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ABSTRACT

JARAMILLO, J. P. New models and Numerical Methods in Hydrodynamic Lu-
brication. 2018. 156 p. Tese (Doutorado em Ciéncias — Ciéncias de Computacao e Mate—

matica Computacional) # Instituto de Ciéncias Matematicas e de Computacao, Universi-
dade de 8510 Paulo, Sao Carlos — SP, 2018.

The simulation of lubricated mechanisms has an economic and academic interest reflected
in dozens of theoretical and experimental works published in the last decades. Industry has

given constant attention to the research for robust numerical codes that allow predicting
the efficiency of different designs (e.g., load carrying capacity, energy loss, wear). The
Reynolds equation along a cavitation model is one of the main tools to perform those
studies, allowing to estimate the lubricant flow between the surfaces in proximity.

The state-of—the—art in cavitation modeling is represented by the mass—conserving Elrod-
Adams model. Aiming to augment the physical accuracy of this model, in this dissertation
an extension of it is proposed in order to accommodate non-homogeneous boundary
conditions for pressure, which is proven to be mandatory for some mechanical devices like

the Piston-Ring. This is done While assuring that mass conservation is maintained in the
extended model.

A new trend in hydrodynamics is to incorporate the physics of cavitation by modeling the
behavior of a distribution of gas/ vapor bubbles immersed in a Newtonian liquid. This is

done by a coupled model, called the Reynolds—Rayleigh—Plesset (RRP) coupling, where
the Reynolds equation is used for the mixture flow and the Rayleigh-Plesset equation is

used for the bubbles dynamics. In this work some results on the well-posedness of the
RRP model are obtained and numerical methods are developed for both the cases where
the inertial terms in the Rayleigh-Plesset equation are disregarded or not.

Keywords: Hydrodynamic Lubrication, cavitation modeling, Reynolds equation, Reynolds-
Rayleigh-Plesset coupling, numerical simulation.





RESUMO

JARAMILLO, J. P. Novos modelos e métodos numéricos em Lubrificagao Hidro-
dinémica. 2018. 156 p. Tese (Doutorado em Ciéncias “ Ciéncias de Computagao e Mate—

matica Computacional) — Instituto de Ciéncias Matematicas e de Computagao, Universi—

dade de 8510 Paulo, 8310 Carlos — SP, 2018.

A simulagao de mecanismos lubrificados tern urn interesse economico e acadérnico refletido

em dezenas de trabalhos teoricos e experimentais publicados nas filtirnas décadas. A

indnstria tern dado atengao constante a pesquisa de codigos numéricos robustos que
permitern prever a eficiéncia de diferentes coufiguragoes dos parametros de desenho (por
exemplo, capacidade de carga, perda de energia, desgaste). A equagao de Reynolds junto
com um modelo de cavitagao é uma das principais ferramentas para realizar esses estudos,
permitindo estimar o fluxo de lubrificante entre as superficies em proximidade.

O estado da arte na modelagem da cavitagao é representado pelo modelo conservativo de
Elrod—Adams. Com 0 objetivo de aumentar a acuracia fisica deste modelo, nesta dissertagao
propoe—se urna extensao dele para acomodar condigoes de contorno nao homogéneas para
a pressao, o que é comprovado como sendo mandatorio para alguns dispositivos mecanicos

corno o Pistao-Anel. Isso é feito garantindo que a conservagao de massa seja mantida no
novo modelo.

Uma nova tendéncia em Hidrodinamica é incorporar a fisica da cavitagao modelando
o comportamento de uma distribuigao de bolhas de gas/vapor imersas em um liquido
newtoniano. Isso é feito com um modelo chamado o Acoplamento de Reynolds-Rayleigh—
Plesset (RRP), onde a equagao de Reynolds é usada para computar o fiuxo da mistnra de
liquido—gas/vapor e a equagao de Rayleigh—Plesset é usada para computar a dinamica das
bolhas. Neste trabalho sao obtidos alguns resultados sobre a boa colocagao do modelo RRP
e 8210 desenvolvidos métodos numéricos para ambos os casos em que os termos inerciais na
equagao de Rayleigh—Plesset sao considerados on 11210.

Palavras-chave: Lubrificagao Hidrodinamica, equagao de Reynolds, Cavitagao, modelo de
cavitagao de Reynolds-Rayleigh—Plesset.
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CHAPTER

1

INTRODUCTION

1.1 Motivation

Numerical simulation allows to predict mechanical devices efficiency dependence
on parameters design by means of available physics-based models. Different scientific
tasks related to this activity can be identified, among them: the development of new
models, the development of robust computational codes, and qualitative analysis, like the
well—posedness assessment of the mathematical problems associated.

Hydrodynamical Lubrication concerns the dynamics of two surfaces in proximity
where solid—solid contact is prevented. Roughly speaking, the load forces that tend to
diminish the distance between the surfaces are balanced by the hydrodynamical force

generated by a lubricant oil placed between them. Considering that lubricant as a N ewto—

nian fluid, the hydrodynamical pressure is generally computed by means of the Reynolds
equation (CAMERON, 1971; BAYADA; CHAMBAT, 1986). Divergent geometries and
squeeze motion may produce tensile stresses (negative pressures) that can lead to a local

rupture of the fluid film, which constitutes a non-linear physical phenomenon known as
cavitation (DOWSON: TAYLOR, 1979). The Elrod—Adams cavitation model represents
the state-of—the—art when including these effects by means of a Reynolds-like equation.
This is a mass—conserving model, a property that has been proved to be essential in order
to obtain accurate results when the surfaces are not smooth. This was numerically shown
by Ausas at (Ll. (2007) and confirmed in (ZHANG; MENG, 2012) and (SHEN; KHONSARI,
2013) performing a comparison with experimental results. Like other cavitation models,
the Elrod—Adams cavitation model imposes p 2 pcav, where the threshold paw is called
cavitation pressure.

Regarding the simulation of fluid—dynamic bearings, several numerical and the—

oretical works have been published during the last decades. An example of this is the
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Piston—Ring—Liner mechanism, which is responsible for about 5% of the fuel consumption
in a passengers car (HOLMBERG; ANDERSSON; ERDEMIR, 2012). Several factors
must be considered in the modeling of that system: developed forces, surface features (e.g,
manufactured textures, surface roughness), and pressure boundary conditions are among
these factors. Several works have been focused in friction reduction in lubricated devices
by means of manufactured surfaces (BRIZMER: KLIGERMAN: ETSION, 2003; K0—

VALCHENKO at (LL, 2004; ETSION , 2005; TOMANIK, 2008; ETSION, 2013; TOMANIK,
2013; PENG; HUANG, 2017; SODERFJALL et at, 2017; ANDERBERG et at, 2018).
Using the Elrod—Adams model, Checo ct (tl. (2014) found numerically that traveling tex—

tures (manufactured on the moving surface) may have beneficial effects only for moderate
to high conformity between the cylinder and the rings, reducing up to 73% the friction
coefficient. This is in line with previous numerical findings of Dobrica ct al. (2010) within a
stationary regime, and with the results obtained by Gadsschi, Backliaus and Knoll (2012),

among other numerical works. However, the most part of the published studies regarding
the Piston-Ring—Liner do not take into account the highly variable mechanical pressure
of the combustion chamber, and the few ones considering that variation use a non mass—

conserving model (MORRIS et at, 2014; MORRIS ct at, 2015; USMAN; PARK, 2016).
There appears one the problems studied in this dissertation: to develop a mass—conserving

cavitation model that accommodates non-homogeneous boundary conditions. This could
be made starting from the Elrod-Adams cavitation model, than only accepts p : pcaw as a
Dirichlet condition for pressure.

The Elrod-Adams model is a phenomenological model where the time scales are
governed by the macroscopic dynamics of the modeled mechanisms. This type of model

assumes some compressibility law relating the pressure p and the fluid density p. Another

example of such type of model is the one given by Vijayaraghavan and Keith (1989), in

fact, their model is obtained as an outgrowth of the one due to Elrod and Adams. A

different trend in Hydrodynamic Lubrication is to incorporate the physics of cavitation
by assuming the lubricant as a two—phase mixture of pure liquid and gas and postulating
equations for the averaged variables describing the gas phase and an equation mixture flow.

The gas phase is regarded as a distribution of bubbles immersed in the liquid phase, which
is assumed to be continuous. The Reynolds-Rayleigh—Plesset (RRP) cavitation model is an
example of that. It consists in a coupled system of equations where the Reynolds equation
is used to compute the mixture flow and the Rayleigh—Plesset equation is used to compute
the bubbles dynamics. This kind of modeling has also been used along other flow equations,
like the Navier-Stokes equations, and it is present in commercial softwares like Fluent
(KUBOTA: KATO; YAMAGUCHI, 1992; SCHNERR; SAUER, 2001; SING-HAL ct at,
2001; ZWART; GERBER; BELAMR, 2004; LIUZZI, 2012; SCHMIDT et at, 2014; LlU;

WANG; ZHU, 2015; WALTERS, 2015; ZHAO et at, 2016; DHANDE; PANDE, 2016). Many

questions can be posed around the RRP coupling, some of them are answered in the present
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document, some of them are subject of current research. For instance, although there
exist mathematical studies on other cavitation models (CIMATTI, 1976; CIMATTI, 1980;

KINDERLEHRER; STAMPACCHIA, 1980; BAYADA; CHAN‘IBAT, 1983; BERK’ICDEZ;

DURANY, 1989; BUSCAGLIA; CIUPERCA; JAI, 2005; BUSCAGLIA: CIUPERCA;
JAI, 2007; BUSCAGLIA; El Alaoui Talibi; JAI, 2015), and for the Rayleigh—Plesset

equation itself (HAKL; TORRES; ZAMORA, 2012; OHNAWA; SUZUKI, 2016), to our
knowledge the are no works where mathematical analysis is performed on the RRP system.
Furthermore, the robustness of the numerical codes available for it in the literature was
unclear. Since all that, the well—posedness of the RRP model and its numerics embodies

other two problems that are tackled in this thesis.

1.2 Outline
This document’s structure is as follows: in Chapter 2 the Reynolds equation is

introduced as an asymptotic approximation for the Navier-Stokes equations. Some classical

cavitation models are given and a series of mechanical devices able to be simulated along
these models are described. The details on the RRP cavitation model are left for Chapter
4.

To model cavitation with non—homogeneous boundary conditions for pressure, an
extension of the Elrod—Adams model is developed in Chapter 3 first for cases where the
moving surface is flat and smooth (null surface roughness). This is based on the imposition
of a null pressure gradient condition on the rupture boundary. That chapter ends presenting
a different approach for one—dimensional cases were textures are allowed to be placed on
the moving surface but this time the pressure gradient in not prescribed to be null.

The Rayleigh—Plesset equation and the RRP cavitation model are presented in

Chapter 4, there a Multicomponent Fluid framework is proposed and some heuristic
arguments are given to justify the modeling.

Somf mathematical results on the well-posedness of the RRP model are established
in Chapter 0. For the same model, robust numerical codes are developed in Chapter 6 for

both the cases where the inertial terms in the Rayleigh—Plesset equation are included or
not.

1.3 Contributions
During this work original contributions were made on the modeling, mathematical

analysis and numerical methods for the simulation of hydrodynamical mechanisms:

0 An extension of the Elrod—Adams model that accommodates non-homogeneous
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boundary conditions for pressure was developed for special cases (presented in
Chapter 3). The general case where the moving surface is allowed to be textured
is treated in a different one—dimensional approach. This was made by means of an
analysis similar to the one performed by Ausas et at. (2013) and Checo (2015) for a
different extension of the Elrod—Adams model (where a in (2.24) is able to be in the
interval [5,1], while for the Elrod—Adams model one has a z 5).

A framework for the Reynolds—Rayleigh-Plesset cavitation model is given in Chapter
4, being proposed as a three—equations coupled system: the Reynolds equation, the
Rayleigh—Plesset equation, and a Boltzmann transport equations for the bubbles
number density.

A mathematical analysis of the RRP coupling well-posedness was performed: theorems

for local existence in time, stationary solutions existence and stability are obtained
in Chapter 5.

The development of robust numerical codes for the RRP coupling is presented in

Chapter 6. Two cases are identified and suitable codes were developed for both: 1)

regarding the inertial terms in the Rayleigh—Plesset equation or 2) disregarding them.
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CHAPTER

2
MATHEMATICAL MODELS IN

LUBRICATION

This chapter aims first to provide a general description for the modeling of lubricated
devices; secondly, it aims to detail the particular characteristics of model lubrication
problems, like geometrical parameters, boundary conditions, etc.

In Section 2.1 the dynamical variables are presented and their coupling is described.
Section 2.2 is devoted to an asymptotic derivation of the compressible Reynolds equation
from the Navier-Stokes equations by means of the thin-film hypothesis. Section 2.3 provides
the cavitation models generally used to determine a relation between density and pressure
for the compressible Reynolds equation. Finally, in Section 2.4 lubrication problems
commonly studied in the literature are described.

2.1 Dynamical variables and their coupling
There are three components common to any lubricated mechanism: two surfaces in

close proximity and a fluid (liquid or gas) placed between them. The fluid allows a smooth

contact, diminishing energy loses and augmenting the lifetime of the device. A typical
simulation in tribology will solve for the dynamical variables described in Table 1.

Variable Model

Hydrodynamical pressure: p Compressible Reynolds equation
Fluid’s density: p A cavitation model
Surfaces’ dynamics Newton’s equation

Table 1 — Dynamical variables and corresponding mathematical models.

The hydrodynamical pressure (p) is computed by means of the Reynolds equation (or
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some of its modified forms). Generally, its integral (the hydrodynamical force) enters in
the Newton's equation for the surfaces dynamics as a load—supporting force, preventing
the surfaces to became too close each other. Thus, there is a natural coupling between the
surfaces gap and p. Having provided boundary conditions, different models for the fluid
density (p) can be used to close the problem. The simpler cavitation model corresponds to
“p constant and equal to the liquid density” provides the full-Sommerfeld pressure curve.

2.2 The compressible Reynolds equation

2.2.1 Mass fluxes approximation in thin films

Let us assume there exist two maps hU : Q’ —> R and hL : Q’ —> R , with
Q’ = Q x [O, T], Q a regular domain in R2, T E R: and hU > 111, on Q’, that describe the
topography of two parallel surfaces in proximity. Lubrication Theory studies the dynamics
of the surfaces when some fluid (lubricant) is placed in the gap between them. This gap
can be described by the function h = hU — hL (see Fig. 2.2.1). Assuming a Newtonian

hU($1,$2,t)
_

Figure 2.2.1 — Three-dimensional scheme of the physical framework.

fluid and disregarding body forces, the Navier-Stokes equations read (KUNDU; COHEN,
200-1):

011 2 _

p a + (u - V) u = —Vp +w u, 111 $2, (2.1)

where p is the fluid density, /1, the fluid dynamic viscosity, 11 = (71,1),1”) its
velocity vector and p the l‘iydrodynamical pressure. The next boundary conditions are set:

u(;r3 = 1111) = UH, u(a'3 = h) = UL, 'n(a‘3 = hU) = VH, lu(-.r3 = hL) = VL, and
I. I. 01, 81.D11} _81U+UH IU +VH1U'LU(:L'3 : hU) = l’VH = D1 _ at 83:1 83:2

’

D11, 87}
, ah. ah

“(13 I h'L) Z WL : DLL : of + UL dxlf + VL 013;

Denoting by L a reference length for the I1 and 3:2 axis, H a reference length for the x3

axis and by U a reference speed, the hypothesis of surfaces proximity is introduced by
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making the next non—dimensionalization

$1 362 A 153A z _ z — — 2.2$1 a $2 L a 3 Ha
( )

v 75 U H 2

_ z __ A z _ 2.31]:

Introducing the Reynolds Number Re: pUH/n and e : H/L the system (2.1) can be

written as
815 _

8212 8a A
812 ea871”EEA_§_6R6<5_+“3931 of? wailO(l

at _ 620 or; 817
A
or;

6—932‘8—333_6Re<? (9931+ (9952 an) O()
813 3 aw 8m aw (91?)

4
82121 821712121822 _ —o

5:33
6 Re ( at 8361 85:2

0:33) + 6
or? + erg + 5:33 (2")

Thus, neglecting terms of order 6 Re and higher, and returning to the original variables we

obtain

% z u gig (2.4)

22—7 = u gig, (25)

5—5; 2 0. (2.6)

Integrating two times on 353 between 51:3 : hL and x3 : hU, we have:

14:53) = $3951“? hL)(x3 — hU) + 23121 UH + ZU”_ hLUL, (2.7)

U($3) = i—afiug — hL)(x3 — m) + 23122141 +1251?“ (2.8)

Integrating the last equations for $3 6 [hL, hU] the mass-flux functions are obtained:

hU ph3 8p UL—l—UH
Jx =/ d =————- ———* h, 2.9

1

h,
p“ 963 12n8x1+ 2 p ( l

hU h3 (9 V +V_,0_P L HJx Z d 2 h, 2.102
hL

pv x3 _12n8_x2 + 2 p ( )

where h = hU — hL and it is assumed that 5:53 : 0. The first term in these fluxes corresponds
to the Poiseuille flow due to the pressure gradient and the second term corresponds to the
Couette flow due to the relative motion between the surfaces.

2.2.2 The compressible Reynolds equation
The mass transport equation reads

op522+V-p(p u):0. (2.11)
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Integrating in 13 we have

8p hU a hU 8 hu 6h _ _ _ 2at + hL 0x1
(pa) (lag + /hL

(9x2
(pv) dxg + /hL 6x3

(pw) dxg 0.

Using the Leibniz integration rule and Eqs. (2.9) and (2.10) we obtain

@+aJ,,+aJ,,+ @_
fit an 8372 par _ 0,

substituting the definitions of the mass—fluxes it is obtained the compressible Reynolds
equation, reading:

.£fif”_ _ .<E >_ @ @V (UM p) V 2ph —p8t+h8t’ (2.12)

where U = (0,17) is the surfaces relative velocity, with U : UH + UL and I7 : VH + VL.

2.3 Cavitation modeling
In all the lubricated mechanisms considered in this work the non-linear physical

phenomenon of cavitation can take place. Experimentally it is observed that in the fluid
placed between the surfaces there appear regions composed by a mixture of gas and
vapor (DOWSON; TAYLOR, 1979; KU: TICHY, 1990; QIU; KHONSARI, 2011; ZHANG;
MEiiG, 2012; BAI; MENG; ZHANG, 2016). In these regions the pressure is approximately
constant and equal to a certain value called cavitation pressure, hereafter denoted pcav;
and on the full—film regions it is observed that p > pcav. Two main types of cavitation
can be distinguished depending on its physical origin. Vaporous cavitation takes place
when the pressure reaches the saturation vapor pressure of the fluid components. Thus,
vaporous cavitation consists in a phase change from liquid to vapor due to this fall in

pressure. Gaseous cavitation happens when the pressure reaches the saturation pressure of
the gases dissolved in the fluid (DOWSON; TAYLOR, 1979).

In sections 2.3.1 and 2.3.2 two standard cavitation models are presented, the
Reynolds and the Elrod—Adams cavitation models. They are based on the observed

consequences of cavitation mentioned before, this is, the pressure field is restricted by

p 2 pGav on the whole domain and p : peav in the cavitated regions. A third model is

presented in Chapter 4, the Reynolds—Rayleigh-Plesset cavitation model. It is focused in

gaseous cavitation and, differently to the two first models, it aims to capture the physics
of cavitation rather than reproduce its consequences.

2.3.1 Reynolds cavitation model

To simplify the discussion, here we assume that pcav : 0 and I7 z 0 (there is

no relative motion of the surfaces along the org—axis). The Reynolds cavitation model
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assumes the fiuid’s density to be constant and imposes the constrain p 2 0 by means of a
variational formulation (KINDERLEHRER: STAi\=’IPACCHIA, 1980). Its implementation
is simple and its numerical results are satisfactory when compared to experimental results
for smooth surfaces (AUSAS et at, 2007).

As the fluid’s density is constant, the variational formulation of the Reynolds
equation (2.12) consists in looking for p 6 H3 (Q) such that:

3

91—h—vadn—_ g/th—i dQ— qu— dQ ya 6 H5 (Q). (2.13)

The Reynolds cavitation model incorporates p 2 0 into the Reynolds equation by looking
for

pEK:{v€H5(Q):v20a.e.inQ}
such that

fir/wow) Q/hL”(in /(-¢ 5de queK (214)
n 12 p p) >2 8110—1 77) ' '

Let us denote the mass—flux vector J : (Jxl, J”) with components defined by Eqs.
(2.9) and (2.10). In the sense of distributions, this last inequality can be written as

% +V J > 0 in Q. (2.15)

Let us define the partition Q : {2+ U 520 by

9+ : {p > O in Q}, Q0: Q \ 9+. (2.16)

It can be proved (KINDERLEHRER: STAMPACCHIA, 1980) that

%?+V~J_>_0 in Q0 and -g—}tl+v-J:o in (2+, (2.17)

which means that the Reynolds equations is accomplished in each pressurized region
9+. Although simple 1D cases where the lack of mass—conservation of this model can be

given (JARAMILLO, 2015), let us illustrate here a 2D argument that will be useful when

presenting the Elrod—Adams model in the next section.

Assuming a stationary regime, Fig. 2.3.1 shows a typical situation for a square
domain with suitable boundary conditions and (7 > 0. Notice that two pressurized regions
are shown, Qi‘ and 93. The dotted flux-lines show the direction of the flux function on
$20, which can be written as J : (gph, 0) thus a—” > O in 90 (the geometry is divergent
or flat there). It can be observed that in the center of the domain there are paths that
exit the rupture boundary of Qfi (J - n > 0) and enter the reformation boundary of (If);

(J - n < 0). As p depends continuously on it (e.g., Theorem 4.4 (RODRIGUEZ, 1987)) a
small perturbation of h in Qi will produce a small perturbation of 59/1. Therefore, the set
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Figure 2.3.1 — Scheme of pressurized regions along a cavitation model and a flux function J.

95 and the restriction p|Qg will remain unchanged. This is a non—conservative situation
as the perturbation of h in Qfi will affect the flux in that subdomain but not the flux in

9:5, in spite of being connected by the flux—lines.

The reason behind this issue is that the Reynolds model does not impose mass
conservation in the cavitated region (20. In the next section a mass-conserving model that
considers a fluid-fraction variable in (20 is presented.

2.3.2 Elrod-Adams cavitation model
Mass—conservation had been proved to be essential in order to obtain accurate

results when modeling textured lubricated devices (AUSAS et al, 2007; QIU; KHONSARI,

2009). Elrod and Adams (ELROD; ADAMS, 1974) looked for a conservative cavitation
model introducing a relation between p and p that reads

+ In if > ,p: Pcav_B P/Pe p pg
(218)

Pcav otherwise,

where pg is the liquid density and B is the compressibility factor. Introducing the fluid’s

fraction variable 9 : p/pg and the function g such that g(9) = 1 for 9 > 1, g(9) : 0 for

9 S 1, Equation (2.12) may be rewritten as

v. <g(9)9{;i/JVP> — v. (525m) = gate),
where is has been used the fact that Vp : 0 for 0 S 1. Rewrite Eq. (2.18) as

(p “ pcavl/fi 2 g(9) 1110.
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Formally, taking the limit for fl —> +00 we obtain the Elrod—Adams cavitation model

h3 U a
. -_ _ ._ :_ Q 2.19v (WW) v (2m) atom) on , ( )

with the complementary relations:

> v f 921p pca or
on Q. (2.20)

p=pcav for 9 <1.

Recalling the partition of Q given in (2.16) one notices that in the pressurized region (2+

this is the elliptic PDE corresponding to the incompressible Reynolds equation (p constant
in Eq. (2.12)), While in the cavitated region 90 this is a hyperbolic transport equation for

the volume fraction he, i.e.,

5&9) + V- (ghg) : O 011 90. (2.21)

Notice that this time the mass flux—function in Fig. 2.3.1 corresponds to J = (gpghd, O)

and for the stationary cases it must be accomplished V ' J z 0 also on Q0. This way,
mass-conservation is imposed on the whole domain.

2.3.3 Boundary conditions in the interface 89+
The Elrod—Adams model imposes boundary conditions for the rupture/ reformation

interface between (L, and $20 that are known as the Jacobson—Flober—Olsson conditions
(JAKOBSON; FLOBERG, 1957; OLSSON, 1965). For this, the Rankine-Hugoniot condition
(e.g., (LEVEQUE, 2002)) for continuity of the flux reads:

[[J]] . n : [[h0]] Vi - H, (2.22)

where the brackets denote the jump of the function at the interface, Vi denotes the
interface velocity, and n is the vector normal to 89+. Let us assume it to be continuous in

space, eC : U/ ”U” to be the unitary vector along the Couette flow direction, U > 0 and
I7 z 0 to simplify the exposition, then Eq. (2.22) implies

h3 8p [7

aUhHOeC-n+ma—n—5heC-n:h(6’o—1)V~n, (2.23)

where of? is the transport speed of the Couette flow at the cavitated region (a z % in the
Elrod-Adams model). For the steady state this gives

h3 8p — 1

Ella—n—Uh (5—61.90) eC-n, (2.24)

where 00 is the value of 9 at the cavitated side of the interface. The left hand side in the
last equation is the Poiseuille flux at the interface from the pressurized side. If the point x
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being considered is a rupture point, then eC - n > O, and for a reformation point eC - n < 0.

Taken a : 5 Eq. (2.21) implies

8p 0 if x is a rupture point,
(2 25)an fif/jTU (1 _ 90) eC - n if x is a reformation point,

i

where we have used the fact that 243 S 0 since p in (2+ is always greater or equal to p in

90. Notice that the conditions (225) lead to a well-posed problem for the steady state (in
the sense that there exists a unique solution for the free boundary problem). However, in

cases like the Piston—Ring, setting a z 1 would be more realistic, but this leads to a loss

of well—posedness (AUSAS et at, 2013).

To compute the condition (2.25) on the pressure gradient at the rupture points it
has been used the fact that the Elrod-Adams model assumes that the restriction p 2 pcav

does not depend on x. This will be an important point when looking for a generalization
of this cavitation model in Chapter 3, as the independence of pcav on the position will no
longer be assumed.

2.4 Model problems in lubrication

2.4.1 The Journal Bearing
This is the most common hydrodynamic bearing, used for instance in thermal

engines, combustion engines, compressors, turbomachines and alternators (BOU—SAID,

2013). This mechanical device supports hydrodynamically the load of a rotating solid

cylinder (Journal) encased within a circular Bush. Figure 2.4.1 shows a simplified scheme
of this mechanism where the gap between the surfaces depends only 011 the longitudinal
coordinate x1 (along the sliding direction). Typical boundary conditions for pressure are
also indicated for the computational domain Q :]0, 27rJr[><]0, JW[C R2, where Jr is the
journal radius and JW its width.

The surfaces gap reads

Man, 902, t) z c + X(t) cos (an/Jr) + Y(t) sin (ml/Jr) + hT(x1, 352), (2.26)

where c is the j0urnal clearance and hT is a texture function.

The Newton’s equation for the Journal center X(t) : (X (t), Y(t)) may be written:
2

MJfld—E}; : W(t) + Wa(t), (2.27)

where MJ is the mass of the journal, Wa(t) is the applied load (datum) and

W(t) : [/ p(:c1,:r2,t) cos(a:1/Jr) dQ,/Qp(;t1,:1:2,t) sin (ml/Jr) dQ} , (2.28)
Q

is the hydrodynamical support.
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Figure 2.4.1 ~ Scheme of the Journal Bearing.

