras STL.

Palavras-chave: Veículos Autônomos, Planejamento de Movimentos, Reparação de Trajetórias.





ABSTRACT

JUSTO, V. H. S. A trajectory deformation algorithm for intelligent vehicles. 2023. 93 p.
Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2023.

Autonomous vehicles require robust planning algorithms to compute the sequence of movements
from a starting point to an ending goal while considering the constraints in the environment. It is
challenging to ensure safety maneuvers in all possible traffic scenarios and the motion planning
module recalculates initially-planned trajectories as many times as necessary to resolve those
complex situations. However, the computational cost rises up when the planning process is
repeated many times for the same task and current solutions do not allow to link user preferences
to the vehicle’s motion behavior. An alternative is to generate new trajectories based on planned
trajectories already available. We propose an algorithm that takes into account Signal Temporal
Logic (STL) formulas that represent the constraints imposed by the user in order to modify
invalid trajectories and guide the motion planning into respecting safety requirements such as
the minimum distance to static obstacles or between vehicles. We use a lattice-based planner to
generate candidate paths and include a multi-resolution feature to generate as many lattices as
it is necessary depending on the context. Then, the STL robustness value quantifies the level
of respect that initial paths have for STL specifications and activates the repairing process that
generates new lattices based on the initial selected path. The robustness measure also defines
a new resolution to generate lattices and influences the cost function to ensure the selection of
the path that has more respect for the STL formulas. The deformed version of the initial lattice
is used to generate the trajectory for a specified planning horizon using a simulation approach.
The computational cost of the proposed repairing strategy is less than recalculating the complete
trajectory from scratch and it is specially convenient when there are not many rule violations
near the goal region.

We evaluate our approach using the automobile tools of the robot simulator Webots considering
different traffic scenarios involving obstacle avoidance. The efficiency of our method is demon-
strated by comparing trajectories using STL constraints with trajectories that do not consider
STL rules.

Keywords: Autonomous Vehicles, Motion Planning, Trajectory Repairing.
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CHAPTER

1
INTRODUCTION

1.1 Motivation

Driverless technology has been the focus of extensive research efforts by industry and
academy because it has the potential to change the paradigm of mobility as a service. Different
platforms promise to take on-road action the next years such as delivery robots, single passenger
self-driving cars, and heavy-duty autonomous trucks. However, further research is necessary
to improve the navigation stack (perception, prediction, planning, and control) to get safety
guarantees for fully autonomous driving.

The motion planning process is usually conceived as a hierarchical structure that provides
solutions to sub-problems such as global planning, behavioral planning, and local planning.
Typical approaches deal with the motion planning problem decomposing it into two sub-problems:
behavior planning, and trajectory planning (PADEN et al., 2016). However, decomposition
approaches present some drawbacks as mentioned by McNaughton et al. (2011), the behavior
planning depends on a flawed model of the underlying trajectory planning that leads to unstable
or infeasible trajectory optimization. Moreover, Sadat et al. (2019) points out that behavior and
trajectory planners independently optimize different objective functions, so modifications in any
of the functions requires to repeat the tuning or designing process of the objective function for
the trajectory planner.

A lattice planner is a sampling-based method that solves the aforementioned issues by
coupling the behavior and trajectory planning sub-problems using a discrete temporal space rep-
resentation to find the optimal trajectory through graph search (SUN et al., 2020a). It generates
multiple dynamically-feasible motions for a variety of traffic situations. The performance of
each trajectory and the user preferences can be used to select the best option among all the trajec-
tories available (TABOADA, 2020). However, this planning method focuses on the reachability
problem of computing a trajectory to the goal region. In general, sampling-based algorithms (e.g.
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Probabilistic Road Map (PRM), Rapidly-exploring Random Tree (RRT), Lattice-based) were not
designed to account for high-level specifications provided by formal models such as temporal
logic (PLAKU; KARAMAN, 2016).

Temporal Logic (TL) is a formalism to specify the relative order of events that represent
the properties of time-dependent systems (BAIER; KATOEN, 2008). Temporal Logic is used in
motion planning to describe temporal and/or spacial constraints in the trajectories of robots. For
instance, it can specify the importance, frequency, and time of a task execution using multiple
operators (TABOADA, 2020). Linear Temporal Logic (LTL) is a variant of temporal logic
used for program specification and verification in software engineering (SINGH, 2020). Signal
Temporal Logic (STL) is an extension of LTL that includes real-time and real-valued properties
in its formulation, and it is used for many continuous and hybrid systems such as autonomous
vehicles.

STL translates user preferences into formulas that represent time and space restrictions
related to actions of the robot in the environment. Moreover, a robustness value quantifies
either the satisfaction or violation of STL formulas. The notion of robustness associated to STL
constrains is useful to determine situations that accept certain level of rule violation (TABOADA,
2020). For instance, STL constraints can define the minimum distance that a robot should keep
from obstacles (BARBOSA et al., 2019), so a negative robustness value signals a violation of
the STL constraint, while a positive value means that the STL formula is satisfied.

Autonomous driving applications require robust algorithms to plan motion in tight,
confined environments while eliminating the possibility of collisions with either static or dynamic
obstacles (MANGETTE; TOKEKAR, 2020). Urban traffic structures and rules constrain vehicles
to a narrow set of paths that may not completely satisfy user preferences. (TABOADA, 2020).
Moreover, it is difficult to ensure safety because the planned trajectories do not consider all
traffic rules or they are physically infeasible. Replanning the complete trajectory is not the best
alternative due to the high computational cost involved in the process (LIN; MAIERHOFER;
ALTHOFF, 2021). Therefore, efficient methods to resolve those complex situations are required.

This research work takes into account STL constraints to ensure safety in situations
that involve interactions between the autonomous vehicle and its environment such avoiding
obstacles or other vehicles. In particular, the project aims to develop a method to deform or repair
an initially-planned trajectory so that the modified trajectory is conditioned by STL formulas
that represent the safety constraints imposed by the user, and the associated computational cost
is less than recalculating the complete trajectory from scratch, which is more convenient when
there are not many rule violations near the goal region.
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1.2 Scope
Motion planning algorithms are essential for different applications. For instance, au-

tonomous cars can use centralized motion planners to increase the traffic flow in urban envi-
ronments (MANGETTE; TOKEKAR, 2020). However, many approaches do not offer safety
guarantees because the trajectories do not stick to traffic rules. Moreover, a safe action may not
be available in the remaining time prior to a collision, which is so common in highly dynamic
environments (LIN; MAIERHOFER; ALTHOFF, 2021).

This research project considers an autonomous vehicle operating in a road network
governed by traffic rules. The main focus is on the trajectory deformation or repairing problem
that is about generating a new trajectory based on planned trajectories already available, and
considering STL formulas to include safety requirements such as the minimum distance to static
obstacles or between vehicles. The evaluation of the proposed method is made by comparison
between the performance of trajectories with and without STL specifications.

Specific conditions are set for the evaluation of the proposed solution. This include a
constant nominal velocity (15 m/seg) for the autonomous vehicle and a fixed distance for obstacle
detection (30 m). Additionally, extreme curvature on the road is avoided because this condition
will be treated in future extensions of this research work.

Further assumptions include: ideal sensing capabilities with fixed tolerances to local-
ization tasks, so the vehicle and obstacle boundary obtained are accurate, we also we adopted
an "ideal/perfect" sensor simulation and predefined fixed limits of tolerance - since sensing is
not the main subject in this work; ideal path follower, so the controlling criteria is not part of
the scope of the project; and ideal communication capabilities, so there is not any delay in the
transmission of messages.

1.3 Problem Formulation
The motion planning process for autonomous vehicles involves the minimization of

standardized objectives functions. We define the trajectory deformation problem for autonomous
vehicles based on (ZIEGLER et al., 2014; ALTHOFF; KOSCHI; MANZINGER, 2017; LIN;
MAIERHOFER; ALTHOFF, 2021). Consider X ⊂ Rn as the state space of the possible set of
states x, Xobs ⊂ X as the set of collision states, X f ree = X\Xobs as the resulting set of permissible
states in the free space, and U ⊂ Rm as the set of admissible control inputs u. The motion of the
vehicle can be modeled by a dynamical system as follows.

ẋ = f(x,u) (1.1)

The initial state is denoted as x0, and the set of desired states in the goal region of the
planning problem is denoted as Xgoal ⊂ X f ree. A candidate solution requires the ego vehicle to
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reach a goal region X f ree without causing collisions with obstacles. The occupancy of the vehicle
O(x) must be in the free space X f ree(t) ⊂ R2 for all t ∈ [t0, t f ]. In addition, the vehicle has to obey
constraints g(x,u,t) ≤ 0 such as the speed limit and other traffic rules.

As mentioned by Althoff, Koschi and Manzinger (2017), there are objectives codifying
conditions which are included in the cost function JC with input u, terminal cost ΨC, and running
cost LC.

JC(x,u, t0, t f ) = ΨC +
∫ t f

t0
LCdt (1.2)

Standard cost functions are categorized into Running Costs (LC) based on acceleration,
jerk, steering angle, steering , yaw rate, lane center offset, velocity offset, orientation offset,
distance to obstacles, path length, inverse duration, and Terminal Costs (ΨC) based on time
(ALTHOFF; KOSCHI; MANZINGER, 2017).

To sum up, in the trajectory deformation problem we are interested in solving:

min
u(·)

JC(x,u, t0, t f )

sub ject to

ẋ = f(x,u), O(x) ∈ X f ree,

g(x,u,t) <= 0, x(t0) = x0, x(t f ) = x f (1.3)

1.4 Research Questions

The expected outcome is to visualize the influence of Signal Temporal Logic constraints
in the trajectory repairing process which aims to modify invalid trajectories to avoid replanning
them from scratch. Therefore, this project addresses the following research questions:

• How do STL constraints deform invalid trajectories to ensure safety specifications?

• How is the performance and impact, related to user comfort and computational cost/pro-
cessing time, of deformed trajectories with STL constraints compared to trajectories
planned without STL?

The main goal of this project is to develop an algorithm to deform invalid trajectories
considering safety requirements imposed by the user. The hypothesis is that STL constraints can
be used in the trajectory deformation process to generate safer trajectories using a robustness
value that quantifies the level in which a specified preference is broken. Including additional
safety specifications in the trajectory repairing process should prevent undesirable collisions
with obstacles and between vehicles. In the worst case, the algorithm should generate the least
violating deformed trajectories to ensure a minimum level of safety in the interactions between
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the vehicle and its environment, so the planner manages and resolves potential collision situations
at the local level within the shared space enclosing the conflict.

The main contributions of this work are summarized as follows:

1. We combine STL specifications with a lattice-based motion planner to deform initial
trajectories using spatially constrained candidate paths that respect the preferences imposed
by the user. Moreover, we use the STL robustness metric to develop a multi-resolution
lattice approach that repairs the candidate paths only when it is necessary.

2. We proposed a weighted function to encode user-defined preferences in its parameters.
This function is useful to classify the lattices into different categories according to the risk
level associated to each candidate path.

3. We tested, validated and analysed the results of the proposed algorithm using the automo-
bile tools of the open source robot simulator Webots (MICHEL, 2004). We compare the
performance of deformed trajectories with STL constraints with trajectories that do not
consider STL rules

1.5 Outline
Chapter 2 presents background information including descriptions of motion planning

algorithms, temporal logic concepts and definitions. Chapter 3 presents a discussion of related
research works available up to date. Chapter 4 describes the methodology used to develop a
motion planning algorithm that includes STL specifications to generate trajectories with a safety
component to handle complex situations on the autonomous vehicle’s environment. Chapter 5
present a description of the simulation experiments and a discussion of the main results, and
Chapter 6 presents the conclusions of the research work.
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CHAPTER

2
TECHNICAL BACKGROUND

This chapter presents the main concepts, techniques, and software tools that are used to
develop the project. First, a description of the characteristics and modern methods to solve the
motion planning problem in traffic scenarios is discussed. Second, the elements and techniques
involved in the development of a lattice-based planning algorithm are described. Then, this
chapter presents a contextualization of Signal Temporal Logic including formal definitions and
theorems. Finally, the main software tool to set up autonomous driving experiments in simulation
is presented.

2.1 Motion Planning

Autonomous robots require algorithms to convert high-level specification tasks from
humans into low-level descriptions of how to move. The term motion planning is often used to
describe this kind of problem (LAVALLE, 2006). This problem refers to how to move a robot
from a “start” location to a “goal” location avoiding obstacles. It is sometimes referred to as the
“move from A to B” or the “piano movers problem” (how do you move a complex object like a
piano in an environment with lots of obstacles, like a house) (BULLO; SMITH, 2020)

Motion planning concerns about finding a path and time-related values (velocity, acceler-
ation, linear force, torque) to precisely define the movements of a robot in an environment. In
particular, autonomous vehicles must overcome challenging problems related to motion planning
such as generating dynamically feasible trajectories that account for the behavior of either
surrounding vehicles or pedestrians to avoid collisions, and the robust executions of planned
motions using control techniques (SUN et al., 2020a),(PADEN et al., 2016).

