• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.55.2017.tde-05122017-083420
Documento
Autor
Nombre completo
Márcio da Silva Arantes
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2017
Director
Tribunal
Toledo, Cláudio Fabiano Motta (Presidente)
França, Paulo Morelato
Morabito Neto, Reinaldo
Santos, Maristela Oliveira dos
Título en inglés
Hybrid qualitative state plan problem and mission planning with UAVs
Palabras clave en inglés
Evolutionary computation
Integer-mixed linear programming
Mission planning
Unmanned aerial vehicle
Resumen en inglés
This paper aims to present the thesis developed in the Doctoral Programin Computer Science and Computational Mathematics of the ICMC/USP. The thesis theme seeks to advance the state of the art by solving the problems of scalability and representation present in mission planning algorithms for Unmanned Aerial Vehicle (UAV). Techniques based on mathematical programming and evolutionary computation are proposed. Articles have been published, submitted or they are in final stages of preparation.These studies report the most significant advances in the representation and scalability of this problem. Mission planners worked on the thesis deal with stochastic problems in non-convex environments,where collision risks or failures in mission planning are treated and limited to a tolerated value. The advances in the representation allowed to solve violations in the risks present in the original literature modeling, besides making the models more realistic when incorporating aspects such as effects of the air resistance. Efficient mathematical modeling techniques allowed to advance from a Mixed Integer Nonlinear Programming (MINLP) model, originally proposed in the literature, to a Mixed Integer Linear Programming (MILP) problem. Modeling as a MILP led to problem solving more efficiently through the branch-and-algorithm. The proposed new representations resulted in improvements from scalability, solving more complex problems within a shorter computational time. In addition, advances in scalability are even more effective when techniques combining mathematical programming and metaheuristics have been applied to the problem.
Título en portugués
Planejamento ótimo de missões para veículos aéreos não tripulados
Palabras clave en portugués
Computação evolutiva
Planejamento de missão
Programação linear inteira-mista
Veículos aéreos não tripulados
Resumen en portugués
O presente documento tem por objetivo apresentar a tese desenvolvida no Programade Doutorado em Ciência da Computação e Matemática Computacional do ICMC/USP. O tema da tese busca avançar o estado da arte ao resolver os problemas de escalabilidade e representação presentes em algoritmos de planejamento para missões com Veículos Aéreos Não Tripulados (VANTs). Técnicas baseadas em programação matemática e computação evolutiva são propostas. Artigos foram publicados, submetidos ou se encontram em fase final de elaboração. Esses trabalhos reportamos avanços mais significativos obtidos na representação e escalabilidade deste problema.Os planejadores de missão trabalhados na tese lidam com problemas estocásticos em ambientes não convexos, onde os riscos de colisão ou falhas no planejamento da missão são tratados e limitados a um valor tolerado. Os avanços na representação permitiram solucionar violações nos riscos presentes na modelagem original, além de tornar os modelos mais realistas ao incorporar aspectos como efeitos da resistência do ar. Para isso, técnicas eficientes de modelagem matemática permitiram avançar de um modelo de Programação Não-Linear Inteira Mista(PNLIM), originalmente proposto na literatura, para um problema de Programação Linear Inteira Mista (PLIM). A modelagem como um PLIM levou à resolução do problema de forma mais eficiente através do algoritmo branch-and-cut. As novas representações propostas resultaram em melhorias na escalabilidade, solucionando problemas mais complexos em um tempo computacional menor.Além disso,os avanços em escalabilidade mostraram-se mais efetivos quando técnicas combinando programação matemática e metaheurísticas foram aplicadas ao problema.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-12-05
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.