2.4.2 The Piston-Ring—Liner

This mechanical system is the central part of the combustion engines, an illustration
of it is shown in Fig. 2.4.2. A pack of rings are attached to the piston, these rings are placed
there in order to seal the combustion chamber and control the lubricating oil. Periodical
explosions in the combustion chamber produce a difference in pressure at both sides of
the piston producing a reciprocal motion of the piston between the Bottom Dead Center
(BCD) and the Top Dead Center (TDC).

The computational domain may be written Q =l07 lell), B [C R2 where L is in the
scale of the ring thickness (2 1 mm) and B is the domain width, typically B 2 0.1 mm.
For this case the surfaces’ gap may be written

11,T(371, $2) + Z(t) + 11.R(:171,.1’2) if a 5:13 3 b
h(a:,,;r2,t) z 7

hfr(-‘L'1,l‘z) + h-g otherwise

where Z (r) > 0 is the ring position along the flfg-HXlS. In; is the ring profile, 0 < a < b < L,
and hg is a constant gap bewteen the piston and the liner. A typical ring profile may be
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Figure 2.4.2 — Scheme of the Piston—Ring—Liner mechanism.

written
llR(:'l.'1) 2 RC — R2 - ($1 — Rafa (Cl 6 [a,b],

where RC is the ring curvature and R$1 is the center of the ring along the fin—axis.

The Newton’s equation reads:

(122 1 B b

AIR—(it? 2 5/0 /a p<$1,l‘2,t) dlfl (1312 "i“ l/V (t), (2.29)

where MR is the mass per unit width of the ring and Wa is the load applied on the ring

per unit width (datum).

Typical vales for the Combustion Chamber Pressure (CCP) and the piston speed
in function of the cranck angle are shown in Fig. 2.4.3.

2.4.3 The Fracture
This is a special problem used in this work when testing numerical methods in

Chapter 6. In that chapter the relation between the pressure and the density is given by

means of the Reynolds—Rayleigh—Plesset coupling. The fluid is assumed to be composed by

liquid and tiny gas bubbles distributed in the liquid. These gas bubbles respond dynamically
to changes in the average hydrodynamical pressure. Due to this, while for other cavitation
models (e.g., Reynolds model, Elr'od—Adams model) the term ll??? in Eq. (2.12) is null7 in

the Reynolds—Rayleigh—Plesset cavitation model this is not the case, and cavitation takes

place by purely compression / expansion of the liquid. The correct numerical treatment of

this term was studied in one of the published articles related to this thesis (J ARAMILLO:
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Figure 2.4.3 — Combustion chamber pressure and piston speed at 1500 rpm, adapted from
(l..YUI3.f\HSKYY: BAHTI'ICL, 20m).

BUSC‘AGLIA, 2019). In the fracture problem there are no squeeze effects (0le = O) and
the surfaces relative speed is null (U = 0), thus the fluid dynamics in that case is purely
related to the compression or expansion of the bubbles.

2.5 Nonhomogeneous boundary conditions for pressure
The pressure boundary condition in lubricated devices does not always correspond

to the cavitation pressure. This represents a challenging modeling problem that will be
presented in detail in Chapter 3. In the case of the Journal bearing, 7) is different from

pcav at the inlet boundary, a situation that can be properly handled by mass—conserving
models. For instance, in the case of the Elrod—Adams model, 9 can be set equal to 1 at
the inlet (fully—flooded condition). For a major of the applications the pressure at the
boundaries is equal to 1 bar. Since lpcavl is generally lower that 1 bar and due to the fact
that the maximum value of [pl normally reaches hundreds of bars, it is customary to set
both the boundary condition for pressure and pGav as being null.

The case of the Piston—Ring—Liner mechanism is more involved. The compression
ring faces the combustion chamber through the gap present between the piston and the
liner (see Fig. 2.41.2). During the compression stroke, the combustion chamber pressure
(CCP) may achieve values in the order of 100 bar, and the piston is moving away from
the explosion (crankangle 2 TDC in Fig. 2.1.3). Thus, the CCP must be imposed as a
Dirichlet condition for pressure at the boundary outlet, which brings difficulties when

trying to impose mass-conservation there. In Chapter 3 it is shown that this issue is related

to the imposition of the pressure gradient in the separation boundary.

Different conditions for the pressure gradient at the separation boundary can
be found in the literature. The research group of Dowson et al. published a series of
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works (DOWSON, 1993; PRIEST et al., 1996; PRIEST; DOVVSON; C., 2000) regarding
the boundary conditions for Reynolds equation with focus on the Piston-Ring—Liner.
They concluded that the boundary conditions at the separation boundary are related
to the nature of the cavitation taking place in that region. They also observed that the
hydrodynamics of the lubricant oil are strongly dependent on such boundary conditions.
The authors also stressed the fact that few experimental works were available at that time
to be contrasted against numerical results for different separation boundary models (to
our knowledge, such scarcity remains). Nevertheless, they mentioned that the boundary
conditions due to Elrod and Coyne (COYNE; ELROD, 1970; COYNE: ELROD, 1971)

gave closer results to the ones found in the literature.

Arcoumanis et al. (ARCOUMANIS et al., 1995) designed a test-rig experiment
to simulate the lubrication of the Piston-Ring—Liner. They compared their experimental
findings with numerical simulations along with different separation boundary models: the
Elrod and Coyne (COYNE; ELROD, 1970; COYNE; ELROD, 1971) model; the Reynolds
model (null gradient condition); and a model due to F loberg (FLOBERG, 1965). The
numerical results obtained along the Reynolds model were most closely to the measurement
results.

Few works have studied the effect of including the CCP time variation, perform-
ing simulations where the GOP is included as boundary condition and comparing them
with simulations where the GOP is not considered. Kligerman et al. (KLIGERMAN;
SHINKARENKO, 2015) compared the predicted friction force and minimum clearance
between two type of simulations. The “Real engine simulation” imposed boundary condi—

tions according to the CCP time variation, while the “Approximate solution” was based
in a quasi—static simulation and imposing homogeneous boundary condition equal to the
ambient pressure. The authors found that the minimum clearance is strongly affected by
the CCP time variation. Also, they found that the “Approximate solution” underestimated
upto 30% the friction force in the engine cycle phase where the CCP varies rapidly.

Many other works have been published regarding the Piston-Ring-Liner and the

imposition of the CCP as a boundary condition (e.g., Morris et al. (2014), Morris et al.

(2015), Usnian and Park (2016)). However, none of these works have considered cavitation
in a mass-conserving way. The next chapter is dedicated to an extension of the Elrod—

Adams model in order to accommodate this non—homogeneous boundary conditions for

pressure.
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CHAPTER

3
NONHOMOGENEOUS BOUNDARY

CONDITIONS AND CAVITATION MODELING

The available mathematical models for the simulation of lubricated contacts allow
to predict friction losses, hydrodynamical support and minimum film clearance for a
large variety of mechanisms. Considering devices where cavitation takes place, the current
mass-conserving modeling is not suitable to impose a Dirichlet condition different from the
cavitation pressure. In this chapter, extensions for Elrod—Adams model are explored. These

extensions are one of the main contributions of this work, and they were published in
conference papers (JARAMILLO; CHECO; BUSCACLIA, ‘ZOflGa; JARAMILLO; CHECO:
BUSCAGLIA, 2016b; JARAMILLO; BUSCAGLIA; l\«-l., 2017).

Let us focus on the mechanical setting of the Piston—Ring—Liner (or simply Piston-

Ring) introduced in Section 2.4.2. It is a mechanical device that has received great deal of

attention during the last years, where the setting of the boundary conditions for pressure
considering the Combustion Chamber Pressure (CCP) time variation may lead to more
accurate results. This has been shown in some recent papers (h-"IORRIS et at, 2014;

MORRIS ct (LL, 2015) and in the current work by means of a mass-conserving model.
Hereafter the frame of reference is that where the upper surface (ring) does not move
horizontally (ml—axis) and the lower surface (liner) does not move vertically (x3—axis). The
configuration of the contact between the lubricant and the ring just after the explosion in
the combustion chamber is depicted in Fig. 3.01, where the liner is moving with speed
(7 > O, The boundary 89 is partitioned as 89 : F0 U F+ U I}. On F0 the pressure is set to
p z 0 and on F+ it is taken equal to the CCP, denoted pcc(t). Periodic conditions are set on
R. The boundary conditions for the fluid fraction on the inlet (oil-feeding conditions) are
specified in each case. In the next section, we present a mass-flux continuity condition that
will play an important role when taking the Elrod—Adams cavitation model as a starting
point for this Chapter goal. For sake of simplicity, along this Chapter it is assumed that
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there is no relative motion of the surfaces along the avg-axis (i.e._, 17 = 0).
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Figure 3.0.1 — Left: scheme of the Piston-Ring system. Right: decomposition of the domain and
boundary conditions.

3.1 The mass—flux continuity condition

\, .

0.6 0.8 1

(El/L

Figure 3.1.1 — Typical stationary solutions for the Piston-Ring for two values of pcc. H = 1 am,
L = 1 mm.

Denoting by mm“; the connected components of 90 — {9 < 1}, it useful to
introduce the notations:

i=l

The development presented in Section 2.3.2 holds for pcc(t) = 0, and a typical

stationary solution of that case is shown in Fig. 3.1.1. For that solution the partition
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Q : Q+ U Q6 U Q5 shown in Fig. 3.0.1 a) corresponds to Q+ :]0,fi1], 6 : fl) and
6 Zl51,1[, with 51 x 067. Figure 3.0.1 b) illustrates also the rupture or separation

boundary, contained in 8Q6. The set GQB also contains the outlet boundary where p : pcc.

Thus, if pCC is slightly augmented, it is natural to expect that the whole region Q, where
the film is a mixture of liquid and gas/ vapor, will pressurize up—to pee. While the separation
boundary will move in order to re-accommodate mass—conservation.

An example of the above mentioned expected solution is shown in Figure 3.1.1 for

the case pcc : 50 bar. There, p is obtained integrating the 1D Reynolds equation (2.12
with p constant) in the interval [0, 52] and imposing p(0) : 0, p(fi2) : pCC and 59711 (fiz) : O.

The fluid fraction is set to 9 z 1 on 10, 52] and 6(x1) = h(fi2)/h(x1) for 1:1 6 ],6’2, 1]. In this
case Q+ :]0, flz], Q6 : (Z) and Q6 :]Bz,1[, where 52 < B1, which can be interpreted as a
movement of the separation point to the left due to the higher value of pee. This proposed
solution conserves mass since fig is a rupture point and the Rankine—Hugoniot condition
(2.25) is accomplished there.

In this last construction a null pressure gradient condition was imposed, nevertheless
for pCC > 0 this is not the only possibility. In fact, the condition 35 z 0 at the rupture
points in Section 2.3.2 was a necessary condition since in that case the pressure in Q+ is

higher than in Q0. But this restriction does not hold between Q+ and Q5 (where p : pee).

In fact, a non—null pressure gradient accomplishing the Rankine—Hugoniot condition (2.22),
reading _ 2

(1—0O>B=(1—00)%——h-@
_

, (3.2)
1—fi—

is possible in this case (with B 2 gig being the interface speed). Particularly, in the
steady-state, where fl : 0, the pressure gradient in 5 can take any value between 0 (for
90 z 1) and E}? (for (90 z 0). While in the Elrod—Adams model mass-conversation implies
00 z 1 and 64173)“ : 0, this time (with pCC > 0) one may choose 90. This represents a loss

of uniqueness already stressed by Buscaglia ct (11. (2013) in a work where the transport
speed at the cavitated regions was allowed to be some value in the range (17/2, U] In this
thesis the transport speed at the cavitated regions is fixed to U /2, which corresponds to
the transport speed for the Elrod—Adams model.

Remark 3.1. Two typical values for (90 in Eq. (32) can be found in the literature (PRIEST
et at, 1996) for the steady state, 90 z 1 and 00 : 2/3. The former corresponds to the
Reynolds separation condition (null pressure gradient) and, for h continuous, it is equivalent
to the Reynolds cavitation model presented in Chapter 2. The latter corresponds to

8p _
21217

505—1
— 7, (3.3)

z1=l3

a rupture condition that was computed by Dowson and Taylor (1979) based in the reversing
. . a . , ,.-,flux condition (9—1;

zzhu : 0 111 the flux profile (2.1),
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3.2 The continuous problem
Here an extension of the Elrod—Adams cavitation model (ELROD; ADAMS, 1974)

is presented for certain situations where the Dirichlet boundary condition for p differs
from the cavitation pressure. This is done regarding the situation of the Piston—Ring and
its time-dependent boundary conditions.

Fix a domain Q 6 RN, N 2 1,2. Where Q =]O,L[><]0,B[, F0 = {(O,$2), 552 E

(0, B]} and F+ : {(L,x2), 302 e (0, Bl} for N : 2; and Q :]O,L[, F0 = {0} and F+ : {L}
for N : 1. And consider the problem of looking for the real fields (in suitable functional
spaces) p(x, t) and 9(x,t), x 6 Q and t 6 [0,tf > 0], such that

V- <£Vp> — gag—1019) :% in Q, (3.4)

p 2 T(0) in Q, (3.5)

0 S 9 S 1 in Q, (3.6)

(p — T(9))(1— 9) z 0 in Q, (3.7)

p z 0 on PO, (3.8)

p : pcc on Er, (3.9)

9 2 9m on BQ, (3.10)

where U E R. and T is an operator that defines the restriction on p as a function of 9. The
standard Elrod—Adams model is recovered by taking T E 0. Notice that in that case, since

p is continuous in space, the boundary condition (3.9) implies the existence of a full-film

region (6 z 1) at the outlet whenever pCC > 0, as it can be inferred from (3.7). This issue
forbid solutions like the one shown in Fig. 3.1.1. Thus, when pCC > 0 the modeling of such

physical setting by means of the Elrod-Adams model is not satisfactory.

As shown in Fig. 3.01, one expects the presence of a region Q5 where the fluid will

be separated from one of the surfaces (9 < 1). Since in that region there exists a mixture
of gas/ vapor and liquid that does not constitutes a full—film, it is reasonable for the gas
present there to be at the same pressure imposed at F+. Thus, a first soundly definition
for T is given by

pan) if x e 95
. (3.11)

0 ifxengum
(T9)(X) = {

The model obtained that way, i.e., Eqs. (3.4)-(3.10) along the conditions (3.8)—(3.10) and
definition (3.11) is a natural extension of the Elrod—Adams model. Just like in that classical
model, the extended one does not impose some restriction related to mass conservation
and it consists of a sole partial differential equation for the whole domain. Unfortunately,

this extended model is ill—posed as proven in the next result.
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Proposition 3.1. Set N : 1. Assume pCC > 0, U > 0, h 6 0162), h > 0 and there exists

some arm E]0,L[ such that h’(x1) < O for £1 < arm, h’(x1) > 0 for $1 > so”. Then, the
stationary problem associated to problem (3.4)-(3.11) admits infinite many solutions.

Proof. Let us introduce the function A : Q r—> R, defined by

~ fl MS) — Mfi)
Z .12Aw) U [0 MS) as, (3 >

where U : GMT. The function A has the following properties:

Sign A' = —sign h’, and A* z: 111ng E Rf. (3.13)

In fact, computing

,_dA_~ 541W) Mfl)—Mfl)_ ~, /5 1
A “ dfi ‘ o h3(s)

d‘s
h3(fi) _ Uh (5)

o h3(5)d8’

the first property comes directly. Because of this and the continuity of h’ and the hypotheses
011 its Sign the existence of A* is clear, moreover A" : A(mm).

Introduce also the family of curves (pmlfiwl) on Q, 6 6 W", L], defined as

~
1-1 h(s)-hge)

paw“) : Ufo h3(s) ds ”1 6 lo,“ ,9<fl>(w1)=
1 331 E [as],

(3.14)
WW) 3:1 emu £55 Mei/3,131-

By construction and the definition of A, (pm), 9([3)) is solution of the stationary problem

(p—T(0))(1—0) 20, i119

0 S 0 S 1, in Q
(3.15)

p(0) : 0,

ML) = A03),

9m) : 1

with T defined by 3.11. These curves also accomplish p 2 T(9). In fact, notice that for
3 E ]0, B[ the derivative of pm) accomplishes

(1pm

dl'l
M8) — M5)ZU

has) ’

131=S

(3.16)

therefore pm) has a unique critical point in [0, M, which is a maximum placed at A < arm

such that h()\) : hm) and by definition

p(fi)(/\) : U/OA MSZS—(Sw) ds 2 0/0)‘ h(sil3_(5})l(/\) ds,
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thus

We) : A(/\). (3.17)

Fix now some pcC e ]0, N], we have shown the existence of a solution for the stationary
problem associated to problem (3.4)-(3.ll). This solution corresponds to the unique pair
(pm), 9M) for which pw 2 A03) = pCC (this is depicted in Fig. 3.2.1). Next, by a continuity
argument around the solution (pmlfihfl) it is shown that there exist infinite many others.
For this, the next family of curves is defined

1

~ ~~ fr1 W‘is 3U jail [12150615 + [EL—w,
() <_ (44—7 [L'zztsfiis ‘l' Pig/VG) 1U1 6 [078 + 7]:

p('5'7)(:131) = .0 FIG)“

pcc {U1 61/3 + ”y, L].
(3.18)

2:1

Figure 3.2.1 - Examples of the curves A03) for different values of fl, and the corresponding curves
p93).

1 a: E 0, /5’ ,0(fio)(ml) = 1m

1 l l

(3.19)
14133) — 96 1'1 em + 7, L].

To specify 96, observe that condition (3.2) (with B = 0) implies as a necessary condition

(Wm
(1 9 ) (3 20)z — 0 +7 ,

dw 3 1103+ w
thus, taking 90 = l — 96, one obtains

1
v

1, (13-7)

96 = 51433 + a)? (p (3.21)
dl'1 Ii=/3+"/

We affirm that there exist 6 > 0 small enough such that all the curves (pmfl), 0m“) with

7 E [0, cl are solutions of the stationary problem associated to problem (3.4)-(3.ll), which

is the result we are looking for. To prove this, it is enough to show that, for 7 small enough,
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pm”) accomplishes the restriction p > T (9) and that (96 is well defined, i.e., 0 S 06 < 1

and thus 0 < 60 S 1. In fact, using the definition of A(fl), we have

dpwe _
(7 Whig“) <_ fi+e_l_ 8_ flh(,8) 8)da z1=fi+e~hw+€l2+ hug—tats

/fi h<s>d oh<s>3d

_ 0 1 eerie/hm“) _ MU/hmei
We“) 1+ {Hatfield/B h<s>3

ds /0 h<s>3 “ll”
: O and since the last equation shows

1:1:
where we used the properties of h. As J’——dW)

(1:51

that —%L?
+

is continuous and positive for e > 0, we have that 96 is well defined for 6
3:1: 6

small enough.

Finally, observe that the definitions of pm” and pm) clearly imply

(Bx) (fl)—p“p
Comm) J? 0

Additionally

e if 53 we “6 1 ~ W)(pW— p<fi>)( >— UBJJ—”dg(/ h(s3d8—/fl stl+U/o herds

hmds<1-
OfiE(sé)gds+ffl+eh(i‘Tfll

s)e h(53+ “48“ ds

(3.22)

therefore Hp‘fi’el — pm) ——> 0 and we conclude that
CO([0,fl]) 6—>0

(if) _ (fl)“p p com) e_—>o>

D

Remark 3.2. Notice from this last proof that when considering the family of curves
(pm), 9(fl)) and fixing 00 z 1, there exists a maximum value A* such that if pcc > A* there
is no stationary solution. And when pee S A* that solution exists and it is unique.

In Section 3.4 it is shown an example where even for 60 fixed there exist multiple
solutions for the stationary case. For this, in the next section it is presented an algorithm
to handle numerically more complex geometries.

3.3 Extending the EIrod-Adams algorithm
The domain Q is divided in NI1 >< N9,2 cells (using half—cells at the boundaries)

and denote by I the set of indexes of the cells corresponding to internal nodes (where the
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unknowns are placed). A finite volumes scheme for Eq. (3.4) is used, for this, the x1 flux

component going from node (i — 1, j) to node (i, j) can be discretized by

h3 8p U 1 (h?_1<)3+(h?»)3pt-—p?_ » U n nN J J 7] L] + Ehi—IJ i—1,j7 (3-23)
12mg;1 2 N‘12u 2 A351

where an upwind scheme is used for the Couette term. Balancing the fluxes on each cell

(for the 302 components only diffusive terms need to be included) and discretizing time
along an implicit scheme for the temporal term % one gets a system of equations that
reads for each (i, j) E I

6133172} + 633 92; = Cm <1)”, O”), (3.24)

p33- 2 T (03.4, (3.25)

0 S 92;- § 1, (3.26)

<ij — T (anhj) <1_ 0:3) I O) (3.27)

where

n n —-O n 0 — n _ nCm“) ’0 ) z _ “w pi—Lj _ adj Piaf _ (193713sz _ “$4 Pig—1 — eiJQ i—1,j Jr fj, (3.28)

with

(L232. 2 52114 + s?_1’j+(Ax1/A$2)2(szj+l + 3214) , egg : (UAazl + 2Awf/At) hzj,
033° 2 ‘5?+1.j’ “who 2 ”ii—m
agg- : —(A:t1/Ax2)2 321-4, afij : —(Am1/Aa:2)2 327+”
6530 Z —UAm1h?_1J-, Sililo'il 2 fl «ha-lg + (hilil,ji1)3) ,

fgjj : 2Amf/Ath25102j—1.

- o —0 0 o— —o - < .Notice that agg, egg, [3 2 O, and each term at? , “ti , aij, am , em is non-posrtive,
thus OM (p", 0”) 2 0. Alt (1980) studied this type of discrete system proposing a fixed—

point method to solve it. h'lariui and Pietra (1986) also studied this system showing

convergence of some Gauss-Seidel—like algorithms to the solution of the discrete system for

the case T E 0 (standard Elrod-Adams).

Dropping the superscript n and denoting by N the number of unknowns, the system
of equations ($3.24)-(3,27) can be written as a fixed-point problem by defining the operator
BT : RNX2 r——) RN“ as

01.1(P10)—e?9 . Ci,'(P79)_e?,0‘
“is (TBMJ’ 1 If “is (Tokay Z 0

Ci,j(17,9)~a?9-
T(9)i.j) -f Ci.j(P79)—e?°- ’

T(9)i.j, —WL—- 7.5??? (T—Lem’ < 0
BT(p, 0)i,j 2 (3.29)

for each cell (i, j) e I. This way, the Eq. (3.24) can be rewritten as the next fixed point
problem
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Let us split the set I as I = Io LOJ Ir, where Ir is the subset of cells in the region 96
and I0 : I \ Ir. A solution of Eq. (3.30) accomplishes automatically the conditions (13.25)

and (3.27) for any (i, j) E I. However, the only immediate condition accomplished by 02-7]-

is that 9i,j S 1. In fact, we have

Cid-(19,9) — a?3T(9>i7j 2 fig“ + SA$1Ili_1’j9i_1’j+ AilJ’

where fi,j -l- SAmthl’jQFLj 2 0 and

Alfj = Si—1,j(pi—1,j — T(9)i,j) + 8i+1,j(Pi+1,j — T(9)i,j) +
+ (12 {Sm—1 (pig—1 — T(0)i,j) + 513341 (pi,j+1 — T(9)i,j)},

with q a constant not depending 011 p nor 0. Thus, (91-J- may be negative in the cells of Ir
for which some of its neighbors belongs to the set I0.

The discrete version of the operator T = T6 is defined as follows

cat 'f f,’ EI,.UV6
met-J = p (l f (f "l

, (3.31)
0 if ('1,,_7)§£IrUIC

Where I6, 6 6 {0,1}, corresponds to the indexes (i, j) of the cells contained in 9+ such
that some of its neighbor cells (i.e., {(i i 1, j), ('17,j i 1)})) belongs to QB when 6 z 1, and

I6 = (ll for e z 0. Figure 3.3.1 illustrates the action of the discrete operator T5. Alt (1980)

proposed an algorithm to solve Eq. (3.30) for the case Te E 0. Algorithm 1 is a natural
extension of that Alt’s algorithm for T6 non-trivial.

Next it is shown that the Eq. (3.30) along definition (3.31) for the discrete operator
T6 is not a well—posed problem. It is also shown the relation between this ill-posedness and
the mass—conserving condition (3.2).

Te ‘W
q

Jaqweqa

uonanuion

01

«V? full-film zones I: cavitated zonesI: separated zones -T(9)- _ _ {0
ifs = 0

.,J —

pcc ife=l

Figure 3.3.1 — Illustration of the action of the discrete operator T6.
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Input: h: gap function; pn’l, 0"“1: initial guess; 6T: parameter defining T
1 begin
2 Ic—— 1;

3 pn,0_pn—1 0n,20 071—1.

4 ani} __pn,,.0 an,,___k_,0n,0.
5 while change > tol do
6 fori:1.Nx1,j:1..Nx2do
7 if (c”- — e99.)/a990 z T(0"’“),j then
8 piJk:(C 693W”;
9 diff — 1;

10 else
11 9ij : (Cw~— a90. T(9"k),j)/€?j;
12 p99—_ no"my,
13 end
14 end
15 end
16 change = up“ — pr“ H + no“ — err-1 n;

17 anc—H Z anc; Omit—H _____ On’k;

18 k z k + 1;

19 end
20 return pnvk, 9M“;

21 end
Algorithm 1: Adaptation of the numerical algorithm presented by Alt (1980) to solve
system (3.30).

3.3.1 A second approach for transient ID problems
In this Section a particular 1D model is exposed to tackle the issue of the existence

of multiple solutions for the stationary case of the system (3.30). This is based in a work

by Ausas ct al. (2013) for another type of extension of the Elrod—Adams model. The
basic idea is to set a model for 90 in Eq. (3.20). Here the value 90 z 90 dzef 2/3 is chosen.
This corresponds to the value of 00 obtained in (2.7) when the flux reversion condition
Q9 : 0 is imposed. Moreover, in the work of Coync and Elr‘od (1971) it is shown that32 hth
this value of 60 agrees with experimental results for a typical surface tension of mineral oil

(z 0.03 N/m)
Here we propose to impose 90 z 90 in the mass—conservation equation (3.2), and

then to solve that ODE coupled with the 1D version of the continuous problem (3.30). In

that case, Eq. (3.2) reads

@_2_ 1 hm)?
dt“2 1—é012u

p’ (B—)- (3.32)

A front—tracking strategy is set to solve this equation in time, i.e., given the value of B at
the initial time t = 0, denoted 50, the cells at both sides of fi are modified to accommodate

the fluxes at the interface x1 : fi. For this, the next hypotheses are made:
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0 fit) is a rupture point. Thus,
(is (7

a < 5
o The pressurized region at the left side of beta is at least of length 2Am1. Thus,
there must exist a curve IO?) such that O S ;I:(t) < /3(t), 9([.t(t),/3(t)]) : 1 and
lm(t) — fi(t)| 2 2Arc1 for all t.

i =i5 5
.

we")
.

w,(t")

O 0 IO 0 O
B"

571—1

0 O O—I C O
Wan—1)

' out“)

- _ -n——1
13 ~ 1/3 + 1 we”) w,(t")

t" C O 0—- ‘ 0
fl"

may
t"‘1 C 0 IO 0 O

Xi—é. X1 Xvi-é wean—1) w(tn_1)

z" = 2'"_1
fl fl Mt") w,(t")

O C 0—611} 0 O

EBn—l

um O O I. C}
coffin—1) w,(t"‘1)

Figure 3.3.2 — Cells scheme around the rupture point B” for Algorithm 2. Adapted from (AUSAS
et (LL, 20l3).