The formulation of the motion planning problem determines the selection of the most
appropriate method. Firstly, the problem formulation is strongly related to the inherited data for
the scene representation, this data could be either discrete or continuous, algebraic or analytic,
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static or dynamic. Thus, the selection of the sensors is essential to implement an efficient
motion planning algorithm. Secondly, motion planning combines unavoidable aspects, such as
state estimation, evolution over time, action planning, criteria optimization, and compliance
with constraints. The outlook of the problem depends on how these aspects are addressed
(CLAUSSMANN et al., 2019).

Claussmann et al. (2019) describe the State-of-the-Art motion planning techniques for
autonomous vehicles as follows:

1. Space Configuration: It is based on the decomposition of the evolution space to handle
motion generation or deformation. It considers geometric aspects, and refers to either a
predictive method with a coarse decomposition or a reactive approach with a finer distribu-
tion. The main challenge is to find the appropriate parameters of the space configuration to
get a good representation of the motion and the environment. For instance, with a coarser
discretization the kinematic constraints may be ignored, while with a finer discretization
the real-time performance may be poor. The main techniques in this group are: Sampling
Points, Connected Cells, and Lattices.

2. Pathfinding Algorithms: It solves combinatorial problems using a graph representation,
which can be either weighted or oriented with sampling points, cells, or maneuvers nodes.
The main goal is to find a path that optimizes a cost function, which in the context of
highway autonomous driving is typically associated to traveled distance, fuel consumption,
and comfort. The graph resolution depends on logic and heuristics, which refers to the
decision function even when they just involve a selection. The main techniques of this
family are: Dijkstra, A∗, RRT, and RRT∗.

3. Attractive and Repulsive Forces: It is a biomimetic-inspired method that solves the
problem in a continuous space representation. Attractive forces represent desired motions
(e.g. legal speed), and repulsive forces represent obstacles (e.g. road borders, lane markings,
obstacles). It provides a reactive behavior to deal with the dynamic environment, and it
does not require explicit space decomposition because the motion of the ego vehicle
depends on resultant vector forces. Parabolic and canonical functions are used as potential
functions. The resolution of the resultant vector is achieved by either the gradient descent
method (vehicle model is not considered) or Newton’s second law (kinematic constraints
are considered). The main techniques in this group are: Artificial Potential Field, Velocity
Vector Field, and Elastic Band.

4. Parametric and Semi-Parametric Curves: It is a suitable option for path planning on
highways for at least two reasons. First, the highway roads are compound by simple
and predefined curves such as lines, circles, and clothoids. Second, a predefined set of
curves is easy to implement. They may take into account the kinematic constraints of the
vehicle, and they are used as a complement to other methods. Geometric considerations are
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usually separated from the dynamic constraints analysis, thus the vehicle requires a long
time reaction in case of a blocking situation. Curve planners are suitable for predictive
approaches and for replanning stages. The main techniques are based on either parametric
curves such as Line and Circles, Clothoids, and Sigmoids, or semi-parametric curves such
as Polynomials, Splines, Béziers.

5. Numerical Optimization: The optimization problem for motion planning is defined as
a solve-algorithm based on logic and heuristic approaches. Optimization involves the
minimization of a cost function in a sequence of states variables under a set of constraints.
In motion planning applications, there are two domain of interest: the first one focuses
on finding efficient algorithms to solve complex problems reducing the computation
time; the second domain focuses on the mathematical perspective of the problem to
deduce properties to derive predictive solutions in a restrictive space. The main methods
are: Linear Programming, Non Linear Programming, Quadratic Programming, Model
Predictive Control, and Dynamic Programming.

6. Artificial Intelligence (AI): These techniques reproduce and simulate the reasoning and
learning of human drivers, so that the autonomous vehicle is able to think and act con-
sistently with the environment, to present a memory structure, and to draw inferences.
AI algorithms are useful for the decision making process, as they are flexible, adaptive,
and reactive to their environment. In addition, AI-based approaches can deal with huge,
incomplete, or inaccurate data, and they answer generic questions and absorb new modifi-
cations without changing the algorithm structure. AI gathers a wide diversity of methods
from logic to cognitive representation. Four techniques can be distinguished: AI Logic
(if-then-rules, Finite State Machine, Dynamic Bayesian), AI Heuristic (Agent, Support Vec-
tor Machines, Evolutionary), AI Approximate (Fuzzy Logic, Artificial Neural Networks,
Belief Network), and AI Cognitive (Risk Estimators, Game Theory).

2.2 Lattice Planner

González et al. (2015) describe the sampling-based method as one alternative to solve
the motion planning problem for automated vehicles. The main idea is to avoid the need of a
explicit representation of the configuration space by conducting a search over it using a sampling
scheme.

A graph searching algorithm uses lattices to represent the planning area. Lattice-based
planning is one of the most successful methods used in motion planning for robots with dif-
ferential constraints. It is based on the discretization of the state space into a lattice (see Fig.
1). Lattice-based motion planners have been extensively used for motion planning in off-road
scenarios with some applications in on-road scenarios (OLIVEIRA, 2019).
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Figure 1 – Left: regular state lattice in an unstructured environment. The five paths are rigidly transformed
to create a graph of feasible actions. Right: state lattice adapted to a structured environment.

Source: McNaughton et al. (2011).

Search Space

The development of the search space is challenging due to the kinematic and dynamic
constraints of the autonomous vehicle. Candidate paths are found using a graph search technique
on a uniformed grid which is a discrete representation of the Cartesian space. These paths are
suitable for robot platforms that are able to drive straight and turn on the spot. However, in
complex systems such as car-like vehicles, the kinodynamic constraints difficult the execution of
the candidate solutions making these approaches inappropriate for the motion planning problem.

Lattice planners consider the motion constraints of the vehicle in the discretization
process, it samples the state space forming a self-repeating tile named lattice (see Fig. 2).

Figure 2 – The state lattice is compound by a repeated and regular pattern of vertices and edges.

Source: Pivtoraiko, Knepper and Kelly (2009).

One approach is to define first a basic set of motion primitives with three possible
motions: turn left, right and drive straight, all in the forward direction, then proceed to apply
them to generate the discrete representation of the vehicle states. Any candidate solution will
result from the combination of these basic motions. Other approach is usually to define first
the discretization of the configuration space, then using steering methods or using numerical
optimization it is possible to compute motion primitives connecting the discretized vehicle states.

The lattice can be represented as a graph G = (V,E) in which vertices V correspond to
vehicle states, and edges E between these vertices represent the motion primitives. In order to
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plan a path it is necessary to compute the shortest segment between the current and goal vehicle
states by finding the sequence of edges with the lowest cumulative cost connecting them. The
standard cost corresponds to the motion primitive length which results in planned motions with
minimum length. It is possible to include curvature cost to get smooth paths. Moreover, including
a direction of motion cost could result in the vehicle preferring to drive forwards instead of
backwards (OLIVEIRA, 2019).

Collision Checking

The planner have to perform collision checking procedures to evaluate if a given vehicle
state (vertex) or a motion primitive (edge) are in collision, if that is the case, those paths should
be removed from the search graph to guarantee collision-free paths.

Collision checking can be done in different ways. The environment can be represented as
an occupancy grid with each cell classified either as obstacle or as free (see Fig. 3). An overlap
between the vehicle occupancy and the obstacle occupancy indicates a collision.

Figure 3 – Collision checking using occupancy grid

Source: Oliveira (2019).

Lattice planners usually compute the path swaths offline, then store and use them online
to reduce the computational cost of the collision checking procedure. A path swath is the
occupancy grid associated to a motion primitive which corresponds to a sequence of states.
There is a trade-off between the fidelity of the discrete representation and the time required for
computing (OLIVEIRA, 2019).

Graph Search Techniques

A solution path is found using a graph search technique. A∗ search (pronounced "A-star
search") is one of the most widely used best-first search algorithm. It drives the search using
the evaluation function f(n) = g(n)+ h(n) which is the estimated cost of the cheapest solution
through n that combines g(n), the cost to reach the node, and h(n), the estimated cost to get from
the node to the goal. A reasonable strategy is to look for the cheapest solution in the node with
the lowest value of g(n)+h(n) provided that the heuristic function h(n) satisfies certain conditions
(NORVIG; RUSSELL, 2016).



34 Chapter 2. Technical Background

Different modifications and extensions to A∗ have been explored to search on graphs.
Anytime Repairing A∗ (ARA∗) was developed for planning under limited computational time,
it uses an "ε" parameter to inflate the value of the heuristic function, thus reducing both the
node expansion and the computational time (LIKHACHEV; GORDON; THRUN, 2003). Time-
Bounded A∗ (TBA∗) is useful for real-time applications, it provides a temporary path solution
that is improved on each planning cycle (BJÖRNSSON; BULITKO; STURTEVANT, 2009). D∗

Lite deals with dynamic environments in which a robot gets new information while traversing
a path, it avoids replanning from scratch by efficiently recomputing shortest paths (KOENIG;
LIKHACHEV, 2002). Other popular algorithm to search on nonconvex, high-dimensional spaces
is the Rapidly-exploring Random Tree (RRT) (LAVALLE et al., 1998), but it is more useful in
non-structured environments.

To sum up this section, in motion planning, a lattice is a generalization of a grid, thus it
is a regular spatial structure. It requires motion primitives that connect all the states of the lattice,
and the states that are feasible compound a graph of feasible maneuvers (see Fig. 4). Lattice
methods are mainly used in predictive planning. The motion described in a lattice representation
implicitly considers the kinematic constraints and spaciotemporal issues. In addition, the lattice
can be computed offline to enable a quick replanning (SUN et al., 2020a). However, further
research is necessary to integrate and to project lattice-based solutions into some critical and
forthcoming issues of motion planning in traffic scenarios, such as cooperation and coordination
of Connected Automated Vehicles, or planning using safety constraints.

Figure 4 – Lattice-based solution for motion planning in highways.

Source: Claussmann et al. (2019).

2.3 Signal Temporal Logic

In the context of intelligent vehicles, constraints are used to ensure safety, road com-
pliance, and the satisfaction of traffic rules. However, autonomous vehicles sometimes need to
violate certain constraints for driving progress, such as crossing lane markings when another
vehicle blocks the current lane. Constraints can be modeled by temporal logic which is a user-
defined set of formulas with conditions to apply constraints to the vehicle’s motion behaviors
with spatial and/or time restrictions (TABOADA, 2020; KARLSSON et al., 2021).

STL is particularly well-suited to model constraints for hybrid systems such as au-
tonomous vehicles that involve continuous dynamics like vehicle states and trajectories as well
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as discrete dynamics, such as phases of a traffic light. STL’s inherent quantitative semantics
allow for quality evaluation of a proposed solution, e.g., how much and how long a trajectory
violates the specification (ARECHIGA, 2019; KARLSSON et al., 2021).

The STL definitions are described in (MALER; NICKOVIC, 2004; FAINEKOS; PAPPAS,
2009; DONZÉ; MALER, 2010; TABOADA, 2020; LEUNG; ARÉCHIGA; PAVONE, 2020) as
follows. Let us consider an STL atomic predicate,

µ =

⊤ ⇐⇒ f(x) ≥ c

⊥ ⇐⇒ f(x) < c,

where x is a time traced signal, f(x) is a real-valued evaluation function that provides an abstrac-
tion of the continuous signal x such that f : Rn → R, and c ∈ R (ARECHIGA, 2019).

Definition 1 (STL Grammar). The basic grammar of STL is defined as follows.

I := (a,b) | (a,b] | [a,b) | [a,b]
φ := True | µ | ¬φ | φ1 ∧φ2 | φ1 ∨φ2 | ♢Iφ | □Iφ | φ1UIφ2,

where µ is a predicate, ¬ is the Boolean negation, ∧ the conjunction operator, and ∨ the disjunc-
tion operator. In addition, ♢ (Eventually), □ (Always) and U (Until) are temporal operators that
have an associated time interval I where 0 ≤ a < b. In order to simplify notation, I is dropped
from the grammar when a = 0, b = ∞.

STL formulas are evaluated over time series data, packaged in a data structure (x, t)
named timed trace by Arechiga (2019). A timed trace s is compound by a sequence of states and
their associated time, s = (x0, t0), . . . ,(xn, tn) where ti−1 < ti and xi ∈ Rn. A value of the trace at
a given time is represented by s(ti) = xi, and the notation si = (s, ti) is used to refer to the tail of
trace s that contains all of the same data s from time ti onwards.

Definition 2 (STL Boolean Semantics). The satisfaction relation (x, t) |= φ defines the satis-
faction of a formula φ by a signal x at time t. Other useful satisfaction relations are defined
recursively as follows.

