• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2016.tde-06012016-145045
Document
Auteur
Nom complet
Victor Hugo Barella
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2015
Directeur
Jury
Carvalho, André Carlos Ponce de Leon Ferreira de (Président)
Paulovich, Fernando Vieira
Prati, Ronaldo Cristiano
Titre en portugais
Técnicas para o problema de dados desbalanceados em classificação hierárquica
Mots-clés en portugais
Aprendizado supervisionado
Classificação hierárquica
Dados desbalanceados
Desbalanceamento de dados
Resumé en portugais
Os recentes avanços da ciência e tecnologia viabilizaram o crescimento de dados em quantidade e disponibilidade. Junto com essa explosão de informações geradas, surge a necessidade de analisar dados para descobrir conhecimento novo e útil. Desse modo, áreas que visam extrair conhecimento e informações úteis de grandes conjuntos de dados se tornaram grandes oportunidades para o avanço de pesquisas, tal como o Aprendizado de Máquina (AM) e a Mineração de Dados (MD). Porém, existem algumas limitações que podem prejudicar a acurácia de alguns algoritmos tradicionais dessas áreas, por exemplo o desbalanceamento das amostras das classes de um conjunto de dados. Para mitigar tal problema, algumas alternativas têm sido alvos de pesquisas nos últimos anos, tal como o desenvolvimento de técnicas para o balanceamento artificial de dados, a modificação dos algoritmos e propostas de abordagens para dados desbalanceados. Uma área pouco explorada sob a visão do desbalanceamento de dados são os problemas de classificação hierárquica, em que as classes são organizadas em hierarquias, normalmente na forma de árvore ou DAG (Direct Acyclic Graph). O objetivo deste trabalho foi investigar as limitações e maneiras de minimizar os efeitos de dados desbalanceados em problemas de classificação hierárquica. Os experimentos realizados mostram que é necessário levar em consideração as características das classes hierárquicas para a aplicação (ou não) de técnicas para tratar problemas dados desbalanceados em classificação hierárquica.
Titre en anglais
Techniques for the problem of imbalanced data in hierarchical classification
Mots-clés en anglais
Data imbalance
Hierarchical classification
Imbalanced data
Supervised learning
Resumé en anglais
Recent advances in science and technology have made possible the data growth in quantity and availability. Along with this explosion of generated information, there is a need to analyze data to discover new and useful knowledge. Thus, areas for extracting knowledge and useful information in large datasets have become great opportunities for the advancement of research, such as Machine Learning (ML) and Data Mining (DM). However, there are some limitations that may reduce the accuracy of some traditional algorithms of these areas, for example the imbalance of classes samples in a dataset. To mitigate this drawback, some solutions have been the target of research in recent years, such as the development of techniques for artificial balancing data, algorithm modification and new approaches for imbalanced data. An area little explored in the data imbalance vision are the problems of hierarchical classification, in which the classes are organized into hierarchies, commonly in the form of tree or DAG (Direct Acyclic Graph). The goal of this work aims at investigating the limitations and approaches to minimize the effects of imbalanced data with hierarchical classification problems. The experimental results show the need to take into account the features of hierarchical classes when deciding the application of techniques for imbalanced data in hierarchical classification.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2016-01-06
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.