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“It may help to understand human affairs to be clear that most of the great triumphs and

tragedies of history are caused, not by people being fundamentally good or fundamentally bad,

but by people being fundamentally people.”

— Neil Gaiman, Good Omens: The Nice and Accurate Prophecies of Agnes Nutter, Witch —





RESUMO

MIZUSAWA, Y. Empacotamento de caixas de entregas de última milha. 2024. 125 p.
Dissertação (Mestrado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2024.

O crescimento do comércio eletrônico resulta no aumento expressivo do envio de encomendas, o
que torna essencial a otimização do processo de empacotamento. Este estudo investiga modelos
de empacotamento visando minimizar o espaço vazio durante o transporte. Primeiramente,
modelos de empacotemento são resolvidos com métodos exatos para analisar para sua eficiência
e rapidez, destacando-se a eficácia da rotação dos itens e de formulações alternativas. Dois
cenários são explorados, comparar conjuntos de caixas geradas neste trabalho com conjuntos
da literatura, e permitir o empacotamento dos itens de um mesmo cliente em até duas caixas.
Os dois cenários apresentaram uma redução significativa do espaço vazio. Na segunda parte
do trabalho, é desenvolvida uma busca local que ajusta as dimensões das caixas. Esse método
mostrou-se eficaz na redução do espaço vazio, apresentando implicações práticas para otimização
logística no contexto do comércio eletrônico.

Palavras-chave: Otimização, Empacotamento 3D, Heurísticas.





ABSTRACT

MIZUSAWA, Y. Last Mile Delivery Box Packing. 2024. 125 p. Dissertação (Mestrado em Ci-
ências – Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáti-
cas e de Computação, Universidade de São Paulo, São Carlos – SP, 2024.

The growth of e-commerce is leading to a significant increase in parcel shipments, making it
essential to optimize the packaging process. This study investigates packaging models that aim
to minimize the amount of empty space during transportation. First, packing models are solved
with exact methods to analyze their efficiency and speed, highlighting the effectiveness of item
rotation and alternative formulations. Two scenarios are explored: comparing box sets generated
in this work with sets from the literature, and allowing items from the same customer to be
packed in two boxes. Both scenarios show a significant reduction in residual volume. In the
second part of the work, a local search method is developed to adjust the dimensions of the boxes.
This method is effective in reducing empty space and has practical implications for logistics
optimization in the context of e-commerce.

Keywords: Optimization, Packing, 3D, Heuristics.
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CHAPTER

1
INTRODUCTION

In recent years, global trade has shown high growth, consequently transportation of
goods around the world has also been increasing. In 2022, 131 billion packages were shipped
worldwide, which is expected to double by 2026 [Statista (2021)]. Due to this increase, logistics
chains are under pressure to reduce costs and environmental impacts.

Transportation costs and the use of packing materials, such as cardboard and fillers, are
among the major challenges faced by logistics companies. These challenges can be addressed by
implementing optimization strategies, such as mathematical modeling. These techniques have
been well-documented in the literature for tackling various logistics issues, including routing,
scheduling, and packing efficiency. In particular, packing optimization aims to improve the way
goods are packaged into boxes, pallets, or containers.

In the logistics industry, packing is a daily challenge for many companies. The packing
process can be divided into two main problems: (i) packing individual items of each order into
boxes, and (ii) consolidating these boxes onto pallets for delivery. The first problem aims to
minimize the number of boxes used and eliminate empty space in the boxes. The second problem
aims to maximize the number of boxes or orders that can be consolidated onto a minimal number
of pallets. It’s important to note that both problems are interconnected and can be challenging to
solve. They are classified as packing problems in the literature.

In order to solve these problems, it is essential to understand to which class of problems
they belong. Packing problems like the ones mentioned can be classified into pallet loading,
knapsack, bin packing, and container loading problems. The pallet loading problem aims to pack
the maximum amount of similar boxes into one single pallet. The knapsack problem aims to fill
a container with the most valuable like profit or less waste, with different kinds of boxes. The
bin packing problem minimizes the number of containers needed to pack a set of boxes. Finally,
the container-loading problem fills the minimum number of containers with a fixed number of
boxes, which can be considered a version of three-dimensional (3D) bin packing, but container
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loading can only be 3D. Box packing is usually 3D, although some studies use the 2D version
due to problem specifics, e.g., non-stackable material.

Another critical factor is the constraints this class of problems can require. First, it is
mandatory for two and three-dimensional packing problems to have non-overlapping constraints
of the items placement. Second, most real instances come with business or process-related
constraints. There can be a wide variety of these constraints, such as volume limit, weight limit,
balancing, cargo splitting, and stability, amongst others. Ali et al. (2022) covers most of them
and mention several articles of each problem.

This study aims to optimize the packing process by identifying more efficient strategies
for determining box sizes, with the goal of reducing material and delivery costs. The packing
problems will be treated as a three-dimensional model and solved using exact methods. As
described by Wäscher, Haußner and Schumann (2007) typology, the problem addressed in this
work is known as the Residual Bin Packing Problem (RBPP).

1.1 Research Objectives

The main goal of this research is to minimize the wasted volume of boxes used to pack
customer orders (items) in three dimensions. In order to do this, it is proposed to:

1. Study packing problems in the e-commerce scenario;

2. Define a set of boxes in the same context.

In the initial phase of this study, continuous packing models addressing the packing with
multiple box selections are examined. Following that, a novel method for generating boxes and
altering their dimensions is presented.

1.2 Document Outline

This work is divided into the following chapters.

First, a literature review is presented in Chapter 2. In this chapter, it is explained how the
review was conducted, and its results are shown. Then, a brief discussion of packing problems is
made, followed by a description of related works.

Chapter 3 describes the examined models. Subsequently, instances comprising orders,
items, and boxes are generated for testing purposes. Finally, computational experiments are
conducted to evaluate: i. the described models, ii. a novel box set, and iii. the packing of items in
two or more boxes.
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In Chapter 4, a new method for generating and improving boxes for a given set of orders
is presented and evaluated. The problem of defining the optimal set of boxes for a given set of
orders is defined. Then, two constructive heuristics are devised to provide an initial solution for
the problem. Subsequently, a local search and its neighbourhoods are detailed and tested.

Finally, a summary of this study and future works are discussed in Chapter 5.
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CHAPTER

2
LITERATURE REVIEW

Cutting and Packing Problems encompass various practical (day-to-day) and theoretical
problems. These problems generally involve cutting, packing, and allocating items. Although
many formulations exist, there are some common elements amongst them.

Over the years, several names were given and established to refer to specific problems
and classes of problems. It can be considered that Cutting Stock, Knapsack, Pallet & Container
Loading, and Bin Packing are the best known. Along with their variants (e.g., dimension,
objective max-min, object format) or application-specific constraints (e.g., weight, overlapping),
several problems can be defined.

Dowsland and Dowsland (1992) present a good overview of packing problems focused
on modeling, exact solutions, and heuristic approaches. Although it is a bit outdated, it is still a
good reference for the basic problems and their formulations. Also, Scheithauer (2018) is a very
important introductory book, that describes and helps define packing models and their variants.

Even though classic problem classifications are widely used, it is sometimes challenging
to classify a new problem. Therefore, a more extensive classification was demanded to better fit
and differentiate those problems. With that in mind Dyckhoff (1990) proposed a more robust
classification system for packing problems, later reviewed and improved by Wäscher, Haußner
and Schumann (2007). The last one is largely used to define and classify packing problems and
also used in this work as a reference for problem definitions.

Before classifying the studied problem, a better understanding of its nature is in order. The
main idea for this work comes from e-commerce. Daily, thousands of customer orders must be
packed and shipped. With the growth of e-commerce, companies are looking for ways to reduce
packing costs. This strategy is becoming the aim of big companies, for instance, WallmartTMwith
the Sustainability Hub [Walmart (2022)] and UPSTMwith packaging optimization [UPS (2021)],
both initiatives are focused on improving packing to reduce cost and wasted materials. Among
these goals is deciding the number of boxes and box types available for packing customer orders,
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which reduces operational costs. However, it is not easy to define a set of boxes to maintain in
stock aiming to minimize box and shipping costs. Some companies prefer to deal with a small
number of types [Alonso et al. (2016)], while others use cost functions [Fontaine and Minner
(2022)] to determine the boxes available for packing. The main problem is the balance between
the number of boxes and the extra empty volume. In general, a small number of box types results
in cheaper boxes (ordered in bulk) and large extra volume that requires more filling and shipping
costs. On the other hand, many box types allow for better allocation of orders but might have
extra costs to buy and maintain. It is proposed to deal with this problem using mathematical
modeling, i.e., given a set of boxes, pack each customer order into the best-fitting box available.
Consequently, it defines a set of boxes that better suit the orders thus minimizing costs.

According to Wäscher, Haußner and Schumann (2007), the problem studied can be
designated as Residual Bin Packing Problem (RBPP). Following their classification system, this
problem has an input minimization (waste minimization), composed of strongly heterogeneous
regular small items and strongly heterogeneous regular large objects. As a result, the bibliographic
review presented is focused on RBPP.

Besides formulations for those problems, there is concern about how to solve them.
The more common solution methods are heuristic and exact solutions. Furthermore, there are
math-heuristics, meta-heuristics, and even machine-learning methods. In the first phase of this
study, exact methods were used with the Gurobi software. Subsequently, for the second phase,
heuristics and local search techniques were used mixed with exact methods.

One of the most recent reviews about three-dimensional packing problems (3D-PPs)
was presented by Ali et al. (2022). The authors used the model proposed by Webster and
Watson (2002) in their systematic review. Therefore, we used a similar methodology to obtain an
appropriate review.

This chapter is organized into five sections. First, in Section 2.1, some brief details of the
bibliographic review are presented. The data collected is discussed in Section 2.2. In Section 2.3,
it is discussed the topic of packing problems. Finally, related works are presented in Section 2.4
and a summary is made in Section 2.5.

2.1 Bibliographic Review Method

Articles were obtained using a set of keywords in Web of Science, Google Scholar, and
private search engines of a selected set of journals with relevance to this field (see Table 1). It
is important to highlight that the journal list is not an exclusion criteria, the idea was to focus
the search on some journals to limit the results. The search strings used on those engines were:
3D, three-dimensional and packing. This choice restricted the search, complimented by the
exclusion-inclusion criteria, which clarified the scope.
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Table 1 – List of journals considered on the initial search.

Journal
European Journal of Operational Research (EJOR)
Computers & Operations Research (COR)
OMEGA
JSTOR
International Transactions in Operational Research (ITOR)
Operations Research
Journal of Heuristics
Managment Science

The exclusion criteria specially represented a more robust filter. For instance, if a 3D
packing article (following inclusion criteria) had any exclusion criteria, irregular objects, for
example, this article would be excluded. Another important point is that, although some two-
dimensional packing models can be adapted to three-dimensional packing problems, these papers
were not included in this review. For this reason Lodi, Martello and Monaci (2002), and Lodi,
Martello and Vigo (2002) are reviews about this topic that fill this gap. Inclusion and exclusion
criteria are listed in Table 2.