(x, t) |= f(x) ≥ c ⇐⇒ f(x) ≥ c

(x, t) |= ¬φ ⇐⇒¬((x, t) |= φ)

(x, t) |= φ1 ∧φ2 ⇐⇒ ((x, t) |= φ1)∧ ((x, t) |= φ2)

(x, t) |= φ1 ∨φ2 ⇐⇒ ((x, t) |= φ1)∨ ((x, t) |= φ2)

(x, t) |= ♢Iφ ⇐⇒∃t ′ ∈ I ⊕ t s.t. (x, t ′) |= φ

(x, t) |=□Iφ ⇐⇒∀t ′ ∈ I ⊕ t s.t. (x, t ′) |= φ

(x, t) |= φ1UIφ2 ⇐⇒∃t ′ ∈ I ⊕ t s.t. ((x, t ′) |= φ2)∧ ((x, t ′) |=□[0,t ′]φ1)

Considering a timed trace (s, t) starting at time t, satisfying ♢φ implies that at some time
along the sequence, φ is true at least one time in the trajectory, it is known as the Eventually
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operator. □φ means that the condition φ has to be satisfied every time during the trajectory, it is
known as the Always operator. The Until operator, φ1Uφ2, represents the fact that the condition
φ1 must wait before another event φ2 is fulfilled in the trajectory. It is also possible to combine
operators. For instance, the Always and Eventually operators are used to create new operator
modalities such as Always Eventually or Eventually Always.

Definition 3 (STL Quantitative Semantics). The value of the robustness degree is calculated
recursively as follows.

ρ(x,t,True) = ρmax > 0
ρ(x,t, f(x)≥c) = f(x)− c

ρ(x,t,¬φ) = ¬ρ(x,t,φ)

ρ(x,t,φ1∧φ2) = min(ρ(x,t,φ1),ρ(x,t,φ2))

ρ(x,t,φ1∨φ2) = max(ρ(x,t,φ1),ρ(x,t,φ2))

ρ(x,t,♢Iφ) = max
t ′∈I⊕t

(ρ(x,t ′,φ))

ρ(x,t,□Iφ) = min
t ′∈I⊕t

(ρ(x,t ′,φ))

ρ(x,t,φ1UIφ2) = max
t ′∈I⊕t

(min(ρ(x,t ′,φ2), min
t ′′∈[t,t ′]

(ρ(x,t ′′,φ1))))

The robustness value for strict and non strict inequalities is the same (ARECHIGA,
2019). Moreover, the robustness trace is defined to describe the robustness value of each timed
trace sub-sequence.

Definition 4 (STL Robustness Trace). Let us consider a timed trace (x, t) staring at time t0, and
a STL formula φ . The robustness trace is defined as follows.

ρ(x,t0,φ) = ρ0,ρ1, . . . ,ρn

= ρ(x,t0,φ),ρ(x,t1,φ), . . . ,ρ(x,tn,φ)

= ρ(x0,φ),ρ(x1,φ), . . . ,ρ(xn,φ)

Theorem 1. Considering any x ∈ X and the STL formula φ , if ρ(x,t,φ) < 0 then x does not respect
φ at time t, and if ρ(x,t,φ) > 0 then s satisfies φ at time t. This fact is formalized as follows.

ρ(x,t,φ) > 0 =⇒ (x, t) |= φ

ρ(x,t,φ) < 0 =⇒ (x, t) ̸|= φ
(2.1)

Refer to (MALER; NICKOVIC, 2004; DONZÉ; MALER, 2010) for a proof of Theorem 1.

The robustness metric is the link between the STL rules and their impact on the motion
planning process. The STL robustness value uses real values to represent how much a signal is
violating or respecting the preferences specified by the user.
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2.4 Webots Simulator

Webots1 is an open source and multi-platform desktop application to model, program
and simulate robots, and t is widely used in industry, education and research (see Fig. 5). Webots
was initially developed by Dr. Olivier Michel at the Swiss Federal Institute of Technology
(EPFL) in Lausanne, Switzerland and then by Cyberbotics Ltd. as a proprietary licensed software
(MICHEL, 2004).

Figure 5 – Simulated robots in Webots

(a) PR2 - Willow Garage

Source: Webots (2022).

(b) Khepera III - K-Team Corporation

Source: Webots (2022).

Webots includes models of robots, sensors, actuators and objects. In addition, the user can
build new models from scratch, import them from 3D Computer-Aided Design (CAD) software
and specifies both the graphical (shape, dimensions, position, orientation, colors, texture) and
the physical (mass, friction factor, spring and damping constants) properties of the objects. In
addition, Webots uses the Open Dynamics Engine (ODE) library to simulate physical properties
of objects such as velocity, inertia and friction. It includes the most popular sensor and actuators
used in robotics: lidars, radars, proximity sensors, light sensors, touch sensors, Global Positioning
System (GPS), accelerometers, cameras, emitters and receivers, servo motors, position and force
sensor, Light-Emitting Diode (LED), grippers, gyros, compass, Inertial Measurement Unit (IMU),
etc.

Webots has different tools to develop robotics systems from scratch. The simulated
worlds are stored in *.wbt files which is a cross-platform format based on the Virtual Reality
Modeling Language (VRML). Moreover, it has a simple API to program the robot controllers in
different programming languages including C, C++, Python, Robot Operating System (ROS),
Java and MATLAB. Webots interface allow users to take screenshots, record, and interact with
robots and objects while the simulation is running. Webots can also stream a simulation on web
browsers using WebGL.

1 Webots from Cyberbotics: <https://cyberbotics.com/>

 https://cyberbotics.com/
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Webots is a useful software tool for different fields of study:

• Wheeled and legged robotics.

• Mobile robotics.

• Swarm intelligence and multi-robot systems.

• Autonomous vehicles.

• Artificial life and evolutionary robotics.

• Simulation of adaptive and reactive behaviours

• Modular Robotics.

• Experimental environment for computer vision.

In this project we use the automobile tools of the Webots simulator to create traffic
scenarios to study trajectory repairing for obstacle avoidance maneuvers (see Fig. 6).

Figure 6 – Traffic scenario in Webots.

Source: Webots (2022).

2.5 Final Considerations
This chapter presented the main concepts and techniques to solve the trajectory defor-

mation problem for autonomous vehicles. Different motion planning techniques were briefly
introduced. In particular, the lattice-based planner was pointed out as an attractive alternative to
generate candidate paths. The main characteristics and advantages of the lattice planner over
other planning methods were discussed. The concepts and formal definitions of Signal Tempo-
ral Logic were also described in this chapter. Finally, the robot simulator Webots was briefly
introduced as the main software tool to set up experiments for autonomous driving systems.
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CHAPTER

3
RELATED WORKS

This chapter presents a discussion about relevant works of the motion planing literature
related to trajectory repairing. It also describes research works that have used Temporal Logic
to ensure safety for autonomous driving applications. Finally, it presents the main features of
previous lattice-based implementations and compared them to the proposed planning algorithm.

3.1 Trajectory Repairing

Reactive behaviors need to account for changes in the environment to avoid unexpected
danger. In this context, replanning is necessary, but is hard to decide when and how to modify the
current plan, how to integrate the sensory information into the current world model, or how to
use prior plans to improve future plans. An alternative is to consider prior motion trees because
any deviation from the initial plan during execution only invalidates certain parts of the motion
tree, so that the rest of the trajectory can be used as a reliable guide for future expansions. Thus,
the replanning running time will be reduced as large parts of previous computations are reused.
There is an increased in computation efficiency by locally repairing the initial plan when dealing
with new obstacles (FERGUSON; KALRA; STENTZ, 2006).

The conventional research works on mobile robotics about trajectory deformation do not
include neither the constraints associated to the environment nor the nonholonomic restrictions
of car-like vehicles (LIN; MAIERHOFER; ALTHOFF, 2021). For instance, Ferguson, Kalra
and Stentz (2006) developed the Dynamic Rapidly-exploring Random Trees (DRRT) algorithm
to repair trajectories produced by a RRTs removing just the newly-invalid parts of the tree
and regrows a solution from what remains. Pham and Nakamura (2015) proposed a trajectory
correction algorithm to deform an initially-planned trajectory in order to avoid unexpected
obstacles while preserving affine-invariant properties of the original motion such as smoothness,
periodicity, and velocity.
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There are few studies on trajectory repairing for autonomous vehicles. For example,
Rösmann et al. (2012) developed the Time Elastic Band approach that deforms an initial path
composed of a sequence of way points into a trajectory with temporal information that considers
both the geometric and the dynamic constraints to control the robot in real-time. A multi-objective
least-squares optimization process is used to repair the initial trajectory, but the deformation may
generate a non drivable trajectory. Ziegler et al. (2014) introduced a local, continuous method
for trajectory planning. In order to include the new sensor information that is available as the
vehicles moves on the environment, a re-planning scheme was designed to modify parts of the
original trajectory. However, it is not possible to determine the time intervals of the remaining
parts.

Lin, Maierhofer and Althoff (2021) presented a sampling-based trajectory repairing
method that uses criticality assessment to detect the invalid trajectory section that must be
modified. Moreover, the repairing problem is separated using a hierarchical structure, and quintic
polynomials are used as a reference path into the informed Closed-Loop Rapidly-exploring
Random Trees (CL-RRT) algorithm to efficiently repair the invalid trajectory.

3.2 Planning with Temporal Logic

The intertwined dependencies make it hard to combine motion planning problems
with dynamics and temporal logic specifications, so practical approaches have been proposed
to overcome the related issues. Sampling-based methods have been developed to expand a
motion tree by adding collision-free and dynamically-feasible trajectories as branches. Another
works have focused on designing reactive controllers synthesized from LTL specifications and
discrete abstractions. A line of research has focused on high-dimensional robotic systems with
non-linear dynamics; these works treat the motion planning problem with LTL specifications
using a probabilistic search over a hybrid space compound by discrete and continuous elements.
Moreover, some methods place restrictions on the LTL specifications to support only syntactically
co-safe LTL formulas. Another works study how to include specifications of time using Metric
Temporal Logic (MTL) that extends LTL with time intervals (PLAKU; KARAMAN, 2016).

In the context of autonomous vehicles, temporal logic has been used to guarantee
safety in their motion and behavior. Maierhofer et al. (2020) used Metric Temporal Logic to
mathematically express a comprehensive set of traffic rules that are useful to evaluate trajectories
generated by a motion planner. The proposed MTL formulas were evaluated on recorded real-
world data and proved to be efficient for automated traffic rule monitoring. Arechiga (2019) used
STL specifications to express a set of contracts on the input-output behavior of an autonomy stack
for self-driving cars. The proposed contracts enable safety testing, provide monitoring capabilities
for safety performance using the STL robustness semantics, and they can be integrated into
industry development processes.
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Some works combine STL with formal definitions of safe driving behavior such as the
Responsibility-Sensitive Safety (RSS) model. Hekmatnejad et al. (2019) encoded the RSS model
in STL. The STL robustness was used to monitor the interactions between the ego vehicle and its
surrounding environment. It also was used to know why a specification was satisfied or violated,
and to infer when a vehicle behavior came close to a violation. The direct mapping between STL
formulas and RSS rules implies that the greater the robustness value, the less likely is the ego
vehicle to violate the RSS requirements. The RSS rules written in STL were successfully used
to monitor multiple real driving data scenarios. Karlsson et al. (2021) presented a new method
to encode human driving styles in motion planning frameworks using STL and its robustness
metrics. The parameters of a penalty structure were calibrated to model different automated
driving styles. A set of STL formulas based on the RRS model were combined with the penalty
structure to generate a least-violating trajectory.

Recent works successfully include STL constraints in the motion planning process.
Barbosa et al. (2019) developed an approach to influence the movement of an Unmanned
Ground Vehicle (UGV) in an exploration task adding spatial constraints as STL fragments to
guide its trajectories, the violation of user-defined spatial preferences was minimized through
a cost function that integrates the STL robustness value. Taboada (2020) developed a RRT*
sampling-based algorithm to identify the best trajectories for multiple robots analyzing the cost
of all possible paths. His approach used the robustness metric of STL to express either the
satisfaction level or violation level of user preferences for each path, then that robustness value
was transformed into a gain to determine the costs of the corresponding paths. The notion of
robustness attached over the trajectories was considered to select the paths with smaller costs
that respect the user specifications.

3.3 Lattice-based Planning

Classic navigation algorithms for mobile robots have been adapted and modified to deal
with the challenges of road networks and driving rules. González et al. (2015) consider the
implementation mechanism of planning techniques to classify them in four categories: graph
search, sampling, interpolating and numerical optimization.

In particular, a graph search based method that uses lattices has been successfully
applied in autonomous vehicles, in this context lattice-based planners are implemented using two
approaches. The first method uses state lattices to decompose the environment in a local variable
grid. For instance, Pivtoraiko and Kelly (2005) discretize the configuration space to build a state
lattice that is used to make motion planning queries as a graph search in which edges represent
feasible paths up to a given resolution. This connectivity scheme is suitable for efficient motion
planning because no time is wasted either generating, evaluating, or fixing infeasible plans. The
state lattice formulation allows resolution complete planning queries because if a vehicle can
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travel from one node to another node then the lattice provides a sequence of paths to perform
this maneuver.

Other works reported by the motion planning research community also follow the same
approach and use a discrete representation of the environment to search feasible paths.

Ferguson, Howard and Likhachev (2008) used a high-fidelity lattice planner in unstruc-
tured environments, this planner uses a backward search process from the goal to the initial pose
in order to generate a path consisting of a sequence of collision-free maneuvers.