A Finite Volume Method is adopted, in Appendix A it is presented a description of

these methods for the cases where the cells are allowed to move. Here it is assumed that
the nodes at the right side of 6" are always separated (0 < 1) and thus p? : pcc(t) there.
The cells partition TA“ of the domain ]0, L[ at time t" depends on time: the center of
the regular cells is placed at Xi = 11.43.11 and its boundaries are X -

5 : Xi — A:1:1/2 and
Xi+§ : Xi + Arm/2; the cells at the left side and the right side of the rupture point are
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denoted by wg(t) and wr(t) resp., their limits depend on the position of fl at both times t"
and t”_1, a detailed description of these volumes is given in Fig. 3.3.2.

Before describing the algorithm Eq. (3.32) is discretized according to

(7 1 h <5")2 (pee ‘ Pit—1)
V"=-— A . amfi 1— 90 12” 5" — Xig—l

( )

The numerical procedure is as follows:

1. Compute the pressure field 1)" and the saturation field 0" at the left side of 6“.
For this, denoting by i; the cell placed at the right side of E" (see Fig. 3.3.2), the
equation for p? and 9? at the nodes i such that z' < ig — 1 reads

3

”11> 11— n —

Ax1(h?6?—h?‘19?‘1)— At QM U n n
12a A361 5 H H

< 3< >hn 1) n _ n —

z+§ pi+1 pi—l
__ —h7.197‘ . . 4

12a A531
+ 2 l l (33 )

while at i z i; — 1 the discretization depends on the advance of fl. The volume h6

at time t" is set to the volume at time n ~ 1, denoted M"4 plus the volume flow

—At (Qg’e + Qg’r) and the volume variation due to the movement of fl:

(fin — XZH) hie? = M7“ — At (6231+ oar — vg‘lh (to) (3.35)

where

(
3

hill) (pn _— p” 1)
—

n 2 _ 2 ’ ’__* _ rt 07.1 —1 3.36Qflj 12” Am + 2
111—1 1—1 ( ) ( )

is the flux entering at the left side of the cell i and

n _
h(fin)3(pZC—p?_1) U

nQfiJ— [~Wm+§h(fi ) (+1) (3-37)

is the flux entering at its right side. In these two formulas (—1) and (+1) corresponds

to sign of the normal vector at the cell interface. The volume content at time n — 1

of the cell wean”) reads

_. — —- ; . . _1fi" 1
—" Xn—1_§ hl-Ln-lieflzfi if 22 z z;

B 2 1/1 in
— _ —1 —1 —1 —1 - ~

__ ~n-—1
Mn 1 I 571 1 ,_ Xi7L—1__§ hfit_107}t~1 “l“ Awlhfil_1_197’n_1_l If 22 — 7/5 —‘ 1

fi 2 113 7, Z/j 1/3

_ __ .. . . . _1s“ 1
— X.n_1_1. hfi,,_119’.t_11 If in z z" + 1

z — fl fi
15 2 in 1/1

(3.38)
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The Courant number gAA—t is restricted to be lower than 1/2. This way, since we are

restricting V5 to be lower than (7/2, the point 3 advances a distance smaller that
Alla/2.

2. Solve the transport equation for 0" at the right side of 6” by means of an upwind
Finite Volume scheme. This is done depending on whether the rupture point has
passed through the point X 1744—1 (moving to the left), it has passed through the point
X12—1 (moving to the right), or it has remained between these two point (moving to
the left or right)

Case ig = ig_1 — 1: For this case, schematized in Fig. 3.3.2, it is imposed

5; Z 90 (3.39)

and mass balance at the left side of 5 reads

(Xilni+2_ fin )hn7}00+Am1h/ig +1€i11+1— (Xi/n" 1+1 __/B7l* 1)hi"__1n_1 -—-n
11

xx 13

U
—At[—Qg’r+Vfl" llz(fi“)+ 51111710111;] (3.40)

. . __1 . . . .Case 2g 2 z; : Similarly to the prevrous case, mass balance gives

n n n _ _ n— 1(Xin+1"" fl>hl;;9i/TJL_ (Xin—hl1 6 >hi;;_1li;;_1

(7
—At[—Qgfivfi” 1h(fi")+ 2417193;J. (341)

“l

Case ig : $4 + 1: In this case the cell 12 — 1 is fulfilled, i.e.,

55—1 Z 11

and the mass in the next cell (to the right) is accommodated by

(Xig+% _ Bn>zn in __(/BTL__ fln_ 1) h.7,_119:%__i11+<X71.—~ 1+3 _ fin)/2,—_11 97,1
113 +111,1+1

U H._At[_ Qfliwvfin lh(/Bn)+ 521,177}1+lz71—
1+1]- (3.42)

In these three cases the mass balance for the rest of the cells at the right side of 5
reads

U
Axlh?6"— A1:h" 19” 1+At [Um1101111— 2113719571}. (3.43)

3. Compute the new position fin“:

Bn+12 fin +At V371, (344)

with V5" given by Eq. (3.33).
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This numerical procedure is resumed in Algorithm 2. In that algorithm the discrete problem
at the left side of 5“ (the Elrod-Adams model) is written

flop? + 62” 9? = 041939"),

p? 2 0,

0 g 93]. g 1,

p?(1—9?)=0,

with the arrays C, e and a are defined as follows:

Ci (If, 9”) =

with, for i < i}; — 1

00 _ n nai — Si+1 + Si—lv

+0 __ nat — _8i+17
6170 : —UA561 [til—11

f" : 2Axf/Ath?‘19?_1.
Z

and for i : ig — 1

00 Ax r n_ TL

ai — Si—l +
fi"—-X,;g_1 B’

aj'o 2: 0,

e;0 : ~UA$1 11511,

n_ A551 n-l A; n nfi — 2 At M + 61L_Xi};_185 pCC)

where M" was defined in (3.38).

—0 n +0 71. —0 n n*% pi—l “ ai pi+1 “ ei ei-l ‘l’ fi

690 Z (UAxl + 2Axf/At> h?’

ago

5&1 : T5; (0193 + (Wills) >

_. n_ _8i—17

_ fin—Xin_%
ego : UAacl +

2£——>Azz:[a

At 1 i a

0 nai— : _3i—1>

8211 = 1—217;((hi>3 +< 1-103),

33 = éhwn)?

(3.49)
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Input: h: gap function; p"“1, 971—1: initial guess; fioz initial rupture point
1 begin
2 forn:0ton:NTdo
3 set pm” and 0“);
4 compute fig;

5 k z 0;
6 set the arrays C, e and a;
7 while change > tol do
8 fort=1...ig—1do
9 if Ci—eiZOthen
10 pink : (Ci — ei)/ai;
11 91W“ : 1;

12 else
13 02“ : 01/61;
14 in?“ = 0;

15 end
16 end
17 end
18 change = Ilpn’k — pm”l H + ”497”6 ~ 9"”“’1H;
19 pnJc—l—l = anc; 0n,k+1 Z amic;

20 Is : k + 1;

21 end
22 if fig < i2‘1 then
23 set 9175; : go and compute 91”;H with (3.40);
24 end
25 if ig = ig‘l then
26 ' compute 0?2 and 917;+1 with (3.41) and (3.43) resp.;
27 end
28 if fig > ig—l then
29 | compute 955]; and 953;H with (3.42) and (343) resp.;
30 end
31 forizig+2...N$1do
32 | compute 9? with (3.43);
33 end
34 if n < NT then
35 I compute fin“ with (3.44)—(3.33), and compute ig“;
36 end
37 end
38 end
Algorithm 2: Solving the system (3.30) along a front-tracking algorithm for the rupture
point 5.
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3.4 Numerical examples
In Section 3.4.1 stationary solutions of the Eq. (3.30) along Algorithm 1 and

some modifications of it are presented. First, it is shown that the solution at which that
algorithm may converge depends on the initial guess (190,00). This issue is worked out by
setting a value for 90 in condition (3.2), and different solutions for many values of 90 are
presented. Finally, a 1D geometry where there exist at least two stationary solutions for
the same value of 90 is exposed. In Section 3.4.2 transient for the Eq. (3.30) are shown by

means of Algorithm 1 and T : Tezl. It is observed that such configuration imposes 90 z 1

or, equivalently, a null—gradient condition for pressure at the rupture boundary. Finally,
Section 3.4.3 shows stationary and transient cases where Algorithm 2 has been used. It is
shown that such simulations corresponds to the imposition of 90 different from the unit,
which is done by solving Eq. (3.2) in time.

The physical parameters common to all these simulations are shown in Table 2

Symbol Value Units Description

pg 1000 kg/m3 Liquid density
Me 4 x 10‘3 Pa-s Liquid viscosity
Pcc 0-100 bar Pressure condition at P,
U 10 m/s Surfaces’ relative speed
H 1 am $3—aXlS length scale
L 1 mm x1 and avg-axis length scale

Table 2 ~ Physical parameters for the numerical examples of Section 3.4.

3.4.1 Stationary cases along Algorithm 1

3.4.1.1 1D cases with e : 0,1
Let us fix the 1D domain Q 2 ]0, L[ and the surfaces’ gap

(as. — 11/2)?h(a"1):1[/.im]+ QR
(3.50)

The stationary numerical solutions obtained here correspond to time—converged results
of Algorithm 1. Proposition 3.1 establishes the existence of multiple solutions for the

stationary problem associated to the system (34)—(311). These multiple solutions are also

found numerically by means of Algorithm 1 with T : T620. To show this, a parameter
BO 6 [0.5, 1] is fixed and the initial guess solution (po, 90) is defined as

0 ‘f L < 0 1 if x L < 60
p0($1) =

1 ml/ 6
and Howl) : h 0

1/
(3.51)

pm if xl/L z 50 £7; if ml/L 2 no
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Notice that p0 = Two). Taking 50 = 0.5, 0.7 and 0.9 nnn the resulting converged profiles

for p and 9 by means of Algorithm 1 are shown in Fig. 3.4.1 a), b) and c) respectively.

The corresponding solutions for T = T6=1 are also shown in Fig. 3.4.1 d). e) and f).

3
6:0 13° = 0.5 5° = 0.7 13° ‘= 0.9 1.00

a) b) C)

2.5 p _ 80

2 .

._ h 60
__E n.5 1.5

40\1 he
00 = 0.32 00 = 0.49

00 = 0.99
70

~ h. a,| “095 g T(") ° filu u .

n. as «a!
p0

0 0.5 1 o 0.5 1 0 0.5 1

zl/L zl/L 21/L

3
6:1 6° = 0.5 5° .= 0.7 5° = 0.9 md) 6) f)

2.5 - an

2 .

—— so
a “5i 1.5 i

40
1 ' l

I 00 = 0.99 90 = 0.99 on = 0.99
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0-5 ' Si 2 s ' '

lI' II
511
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“l

0
o 0.5 1 o 0.5 1 0 0.5 1

31/1' zi/L zl/L

Figure 3.4.1 — Numerical results by means of Algorithm 1 and different initial solutions.

Regarding the results obtained setting T = To. for 80 z 0.5 the resulting separation
point is at B 2 0.6. The discrete derivative of p around 1171 = 13" is approx. null and 00

is near to the unit. For [30 = 0.7 the resulting separation point is at /3 z 0.7. This time
the pressure shows a clearly positive derivative and, compensating this positive gradient,
one obtains 90 D: 0.82. For /30 = 0.9 a positive gradient is also observed at the separation
point 5 2 0.9, this time a cavitated region (where p z 0) is developed and 00 2 0.49.
This existence of multiple discrete solutions is expected by the result obtained for the
continuous problem in Proposition 3.1, where the existence of multiple solutions for the
continuous problem is proved for this type of geometries. In that proposition, it is used
the fact that the mass-conservation condition (3.2) does not restrict 90 to a unique value.
N umerically, it is observed that setting T = T€=1 instead of T = Tfizg the discrete solutions
(pk, 0k) converge to solutions where 90 converges to the unit (when refining the time and
space meshes) and the numerically computed gradient Vp - n converges to zero at the
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rupture boundary. In that sense, we say that T : Tfizl imposes a null-gradient condition.

3.4.1.2 A maximum value for pcC

In Proposition 3.1 it was shown that for the particular case of a parabolic static
1D ring there exist a family of analytical solutions such that 190 = 1. That function A has a

unique maximum value A’“. It is worth noting that for h. symmetric around 3:1 = L /2 then
A* = A(L/ 2). This is also observed numerically for R = 64 (see Fig. 3.4.2), Algorithm
1 along T = TE=1 fails to converge to a solution for the initial time t = O. The physical
interpretation of this is that there exists a value A* > 0 such that the mass flux on
the domain Q is reversed (going from the Combustion Chamber to the crankcase) when

pCC > A*. which is a non desirable phenomenon. The prediction of this reversing flux is

also made in Section 3.4.2.2 for more complex cases (transient cases with a 2D geometry).
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Figure 3.4.2 4 Numerical results by means of Algorithm 1, T = T=1, fig = 0.9 and different
values of pCC < A* z 118.2 [bar].

3.4.2 Transient cases along Algorithm 1

3.4.2.1 One-dimensional cases

A single ring

There results of a simulation for a. single compression ring moving towards the
combustion chamber at constant speed are presented (see Section 2.4.2). A fast variation



3.4. Numerical examples 53

of the combustion chamber pressure pCC is modeled as the Gaussian pulse

2

pcca) 2 Ace ' exp (_%(_t__a2t_e)> - (3-52)

When modeling the Piston-Ring—Liner, few works have considered the effects that the
time dependence of pCC can have on the dynamics of that system. In the last years, the

group of Morris et al. published two works where this variable is taken into account and
the effects of disregarding it are discussed (MORRIS et al., 2014; MORRIS et (LL, 2015).
However, in their works a non—conservative model was considered. Here it is presented an
analysis similar to those performed by Morris’ group but by means of the mass—conserving

Algorithm 1 with T : Te=1~

The parameters setting is given in Table 3. The Newton’s equation for the ring reads

Symbol Value Units Description

W 4 X 10”3 Pas Lubricant viscosity
(7 10 m/s Lower surface speed (liner)
L 1 mm Domain length along 301

hleft 3 nm Oil feeding condition
RC 64 mm Ring’s curvature
MR 48 x 10“3 kg/m Ring’s mass per length unit
l/Vl’S —40 N /m Ring’s constant load
ACC 0—100 Pa Explosion amplitude
te 0.015 s Explosion time
a 0.0025 s Explosion time width parameter
yea 0.9 — Back-pressure factor

Table 3 — Default parameters.

d2Z
rd}? : Wh + WPS + W“, (3.53)

where
L

Wh Z/0 p(:v1,t)dx1, WCC : _'chpcc L~

WPS is the elastic response of the ring due to the deformation needed to fit it into its
place. The term WCC models the load on the ring due to the gas pressure on its back. This

pressure is transmitted to the ring’ back through the gap between the ring and the piston
as depicted in Fig. 3.4.3. Equation (3.53) is solved by means of a Newmark’ scheme.

The time averaged friction force per unit width, oppose to the movement of the
ring along the xl—axis, is computed according to (CHECO et al., 2016)

_1T1L ahU hap (7
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his];
cylinder wall

Figure. 3.4.3 — Physical setting for the free single ring simulation.

where [LU denotes the upper surface function. The rings position in time, Z(t), is shown
in Fig. 3.4.4 for several explosion amplitudes Ace. The results taking T = 0 in Algorithm 1

are also shown (corresponding to the Elrod—Adams model). Notice that for all the cases
the ring reaches rapidly a stationary position around Z x 2.8 nm returning to it after
the explosion. It is observed that pee = 0 a minimum clearance z 44% smaller than the
predicted by its extended model, which leads to a difference of z 5070 in the time averaged
friction force relative to the one computed with the extended model (T = Tezl). This
happens due to a higher hydrodynamic force (Wh) and due to a proper accommodation of

the combustion chamber pressure at the rupture boundary when setting T = T=1.
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Figure 3.4.4 ~ Ring position for different cavitation models. T = 0 represents the results of the
Elrod—Adams model. T = TF=1 are the results when accomodating p —_— pcc(t) at
the rupture boundary. The gray continuous line shows the normalized shape of
pcc(t). The three times denoted by A, B and C (for Ace : 00 atm) are detailed in
Fig. 3.45.
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Focusing on the results for T = T=1, one can notice from Fig. 3.41.41 that between

t = 5 x 10~3 s and t z 10 X 10‘3 s there is a slight change on the ring’s position Z(t) for

the three values of ACC considered. After that, a fast decrease in Z (t) is observed. This
change in the vertical speed of the ring has an interesting explanation Let us recall that,
since WCC is directly proportional to pcC and W ps is constant, the load applied on the
ring ll” : Wps + l/VCC increases monotonically with pcc. For t < 10 1118, this increase on
the applied load is mainly compensated with an accumulation of fluid at the left side of
the ring (Without much change in Z(t)), i.e., the reformation point moves to the left. At

t f: 10 ms the left side of the domain is fulfilled and the augmentation of the applied load
is now compensated by a falling of the ring, an example of this is shown in Fig. 3.15 for

the case ACC : 50 atm of Fig. 3.4.4. As it can be observed, the oil—feeding condition is set
to hleft z 3 pm.
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Figure 3.4.5 ~ Pressure field, saturation field and ring profile in time for the one—dimensional

example of a short explosion model for pcc(t). These details correspond to three
times (A, B and C) of the ring’s evolution showed in Fig. 3,-1.1.

3.4.2.2 Two—dimensional cases

A single ring with textures

Here the 1D case presented in the previous section is modified to a 2D setting
such that the boundary 896 = {T((9) : pee} fl {T(9) : 0} is non trivial. Moreover, that
boundary evolves in response to the time variation of peed) and Z (t) The domain’s width
is set to B : 0.1 nnn. A 2D analytical texture is included on the ring’s profile, reading

(an — L / 2)2h(.1:1,x2, t) = Z(t) + +1LT(.L‘],$2) .
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The function In corresponds to a set of ellipsoidal pockets with a depth of 1 nm, the
details of it are shown in Fig. 3.4.0.

hL(l‘1,1'2)= 0 hL(zl,z2) = d\/1 — (11 — ar‘l’)/a2 —— (3:2 — z§)/b2

o 0.5 1

x1/L

Figure 3.4.6 — Texture function by composed by ellipsoidal dimples, its depth (d) is equal to 1

nm.

Time is discretized by setting the Courant number n z %

Space is discretized by setting Aml : L/512 and A302 : B/32.
fill equal to the unit.

The piston ring responded in a similar way to the 1D cases: the augment of WCC is

first mainly compensated by accumulating fluid at the left side of the ring and then, once
the left side of the domain is fully—flooded, the compensation is obtained by a reduction of
the distance between the surfaces.

Figure 3.4.7 shows the saturation field at several times along the corresponding
value of pcc(t) and Z (t) for AcC : 100 atm. The contour lines 9 = 1 are also depicted.
It is worth noting that these contour lines change in time. Additionally, there appears a
full—film region (9 z 1) for which the pressure is equal to pcc(t) at its boundary. This small

region (denoted Qt) shrinks around if 2 0.15 s and expands again after the explosion,
recovering the size and shape it had around if 2 0.03 s (compare the saturation field for
t z 0.03 s and t z 0.27 s). In the lower part of Fig. 3.4.7 096 and QQI are shown for
different values of the explosion amplitude Ace. Notice that when ACC is augmented ant
moves towards the rings center ($1 : 0.5 mm). The corresponding pressure fields are
shown in Fig. 3.41.8 for the t = 15 x 10‘3 s (the time for which pcc(t) = Ace).

These are the first simulations where the combustion chamber pressure is taken
into account along a mass-conserving modeling of the oil flow for the Piston-Ring—Liner

system. Among other type of numerical analyses possibles to be performed (e.g., energy
loses dependence on geometrical parameters), in the next examples it is shown that these
type of simulations can be used to predict a reverse flow, i.e., the flux of oil /gas from the
combustion chamber to the space between the ring or to the crankshaft.
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Figure 3.4.7 — From top to bottom: Gaussian pulse modeling pee“): saturation field for a “2D

free textured ring; details around QB for different amplitudes Arc.
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Acc = 25 atm ACC = 50 atm Acc = 100 atm

D (o'rm)
0.0e+OO l.5e+02
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lheio
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, i
Figure 3.4.8 — Pressure fields (surfaces) and saturation fields (on the x1 —£L‘2 plane) at for different

explosion amplitudes at t = te.
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Reversing flow

For the simple one-dimensional case regarded in Proposition 3.1 one has that there
exists a maximum value A* of pcc for which an analytical stationary solution can be found.

This was also observed numerically in Section 3.4.1.2, as for pCC > A* the Algorithm 1 fails

to converge. This loss of existence is here interpreted as a reverse flow that is out of the
physical configurations that our modeling is able to reproduce.
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Figure 3.4.9 — Evolution of Z(t) for Am : 25, 50 and 100 atm. In this case 700 = 0.1.

Focusing on the transient regime, in the previous example the force WCC was
relevant in order to prevent that reverse flux. To show this, here those simulations are
repeated but this time changing the back—pressure factor Vac from 0.9 to 0.1. The same
three values for Am, where tested: 25, 50 and 100 atm. For each one of the simulations it is
observed that when pCC begins to rise the ring augments its distance to the liner, instead
of diminishing it as in the previous examples. The numerical simulation is stopped when

Algorithm 1 fails to converge to a solution for the discrete fields p and 0 at a certain
discrete time 151”, which happened for the whole range of Aw explored.

The evolution of Z(t) in response to pcc(t) is shown in Fig. 3.4.0. Notice that all
the simulations ended when pcc(t) % 1 atm and Z (t) z 284 am. More details into this are
given by showing the pressure and saturation fields for Am- = 100 atm at t = 2.0, 7.0 and
7.3 ms (where the simulation stops) in Fig. 3.4.10. In the left side of that figure the surfaces
are colored according the local value of p, while at the left side they are colored according
to: red for the region {9 < 1}, and blue for the region {9 = 1}. It can be observed that
just before the end of the simulation the pressure field at the very left side of 095 tends to
reach pcc(t). Notice that in the one-dimensional examples shown in Fig. 3.4.2 the pressure
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profile for which pCC : 118 atm (2 A*, the maximum value for pcc) exhibits a similar
configuration. Thus, roughly speaking, it is observed that Algorithm 1 fails to converge to
a solution since it does not reach a solution that accomplishes the null—gradient condition
at the pressurized side of BQB, and this can be interpreted as a reverse flow when imposing
that condition on the gradient (by means of the operator T : TE). In the next example, it
is shown that this issue is also found When including textures in the moving surface.

”(mm)
00900 I 2 mac
mi ' d l0<1 l0=1

t = 2 ms, pcc(t) : 0.7 atrn ”35 H m ::s
”A N M M as

W)V 3.) ”H".
l

075

Figure 3.4.10 L Pressure fields (left column) and pressurized regions details (right column) for
some time steps of a free textured ring with flycc : 0.1. Immediately after t = 7.28
ms Algorithm 1 fails to converge.

A moving texture

Here the upper surface corresponds to a smooth ring (without textures) that is

fixed, i.e., Z (t) is constant in time and equal to 1 pm. At the initial time (t = O) the
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system is in a stationary state. Just after that instant a single pocket tailored in the
lower surface enters the domain, lowering the pressure build—up. In the two following cases
Algorithm 1 gives a solution to p and 9 for the first time steps, failing to converge at a
certain time at which the pocket has not yet exited the domain. Next, there are exposed
some characteristics observed at the moment where the convergence.

In the first case the elliptical pocket has a depth of 12 inn (d : 12 run in Fig. 3.4.0).
The pressure surface, traveling pocket and cavitated areas (where p = T(0)) are shown
for three time steps in Fig. 3.4.11. In this case the pocket generates a moving cavitated
region where p z 0, this region advances accompanying the movement of the pocket. At
t 2 2.58 X 10"5 s the pressure field around the boundary 096 has a configuration analog
to the one observed previously when Algorithm 1 failed to converge (e.g., 3.4.10). This is,

the pressure at the left side of 095 tends to be lower or equal to the pressure at the right
side (where p = T (0) = pcc(t)). At the next time step no numerical solution is reached by

means of Algorithm 1.

t=0 t=1.29><10—5s t=2.58><10‘5s

Pi”)

traveling pocket.

Figure 3.4.11 — Time steps along Algorithm 1 for a traveling pocket with a. depth equal to 12

nm. A cavitated area travels accompanying the pocket. No solution for (p, 9) is

obtained after t z 2.58 X 10“5 s.

The second case corresponds to a pocket with a depth lower than in the first case
and equal to 8 um. Three time steps of that simulation are shown in Fig. 3.4.12. Notice
that for this case the pocket does not generate cavitation, the pressure field is instead
positive in the region where the pocket passes. However. as the pocket moves, a region
{p < peg} appears near to 896 (see the upper detailed frames of Fig. 3.4.12). Around
t = 6.02 X 10‘5 s the distance between both regions becomes of the order of the rrresh

size and the pressure field tends to have a positive gradient at the left side of 89", after
that time step Algorithm 1 fails to provide a solution. It is noteworthy that this issue is

observed even for pockets with a depth as small as 0.5 inn. A partial solution for this issue
is explored in the next Section, where Algorithm 2 is used to allow a non—null gradient
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condition for pressure at the rupture point by means of the mass-conserving condition
(3.2).

P = T(9) = pct:

t: 4.80 x 10-5 s z: 5.39 >< 10-5 s t = 6.02 x 10—5 s

5
of
xi
5

lower snrl'um' 7.0 mm

H 0.5 I

zl/L

Figure 3.4.12 — Time steps along Algorithm 1 for a traveling pocket with a depth equal to 8

pm. A cavitated area travels accompanying the pocket. No solution for (p, 0) is
obtained after t = 6.02 x 10‘5 5.

3.4.3 Transient cases along Algorithm 2

Let us recall that Algorithm ‘2 is based in a Finite Volume Method Where the
Rankine—Hugoniot condition (3.2) is used to update the common interface of the cells

placed at the left and right sides of the rupture point 5 (see Section 3.3.1). The value
90 : 2/3 is fixed based in a reverse flow condition and the experimental findings by C'oync

and lillrod (1.971). In this section some numerical results along this approach are shown,
and some of its limitations are also discussed.

3.4.3.1 Semi—analytica/so/utions

In this section Algorithm "2 is tested by comparing its results to an analytic solution.