Table 2 – Inclusion and exclusion criteria.

Inclusion Criteria
Packing
Three-dimensions
Heuristics
Exact Methods
Exclusion Criteria
Irregular objects (e.g.: non-rectangular, spherical, cylindrical)
Non-linear
On-line packing
One-dimension
Problem mixes (eg.: container loading & routing)

In order to have a better understanding of the collection of articles, during the criteria
revision, the problem studied and the solution approach were noted and classified. This clas-
sification uses the generic name from the literature to Problem Type and Solution Approach,
described in Table 3. Each class was stated as present or not in the article.

2.2 Collected Data

Initially, the research strategy resulted in 124 articles, of which 26 were excluded
according to the criteria presented. The resulting 98 articles are in the range from 1989 up to
2022. Of those, nine are reviews.
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Table 3 – Problem Type and Solution Approach used in this review.

Problem Type
Pallet Loading, Bin Packing,
Knapsack, Cutting Stock Problem.
Solution Approach
Exact, Heuristic, Meta-Heuristic,
Math-Heuristic, Deep learning.

For container loading, Zhao et al. (2016) and Bortfeldt and Wäscher (2013) were good
reviews, with the second specifically for constraints. For pallet loading, Silva, Oliveira and
Wäscher (2016) reviews advanced and showed future paths for the problem. Finally, the most
recent review, includes online and offline packing with advances in the area and possible future
work lines [Ali et al. (2022)].

Regarding dimensions, 74 articles included three-dimensional problems, but as it is one
of the key search words, we cannot consider the result as the search terms are biased. Therefore,
from here on, all results will only be considered if there are 3D models in the article. Also, it is
important to consider that one article may deal with more than one type of problem and solution
approach, therefore these numbers will not match the 74 mentioned.

Considering the Problem Types, there is a predominance of bin packing problems
followed by container loading (both with almost half of the articles) and the other classes with
roughly the same amount (see Table 4). However, it was noted that container loading is commonly
associated with routing problems that were not included (exclusion criteria), probably due to
the nature of the transportation problems. Knapsack, pallet loading, and cutting stock showed to
have few publications for 3D.

Table 4 – Quantity of each type of problem. This table only includes papers that work with 3D.

Problem Type Quantity
Bin Packing 38
Container Loading 30
Knapsack 9
Pallet Loading 5
Cutting Stock 4
Total 86

In analyzing the solution approaches, exact and heuristics methods were the most com-
mon solving methods, followed by meta-heuristics. Only two articles used math-heuristic and/or
deep learning strategy (Table 5). These results were expected, as heuristics and exact methods
are the more classic approaches for those problems. Math-heuristics are yet to be more widely
explored, especially, as we see, for packing problems. The same logic can be applied to deep
learning strategy, which is still starting to be used in optimization.

The same trend of more heuristics and exact methods, now evaluating the solution
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Table 5 – Analyse of approaches used. This table only includes papers that work with 3D problems.

Solution Type Quantity
Heuristic 40
Exact 26
Meta-Heuristic 10
Math Heuristic 1
Deep Learning 2
Total 79

approaches per problem, is noted [Table 6]. It is especially interesting to see that both deep
learning articles are related to the bin packing problem [Hu et al. (2017), Jiang, Cao and Zhang
(2021)], and the single math-heuristic was applied to the container loading problem [da Silva et

al. (2020)].

Table 6 – Analysing Problem Type and Solution Approach. This table only includes papers that deal with
3D problems.

Problem \ Solution Deep Learning Math Heuristic Meta-Heuristic Heuristic Exact
Bin Packing 2 0 4 21 12
Container Loading 0 1 4 15 13
Knapsack 0 0 1 5 5
Pallet Loading 0 0 1 3 5
Cutting Stock 0 0 0 2 3

In Figure 1a, it is possible to observe the same dominance of bin packing and container
loading problems to the pallet loading and cutting stock problems. It is interesting to note that
the pallet loading problem appears consistently throughout the years in small quantities. In
Figure 1b, heuristics and exact methods dominated the solving approaches. Despite its low
quantity, math-heuristics appears two times with a 29 years gap, maybe showing a recent trend to
use these methods. Also, the deep learning strategy only appeared after 2017 due to the growth
and development of neural network methods over the last ten years.

Between 2000 and 2015, there was a consistent amount of publications with a slightly
increasing trend. This trend was broken between 2015 to 2018, followed by a peak in 2019 and a
significant decrease in 2020. The following year shows roughly the same trend in publications.



34 Chapter 2. Literature Review

Figure 1 – Bar-plot with quantity of solutions (a) and problems (b) over the years that were surveyed with
the bibliographic review. This chart only includes papers that work with 3D.

(a) Problem types along the years.

(b) Problem types along the years.

2.3 Overview of Packing Problems

The problem studied aims to minimize wasted volume by deciding a box (or boxes) that
fit all items of each customer order. As packing problems usually share some characteristics, a
short description of each problem is presented.

The container loading problem aims to fill one or more containers with a set of items.
Variations of this problem include: all boxes must be packed in one (single container loading
problem) or several containers (multi-container loading problem) and containers and items can
be identical or heterogeneous [Dowsland and Dowsland (1992)]. The current problem is similar
to heterogeneous multi-container loading as it fills multiple boxes (containers).

It is important to mention that container loading usually has additional real constraints
depending on the problem context. They can include, for instance, weight distribution, loading
order, and stack balance, amongst others. For a better insight, Bortfeldt and Wäscher (2013)
provide a recent and extensive review on this subject. These types of constraints are not explored
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in this work.

Bin packing problems are a classic and well-known set of problems with a wide variety
of applications and formulations. The problem, generally, states that it is necessary to pack a
set of items into a finite number of bins in order to minimize one dimension (strip packing) or
minimize the number of bins (bin packing) [Dowsland and Dowsland (1992)]. The similarities
originated in minimizing the bins for packing (boxes in this case), for the 3D variant. Both
mentioned problems, bin packing and container loading, appear as the more widely studied
Table 4.

Lastly, the Knapsack Problem needs to fill one box (Knapsack Problem) or more (Multiple
Knapsack Problem) from several items with different profits. The problem deals with one (Single
Knapsack Problem) or several constraints (Multidimensional Knapsack Problem). Even though
the objective function can be seen in a similar way, in the case studied here, the focus is to choose
the items that best fit the knapsack (or knapsacks).

As can be seen from the classic problems descriptions, there is no standard definition,
and one problem can have characteristics that fit two or more different classes. Following the
above definition, the problem studied was classified in a more standard typology by Wäscher,
Haußner and Schumann (2007) and ended as Residual Bin Packing Problem RBPP.

2.4 Related Works

Although a comprehensive survey of articles on packing problems was conducted, only
a few are directly relevant to this work. In this short review, six articles were identified that
addressed similar problems. Among them, two mathematical models for packing problems are
presented, while the other two used packing problems within the context of sets of orders. The
remaining two articles were excluded from this section as they related to non-linear problems.

Tsai, Malstrom and Kuo (1993) deal with the pallet loading problem. The authors
described two mathematical models for the 2D and 3D pallet loading problem with mixed item
sizes. The objective is to maximize the occupancy of one box by selecting items while avoiding
overlapping. Although rotation is mentioned, it is not addressed by the authors. In their approach,
items are placed in continuous positions in the box. This model is detailed in Subsection 3.2.3.

Chen, Lee and Shen (1995) deal with the container loading problem with multiple
heterogeneous containers and a finite number of boxes. The objective is to minimize the sum
of the volume of the containers used minus the total item volume, in other words, minimize
wasted volume. The authors proposed a mathematical model for the problem that selects one or
multiple boxes (containers) to pack all items. Rotation of the items is allowed. One noticeable
characteristic is that the authors do not specify any constraint to limit box quantity, therefore, it
is assumed that there is no restriction on boxes.
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Similarly, Alonso et al. (2016) approach this problem with a different objective. Their
main goal is to decide the boxes sizes chosen to reduce costs while packing a set of customer
orders (each order contains a set of items). Even though it is mentioned that the number of boxes
types influences the costs, due to the distribution company preferences, the authors used a fixed
quantity of boxes ranging from 1 to 4. To solve the problem, they propose an integer linear
programming model based on Beasley (1985) cutting stock problem for the box selection and
packing was done in two dimensions with item rotation using heuristics.

Vieira et al. (2021) approach the same problem and objective, that is, to choose box
sizes, but in their case, each box has all three dimensions open. In a following work, Vieira
and Carvalho (2022), extend the problem to consider multi-container loading with open dimen-
sions. Furthermore, the authors use a bi-objective mixed-integer non-linear function to optimize
container volume and their number. Both models use open dimensions and end up falling into
non-linear optimization. Therefore, they are not discussed in this work.

More recently, Fontaine and Minner (2022) developed a new method denominated by
them as Branch & Repair, that is based on logic-based Benders decomposition [Hooker (2007)]
and branch-and-check methods [Thorsteinsson (2001)]. The objective is to determine the best
set of boxes to pack a set of orders. The problem, as introduced by them, is a three-dimensional
bin selection problem (3D-BSP) that minimizes the cost of unused space (wasted volume) and
the cost of maintaining a variety of boxes. Basically, the objective is to minimize extra space to
pack the orders while accounting for the costs of increased box types. In this model, all orders
are sub-problems of the 3D bin packing problem (3D-BPP) category and are solved individually.

2.5 Summary of Bibliography Review
Up to the closing of this review, these were the more relevant publications to the current

work. In Table 7, a summary of the main differences among the cited articles is presented.

Tsai, Malstrom and Kuo (1993) and Chen, Lee and Shen (1995) addressed the pack-
ing problem to one order. In contrast, the works of Alonso et al. (2016) and Fontaine and
Minner (2022) address a problem that shares similarities with the one examined in this work,
incorporating the concept of multiple orders within the packing process.

The main difference between this research and Alonso et al. (2016) and Fontaine and
Minner (2022) works is related to the rotation of the items. Furthermore, Alonso et al. (2016)
deal with the definition of the boxes and Fontaine and Minner (2022) knew a priori the boxes
available. In this research, the set of boxes needs to be defined to improve the packing of a given
set of orders.
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CHAPTER

3
PACKING PROBLEM

The problem studied belongs to the Last Mile Delivery category, which is a general
description of the logistics of picking, packing, and delivering goods directly to the final customer
(e-commerce, for instance) [Boysen, Fedtke and Schwerdfeger 2020]. More specifically, inside
the picking and packing problems, companies also must decide what boxes to keep in stock to
pack all items with minimal cost. In summary, the problem consists of packing the client’s orders
in a box (or boxes), aiming to minimize the packing and shipping costs, i.e., wasted box volume
and box acquisition costs.

