• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2018.tde-06032018-161351
Documento
Autor
Nombre completo
Marco Antonio Alvarez Vega
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1999
Director
Tribunal
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Camargo, Heloisa de Arruda
Monard, Maria Carolina
Título en portugués
Um Estudo Comparativo de Técnicas de Pruning para Redes Neurais Artificiais
Palabras clave en portugués
Não disponível
Resumen en portugués
Redes Neurais Artificiais (RNAs) têm proporcionado uma solução eficiente para uma grande variedade de problemas práticos. Infelizmente, a seleção dos parâmetros ideais para o processo de aprendizado, bem como a escolha da topologia adequada, não são tarefas triviais Geralmente, o processo de escolha do número de parâmetros livres é informal, e as redes são treinadas com diferentes topologias e complexidades até que a de melhor desempenho seja encontrada. Este procedimento nem sempre produz redes de tamanho mínimo, o que em muitos casos inviabiliza a implementação. Nesta dissertação é apresentado um estudo comparativo de diversas técnicas de Pruning, as quais têm como objetivo minimizar a complexidade da rede, sem degradar sua capacidade de generalização. Um grande número de experimentos foi realizado, utilizando diversas técnicas previamente selecionadas. Uma análise dos resultados obtidos é também apresentada, indicando o comportamento das técnicas de Pruning em geral, e identificando as de melhor desempenho.
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
Artificial Neural Networks offer an efficient solution to a wide variety of practical problems. However, choosing an appropriate topology for an Artificial Neural Network is a difficult task. Generally, the process of choosing the number of free parameters is informal and networks are trained with different complexities and topologies until the one with the best performance be selected. This procedure usually does not generate minimal size networks, which can make their implementation unfeasible. In the present work, a comparative study of Pruning techniques is presented. Such techniques are used to improve the complexity of networks, reducing their size without considerably degrading their generalization ability. A large number of experiments was performed with a set of previously selected techniques. The results were analyzed in order to study the behavior of the Pruning techniques in general, as well as identifying those which provide the best performance.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-03-06
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.