For this, the lower surface is set to be smooth and flat and the upper surface to be a smooth

fixed ring. An initial condition for 9 is defined depending on the initial position (60) of

the rupture point (fl). Recall that A1: 1 denotes the length of the Finite Volumes cells, and

set [30 as some point in the interval [L / 2, L] that accomplishes to A351 < [30 < (to + 1) AIL'1

for some index to. Then, the initial saturation field 9(t : O) is defined as

1 if i g to

menial-i) iii. > 7:0

'
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Let us denote by 500 the rupture point at the stationary state. If for some value of pCC

(high enough) the stationary solution does not cavitate at the left side of 600, one can
expect the existence of 5 > 0 such that for every 50 e [600 — (5, [300 +5] the fields (p(t), 0(t))
tends in time to the stationary solution and p(t) > 0 for all t, This last condition is useful

since it allows to obtain an analytic solution for Mt). In fact, integrating the Reynolds
equation on the interval [0, B(t)] and denoting h3(t) : h(B(t)) one obtains

£11 2 6p U
+

pcc — 6” Ufomt) lids)2 ds
(3.55)d“ m=fi<t)- hwy fem (113+th ds

The last equation can be substituted in Eq. (3.2) to obtain the next ODE for 605)

§fi=£7___1_ _U—_+ 1 pCC‘6MUf§(t)h‘<i—>fd3
(3.56)

dt 2 1— 90 2 12mm) If“) (lfiufl?) ds
’

which is just Eq. (3.2), to find fi(t) in time.

Here RC : 64 mm (the ring’s curvature), Z(t) : 1.0 um and pcc(t) : 100 atm
are set for all t 2 0. For that configuration one has that flee : 0.78321 x 10“3 m. Taking
fig = 0.65 X 10"3 m and 60 z 0.9 x 10"3 m and fixing the Courant number to 0.4 the results
for fl (t) are shown in Fig. 3.4.13 for different values of A331 and for the exact solutions. It
is observed a convergence of the time curves for 6 (when A331 goes to zero) towards the
exact solutions, and these exact solutions converge in time to the exact value of £00.

3.4.3.2 Traveling pockets

Differently from Algorithm 1, which aims to impose (90 z 1 at the right side of

rupture point by means of the operator T : Tezl, Algorithm 2 imposes some value
0 < 00 < 1 (here is taken as 2/ 3). This characteristic allows $771

$121”)—
to be positive. In

the next numerical examples it is shown that positive gradient allows transient solutions

were cavitated areas traveling towards QB are fulfilled by means of the Poiseuille flow
associated to this positive pressure gradient.

Let us consider the lower surface to be smooth during a first interval of time. This,
in order for the fluid to reach a stationary state. After that interval, a series of elliptical
pockets pass through the domain and a dynamic response of 5(t) is expected. Subsequently,
the surface becomes smooth again and the system is expected to return to some stationary
state. For these examples, the ring’s curvature is taken as RC 2 128 mm, the distance
between the surfaces is fixed and equal to Z (t) z 1.5 urn, the length of the pockets is

set to 100 pm and the distance between their centers (texture period in the movement
direction) is equal to 200 pm. The boundary condition pCC is constant in time and three
values for it are explored, 10, 20 and 30 atm. The first pocket enters the domain at time
t z 0.2 ms, and the last one exits the domain at time t z 0.8 ms. The resulting time curves
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Figure 3.4.13 — Convergence of BU.) when Anzl tends to zero by means of Algorithm ‘2. The red
curves correspond to 60 = 0.65 x 10‘3 m and the blue ones to 50 = 0.9 x 10—3

m. The continuous lines are the exact solutions obtained integrating Eq. (3.56).
The dashed gray line. corresponds to the exact value of Boo.

Mt) are shown in Fig. 3.4.14. Notice that 1:3(t) develops a periodic behavior after t z 0.4

ms in all the cases and, as expected, the higher the value of pm the closer (fit) is to the
center of the domain (1:1 /L = 0.5) the major part of the time. It is also worth noting that
during the periodic regime reached by the system while the textures are passing through
the domain (between t z 0.4 ms and t z 0.8 ms) the time average of |,/3(t) — L/2|7 i.e.7

the distance between the rupture point and the center of the domain, is x 3% lower than
|/300 — L/2| for each case.

O 0.2 0.4 0.6 0.8 1.0 1.2
time [ms]

Figure 3.4.14 — Rupture point position (13) by means of Algorithm 2 for different values of pCC

(fixed in time) when a. series of pockets pass through the domain.

The pressure field, the saturation field and the geometry of this example are shown in

detail for some time steps in Fig. 3.4.15. These time steps belong to the periodic transient
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regime shown in Fig. 3.4.14 (between t w 0.4 ms and t m 0.8 ms). Notice that the traveling

pockets generate a cavitated region near the middle, of the domain (see time t 2 0.405

ms). This cavitated region advances to the right accompanying the pocket, collapsing
after a time interval of length x 0.035 ms (when 6 is near 0.8 mm). Let us remark that
the pressure profile at which this collapse is developed is not possible to be produced
along Algorithm 1 and T = T =1. In fact, this last model imposes a non—positive pressure
gradient, not allowing the flux to be reversed in 331 = fl, which is necessary to fulfill the
cavitated region at its left side as in the present example.

As mentioned before, we have restricted this numerical strategy to the case where

B(t) is a rupture point, i.e., BU) < (7/2. The development of B05) 2 (7/2 can be observed

by simply changing the pocket’s depth of the example presented here from 0.5 to 1 pm.
Let us identify a second limitation of this strategy. Denote by a(t) the first reformation
point in the domain at the left side of 5 (t) For certain configurations it is observed that,
instead of the collapse of the cavitated region placed at the right side of a(t), the distance
|fl (t) — a(t)| goes to zero. This situation is observed for the geometry shown in the last
example when pCC is changed to a value small enough Taking pCC : 6 atm the last time
before hypothesis WC?) — a(t)| 2 2Ax1 is violated is shown in Fig. 3.4.16. Physically, the
cavitated region present at the left side of a(t) and the separated region placed at the
right side of 505) become closer in time, which represents a modeling problem that will be
left open for future research.

3.5 Chapter Summary

In Section 3.4.1 some stationary numerical solutions of the system (3.4)—(3.11)

obtained by means of Algorithm 1 are exposed. First, along one-dimensional configurations,
it is found that when using T : Tezo the numerical problem is ill—posed, as the stationary
solutions depend upon an initial guess (110,00). Let us remark that those solutions exhibit
different pressure gradients at the left side of the reformation point fl, and this numerical
observation is in accordance with the analytic solutions found in Proposition 31. Uniqueness
is recovered making use of the operator T : Tezl, which is observed to impose a null

gradient condition at 6.

In Section 3.4.2 transient numerical solutions of the system (3.4)-(3.11) obtained
by means of Algorithm 1 and T : Tezl are shown. First, an explosion in the combustion
chamber is simulated by taking pcc(t) as a Gaussian pulse in time. It is shown that the
correct accommodation of pCC as a boundary condition gives important differences in the
friction and minimum clearance predicted numerically. This fact has been already stressed
in the literature (MORRIS et (LL, 2014; MORRIS et (LL, 2015) along a non-conservative
model. The numerical results presented in this work (in both sections 3.4.2 and 3.4.3) aim
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Figure 3.4.15 fl Pressure and saturation fields along Algorithm 2 and a moving textured surface
for pcc = 12 atm. Each time corresponds to the transient periodic regime of Fig.
3.4.14.

to predict the rupture boundary’s position by means of mass—conservation, and represent
the first simulations with this characteristic for Ike > 0. However, due to the imposition of

a non—positive pressure gradient at the rupture boundary 095, this numerical scheme is

limited to cases where the moving surface (along the 0:1 — $2 plane) is flat. To work on

this issue, a different approach is explored in Section 3.4.3. There, the one-dimensional
numerical scheme given by Algorithm 2 allows to perform simulations with the presence
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Figure 3.4.16 — Pressure and saturation fields along Algorithm ‘2 and a moving textured surface
for pcc = 6 atm. Here the pressurized interval [a(t), 3M] tends to vanish.

of moving textures. This is done by means of a Finite Volume scheme, based on a work
by Ausas et 01. (2013) for a different related model, where /3(t) corresponds to one of the
cells interfaces. The Rankine—Hugoniot flux continuity condition (3.2) is integrated with
(90 = 2/3 to find for Mt) in time. The main limitation of this modeling is somewhat similar
to the one found along Algorithm 1, and corresponds to the encounter of a region where

p = 0 with a region where p = pm. This issue requires further research.

Both the numerical strategies shown in Section 3.3 aim to impose a. non-homogeneous
boundary condition for pressure in a mass—conserving framework. This is done by iden-
tifying a rupture boundary 896 where the saturation variable becomes lower than the
unit, and thus the PDE passes from elliptic (for p) to hyperbolic (for 0). In that boundary,
mass—conservation is imposed by means of a pressure gradient condition or by fixing the
value of 90. The latter was chosen to be constant and equal to ‘2/3 based in an analytic
flow-reverse condition. However, as it has been shown in Section 3.2, there exist other
possibilities for the setting of 00. Thus, other models for that unknown, not necessarily
constants, would be explored in future works.
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FCHAPTER

4
THE REYNOLDS-RAYLEIGH-PLESSET

COUPUNG

An important source of cavitation inception in a liquid is the presence of immersed

tiny bubbles of non-condensable gas/vapor (DOWSON; TAYLOR, 1979; BRENNER,
1995). As long as these bubbles remain small, the effective fluid (liquid and gas/vapor
mixture) density p and viscosity it corresponds to these of the liquid phase (p 2 pg and
y, 2 Mg), and thus the mixture hydrodynamics can be modeled disregarding the bubbles

presence. However, under suitable conditions, like local pressure falls, the bubbles can grow

big enough to affect both p and a. The Reynolds—Rayleigh—Plesset (RRP) coupling aims

to model this kind of cavitation development. It is a three—equations model that assumes
an initial distribution of spherical bubbles to be known, and computes the fluid dynamics

by means of a transport equation for the bubbles number per unit volume, nb(x, t); the
Rayleigh—Plesset equation for the bubbles local radii, R(x, t); and the Reynolds equation
for the hydrodynamical pressure, p(x, t).

In the next Section the Rayleigh—Plesset equation and some of its basic properties
are presented. In Section 4.2 the RRP coupling is presented along with some simplifications
that are generally assumed in the literature.

4.1 The Rayleigh-Plesset equation
Let us consider a single spherical bubble of radius R(t) immersed in an infinite

domain of liquid. The bubbles content is composed by a mixture of non—condensable gas
and vapor. The pressure 190005) (time dependent) far away from the bubble is assumed to
be known. The pressure at the interior of the bubble is assumed to be uniform in space
and it is denoted by pbub(t). Then, from the momentum equations for the mixture one
can derive the Rayleigh—Plesset equation for the bubble dynamics (BREVVEM 1995;
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GEHANNIN, 2009)

3. .. + S R . 2
p, (§R2+RR) +4 (rt—BL) R=pbub<t> was) — g, (4.1)

where R is the total time derivative (following the bubbles), pg and N2 correspond to the
liquid density and viscosity respectively, a is the liquid surface tension coefficient, and 14:5

is the surface dilatational viscosity (SNYDER; BRAUN; PIERSON, 2016). Two models
for pbub(t) such that no energy equation (to solve for the bubbles temperature) is needed

are distinguished next. First, denoting V : §WR3 let us assume that the bubbles is in

equilibrium at some external pressure poo : peq, temperature Teq7 and radius Req. Then,
as the bubble inner pressure reads

pbub Z 170 (TEqa Veq) + pvap(Teq) 7 (42)

where
R Tm

p0(Teaneq) Z _—0V0 _eq
> (4.3)

eq

m0 is the mass of gas, R0 is the constant of the gas. Then, by the Young—Laplace equation
one has

2 (T )U
pbub _ peq : R

eq
7 (4'4)

eq

where o(Teq) is the surface tension. Thus, substituting Pbub from (4.2) and (4.3) into Eq.
(4.4), Req accomplishes:

SmoRoTeq _ 20’
— 4.5

4ngq peq Req’
( )pbub : pvap(Teq) +

which has a unique one solution.

Adiabatic case with no mass transfer

Assume that there is no transfer of mass nor transfer of heat (adiabatic behavior)
between the bubbles and the liquid. Also, the pressure pbub(t) is assumed to behave

isoentropically, then:
3k: 3k

pbub(t) : (pvap(Teq) +pgas(Teq, Veq» (Vt/315) Z (peq “l“ “Ii—21) (£63) 7 (46)

where k is restricted to 1.4 (air specific heat).

Isothermal case with mass transfer

Assume now that the temperature is Teq everywhere, and that the vapor pressure
inside the bubble is equal to pvap(Teq) for all time t. Then,

V 20 R 3

prb(t) Z pvap (TGQ) +100 (Teq’ Veq)% I pvap(Te<1)+ (peq + fie; _ pvap(Teq)> (is?) l

(4.7)
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Remark 4.1. Observe that in the isothermal case for the vapor pressure inside the bubble

to be equal to pvap (Teq) for every time if there must be a transference of mass of vapor
(condensation or evaporation). Thus, if m denotes the total mass content of the bubbles,

dmfor these cases E could be different from zero.

4.1.1 Cavitation pressure for a gas/vapor bubble
Let us suppose a single bubble is initially in equilibrium at radius Req and internal

pressure pbub(Req). Then, the external pressure satisfies poo

20

E;
If one changes poo to some lower value p30 and the temperature T : Teq of the bubble

poo Z pbub(Req> ‘_ (48)

remains constant, then one has that for the bubble to reach a new equilibrium radius

qu the pair (p20, qu) also satisfies Eq. (48) but substituting Req by qu and poo by p20.

Therefore, if p30 is lower than

pcav 3: 1112213 {pbub(R) - gig} 7 (49)

no equilibrium radius exists. In fact, as initially one has R(t : 0) : R(t : 0) z 0, if the
external pressure is diminished to a certain value p20 < pcav, then

20 *pbub(t) — E — poo < 0,

and Eq. (4.1) implies that the bubble will grow indefinitely. For this reason, pcav is called
the cavitation pressure in the context of the RRP cavitation model.

For instance, taking the derivative with respect to Req in (4.8), with pbub computed
by replacing R(t) : qu in (4.6), and taking pvap : 0, one has

1

2 3k 2 2 3kR3k 3k—1

pcav = (pee, + 1) (R901) ——0 with R* = “pew 1) m] , (4.10)
Req R* R* Reel 20

or, equivalently:
1

R 3k 20 . *
3k R319 511—1

pcav I pbub < Ref) _ E Wlth R I [pbub Qaeq - (411)

Fig. 4.1.1 shows the curve (pgq, R201) for several values of Req around 1 micron. A

minimum value for pgq is observed.

4.1.2 The linearized equation
Let us introduce the dimensionless variables shown in Table 4. Then, the Rayleigh—

Plesset equation can be written

3.2 ..150 . 1 x x
2x +xx—W—Poo—22—ME— 327 (4.12)
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Figure 4.1.1

equilibrium

pressure

[atm]

101 102

equilibrium radius [um]

— Equilibrium states (pzq, Réq) for several values of Req and peq = 1 [atm].

Symbol Description

p = p/A dimensionless pressure
X = R/Req non-dimensional bubble radius

tT: Betti/g
A )
(do = Rem/gum
(I): ch,/%w

non—dimensional time

non-dimensional natural frecuency
non-dimensional forcing term frequency

2 = fizz—A non—dimensional surface tension
K = —4’”——— non—dimensional surf' v' .

'

Balm ace iscosrty
M 2 —4“"—— non—(limensional viscosit , of the li uid

Req film 3 (l

Table 4 ~ Physical parameters and non—dimensional variables for the 0—dimensional study.

Looking for the behavior of the bubbles near their equilibrium state, let us suppose
that for poo = A the bubble. has an equilibrium radius Req and its inner pressure is equal

to pbub, thus

‘20
pbub : A +_ Ol' fibula : 1 ‘l‘ 2, (4.13)

Req
’

and impose the next type of time perturbation on the pressure

13047) = l — 5cos 007. (4.14)
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Along this two last relations, the Raylegh—plesset equation can be written

ail:
=F(x,>'<)+[

X 0
. . . +

(1 + 2)x-3k—1 — x-l — zx—2 — Mxx—2 — KXX‘3 —
gX2X—1} {50081437}

5 cos
Car}

To linearize this equation we compute the derivative of F, reading

0 1
DF ,

- z , 4.15(X x)
D1F2 DQFQ

( )

where

. . 3 .

D1F2(X, X) 2 —(3k + 1)(1 + E)x—3’€*2 + x—2 + 22x43 + 2Mxx-3 + 3Kxx-4 + 5><2><—2,

and
D2F2(X, x) : —MX“2 — Kx—3 — 3Xx—1.

A linearization of Eq. (4.12) reads

(1 —- 1 O

— 5‘ =DF(1,0>->.C + AdT X X ~ 0 5 cos an“

obtaining
X+27X+LTJO(X—1):5coscbr (4.16)

where 27 = K + M, (DO : 3k(1 + Z) — 2. Notice that (DO is real since 1 S k < 2. The last

equation corresponds to the harmonic damped forced oscillator with equilibrium state
(1,0) for 6 z 0. The natural frequency of that system is given by

1 1 20A2wz3k1+2 —E, or wz— — 3k ——. 4.170 < > o
Req m

( pm at) < >

As an example, varying Req and determining pbub from Eq. (4.13). Figure 4.1.2 shows
different natural frequencies wo depending on Req. The energy of the linearized system is

defined as
£02 1

E z A — 1 2 - ‘2

so one can write

dE . A .. . . A

7117 = (WSW — 1) + X) : —2fy X2 + xé coswt. (4.18)

Observe that <5 : 0 implies a decay of energy such that the system converges in time to its
equilibrium state.
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Figure 4.1.2 -— Natural frequencies. by means of Eq. (4.17). for a bubble near the equilibrium state
for k = 1.4, pg 2 850 kg/mB, a = 3.5 x 10‘2 N/m and pbub = 1 atm —+— Qa/Req.

103

4.1.3 Bubbles resonance and inertial terms

Let us assume the perturbation amplitude (5 is small enough such that the solution
of Eq. (4.16) is a good approximation of the full Rayleigh-Plesset Eq. (4.12). The general
solution of Eq. (4.16) reads

X(T) = X1,(T) + XP(T), (4.19)

where X11 is the solution of homogeneous equation (5 = 0), and Xp is a particular solution
of the full system. Depending on the sign of A7 — LOO, one has (01 and 02 are integration

(3—77 C1 cos (no?) — 72 T + C72) if ‘7 < LOO,

X11“? : 6—77— (C71 -|— T C72) if ”i : 6007 (4.20)

e'” (CleA T + ClgeA—T) if A, > LOO,

constants)

where Ag = 213/72 — Lug. Observe that, independently of sign (7 — £10), x11(r) decays to
zero with characteristic time 7, which is proportional both viscosity coefficients rig and HS

Because of this, the next analysis is focused in the transient part of X (Xp). This can be

written
, )_ isinhfir— (qb—n/ZDW ‘ at W—3+<1-22)

where (r = 7/LDO and e = ctr/LOO. Denote now by X; the solution of Eq. (4.16) obtained

tan (b —_— 2a 1_ 62,
(4.21)

when the inertial term (X) is disregarded. Then, X; reads

(5 2ae sin Gn- + cos (Dr=_. 4.22Xpm og 4QZE2+1
( )
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One can notice that the difference

InaX-r€[0,27r] 1Xp(7-)_X;()|
111axT€[027r]|Xp(T)l

d(a, e): (4.23)

depends only on a and e. The function d(a, e) quantifies the error (in the max-norm) for

t —+ 00 when approximating Xp by X; . A sample of this function is shown in Fig. 4.1.3.
Please notice that d(a, 6) increases when 6 is near to the unit. As it can be observed from
the definition of Xp this is due to resonance of the system when the driven term frequency
(ab) is near to the bubble natural frequency (610). It is worth observing that this error
does not depend on 6. Thus inertial terms can be relevant even for small perturbation
amplitudes. For instance, the surface roughness (with a scale of microns along direction of

motion) of a Journal Bearing of 25 mm of radius rotating at 5000 rpm would imply would

produce small oscillations in pressure (due to the roughness acting as small dimples) at
a frequency of z 1.3 x 104 kHz. Considering the configuration shown in Fig. 4.1.2, this
would produce resonance of bubbles of radius around 1 nm.

(9‘70)P

(”301

-
-3 -2.5 -2 -1'5 -1 -o.5 o

6

Figure 4.1.3 — d(a, 6): error quantification for the disregard of the inertial term on the linearized
Rayleigh—Plesset Eq. (1.10).

4.2 Coupling the Reynolds and the Rayleigh—Plesset equa—

tions
The coupling of the Reynolds and the Rayleigh—Plesset equations has been used in

several numerical works regarding lubricated devices. To the author’s knowledge, this kind
of models was first used by Tender (TONDER, 1077) applied to Michell Bearings. After that
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article, and progressively increasing the complexity of the gas—nuclei dynamics, several works
have been published concerning tilting-pad thrust bearings (SMITH, 1980), journal bearings
(NATSUMEDA; SOMEYA, 1987; SOMEYA, 2003; SNYDER; BRAUN; PIERSON, 2016;
BRAUN; PIERSON; SNYDER, 2017a), squeeze film dampers (GEHANNIN; ARGHIR;
BONNEAU, 2009; GEHANNIN; ARGHIR: BONNEAU, 2016) and parallel plates (GEIKE;
POPOV, 2009a; GEIKE; POPOV, 2009b).

In the works cited above the fluid is supposed to be a mixture of two phases: an
incompressible liquid phase (with density pg and viscosity gig) and a gas phase (with density

pg and viscosity gig). Next, heuristic arguments are presented to justify the RRP coupling.
This presentation is based in the Theory of Multicomponent Fluids (DREW; PASSMAN,
1999), which has been already used by Carrica et al. in several works modeling the dynamics
of a mixture “water / immersed gas bubbles” around a surface ship (Guido—Lavalle et
al., 1994; CARRICA et al., 1998; CARRICA et al., 1999; CASTRO; CARRICA, 2013;

CASTRO: LI; CARRICA, 2016)

4.2.1 The mass and momentum conservation equations
The mixture density and velocity vector are denoted by p and u and the pressure

field is denoted by p. The characteristic functions of the phases are denoted by Xk (x, t),
k : f, g for the liquid and gas phase respectively. This is, Xk (x, t) = 1 if the phase It is

present in x at time t, and Xk(x, t) z 0 otherwise.

An ensemble of physical realizations is assumed to exist. Each of these realizations

corresponds to an evolution of the physical system (fluid mixture — limiting surfaces —

boundary conditions) for which the initial conditions are near enough to a set of ideal

smooth initial conditions. A probability of occurrence for each realization is assumed. Here

<) denotes the statistical averaging with respect to this distribution function at the point

x e QV and time t. The fields

agent) = <X.>, arm) = <X,>, (4.24)

are called the gas fraction, and the liquid fraction. In the statistical model, the phases

occupy the whole domain, thus ag + 055 z 1. With this, the averaged density, velocity

vector and stress tensor for each phase k z E, g are defined as

Mm) =M, fit(x,t) :M, Th : (Tm. (4.25)
Oak akpk ak

Observe that as the liquid phase is incompressible one has fig 2 pg. Applying the

averaging process to the conservation equations of mass and momentum, one obtains

(DREW; PASSMAN, 1999)

mag—11,016) + V ' (akfik fik) 2 Pk Ill QV (4.26)
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and

a(akfik 11k)

at
where Mk is the interfacial momentum source and, via is the interfaces speed and Pk is

+ V ‘ (akfikfik ® fik) Z V ~ (01k Th) + Mk + vki Pk ill QV, (4.27)

the interfacial mass generation source. Now, a series of hypotheses are made to simplify
these equations:

0 Averaged quantities are smooth;

o Interfacial mass sources are negligible (Pk f: O);

o Interfacial momentum sources are negligible (Mk 2 0);

o The gas phase average velocity is equal to the liquid phase average velocity, fig = fig;

0 The gas phase density is equal to the gas reference density pg, fig 2 pg.

With these hypotheses, adding up Eq. (4.26) for both phases, simplifying the notation by

setting a dlzef
ag, and introducing the variable

Na) = awm + <1 — a<x,t>>pg, (4.28)

it is obtained the conservation law:

% + v - (fifig) z 0 in Q". (4.29)

Similarly, adding up Eq. (4.27) for both phases we have

8 _ _

%Q + V - (flag to fie) = —W7 + uefivzfie in Q", (4-30)

where it has been assumed the existence of an effective fluid viscosity neg (that depends
smoothly on a, the liquid viscosity and the gas viscosity) such that

V- (a Tg + (1 — afi‘z) f: —V]3 + peg V2fig in QV. (4.31)

An example off neg is given by

Neda) = a (x, 15) ta + (1 ~ a (x, t))ue- (4-32)

To our knowledge, there is a lack of works justifying (4.31) or some similar relation, and
further research on the topic is needed.

As shown in Chapter 2, the thin—film hypothesis allows to approximate the Navier—

Stokes Eqs. (4.30) along Eq. (4.29) by the incompressible Reynolds equation:

fih3 _ U _ 85h -vz- v : vz- (— h) ~— . ,
<12fleff P)

2 P + at in Q (4 33)
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4.2.2 The multigroup approach
In the works where the RRP coupling is used to model cavitation in lubricated

devices (TONDER, 1977; SMITH, 1980; NATSUMEDA; SOMEYA, 1987; SOMEYA; 2003;
GEHANNIN; ARGHIR; BONNEAU, 2009; GEIKE; POPOV, 200921; GEIKE; POPOV,
20091); SNYDER; BRAUN; PIERSON, 2016; GEHANNIN; ARGHIR; BONNEAU, 2016;
BRAUN; PIERSON; SNYDER, 201721) it is generally assumed that the gas phase corre—

sponds to a high number of spherical bubbles dispersed in the liquid. In these works, the
next phenomena are disregarded:

Coalescence and break-up: bubbles of different sizes that are near enough can collapse
into a single one. Also, a single bubble can suddenly broke into two bubbles.

Mass transference: this can occur at the bubbles’ interface due to evaporation or
condensation of the bubbles content.

Here we write a formulation where the dynamics of the bubbles’ distribution can
be modeled along these phenomena. For this, let us denote by m the mass of the bubbles

(which is an internal variable). Suppose that there exists a distribution function f (m, x, t)
such that for each x and t the number of bubbles of mass between m and m + dm is given
by f(m,x,t) dm. Thus, the quantity nb(x,t) defined by

nb(x,t) : /Ooo f(m,x, t) dm (4.34)

corresponds to the bubble number density, i.e., the number of bubbles per unit volume.

Denoting by ub(m, x, t) the bubbles velocity, it is assumed that f satisfies the Boltzmann’s

transport equation (CARRICA et at, 1999):

<9f(m,x, t)
at

57” 3 (f(m, X7 fl)+ at em
= C(m,x,t) + B(m,x,t) , (4.35)

+ V;- ‘ (ub(m,x, t) f(m,x,t))

where C is the coalescence source and B is the breakup source. Assuming the mass change

rate depends only on if one can rewrite the third term in this equation as:

8m8(f(m,x,t)) 1 (dm5 8m _ 5m
—d—t—f(m,x,t)> . (4.36)

Considering only binary interactions (a single bubble splits only into two other ones) and

mass—conservation of the bubbles content, the breakup source can be written as:

B(m,x,t) : /moo b(m,m’ — m]m')f(m’,x,t) dm' — /Om b(m',m — m']m)f(m,x,t)
d(m' ,)4.37
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where b(m, m’ —- m|m’) is the breakup kernel. This function represents the probability per
unit time and mass that a bubble of mass m’ splits into a bubble of mass m’ — m and a
bubble of mass m. Under similar assumptions, the coalescence kernel can be written:

C(m, x, t) = é/Om c(m — m’, m’)T(m — m', m’,x, t) dm’ — /000 c(m’, m)T(m,m’, x, t) dm' ,

(4.38)
where c(m, m’) is the probability of coalescence if a collision between two bubbles of sizes

m and m’ occurs, and the kernel T(m — m’,m’, x, t) represents the collision probability
per unit time between bubbles of mass m’ and m.