As discussed in Chapter 2, similar problems are approached in the literature. Tsai,
Malstrom and Kuo (1993) presented a mathematical model to maximize the items packed in a
box, but not dealing with the box selection. Chen, Lee and Shen (1995) pack items in boxes,
with the objective of minimizing the total wasted volume.

This chapter introduces four models. Section 3.1 offers a detailed explanation of the
problem under investigation. Section 3.2 describes the mathematical models from the literature
that are considered in this work. Then, in Section 3.3, the results of computational experiments
are presented. Last, in Section 3.4, a summary of this chapter and some ideas for future research
are presented.

3.1 Problem Definition

Given an instance (order) consisting of items, the main goal of the studied problem is
to pack all items into boxes while minimizing the total waste volume by selecting the box (or
boxes) that best fits the items without overlapping.

Items and boxes are rectangular and can be rotated depending on the model. If rotation is
not allowed, items are placed on the box with its length parallel to the x-axis. In addition, all
items must be packed. When rotation is allowed, objects have the flexibility to rotate to any of
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the six possible positions for a rectangular object.

In the literature, these problems usually focus on packing all items in only one box to
facilitate shipping logistics. However, according to Fontaine and Minner (2022) and Alonso et al.

(2016), waste can be reduced if an order can be packed in more than one box. For this reason,
the models were adapted to allow packing one instance in more than one box.

3.2 Mathematical Models
In this section, the four models studied are presented. The original Chen, Lee and Shen

(1995) model and a version without rotation are described in Subsection 3.2.1 and Subsection
3.2.2, respectively. Subsequently, Subsection 3.2.3 and Subsection 3.2.4 present the original
Tsai, Malstrom and Kuo (1993) model and its adaptation to accommodate multiple boxes. Last,
Subsections 3.2.6 and 3.2.7 present a toy problem and a short discussion of the main differences
among models, in this order.

3.2.1 Chen, Lee and Shen Model

Chen, Lee and Shen (1995) proposed a model for the 3D packing problem considering
that all items need to be packed. In this case, it is possible to choose one box or a set of boxes
to pack the items. The objective is to minimize the total unused space in the boxes, ensuring to
pack of all items.

To represent the boxes, the authors use the origin point (0,0,0) and their length, height,
and width, as illustrated in Figure 2. While boxes are overlapping, items can overlap (Figure 2a)
only if they are in different boxes, i.e., αi` ̸= α j`, variables for items i and j are not active at the
same time. Otherwise, if both are active at the same time αi` = α j` = 1 (Figure 2b), at least one
non-overlapping variable is activated.

In this model, item rotation is enabled through binary orthogonal variables. This is done
by four variables that determine the axis along which each item dimension is oriented. By
applying orthogonal constraints, achieving all six possible rotations for a rectangle is possible.
For instance, when lxi is set to one, it signifies that the length of the item is aligned with the x

axis (for additional details on these constraints, please refer to the explanation in the following
sections). The parameters and variables of this model are described in Table 8, the model is
defined by (3.1) – (3.18), and labeled as ZCLS.
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Figure 2 – This figure depicts how Chen, Lee and Shen (1995) handles box-item placement, where all
boxes ` have the same origin and item placement depends on αi` variable. In Figure 2a, since
both items have a different αi` value, item i is placed on box 1 and item j is placed on box 2,
they are allowed to overlap (light gray area). In Figure 2b, both items are placed on the same
box 1 (αi1 = α j1 = 1). Therefore, the constraint (3.11) is active and consequently at least one
non-overlapping constraints (3.5)-(3.22) is active (dark gray area is not allowed).

(a) Items are allowed to overlap.

(b) Items are not allowed to overlap.
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Table 8 – Table with parameters and variables for Chen, Lee and Shen (1995) original model with rotation.

Parameters
n is the number of items;
vi is the volume of item i (vi = li ·hi ·wi);
(li,wi,hi) is, respectively, the length, the width and the height of item i;
m is the number of boxes;
(L`,H`,W`) is, respectively, the length, the height and the width of the box `;
V` is the volume of box ` (V` = L` ·H` ·W`);
(ML,MH,MW ) is, respectively, a large number for the length, the height and the width of the

box `.
Variables
(xi,yi,zi) front bottom left positional coordinates of item i, as length, width and height,

respectively (continuous variable);
ai j (bi j) is equal to 1 if item i is on the left (right) side (x-axis) of the item j and 0

otherwise (binary variable);
ci j (di j) is equal to 1 if item i is behind (front) (y-axis) of the item j and 0 otherwise

(binary variable);
ei j ( fi j) is equal to 1 if item i is above (bellow) (z-axis) of the item j and 0 otherwise

(binary variable);
lxi, lzi binary variables that indicate if the length of item i is parallel to the x, y or z

axis (length, width and height). For example, if lxi assumes 1 if it’s length is in
x axis of the box, otherwise is equal to 0 (binary variable);

wyi binary variable that indicate if the width of item i is parallel to the x, y or z
axis (length, width and height). For example, if wyi assumes 1 if it’s width is
in y axis of the box, otherwise is equal to 0 (binary variable);

hzi binary variable that indicate if the height of item i is parallel to the x, y or z
axis (length, width and height). For example, if hzi assumes 1 if it’s height is
in z axis of the box, otherwise is equal to 0 (binary variable);

β` assume the value 1 if box ` is used and 0 otherwise (binary variable);
αi` is equal to 1 if item i is packed inside the box `, and 0 otherwise (binary

variable).
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ZCLS = min
m

∑
`=1

V` β`−
n

∑
i=1

vi (3.1)

s.t.

// Placement constraints

xi + li · lxi +wi · (lzi−wyi +hzi)+hi · (1− lxi− lzi +wyi−hzi)≤ L`+ML(1−αi`)

i = 1, ...,n;`= 1, ...,m; (3.2)

yi +wi ·wyi + li · (1− lxi− lzi)+hi · (lxi + lzi−wyi)≤W`+MW (1−αi`)

i = 1, ...,n;`= 1, ...,m; (3.3)

zi +hi ·hzi +wi · (1− lzi−hzi)+ li · lzi ≤ H`+MH (1−αi`)

i = 1, ...,n;`= 1, ...,m; (3.4)

// Non-overlapping constraints

xi + li · lxi +wi · (lzi−wyi +hzi)+hi · (1− lxi− lzi +wyi−hzi)≤ x j +ML(1−ai j)

i = 1, ...,n−1; j = i+1, ...n; (3.5)

x j + l j · lx j +w j · (lz j−wy j +hz j)+h j · (1− lx j− lz j +wy j−hz j)≤ xi +ML(1−bi j)

i = 1, ...,n−1; j = i+1, ...n; (3.6)

yi +wi ·wyi + li · (1− lxi− lzi)+hi · (lxi + lzi−wyi)≤ y j +MW (1− ci j)

i = 1, ...,n−1; j = i+1, ...n; (3.7)

y j +w j ·wy j + l j · (1− lx j− lz j)+h j · (lx j + lz j−wy j)≤ yi +MW (1−di j)

i = 1, ...,n−1; j = i+1, ...n; (3.8)

zi +hi ·hzi +wi · (1− lzi−hzi)+ li · lzi ≤ z j +MH(1− ei j)

i = 1, ...,n−1; j = i+1, ...n; (3.9)

z j +h j ·hz j +w j · (1− lz j−hz j)+ l j · lz j ≤ zi +MH(1− fi j)

i = 1, ...,n−1; j = i+1, ...n; (3.10)

ai j +bi j + ci j +di j + ei j + fi j ≥ αi`+α j`−1

i = i, ...n−1; j = i+1, ...n;`= 1, ...,m; (3.11)

// Orthogonality Constraints

lxi + lzi ≤ 1 i = 1...n (3.12)

lzi +hzi ≤ 1 i = 1...n (3.13)

wyi ≤ lxi + lzi i = 1...n (3.14)

wyi ≤ lzi +hzi i = 1...n (3.15)

lxi +hzi ≤ 1+wyi i = 1...n (3.16)
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// Items and boxes selection constraints
m

∑
`=1

αi` = 1 i = 1, ...,n; (3.17)

n

∑
i=1

αi` ≤ n β` `= 1, ...,m; (3.18)

// Variable domain

αi`,β` ∈ {0,1} i = 1, ...,n;`= 1, ...,m; (3.19)

ai j,bi j,ci j,di j,ei j, fi j ∈ {0,1} i = 1, ...,n−1; j = i+1, ...n; (3.20)

lxi, lzi,wyi,hzi ∈ {0,1} i = 1, ...,n; (3.21)

xi,yi,zi ≥ 0 i = 1, ...,n. (3.22)

The objective function (3.1) is designed to minimize the residual volume of the selected
box or boxes. It computes this by subtracting the sum of the volumes of the items from the sum
of the volumes of the selected boxes. To ensure that the items are positioned within the boxes,
constraints (3.2) through (3.4) have been formulated. These constraints prevent the item’s position
plus its length (or width or height, respectively) from extending beyond the box boundaries,
denoted as L`, W`, and H`, when the item is packed into box ` (αi` = 1). Additionally, ML,
MW , and MH are defined as max(L`)−min(L`), max(W`)−min(W`), and max(H`)−min(H`),
respectively.

Constraints (3.5) – (3.10) are non-overlapping constraints designed to determine the
relative positioning of items to one another, as illustrated in Figure 3. Activation of these
constraints is dependent on constraint (3.11), which occurs when two items are packed into
the same box (αi` = 1 and α j` = 1), as illustrated in Figure 2. In such instances, at least one
of the position variables (ai j, bi j, ci j, di j, ei j, fi j) assumes a value of 1, thereby activating one
non-overlapping constraint (refer to Table 9).

Table 9 – Table depicting active constraint if that positional variable is active (equal to 1), only one can be
active.

Positional
Variable

Active
Constraint

ai j (3.5)
bi j (3.6)
ci j (3.7)
di j (3.8)
ei j (3.9)
fi j (3.10)

However, these described constraints (Placement and Non-overlapping constraints) work
in conjunction with the orthogonal variables (lxi, lzi , wyi, and hzi) to determine the rotation of
items. Constraints (3.12) to (3.16) restrict the combinations of orthogonal variables, allowing
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for only six possible item rotations (refer to Table 10). The coordination between orthogonal
variables and these constraints dictates that each dimension of an item aligns with a single axis
at any given time, achieved by enabling or disabling specific dimensions within constraints (3.2)
to (3.10). For instance, if (lxi, lzi,wyi,hzi) = (1,0,1,1), it signifies that the length, width, and
height of the item are oriented along the x, y, and z axes, respectively. This ensures the correct
alignment of each item dimension within non-overlapping and placement constraints.

Table 10 – Table showing how the orthogonal variables determine the six possible rotations of an item. The
first four columns represent variable values and the last three columns represent the dimension
of the item that is in each axis, where ’l’ is the length, ’w’ is the width and ’h’ is the height.

