• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2018.tde-06022018-143043
Document
Auteur
Nom complet
Filomen Incahuanaco Quispe
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2017
Directeur
Jury
Paiva Neto, Afonso (Président)
Casaca, Wallace Correa de Oliveira
Pagliosa, Paulo Aristarco
Rodrigues, Francisco Aparecido
Titre en portugais
Classificação de imagens de fluorescência do citoesqueleto através de técnicas em processamento de imagens
Mots-clés en portugais
BoVW
Imagens microscópicas fluorescentes
LBP
Redes Complexas
Textons
Resumé en portugais
O citoesqueleto é a estrutura celular mais importante em células eucariotas e é responsável por manter a forma da célula e as junções celulares, auxiliando nos movimentos celulares. Esta é composta de filamentos de Actina, Microtúbulos e filamentos intermediários. Recentemente, a análise de duas dessas estruturas tornaram-se importantes, pois é possível obter micrografias usando microscópios de alta resolução, que contém microscopia de fluorescência, em combinação com métodos complexos de aplicação de substâncias de contraste para rotulagem e posterior análises visuais. A combinação dessas técnicas, entretanto, limita-se a ser descritiva e subjetiva. Neste trabalho, são avaliadas cinco técnicas de análise de imagens, as quais são: Bag of Visual Words (BoVW), Local Binary Local (LBP), Textons baseados em Discrete Fourier Transform (TDFT), Textons baseados em Gabor Filter Banks (TGFB) e Textons baseados em Complex Networks (TCN) sobre o conjunto de dados 2D Hela e FDIG Olympus. Experimentos extensivos foram conduzidos em ambos os conjuntos de dados, e seus resultados podem servir de base para futuras pesquisas como análises do citoesqueleto em imagens de microscopia fluorescente. Neste trabalho, é apresentada uma comparação quantitativa e qualitativa dos métodos acima mencionados para entender o comportamento desses métodos e propriedades dos microfilamentos de actina (MA) e Microtúbulos (MT) em ambos os conjuntos de dados. Os resultados obtidos evidenciam que é possível classificar o conjunto de dados da FDIG Olympus com uma precisão de até 90:07% e 98:94% para 2D Hela, além de obter 86:05% e 96:84%, respectivamente, de precisão, usando teoria de redes complexas.
Titre en anglais
Classification of cytoskeleton in fluorescence images with image analysis techniques
Mots-clés en anglais
BoVW
Complex Networks
LBP
Microscopy fluorescence image
Textons
Resumé en anglais
The cytoskeleton is the most important cellular structure in eukaryotic cells and is responsible for maintaining the shape of the cell and cellular junctions, aiding in cell movements. This is composed of filaments of Actin, Microtubules and intermediate filaments. Recently, the analysis of two of these structures has become important because it is possible to obtain micrographs using microscopes of high resolution and fluorescence technology, in combination with complex methods of application of substances of contrast for labeling and later visual analysis. The use of these techniques, however, is limited to being descriptive and subjective. In this work, we evaluate some of the most popular image analysis techniques such as Bag of Visual Words (BoVW), Local Binary Pattern (LBP), Textons based on Discrete Fourier Transform(TDFT) , Gabor Filter banks (TGFB), and approaches based on Complex Networks theory (TCN) over the famous dataset 2D Hela and FDIG Olympus. Extensive experiments were conducted on both datasets in which their results can serve as a baseline for future research with cytoskeleton classification in microscopy fluorescence images. In this work, we present the quantitative and qualitative comparison of above mentioned methods for better understand the behavior of these methods and the properties of Actin microfilaments (MA) and Microtubules (MT) on both datasets. The results showed that it is possible to classify the FDIG Olympus data set with accuracy of up to 90:07% and 98:94% for 2D Hela, in addition to reaching 86:05% and 96:84% respectively, using complex network theory.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2018-02-06
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.