The multigroup approach gives a numerical framework to solve Eq. (4.35) It
consists in assuming that the bubbles of mass between mg_% and 7719+; can be represented
in a group by a single bubble mass, mg. Integrating Eq. (4.35) between mg_% and mg+%,
and considering using Eq. (4.36), one obtains

9g?) +2653} + [%f(m’x’t)}:g+f : [if (C(m,x,t) + B(m,x,t)) dm (4.39)

H‘s

where

Jy,(x,t) : [+5 ug,,~(m,x,t)f(m,x,t) dm , (4.40)

is the bubble flux in the group 9 and
5

Ng(x,t) : [mm-“+5 f(m,x,t) dm , (4.41)
51—5

is the group number density. Assuming that the distribution function, the bubbles velocities,
the bubbles mass exchange rate and the breakup and coalescence probability can be taken

to be constants in each group, and using an upwind scheme for the groups fluxes, Eq.
(4.39) can be simplified to:

8N9 3 8 (“9,iNg)
0t + 2 8x,

—— by + cg
i=1

, dm Ng(x,t) , dm Ng(x,t)
— [111111 (35,0) (mgfl _ mg>L+1 + [mm (W, 0) (my _ mg—1>lg

—imax<z—ro><———>H<z—to><———>i

_ my+é my+§
by — B(m,x,t) dm and cg :/ C(m,x, t) dm ,

”‘é mil-é

model the z’ntegroup transfer due to breakup and coalescence respectively. An example of
its discretization can be found in (CASTRO; CARRIC‘A, 2013) for a bubbly fluid around
a ship.
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4.2.3 The Reynolds- Rayleigh- Plesset coupling
4.2.3.1 Modeling the bubble number density

In this Section the RRP coupling is presented by writing first a very simple equation
for the bubble number density nb(x, t). For this, the next hypotheses are made

0 The bubbles mass distribution is monodispersed. This means that locally there exist
bubbles of one and only one mass M (x, t), which is written as:

f(m, x,t) : nb(x, t) 6(m — M(x, t)), (4.43)

where (5 is the Dirac delta distribution.

0 The bubbles transport velocity Ub depends only on x and t.

o Coalescence and breakup effects are disregarded. Thus by and cg are set to zero in
Eq. (4.42).

o The mass change rate is negligible, thus one takes (fr—T : 0 in Eq. (4.42). Observe
that this is not necessarily true when considering the Isothermal case with mass
transfer described at the beginning of Section 41.

With all this, Eq. (4.42) is reduced to

anb(x7 t)
at

Finally, in the literature it is also assumed that:

+ v . (Ub(x,t) nb(x, t)) = 0. (4.44)

o Ub is a known constant (in space and time).

Thus, Eq. (4.4.4) can be solved independently and nb can be assumed to be a constant
and datum of the model.

Remark 4.2. Altough there are some recent works where Ub depends on time and space
(SNYDER; BRAUN; PIERSON, 2016; BRAUN; PIERSON; SNYDER, 201721) (particularly,

on the pressure gradient), the authors have not included Eq. (4.44) in their modeling.

4.2.3.2 The bubbles radii fie/d R(x, t)

In this modeling it is generally supposed that initially the bubbles are in equilibrium.
Let us assume that at t = O the temperature is equal to Teq and the pressure is equal to

peq > pcav for every x. Then, from Eq. (1-5) one observes that to suppose the bubbles
have some initial monodisperse mass distribution

f(m,x,t : 0) : nb(x,t) 5(m — M0(x)),
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is equivalent to suppose the bubbles have some initial monodisperse radii distribution

g(r,x,t z 0) : nb(x, t) 6(r — R0(x)).

This initial radii distribution is assumed to evolve according to a field R(x, t) that satisfies
the Rayleigh-Plesset equation (4.1) but changing the partial derivative 8/8t is replaced by
a material derivative

D _ 8
Dt _ at

in order to account for the bubbles transport, and considering pbub and p00 to depend on

+ (Ub - V) , (4.45)

x. Obtaining the equation
2 2

agr) +RDR04 2 Dt [M2 R
+145 R DR 20

+ 4(u) D—t Z pbub(xit) ‘ p00<x>t) '_ ‘fi (446)

4.2.3.3 The full RRP model

Equations (4.33) and (4.46) are coupled by adding the next hypotheses:

o The pressure field poo(x, t) can be taken as the average pressure field p(x, t) obtained

by means of Eq. (4.33), computing pbub(t) along (46) or (4.7);

o The gas fraction a(x,t), the bubble number density nb (x,t), and the radii field
R(x,t) accomplish the next geometrical relation (e.g., Drew and Passman (1999)
Section 10.1.2)

4
a (x, t) 2.74, (x, t) 5413 (x, t)3. (4.47)

In the literature one can find two ways to model nb (x, t):

1. The model exposed in Section 4.2.3.1, Where nb (x, t) is assumed to accomplish Eq.
(4.44);

2. The model where it is assumed that the number of bubbles per unit volume of liquid,
denoted nfi, is constant (ZVV'ART; GERBER; BELAMR, 2004). Thus7 using Eq.
(4.47)7 the next relation is accomplished

nb (x,t) : nf) Otg (x,t) = nf;(1— a (x,t)) , (4.48)

and then one obtains
nf; é’n‘R (x, t)3

a x,t z——————.( )
1+n€§7rR(x,t)3

(4.49)

Remark 4.3. A notable difference between formulae (4.47) and (4.49) is that the former
one is not necessarily bounded by the unit when R grows. This issue is regarded in
the numerical implementation of this model in Chapter 6. On the other hand, for the
theoretical results, exposed in Chapter 5, it is assumed that the gas fraction a is a bounded
function of R.
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To simplify the exposition, hereafter we fix the modeling of pbub (t) by means of
Eq. (4.6) (with k) z 1.4). Thus, 110 mass transfer at the bubbles interface is considered.

With this consideration, the RRP cavitation model consists in solving the problem of:

“Find the fields p(x, t) and R(x, t) > 0, with x E Q and t 2 0, accomplishing the
system of equations

[13

V-(p—Vp>:V-(—I2£ph)+%12g at ’

(4.50)

p z 0 on 89.

3 DR 2 D2R M + nS/R DR 20 Req
3’“ 20

W a <D_t> +3th “(Tl D_t — (I’M R—q> <R(t)> '<p+p8l‘m’
(4.51)

where pa is the boundary condition for p at 89 and
D 8
— z — . . . 2
Dt dt + (U1) V) (4 5 )

U E R2 is the surfaces relative velocity, and the bubbles transport velocity Ub 6 R2

depends on the application. Along the initial conditions for every x E Q:

R(X, 0) : R0(X),
GR *

(4.53)

as, 0) = Roe)
with R0 and R3 known regular functions and

MR) = am) Mg +(1— 043» M4 , (454)

MR) = MR) pg + (1 — a(R)) pe - (4-55)

And the gas fraction variable is given either by
4

a (x, t) : m, (x, t) 57m (x, t)3 (4.56)

where nb (x, t) accomplishes

8nb(x, t)—— V ~ U t t z 0 ,

le(x, 0) Z 77,2(X),

and mg is a known regular function; or it is given by
11 4 3

a (x, t) : ”b 3”? (X’ t) (4.58)
1 + nf; §7TR(x,t)3

'

And proper conditions in time for the transport equations are specified at the inlet

boundaries. ”

In the next Chapter some mathematical properties of this cavitation model are

studied, while its numerical implementation is presented in Chapter 6.
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CHAPTER

5
MATHEMATICAL ANALYSIS OF THE RRP

COUPLING

This Chapter is devoted to the well—posedness of the Reynold-Rayleigh—Plesset
cavitation model presented in Chapter 4 for the particular case where the transport velocity
of the bubbles is null (Ub : 0). Firstly, in Section 5.1, an abstract form of the RRP model
written in Section 4.2.3.3 is presented. General hypotheses for that abstract form are
identified and some auxiliary results on it are given. Afterwards, the mathematical analysis
is divided in two cases: 1) including inertial terms in the Rayleigh—Plesset equation and 2)

disregarding these terms. For both cases the analysis is performed by transforming the
2—equations coupled system into a single evolution equation problem. Some mathematical
tools (like the Implicit Mapping and the Cauchy-Lipschitz theorems) are given in Appendix
B. In that Appendix the definitions of stability and instability and the associated results
used here are also given.

The first case is studied in Section 5.2. A local existence in time is obtained and the
existence of non-trivial stationary solutions is obtained by means of continuity arguments.
The study without inertial terms continue by showing a stability result of these stationary
solutions for the surfaces relative speed ”UH small enough; finishing with a result of

instability for flat surfaces for ”U” big enough.

The analysis of the second case is exposed in Section 53. As in the first case, a
local existence in time is proved and the existence of non—trivial stationary solutions is

established. Remarkably, this time the stability result of these stationary solutions is

obtained not only for the cases where ”U“ is small enough but also for surfaces near to
flat.

The results presented here have been submitted in an article which preprint is

available online (JARAMILLO at at, 2018).
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5.1 Mathematical framework

Let Q C RN, N z 1, 2, be a regular domain and consider the abstract problem of
finding p(x,t), R(x, t) > 0, With x E Q and t 2 0, such that

31 532 82R_f1(R)—p ea
5? (E) W — —R — 5102012) (51)

and

3 (93v- (f3(R)h w) : v-<f4(R>Uh> +hfs(R) 55, (52)
p = 0 on 89,

where U 6 RN. Along the initial conditions for every x 6 Q:

R(x, 0) = R0(x),
(5 3)8B *

'

as, 0) : Bax),
and R0, R3 are regular known functions. The terms in the left hand side of Eq. (5.1) are
named inertial terms. In the next sections the well—posedness of problem (5.1)-(5.3) when

including or disregarding the inertial terms is studied. For this, given 04, fl E R with a < fl
let us define:

Ba75:{w€L°°(Q):a§w§,Ba.e. on Q},

and assume also the following hypotheses on the auxiliary functions:

H1: f1 6 02 (Kilt), 31151 e a: such that f1 (R) z o and f{ (R) < 0 VB 6 [R—61,R+

6.Addt z ' ’R dM= ’R;1] n enoemi Re[1?ZI—Il5111,1R-|-61]lf1( Man 1 Rewrilgrgwlfd ll

H2: f2 6 C2 (Rj;Rj);

H3: f3 6 02 (Rj;R) and Elmg, M3 > 0 such that m3 3 f3 (r) 5 M3 V'r’ 6 EN;

H4: f4 6 CQ(R1’;R+), f; (r) < 0 VT > 0;

H5: f5 6 CQ(R1;RI);

H6: h E BmoMo for O < m0 < M0 constants. And denote ho : ess—gif h.

Remark 5.1. The physical model given by the system of Eqs. (Al.50)—(4.55) and (4.58)

(bounded a(R)) is a particular case of the abstract problem given by Eqs. 5.l)—(5.3) for

ub : 0 and
3k

(7

fl (R) : (peq + £2) (55) — (p + Pa) — g}; (5.4)
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1 (1 ” a (R))Pe + a (R) Pg_ [Lg-Flfis/R ___f2(R)“4< R? > MR"12<1~a<R>>ue+a<Rw
fl (R) z 3 W + a (R) (pg ~ pm, ff, (R) = f; (a (m) a’ (R).

accomplishing all the hypotheses from H1 to H6.

The next result is a particular case of Theorem 4.2 in (BENSOUSSAN; LIONS; PAPANI—

COLAOU, 1978). It will be useful in order to fix a Sobolev Space (ADAMS, 1975) W141 (Q)

(with q > 2) to be used along this Chapter.

Lemma 5.1. Let Q be a smooth domain on R”, f e H‘1 (Q) and u 6 H3 (Q) be the
unique solution of the elliptic problem

V-(aVu)-——f in Q,

uzO 0118Q,

for a G Bafi, 0 < a < ,8. Then there exists q > 2 (which depends on a, fi, Q and on the
dimension N) such that, if f 6 W‘Lq (Q), then it belongs to W01 "1 (Q) and satisfies

IlullWl'q Q S C HfH_1,q,
0 ( )

where C : C(a,,B,Q,N).
Now, the following open subset Q C C (Q) is defined

Q:{R€C’(Q):R(x)>0 mm}, (5.5)

and set q > 2 given by Lemma 5.1 with a : m8 m3 min{m1, 1} and 5 = M3 M3 max{M1, 1}.

In order to write Problem (5.1)-(5.3) as a Cauchy problem, it is useful to introduce
the following decomposition of the solution Eq. (5.2):

A: on(o) ——> o(o) (5.6)
(R1, R2) ——) A1(R1) + A2 (R1, R2),

where A1 : Q H C’ (Q) is such that Al (R1) is the unique solution of the elliptic problem

v (h3fa(R1)VA1(R1)) : V-(Uhf4(R1)) in Q,
(5 7)

O
.

A1 (R1) 2 on BQ,

and A2 : Q x C (Q) i——> C (Q) is such that A2 (R1, R2) is the unique solution of the elliptic
problem

v - (h3f3 (R1) m2 (R1,R2)) : hf5 (R1) R2 in 9,
A2 (R1, R2) 2 0 OH 89.

Next, some of the properties of this decomposition are given.

(5.8)



86 Chapter 5. Mathematical analysis of the REF coupling

Remark 5.2. Both the solutions of (5.7) and (58) are in C (Q) since W”7 (Q) C C’ (Q)
continuously for any p > N.

Remark 5.3. For any R1 6 Q, A2 (R1, ) is a bounded linear operator.

Lemma 5.2. The application A is of class C2 from Q x C’ (Q) into C’ (Q).

Proof. Define (15 : Q x C’ (Q) x Wol’q (Q) H W447 (Q) by

ma, Rap) = v - (h3f3(R1)Vp) - v - (Uhf4(R1)) — hfs (R1) R2. (5.9)

It is shown first that gb is of class CZ. Since f3, f4 and fig are of class 02, it is enough to
prove that the application qfil : C’ (Q)4 x Wol’q (Q) i—> W‘lvq (Q) defined by

49 (£1,52,§s,§4,w) = V- (New) — v - (Uha) — haa
is of class 02, which follows from observing that its first and third terms are quadratic
and the second one is linear.

By the Lax-Milgram Theorem and Lemma 5.1 the partial derivative

%§(R1,Rz,p)(2) : W3” <9) —> WM (9)
Z —) V (h3f3(R1)VZ)

is an isomorphism. Therefore, the result follows from noticing that

¢(R1,R2,A(R1,R2)) = o V(R1,Rz)€ Q x c (Q),

and applying the Implicit Mapping Theorem 13.2 to the application (b. D

For a linear operator E, Vp (E) denotes its set of eigenvalues and Sp (E) denotes
its spectrum. The following result will be useful to extend the stability of trivial stationary
solutions for non—trivial stationary solutions.

Lemma 5.3. Let X be a Banach space, let A be a bounded linear operator on X and
6 > 0. Then there exists 5 > 0 such that, if B is a bounded linear operator on X and
HA — BH < 6, then for every /\ E Sp (B) there exists 5 E Sp (A) such that |)\ — §l < e.

For a detailed proof of the previous Lemma the reader is referred to Lemma 3 in

(lf)Ui.\'F‘Ole); SCI-IWART Z, 1957).

5.2 Well—posedness with inertial terms
This section begins by giving a local solution in time for problem (5.1)—(5.3) that

follows directly from the Cauchy—Lipschitz Theorem 13.3. After that, in Section 5.2.3

stability results are established for trivial solutions, i.e., obtained for flat surfaces or U = 0.

This stability is extended for non—trivial stationary solutions by means of the Implicit
Mapping Theorem BQ.
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5.2.1 Existence of a local solution
~ R

Let us denote R1 = R, R2 = 28? and R z ( 1). Then, the problem (5.1)—(5.3) can
2

be rewritten as
dR ~

5 T F(R)’
(5.10)

Mo) = R0,

~ Ro — — — 2
.where R0 : (RS) 6 Q X C (Q) and F : Q x C (Q) r—> (C <9» With

R2
F(R ,R ) z 2 _ . (5.11)1 2 <_%%_R2f2(R1)+f1R1£121,132)

By means of Lemma 5.2 one has that F is of class 02. Thus, from the Cauchy—Lipschitz

Theorem the next local existence and uniqueness result is obtained:

Theorem 5.1. There exists T > 0 such that the problem (5.10) has a unique solution in

C3([O,T];Q >< o(n)).

5.2.2 Existence of stationary solutions
Observe that a stationary solution (Rs,ps) of problem (5.?l)—(5.2) satisfies ps :

fl (RS). For the next result, let us denote h+ = h — ho (notice that hJr : 0 if and only if it

is constant). Thus (112,195) is solution of the system
3v ((h+ + ho) fs (Rs) W.) = v- (U (M + ho) f4 (Rs) in 9,

Ps Z f1(Rs) in Q, (5-12)

pS : 0 on 89.

Notice that in the particular case hJr : 0 or U z 0, (Rs, ps) : (R, 0) is solution of (5.12),
with R given in (H1).

Theorem 5.2. Fix U E R2 and ho > 0. Then the problem (5.12) has a unique solution
(R5,ps) with RS > O whenever ||h+H00 is small enough. Moreover, the solution (Rs,ps)
depends continuously on hf

Proof. Use first the relation ps = fl (Rs) to rewrite the stationary problem. Since Vps :
f{ (Rs) VRS, making the change of variable Rs : R +6 problem (512) can be written in
function of 5 as

—V. (W + my no (5) v5) : v- (Uh+ bow) + v . (Uh0 b0(§)) in n,

€> —R in Q, (513)

5 Z 0 on 89,
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where a0 (5) = —f3 (R + £) f{ (R + 5), and bo(§) : f4 (R + 5). We introduce the set

W = {g e Wgwo) zf > —R 21.6. on n},
which is open since the continuous embedding W01 ’q C C (Q), and the application

$2 : W x L"0 (Q) +———> W‘Lq (Q)

(M) H V- (<6 + ho>3ao (a V5) + v - (chbue) + v - (Uhobo(§))-
(5.14)

Using an argument analogous to the one used in Lemma 5.2 to prove that (751 is of class
02, it is possible to prove that $2 is of class 02. Now noticing that $2 (0,0) : 0, let us
assume that 6—8? (0,0) is invertible. Then, by means of the Implicit Mapping Theorem, one
has that

0 Ell/1 C W neighborhood of 0 on Wol’q (Q); V2 neighborhood of 0 on L°° (Q);

o Sgt : V2 »—-> V1 function of class C’1 such that V5 6 V2, 7,1)(5) is solution of problem
(5.13). Equivalently, (Rs,ps) : (R—i— ¢((5),f1 (R+1p(6))) is solution of problem
(5.12).

which is the result desired as the existence of V2 can also be described as ||h+||00 small

enough.

It only remains to ShOW that 3—19? (0,0) is invertible. Indeed, V2 6 W014; (Q) it holds

that
M2
35—

<0, 0) (z) 2 v ((ho + 5>3 (do (oW + as (o z vs) + (ho + 6) be (5) Uz))(

: v- (hgao (0) V2 + hobg, (0)Uz).
5,5)=(010)

Fixing an arbitrary g E W‘l’q (Q) and denoting 6 = ho b6 (0) U 6 R2, there exists a unique
z 6 Wol’q (Q) Such that

V-(h8a0(0)Vz+€z):g inQ.

In fact, since g 6 H‘1 (Q), a0(0) > O and ho > 0 (see (H1) and (H3)), by means of the
Lax-Milgram Theorem the variational problem

_/Q(hga0(0)Vz+£z)-v¢dQ=/Qg¢d9 V¢€H6(Q),

has a unique solution z 6 H3 (Q). Moreover, from the continuous inclusion H1 (Q) C Lq (Q),

we have V - (6 z) 6 W4"? (Q) and thus 2 e Wol’q (Q) by Lemma 51. El

A proof analogous to the one of Theorem 5.2 may be written for the next result:

Theorem 5.3. Fix h e Bmo,Mo> O < m0 < M0. Then there exists 6 (h) > 0 such that
the problem (5.12) has a unique solution (Rs,ps) with RS > 0 whenever ||U|| < e(h).
Moreover, the solution (RS, ps) depends continuously 011 U.
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5.2.3 Stability Analysis

Recalling the application F given by (5.11) and the stationary solution (RS7 ps)

introduced in the previous section, L'p denotes the Fréchet derivative of F at (RS, 0), i.e.,

(cor e» not (5,15,
(51,82) >—) DF (RS,0) (81,32) .

Here it will shown the stability of the stationary solution in some particular cases. For

this, it is shown that the spectrum of EF is such that Re (x\) < 0 VA 6 Sp (Ep) \ {0}
Previously, some computations are performed.

Recalling that fl (Rs) 2 ps : A (RS, 0), one obtains:

(LF (51, 52>)1 Z 52, (5.16)

(a (51, 52». =Ufii — i (m (35,0) (50 + D2A(Rs,0) (52>) + (5.17)

+ Rig/mm) 51 — fz (Rs) 52.

Since A2 (R, O) : O for any R in C), we have that D1A (Rs,0) : DA1(RS). With this,
deriving (5.7) with respect to R1 and denoting m (31) : D1A(Rs,0) (51) one obtains that
m (81) is the solution of

—v - (h3f3 (Rs) vm (51)) = v. (Mfg, (Rs) 31 VA1(RS) — Uh fig (Rs) 5.) ,

(5.18)
7f1(5'1) z 0 on 89.

Similarly, there holds that D214 (Rs,0) (S2) : D2A2(RS,O) (SQ) : A2 (R552). Thus, de—

noting 7r2 (SQ) : D214 (Rs, 0) (SQ) one obtains that W2 (S?) is the solution of

—V- (h3f3 (Rs) vi? (52)) = —hf5 (Rs) 52 in Q,
(5.19)

7r2 (SQ) : 0 on 89.

Remark 5.4. Since q > 2, one of the Sobolev Embeddings (Rellich—Kondrachov Theorem,
(ADAMS, 1975), Chapter VI) implies that both W1 and M are compact operators from
06—2) into itself.

For the next results, let us introduce the notations: bl : —f{(R)R‘1 > 0, (72 :
fz (R) > 0, br s 1/R, b3 : f3 (R), (74 2 —f4( (R) and 65 2 —f5 (R) All positive constants
as follows from (H1)~(H5).

Remark 5.5. If h+ = 0 or U z 0. Then A1(RS) : 0. Therefore A(RS,0) : p5 = 0,
Rs : R, and fip (81, 52) can be written

51 0
CF 1, 2 Z — r(S S) B<52) b (W1<51>+W2(S2)), (5.20)
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0 1

—b1 —b2
where B : ( ). Moreover, Eq. (5.18) reads

—b3V- (h3 vm (SQ) z b4V - (UhSl) in Q,
(5.21)

7r1(5'1) : 0 on (99.

The set of eigenvalues of B are denoted by {A18 ,)\2B } Notice that Re (A?) < O and
Re (A23) < 0.

Lemma 5.4. Let hJr : 0 or U z 0. Then

SP (£1?) C VP (£1?) U “is, A23}-

Moreover if A e Vp (fip) \ 0315, A5} with associated eigenfunction (81, 52) 6 C (Q)2 then
(81,52) 6 H3 (Q)2, 52 2 A51 and 51 is solution of the problem

b
big (A) v. (h3V51) : b4U - V(h81) + Absh 51 in Q, (5.22)

51 z 0 on 69, (5.23)

Where §()\) z A2 + bgA + bl with roots {A5 A23}.

Proof. Remind that pS : A(RS, 0) : O and Rs 2 R. From Eq. (5.20), the next equation is

accomplished for any A E (C \ {Xi}, A23}

51 _ _ 51_ _ -1 O

(£F_/\])(Sz)_(B AI)((52) br(B AI) (W1(Sl)+7r2(52))j(-

Since the map (51, 52) >—> m (S 1) +7r2 (SQ) is compact, by means of the Fredholm alternative
_ 2

Theorem the mapping at the right hand side of this equation (from C’ (Q) into itself) is

injective if and only if it is snrjective, therefore Sp (L'F) C Vp (£1?) U {A5 A23}.

Fix now A E Vp (EF) \ {/\{3, Ag} with associated eigenvector (51, SQ) 7é (0,0), then

82 : A51)

—b151— ngz — br [71'1 (51) + 7T2 (SQH 2 A52.

From which it holds that

77'2 (A81) +7l’1 (51) Z —

Since 6 (A) 7é 0 and from the definitions of m and W2 it is deduced that (51, 82) 6 H3 (Q)?

Then, Eqs. (5.22)-(5.23) are obtained using this last relation along with Eq. (5.19) and

Eq. (5.21). D
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Theorem 5.4. Let h be as in Theorem 5.3. Then there exists 6 z 6 (h) > 0 such that if

||U|l00 < e the solution (RS, ps) of problem (5.12) is asymptotically stable for the evolution

problem (5.10).

Proof. Assume first U z 0 and denote If} : CFleo. Then for that particular case and due

to Lemma 5.4 it is enough to study the eigenvalues of £97. Thus, take A E Vp (EF) \{AlB ,
A12B }

with associated eigenfunction (51, SQ), from Lemma 5.4 we have 82 2 A51 and 51 6 H5 (Q)

accomplishing Eqs. (5.22) and (5.23), which read

b
big (A) v (h3vsl) : Absh 51 in Q,

51 = 0 on 89.

Since £(A) is not null we deduce that A 7A 0, otherwise (51, SQ) would be null. Then, it is
obtained that 81 accomplishes the next variational formulation

—b—3§()/ h3VS v¢do —b5 / hSlon wt 6 H§(Q). (5.24)

Taking d) 2 51 one obtains 7 : —§ (A) / A 6 RJ" and since A accomplishes the equation
A2 + (7 + bz) A + bl : 0 it is obtained that Re (A) < 0. The result has been proved for the
case U z 0.

For the general case, observe from Theorem 5.3 that the mapping U »—> Rs (U) is

continuous in a neighborhood V1 9 0 in R2, thus if U —> 0 in R2 then

HDF (Rs (U) ,0) — DF (R, o) H —> o

_ 2
in the space of linear continuous operators from C’ (Q) into itself. Then the result follows

from Lemma 5.3 and Theorem B4. El

Now, a result of instability for “U” big enough is proved.

Theorem 5.5. Set h+ : 0 and consider the one-dimensional case (N = 1). Then
there exists M > 0 such that if “UH00 > M the solution (Rs,ps) of problem (5.12) is

asymptotically unstable for the evolution problem (5.10).