Orthogonal Variables Axis Position
lx lz wy hz x axis y axis z axis
1 0 1 1 l w z
0 0 0 1 w l z
1 0 0 0 l z w
0 1 1 0 z w l
0 1 0 0 w z l
0 0 0 0 z l w

Constraints (3.17) ensure that each item i is packed into only one box `. Constraints
(3.18) ensure that box ` is selected if at least one item i is packed in it.

Remark. To limit the number of boxes the model can select (Q) to pack the items, the following
constraint is added:

m

∑
`=1

β` ≤ Q (3.23)

Figure 3 – Example of box placement for the Chen, Lee and Shen (1995) model depicting non-overlapping
constraints.

(a) Item positioning forcing i to stay left of j.
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(b) Item positioning forcing j to stay left of i.

3.2.2 Chen, Lee and Shen Model Without Rotation

As described in the previous section, Chen, Lee and Shen (1995) original model allows
item rotation. Nevertheless, to facilitate the comparison with the Tsai, Malstrom and Kuo (1993)
adapted model for multiple boxes (as outlined in Subsection 3.2.4), a version without rotation was
defined, and labeled as ZCLSwr. This modified version retains the same general model structure,
with the difference being the orthogonal variables and constraints removal, dependent constraints
were adjusted accordingly. The parameters and variables in this version remain consistent with
the original model, and its formulation is represented by (3.24) – (3.34).

ZCLSwr = min
m

∑
`=1

V` β`−
n

∑
i=1

vi (3.24)

s.t.

// Placement constraints

xi + li ≤ L`+ML (1−αi`) i = 1, ...,n;`= 1, ...,m; (3.25)

yi +wi ≤W`+MW (1−αi`) i = 1, ...,n;`= 1, ...,m; (3.26)

zi +hi ≤ H`+MH (1−αi`) i = 1, ...,n;`= 1, ...,m; (3.27)

// Non-overlapping constraints

xi + li ≤ x j +ML(1−ai j) i = 1, ...,n−1; j = i+1, ...n; (3.28)

x j + l j ≤ xi +ML(1−bi j) i = 1, ...,n−1; j = i+1, ...n; (3.29)

yi +wi ≤ y j +MW (1− ci j) i = 1, ...,n−1; j = i+1, ...n; (3.30)

y j +w j ≤ yi +MW (1−di j) i = 1, ...,n−1; j = i+1, ...n; (3.31)

zi +hi ≤ z j +MH(1− ei j) i = 1, ...,n−1; j = i+1, ...n; (3.32)

z j +h j ≤ zi +MH(1− fi j) i = 1, ...,n−1; j = i+1, ...n; (3.33)

ai j +bi j + ci j +di j + ei j

+ fi j ≥ αi`+α j`−1 i = 1, ...,n−1; j = i+1, ...n;`= 1, ...,m; (3.34)
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// Items and boxes selection constraints

Same as (3.17), (3.18) and (3.23)

// Variable domain

Same as (3.19) to (3.22)

The main difference between the models is that non-overlapping and placement con-
straints have been adjusted. With this change, all items length, width and height are aligned
along the x, y and z axes, respectively.

3.2.3 Tsai, Malstrom and Kuo Model

Tsai, Malstrom and Kuo (1993) deals with 2D and 3D packing problems. First, the
authors propose a model for the 2D packing problem considering that items can be placed in
continuous positions. Then, a 3D packing model is presented, which is described here.

The objective is to maximize the total volume of items packed into a box. Therefore, the
model does not require that all items be packed. To deal with this situation, the authors represent
the box as shown in Figure 4, for the 2D problem. Items placed outside the rectangle defined
by (Xo,Y o) and (Xo +L,Y o +W ) are considered unpacked. In addition, the items lengths are
placed parallel to the x-axis and cannot be rotated. The variables and parameters of the model
are defined in Table 11. The model presented by the authors is described by (3.35)–(3.51), and
labeled as ZT MK .

Figure 4 – Box representation for the 2D problem used by Tsai, Malstrom and Kuo (1993). Item i is
inside the box and item j is outside the box. This image is a representation of the variable αi

activation, for item i, αi = 1, forcing it into the box and for item j, α j = 0, allowing it to be
outside the box and thus not be counted in the objective function.
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Table 11 – Table with parameters and variables for Tsai, Malstrom and Kuo (1993) original model without
rotation and for only one box.

Additional Parameters
(Xo,Y o,Zo) is the initial positional coordinates of the box, as length, width and height,

respectively.
Additional Variables
αi assumes the value 1 if item i is packed inside the box and zero otherwise

(binary variable);
ui j

1 , ui j
2 , ui j

3 auxiliary variables used to activate the non-overlapping constraints between
items i and j (binary variables).

ZT MK = max
n

∑
i=1

vi αi (3.35)

s.t.

// Placement constraints

xi ≥ Xo
αi i = 1, ...,n; (3.36)

yi ≥ Y o
αi i = 1, ...,n; (3.37)

zi ≥ Zo
αi i = 1, ...,n; (3.38)

xi + li ≤ Xo +L` i = 1, ...,n; (3.39)

yi +wi ≤ Y o +W` i = 1, ...,n; (3.40)

zi +hi ≤ Zo +H` i = 1, ...,n; (3.41)

// Non-overlapping constraints

xi + li ≤ x j +ML (ui j
2 +ui j

3 ) i = 1, ...,n−1; j = i+1, ...n; (3.42)

x j + l j ≤ xi +ML (ui j
1 +ui j

3 ) i = 1, ...,n−1; j = i+1, ...n; (3.43)

yi +wi ≤ y j +MW (ui j
1 +ui j

2 ) i = 1, ...,n−1; j = i+1, ...n; (3.44)

y j +w j ≤ yi +MW (2− (ui j
1 +ui j

2 )) i = 1, ...,n−1; j = i+1, ...n; (3.45)

zi +hi ≤ z j +MH (2− (ui j
2 +ui j

3 )) i = 1, ...,n−1; j = i+1, ...n; (3.46)

z j +h j ≤ zi +MH (2− (ui j
1 +ui j

3 )) i = 1, ...,n−1; j = i+1, ...n; (3.47)

1≤ ui j
1 +ui j

2 +ui j
3 ≤ 2 i = 1, ...,n−1; j = i+1, ...n; (3.48)

// Variable domain

ui j
1 ,u

i j
2 ,u

i j
3 ∈ {0,1} i = 1, ...,n−1; j = i+1, ...n; (3.49)

αi ∈ {0,1} i = 1, ...,n; (3.50)

xi,yi,zi ≥ 0 i = 1, ...,n. (3.51)

The objective function (3.35) maximizes the total volume of items packed in the box.
The objective is connected to constraints (3.36) to (3.38). If αi is active (αi = 1) then (xi,yi,zi)

is forced to be inside the box, i.e., being greater than (Xo,Y o,Zo). Otherwise, if α j is not active
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(α j = 0), the coordinates of the item can be placed outside the box, i.e., items are placed before
coordinates (Xo,Y o,Zo) as illustrated in Figure 4. Also, constraints (3.39) to (3.41) limit items to
be inside the box, coordinates of item i are smaller than (Xo +L− li,Y o +W −wi,Zo +H−hi).

Constraints (3.42) to (3.47) avoid items overlapping with the help of variables (ui j
1 ,u

i j
2 ,u

i j
3 ).

This makes that at least one non-overlapping constraint is always active (see constraints (3.48))
for each pair of items, as it can be seen in Table 12. This set of constraints works in pairs for each
axis and each pair of items. For example, suppose the non-overlap is active for items i and j at
the x axis (Constraints (3.42) and (3.43)). In this case, they impose that xi+ li ≤ x j or x j + l j ≤ xi

when ui j
3 = 0 and if ui j

1 = 1 or ui j
2 = 1, respectively. See Figure 5 and Table 12 for more details.

Figure 5 – Item positioning examples for the Tsai, Malstrom and Kuo (1993) model. Figure 5a and
Figure 5b depict active non-overlapping constraints (3.42) and (3.43), respectively.

(a) Item positioning forcing i to stay left of j.

(b) Item positioning forcing j to stay left of i.
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Table 12 – Overlapping variables and their values, adapted from Tsai, Malstrom and Kuo (1993). For
each pair of items i and j (ui j

1 , ui j
2 , ui j

3 ), we have at least one constraint active, and the value of
(xi,yi,zi) that should be respected.

Variable values RHS of each constraint

ui j
1 ui j

2 ui j
3 (3.42) (3.43) (3.44) (3.45) (3.46) (3.47)

Active
Constraint

1 0 0 x j M M M 2M M (3.8)
0 1 0 M xi M M M 2M (3.9)
0 0 1 M M y j 2M M M (3.10)
1 1 0 M M 2M yi M M (3.11)
0 1 1 2M M M M z j M (3.12)
1 0 1 M 2M M M M zi (3.13)

3.2.4 Adapted Tsai, Malstrom and Kuo Model

As seen, the original Tsai, Malstrom and Kuo (1993) model can only handle one box at a
time. In order to make multiple boxes possible (the studied problem), two essential points are
added to this model. Initially, following the approach taken by Chen, Lee and Shen (1995), a
variable αi` is introduced to assign item i to box `. The second point relates to the placement
of the boxes. In the adjusted model, the boxes are arranged sequentially along the length-axis
(x-axis) as shown in Figure 6. Thus, there is a need to add new parameters (Xo

` ,Y
o
` ,Z

o
` ) and

(X ′`,Y
′
` ,Z
′
`) to the model, along with constraints on the box placement limits in relation to αi`.

Further details on the additional parameters can be found in Table 13, while the adapted model is
defined by equations (3.52) – (3.56), and labeled as ZT MKa.

Figure 6 – Example of box placement for the developed model.
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Table 13 – Table with extra parameters for the adapted model.

Additional Parameters
(Xo

` ,Y
o
` ,Z

o
` ) as initial positional coordinates of box `, as length, height and width, respec-

tively;
(X ′`,Y

′
` ,Z
′
`) as final positional coordinates of box `, as length, height and width, respec-

tively;

ZT MKa = min
m

∑
`=1

V` ·β`−
n

∑
i=1

vi (3.52)

s.t.