Howard et al. (2008) proposes a state space sampling method to deal with high-speed
navigation in constrained environments such as trails, roadways, and dense off-road obstacle
fields, which limit the space of acceptable motions. Search spaces by sampling in state space
remain within the lane or are oriented to do so shortly, and are more expressive when navigating
in complex environments.

Likhachev and Ferguson (2009) proposes a multi-resolution lattice planner which uses
a high-resolution action space near the robot and the goal, and a low-resolution action space
elsewhere. It can considerably reduce the full computational cost, but it is necessary that the
high-resolution and low-resolution lattices connect together smoothly. It was used for planning
maneuvers in parking lots, in geometric road following in off-road areas, and in error recovery
scenarios during on-road driving.

The second method to implement lattice-based planners uses spatio-temporal lattices
which considers time and velocity dimensions (GONZÁLEZ et al., 2015). Many papers in the
motion planning literature discuss this type of implementation.

Ziegler and Stiller (2009) build a space-time manifold by combining configuration space
and time axis, from this manifold and using deterministic sampling they get a geometric acyclic
graph named spatio-temporal state lattice. The workspace is reparametrized to align the lattice to
the course of the road, reducing the number of configurations space samples required to describe
vehicle dynamics and accomplish real time requirements. They propose sampling from the state
space in a deterministic fashion, so that each sample becomes a vertex in a graph, and each edge
has a geometric representation of a path connecting its adjacent vertices. The shortest path is
found within the graph with standard graph searching methods.

Kushleyev and Likhachev (2009) provide real-time performance using a time-bounded
lattice for planning with dynamic obstacles. This graph structure has two different types of states:
six-dimensional (x,y,θ ,v,w, t) states to create the time-parameterized portion of the trajectory,
and two-dimensional (x,y) states for 2D search, each transition in this graph is a short-term
motion primitive between the corresponding pair of these states. It combines short-term planning
in time with long-term planning without time for computing and re-computing paths that are
optimal or nearly-optimal.

McNaughton et al. (2011) propose a spatiotemporal search graph representation to



3.3. Lattice-based Planning 43

evaluate a large number of variations in time and velocity without increasing the size of the
search space. Moreover, by conforming the lattice to the environment, it means constraining
edges to join specified points in the spatial dimensions while considering any value in the
temporal dimensions, it was possible to generate dynamically-feasible motions in structured
environments for a variety of traffic situations.

Werling et al. (2012) propose a semi-reactive planning method for long-term maneuver
tasks with short-term collision avoidance. It considers multiple final states in a discretized
manifold to take advantage of the road environment structure, it combined with short replanning
cycles leads to a reactive layer, which is highly responsive to changes in traffic scenarios.

Gu et al. (2013) propose an on-road planning method that reduces irrelevant sampling by
focusing the search in a reachable/desirable subset of the large spatio-temporal space, reducing
the computation time. In addition, it is combined with optimization-based techniques to produce
human-like reference trajectories that can efficiently account for road geometry, obstacles and
higher-level directives in urban and highway driving.

Furgale et al. (2013) proposed a lattice-based planner for automated parking maneuvers,
it provides collision-free trajectories to reach the intended parking slot or the target charging
station. In order to reduce the processing time, the motion primitives, the driving swath, and a
heuristic look-up table are pre-calculated.

Learning methods have been applied to improve lattice-based planners. Iaco, Smith
and Czarnecki (2019) propose to learn from a representative data set of vehicle paths in order
to compute a sparse lattice planner control set that is suited for a particular application. They
develop an algorithm to evaluate a given control set according to a scoring measure. The control
actions are selected using an objective function that promotes sparsity and rewards improvements
in matching the data set. The experiments involving real and synthetic data show that this method
generates smaller control sets with high degree of manoeuvrability that reduce the computation
time when compared with other state-of-the-art lattice control set computation technique. The
learned control sets are effective to capture the driving style of the data set during the planning
process.

A recent paper report the use of lattice-based motion planners for autonomous vehicles
in highway scenarios. Sun et al. (2020a) proposes a novel Feedback Enhance Lattice Planner,
it uses an Intelligent Driver Model (IDM) as a speed feedback policy for the ego vehicle. The
path and the initial state are used to determine the velocity at the end of the trajectory and the
execution time, so it does not need a discrete representation of the acceleration, velocity, an
the time dimension, as a consequence the lattice remains in the 2D spatial space. In order to
simplify the collision checking process and the identification of relative positions, the vehicles
can register onto the directed-graph map representation.

Table 1 presents and compare the main features of lattice-based planners reported in the
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motion planning literature. The Technique column referees to how it was implemented, state
technique means that non temporal lattices were used, while spacio-temporal technique consider
time and speed dimensions. The Environment column refers to nature of the place where the
lattice-based planner was adapted, it could be either unstructured or structured. The remaining
column refers to the consideration of Signal Temporal Logic in the implementation.

Table 1 – Comparison of lattice-based planners.

Paper Technique Environment STL formulas
Pivtoraiko and Kelly (2005) state unstructured -
Ferguson, Howard and Likhachev (2008) state structured -
Howard et al. (2008) state structured -
Likhachev and Ferguson (2009) state structured -
Ziegler and Stiller (2009) spacio-temporal structured -
Kushleyev and Likhachev (2009) spacio-temporal unstructured -
McNaughton et al. (2011) spacio-temporal structured -
Werling et al. (2012) spacio-temporal structured -
Gu et al. (2013) spacio-temporal structured -
Furgale et al. (2013) spacio-temporal unstructured -
Iaco, Smith and Czarnecki (2019) state structured -
Sun et al. (2020a) state structured -
Proposed Solution spacio-temporal structured ✓

Source: Elaborated by the author.

3.4 Final Considerations
This Chapter briefly described different approaches to solve the trajectory deformation

problem. Few studies on trajectory repairing for autonomous driving applications are currently
available and none of them considered STL constraints in their solutions. Moreover, few papers
apply Signal Temporal Logic to ensure safety in the motion planning process. Some papers
represent traffic rules with STL formulas but none of them considered a lattice-based approach to
generate the final trajectory. The proposed planning method differs from previous works because
it repairs invalid trajectories using a lattice planner combined with STL specifications related to
ensure safety in scenarios involving obstacle avoidance maneuvers. Moreover, our solution relies
on a multi-resolution lattice approach to guarantee the efficiency of the planning algorithm and
reduce the time-consuming in the process.
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CHAPTER

4
METHODOLOGY

This chapter describes the methodology to solve the trajectory deformation problem for
autonomous vehicles. It includes an explanation of both the mathematical model that captures
the dynamic of the vehicle, and the circle decomposition representation of the vehicle for
collision-checking procedures. In addition, this chapter presents the proposed algorithm to deform
trajectories and describes in detail the procedure to generate lattices with spatial constraints
to ensure safety maneuvers in the environment. This chapter includes an explanation of the
lattice generator, a review of the STL specifications to avoid obstacles in the safest way, and a
description of the STL robustness metric that was used in the cost function to influence the path
selection. Finally, the procedure to create the trajectory based on the deformed path is presented.

4.1 Vehicle Modeling

The kinematic single-track model is used to represent the autonomous vehicle with only
two wheels, where the front and rear wheel pairs are each lumped into one wheel. As mentioned
by Lin, Maierhofer and Althoff (2021) it captures the relevant vehicle dynamic, and it does not
consider any tire slip. In this model the velocity vector v at the center of the rear axle is always
aligned with the link between the front and rear wheel.

The kinematic single-track model has been used in the development of many motion
planning algorithms. It is useful in situations in which the non-holonomic constraints (e.g.
minimum turning radius) of the autonomous vehicle must be considered, such as parking
applications. As explained by Althoff, Koschi and Manzinger (2017), the required variables are
the velocity v, the velocity of the steering angle vδ , the steering angle δ , the heading Ψ, and the
parameter lwb describing the wheelbase. The differential equations of the kinematic single-track
model are defined as follows,
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δ̇ = vδ ,

Ψ̇ = v
Lwb

tan(δ ),

v̇ = along,

ṡx = vcos(Ψ),

ṡy = vsin(Ψ).

(4.1)

The kinematic single-track model may differ in publications, depending on whether the
steering angle or the steering velocity is considered as an input, or the vehicle velocity or the
vehicle acceleration is an input for the system (ALTHOFF; KOSCHI; MANZINGER, 2017).

State Space Model

The construction of the state space representation is based on the information provided
in (ALTHOFF; KOSCHI; MANZINGER, 2017; LIN; MAIERHOFER; ALTHOFF, 2021). In
order to represent the kinematic single-track model in state-space form, it is necessary to define
the state variables as follows,

x1 = sx,

x2 = sy,

x3 = δ ,

x4 = v,

x5 = ψ.

(4.2)

The input variables are defined as follows,

u1 = vδ ,

u2 = along
(4.3)

The five dimensional state vector x = [sx,sy,δ ,v,Ψ]T is formed by the two-dimensional
postion at the center of the rear axle [sx,sy]

T , the steering angle δ , the longitudinal velocity v,
and the orientation Ψ. The control input vector u = [vδ ,along]

T contains the steering velocity vδ

and the longitudinal acceleration along (see Fig. 7) . The kinematics can be written in state-space
form as follows.

ẋ1 = x4 cos(x5),

ẋ2 = x4 sin(x5),

ẋ3 = u1,

ẋ4 = u2,

ẋ5 =
x4
lwb

tan(x3)

(4.4)
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Figure 7 – Kinematic single-track model with the pure-pursuit strategy for tracking the current target line.

Source: Althoff, Koschi and Manzinger (2017).

Parameters

The parameters of the Kinematic Single-Track model are listed in Table 2 and the
constraint parameters are presented in Table 3.

Table 2 – Vehicle Parameters.

Name Symbol Value Unit
vehicle length l 4.508 [m]
vehicle width w 1.610 [m]
wheelbase lwb 2.578 [m]

Source: Althoff, Koschi and Manzinger (2017).

Table 3 – Constraint Parameters.

Name Symbol Value Unit
minimum steering angle δ -1.066 [rad]
maximum steering angle δ 1.066 [rad]
minimum steering velocity vδ -0.4 [rad/s]
maximum steering velocity vδ 0.4 [rad/s]
minimum velocity v -13.6 [m/s]
maximum velocity v 50.8 [m/s]
switching velocity vS 7.319 [m/s]
maximum acceleration amax 11.5 [m/s]

Source: Althoff, Koschi and Manzinger (2017).

4.2 Circle Decomposition

As mentioned by Waslander (2018), collision checking is a challenging and compu-
tationally intensive problem present in many domains from gaming to autonomous driving
applications. It refers to the procedure of ensuring that a planned trajectory guides an object
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through the environment without any collision with obstacles. It requires perfect information
about the environment and a limited computation power to calculate precisely for complex shapes
in the environment. However, autonomous cars have neither of these available, the information
available from other modules in the navigation stack is an imperfect estimate, which means
that it is necessary to add buffers to the collision checking algorithms to make them more error
tolerant.

A conservative approximation to collision checking is useful to handle imperfect in-
formation and extensive computation requirements. It reduces optimality, which is based on
an appropriate objective function, but improves speed and robustness. An approximation to
collision checking is useful to gain computing performance, but that approximation must be
overly conservative. Moreover, a good approximation should offer algorithmic speed-up without
compromising safety, and at the same time it should minimize the degree to which the trajectories
become sub-optimal. In this context, a conservative approximation reports a collision along a
path even when it does not exist, but will never report no collision along a path if one does
actually occur (WASLANDER, 2018).

The circle-based collision checking method is a conservative approximation that uses
overlapping circles to encompass the footprint of the vehicle’s rectangular body so that the swath
generated by the rectangle will be a subset of the swath generated by the overlapping circles.
As described in (MENG et al., 2019), in order to perform the collision checking procedure, it
is necessary to represent the shape of the ego vehicle with vehicle discs as shown in Fig. 8, in
this case the ego vehicle is decomposed into three discs with radius rego, the distance between
the centers of the discs is dego, and the red points represent centers of the discs. The curves
representing the Frenet frames (SUN et al., 2020b) in the lane are also depicted in Fig. 8.

The circle-based approach is conservative because an obstacle inside the circle footprint,
but not inside the car footprint, may result in a location being reported as collision even though
one would not actually occur. On the other hand, an obstacle that lies outside of the circles will
not generate a collision alarm and it will not occur. The collision checker may report some false
positive collisions, but will not generate false negative alarms which results in a practical buffer
for autonomous vehicles that helps to handle the imperfect information available from other
modules of the navigation stack.

The collision checking calculations are made all in discrete form since they are perform
on a computer. The accuracy depends on the resolution to perform the discretizations. Consider
two swaths calculated for the same path and footprint, but one of the swaths is computed with
much coarser resolution than the other. It turns out that a coarser resolution generates large gaps
in the swath, which can result in errors if obstacles are located at those positions. The finer the
resolution of the collision checker, the more accurate it will be. However, a higher resolution
also has a higher computational cost. Therefore, it is important to get the appropriate balance
between accuracy and computational cost.
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Figure 8 – Discs representing the ego vehicle body.

Source: Elaborated by the author.