Proof. Denote U = U 6 R. Let us assume Q : [0, 1]. Due to Lemma 5.4 it is enough to
study the eigenvalues of CF. Fix now A 6 Vp (£1?) \ {A5 A23} with associated eigenvector
(51, 52) 7é (0,0). Now defining 71,72 6 C by

(14 b, _ _
b5 (7. A

htbgé’ or 72
1131735 (A)’

from Eqs (5 22) and (5.23) 51 satisfies

712-

311+ 71U51+ 7251 = 0, 51m): 51 (1) Z 0'
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Therefore, A 7é 0. In fact, if A z 0 then 72 z 0 and thus $1 = 0, 82 : A31 : 0, which is
not possible. Now, the roots of the characteristic polynomial, P (r) = r2 + 71 Ur + 72, of
the last equation are denoted by T1, T2. Notice first that T1 7é T2, otherwise 51 would be
null. Thus, 51 can be written

51W) 2 01 exp (fix) + 02 EXP (7315),

and the boundary conditions imply

01 + 02 z 0,

01 exp rl + 02 exp rg : 0.

Since (01,02) ;A (0,0) one obtains that
1 l

det < ) z 0,
exp T1 exp T2

hence T1 and rz satisfy the equation rg — T1 = 2k7rz’ We 6 N*, from which it is possible to
compute the next relation

(71 + T2)2 ~ 4r1r2 : —4k27r2, We 6 N".

Using the fact that the T1 + rz : —71U and r1r2 : 72 one obtains that A is root of the
fourth degree polynomial given by

Pk (A) z 4h27r2A4 + (402 + 87918132) A3 + (402192 + 47819 (bg + 2171» A2+

+ (402m + 87r2k2b1b2) A + 479181)? + 01W,

rewritten as
Pk A) z a0A4 + b0/\3 + a1/\2 + blA + am

where 01 : gig; and 02 2 {£5 are both positive constants. Let us now denote the Hurwitz
3 0 0

determinants associated to Pk:

be b1 0 0

b b
b° b‘ 0

0CL G1 a2A12d6t(b0),A2=det 0 1 ,A3=d€t 0,0 G1 0,2 ,A4:det 0

do (11 bo b1 0
0 b0 b1

0 (Lo G1 (12

Then A1 : 402 + 87r2k’2b2 > 0, A2 = (402 + 87T2k2b2) (402192 + 47r2k2 (bi + b1)) > 0 and

A3 = (320 blbgwhc? — 1601U2> 03 + (512b1bg7r41c4 » 6452790111219) 02 — 64b§7r4h401U2+

+256 b1b§7r6k6 + 64b1b203.

Notice that A4 : ag A3. Thus, sign (A4) : sign (A3). According to the Routh—Hurwitz

Theorem (GANTMACHER, 1959) the number of roots of the polynomial Pk with positive
real part is equal to the number of changes of sign in the sequence {A1,A2,A3,A4}.
Therefore, the proof ends by recalling that A3 is negative for |U| big enough, Vp (LP) C

Sp (fip), and Theorem B5. D
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5.3 Well-posedness without inertial terms
Disregarding the inertial terms in Eq. (5.1) (e.g., (NATSUMEDA; SOMEYA,

1987; SNYDER; BRAUN; PIERSON, 2016; BRAUN; PIERSON; SNYDER, 20]?b)), the
following simplified version of the Rayleigh-Plesset equation is obtained

33 f1 (R) ”‘ P— = —— 5.25
at R f2 (R) ’

( )

along the initial condition

R(x, 0) : R0 (x) Vx e Q, (5.26)

where R0 6 C (Q) known and p E Wol’q (Q) is the solution of (5.2).

When disregarding the inertial terms the proof of existence of a local solution in

time, presented in Section 5.3.1, is more involved. Indeed, compared to Theorem 5.1, which
followed directly from the Cauchy-Lipschitz Theorem, this time the Fredholm alternative
Theorem is needed to express problem (5.25)—(5.26’) as a Cauchy problem.

Observe that the existence of non—trivial stationary solutions for problem (525)-
(5.26) was already established in theorems 5.2 and 53 In Section 5.32 a similar analysis
to the one performed in Section 5.2.1 is made, a worth-notice difference is that this time
there is no explicit expression for the derivative of the right hand side of the Cauchy
problem. Instead, a differential equation for it is obtained (see Eq. (5.32)) and again the
Fredholrn alternative Theorem is used work on the spectrum of that derivative.

5.3.1 Existence of a local solution

Firstly, let us prove that from (525) the derivative 8R/8t can be expressed in
terms of R. In fact, denoting R1 2 R, R2 : 951}, recall the decomposition

, p Z A(Ri,32) = A1(R1)+A2(R1,R2),

with A1 and A2 as in (5.7) and (5.8) respectively. Then, defining II : Q x C (R) H C (Q)
by

_ f1(31)— A1(R1) — A2(R1,R2)II(R1,R2) _ R1 f2 (R1) , (5.27)

the following result is obtained:

Lemma 5.5. Given R E Q, there exists a unique G (R) 6 C (R) such that

G(R) = H(R,G(R)),

and the mapping R »—-> G (R) is of class 02.
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Proof. Fix R 6 Q, it will be shown that there exists a unique S 6 C’ (Q) such that
S : H (R, 5). Using (5.27), notice first that the equation 5 s: H (R, S) is equivalent to

A2 (115) : f1(R)— A (R)

sz (R) Rf2 (R) l

and denote by J : C (Q) i——) C (Q) the linear mapping S r—> S + A2 (R, S) / (ng (R)). To

prove the existence of a unique solution for the last equation J is proved to be bijective,

5+

which gives the existence of G by taking G (R) : S. Now, since the mapping S r—> A2 (R, S)
is compact, by means of the Fredholm alternative Theorem it is enough to prove that J is

injective. Indeed, let us take to E C (Q) such that J (to) z 0, then

ng (R) ”LU + A2 (R, w) 2 0.

Multiplying this equation by —f5 (R) hw and integrating by parts one has

/9 M2 (R) (—f5 (R)) Wm + /Q (—f5 (R)) (“42 (aw) wdfl = 0. (5.28)

Now, multiplying (5.8) by A2 (R1,R2), integrating and using (H5), the next relation is

accomplished by any (R1, R2) 6 Q x C (Q):

/Q(—f5 (R1)) hA2(R1,R2) Rng z o. (5.29)

Taking R1 : R and R2 : w in the last equation and carrying that into Eq. (5.28) we

obtain w z 0. Therefore J is injective.

Next, it is proved that G is of class 02. For this, define the mapping <1) : Q x C (Q) >—)

C (Q) such that
<I>(R,S) zS—H(R,S),

which is of class C2 since all the involved functions are regular enough. Now, fixing some

arbitrary (R*, 52.) E Q x C (Q) such that CI) (RH 52) z 0 we have for any in 6 C (Q)

34> A2 (R,..7 UJ)_ (It, s.) (w) = w + By, (R..)85 :J(w).

From where we obtain that 2—2 (R*, S*) is an automorphism on C (Q). Thus, it is obtained

that G is of class 02 by means of the Implicit Mapping theorem. El

Theorem 5.6. There exists T > 0 such that problem (5.2)—(5.25)-(5.26) has a unique
solution in C3 ([0, T]; Q).

Proof. The result follows directly from applying the Cauchy-Lipschitz Theorem to the

equivalent Cauchy problem
aR _at ‘

along the initial condition (5.26) El

G(R), (5.30)
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5.3.2 Stability analysis
Let us notice the stationary solution of (5.25) is also the couple (RS, ps) obtained

in Section 5.2.2. Here the stability of that solution for the evolution problem (530) is

studied.

Here EG denotes the derivative

5G: o(o) .—> c(o) (5.31)
w +—> D G (Rs) (w).

Using the definition of H (R, S), the derivative with respect to R in the equation S :
H (R, S) is computed and evaluated at R : Rs, 8 z 0, then it is obtained that [CG (w)
satisfies:

Rsfz (R5) LG (w) — f{ (Rs) 11) + 7r1(w) + 7r2 (fig (w)) z 0, (5.32)

with 7r1 and m as in Eqs. (5.18) and (5.19) respectively.
—1

For the next results we denote dl : ——f{ (R) / (ng (R)), dz z (sz (R)) ,

d3 : R f3 (R) fg (R), d4 : —f4 (R) and ds 2 —f5 (R). All these constants are positive
as follows from (H1)-(H5).

Lemma 5.6. Asurnme hJr : 0 or U z 0. Then

Sp (£0) C VP (EC) U i—d1l~

Moreover, if it) e C (Q) is an eigenvector of £0 with associated eigenvalue A, then
to 6 H5 (Q) and it satisfies

(13 (d1 + A) v- (53W) = d4 U - v (hw) + A 615 hw in on,

w z 0 on (99.
(533)

Proof. Notice from Remark 5.5 that (Rs,ps) : (R,0). Putting this into Eq. (5.32), the
next equation is satisfied for any A E (C:

EC (111) — Aw : (A + dl) l—w —- [m (w) + m (LG (w))] , (5.34)
dz

A + di

with 7r1 (w) given by (5.21). Since the map to H 7r1(w) + 7rz (EC (w)) is compact, the
Fredholm alternative Theorem implies Sp (£0) C Vp (Cg) U {—d1}.

Take now to e C’ (Q) eigenvector of EC with associated eigenvalue A, carrying this
into equation (5.34) we obtain

A + d1

_d2 w=7r1(w)+A7r2(w).

then to 6 H3 (Q) and Equation (5.33) follows from this last relation and Eqs. (5.21) and
(5.19). D
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Theorem 5.7. For every U E R2 there exists 6 z 6 (U) > 0 such that if ||h+Hoo < 6, then
the solution (RS, pg) of problem (5.12) is asymptotically stable for the evolution problem
(5.2)-(5.25)—(5.26).

Proof. Let us assume first that h+ : 0. By Lemma 5.6 it is enough to study the eigenvalues
of £0. Hence, take /\ E (C \ {—d1} such that £0 (w) : Aw for some in yé 0. Then (5.33)
reads

hg dg, (d1 + A) Aw z at; U ~ W + A615 w in o, (5.35)

w z 0 on 8Q.

Assume that A z 0, then multiplying the Eq. (5.35) by w and integrating by parts we obtain
in z 0, which is not possible, thus /\ 7é 0. Decomposing A z /\1 + i A2 and w : w + iwg,
the next differential equation for wl and wz can be obtained

—h(2) d3 (d1 + A1) A101 “i— ha d3/\2AZU2 —|— d4U ' V’LUl + d5()\1w1 — A210?) 2 0,

0.“ii/(2) d3 (d1 + A1) A102 — (Lg dgAgAwl + d4U ' V102 “i- d5()\1w2 + Agwl) Z

Multiplying the first equation by ml, the second equation by wz and integrating by parts
we may obtain

hgdg (d1 +m/ |Vw1|2 dQ — hgdm/ VwQledQ + d5A1/ w? dQ — d5A2/w1 10de z 0,
Q Q Q Q

ha d3 (d1 + AQ/ Iszl2 dQ + hg d3A2/ ngvuil dQ + d5A1/flwng + (15ng wl 111de = 0.
Q Q Q

Adding up both equations we have

h§d3 (d1 + A1)/Q(|Vw1l2 + |Vw212)do + d5/\1 /Q (Iw1l2 + 1102?) dQ = 0.

Observe that A1 2 0 implies w = 0, which is not possible, thus Re (A) z /\1 < 0.

The stability for h+ : 0 has been shown. Now, from Theorem 5.2 the mapping
h“L H Rs (h+) is continuous in a neighborhood V1 9 O in L°° (Q) Thus, if h+ —> 0 in
L°° (Q) then

HDG (RS (m) ,0) — DG (R, 0)” —> 0,

in the space of linear continuous operators from C (Q) into itself. Then the result follows

from Lemma 5.3 and Theorem BA. D

Theorem 5.8. Fix h E Bmo,Mo> 0 < mo < M0. Then there exists 6 > 0 such that if

HUH < 6 then the solution (125,105) of problem (5.12) is asymptotically stable for the
evolution problem (5.2)—(5.25)—(5.26).

Proof. Let us assume first that U z 0. By Lemma 5.6 it is enough to study the eigenvalues
of EC. Hence, take A 6 (C \ {—d1} such that [lg (to) z /\w for some to 5A 0. Recall that
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w satisfies Eq. (5.33), if A = 0 the only solution for that equation is U) z 0, which is a
contradiction. Thus, we have A 76 0 and this time Eq. (5.33) in its variational version reads

_d3(/\ +d1) 3 _ 1

A
/Qh vwv¢d9_ d5/QhwqbdQ v¢eHO(Q).

By means of the same arguments used in Theorem 5.4, the last implies A 6 IR". The result
follows analogously to the end of Theorem 5.7 proof, this time using the continuity of the
mapping U H Rs (U) asserted in Theorem 5.3. [I
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CHAPTER

NUMERICAL METHODS FOR THE RRP
COUPLING

This chapter is devoted to the numerical methods developed in this work for solving
the RRP coupling. As done for the theoretical results shown in Chapter 5, here the
development is divided into two cases: 1) Disregarding inertial terms and 2) Including
inertial terms.

The first case is exposed in Section 6.1. A numerical strategy, the single—step scheme,
is developed and compared with one founded in the literature, named the staggered scheme.
The former scheme is shown to solve stability issues exhibited by the latter one. Particularly,
that scheme increases significantly the range of geometrical parameters able to be simulated.

By means of the proposed numerical method, simulations of the Journal Bearing mechanism

(Section 2.4.1) are performed and a comparison of these results with the ones for the
state—of—the—art Elrod—Adams cavitation model (Section 2.3.2) is made. These findings
are part of an article published in a peer—reviewed journal (JARAh‘IILLO; BUSCAGLIA,
2019) during this work.

The case where inertial terms are included in the RRP cavitation model is covered
in Section 6.2. There a numerical method is proposed and some interesting mechanical
examples where the inertial terms are relevant are shown. Particularly, it is shown a
dependence of this relevance on the bubbles equilibrium radius Req.

6.1 Disregarging the inertial terms
Assuming the inertial terms in Eq. (4.51) are negligible one obtains the following

equation
5
8—15 + Ub . we : G(R) (Fm) — p), (6.1)
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where

R
G R :—( )

4ug+4I€S/R (62)

and

20 R 31“ 20F R = — fl) — ~ —. .( ) (peq+ Rm) ( R pa R (6 3)

The Reynolds equation (4150) can be written as:

.
effi _ .<E ) er aV (IQMVp>—V th +pat+hat. (6.4)

The right hand side of this equation contains the different terms that generate a pressure
build—up. The first term corresponds to the pressure build—up due to the relative movement
of the surfaces (or Couette flux); the second term represents the effect due to the squeeze
between the surfaces; the third one represents a change in the average density of the
mixture due to the bubbles compression or decompression.

In spite the existence of several numerical works where the RRP coupling is

used to simulate lubricated devices (NATSUMEDA; SOMEYA, 1987; SOMEYA, 2003;

GEHANNIN: ARGHIR: BONNEAU, 2009; GEHANNIN; ARGHIR; BONNEAU, 2016;
SNYDER; BRAUN; PIERSO’N, 2016; BRAU'N; PIERSON; SNYDER, 2017a), a lack of a
detailed numerical procedure has been identified during this work. Among these works, in
the article of 2016 the group of Snyder et al. provided an algorithm that hereafter will
named staggered scheme (some of its details where obtained by private communication).
Although the authors were able to perform simulations regarding the Journal Bearing7 an

instability issue in their method is identified next.

6.1.1 The Staggered scheme

Assuming Q to be a rectangular domain, Eq. (6.4) is discretized by means of

a Finite Volume scheme using rectangular cells of length A151 (A302) along the Jul—axis

(mg—axis). The coordinates (xi, yj) correspond to the cells’ centers. Using a constant time
step At, we denote t” = nAt for n 2 1. Hereupon the total number of unknowns at each
time step is denoted by M.

Consider that the scalars R17;- and Rig—1 have already been calculated for all cells.

The Staggered scheme of discretization for the inertialess RRP coupling is defined by the

following equations:
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Stage 1: Computation ofp”

TL 71 TL

Ci—éa'pi—u _ (Ci—w + Gaga) PM + Catapult
Ax?

TL 71. n
Ctj—épm—l — (Cm—é + Ci.j+§) pm + ci,j+§pi.j+1

A303

U pnjhnj — pn—lj ll—lj n P?“ _ ply—1
z, a l _»7 n. D h .. hTL.———’JJ 6.5<

Aml + pug ( t )z,j + Z,_7 At
( )

+

Z 5
with

3 3

: pmhztj) /(12u)+pal,j(hal,j) /(12u)
O 1 -liifl 2

7

_
Plfj (My?) “12/0 ‘l‘ P2311 (hltjil)3/(12/1’)

ci,j:t% —
2

.

Where Dth is a first order approximation of 59521. Eq. (65) is used at each cell that belongs
to the domain, while for the cells belonging to the boundary of Q we have either

ij : 106le (6.6)

or
(Dfipxtj : O, (6.7)

where (D,», p) is a first order approximation of the normal derivative at the boundary
BQN.

TL

133

Stage 2: Computation of R"+1

In the lubrication approximation to (the vertical speed) is neglected in Eq. (6.1),

turning it into a two-dimensional transport equation. Among many possibilities, our
implementation adopts the following implicit scheme:

11 n n 1 1Rijl : RM + At {G (Riff) (F (3,31) — pg.) — (uD1R)Z;r — (1)Dngj } , (6.8)

where D1 : %, D2 — a and the convective terms uDlR and v DgR are discretized by_ 072,

means of an upwind scheme. Notice that (68) is a discretization of Eq. (6.1), which is a
transport equation but not a conservation law because V ' Ub # O in general.

After the two stages above all variables have been updated and the computations
may proceed to the next time step. The scheme is called staggered because the Reynolds
solver (Stage 1) computes p” assuming that R z R” and (8p/8t)” : (pn — p""1)/At, both
already calculated, and then the Rayleigh-Plesset solver (Stage 2) computes R"+1 with the
pressure fixed at p z p”. The implementation of the staggered scheme of RRP coupling
is straightforward, since no modification is required in the Reynolds solver. It should be
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noticed, however, that Zip/675 is approximated with information from the previous time
step. Both R"~1 and R” are required to compute Rn“. This gives rise to initialization
issues and also, as shown along the next sections, to stability issues. A method that only
requires information of the current time step is described next.

6.1.2 The Single-step scheme

This is the method proposed in this work, which can be seen as an adaptation
of that in (GE‘IKE; POPOV, 200921). The basic idea is to compute (8p/3t)" using only
information about R" (and thus a" and p”). From the chain rule, assuming pg constant,
we have

@ __
8a (El—pg _ 2 8B 47r(pg —,0g)R3 8m, Bpg

at — (pf Peat” at — 47W helm at+7197” at (6-9)

To simplify the exposition, as done by other authors (NATSUMEDA; SOMEYA, 1987;

GEHANNIN; ARGHIR; BONNEAU, 200.9; GEIKE; POPOV, 2009a; GEIKE; POPOV,
2009b), one may assume that dpg/dt : 0 and that (Mb/815 : 0 (NATSUMEDA; SOMEYA,
1.987; SNYDER; BRAUN; PIERSON, 2016; GEHANNIN; ARGHIR; BONNEAU, 2009;

GEIKE; POPOV, 200921; GEIKE; POPOV, 200913). Denoting K(R) : 47r(pg — pg)an2,
one arrives at

8p 8B
—— z — —. .1
(“it

K(R) at (6 0)

It is worth mentioning that dog/fit is in fact equal to —(3peqR2q/R4) dR/at, where peq is

the density when R : Req. Incorporating this effect in the model amounts to adding the

term Serpengq/R‘1 to the definition of K (R) Similarly, if one adopts the model (4.49) the
factor K (R) changes to If (R) z (1 + a) K (B) These changes in K (R) have no numerical

consequences, so that the algorithm presented below can be applied in any case.

Combining Eqs. (6,10) and (6.1) justifies the following discretization of 8p/8t,

(gy : ‘Kirfj [Gufijl <F(R?j) ‘PZD — (“9131ij — (U DQR)Zj] 7

11]

Inserting this approximation into Eq. (6.5) instead of (ij — pf;1)/At leads to the Single—

step scheme. The equations are as follows:
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Stage 1: Computation ofp”

12 , I1 I?
‘

Cit—5.3“ P1244 _ (Cay ‘l‘ Gaga) PM + Ci+§tjpi+m
Anti

i” _ .. .. W’l. ,. l".
Cm’ épihj 1 (Cm é + Cu] l 5) pt.) + Ca] épI-J ll

1 u 1,'Il C R” 1“ _+ A72
— 111.7“ ‘m' ' w 1m —

..2
11 I7 11 llU Pig/"11.7 — Ping/174.3" .,,, n,2 ._ _' , — ‘l‘ pig“ (Di/lit;2 All '

— lime; (G (12:3) F (R53) — (411,D1R)Zj — ('17D2R)2j) . (6.11)

W'here Dth, is a first order approximation of %. Notice that the matrix to be solved for

p” is not the standard one in Reynolds—equation solvers such as Eq. (6.5). There is the
additional term —h;‘__7-K{fi7~G(R;fj) in the diagonal elements which is key to the enhanced
stability of the scheme.

Stage 2: Computation of R""+1

This stage of the Single-step scheme coincides with that of the Staggered scheme:

Equation (6.8) is solved to obtain Rfijjl.

6.1.3 Numerical results and stability analysis

6.1.3.1 The Planar Fracture

. t‘zto
‘ ,

$50 m=L
t>tq

t>>t0

Figure 6.1.1 ~ Scheme of the 1D fracture setup. The liquid is trapped between two parallel plates,
at the left boundary a Dirichlet condition on pressure is imposed, at the right
boundary a no-flux condition is imposed. The white regions represent the presence
of gas—bubbles in the liquid.

Consider a fluid trapped between two smooth planar plates set parallel to the .'1.'1—.'.L'2

plane and in close proximity at distance I), (see Fig. 6.1.1). The plates are infinite along
the QJQ-EIXlS, so that the liquid pressure can be modeled by the 1D compressible Reynolds
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equation, which reads
8 p 8p 8p2— __.—_ ——‘ —h 1(12 1) — t’ (6.12)

with the boundary conditions

p(x1:L,t)=Op(0, t) Z p6(t>>
8_$1

For this application it is assumed that the bubbles are attached to the surfaces (Uh = 0),
and that they are uniformly distributed. Denoting by n; the number of bubbles per unit
area, the number of bubbles per unit volume is computed as nb : ni/h. Thus, from Eq.
(4.56) one obtains

”l; 4 3
or 2 (W) 57TH . (6.13)

If there is no presence of bubbles in the liquid (nf, _—: 0), then a E O in (4.54)
and (4.55), the fluid density p is constant in time and so Eq. (6.12) implies that the

pressure along the domain is constant and equal to the boundary condition at $1 = O

(i.e., p(z1, t) : p3(t)). That is, the pressure in the domain adjusts instantaneously to the
boundary value.

On the other hand, if n?) > 0, the response of the system to changes in the boundary
pressure is much more involved. Consider the system with n?) independent of $1, and with
bubbles of initial radius R(x1,t = 0) : Req and external equilibrium pressure peq. This
system is in equilibrium with a boundary pressure pa : pee1 in the sense that dR/at : 0

for all 51:1. The specific problem considered here is the response of the system, initially in

equilibrium, after the boundary pressure pa is suddenly changed from peq > pGav to some
different value pg < pcav at t z 0 (p30?) 2 pg, t > 0).

Since p(ac1,t) is continuous in 101, there will exist a region where p < pm, and thus,
recalling that pcav is the minimum of F, where the right hand side of Eq. (6.1) (with
Ub : 0) will be strictly positive. In that region the bubbles are expected to grow until

touching one another or until filling the volume between the surfaces, at which point
the model looses physical meaning. This numerical example aims at showing how this
fully—gaseous region progresses through the domain as predicted by the RRP model. To

extend the model in order to handle fully-gaseous regions, we introduce an upper limitation
to the definition of a (R) given in Eq. (6.13), reading

a (R) = min { (Z?) gnRB, 1}, (6.14)

and also turn off the right—hand side of the Rayleigh-Plesset equation when a 2 1, i.e.,

dR_ G(R)(F(R)—p) ifa(R)<1,_ _ (6.15)
dt 0 if a(R) 2 1.
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Notice that this is not a good model in general situations. In particular it cannot model

problems in which a fully—gaseous region (a = 1) transitions back into a liquid—gas region

(a < 1).

6.1.3.2 Parameters setup

Symbol Value Units Description

pg 1000 kg/m3 Liquid density
pg 8.9 x 10‘4 Pa-s Liquid viscosity
pg 1 kg/m3 Gas density
a; 1.81 x 10‘5 Pa-s Gas viscosity
res 7.85 x 10‘5 Pa-s-m Surface dilatational viscosity
a 7.2 x 10‘2 N /m Liquid surface tension
H 10 um Gap thickness
Req 0.5 pm Bubbles’ radii at 1 atm
pvap 0 — Bubbles’ vapor pressure
Ti?) 1.91 x 1011 m‘2 Number of bubbles per unit area
(5p 1.5 - peg,w Pa Reference value for p}; — pcav

(notice that 5p < 0)

Table 5 — Default parameters.

For the simulations presented in this Section, a set of parameters are fixed and
their values are shown in Table 5. Recalling that in the equilibrium the bubbles’ internal

pressure accomplishes:

pbub : peq ‘i‘ ——7

we set the reference value prbub : 1 atm + 1372. We set also 6p : 1.5 ‘ peaV < 0 (where pm,
depends on pbub according to Eq. (4.11)) is also defined. The remaining free parameters7
such as the length of the domain (L), the boundary condition for t > 0 (p3) and the fluid

viscosity (rte), are varied over wide ranges to explore the ability of the numerical methods
to yield convergent solutions. The results shown below correspond to Afr : L/ 1024 and
At : 1 x 10‘6 s. The choice of these values is based on a mesh and time step convergence
analysis such that further refinement would not be noticeable in the graphs.

6.1.3.3 Results for the Staggered scheme

The first striking result of the experiments is that if L > 8.59 x 10‘4m the
Staggered scheme produces numerical outcomes that explode exponentially after a few
time steps. This instability cannot be avoided by refining the mesh or reducing the time
step. Furthermore, no relevant dependency of the instability on the boundary condition
pg — pcav was observed.
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The next section explains this issue by linearizing the RRP coupling and performing
a stability analysis of the Staggered scheme. Before that, let us provide a sample of the
results that could be obtained to illustrate the behavior of the system for L being small.
Selecting L z 2.15 x 10‘4 m, Fig. 6.1.2 depicts the profiles of a over the domain at several
times, with two boundary conditions, p3 = pcav + 5p and p23; 2 pcav + 25p (remember that
5p < 0). It can be observed that for such small value of L the pressure field is almost
independent of $1. One can also notice that the bigger the magnitude of pg — pcav, the
faster the growth of a in time.

....... pa — pcav = 6p —- P5 _ pcav = 26?)

x‘ “we /th’* “P5 go“ “6“ Qt?“
m

t t V N4 if V V K n/ K
0.8—

0.6-

a
0.4'

0.2 — . . . ._
“mm.""fl. .........o 10 10 10 10 10 10 10 10 10 1

301

Figure 6.1.2 — Results of the Staggered scheme for L z 2.15 x 10‘4 m. Shown are some snapshots
of the gas fraction profiles a(x1,t), for pg —— pcav = 6p, 251). The rest of the
parameters were set to their default values.

6.1.3.4 Stability analysis

Linearizing Eq. (61) (with Ub = 0) around an equilibrium state (Req, peq) one gets

% z a (are — p), (6.16)

where
Req dF

60 Z
4M + [Ms/Rm,

[81 Z 2173
R=Req

.