// Placement constraints

xi ≥ Xo
` −Xo

` (1−αi`) i = 1, ...,n; `= 1, ...,m; (3.53)

xi + li ≤ X
′
`+ML (1−αi`) i = 1, ...,n; `= 1, ...,m; (3.54)

yi +wi ≤ Y
′
` +MW (1−αi`) i = 1, ...,n; j = 1, ...,m; (3.55)

zi +hi ≤ Z
′
`+MZ (1−αi`) i = 1, ...,n; `= 1, ...,m; (3.56)

// Non-overlapping constraints

Same as (3.42) to (3.48)

// Items and boxes selection constraints

Same as (3.17), (3.18) and (3.23)

// Variable domain

Same as (3.49), (3.19) and (3.51)

The objective function (3.52) is the same as in Chen, Lee and Shen (1995), minimizes
the residual volume (V`−∑

n
i=1 vi) for selected boxes. Constraints (3.53) and (3.56) set the upper

and lower limits for the placement of the items depending on which box they are packed in.
In this model, all boxes are aligned along the x axis. If variable αi` is equal to one for the pair
(i, `), then the value of xi is restricted by constraints (3.53) and (3.54) to the limits of box `, i.e.,
X0
` ≤ xi ≤ X

′
`− li. Similarly, constraints (3.55) and (3.56) ensure that the items are within the

limits of Y ′` and Z′`. The main difference is that each box ` does not need the equivalent (3.53)
for the y axis and z axis, because for them the lower bound is zero (3.51).

Non-overlapping of items is ensured as defined by Tsai, Malstrom and Kuo (1993) in
constraints (3.42) to (3.48). Analogous to Chen, Lee and Shen (1995), constraints (3.17) ensure
that each item i is packed into only one box `, and constraints (3.18) ensure that box ` is selected
if at least one item i is packed into it. Constraints (3.23) limit the number of boxes the model can
select, with the limit being Q.



52 Chapter 3. Packing Problem

3.2.5 Equivalent Constraints

Some optimization problems can be represented by alternative formulations. In this work,
three models for the same problem are studied: the original Chen, Lee and Shen (1995) model,
it’s version without rotation and the Tsai, Malstrom and Kuo (1993) adapted model for multiple
boxes. In these models, constraint (3.18), which ensures the activation of a box if that box is
used, can be replaced without losing generality by:

αi` ≤ β` i = 1, ...n; `= 1, ...m. (3.57)

This new constraint, originally used in facility location problems, can reduce the gap between the
linear relaxation and the convex hull [Wolsey 2020]. As a drawback, the number of constraints
increases from n to n ·m, therefore computational experiments were conducted in Subsection
3.3.5 to evaluate whether this constraint can improve the performance of the models.

3.2.6 A Toy Problem

This toy problem considers an order consisting of five items and a total volume of 11,680.
There are four boxes available to pack these items. Boxes 1 and 2 are designed to be small (8,000
and 12,000 volumes, respectively). The entire order cannot fit in a single box. However, it is
possible to fit the order into these two boxes by splitting the items. Box 3 with a volume of
27,000 was created to accommodate the complete order with a small amount of extra space.
Alternatively, box 4 is capable of fitting the order as well, with more leftover space than Box 3.
An example of the data is available in Table 14.

Table 14 – Data of the toy problem instance.

Length Width Height Volume
Item 1 20 5 30 3000
Item 2 10 20 20 4000
Item 3 10 18 20 3600
Item 4 5 8 18 720
Item 5 8 15 3 360
Box 1 20 20 20 8000
Box 2 20 20 30 12000
Box 3 30 30 430 27000
Box 4 40 40 40 64000

The toy instance was solved with only one box, i.e. adding the model constraint (3.23)
with Q = 1. Then it was solved again, allowing the model to choose up to two boxes (Q = 2). In
the first version, all items were assigned to box 3 (30×30×30) with a waste volume of 15,320
(objective function). The solution is displayed in Figure 7. In the second version, items 2 and
3 are placed in box 1 (20×20×20), and items 1, 4, and 5 are placed in box 2 (20×20×30).
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The total volume wasted is 8,320, which is less than the first one, as anticipated. The solution
obtained is displayed in Figure 8.

Figure 7 – Solution for the toy instance with only one box.

Figure 8 – Solution for the toy instance with up to two boxes available. Dashed lines defines the boxes.

3.2.7 Models Analysis

The models, namely ZCLS, ZCLSwr, and ZT MKa, share a common objective function, which
is the minimization of wasted volume while selecting the most suitable box(es). The exception is
ZT MK , which aims to maximize the number of items packed in a single box. In this study, the
model from Tsai, Malstrom and Kuo (1993) (ZT MK) was adapted to enable both box selection and
item allocation (ZT MKa). Additionally, the model by Chen, Lee and Shen (1995) was simplified
by removing item rotation, resulting in ZCLSwr.
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Table 15 – Number of variables for each model.

Model Continuous Variables Binary Variables
ZCLS 3n nm+m+6n(n−1)/2+4n
ZCLSwr 3n nm+m+6n(n−1)/2
ZT MK 3n n+3n(n−1)/2
ZT MKa 3n nm+m+3n(n−1)/2

This new approach to assigning boxes in (x,y,z) coordinates is proposed to achieve a
smaller number of variables. The proposal is to consider all boxes aligned along the x-axis and
to limit the x-axis position variable whenever an item i is assigned to a box ` (constraints (3.53)
and (3.54), defining box limits), as described in Subsection 3.2.4. The first reason to consider
this regards the number of binary variables, ZT KMa has a lower number of binary variables when
compared to the similar formulation of ZCLSwr (see Table 15). Then, the main advantage of this
method is that it uses the same non-overlapping constraints for all boxes with the three binary
variables for each pair of items (see Table 16). To the best of our knowledge, a similar approach
has not been employed in previous literature on this topic.

Table 16 – Number of constraints for each model.

Model Number of constraints
ZCLS 3mn+6n(n−1)/2+mn(n−1)/2+6n+m
ZCLSwr 3mn+6n(n−1)/2+mn(n−1)/2+n+m
ZT MK 6 n+7n(n−1)/2
ZT MKa 4nm+7n(n−1)/2+n+m

In comparison, Chen, Lee and Shen (1995) (ZCLS and ZCLSwr) use constraints (3.11) that
force the activation of non-overlapping constraints (3.5 to 3.10) depending on where the item
is placed. This requires the use of six binary variables (ai j, bi j, ci j, di j, ei j, fi j) for each pair of
items (Subsection 3.2.1), in contrast to three (ui j

1 , ui j
2 , ui j

3 ) from Tsai, Malstrom and Kuo (1993).
This is one advantage of this last model.

Moreover, the original model (ZCLS) contains additional variables and constraints to
account for the item rotation. Specifically, lxi, lzi,wyi, and hzi are the four additional variables that
result in an extra 4n variables. Furthermore, the new orthogonal constraints result in an additional
5n constraints. Even though such an approach increases the model complexity, adopting item
rotation can improve item allocation solutions.

3.3 Computational Experiments
To conduct the computational experiments, 1,000 instances (orders) were generated based

on the literature. A specific instance is defined by the number of items and the dimensions of each
item. Two methods were utilized to determine the boxes available for packing the items. First,
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the box set from the same source presented in Fontaine and Minner (2022) was utilized. Then,
two different box sets were created by applying Herz’s grid strategy [Herz (1972)]. The instances
were solved using the three sets of boxes. Subsection 3.3.1 provides a detailed description of the
instances. The results of the computational experiments are reported and discussed in Subsection
3.3.5.

Computational experiments were conducted on a system consisting of an Intel R○ CoreTM

i7-7700 CPU 3.60GHz x 8 with 15.5 GiB RAM and OS Ubuntu 20.04.4 LTS 64-bit. The models
were developed using Julia version 1.7.2, and the instances were solved using Gurobi Optimizer
version 9.5.1 build v9.5.1rc2 (linux64), with a time limit of 1,800 seconds.

3.3.1 Instances Sets

Hübner, Holzapfel and Kuhn Heinrich (2015) presented an overview of multichannel
shopping by investigating several aspects of this business, including picking and packing. Accord-
ing to the authors, the number of items in each order typically follows a probability distribution
that tends to have fewer items (50% with 1 to 2 items). Table 17 shows the four order classes
defined by the authors, where the first column defines the class, and the second and third columns
show the probability of each class and the number of items in each class. For instance, an order
has a 25 % probability of having 2 to 3 items. The authors do not address the specifics of the
items and boxes in their study.

Table 17 – Probability and number of items for each instance Class [Hübner, Holzapfel and Kuhn Heinrich
(2015)].

Class Probability Number of Items
1 50% 1 to 2
2 25% 2 to 3
3 8% 3 to 4
4 16% 4 or more

The number of items for each instance is defined based on the probability presented in
Table 17, considering the limit of ten items for class 4. Subsections 3.3.2 and 3.3.3 explain the
three types of boxes used and how items are generated, respectively.

3.3.2 Box Sets

Two strategies were used for defining the available boxes. The first strategy utilized the
set of boxes from Fontaine and Minner (2022). The second strategy involved generating boxes
using the Herz grid strategy [Herz (1972)]. The goal is to analyze whether using Herz boxes can
improve the packing of an item set.

Fontaine and Minner (2022) consider a collection of boxes used by third-party sellers of
a large e-commerce company in their computational experiments [Amazon Boxes (2021)]. The
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box set includes 123 boxes with dimensions ranging from 13 to 133 inches in length, 5 to 147
cm in height, and 13 to 94 cm in width. The volume distribution of these boxes, referred to as
AMB, is shown in Figure 9b. A complete table of all AMB boxes can be found in Appendix C.

The second set of boxes, referred to as Herz Boxes (HB), was generated using the Herz
Grid [Herz (1972)]. Herz originally proposed this strategy to generate a combination of elements
that could be cut from an object. Later, the method was adapted to define the grid of points for
discrete packing models. Without loss of optimality, the Herz grid generates a reduced grid of
feasible points for placing items in a box. In this work, the generated boxes are expected to
pack the items better than other types of boxes by reducing the number points that lead to poor
packing.

The set of points generated by the Herz grid for each dimension is defined in an analogous
way. For instance, when considering the length dimension, the set of points PL is given by

PL = {x | x =
m

∑
i=1

libi, 0≤ x≤ L j−min{li|i = 1, ...,m}, bi ∈ Z+, i = 1, ...,m}, (3.58)

where li represents the length of item i and bi represents the quantity of times item i can fit into
the box. L j refers to the length of the box j, while m represents the total number of item types in
the instance. This set of points encompasses all possible placement of the items in the box on the
axis x. For example, given an instance with a box with a length equal to 16 (L = 16) and two
items with length l1 = 4 and l2 = 6, then bi = {0,1,2} to i = 1,2. The PL is equal to:

PL = {0,4,6,8,10,12}.

This strategy was applied to each instance. The limit (L j) used was the worst scenario,
which is the sum of the dimensions of all items aligned in a row for each instance. This resulted
in a grid of 162, 166, and 181 points for each (x, y, z) axis, based on the characteristics of each
instance. These points resulted in 4,867,452 combinations of possible points to define a box, an
improvement over the more than 6,000,000 when using a grid with a discretization step of one.
From this, a set of 123 boxes was randomly selected, sampling was done without replacement,
and a random number generator was used to determine the selected boxes. Also, boxes with a
volume greater than 120% of the largest instance volume and not respecting L≥W ≥ H were
excluded. The entire set can be seen in Appendix E.