4.3 Spatially Constrained Lattices
It is possible to imposed spacial restrictions when generating lattices, it refers to control

the space between the lattices. It is useful to avoid unnecessary maneuvers that make the vehicle
to move far away to avoid a particular obstacle, instead it allows the vehicle to be safe while
performing the evasive maneuver without making huge oscillations.

4.3.1 Lattice Generator

The high level objective of the conformal lattice planner is to plan a feasible collision-free
path from the autonomous vehicle current position to a given goal state. The Conformal Lattice
Planner (CLP) (MCNAUGHTON et al., 2011) considers the structured nature of roads to speed
up the planning process while avoiding obstacles, and to produce plans that closely resemble
human driving. It creates smooth path options that swerve slightly to the left or right of the goal
path. This planner also takes into account the fact that the autonomous car should never leave
the road unless there is an emergency scenario. It generates a sequence of alternate goal states
by laterally offsetting them from the central goal state with respect to the heading of the road
(WASLANDER, 2018).

As in (MCNAUGHTON et al., 2011), we consider the method developed by Pivtoraiko,
Knepper and Kelly (2009) to adapt the lattices to the structured of the road. The lattice is built
around a lane center line represented as a sampled function [x(s) y(s) θ(s) κ(s)] of arc length s. In
addition, p(s,l) = [x(s,l) y(s,l) θ(s,l) κ(s,l)] defines the points on the road at lateral off-set l from the
center line, which are calculated as follows

x(s,l) = x(s)+ l cos(θ(s))
y(s,l) = y(s)+ l sin(θ(s))
θ(s,l) = θ(s)

κ(s,l) = (κ−1
(s) − l)−1,

(4.5)
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κ(s) represents the curvature of the path, such that θ(s,l) =
∫ s

0 κ(s,l).

Fig. 9 illustrates the idea that the end point of each path is laterally offset from the central
path, which corresponds to a goal point on the road. As mentioned by Waslander (2018), it
discards paths that may not result in forward progress along the ego lane, so it reduces the search
space keeping the planner computationally tractable. If a goal state that is close to the current
ego vehicle position is chosen, then the computational time required to find a path to the goal
point is reduced as well. However, it also reduces the ability of the planner to avoid obstacles
farther down a path, in a smooth and comfortable manner.

Figure 9 – Goal and off-set points.
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Goal Horizon

The goal horizon can be either dynamically calculated or fixed. In this work we consider
a fixed goal horizon, and take the goal point as the point along the center line of the lane, that is a
distance ahead of the vehicle equal to the established goal horizon. A short look-ahead improves
computation time, but reduces the possibility to avoid obstacles (WASLANDER, 2018). Fig. 9
presents the goal and off-set points for the lattices, the green point corresponds to the specified
goal location, the blue points correspond to the laterally off-set goal points, which are used as
endpoint constraints to calculate each spiral in the lattice. The lane central line has arc length
equal to the selected goal horizon. At each planning cycle, the goal point is recomputed based on
the same horizon, so that autonomous vehicle makes forward progress along the lane. So, there
is a trade-off between the size of the lattice (grid) and the computation time: as far is the goal
horizon, greater will be the grid and the computation time, and so, if the the goal horizon is near,
the computation the time will be shorter.
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Generating Spirals

A path is represented with a cubic polynomial spiral. Therefore, the curvature of the path
is a cubic polynomial function of arc length represented as follows.

κ(s) = a+bs+ cs2 +ds3 (4.6)

The cubic spirals required to reach the off-set goal points are calculated solving an
optimization problem. Initially the approach focuses on generating feasible paths that account
for the kinematic constraints of the vehicle, it does not verify if the paths are collision free.

The parameters of the cubic function representing the curvature can be calculated to
define a path connecting any pair of endpoints (x,y,θ ,κ). Considering the work of Howard
(2009), we use the parameterization p = [p0 p1 p2 p3 s f ], so that the curvature can be expressed
as follows,

κ(s) = a(p)+b(p)s+ c(p)s
2 +d(p)s

3, (4.7)

where s f is the arc length of the curve between the boundary constraints. The coefficient functions
a,b,c,d in Eq. 4.7 are selected to verify the following equations.

κ(0) = p0

κ( s f
3

) = p1

κ( 2s f
3

) = p2

κ(s f ) = p3.

(4.8)

The boundary conditions determine both the starting and ending state, and numerical
approximation is required because a closed form solution is not available for the spiral end
position. Then, it is possible to generate a spiral that satisfies the boundary conditions by
optimizing the spiral parameters and its length s f .

Trapezoidal Rule Integration

As mentioned by Kelly and Nagy (2003), a closed form solution of the position along the
spiral is not available, thus numerical integration is required. An efficient method is necessary to
solve the integrals in Eq. 4.9, because they are evaluated in many points of the entire spiral.

x(s) = x0 +
∫ s

0
cos(θ(s′))ds′

y(s) = y0 +
∫ s

0
sin(θ(s′))ds′ (4.9)

In this project, the Trapezoid rule (Eq. 4.10) is used for numerical integration. It is an interpolation
approach that is more efficient than Simpson’s rule because it builds each subsequent point along
the curve from the previous one. In order to get all of the required points it is enough to do one
sweep through the spiral. On the other hand, if Simpson’s rule is used to solve the integrals, then
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an integral approximation need to be solved for each point, which is much less efficient (KELLY,
2018).

∫ s

0
f(x)dx ≈

N−1

∑
i=1

f(xi+1)+ f(xi)

2
(xi+1 − xi) (4.10)

We use software libraries already available to solve those integrals. In particular, the
Cumulative Trapezoid function in Python is fundamental for the implementation of the proposed
algorithm. After the application of the Trapezoid rule, a discrete representation of each spiral for
each goal point is available.

Waslander (2018) points out that it is important to keep track of the curvature value of
each point along with the position and heading, because that information is useful to calculate
the velocity profile for the whole trajectory. Closed form solutions for the curvature and heading
are already available, therefore numerical integration is not required.

Curvature Constraints Approximation

Kelly (2018) mentioned that curvature constraints, which correspond to minimum vehicle
turning radius, are useful to create paths that are drivable the vehicle. It is enough to constrain
sampled points along the path due to well-behaved nature of spiral’s curvature. For instance,
curvature constraints at 1/3rd and 2/3rd’s of the way along the path are enough to generate the
spiral. This approach, and the following steps, were adopted in our work.

Figure 10 – Curvature constraints.

Source: Elaborated by the author.

Bending Energy Objective

The bending energy expression in Eq. 4.11 distributes curvature evenly along spiral to
promote comfort. It is the integral of square curvature along the path, which has closed form for
spirals, as well as the associated gradient. However, the gradient expression has many terms, so
it is better to use a symbolic solver to find its value (KELLY, 2018).
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fbe(a0,a1,a2,a3,s f ) =
∫ s f

0
(a3s3 +a2s2 +a1s+a0)

2ds (4.11)

Initial Optimization Problem

As described by Kelly (2018), it is possible to perform the optimization process in
the frame attached to the vehicle’s body to set the starting boundary condition to zero. The
aforementioned constraints and objective function form the full optimization problem as follows.

min fbe(a0,a1,a2,a3,s f )

sub ject to
∣∣∣∣κ( s f

3

)∣∣∣∣≤ κmax,

∣∣∣∣κ( 2s f
3

)∣∣∣∣≤ κmax

xs(0) = x0, xs(s f ) = x f

ys(0) = y0, ys(s f ) = y f

θs(0) = θ0, θs(s f ) = θ f

κs(0) = κ0, κs(s f ) = κ f

(4.12)

Soft Constraints

It is challenging for an optimizer to solve problems with equality constraints. Kelly and
Nagy (2003) point out that it is necessary to soften equality constraints by heavily penalizing
the deviation in the objective function. Therefore, considering that it is also assumed that the
initial curvature is know, which corresponds to a0, the optimization problem in 4.12 is rewritten
as follows.

min fbe(a0,a1,a2,a3,s f )+α(xs(s f )− x f )+β (ys(s f )− y f )+ γ(θs(s f )−θ f )

sub ject to
∣∣∣∣κ( s f

3

)∣∣∣∣≤ κmax∣∣∣∣κ( 2s f
3

)∣∣∣∣≤ κmax

κs(s f ) = κ f

(4.13)

Parameter Remapping

As mentioned by Kelly (2018), it is possible to remap the spiral parameters with p0

to p3 corresponding to curvature at four points equally spaced along path (Eq. 4.8), and p4
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corresponding to the arc length of the spiral s f .

a0 = p0

a1 =−11p0/2−9p1 +9p2/2− p3

p4

a2 =
9p0 −45p1/2+18p2 −9p3/2

p2
4

a3 =−9p0/2−27p1/2+27p2/2−9p3/2
p3

4
(4.14)

Final Optimization Problem

In order to reduce the dimensionality of the optimization problem in Eq. 4.13, p0 and
p3 are treated as constant values since the initial and final curvature are known before hand.
Since the boundary conditions are handled by the aforementioned soft constraints, the final
optimization problem is expressed as follows.

min fbe(a0,a1,a2,a3,s f )+α(xs(p4)− x f )+β (ys(p4)− y f )+ γ(θs(p4)−θ f )

sub ject to |p1| ≤ Kmax

|p2| ≤ Kmax

(4.15)

The optimization problem in Eq. 4.15 is solved to get a cubic spiral from the vehicle’s
current location to each end location. The method discards the spirals that do not accomplish
the kinematic constraints of the vehicle or are unable to reach the intended goal state, and those
spirals are no longer consider in the planning process (KELLY, 2018).

Spiral Parameters

The resulting parameter vector p is calculated solving the optimization problem in Eq.
4.15. Then, it is necessary to undo the initial transformation made on the spiral coefficients (see
Eq. 4.14) to retrieve them from the p vector, so the optimization variables are converted back
into spiral parameters. Finally, it is necessary to sample points along the spiral to get a discrete
representation of the entire path (KELLY, 2018).

Path Set

The Trapezoid rule is used to generate the full set of paths for each goal state. Then, the
circle decomposition approach for collision checking discussed in a previous section is used to
verify that the candidate paths are collision free.

Circle-based collision checking works well when both the ego vehicle and the obstacles in
the ego lane, can be enclosed in a circle approximation. The circles representing the autonomous
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car are placed at each point along the path, and checked for collisions with each obstacle that
falls within the ego lane (WASLANDER, 2018).

Waslander (2018) points out that the circle approximation is very efficient because
checking if a point lies within a circle does not require much computation. This approach only
verifies if the distance between the obstacle and the center of the circle is less than the radius of
the circle. For example, Fig. 11 shows that the position of the obstacles from the center of the
circle is less than the radius of the circle on some points of the path, therefore it will generate
collision warning. On the other hand, Fig. 12 shows that the obstacles lie outside the radius of
each circle, so the selected path will be free from collisions.

Figure 11 – Path generating collisions with obstacles.
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Fig. 13 illustrates the idea behind circle-based collision checking for motion planning
with lattices. The autonomous vehicle need to plan around the obstacle. It turns out that after
sweeping the swath out across each spiral, the collision-free paths are represented in red color,
and the paths that generate collisions with the obstacles are marked with green.

Path Selection

After the set of feasible and collision-free paths is available, a method to select the best
one to follow must be established. Waslander (2018) points out that multiple criteria can be
considered to design the path selection mechanism, it also depends on the planning application.

For example, in order to choose paths that are as far from obstacles as possible, it is
necessary to include a term in the cost function to penalize paths that come too close to those
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Figure 12 – Collision free path.
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Figure 13 – STLP lattice type
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obstacles. In addition, terms that deviate too far from the nearest lane center line are penalized to
avoid splitting lanes for too long while making a lane change maneuver.

As suggested by Waslander (2018), we consider a simple metric that introduces a bias to
select paths that are as close to the center goal state as possible. In this case, the penalty should
increases the farther the candidate lattice get from the central goal. When the planner is biased
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toward the center lattice, it follows the reference path, and only deviates from the reference when
the reference path is infeasible, or if it ends up generating a collision with an obstacle.

In this project, we consider the penalty function to be the displacement from the center
goal state to the goal state of the path under evaluation. Then, we iterate over every path in the
path set, find the one that minimizes the penalty function, and select it to create the final path.

Full Path

The lattice creation process is repeated multiple times as the ego vehicle moves along the
lane. The STL robustness values is also use to trigger the path deformation procedure which aims
to correct initial invalid paths so that recomputing the whole path from scratch is not required.
Therefore, the lattice planner generates a full path that converges to the goal state avoiding the
obstacles in the environment.

The lattice planner proceeds in a receding horizon fashion towards the goal at the end of
the lane. Therefore, it creates smooth and collision-free paths to guide the autonomous vehicle
through the environment making progress in the lane (WASLANDER, 2018).

4.3.2 Spatial Preferences

Similar to (BARBOSA et al., 2019; KARLSSON; BARBOSA; TUMOVA, 2020), the
focused of the proposed approach is on a safety fragment defined as follows.

The formula Φ = ĜIφ , where I = [0,D], and

φ := µ | ¬µ | φ1 ∧φ2, (4.16)

defines a spatial preference over a set of predicates {µ1, . . . ,µn}.