Please notice that [31 < 0 since it is assumed that (Req, peq) is an equilibrium state

(stable branch in Fig. 4.1.1). Recalling now that p/ii is a function of R and assuming that



6.1. Disregarging the inertial terms 107

R(x1, t) : Req (as a 01 function of 551), one can choose the perturbation small enough so

that
aha/u)
8B

which justifies the approximation

1 ea smear
(93:1 “8301

‘

Q2<<
»

8:6?
(IR — Reql + ———8<R” Reg) 93)5x1 8x1

Using this approximation, one can linearize Eq. (6.12) and use Eq. (6.16) to get

182 gig; = g (6.17)

where [32 : —(§:%)—§_%EZ—E%.

Let us now discretize Eqs. (6.16) and (6.17) in space to get, respectively,

fig; : BlR — p and (6-18)

fl2 EAP = id?) (6-19)

where R(t) and p(t) are radii and pressure vectors in RM and CA is the discrete Laplacian

operator corresponding to the grid size A = Aml. Let {QR-£1 be an orthonormal basis
of RM formed by the eigenvectors of EA s.t. EA g,- 2 Ag), 1 z 1 . . . M. Then, p can be

expressed as p : 2&1 fyi(t) g and so Eq. (6.18) implies

1 d
50 dt

where the fact that each g, is time-independent has been used. In the same way, Eq. (6.19)
implies

(Riel) = 61<R1gi> — wilt), z‘ z 1. . .M, (6.20)

Mme) : gt <R,g,>, 1:1...M. (6.21)

These last two equations imply that stability analyses can be made independently for
each mode (R, g,) ,

z' z 1 . . . M. To simplify notation we denote R = (R,gi), ;\ z A, and
fit) 2 7,(t) for some arbitrary index i. In Section 6.1.3.1, the Eqs. (6.20) and (6.21) are
discretized in time with a constant time step At, such that to z 0 and t” : nAt.
Stability of the Staggered scheme

The time discretization of Eqs. (6.20) and (6.21) by the Staggered scheme is

iRn—l—l _ Rn

[30 At ZfilRflHfiln’
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Substituting 37” from the latter equation into the former leads to

5\(1— At/Bl 50) fi2 Rn+1+<30 — fi2 5‘) Rn — 50 Rn_1 Z 0-

This methodology thus corresponds to a multistep method (e.g., (LEV EQUE, 2007) Section
5.9). Its characteristic polynomial is given by

Q(X) = M1 —At51fio)fi2x2+(5o —525\) X—flo-

A necessary condition for this type of multistep method to be stable in time is that the
roots of Q(X) must lie within the unit circle of the complex plane (Leveque (2007) Theorem
6.3, pag. 147). Denoting these roots by X1 and x2,

51 At
X121+1——1+O(lAtl2>

£70 673

and
B 536 At0 0 1 2=——~~ ~ 0 At .X2 at mm + (l '>

Recalling that 60 > 0, 61 < 0, fig < 0 and X < 0, one observes that lel < 1 for At small
enough. On the other hand, if X < 60/62 , then lX2| is always bigger than one. Therefore, as
the minimum eigenvalue (in magnitude) of the Laplacian operator [IA is /~\ 2 —7r2/(4L2),

instability is predicted for L > i/7r262/(450). The Staggered scheme is thus not stable for

L large enough.

For the default values of the parameters (see Table 5) it turns out that 50 z 8.0 x 1010

and 52 z —1.9 ><10_13 (in SI units), then one should have numerical instability for L > 0.024

m. This behavior is indeed observed when a small perturbation is imposed on p3(t). In
Section 6.1.3.3 a large perturbation was imposed and in fact instability was observed for
much smaller values of L (L > 8.59 x 10‘4 m). The reason for this is that the nonlinear
behavior that corresponds to cavitation amplifies the instability of the Staggered scheme,
which can be explained from the change in sign of F’ (R) from negative to positive when

cavitation occurs.

Stability of the Single—step scheme

The time discretization of Eqs. (6.20) and (6.21) by the Single—step scheme consists

in substituting fyZ-(t) from Eq. (6.21) into Eq. (6.20). The resulting equation reads

Rn“ — R" 1 1
”1

~_— Z _ _~ Rn-H.
At (a + a A) 51

Thus,
R'n-l-l Z

1 ~n

1" “53551530
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For this scheme to be stable the factor multiplying I?” must be lower than the unit in
magnitude. But this is always true, since we have [30 > 0, [31 < 0, [32 < 0 and A < 0.

This does not guarantee numerical stability, since nonlinear effects could deteriorate its
behavior. This motivates the numerical experiments below7 which show that the method
is stable beyond the linear regime.

6.1.3.5 Results for the Single-step scheme

1 - - -2.6t=Os _
8

a 0.5 — - -2.8‘<°‘
Q.

0 ‘ ‘ ' ' —3

0 0.2 0.4 0.6 0.8 1
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—.
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0 l I I _3
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Figure 6.1.3 — Gas fraction and pressure in time along the fracture setup for L z 6.9 x 10‘3 in,
p25 — pcav = 461), and the rest of the parameters set to their default. values.

The Single—step scheme allows to perform simulations for arbitrary values of the
domain length L. A wave—like solution, with the cavitated region advancing towards the
right side, develops whenever L > L* z 1.7 x 10 3 m. An example is shown in Fig.
6.1.3 for L = 6.9 x 10‘3 111. To depict the front advance, the position §(t) such that
cr('.r1 < £(t),t) = 1 and cr(;r1 > £(t),t) < 1 is tracked in time and the resulting curves
are shown in Fig. (5.1.4 for several values of L. Notice that the time variable has been
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non—dimensionalized by dividing it by T, the filling time, defined as the first time for
which a z 1 on the Whole domain.

Interestingly, with the proposed 110n—dimensionalization the curves of 5 (t) converge
to a unique curve when L is large enough (in this case, for L > L** = 0.0275 m). The
relative difference between the curves corresponding to L : 0.0275 111 and L = 0.055 m, for

example, is less than 2%. Next7 a numerical study of the dependence of the filling time Tf

on the liquid parameters and the boundary condition 195 is presented. For these analyses,
the domain’s length is also varied from values lower than L* up to values higher than L**.

0.25£(tl/L

0 0.02 0.04 0.06 0.08 0.1
t/Tf

Figure 6.1.4 — Non-dimensional advance of the wave for the 1D Fracture Problem for several
values of L and the default parameters.

Varying p33 — pea,V and fixing both pbub : pi’mb and Mg = it; the resulting filling
times are shown in Fig. (5.1.5 for several values of L. For the shorter domains, Tf does not

depend on the domain’s length, while for the larger domains it grows quadratically with it.

Notice also that T f is roughly inversely proportional to p25 — pcav.

Regarding the bubbles’ initial internal pressure, simulations where pbub is varied

and p}; is fixed to —3.83 atm are reported in Fig. 0.1.6. This value of 193 corresponds
to the boundary pressure condition for the default case pbub z pgub. It is found that
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10-3L
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Figure 6.1.5 — Filling time for several values of L and p23" — pcav. and the rest of the parameters
set to their default values.

the filling time diminishes when augmenting pbub, which is expected since pcav increases

monotonically with pbub.

In the cavitated region (where a = l) the Poiseuille flux is inversely proportional
to the gas kinematic viscosity (rig/pg). This affects Tf when L is large enough, as shown in

Fig. 617. Finally, the value of as is varied and the results for T f are shown in Fig. 6.1.8.

Notably, Tf is proportional to as for small values of L, and independent of as for the larger
domains considered.
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Figure 6.1.6 — Filling time for several values of L and Pbubé fixing pg} = —3.83 atm and the rest
of the parmnetcrs set to their default values.

10'3l1 ....... . .,-4 -3 -2 -1
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Figure 6.1.7 — Filling time for several values of L and 11g; fixing p}; — pcav : 45p and the rest of
the parameters set to their default values.
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Figure 6.1.8 — Filling time for several “values of L and HS; fixing p24“, — pcav = 461) and the rest of
the parameters set to their default values.
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6.1.3.6 A 2D example of the Fracture Problem

To assess the robustness of the Single—step scheme7 2D simulations of the Fracture
Problem are here reported. The domain corresponds to the rectangle [0, L] x [0, W] with
L = 1.25 x 10‘2 in and W : 1 x 10“2 m. The grid length along 551 was set to Arm = L/348
and along at? to Azg : W/ 256, while the time step was fixed to At = 1 x 10‘5 s. The
Dirichlet condition pg : —2 atm is set at 332 z 0, and the null-flux condition is set at
$2=W,331:0and;r1 =L.

0.01 .

0.009

0.008

0.007

0.006 "

0.005
(172

[m]

0004

0.003

0.002

0.001

0 0.002 0.004 0.006 0.008 0.01 0.012
331 [ml

Figure 6.1.9 — Height function h(:r1,:132) for the 2D Fracture Problem example. This gap represents
the realistic distance between a flat surface and a rough surface with the presence
of honed channels.

For the 2D cases the gap it depends on x as shown in Fig. 6.1.9. To fix an initial

gas fraction do 2 0.01, the initial bubbles’ radii are taken as Req : [a03h(x)/(47mi)]1/3.

This way, Req assumes values between 0.40 urn and 0.54 um (for the parameters here

considered). Since it is assumed that the bubbles are in equilibrium at 1 atm7 the initial
internal pressure is set according to Eq. (41.5) or, equivalently, pbub(Req) : 1 atm +2a/Req.
Thus, the cavitation pressure depends 011 x since it varies with Pbub (see Eq. (4.11)).

The results here exposed are obtained with the Single-step scheme, since simulations

with the Staggered scheme invariably crashed. In Fig. 6.1.10 the advance of cavitation in

time along the 2D domain is shown. The complexity of the field a can be also observed in

Fig. 6.1.11. Notice the presence of cavitation in the crevices (regions with a higher value

of it) even in places where the wave (traveling in the positive avg—direction) has not arrived.
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This can be explained due to a higher cavitation pressure in these regions.

Remark 6.1. Another possibility to perform these simulations is to set a constant Req
and an initial gas fraction that depends on the position. For instance, a(x,t : 0) :
él/i’nrReq an/h(x). The corresponding simulation yields solutions that are much smoother
than the case presented and are not shown here since the objective is to test the Single-step
method in a demanding situation.
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Figure 6.1.10 — Evolution of the field a in a 2D fracture problem with a uniform initial gas
fraction ao.
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Figure 6.1.11 — Three dimensional View of the gas—fraction field a at time t = 4 x 10‘1 s for the
2D fracture problem with uniform initial gas fraction ao : 0.01.
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6.1.4 The Journal Bearing
In this section results of simulations of the Journal Bearing mechanism are presented

(2.4.1). This problem is a typical benchmark and has already been used by other authors
(NATSUh’lEDA; SOMEYA, 1987; SOMEYA, 2003; SNYDER: BRAUii; PIERSON, 2016;
BRAUN; PIERSON; S iYDER, 2017a). For this application, the transport of bubbles is

incorporated by setting Ub : 77(U, 0) with 77 E (0, 1], and the bubbles are assumed to be
uniformly distributed in the fluid at the initial time t z 0. The geometrical and fluid/gas
parameters are shown in Table 6. As in (SNYDER; BRAUN; PIERSON, 2016), the initial
bubbles’ radii is set to R(x,t = 0) : Req : 0.385 mm. The number of bubbles per unit
volume nb is assumed to be constant in space and time. Let us observe that in this setting,
and by means of Eq. (4.47), to fix nb is equivalent to fixing 040 = a(Req).

While traveling through the domain, the bubbles evolution is strongly dependent
on the surface dilatational viscosity as (SNYDER; BRAUN; PIERSON, 2016), and so

are the pressure and gas fraction fields. Considering the same problem, Natsumeda and
Someya set [is to 7.85 x 10‘4 N~s/m (NATSUMEDA; SOMEYA, 1987). Here we explore the
range 7.85 x 10”6 to 7.85 x 10‘3 N-s/m, with the results shown in Figs. 6.1.12 and 6.1.13.

It is observed that for as : 7.85 x 10‘3 N-s/m the liquid fraction 1 — a is almost constant
throughout the domain and thus the pressure profile is similar to the full-Sommerfeld

curve (which is the solution of the Reynolds equation when cavitation is disregarded). For
lower values of Iis the liquid fraction shows significant inhomogeneities which very much

suggest the appearance of a cavitated region (low liquid fraction, quasi—uniform pressure).
This is further discussed in section 6.1.4.2.

Remark 6.2. The results above are qualitatively similar to those reported by Snyder
et al. (SNYDER; BRAUN; PIERSON, 2016) for the same journal geometry, rotational
speeds, and fluid/gas physical properties. However, our results for as = 7.85 X 10‘6 N-s/m
best agree with theirs for as : 7.85 x 10”4 N-s/m. Similar differences on as were observed

when trying to reproduce other results in their article. This difference may possibly arise

from differences in the definition of a in terms of R.

Remark 6.3. If the bubbles’ transport velocity is taken as Ub : éU — {LZE-MVp, as done in

(SNYDER; BRAUN; PIERSON, 2016), then the number concentration of bubbles nb can

no longer be considered a datum of the problem and it must be computed by means of a

transport equation (e.g., Eq. (4-44)).

6.1.4.1 Stability and convergence

To test the stability of both methods a series of simulations were performed for

as : 7.85 X 10‘4, 7.85 x 10“5 and 7.85 x 10‘6 N-s/m, rotational speeds of 1000, 2000 and
4000 rpm, 77 : 0,0.5, 1, and do : 0.1 which gives a total of 27 configurations. The mesh
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Figure. 6.1.12 — Pressure profiles solution of the RRP model when varying the surface dilatational
viscosity its for the journal bearing rotating at 5000 rpm. Here do = 0.05 and
7/ = 0.5.

adopted was 512 X 64, but the same conclusions were obtained on other meshes. The time

step was adjusted so that CFLz 1.

The Single-step scheme exhibits stable behavior for all of the tested configurations,
reaching a stationary solution in finite time. On the other hand. the Staggered scheme
fails to provide stable solutions in most of the cases. The instabilities persist even if

the time step is reduced a. thousand times with respect to the unit-CFL value. Only for
his = 7.85 x 10—4 N-s/m and 1) E {0.5, 1} the Staggered scheme behaves stably.

A convergence analysis is now presented for the Single-step scheme. This analysis
is done for the journal rotating at 2000 rpm, with an initial gas fraction do = 0.1 and
H5 = 7.85 x 10“L N-s/m. To test the dependence of the solutions on the time step, the
grid size is set to An = 27r JR/512 and Ar? = JW/64. A reference solution

_.
denoted

by (pref, Rref)7 is computed by setting At to 640 time steps per cycle and running the
simulation until t = 0.06 s. The measure of the temporal discretization error for a variable

f (which can be p or R) is defined as

“fete = 0.06s) — RM
2_ ”Bret“?

.E“ (f)

where fAll is the numerical solution computed with time step At. The results are shown
on the left side of Fig. (i. l.1—l, with strong evidence of a convergence rate of order m 1.
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Figure 6.1.13 ~ Liquid fraction solution of the RRP model when varying the surface dilatational
viscosity its for the journal bearing rotating at 5000 rpm. Here do = 0.05 and
7] = 0.5.

The convergence of the discretization in space is studied for the stationary solution

(t = woo) to avoid interference with time discretization errors. A sequence of nested meshes
is built by setting A271 : 27r JR/Nz and Am? 2 Sit/Nu with Nat = 64, 128, 256. etc. The
reference solutions pref and Rref are computed by setting Nat = 2048. The measure of the
spatial discretization error is

= ”fo (t 2 +00) _ Rref||2EAI
’(f) “3..an

where j'Nw is the numerical solution computed with the grid corresponding to NI. The
empirical convergence order as the spatial mesh is refined is of order m 1, as shown in the
right side of Fig. 6.1.14. Notice that the discrete convective term for pit in Eq. (6.11) is a
first order approximation of ~iflph)’ and that the convergence analysis on space was made

computing stationary solutions. For the stable stationary solutions R can be written in

terms of p as R = F'1(p). This way, the local density is given by p = p (R) = p (F~1 (p)).
Therefore. for the stable stationary cases p is a smooth function of p, which explains the
observed order of convergence.

To the extent of our knowledge, this is the first numerical convergence study of

algorithms for RRP coupling. It shows that thc Single-step method is indeed stable and

convergent in problems with strong nonlinear effects. The accuracy is however limited to
first order in both space and time.
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Parameter Value Units Description

pg 854 kg/m3 Liquid density
m 7.1 x 10‘3 Pacs Liquid viscosity
pg 1 kg/m3 Gas density
Mg 1.81 x 10“5 Pas Gas viscosity
as w 10"4 - 10‘6 Pa-s-m Surface dilatational viscosity
a 3.5 x 10“2 N /m Liquid surface tension
pg 1 atm pa(t) for t > 0

peq 1 atm Bubbles’ equilibrium pressure
Req 0.385 nm Bubbles’ radii at 1 atm
do 0.05 — 0.1 Initial gas fraction
Jw 25.4 x 10‘3 in Journal width
J. 25.4 X 10“3 m Journal radius
JC 0.001 - Jr m Journal clearance
J6 0.4 . JC m Journal eccentricity
w 27r5é% - 279—2? Journal angular speed

Table 6 — Parameter values for the Journal Bearing.

6.1.4.2 Comparison with E/rod—Adams and Reynolds mode/s

When the value of as is small enough (e.g., as : 7.85 x 10‘6 N-s/m) the pressure
profiles that develop in the journal bearing are observed to satisfy the condition p 2 pcav,
with pcav computed from Eq. (4.11). In fact, a large region where p 2 pcav is observed,
which resembles the cavitation regions predicted by more traditional models. This motivates
to incorporate pGav = ~0.77 atm into the Elrod-Adams and Reynolds cavitation models in
order to perform comparisons with the RRP model. Doing so, the resulting pressure profiles

are shown in Fig. 6.1.15 for rotating speeds of 1000 and 5000 rpm and as : 7.85 x 10—5

and 7.85 x 10“6 N-s/m. Notice that the rupture point for both the Elrod—Adams and
Reynolds models are the same (which is a well—known fact), while for the RRP coupling
the rupture is placed further along the fluid’s movement direction. On the other hand, it
is also known that the Reynolds model fails to accurately predict the reformation point
when compared to a mass—conserving model (AUSAS at (Ll., 2007). Remarkably, when
as is small enough the RRP model predicts a reformation point similar to that of the
Elrod—Adams model. Furthermore, Fig. 6.1.16 shows the comparison of the fluid fraction

produced by the RRP model, 1 _ a, with the fluid fraction produced by the Elrod—Adams

model, 0. Qualitatively both fluid fraction fields are similar, the one corresponding to the
RRP model being a regularized version of the other, in some sense. Notice that increasing
as to 7.85 x 10“5 N‘s/m significantly reduces the similarities between the two models.

Let us remark that the results shown in these last comparisons were obtained with
a mesh having A951 = 27rJr/512 and A332 : JW/64 (i.e., N9; : 512) and with the time step
fixed to 400 steps per cycle (CFL:1.3).
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his = 7.85 x 10‘5, 7.85 x 10~6 N-s/m and 7; = 0.5.
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6.2 Including the inertial terms
In this section a numerical method to solve the full Eq. (4.51) is proposed. To our

knowledge, currently there are no works exploring inertial effects by means of numerical

analysis. Instead, these terms are generally disregarded by means of a dimensional analysis.

Let us denote R by R1 and%—Rby R2. Then, rewriting the Eq (1.51) as a first— order

system and coupling it to the Reynolds equation we obtain
BR571_ R2 — Ub VRI, (6.22)

aR2 _ 3R§ R2 F(R1) —p
Pew — —PeUb ' VR2— 055? — 4 (WRl + "6s)—R1 "1“

R1
1 (6-23)

phg Uaph ah
. _ _ __ . 24v (121761 at. +1)”at + hp<R11<R2Ub va), (6 >

where F is defined in (6.3) and n : n(R1), p : p(R1) are given by Eqs. (4.541) and (4.55)
respectively and p’ is the derivative of p.

Focusing in the physical setting of the Journal Bearing (with parameters shown in
Table 6) the next reference value for p, R1 and R2 are chosen

r 2(R1) 10r I 7
RT = R ’ Rr 2 ?p peq 1 eq 2 MeRi + [is

mg : Jr, 1; : Jr, if : JG, tr : Rg/Rg.

Notice that in this case U : (er,0), thus the quantity wJ is taken as reference speed.
Notice that Rlr corresponds to G(Rr) p’, the value of aR—l according to Eq. (6.1) for Ub—— 0

and F(R) p—— p . Leading to the non—dimensional equations
aR
79211 : —721 Ub le + R2, (6-25)

81,22: 3R2_ R2 +F(Rl) _ fi
ep—a? cw Ub vR2 61,5 R14(51R1 + fi2)—

RE) R1
, (6 6)

A fihSAA _18/3h an A A M71V - (EELVP> — §8£1+73p67 + hp (R1) (72R2 — Ub ‘ VRI)» (6-27)

with
pg R2 R5 R PeR2

p zpeq—Tfl—w fil : _—Mi—’ fl? : __Z_SSQ__’ 6“ :w__Tm_(111+ n ma) 111+ n m... 116+ m m... 1115+ n ma
peq peq 1 peq Req71: 72:—————, 73:New (Jr/t)” w (111+ fies/Ree 7011+ ms/Reqr

For typical reference values (like the ones exhibited in Table 6) both ep and cm are
several order smaller than the coefficients associated to viscous effects (61 and 62). For
instance, taking Rs : 10‘5 N-s/m one has ep/fil 2 10—5 and ep/fig f: 10‘9 and ep/ew 2 1.

This small parameter (a) multiplying the time derivative in Eq. (6.26) is typical of stiff
equations (HAIRER; WAiiNER, 1996). These facts lead us to choose an implicit method
in time to solve the system (6.25)-(6.27).
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6.2. 1 Discretization
After space discretization by Finite Volumes, the system of equations (6.25)—(6.27)

is discretized in time (with a uniform time step length At) by means of a backward Euler
scheme, obtaining a system of equations that can be written as (for each time step)

Q (Rr+1,R3+1,p"+1) : o, (6.28)

with Q : RM >< RM >< RM i——> R31“ defined by

R?“ — R? — At(R3+1 — 751 AM)
Q (R11+1,Rg+1, pn+1) Z 6 (RS-H _ RS”) _ Atg2(R7f+1, Rg+1,pn+1) , (6.29)

71 Ad (R?) pn+1 — 93(Rl1+1, R721“)

where AAR?) is a difussion matrix, AC is a convection matrix that depends on Ub
and is computed by means of an upwind scheme, and 92 : RM >< RM >< RM ——> RM and
g3 : RM >< RM —> RM are defined respectively as

§(Y2)2 F _
92(Y1,Y2>Y3) = —53 ACRS — 62

Y? (Y1) Y3

Y1
_ 4 (51Y1 + 52)

(y1)3
‘l‘ -—}’1— (6-30)

where division and power operations on vectors are component-wise and
1 n+1 n+1 n I n
5mm (p(yi)h) + 73p(yi) (fi) +h +1;0(y1) (72m — Ach), (6-31)

where ID),1 is a Finite Difference matrix that discretize the operator 8x1, and for an arbitrary

g3(}’1>)’2) =

)function f defined in Q, i denotes the vector formed by taking the values of f at the cells

centers. Observe that the right hand side of (6.31) depends on M“. The Jacobian matrix
of Q will be further used to solve Eq. (6.28), and it reads

11 —At 11 (0)

DC? 2 —At D1 92 ell —- At D2 92 ~At D3 92 7 (6.32)
—D1 93 ~Dz 93 71Ad(R?)

where ll 6 RMXM and (O) E RMXM are the identity and null matrices respectively, and the
components of the block matrices at the right hand side of Eq. (6.32) read (5m denotes de

Kronecker delta)

[D192(Y1,Y2>Y3)li,j : (Egg—3? — 45181323, +12(fl1)’1 + 52) (£35251) 5113+

+ F'(Y1)i(.Y1)i 'f()’1)i+ 3’3
5“,

(Y1li

2 ‘ (fi1( 1h + fl )
lD2 92(Y1,Y2,Y3)li,j Z "36 813i 5m _ 4—)(Iy1_)?——2— 5m

1
[D3 92(Y1,Y2,Y3lli,j Z “6717 5m
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1
/ n+1

[Digg<y1,y2>J.-,j = §Dz1P(Y1)h5i,j+ 73 pm) (m) 5m
+ h”+1p"(y1) (72 yz — ACR?) 5m,

[D2 g3<Y1>y2)li,j Z 72 m)?“ (ML 5m-

6.2.1.1 A one-dimensional dynamical/y loaded Journal

In this Section a numerical method to couple Equation (6.28) along the Newton’s

equation for the Journal dynamics is presented. A one-dimensional problem is obtained by
setting null—flux boundary conditions at 322 z 0 and 51:2 : Jw, and by using surface textures
independent of $2.

Assume first that all the unknowns have been already computed at time t", and
that the geometry for the next time step (finH) is also known. Denote by X = (X , 37V :
X/(Jc) e R2 the non-dimensional journal position at time t (which uniquely determines it

at time 5, and vice versa) and by ”P : R2 H RM the function such that PO?) corresponds
to the pressure vector at time t, observe that this function is known as this can be obtained

by means of Eq. (6.28). Before time discretization, Newton’s equation for the journal reads

Adx
Jet—£5 : w(7>(x)) +w (6-33)

where MJ :WMJ is the non-dimensional journal mass, and W(P(X)), W“ corre—

spond to the hydrodynamical force (some discretization of formula (2.28)) and to the
applied load respectively (which is a datum). The reference force corresponds to p’Jf. This
last equation is discretized by means of a Newmark’ scheme, the resulting equation for
fin“ reads

AP
(min“) : Xn+1 — x” — A512," —

2—A—J
W(7>(x"+1)) + Wu) 2 0, (6.34)

where 17} is the non—dimensional journal velocity vector, already computed for time t”.

That vector is updated at each time step according to

A

A A At A A Af“ = V} + A7— (W(P(X"+1)) + W“) . (635)
J

Equation (6.34) depends only on X71“ an can be solved by traditional iterative algorithms.
For the results shown in the next section, that task has been performed by means of
the Octave’s function fsolve. Notice that this strategy to compute Xnfl implies the
computing of pm“, R?“ and R3“.
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6.2.2 Numerical results
Here results obtained by means of the scheme (6.28)-(6.31) and (6.34) are shown.

An Octave' code was written to solve Eq. (0.34) by means of a Newton—like method for
non—linear equations (implemented inside the function f solve of Octave). That function

may solve Eq. (6.28) several times looking for the optimal DAG“.