It can be seen in Figure 9 that by comparing the volume distribution of the boxes gener-
ated, the HB box set has boxes that are larger than the item and instances volumes (Figure 9a).
This could result in additional residual volume during the packing process. To overcome this
issue, a pre-processing step was taken to improve these boxes. Grid points higher than two
standard deviations of the mean for each axis were excluded and the box volumes were sampled
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from the probabilities of the instance volume distribution. This strategy aimed to exclude larger
boxes and forced the box volumes to be similar to the instance volumes (see Figure 9c). This
third set of boxes is referred to as HBnd (HB new distribution).

Figure 9 – Density plot displaying the volume of instances (orders) without factor adjustment for the
items (a) and with adjustment (b). Vertical dotted lines represent the highest value in each
dataset.

(a) Distribution of volumes without factor correction.

(b) Distribution of volumes with factor correction.

(c) Distribution of volumes including HBnd box set.

A similar method was introduced by Brinker and Gündüz 2016. The authors have devised
a set of techniques to be employed in the packaging processes of e-commerce companies. One of
the methods employed is the usage of the p-median model to determine the ideal package sizes
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for the given demand while minimizing the used space, i.e., the wasted volume. To define the
available boxes, the authors set the dimensions of the boxes as follows: the minimum is equal to
the maximum dimension of the smallest item, and the maximum is equal to a number defined
by the company. A fixed step is defined to determine the coordinates. Also, by eliminating
rotation and applying L≥W ≥ H, they got 2,600 different box sizes. However, since the step
and maximum size are manually selected, it is possible to generate boxes with dimensions that
are not suitable for packing the instances. On the other hand, this strategy has the advantage of
reducing the number of box sizes.

3.3.3 Item Sets

A set of 90 items with dimensions ranging from 25 to 115 is presented by Fanslau and
Bortfeldt (2010). The volume distribution among the items, instances, and boxes is illustrated
in Figure 9. Figure 9a shows that the volumes of the instances and items exceed those of the
box sets. The dimensions of the items were divided by a factor of 4.64 to adjust their volume
and ensure that they fit within the box volume. The adjustment is illustrated in Figure 9b, which
demonstrates that all item and instance volumes fit within the box volumes with the adjustment,
leaving a small amount of extra space. The items for each instance were randomly selected from
a customized set, sampling was done with replacement and a random number generator was used
to determine the items. The items can be found in Appendix A.

3.3.4 Exploration Goals

With the packing models and box sets defined, it is now possible to begin the exploration
of the first objective: the study of packing in the context of e-commerce.

First, the described formulations are evaluated to identify linear relaxation and runtime
performance differences in terms, linear relaxation and runtime. This is followed by an evaluation
of item rotation, considering both residual volume and runtime. The primary objective of these
tests is to compare the models that define the best boxes for each order.

Then, the novel box generation strategy is tested to evaluate its impact on residual volume
reduction. For this purpose, the three box sets are executed using the selected model for all
instances and the results are compared for evaluation.

3.3.5 Computational Results

Computational experiments were performed on 1,000 instances (orders). The instances
were generated as described in Subsection 3.3.1. Firstly, the number of items is generated
according to Table 17 probabilities. Then, the items were selected as explained in Subsection
3.3.3. As an example, the first 20 instances are available in Appendix B.
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This subsection employs these instances to: i) explore alternative formulations and
compare the models (Subsection 3.3.5); ii) examine the impacts of rotation on the chosen model
(Subsection 3.3.5); and iii) compare different box sets (Subsection 3.3.5). Two scenarios are
considered to achieve these goals: i) all the items can be packed into a single box (Q = 1), or ii)
items can be packed into up to two boxes (Q = 2), as defined by constraint (3.23) in Subsection
3.2.1.

Models are defined as ZT MKa, ZCLSwr and ZCLS, for the adapted Tsai, Malstrom and
Kuo (1993), Chen, Lee and Shen (1995) without and with rotation respectively (Section 3.2).
Additionally, alternative constraints, as described in Subsection 3.2.5, are represented by Z1 and
Z2. For example, if ZT MKa is executed with the original constraint it is reefed as ZT MKa1 and for
the alternative constraint as ZT MKa2, same for the other two models.

A pre-processing phase is used to reduce the number of boxes available for each instance.
For Q = 1 or Q = 2, boxes that do not pack the smallest item in dimensions or volumes are
eliminated. For Q = 2, we also discard boxes larger than the box used in the solution of the
instance considering Q = 1.

Phase 1 - Performance of Alternative Formulations

Models without rotation, as defined in Subsection 3.2.4 [Tsai, Malstrom and Kuo (1993)]
and Subsection 3.2.2 [Chen, Lee and Shen (1995)] and the alternative formulations described in
Subsection 3.2.5 were first solved in their linear relaxation version (ZRel) to analyze the dual
bounds. In this analysis, all 1,000 instances were used, considering packaging in only one box
(Q = 1) and two boxes (Q = 2) of the AMB box set. In a second study, the original version of
the formulations was solved to compare the time required to solve this set of instances.

Formulations without rotation are defined as ZT MKa1 for the multiple box Tsai, Malstrom
and Kuo (1993) adapted model and ZCLSwr1 for the Chen, Lee and Shen (1995) model without
rotation, where in these formulations the original constraint ∑

n
i=1 αi` ≤ n β` is used. The alterna-

tive formulation is defined as ZT MKa2 and ZCLSwr2 with the constraint αi` ≤ β`, as described in
Subsection 3.2.5.

Analysing the dual bounds for the formulations

The linear relaxation versions were solved to measure the impact of the described
alternative formulations on the dual bounds. Since the ZT MKa1 and ZCLSwr1 formulations give
the same results, only the data for the former are shown, the same for the results for ZT MKa2 and
ZCLSwr2. Table 18 shows the summary of the results, including the mean, median and standard
deviation (SD) of the percentage improvement of the objective functions for all instances
grouped by number of items. The percentage improvement for each instance is calculated as
ZRel

T MKa2−ZRel
T MKa1

ZRel
T MKa2

· 100. From the table, it can be seen that the alternative formulation (ZRel
T MKa2)

shows a small improvement for the dual bound over the standard formulation (ZRel
T MKa1) with an
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increase of 1.5 to 1.9% on average. This result is consistent with the literature [Wolsey 2020],
which suggests that this type of formulation provides better dual bounds. Similar results were
observed for Q = 1, but the gain was minimal, less than 0.2% in this case. Detailed results for
Q = 1 can be found in Appendix F in Table 46.

Table 18 – Percentage difference between linear relaxations (Q = 2).

Improvement
Items Mean Median SD

1 0.00% 0.00% 0.00%
2 1.82% 1.38% 1.82%
3 1.90% 1.57% 1.50%
4 1.84% 1.47% 1.54%
5 1.60% 1.47% 0.67%
6 1.49% 1.52% 0.60%
7 1.60% 1.40% 0.73%
8 1.40% 1.35% 0.62%
9 1.61% 1.46% 0.84%

10 1.42% 1.41% 0.46%

Analysing the run times for the formulations

Even though the alternative formulation results in better dual bounds, analyzing the
computational times is important. Execution times for the mixed-integer models are shown in
Table 19 for ZCLSwr and in Table 20 for ZT MKa. The tables contain a summary with mean, median,
standard deviation (SD) and total time in seconds. Each row reports the data of instances with
the number of items described in the first column. The quantity of instances is presented in the
last column.

From these results, it is clear that there is no significant difference between the original
and alternative formulations in terms of time (see the mean and total times). Even if the alternative
formulation has slightly better times, this is not consistent, as seen in the instances with 8 and
9 items in Table 20. Also, Table 21 shows the only instance that reached the time limit in
the ZT MKa2 formulation. This instance has been removed from the Tables 19 and 20 to avoid
distortion of the data. This instance was complex to solve for all models as the times are well
above the average. It is also possible to see the inconsistency of the time because, although
ZCLSwr2 has shorter times, this is not seen for this instance.

Based on the results obtained, it is possible to compare the performance of the models. It
is easy to see that Chen, Lee and Shen (1995) (ZCLSwr) outperforms Tsai, Malstrom and Kuo
(1993) (ZT MKa). This difference is probably due to the different box allocation strategy, which in
the case of ZT MKa ends up using a large bigM on constraints (3.54, define box limits) and (3.42 -
3.43, define non-overlapping). These results are particularly noticeable in instances with 8 to
10 items. Although the mean and median of both formulations are close, the total time is much
higher for ZT MKa, which can be explained by the higher standard deviation, i.e. there is a high
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variation in the solving times. In summary, since Chen, Lee and Shen (1995) showed superior
performance and the alternative formulation provided slightly better times, these will be used
from now on.

Table 19 – Run times for the two formulations of ZCLSwr (without rotation) by the number of items
considering AMB box set and Q = 2.

ZCLSwr1 ZCLSwr2
Items Mean Median SD Total Mean Median SD Total Instances

1 <1 <1 <1 <1 <1 <1 <1 <1 251
2 <1 <1 <1 <1 <1 <1 <1 <1 380
3 <1 <1 <1 1 <1 <1 <1 1 155
4 <1 <1 <1 2 <1 <1 <1 1 71
5 <1 <1 <1 1 <1 <1 <1 <1 18
6 <1 <1 <1 5 <1 <1 <1 4 25
7 <1 <1 <1 21 <1 <1 <1 15 31
8 2 1 2 61 2 1 2 59 31
9 8 4 12 121 4 3 4 72 16

10* 10 7 11 221 10 4 14 216 22
Total 2 1 1 434 2 1 2 370 1000

* One instance reaches the time limit and is not present in the data.

Table 20 – Run times for the two formulations of ZT MKa (without rotation) by the number of items
considering AMB box set and Q = 2.

ZT MKa1 ZT MKa2
Items Mean Median SD Total Mean Median SD Total Instances

1 <1 <1 <1 <1 <1 <1 <1 <1 251
2 <1 <1 <1 <1 <1 <1 <1 <1 380
3 <1 <1 <1 1 <1 <1 <1 1 155
4 <1 <1 <1 2 <1 <1 <1 2 71
5 <1 <1 <1 2 <1 <1 <1 1 18
6 <1 <1 <1 6 <1 <1 <1 5 25
7 <1 <1 <1 25 <1 <1 <1 18 31
8 5 2 9 163 6 1 13 182 31
9 19 6 30 302 28 3 67 451 16

10* 113 10 285 2374 59 7 126 1237 22
Total 14 2 3 2877 9 1 21 1898 1000

* One instance reaches the time limit and is not present in the data.

Table 21 – Time in seconds for the instance that reached the time limit.