The Ĝ operator is similar to the Always operator □Iφ in STL. ĜIφ states that φ should
hold every time in the specified interval I, and it is used to evaluate the degree of satisfaction of
spacial preferences on a trajectory (KARLSSON; BARBOSA; TUMOVA, 2020).

Example 1. Let us define an upper and a lower bound that the vehicle needs to keep in reference
to every obstacle in the environment. Such an specification can be written as follows.

Φ = Ĝ(d(x,O)−Dmin ∧Dmax −d(x,O)),

in which x is a trajectory (signal), d(x,M) is a function that returns the Euclidean distance between
the path associated to x and the closest obstacle o ∈ O marked as occupied, hmin = d(x,O)−Dmin

and hmax = Dmax − d(x,O) are predicate functions, and the corresponding predicates µmin and
µmax are defined as follows.

µmin =

⊤ ⇐⇒ d(x,O) ≥ Dmin

⊥ ⇐⇒ d(x,O) < Dmin
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µmax =

⊤ ⇐⇒ d(x,O) ≤ Dmax

⊥ ⇐⇒ d(x,O) > Dmax

It turns out that the formula Φ is evaluated as true if both µmin and µmax are true for all times in
the specified interval.

STL is useful to determine if a user specification, such as the one presented in Example
1, is True or False. In addition, it is also possible to determine How much it is True or False using
the quantitative semantics known as robustness.

The proposed approach takes into account the Always operator in the STL formulation.
Therefore, the autonomous vehicle always respect the preferences described by the STL rules
which include the minimum distance to obstacles in the road. The formulation presented in
(BARBOSA et al., 2019) and (KARLSSON; BARBOSA; TUMOVA, 2020), for mobile robot
exploration and navigation, was adapted to represent the footprint of an autonomous vehicle with
circles as describe in a previous section.

The user preferences are encoded in an STL predicate µ that is True when d(xi,o j) ≥ Dmin,
where xi with i ∈ {1, . . . ,n} are the trajectories of each circle in the autonomous vehicle footprint,
o j with j ∈ {1, . . . ,m} are the static obstacles in the environment surrounding the vehicle. It is
possible to rewrite the inequality as d(xi,o j)−Dmin ≥ 0 to formulate a new evaluation function as
follows.

gk = d(xi,o j)−Dmin (4.17)

with k ∈ {1, . . . ,n ·m}. As a result, the general safety formula is expressed as follows.

φ = g1 ∧g2 ∧ . . .∧gk

Φ = ĜIφ (4.18)

This formula ensures that the circles representing the autonomous car footprint will
avoid collisions with obstacles in the environment by maintaining a distance of at least Dmin. As
in (TABOADA, 2020), the global operator Ĝ guarantees that the autonomous vehicle always
respect the preferences imposed by the STL rules.

4.3.3 Robustness Satisfaction Signal

According to the definition is the previous section, the robustness value is calculated as
follows.

ρ(x,t,d(x)≥Dmin) = d(x)−Dmin

The proposed approach only considers the worst-case violation of STL formulas to calculate the
robustness value. The robustness measure is based on the minimum distance between the circles
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of the vehicle footprint and the static obstacles in its surroundings as described in the following
equation.

ρ(x,t,φ) = min
i ∈ {1, . . . ,n}
j ∈ {1, . . . ,m}

(d(xi,o j)−Dmin) (4.19)

The robustness degree of the formula Φ = ĜIφ along the path associated to the trajectory
x is expressed as follows.

ρ(x,Φ) = min
t∈[0,T ]

ρ(x,t,φ) (4.20)

Considering Eq. 4.19, the final robustness function is recursively defined as follows.

ρ(x,Φ) = min
t∈[0,T ]

ρ(x,t,φ)

= min
t∈[0,T ]

( min
i ∈ {1, . . . ,n}
j ∈ {1, . . . ,m}

(d(xi,o j)−Dmin)) (4.21)

The following example adapted from (BARBOSA et al., 2019; KARLSSON; BARBOSA;
TUMOVA, 2020) illustrates how to calculate the robustness value for an autonomous vehicle
scenario.

Example 2. Suppose that it is desired that an autonomous car stays 2 meters away from a parked
vehicle in the road, it can be expressed in STL as Φ = Ĝφ , and φ := µ = d(x,t)−2. It is know that
d(x,t0) = 6, d(x,t1) = 3, and d(x,t2) = 0.8. In order to analyze the robustness of the path associated
to the trajectory x it is necessary to calculate the robustness for each individual case using the
expression in Eq. 4.19. For each individual case the results are ρ(x,t0,φ) = 4, ρ(x,t1,φ) = 1, and
ρ(x,t2,φ) =−1.2. The robustness on the path with respect to the formula Φ is calculated using the
Eq. 4.21 as follows.

ρ(x,Φ) = min
t∈[0,1]

ρ(x,t,φ)

= min(ρ(x,t0,φ),ρ(x,t1,φ),ρ(x,t2,φ))

=−1.2.

4.3.4 Dynamic Spatial Resolution

One of the main features of the proposed planner is the introduction of a dynamic spacial
resolution value that changes on each planning cycle based on the state of the vehicle and the
information of the environment. This spacial resolution value R refers to the space between the
end points of the candidate paths. Hm specifies the spacial planning horizon, it indicates the
length of the lattices.

The proposed approach enables to configure different spacial resolution values according
to the maneuvers the ego vehicle may need to perform in the environment. For instance, consider
the case of highway autonomous driving. On highways the motion planning problem is limited to
high speed and small curvature roads, with specific rules attached to driving behaviors, under a
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constrained environment framework (SUN et al., 2020a). As a consequence, in a typical highway
scenario the planner can work with a low spatial resolution value because it does not need to
generate many lattices, it could be enough to produce three lattices, one of them can be used
to keep the ego vehicle at the center while it moves along the current lane, and the other two
lattices could be used to make basic lane change maneuvers, either on the right or on the left, in
the absence of static and dynamics obstacles.

The planner also works with a high spatial resolution value to generate many lattices so
that the ego vehicle could deal with unexpected traffic situations in the safest way. For example,
if the leading vehicle in the front slows down and stops, then the ego vehicle needs to perform
an evasive maneuver and do not impact negatively the traffic flow. In this case, the ego vehicle
selects one of the multiple lattices available to keep a safe minimum distance from the obstacle
while not being so conservative.

The proposed multi-resolution feature added to the lattice planner is also useful to reduce
the computational load. The planner generates few candidate paths when the autonomous vehicle
performs basic driving maneuvers such as driving directly along the road. However, in the
case of maneuvers involving risk such as lane change, merging, and overtaking, the planner
generates many candidate paths to avoid unnecessary movements related to the nature of the
lattice approach, and more importantly to ensure safety while performing those risk maneuvers.

4.3.5 Lattice Cost

The cost function presented in (KARLSSON et al., 2021; KARLSSON; BARBOSA;
TUMOVA, 2020) is adapted to work with the lattice planning approach and in the context of
autonomous vehicles. It is defined as follows.

J = JΩ + JΦ (4.22)

The definition of JΩ is based on the Euclidean distance (L2 norm) from the off-set point
(end point) p ∈ R2 of a lattice segment to the goal point q ∈ R2.

JΩ(x) = dist(p,q) =

(
2

∑
k=1

|pk −qk|2
)1/2

(4.23)

The definition of JΦ is based on the robustness degree of an STL formula (DONZÉ;
MALER, 2010) which can be expressed in two ways: first, the spacial robustness that evaluates
to which extent a trajectory (a signal in STL) deviates from the objective values, and second
the time robustness that describes for how long the aforementioned condition of deviation has
been happening. (KARLSSON et al., 2021; KARLSSON; BARBOSA; TUMOVA, 2020). JΦ is
used to influence the motion planning process into selecting a path which better respects STL
specifications.
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The left-time robustness θ
−
(x,t,φ) is defined in (KARLSSON et al., 2021; KARLSSON;

BARBOSA; TUMOVA, 2020) as the duration leading up to time t in which the STL rule φ has
been either satisfied or violated. This robustness measure is expressed as follows.

θ
−
(x,t,φ) = sign(ρ(x,t,φ))max{d ≥ 0 | ∀t ′ ∈ [t −d, t],sign(ρ(x,t ′,φ)) = sign(ρ(x,t,φ))}, (4.24)

The cost function JΦ(x) in Eq. 4.22 represents a quantitative semantics of the alternative
Always operator Ĝ[0,T ]φ as follows.

JΦ(x) =−
∫ T

0
θ
∗
(x,t,φ) ·w(ρ(x,t,φ))

d t, (4.25)

where θ ∗ is a modified version of the left-time robustness, and w is a positive duration that
weighs the spatial robustness.

The modified left-time robustness θ ∗
(x,t,φ) presented in (BARBOSA et al., 2019) guaran-

tees that the cost function JΦ is monotone, as a result J is monotone as well. This property is
important to include J in the planning algorithm as a factor that influences the path selection.
The modified left-time robustness is defined as follows.

θ
∗
(x,t,φ) = min(θ−

(x,t,φ),0) (4.26)

The aforementioned feature is formalized in Lemma 1. Refer to (KARLSSON; BARBOSA;
TUMOVA, 2020) for the proof.

Lemma 1. Given θ ∗
(x,t,φ) in eq 4.26 and a positive weight function w, JΦ(x) in eq 4.25 is

monotonically increasing.

The weight function w(ρ(x,t,φ)) encodes user-defined preferences in its parameters.
Furthermore, it expresses the compromise between a time-efficient trajectory and a spatially-
preferred one (BARBOSA et al., 2019).

The proposed weight function is characterized by four parameters. The idea of adding
more parameters compared with the function described in (KARLSSON; BARBOSA; TUMOVA,
2020) is to provide more flexibility in penalizing the lattices that do not respect the STL
constraints imposed by the user. These parameters are useful to establish different levels of risk
based on the robustness value. Therefore, it is possible to distinguish between path segments
that involve some acceptable risk, and those critical paths that should be avoided because they
compromise the safety of the autonomous vehicle.

• α , is an intermediate bound of acceptable spatial robustness. It determines the risk-level
associated to a candidate path.

• β , is the lowest bound of acceptable spatial robustness.
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• A indicates the pace at which the trajectory is penalized as it approaches the specified
safety bound α . It is the relative weighting between trajectories that violate STL formulas.
In addition, this parameter expresses a measure of the flexibility related to the spatial
preference set by the user to avoid collisions with obstacles.

• B indicates the pace at which the trajectory is penalized as it approaches the specified
safety bound β . Similar to A, it provides a notion of the flexibility associated to the spatial
preference imposed by the user to guarantee a safe performance.

Similar to (TABOADA, 2020; KARLSSON et al., 2021; BARBOSA et al., 2019;
KARLSSON; BARBOSA; TUMOVA, 2020), the tuning parameters A, B, α , β are used to
determine the importance of respecting STL formulas. The higher their values, the higher is the
cost associated to candidate paths when they violate safety specifications. The higher the cost,
the less likely it is for a violating path segment to be selected as part of the final trajectory. The
STL formulas have less influence on selecting the path segments when the tuning parameters
have low values.

The proposed function w = g(α,β ,A,B,ρ(x,t,φ))
is depicted in Fig. 14 and formalized as

follows.

Figure 14 – Proposed weight function.

Source: Elaborated by the author.

w =



∞ for ρ(x,t,φ) < β

B
β
(ρ(x,t,φ)+α)2 +A for β ≤ ρ(x,t,φ) < α

− A
α

ρ(x,t,φ) for α ≤ ρ(x,t,φ) < 0

0 for ρ(x,t,φ) ≥ 0,

(4.27)
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Inspired by (KARLSSON; BARBOSA; TUMOVA, 2020), the proposed weight function
classifies the candidate lattices into different categories as follows.

1. Most-risky Lattices: paths that violate the minimum safety requirements specified by the
user. In this case, β represents the minimum robustness value that can be accepted, and the
infinite weight means that the violation of the spacial preferences is not allowed. Similar to
(KARLSSON; BARBOSA; TUMOVA, 2020), β = 0 is used to establish hard constraints.

2. Risky Lattices: paths that violate the spatial preference. They do not involve enough risk to
violate the minimum safety limit defined by β , but they exceed the safety limit defined
by α which determines the degree of the penalization based on the risk associated to the
lattice. The candidate paths in this category involve risky maneuvers that increase the
possibility of collisions with obstacles, so they must be heavily penalized, and they should
be considered as the last alternative to reach the goal state of the ego vehicle. The weight
combines the robustness value with the tuning parameters A,B,α ,β in an expression to
assign high costs to paths that are close to the safe limit, so that they are not considered in
the planning process.

3. Least-risky Lattices: paths that violate the spatial preference, but not so much as to violate
the limit defined by α . The candidate paths in this category are slightly penalized because
involve maneuvers that are not so critical as to compromise the safety specifications. The
weight is a scaled version of the robustness value that considers the relationship of the
parameter A and α to define the importance of respecting STL formulas.

4. Non-risky Lattices: paths that satisfy the safety condition expressed by the STL formulas.
A weight of value zero means that the path satisfies the spatial preferences, and therefore
should not be penalized.