6.2.2.1 Comparison with inertial terms / Without inertial terms

For the next results the number of cells along the circumferential direction was set
to Nx = 512. The journal rotational speed was fixed to 2000 rpm. While the time step
was set to 40000 time steps per cycle (At = 7.5 x 10“7 s) for 0 S t S 5 x 10“4 s and 4000

time steps per cycle (At : 7.5 x 10‘6 s) for t _>_ 5 x 10‘4 s. This adaption of the time step
allows to handle a fast transient behavior observed at the beginning of the simulations.
The journal mass was set to MJ = 3 kg, the surface dilatational viscosity was fixed to
its = 7.85 x 10‘6 N-s/m, and the bubbles equilibrium radius Req was taken between 0.25

and 2 microns. The other parameters were set as in Table (5. It only remains to specify
Wa, the force applied to the journal, which reads:

Wags) = We“C + Wa’p(t), (6.36)

where the first term is a constant load equal to We"C : [8000, —5000]T N, and the second
term Wa’P(t) = [l/V§p(t), l/V§"’(t)]T corresponds to a series of short pulses with a time
duration of a quarter of a cycle7 or x 8 x 10‘3 5, reading

F 1}

Wa’p(t) : (F3) [exp(—400(1nod(t/T,2) — 0.2)?” [0.5 + 0.5tanh(50(t/T — 15))],

(6.37)
Where Ff? and F{3‘ are the amplitudes of the perturbation and T = 0.03 s is the time period
of the journal. Observe that the perturbation is placed each 2 journal cycles in time (the
term mod(t/'r,2)). An example of W3‘1’p(t) is shown in Fig. 6.2.1 for F? 2 1000 N and
O<t<0.9s.
,—‘

0 ' ' '
..................

l ' l ‘ i

Z Z 0

7: -4000 — v _
of g-eoou
6,3, =. ....... 9522 ................... 9,599

-8000 i | l 1 . . l | | l

0 0.1 0,2 0.3 0.4 0.5 0.6 047 0.8 0.9
time [SI

Figure 6.2.1 « Wfi’p: pulses in time used to perturb the position of the Journal once it has arrived
near its equilibrium, in this case F? = 8000 N.

Based in a convergence analysis, the number of cells along the an axis was set to
512 and the number of time steps was fixed to 4000 per journal cycle At = 7.5 x 10“6 s.
1 www.gnu.org/software/octave/
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Small perturbation varying Req

Here FIf? and F”? are set to 0 and 1000 N respectively, and the surfaces considered

are smooth (hT z 0 in (2.26)). The journal eccentricity is defined as

e(t) = Xe)? + 17(t)2, (6.38)

which is a measure of the displacement of the journal’s center with respect to the bush’s

center, when both the centers coincide e z 0, and when the journal and the bush touch
6 z 1. The results for e in time are shown in Fig. 0.2.2 when setting Req : 0.25,1.0
and 2.0 nm. For t/ T m 15 the journal has arrived to its equilibrium point. Overall, the

— with inertial terms0'45 Req _ 0’25 ‘u'm —— without inertial terms
0.44

04 | l l u r 1 1 | 1 i

10 12 14 16 18 20 22 24 26 28 30

Figure 6.2.2 — Eccentricity in time when varying the equilibrium radii Req with F? : 1000 N
and F? = 0 (small load perturbation).

higher the value of Req the bigger the difference for 5 when including inertial terms or
disregarding them. In fact, time averaging 5 between t/T z 24 and 15/7 z 30 (the last six
journal cycles), and denoting that average by §+i (54) when including (disregarding) the
inertial terms the relative differences between these averages are shown in Table 7.

These results indicate a dependence of the journal dynamics on the inertial terms
and on the bubbles equilibrium radii. This motivates further research on polydisperse
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Req : 0.25 pm Req : 1.0 nm Req : 2.0 11111

J; 0.007 0.015 0.023§+i

Table 7 ~ Relative differences for the time averaged journal eccentricities for different bubbles
equilibrium radii.

radius distributions as described in Section 4.2.2.

Strong perturbation and friction torque
In this section the bubbles equilibrium radii is set to Req = 1 run, and Fj} and

F? are set to —8000 and 5000 N respectively, which means that [FIQFflT = —Wa*°.

This load perturbation is called strong as it generates a high variation of the journal’s
eccentricity compared with the variation generated along the small perturbation used in
the previous section as shown in Fig. (5.2.3.

0‘6 -~ {FAR}? = [0, 1000 N]T

—- [F§,F¢]T = [—8000 N,5000 N]T
0.5

6 0.4

0,3

0.2 ' ' | l r | I ‘ ‘ |

10 12 14 16 18 20 22 24 26 28 30

Figure 6.2.3 — Eccentricity in time for smooth journals with a small and strong load perturbations,
and Req : 1.0 pm.

A quantity of interest in Tribology is the friction torque opposite to the journal
angular momentum, which can be computed as

v1,tu(p(w1,t))l7
.- ~ —— dQ .Tfrictron<t er [Q (L2 )aa—fl ‘l‘

h($[,'1,t)
, (6 39)

Where U—— wJ is the relative speed between the journal su1faces Let us denote by Ti‘lloom

(filwou‘) the time averaged torque between t/r : 24 and t/T : 30 when disregarding
(including) the inertial te1ms without textures on the surfaces. For the small perturbation

I7:+—smooth_—s_mootl\|
it was observed |T+5mm ll ——0.002, a very slight difference. While for the strong pertur—

—smoo h smoo h

bation l—Igfinghl—w——- 0.012, a difference that would not justify the computational cost
+i

differences (the computing time along the inertial terms is m 10 times the computational
terms without the inertial terms, at least for the current code). Next, let us set a stationary
texture 011 the bush.
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The texture along the ml—axis consists of 10 identical elliptically—shaped pockets
that are equally distributed, with a depth equal to 9.4 um (depicted in Fig. (5.2.4). The
first notable consequence of including the texture is the change 011 the equilibrium point of

the journal and the higher variation of 5 when the load perturbation is applied, as shown
ftext _.Fieixtlin (5.25. This time it was observed I—iw = 0.032, a relative difference that suggests

+i
that there exist cases where the inertial terms are not negligible.

E 10
3.

5
é“ 00 7; 27r

zl/J’I‘

Figure 6.2.4 — Time independent texture placed on the bush.

0.7 -
struug loud pm‘turlmtirm (texture-(l bush)
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strung loud perturbation $th surfaces)
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t/T
Figure 6.2.5 — Eccentricity in time for smooth journals with a small and strong load perturbations,

and for a textured bush.
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CHAPTER

7
CONCLUSIONS

7.1 Conclusions

In this thesis the modeling of cavitation on Hydrodynamic Lubrication has been

addressed along with the robust numerical treatment of the related models. Also, a
mathematical analysis of a trending cavitation model was developed by means of some
classical Functional Analysis tools.

The first problem where a contribution was made is in the incorporation of the
mechanical pressure variation of the Combustion Chamber of an engine as a boundary
condition for the flow equation. The Elrod—Adams cavitation model was taken as a starting
point as it imposes continuity of the flux function. Two approaches were explored: one

imposing a null pressure gradient, which was observed as being suitable for transient regimes
where the liner is flat. When including textures on the liner an incompatibility between the

pressure profiles developed in time and the continuity of the flux was numerically observed.

The second approach tackles that issue when considering one-dimensional configurations.
Instead of imposing a null pressure gradient, mass—conservation is obtained by a dynamical
restriction for the rupture point 5. This dynamical restriction is simply the Rankine—

Hugoniot condition, which one-dimensional version corresponds to a first-order differential

equation for 5. The extension of that approach for two-dimensional cases is not obvious. By
means of the first approach, a numerical analysis along the Piston—Ring—Liner simulations
showed relevant differences when computing the minimum clearance and friction whether
the Combustion Chamber pressure is set as boundary condition or not. This proves the
importance of this type of studies to obtain accurate results. Focusing on the stationary
state, the parameter 90 was fixed to 2/3 based on a reversing flux condition presented
in (DOWSON; TAYLOR, 1979). However, a whole range of values for 90 is admissible
respecting the Rankine—Hugoniot mass—conserving condition. A dynamical modeling of 00

remains as being an open problem for which the physics behind the rupture phenomenon
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should be incorporated.

The Reynolds-Rayleigh—Plesset coupling is a current trend on cavitation modeling
for hydrodynamics. While other models assume some compressibility law, the RRP model
tries to capture the physics of cavitation by solving the dynamics of a distribution of
bubbles immersed in a liquid. Studying that model, the first struggle was the lack of
detailed numerical methods in the literature. With all, a numerical strategy used in the
literature was identified and implemented. Unfortunately, that method was found to
have an unstable behavior, first by numerical means and later by performing a linear
perturbation analysis. Thus, tackling the lack of robust numerical codes for the REF
coupling represents the second contribution of this work. Firstly, for the case where
the inertial terms are disregarded in the Rayleigh—Plesset equation, a numerical method
based on a suitable handling of the time derivative 53? was proposed. This time the linear

perturbation analysis Showed an unconditional stability and numerical robustness was
observed, allowing to perform simulations along a wide range of parameters on a test
problem (the Fracture Problem, in which the pressure build-up takes place solely by
expansion of the bubbles) as well as for the well—known Journal Bearing problem. A

convergence analysis resulted in first-order convergence ratio both in space and time. The
simulations of the Journal Bearing also included a comparison to the Elrod—Adams model.
Good agreement between both models was found when the surface dilatational viscosity is

small enough. In particular, the liquid fraction 1 — a from the RRP model is quite close

to the fluid fraction 0 from the Elrod—Adams model. To our knowledge, this is the first
time such a comparison is made and further work is under way to obtain a better insight
into the relation between both models. Further, a numerical method for the RRP coupling
when the inertial terms are not disregarded was also developed. As that system has the
characteristics of a stiff evolution problem, a backward Euler scheme in time was used.
In general, inertial terms are disregarded by means of a dimensional analysis, or, when
numerical comparisons are made, some other terms (like the surface energy) are taken off

of the Rayleigh-Plesset equation. The numerical code developed for the full RRP model

allowed us to perform these comparisons without further simplifications.

In collaboration with a research group from the Institut National des Sciences

Apliquées (INSA—Lyon, France), a lack of theoretical works around the RRP coupling was
identified. Thus, another set of problems tackled during this research project was related
to the well-posedness of the RRP model. This study was made separately for two cases: 1)

including the inertial terms of the Rayleigh—Plesset equation or 2) not including them. In

both these cases the transport of the bubbles was disregarded (Ub : 0). Identifying suitable
functional spaces, local existence in time was proved by means of the Cauchy—Lipschitz

Theorem. Existence of stationary solutions and stability of these (by means of continuity

arguments) were proved conditioned to the hypotheses of the surfaces being near to flat

or small relative speed HUH. Although in general these hypotheses assured stability, it is
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remarkable that when the inertial terms are included and the surfaces are flat (both hU

and hL considered as constants) there exists a surfaces relative speed high enough such

that the stationary solution is asymptotically unstable.

7.2 Future Work

Here some tasks that would be interesting to perform in future research are listed:

On the non-homogeneous boundary conditions for pressure

1. To propose dynamical models for the rupture boundary along the Rankine-Hugoniot
condition allowing both the surfaces to be textured in the two—dimensional case. For
this a better understanding of rupture boundary’s physics is needed.

On the Reynolds—Rayleigh-Plesset coupling

1. To consider the dynamics of a polydisperse distributions of bubbles, instead of the
polydisperse hypothesis made in the literature. The numerous works of Carrica’s

group (CARRICA ct at, 1998; CARRICA at at, 1999; CASTRO: CARRICA, 2013;

CASTRO; LI; CARRICA, 2016) for the dynamics of a two-phase flow around a ship
indicate the multigroup approach as a promising framework for this task. This would
allow a more realistic modeling and the incorporation of bubbles interaction, like
bubbles break—up or coalescence.

2. To perform a mathematical analysis of the RRP coupling for the case where the
transport of the bubbles is considered (Ub 7é 0). Since in that case the operator at
the right hand side of the evolution problem is non—bounded, a more general theory
is needed, like the Hille-Yosida Theorem (PAZY, 1983; BREZIS, 2010).
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APPENDIX

A

FINITE VOLUME METHODS NOTATION

Let Q be a regular domain in RN, N : 1,2, and assume the next conservation
equation holds

Bq .

5? + din— O in Q, (A.1)

where the scalar field q is the conserved quantity and the vector field Q is the flux-
function. The Finite Volume Method discretizes Eq. (Al) in its integral form. For this, it
is introduced a (possible time-dependent) finite partition T5 of Q by subdomains. For each
time t, the elements K 6 T6, called cells, are disjoint open sets such that UKga—K : Q;

they are assumed to be rectangular and the parameter 5 is set to the maximum length
size of the cells.

Setting some K 6 T5, Eq. (A1) holds in K, thus, integration gives

/K<%—t+diVQ)dK— [g—qu+fK Q’nds_ 0

by means of the Reynolds Transport Theorem (DONE/A; HUERTA, 2003), if v(:i:', t) is the
velocity at which the boundary of K moves, one obtains

é/quK:—_/8KQ_"7AldS+/6va‘fid5:”(AK(Q—CI’U)-fid5>. (A2)

Time is discretized by t" : it At and the next approximation is used for each time t”
1

TL TL|—,?|/quim gm Mm =qK

where 33K 6 K is generally the center of the cell, Then the left hand side of Eq. (A2) is

discretized in time according to

|K1"“q““ —1K|"q;zdK'fw —————————— A.3
dtd/Kq At

( )

The right hand side of Eq. (A2) is discretized by setting a proper discretization for the
function Q — qv at the interfaces, this would depend on values of the involved variables
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at time t" and tn“. For instance, in Section 3.3.1 a one—dimensional model is described
Where the conserved quantity and flux-function correspond to

q = hH and a : ——-— + ——h9, (A4)

where 9 is a saturation variable. In that example the common interface of two contiguous
cells is allowed to move (11 7é 0). Thus, the discretization of Q — q 11 must be done carefully
in order to accommodate mass conservation (the details are given in Section 3.3.1).
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APPENDIX"

SOME MATHEMATICAL BACKGROUND

In this appendix some basic results and definitions needed in Chapter 5 are given.

Hereafter, E and F denote two Banach spaces.

Definition B.1 (Spectrum and eigenvalues). Let T : E r——> E be a continuous and linear

operator. The identity operator is denoted by I. The set

Res (T) : {A E (C : T — /\I is bijective from E onto E}

is called the resolvent set of T and

Sp (T) : C \ Res (T)

is called the spectrum of T.

An element A 6 (C is called eigenvalue of T if the operator T - AI is not injective.
This means that there exists a vector 1}, called eigenvalue of T, such that TU — Av : 0.

The set of eigenvalues of T is denoted by Vp (T). Clearly Vp (T) C Sp (T).

Definition B.2. Let T : E +—-> F be a continuous and linear operator. Let BE denote the
unit ball in E. T is said to be compact if T(BE) has compact closure in F (in the strong
topology).

For sake of brevity, a reduced version of the Fredholm alternative Theorem is given here,
its proof can be found in (BREZIS, 2010):

Theorem B.1 (Fredholm alternative Theorem). Let T : E »—> E be a compact operator.
Then the operator 1 — T is injective if and only if I — T is surjective.

The proof of the following result can be found in (LANG, 1999).



148 APPENDIX B. Some mathematical background

Theorem B.2 (The Implicit Mapping Theorem). Let U, V be open sets in E, F respec—

tively, and let

f:U><Vi—>G

be a mapping of class Op. Let (a, b) 6 U x V, and assume that

D2f(a,b) : F1—> G

(the Fréchet derivative with respect to the second variable) is an isomorphism. Let
f(a,b) : 0. Then there exists a continuous map 9 : U0 H V defined on an open
neighborhood U0 of a such that g(a) = b and such that

f(x,g(:1:)) :: 0 Van 6 U0.

If U0 is taken to be a sufficiently small ball, then g is uniquely determined and it is also of

class Op.

All the next results and definitions are adapted from (BENZONI—GAVAGE, 2010)
The proofs of these results can also be found in that reference (Sections 5.4, 8.1 and 8.2).

Theorem B.3 (Cauchy-Lipschitz). Let f 6 C’(U;E), where U is an open set of E and
no 6 U, and assume that f is of class C’", Then the next properties hold

Existence There exists T > 0 and u in C’1([t0 —T, to +T]; U) solution of the (autonomous)
Cauchy problem:

(31)

Uniqueness If v is another solution of (Bl). Then i) = u on a non—empty interval
contained in [to — T, to + T].

Regularity u if of class CT“.

Definition B.3. A solution u e Cl([0, T]; E) of the Cauchy problem u’ : f(u), u(0) : uo

is called maximal if u can not be extended to a solution on an interval containing [0, T].

Definition B.4. Let f e C(U; E) and v 6 U. The point i} such that f(v) : 0 is said to
be an asymptomatically stable solution of the Cauchy problem u' : f (a), u(0) : v, if

there exist 77 > 0 such that for any no such that Hug — UH S 77, the maximal solution of

u’ : f(u), u(0) : no is well defined for every t Z 0 and l|u(t) — U“ 5 e for every t 2 0 and
limt,mo Hu(t) — 2)” z 0.

Theorem B.4. Let f E CQ(U;E) and v 6 U be such that f(v) : Oi Assume that
Sp (Df (v)) C {A E (C : Re/\ < 0}. Then i) is an asymptomatically stable solution of the

Cauchy problem u’ : f (u)
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Definition B.5. Let f e C(U; E) and v E U. The point 1) such that f(v) = O is said to
be an unstable stationary solution of the Cauchy problem u’ : f (u), u(0) : v, if there
exists 60 > 0 such that for every 7] > 0 there exists T > 0 and a solution u E C'1([0,T], E)
of u’ z flu) that accomplished |]u(0) — 21” g 77 and ||u(T) — U” 2 60.

Theorem B.5. Let f 6 CQ(U;E) and v E U be such that f(v) : 0. Suppose that
max{Re)\ : A E Sp (D f (v))} is reached at an eigenvalue of Df (v) with real part strictly
positive. Then 1) is unstable solution of the autonomous Cauchy problem,
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1. A stable numerical strategy for Reynolds—Rayleigh-Plesset coupling. Jaramillo A.,
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A stable numerical strategy for Reynolds-Rayleigh-Plesset coupling
Alfredo Jaramillo", Gustavo C. Buscaglia
Instituto de Ciénclas Matemdticos e de Computucdo, Universidade de Scio Paulo, 13560970, Scio Carlos, Bmzil

ARTICLEINFO ABSTRACT

Keywords:

Reynolds equation
Rayleigh-Plesset equation
Cavitation
Numerical simulation

The coupling of Reynolds and Rayleith’lesset equations has been used in several works to simulate lubricated
devices considering cavitation. The numerical strategies proposed so far are variants of a staggered strategy
where Reynolds equation is solved considering the bubble dynamics frozen, and then the Rayleigh-Plesset
equation is solved to update the bubble radius with the pressure frozen. We show that this strategy has severe
stability issues and a stable methodology is proposed. The proposed methodology performance is assessed on
two physical settings. The first one concerns the propagation of a decompression wave along a fracture con-
sidering the presence of cavitation nuclei. The second one is a typical journal bearing, in which the coupled
model is compared with the Elrod-Adams model.

1. Introduction

Cavitation modeling is a challenging issue when studying the hy-
drodynamics of lubricated devices [1,2]. It is experimentally known
that gases (small or large bubbles of air or vapor) appear in the liquid
lubricant in regions where the pressure would otherwise be negative.
The volume occupied by these gas bubbles affects the pressure field, to
the point of preventing it from developing negative regions. It is cus-
tomary to think of the whole fluid (lubricant + gas) as a mixture for
which it is possible to define effective fields of pressure (p), density (p)
and viscosity (u). These three fields are linked by the well-known
Reynolds equation, which expresses the conservation of mass and must
thus hold for the cavitated mixture as well as for the pure lubricant.

Notice, however, that while in problems in which the lubricant is
free of gases the density and viscosity are given material data, in pro-
blems with significant gas content p and 1.1 are two additional unknown
fields (totalling three with p). The overall behavior of the mixture ex-
hibits low-density regions (i.e., regions where the fraction of gas is

high), in such a way that the overall pressure field does not exhibit
negative (or very negative) values.

These low-density regions are usually called cavitated regions,
though the gas may have appeared there by different mechanisms:
cavitation itself (the growth of bubbles of vapor), growth of bubbles of
dissolved gases, ingestion of air from the atmosphere surrounding the
lubricated device, etc.

Many mathematical models have been developed over the years to
predict the behavior of lubricated devices that exhibit cavitation, and
most of them have been implemented numerically (see, e.g. (21). The
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most widely used models assume that the data (geometry, fluid prop-
erties) and the resulting flow are smooth in time, with time scales
governed by the macroscopic dynamics of the device. In particular, the
fast transients inherent to the dynamics of microscopic bubbles, though
being the physical origin of cavitation, are averaged out of the model.
To accomplish this, these models propose phenomenological laws re-
lating p, p and ll. These laws vary from very simple to highly sophisti-
cated and nonlocal, and may involve one or more additional (e.g.,
auxiliary) variables.

A representative example of the aforementioned models is

Vijayaraghavan and Keith's bulk compressibility modulus model [13,4].

Without going into the details, it essentially postulates that

pm +3 Mi) if 9 2a»
p = we

Y

pcav Otherwise (1)

where p, is the liquid density and pm and [3 are constants. Another
example is the Elrod-Adams model, which here is considered in the
mathematical form made precise by Bayada and Chambat [5] and
which can be viewed, to some extent, as a limit of (1) for 3 —> +oo.

In recent years, detailed measurement and simulation of lubricated
devices with wide ranges in their spatial and temporal scales has be-
come affordable [m8]. Micrometric features of the lubricated surfaces

can now be incorporated into the simulated geometry, down to the
roughness scale. These micrometric spatial features of the two lu-
bricated surfaces, being in sliding relative motion, generate rapid
transients in the flow. This reason, among others, has lately revived the
interest on models that take the microscopic dynamics of the incipient
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Abstract
In the lubrication area, which is concerned with thin film flow, cavitation has been considered

as a fundamental element to correctly describe the characteristics of lubricated mechanisms. Here,
the well-posedness of a cavitation model that can explain the interaction between viscous effects and
micro—bubbles of gas is studied. This cavitation model consists in a coupled problem between the
compressible Reynolds PDE (that describes the flow) and the Rayleight—Plesset ODE (that describes
micro-bubbles evolution). This coupled model seems never to be studied before from its mathematical
aspects. Local times existence results are proved and stability theorems are obtained based on
the continuity of the spectrum for bounded linear operators. Numerical results are presented to
illustrate these theoretical results Particularly, a loss of well—posedness depending upon a geometrical
parameter is shown numerically.

Keywords: Cavitation modeling, Thin film lubrication, Reynolds equation, Rayleigh-Plesset
equation.

1 Introduction
Cavitation is observed in various engineering devices. ranging from hydraulic systems to turbo pumps for
space applications. It is a challenging issue linked with various phenomenon: acoustic, thermodynamic
and fluid dynamic. In the lubrication area. which is concerned with thin film flow. cavitation has been
considered as a fundamental element to correctly describe the characteristics of lubricated mechanisms
[L 2} Cavitation has often been primary associated with a diminution of the pressure p in the liquid
falling below the vapor pressure Numerous models have been introduced to couple this unilateral
condition with the Reynolds equation. which is usually used to model the pressure evolution in thin film
flow. Mathematical studies of these models can be found in (3. 4. 5. (i. 7. 8] in which existence and
uniqueness results are given for both the stationary and transient cases. Another approach has been
proposed in [9] by considering cavitation as a nnlltifluid problem with a free boundary between two
immiscible fluids. However. it is physically recognized that the cavitation phenomenon is linked with
the existence and evolution of micro-bubbles in a liquid. This aspect has not been taken into account
in these models. It is however used in the well known software Fluent for fluid mechanics (10. ll. 12]

in which micro bubbles evolution is coupled with the Navicr Stokes system for a fl-diiiiensional flow. In
the lubrication areat this phenomenon has been ignored until the works of Someya’s group [1.‘i. 14] who
proposed to couple the full Rayleigh-Plcssct equation (which describes the evolution of a bubble) with
the Reynolds equation (which describes the fluid). Numerous works follow in the lubrication literature
using simplified forms of the Rayleigh-Plessct equation for various kind of applications [15. 16. 17. 18. 19].
The paper of Snyder ct al. [20] can be considered as a review paper in this field.

Mass and momentum conservation equations
The fluid is contained in a domain (IV C R”. limited by a domain Q C R2 in the 35.452 plane. an upper
surface given by thc gap function h (than) defined on Q and by a vertical lateral boundary as shown
in Fig. 1. The surfaces are in relative movement. along the 331—332 plane at velocity U 6 R2. It is also
assumed that the relative speed of the surfaces along the z;;~axis is null. In this work theoretical results
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ABSTRACT
The Piston Ring/Cylinder Liner (PRCL) is a tribological

mechanism that have received great deal of attention during the
last decades, The source of this attention becomes from the
important amount of energy losses due to friction in the PRCL
[1]. During the compression stroke, the combustion chamber
pressure (CCP) achieves values as high as lOOatm. The
compression ring is in direct contact with the combustion
chamber gas through the gap present between the piston and the
cylinder Thus, when simulating the PRCL including the CCP
(which depends on time), the value of the CCP must be
imposed as a Dirichlet condition for the pressure on the
hydrodynamical model considered.

As mass—conservation is essential when considering the
texturization of lubricated mechanisms [2], in this work we
extend the Elrod-Adams cavitation model (which is already an
extension of the Reynolds Equation) to accommodate non-
homogeneous boundary conditions, This is, in the side of the
ring in touch with the combustion gas, the boundary condition
for pressure is the CCP value, while on the other side we
impose l atm.

in this work, we compare the friction losses predicted by the
proposed extension of the Elrod-Adams model, with those
friction losses predicted by a non—mass conservative model,
which represents the state-of-the-art when including the CCP as
a boundary condition [3].
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Abstract. When simulating numerically the hydrodynamical lubrication of tribological devices, a com-
mon assumption is that the boundary pressure and the cavitation pressure are equal (and taken equal
to zero). This allows to include cavitation effects through some of the available algorithms, like the
mass-conserving Elrod—Adams cavitation model. However, tribological devices often work under non-
homogeneous pressure conditions. An example of this is the cylinder/piston-rings system, where the
pressure difference between both sides of the ring reach levels in the order of 50 atm during compression
and ignition. In this work we propose an extension of the Elrod-Adams model in order to accommo-
date such non-homogeneous pressure conditions by assuming a dependence of the algorithmic cavitation
pressure on the saturation variable. A first algorithm for solving the resulting model is proposed. Also,
preliminary tests results on how the back—pressure may affect the dynamics of the rings during the com-
pression/power stroke are reported.
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Abstract. The piston ring/cylinder liner system is responsible for about 5% of the energy lose
due to friction in a passenger car (Holmberg et al., 2012). Consequently, automotive industry
and academy have made efi‘orts seeking for designs that diminish both friction and wear. Dur-
ing the last year; several numerical and experimental studies have shown that texturization can
have favorable or detrimental efifects on the tribological characteristics of lubricated mecha-
nisms. However, few studies have included the efifects of the gas pressure in the combustion
chamber, which variates rapidly in the compression stroke and can reach values as high as
60[atm]. Reynolds equation with zero-pressure Dirichlet conditions is mainly adopted in nu-
merical works along with Elrod-Adams cavitation model. This cavitation model only admits a
constant cavitation pressure, in spite it is known that cavitation pressure cart variate according
to the operational conditions (Shen et al., 2013). This work is devoted to the study of the efiects
that the combustion chamber pressure can have on both the mechanical dynamic of the rings
and the cavitation pressure paw.

Keywords: Hydrodynamic lubrication; Friction force; Back-pressure eflects; Elrod-Adams
model
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