Formulation
Model 1 2
ZCLSwr 409 s 1,570 s
ZT MKa 1,658 s 1,800 s
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Phase 2 - Analysis of the effects of rotation

In this second phase of computational experiments, the original Chen, Lee and Shen
(1995) model with items rotation allowed (ZCLS) is compared with the adapted model without
rotation (CLSwr). The aim is to observe how much space could be saved compared to the
increased model complexity of the rotation and, thus, higher computational times. All instances
were solved by both models for only one box (Q = 1) and up to two boxes (Q = 2) for the AMB
box set.

Analysing waste reduction for rotation

The residual waste space was used to analyze the performance approaches with and
without rotation. For this comparison all instances are considered together, VRES = 100 ∑V`−∑vi

∑V`
,

where V` is the volume of the boxes selected to pack all instances and vi is the volume of each
item i of all instances. This measure reflects the percentage of wasted space considering the
packing of all instances together. For example, if this number is reduced, the total volume
transported has also been reduced.

Rotation is expected to better allocate the items in the boxes, thus reducing the residual
volume. This is shown to be true in these experiments. Table 22 shows the total residual volume
percentage (VRES), where the first column represents the number of items of instances, followed
by the residual volume percentage without (w/o Rotation) and with (w. Rotation) rotation and
the difference between them (Diff.), for Q = 1 and Q = 2, the last column represents the number
of instances and the last line the total for all instances. It is possible to see that there is an average
reduction of about 16% for both Qs when there is rotation. This shows that rotation can have a
significant impact on residual volume reduction.

Table 22 – Total residual volume percentage (VRES) for all instances with (w.) and without (w/o) rotation
for only one box (Q=1) and up to two boxes (Q=2) for AMB box set.

Q=1 Q=2
Items w/o Rotation w. Rotation Diff. w/o Rotation w. Rotation Diff. Instances

1 69.0% 69.0% 0.0% 69.0% 69.0% 0.0% 251
2 59.0% 37.6% -21.5% 58.1% 36.8% -21.2% 380
3 52.7% 29.5% -23.3% 50.0% 26.7% -23.3% 155
4 47.8% 27.1% -20.7% 42.8% 22.7% -20.1% 71
5 44.7% 25.0% -19.6% 41.1% 18.5% -22.6% 18
6 42.0% 23.4% -18.6% 35.6% 19.0% -16.6% 25
7 41.7% 19.3% -22.4% 34.0% 15.1% -18.9% 31
8 38.4% 18.5% -20.0% 33.4% 14.6% -18.8% 31
9 37.6% 16.3% -21.2% 29.8% 13.7% -16.1% 16

10 34.9% 15.7% -19.2% 28.0% 13.0% -15.0% 22
Total 52.4% 35.6% -16.8% 49.7% 33.8% -15.9% 1000

Analysing increased run times for rotation

However, this reduction is accompanied by an increase in computational times, as can be
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seen by comparing the times without rotation in Table 23 and with rotation Table 24. Both tables
show time statistics with mean, median, standard deviation (SD) and total by items with the total
sum on the last line.

For a single box (Q = 1), the results indicate a significant increase in runtimes, with
times going from 73 seconds to 11,655 seconds. The impact is even more pronounced when
considering two boxes (Q = 2), where runtimes increase from 370 seconds to 67,398 seconds.
This outcome highlights the time impact resulting from the added complexity of rotation.

Analyzing the data by the number of items, it can be seen that the time increase starts to
reach higher values (mean, median and total) in instances with 6 items. This increase shows a
high variation (standard deviation) and is accompanied by 21 (Q = 2 only) instances with 8 or
more items reaching the time limit. In contrast, instances without rotation did not reach the time
limit (see Table 26).

The results indicate the potential of using rotation to reduce the residual volume. Never-
theless, it is important to consider the number of items as instances with six or more items lead
to considerably longer computational times due to the increased model complexity caused by
rotation in combination with the number of items.

Table 23 – Run times for the model ZCLSwr (without rotation) by number of items considering AMB box
set, Q = 1 and Q = 2.

Q=1 Q=2
Items Mean Median SD Total Mean Median SD Total Instances

1 <1 1 <1 2 0 0 0 0 251
2 <1 <1 <1 5 0 0 0 1 380
3 <1 <1 <1 3 0 0 0 1 155
4 <1 <1 <1 2 0 0 0 1 71
5 <1 <1 <1 1 0 0 0 1 18
6 <1 <1 <1 3 0 0 0 4 25
7 <1 <1 <1 5 0 0 0 15 31
8 <1 <1 <1 9 2 1 2 59 31
9 1 <1 2 18 5 3 4 72 16

10 1 1 1 26 10 4 14 216 22
Total 1 1 1 73 2 0 5 370 1,000
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Table 24 – Run times for model ZCLS (with rotation) by number of items considering AMB box set, Q = 1
and Q = 2.

Q=1 Q=2
Items Mean Median SD Total Mean Median SD Total Instances

1 <1 <1 <1 <1 <1 <1 <1 <1 251
2 <1 <1 <1 16 <1 <1 <1 1 380
3 <1 <1 <1 15 <1 <1 <1 5 155
4 <1 <1 <1 14 <1 <1 <1 18 71
5 <1 <1 <1 9 2 1 1 28 18
6 1 1 1 33 10 4 12 259 25
7 4 2 5 112 68 25 130 2,104 31
8 22 5 66 669 522 227 608 16,175 31
9 111 22 176 1,776 849 630 702 13,586 16

10 410 95 574 9,011 1,601 1,800 412 35,221 22
Total 12 <1 106 11,655 305 3 279 67,398 1,000

Phase 3 - Box Set Comparison

The final part of this section compares three different box sets to evaluate the box
generation strategies explained in Subsection 3.3.2. The box sets (AMB, HB, and HBnd) are used
to solve all instances with ZCLS model, for only one box (Q = 1) and up to two boxes (Q = 2).
This experiment assesses whether the box generation strategy reduces the residual volume and
determines the implications of allowing for packing each order in one or two boxes.

Analysing the run times for box sets

The first test evaluates the effect of various box sets on computational time. The results
are presented in Table 25, and in detail in Table 27 (Q = 1) and Table 28 (Q = 2). Each table
summarizes computational times for each box set, including mean, median, third quartile (Q3),
standard deviation (SD), minimum, maximum and total times. The first table is grouped by box
set, while the second and third are detailed by item quantity, with the last column representing
the number of instances.

From Table 25, it can be seen that the runtime was affected by the box set used. This is
evident from the results of Q = 1, which shows that the HBnd box set has lower computational
times than the other box sets, and from Q = 2 where the HB box set has the lowest times.
Additionally, Table 26 displays the number of instances that have reached the time limit per
quantity of items. The table shows that the HB box set with Q = 1 had 7 instances that reached
the time limit. Meanwhile, no instances from the other box sets reached the time limit for Q = 1,
while around several instances did so for Q = 2. Furthermore, it can be seen that the longer
runtimes are for instances with more than 6 elements Table 27 and Table 28 due to the complexity
of the problem.

It is important to highlight that the mean and median for all box sets are generally low,
especially the median, which indicates that 50% of the instances have low runtimes. This is due
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to two reasons. First, there are more instances with fewer items, as explained in Subsection 3.3.1.
Second, for instances with more items, the standard deviation tends to be higher, indicating
a large variation in runtimes between instances. For example, for Q = 1, the fastest 10 item
instances run in 1 to 5 seconds (Table 27) while the slowest 497 to 1,800 (time limit), and similar
results for Q = 2.

Table 25 – Summarized run times in seconds of all instances for ZCLS (with rotation) for all different box
sets (AMB, HB and HBnd), only one box (Q=1) and up to two boxes (Q=2).

Box Set Q Mean Median Q3 SD Min Max Total
AMB 1 12 <1 <1 106 <1 1800 11,655
AMB 2 67 <1 <1 308 <1 1800 67,398
HB 1 21 <1 <1 164 <1 1800 21,398
HB 2 55 <1 <1 273 <1 1800 55,153
HBnd 1 6 <1 <1 57 <1 1420 6,190
HBnd 2 70 <1 <1 314 <1 1800 69,567

Table 26 – Number of instances that reached the time limit (1,800 seconds) for ZCLS (with rotation) for all
different box sets (AMB, HB and HBnd), only one box (Q = 1) and up to two boxes (Q = 2)
by item quantity.

Q=1 Q=2
Items AMB HB HBnd AMB HB HBnd

8 0 0 0 2 1 4
9 0 0 0 3 5 7

10 2 7 0 16 13 17
Total 0 7 0 21 19 18
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Table 27 – Summary statistics of run times in seconds for all instances in all three box sets by item
quantity for up to two boxes (Q=1).

Box Set Items Mean Median Q3 SD Min Max Total Instances

AMB

1 <1 <1 <1 <1 <1 <1 <1 251
2 <1 <1 <1 <1 <1 <1 16 380
3 <1 <1 <1 <1 <1 <1 15 155
4 <1 <1 <1 <1 <1 <1 14 71
5 <1 <1 1 <1 <1 1 9 18
6 1 1 2 1 <1 3 33 25
7 4 2 3 5 <1 22 112 31
8 22 5 15 66 1 370 669 31
9 111 22 102 176 3 530 1,776 16
10 410 95 576 574 5 1,800 9,011 22

HB

1 <1 <1 <1 <1 <1 <1 <1 251
2 <1 <1 <1 <1 <1 <1 14 380
3 <1 <1 <1 <1 <1 <1 14 155
4 <1 <1 <1 <1 <1 1 15 71
5 1 <1 1 1 <1 2 11 18
6 1 1 2 1 <1 4 30 25
7 17 3 5 62 1 343 524 31
8 32 9 28 53 1 249 981 31
9 153 21 145 276 4 856 2443 16
10 789 480 1,800 748 4 1,800 17,365 22

HBnd

1 <1 <1 <1 <1 <1 <1 <1 251
2 <1 <1 <1 <1 <1 <1 10 380
3 <1 <1 <1 <1 <1 <1 11 155
4 <1 <1 <1 <1 <1 1 12 71
5 1 <1 1 <1 <1 1 10 18
6 2 1 2 3 <1 17 51 25
7 7 2 8 13 <1 71 207 31
8 42 5 31 101 <1 478 1,299 31
9 144 16 73 357 1 1,420 2,297 16
10 104 30 135 135 1 497 2,293 22
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Table 28 – Summary statistics of run times in seconds for all instances in all three box sets by item
quantity for up to two boxes (Q=2).