Fig. 15 shows how the candidate paths are classified according to the level of risk that
each one represents based on the distance to the obstacles. The blue path is the most risky option
and the green is safest.

The weight function w contributes to the cost function JΦ based on how much and how
long the trajectories violate the safety specification. It assigns a very high weight on trajectories
that violate the STL rules and involve maneuvers that are so risky. It sets a moderated weight on
trajectories that violate the user preferences about safety distance, but do not imply a considerable
risk for the ego vehicle. It assigns a weight of value zero on trajectories that do not violate the
safety specifications.
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Figure 15 – Levels of risk for candidate paths.
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4.3.6 Safe Trajectory Creation

The final path connecting the initial and goal position is used by a function that runs a for-
ward simulation of the vehicle to create the associated trajectory. During the trajectory generation
process a closed-loop controller moves and stabilizes the autonomous vehicle along the given
final path. At this stage, the trajectories are simulated not executed, so robust trajectory tracking
controllers are not necessary. In this work, steering and velocity controllers are considered in the
same way as in (KUWATA et al., 2009; LIN; MAIERHOFER; ALTHOFF, 2021).

Steering Controller

As mention by Lin, Maierhofer and Althoff (2021), the pure-pursuit controller has certain
flexibility with respect to path representations and it is easy to implement in practical form. It is
used to calculate the desired steering angle as follows.

δd = tan−1
(

2lwb sin(η)

L f w

)
(4.28)

where L f w is the forward drive look-ahead distance and η is the heading of the look-ahead points
on the target line from the rear axle based on the vehicle orientation (see Fig. 7).

As in (LIN; MAIERHOFER; ALTHOFF, 2021), the steering velocity is used as the
lateral input to avoid undesirable motions such as sudden movements. As a result, the steering
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controller combines the pure-pursuit controller with a PI controller, as follows.

vδ = KP(δd −δ )+KI

∫ t

0
(δd −δ )dτ, (4.29)

where KP, and KI are the proportional and integral gain, respectively. Refer to (KUWATA et al.,
2008) for details about the linear stability analysis of the steering controller.

Velocity Controller

The PI controller described in (KUWATA et al., 2009) is adopted to track the desired
velocity value vcmd . Moreover, the rate of acceleration change must satisfy the established limit
to enhance comfort by taking into account the constraint da/dt ∈ [ jmin, jmax] with jmin and jmax

describing the minimum and maximum permissible jerk values, respectively.

4.4 STL-LP Algorithm
Fig. 16 describes the proposed motion planning algorithm. First, candidate paths are

generated using a Conformal Lattice Planner (MCNAUGHTON et al., 2011) modified to generate
two-dimensional paths considering a planning horizon strategy. The planning cycle starts with
the vehicle’s initial state S0 that is used to compute the resolution of the separation between
lattices. The planner starts in low resolution mode so it generates few lattices to handle essential
driving situations (e.g. three lattices are enough on a typical highway scenario, one to follow the
current road, and two to make lane change maneuvers either on the right or on the left).

The next step is the generation of multiple lattices using RL, the computed resolution,
and SL, the state of the vehicle at this stage. The best path among the generated lattices is selected
considering the cost function to minimize. Then, the robustness value of the selected path is
calculated based on the STL rules that guarantee safety. The robustness measure of the current
lattice and an a predefined robustness value are jointly used to calculate a safety indicator value
which is compared with a threshold to decide either to repair the selected path or to include the
current path segment to the final path.

The deformation process, if necessary, involves determining a cut-off state related to the
initial selected path. The cut-off state includes the breaking point that will be used as the starting
point for the new candidate paths with safety constraints. Moreover, the cut-off state is used
to compute the new resolution of the separation between lattices with safety constraints. The
planner is in the high resolution mode during the deformation process of the initial path, as a
consequence, the lattice generator will produce multiple paths aiming to provide enough safety
to avoid collisions with obstacles in the environment surrounding the autonomous vehicle. This
time the selection procedure of the best path is based on additional constraints related to user
preferences. For each new path the robustness values are calculated and transformed into a gain
to influence the selection of a new path from the cut-off point to the goal point. Once again the



66 Chapter 4. Methodology

safety indicator value is calculated to decide either to make a finer adjustment of the current path
or to continue with the planning cycle.

The planning cycle continues to the next stage when it is not necessary to repair the
generated path. The current path, either the initial path segment or the repaired path segment, is
combined with the path segments previously generated in past cycles of the planning procedure.

Finally, it is necessary to determine if the final path that includes all the path segments up
this stage is enough to reach the specified planning horizon. New vehicle states are considered
when the final path does not reach the specified limit, these states are used to generate a new
path segment. On the other hand, when that planning horizon has been reached, the last step is to
form the final trajectory and to finish the planning cycle.

The functions mentioned in the flowchart of Fig. 16 as detailed as follows.

• computeLowResolution(): This function takes as input the current state of the vehicle
to calculate the values of the parameters that are necessary to create the candidate paths. It
computes the low resolution degree RL for the lattices, and the associated goal state SL.

• computeHighResolution(): This function takes as input the cut-off state that is used as
the starting point to generate new alternative paths that ensure safety. It computes high
resolution degree RL for the lattices, and the associated goal state SH .

• latticeGenerator(): This function takes as inputs a resolution value (either RL or RH),
and a goal state (either S0, or SL, or SH) to generate candidate paths conformed to the
structure of the road.

• selectBestPath(): This function takes as input the set of candidate lattices li that are
the paths joining the initial state and the desired goal state.

• getRobustness(): This function takes as input the best candidate path lbp and calculates
its robustness value ρbp.

• getSafetyIndicator(): This function takes as inputs the robustness value of the best
path ρbp, and a predefined robustness indicator ρinit . It calculates a safety indicator value
that is compared with a threshold to decide if the path deformation process is required.

• setCutOffState(): This function determines the cut-off state that is used as the initial
state to build alternative paths that ensure safety maneuvers.

• setNewStates(): This function updates the states of the vehicle.

• includePath(): This function takes as input the best candidate path lbp in the current
planning cycle and combine it with previous segments aiming to reach the specified
planning horizon.
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• generateTrajectory(): This function takes as input the final path that was deformed to
ensure safety, and generates the associated trajectory.

Figure 16 – Flowchart of the trajectory deformation approach.
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68 Chapter 4. Methodology

Figure 17 – Detailed Flowchart (part 1).

Source: Elaborated by the author.

Figure 18 – Detailed Flowchart (part 2).

Source: Elaborated by the author.
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Figure 19 – Detailed Flowchart (part 3).

Source: Elaborated by the author.

Figure 20 – Detailed Flowchart (part 4).

Source: Elaborated by the author.

4.5 Final Considerations

This chapter described a novel approach to solve the trajectory repairing problem. The
proposed algorithm present advantages over other solutions available in the motion planning
literature. It uses a lattice generator with a multi-resolution feature, it means that the planner
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Figure 21 – Detailed Flowchart (part 5).

Source: Elaborated by the author.

creates as many candidate paths as necessary depending on the traffic scenario, which reduces
the computation required by the planning process. Signal Temporal Logic is used to introduce
constraints regarding evasive maneuvers to avoid obstacles in the environment in the safest way
possible. Moreover, the STL robustness metric is used in the cost function to penalize both, the
paths that lead to extremely conservative behaviors, and those paths that involve high risk. The
STL robustness values is also use to trigger the path deformation procedures to correct initial
invalid paths so that recomputing the whole path from scratch is not required.
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CHAPTER

5
RESULTS

This chapter presents the main results achieved with the proposed approach for solving
the trajectory repairing problem for autonomous vehicles. First of all, it presents the quantitative
results regarding the computation effort required by the proposed algorithm. Then, it describes
the results for the traffic scenarios created in the Webots simulator to evaluate the efficiency of
the proposed algorithm. An analysis of the collision avoidance maneuver for both, static and
moving obstacles is presented.

5.1 Computational Load Evaluation

We used the automobile tools of the robot simulator Webots to test our approach. Our
approach is implemented in Python and executed on a computer with an Intel i7-4710HQ 2.50
GHz processor and 12 GB of DDR3L 1600 MHz memory. We use the method described in
(MCNAUGHTON et al., 2011) to generate the lattices and then deform them using our approach
when necessary.

As mentioned by Sun et al. (2020a), the main challenges regarding existing lattice plan-
ners are the dependence in the high dimensionality of the lattice, and the lack of an appropriate
vehicle behavior modeling. Moreover, existing approaches do not consider STL formulas to
represent user preferences about safety.

Our solution seeks to reduce the computational load of a lattice-based planning algorithm
by adding the multi-resolution feature, this means that the resolution in terms of the number
of lattices varies depending on the traffic situation that the autonomous vehicle has to solve,
resulting in a great advantage related to the computational effort required for the algorithm.
Considering Table 4 it is notorious how the computational load increases when the resolution
increases in terms of the number of lattices generated by the planner to be used as candidate
paths. In general, there will be a huge preference for a high resolution, that is, the greatest number
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of alternative paths is preferred to have greater freedom of movement, but this considerably
increases the computational cost of the planning algorithm, and it is not necessary to have a large
number of lattices available in all cases, which makes such solutions inefficient in term of the
computation required.

Table 4 – Computational load for lattice generation. Time is an average over 10 runs.

Number of Planning Unit
Lattices Time

3 281 [ms]
4 294 [ms]
5 315 [ms]
6 321 [ms]
7 349 [ms]
8 359 [ms]
9 363 [ms]

10 376 [ms]
19 499 [ms]

Source: Elaborated by the author.

Fig. 22 illustrates the generation of standard lattices, as used in (MCNAUGHTON et

al., 2011; WASLANDER, 2018; SUN et al., 2020a), for the same static obstacle avoidance
traffic scenario. Fig. 22a depicts the generation of four notably separated lattices, and given the
specified cost function, the planner ends up choosing the most suitable path so that the vehicle
does not collide with the obstacle in front. Fig. 22b presents the generation of six lattices for
the same traffic situation of obstacle avoidance, and although there are more paths available,
the planner determines that the best option is the one that moves the vehicle further away from
the obstacle. Fig. 22c illustrates the generation of 10 lattices, it is evident that despite having
more options available, the selected path, although not the most conservative in terms of distance
to obstacles, is one that considerably distances the vehicle from the obstacle generating an
unnecessary deviation, this is due to the configuration of the cost function that strongly penalizes
the fact of getting too close to the obstacle.

Fig. 22d presents the generation of nineteen lattices for the same obstacle avoidance traffic
scenario, and again despite having many options, the selected path generates an exaggerated
deviation moving the vehicle too far from the obstacle, and in this case it is more than evident
that the computational effort is greater than the options with fewer candidate paths (see Table 4).
However, the solution with the largest number of lattices continues to select the most conservative
path in terms of distance to the obstacle, this is due to the established cost function. Although
the selected paths are the ones that avoid collisions with obstacles, this selection is not the most
efficient in all cases. Considering a standard lattice-based path generation, it is not possible
to control exactly how far from the obstacles the vehicle will be when performing the evasive
maneuver, because that is defined by the planner cost function whose parameters are configured
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in advance at the design stage, but it is unknown exactly which of the paths will be selected at
the execution stage.

The configuration of a fixed and low resolution involves the risk that the maneuver is
safe but extremely conservative in terms of distance to obstacles. On the other hand, with a fixed
and high resolution, it is possible to have a large number of available lattices, but this does not
ensure that the selected path enables to maintain a desired distance from the autonomous vehicle
to the obstacles on the lane. Something that is guaranteed with a high resolution is the associated
high computational load, which could be unnecessary in many situations.

In the aforementioned path selection examples (see Fig. 22), the preferences that the user
could have in terms of safety are not taken into account. It is the cost function, with previously
tuned parameters, which determines the selected path that in many situations can generate
undesirable behaviors for the autonomous vehicle, such as moving too far away from the obstacle
in a kind of excessive zig-zag movement, or on the contrary, approaching the obstacles in a
dangerous way. It is really unknown how the planner will react in all possible traffic situations.
For the exposed reasons, we proposed to introduce STL formulas that represent the security
restrictions that must be respected in all cases, this gives greater reliability to the autonomous
vehicle in terms of the evasive maneuvers that it performs.

An autonomous vehicle with a lattice planner may perform either a dangerous behavior or
a conservative one depending on the partial cost functions (ALTHOFF; KOSCHI; MANZINGER,
2017) to be minimized. Fig. 23 illustrates the difference between a state-of-the-art Conformal
Lattice Planer (CLP) (MCNAUGHTON et al., 2011) and the proposed STL-based Lattice Planner
(STL-LP). Our approach starts from a cut-off state in the initially generated lattices and builds
multiple lattices with a finer resolution, it gives the possibility to be slightly far away or near the
obstacle. The new deformed path is attached to STL rules imposed by the user. As a result, it is
not necessary to care about unexpected traffic situation in the environment because the vehicle
always keeps a safe distance to the obstacles which leads to safer behaviors.

Table 5 summarizes the results obtained by applying our method of trajectory deformation
with lattices conditioned to STL formulas. It is clear that the computational cost increases based
on the number of generated candidate paths, but the computational effort of applying our
motion planning approach is less than that computational cost achieved with the standard lattice
generation procedure reported in the motion planning literature (MCNAUGHTON et al., 2011;
WASLANDER, 2018; SUN et al., 2020a). The proposed multi-resolution characteristic is very
useful to adapt the lattice generation procedure to the current traffic situation which may end up
reducing the required calculations.

The proposed planning method considers the analysis of the STL robustness value
associated with the initially selected path, and based on that information determines the activation
of the deformation procedure to get the a collision free path that respects user-defined STL rules.
This repairing of trajectory process is activated only when it is necessary, which further reduces
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the computational cost. For instance, according to Table 5 a planning algorithm using eleven
standard lattices requires 397 ms of planning time in order to get a selected path. However, with
our approach if the deformation process of the initial selected path is activated, then planning
time falls down to 377 ms. Moreover, if the deformation process is not necessary, then the motion
planning is achieved with a lower cost, because the planning time required by the algorithm
using only four lattices is 294 ms as indicated in Table 4.

Table 5 – Computational load with lattice deformation. Time is an average over 10 runs.

Number of Planning Time Planning Time Unit
Lattices (Standard Lattices) (Deformed Lattices)

11 397 377 [ms]
12 409 401 [ms]
13 424 407 [ms]
14 437 419 [ms]
15 442 429 [ms]
16 463 453 [ms]
17 484 461 [ms]
18 486 477 [ms]
19 499 481 [ms]
20 526 489 [ms]
21 548 511 [ms]

Source: Elaborated by the author.

Fig. 24 presents the paths obtained using deformed lattices for an obstacle avoidance
traffic scenario. Fig. 24a shows that it is possible to navigate with low resolution generating only
five lattices at the beginning, then the resolution is increased with seven lattices, conditioned to
STL formulas, that are generated only when the deformation process is activated. The activation
of this additional step of repairing in the planning cycle is based on an analysis of the STL
robustness value associated with the initial selected path. So for this traffic scenario involving
evasive maneuvers to avoid collisions with obstacles, our algorithm generates twelve lattices in
total, five standard lattices and seven STL lattices, which requires a computational load of 401
ms according to Table 5, which can be reduced to 315 ms according to Table 4, in case of not
activating the deformation process, and instead working just with the initial five standard lattices.

Similarly, Fig. 24b, Fig. 24c, and Fig. 24d illustrate the advantage of our method that
modifies the initial path, generating more options that are subject to user-defined constraints
and translated into STL formulas that directly impact the cost function to select a path with an
acceptable level of safety. Although increasing the number of lattices also increases the compu-
tational cost, our trajectory deformation method is better in terms of cost than a conventional
lattice-based planner (see Table 5). Moreover, the fact that the deformation process is activated
only in strictly necessary cases opens the possibility of further reducing the computational cost.

Finally, as we are considering the road scenarios (we do not consider urban traffic
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scenes), so, times of order of 0.5 seconds are considered adequate to a good decision making
and reaction. Also, the proposed approach is considered as "trivially parallelizable", since each
curve (individual path) can be processed separately, being analysed and evaluated in parallel to
the others (data processing of each curve is independent to the others). This allows to exploit
parallel architectures to implement this approach, as for example, adopting GPUs, multi-core, or
FPGAs based hardware solutions.

5.2 Static Obstacle Scenario

The first scenario considered for the evaluation of the proposed algorithm is an urban two-
lane road. In this scenario (see Fig. 25), there are four static obstacles blocking and preventing the
autonomous vehicle to make progress on the driving lane. The obstacles represent barriers work
of a construction sites. The autonomous car should stop to prioritize safety, but this behavior
may impact the traffic flow negatively creating undesirable traffic jams. Instead, the autonomous
vehicle can perform an appropriate evasive maneuver to avoid collision while making progress
towards its goal. Our algorithm is useful to generate safe and feasible trajectories to guide the
autonomous car in the aforementioned traffic situation.

Initially, a motion planner may relax the planning problem considering few points to
represent the obstacles, so that it requires low computational effort to explore the state space.
However, this approach will end up generating either a path that collides with the obstacles or a
path that is too conservative that keeps the vehicle unnecessary far from the obstacles and invades
the other lane creating hazardous situations. Fig. 26 shows the results using our algorithm, which
deforms the initial selected path starting on a cut-off state previously defined. Thus, our approach
takes part of the initial path and builds alternative lattices that are conditioned by STL formulas
representing user preferences regarding safety while performing evasive maneuvers.

As depicted in Fig. 26, the proposed method is useful to avoid excessive oscillations and
extremely conservative behaviors. The autonomous vehicle keeps itself away from the obstacles
as much as it is necessary to provide safety guarantees while it performs obstacles avoidance
maneuvers.

The final deformed trajectory keeps the autonomous vehicle to a safe distance from the
obstacles all the time, as shown in Fig. 27. The dash green line represent the minimum safe
distance of 3 meters specified by the user, while the blue line shows the minimum distance to
all obstacles when the vehicle makes progress on the lane using the repaired trajectory. The
results show that the vehicle keeps a distance greater than the minimum distance required, which
increases the confidence regarding the evasive maneuver performed by the vehicle. In the worst
case scenario, the vehicle is 5 meters near the obstacles, which is an acceptable result, since the
minimum required is 3 meters.



76 Chapter 5. Results

5.3 Moving Obstacle Scenario

The second traffic scenario used to evaluate the performance of our solution to the
trajectory deformation process is a overtaking maneuver in a urban two-lane road. As depicted in
Fig. 28, there is a vehicle in front (white) with a speed lower than the speed of the autonomous
vehicle (green) that can be considered a moving obstacle, so the ego vehicle can perform an
evasive maneuver, known as overtaking, to continue progressing on the road. In order to avoid
traffic jams the autonomous vehicle may overtake the neighbor vehicle in front, but safety must
be prioritized to avoid accidents on the road. Therefore, the autonomous vehicle can perform an
appropriate evasive maneuver to avoid collision while making progress towards its goal. Our
algorithm is useful to generate the safest trajectory stuck to user specifications regarding safety.

Initially, a motion planner with low resolution may generate few paths to reduce the
computation, but this alternative leads to over conservative behaviors to overtake a front vehicle.
For instance, if the autonomous vehicle performs an exaggerated avoidance maneuver, it could
end up drifting into the left or right lane and collide with other vehicles on the road.

Fig. 29 presents the results using our approach to deform initial planned paths that lead to
undesirable driving behaviors that may impact negatively the traffic flow. Our solution analyzes
the initial path based on STL formulas that represent user preferences. Then, based on the
robustness STL value, it activates the path correction procedure, generating alternative paths that
prevent the autonomous vehicle from moving an unnecessary distance away from the moving
obstacle, and on the contrary, keeping it at an appropriate distance from the neighboring vehicle,
so as not to risk the safety of those involved while performing the overtaking maneuver.

Finally, Fig. 30 depicts the fact that the autonomous vehicle keeps a safe distance from the
neighbor vehicle at all times during the evasive maneuver. Once again, the green line represents
the minimum safe distance desired by the user, in this case 3 meters. In addition, the blue line
represents the distance to the neighboring vehicle during the overtaking maneuver. The results
show that the autonomous vehicle is kept at a distance greater than that specified one all the time,
and that the closest it gets to the neighboring vehicle is 4 meters, this means that the behavior
achieved is the safest possible without generating an extremely conservative behavior.

5.4 Final Considerations

This chapter presents the main results achieved with the proposed approach for solving
the repairing of trajectories problem. It turned out that the algorithm is able to repair initial
invalid paths in order to generate safe motion for autonomous vehicles performing evasive
maneuvers. Moreover, the corrected path ensures safety while taking into account STL formulas
representing user preferences. The multi-resolution feature resulted to be very useful to reduce
the computation load. The resolution depends on the traffic scenario in which the vehicle is
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involved. For instance, when the vehicle is driving in a highway without obstacles the planner
works well with low resolution because few lattices are required, one lattice is enough to make
progress through the center of the lane, and two additional lattices are necessary to perform lane
change either to the left or to the right. On the other hand, when the vehicle has to deal with
unexpected obstacles, the planner can change to a high resolution to generate many lattices that
lead to safer maneuvers. Additionaly, the STL robustness value of the selected path determines
the activation of the deformation process that generates a final collision-free trajectory.
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Figure 22 – Standard lattice generation.
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Source: Elaborated by the author.
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Figure 23 – Comparison between CLP (MCNAUGHTON et al., 2011) and proposed STL-LP.
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Figure 24 – Lattice deformation.
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Figure 25 – Simulated obstacle avoidance scenario in Webots. The animation of the evaluation can be
found at <https://youtu.be/U8A2D_7NWbY>

Source: Elaborated by the author.

Figure 26 – Trajectory deformation for static obstacle.
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Figure 27 – Minimum distance to static obstacles.

0 5 10 15 20 25
time [s]

5

10

15

20

25

30

35

40

d
is

ta
n

ce
[m

]

distance to obstacles

safe minimum distance

Source: Elaborated by the author.

Figure 28 – Simulated overtaking scenario in Webots. The animation of the evaluation can be found at
<https://youtu.be/aaia83MUewk>

Source: Elaborated by the author.

https://youtu.be/aaia83MUewk
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Figure 29 – Trajectory deformation for moving obstacle.
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Figure 30 – Minimum distance to neighbor vehicle during evasive maneuver.
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CHAPTER

6
CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

Autonomous vehicles are essential to envision the future Autonomous Mobility on
Demand (AMoD) systems, which will enable the quickest and safest transportation in large scale,
operating with hardware and software solutions, and the most advanced Artificial Intelligence
methods as never seen in the past. Although there is enough maturity in all parts of the classical
self-driving stack, their performance still can be improved in order to enable the next generation
of vehicles to drive themselves with level 5 autonomy on the roads. Therefore, new ideas
regarding their scalability and safety must be developed to attain public confidence in this
technology. In particular, ensuring the safety of autonomous cars is a challenging computational
task because they have to generate collision-free feasible paths towards their goal, and ensure
safety maneuvers while avoiding obstacles at the same time.

This project presented the development of a trajectory deformation algorithm to modify
initial paths instead of re-calculating them from scratch, which is very convenient to reduce the
computation load and insert constraints related to safety requirements. The proposed approach is
also useful to avoid extremely conservative behaviors and excessive oscillations while avoiding
obstacles on the road. Signal Temporal Logic was used to encode safety specifications. STL
was particularly well-suited to model constraints for hybrid systems such as autonomous cars
that involve continuous dynamics (e.g. vehicle states, trajectories) as well as discrete dynamics
(e.g. phases of a traffic light). In addition, the robustness semantics of STL provides natural
monitoring capabilities for safety performance.

The main contribution of this work is an algorithm to solve the trajectory deformation
problem for autonomous vehicles. Initially, candidate path are generated using a conventional lat-
tice planner, then those paths are evaluated with STL formulas representing safety specifications
that constrain the motion of the vehicle while performing evasive maneuvers. The STL robustness
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value was introduced into the planner cost function to ensure the selection of the safest path.
Different resolutions are available to generate lattices, and the deformation process is activated
only when it is truly required, otherwise the initial path is considered safe enough to make
progress on the lane. Moreover, a weighted function was designed to classify the lattices into
different categories according to the risk level associated to each candidate path, which allows
selecting the level of risk involve in a maneuver and avoid extremely conservative behaviors that
could take the vehicle too far from obstacles. Finally, simulations involving collision avoidance
in traffic scenarios were created with the automobile tools of the robot simulator Webots to
evaluate the performance of the proposed algorithm.

The results show the efficiency and usefulness of the trajectory repairing approach
designed in this work. It was possible to deform initial paths while considering STL formulas
related to safety specifications imposed by the user. With our approach, the computation load
of re-planning a whole trajectory to handle complex traffic situations is avoided, instead our
algorithm deforms an available path according to user preferences related to safety, and proceeds
with the deformation in some cases based on the evaluation of the STL robustness value that
provides a notion of how dangerous could be for the autonomous vehicle to follow the selected
path.

6.2 Future Works
The outcomes of this research project are promising and offer the possibility to carry out

further studies related to trajectory deformation for autonomous vehicles. For example, a future
task is to analyze the performance of the trajectory deformation algorithm taking into considera-
tion different scenarios for evaluation with a focus on traffic situations with various dynamic
obstacles such as pedestrians or groups of vehicles at intersections. The proposed algorithm
considers the planning problem of the ego vehicle, so an interesting future direction of research
is to develop a trajectory repairing framework for multiple interacting agents. Furthermore, it
can be interesting to extend the evaluation of the proposed algorithm considering different values
for the velocity and acceleration of the ego vehicle.

More simulations can be executed in order to analyse multiple traffic scenarios with other
vehicle’s configuration considering different velocities and distance for obstacle detection, and
taking into account the limit imposed by the road to generate the trajectories in the maneuvering
and driving area. Finally, it is also important to consider cases in which there is no viable solution
to avoid accidents (LI et al., 2022), thus combining STL rules with trajectory deformation
methods to deal with critical situations is a possible improvement to include in future research
works.
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