Box Set Items Mean Median Q3 SD Min Max Total Instances

AMB

1 <1 <1 <1 <1 <1 <1 <1 251
2 <1 <1 <1 <1 <1 <1 1 380
3 <1 <1 <1 <1 <1 <1 5 155
4 <1 <1 <1 <1 <1 1 18 71
5 1 1 2 1 <1 4 28 18
6 10 4 12 12 <1 42 259 25
7 68 25 58 129 5 598 2,104 31
8 522 227 938 608 5 1,800 16,175 31
9 849 630 1,470 702 24 1,800 13,586 16

10 1,601 1,800 1,800 412 250 1,800 35,221 22

HB

1 <1 <1 <1 <1 <1 <1 <1 251
2 <1 <1 <1 <1 <1 <1 1 380
3 <1 <1 <1 <1 <1 <1 4 155
4 <1 <1 <1 <1 <1 1 13 71
5 2 <1 2 5 <1 21 38 18
6 8 3 12 9 <1 30 194 25
7 71 22 52 169 2 922 2,197 31
8 357 191 411 463 5 1,800 11,076 31
9 727 337 1,800 759 21 1,800 11,634 16

10 1,363 1,800 1,800 617 163 1,800 29,994 22

HBnd

1 <1 <1 <1 <1 <1 <1 <1 251
2 <1 <1 <1 <1 <1 <1 2 380
3 <1 <1 <1 <1 <1 <1 10 155
4 <1 <1 <1 <1 <1 1 25 71
5 4 2 3 7 <1 22 73 18
6 14 7 16 17 <1 77 347 25
7 106 58 91 208 2 1,150 3,298 31
8 498 207 649 585 25 1,800 15,429 31
9 994 779 1,800 763 31 1,800 15,907 16

10 1,567 1,800 1,800 481 331 1,800 34,475 22
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Analysing waste reduction for the box sets

To explore residual volume reduction for each instance, the residual wasted space is
calculated as Vresk =

∑V`−∑vi
∑V`

100, where in this case V` is the volume of the selected box(es) to
pack the items of instance k and vi is the volume of its items. This second measure allows to
observe the variation among the instances. For example, the mean and the standard deviation
allow identifying where the box set has a high or low residual volume variation.

Table 29 contains the residual volume for all box sets and for Q = 1 and Q = 2, where
columns 3 to 7 show the summary statistics for Vresk with mean, median, standard deviation (SD),
minimum, maximum and the last column (Total Per.) the total residual volume (VRES). Table 30
shows the total residual volume (VRES) by item for Q = 1 and Q = 2 for all box sets by item
quantity, with last column representing number of instances. Last, Table 31 shows the Vresk with
the mean, median and standard deviation (SD) for all box sets and Q = 1 and Q = 2 by item
quantity and box set.

When comparing box sets based on residual volume, HBnd exhibits the best performance,
which is evident in both scenarios (Q = 1 and Q = 2), as shown in Table 29. This is because the
means and total percentages for HBnd are lower, proving that this box generation strategy can
improve packing by reducing the total box volume. This can also be observed with more detail
in Table 30 and Table 31, which provide additional information by item. The first table shows
that HBnd generally has a lower or equal total residual volume (VRES) performance compared
to the other box sets for each item quantity. The second table (Vresk) presents the same pattern.
However, it is now possible to see that, in most cases, the standard deviation is lower for HBnd,
indicating that it achieved better packing in more cases.

Table 29 – Summary of residual volumes for all box sets.

Vresk VRES
Box Set Q Mean Median SD Min Max Total Per.
AMB 1 40.2% 33.7% 21.5% 9.4% 92.5% 35.6%
AMB 2 38.9% 32.1% 22.4% 7.9% 92.5% 33.8%
HB 1 41.0% 36.8% 20.6% 7.3% 92.8% 34.2%
HB 2 39.8% 34.6% 21.0% 6.8% 92.8% 34.2%
HBnd 1 38.3% 33.2% 19.1% 4.7% 92.2% 34.0%
HBnd 2 36.7% 31.1% 20.0% 4.7% 92.2% 32.0%

An exception is found for the HB box set with 6 or more items when Q = 1. It can be
observed that this box set has progressive lower total residual volumes compared to the other
two, see Table 30. The reason for this can be explained by the volume distribution of boxes in
each set illustrated in Figure 9c. HB has more large boxes than the other two sets, resulting in
better packing efficiency due to having more options. However, this phenomenon is no longer
observed in the Q = 2 scenario, because larger instances can be split into two boxes. This result
suggests that HB and HBnd box sets could be further explored.
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Table 30 – Total residual volumes (VRES) for all box sets by item quantity.

AMB HB HBnd
Items Q=1 Q=2 Q=1 Q=2 Q=1 Q=2 Instances

1 69.0% 69.0% 67.8% 67.8% 65.6% 65.6% 251
2 37.6% 36.8% 39.5% 38.8% 36.0% 35.5% 380
3 29.5% 26.7% 31.8% 29.4% 30.7% 27.4% 155
4 27.1% 22.7% 26.1% 23.4% 25.6% 21.3% 71
5 25.0% 18.5% 22.1% 20.6% 21.8% 18.9% 18
6 23.4% 19.0% 19.7% 18.2% 19.7% 16.1% 25
7 19.0% 15.1% 17.0% 15.1% 20.1% 15.3% 31
8 18.5% 14.6% 15.9% 14.2% 18.8% 13.8% 31
9 16.7% 13.8% 13.9% 12.3% 20.1% 13.2% 16

10 15.7% 13.0% 11.5% 11.3% 14.8% 12.5% 22
Total 35.6% 33.8% 35.3% 34.2% 34.0% 32.0% 1000

Comparing Q = 1 with Q = 2 in waste reduction

Finally, the efficiency of allowing the model to choose up to two boxes (Q = 2) versus
allowing only one box for packing (Q = 1) is compared in terms of residual volume reduction
(Tables 29 to 31). It can be observed that the reduction remains constant, around 2%, see Table 29,
for all box sets. However, the reduction increases for larger item quantities. In particular, this
reduction ranges from 0.2% (for 2 items) up to 3% (for 10 items), see Table 30. These results
indicate that some cases benefit from this strategy. These results are further supported by Table 32.
The table displays the number of instances packed into two boxes, revealing that about 20% of
the instances benefit from this kind of packing. It is important to note, however, that the runtimes
for this strategy (Q = 2) are significantly higher than for a single box (Q = 1), see Table 25,
especially for instances with 6 or more items, see Tables 27 and 28.

In summary, the box generation strategy for the HBnd box set has proven to be effective
in reducing residual volume. Additionally, computational times can vary among different box
sets. Moreover, using the strategy of packing instances in up to two boxes further reduces residual
volume at the cost of increased runtime, at least for larger instances.
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Table 31 – Summary of residual volumes (Vresk ) for all box sets by item quantity.

Q=1 Q=2
Box Set Items Mean Median SD Mean Median SD

AMB

1 66.0% 74.6% 21.4% 66.0% 74.6% 21.4%
2 37.8% 35.2% 13.9% 37.3% 34.0% 14.1%
3 29.2% 29.3% 7.3% 27.1% 26.9% 7.5%
4 27.1% 25.9% 6.3% 23.5% 22.7% 5.6%
5 25.1% 24.1% 4.8% 19.1% 19.3% 4.0%
6 23.1% 23.1% 4.2% 18.9% 19.0% 2.8%
7 18.6% 18.6% 4.1% 15.1% 15.5% 3.1%
8 18.3% 18.2% 3.8% 14.8% 15.7% 2.5%
9 16.7% 16.3% 3.0% 14.0% 14.9% 2.3%
10 15.4% 15.1% 3.3% 12.9% 13.1% 1.9%

HB

1 64.9% 69.5% 16.2% 64.9% 69.5% 16.2%
2 40.1% 37.9% 15.3% 39.2% 36.5% 15.0%
3 32.7% 32.5% 8.8% 30.1% 29.7% 7.9%
4 27.3% 26.6% 8.0% 24.6% 25.4% 6.6%
5 22.6% 22.5% 4.4% 21.0% 20.6% 4.1%
6 20.0% 19.5% 4.9% 18.4% 18.8% 3.9%
7 17.3% 17.0% 3.9% 15.3% 15.2% 2.8%
8 15.9% 15.7% 2.1% 14.3% 14.3% 2.2%
9 14.2% 13.8% 3.1% 12.4% 13.6% 2.5%
10 11.4% 11.6% 2.6% 11.0% 10.9% 2.5%

HBnd

1 60.8% 62.5% 18.2% 60.8% 62.5% 18.2%
2 35.8% 35.2% 12.7% 35.2% 34.5% 12.8%
3 30.9% 30.8% 7.8% 27.5% 27.6% 7.3%
4 26.3% 25.4% 7.3% 22.1% 22.0% 6.5%
5 21.8% 21.7% 3.9% 19.2% 19.8% 4.0%
6 19.8% 19.4% 5.5% 16.5% 16.6% 3.8%
7 19.5% 18.9% 6.1% 15.2% 14.4% 2.9%
8 18.5% 18.4% 4.2% 13.8% 13.9% 2.0%
9 19.5% 20.8% 4.9% 13.3% 13.6% 1.6%
10 14.5% 14.6% 4.1% 12.2% 12.4% 2.2%

Table 32 – Quantity of instances that the model packed in one or two boxes for each box set when executed
with Q = 2.

Used Boxes
Box Set One Two
AMB 768 232
HB 805 195
HBnd 750 250
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3.4 Conclusions

This chapter first presents and discusses alternative formulations for 3D Residual Bin

Packing Problems. Then the generation of box sets and item instances is described. Next, two
models and an alternative formulation for each are compared to obtain a better dual bound. Then,
it is investigated how rotation can improve volume reduction at the expense of computational
time. Lastly, a comparison is conducted between each box set and the use of two boxes to
determine whether these strategies reduce residual volume.

The initial part of the computational experiments showed that the alternative formulation
(ZCLS2wr and ZT MKa2) improved the dual bound. However, the gain obtained did not result in
better computational times. This outcome is likely due to the limited number of items in the
instances tested. Therefore, even though a better dual bound was achieved, the difference was
minor. Considering this situation, since this research does not cover instances with more than 10
items, exploring a greater number of items would be interesting for further research to determine
if the alternative formulations deliver better outcomes in these cases.

The comparison of models ZCLSwr and ZT MKa showed that the former had lower run
times, indicating that it is a better formulation. As mentioned in Subsection 3.3.5, the main
difference lies in the method used to allocate the boxes. This feature made the formulation ZT MKa

dependent on a larger BigM, resulting in poorer performance. Therefore, the Chen, Lee and Shen
(1995) model with the alternative constraint was used for the remaining work.

With that established, a study on rotation was performed, showing a significant reduction
in residual volume ( 20%). However, instances with larger item sets (6 or more) have a significant
increase in computational time. Therefore, this strategy is valid, but the benefits of longer
runtimes must be considered.

Finally, the box sets and box allocation strategies (Q = 1 and Q = 2) were tested. The
results show that allowing the model to pack up to two boxes (Q = 2) can improve packing
efficiency by about 2%. However, the gains are small, and the computational time increases
significantly. Therefore, this strategy is useful as long as time is not a concern. Regarding the
box generation strategy, the HBnd box set showed superior overall performance. This suggests
that the box generation strategy discussed in Subsection 3.3.2 is valid. Additionally, the HB box
set demonstrated better performance in instances with 6 or more items. This result implies that
the strategy utilized to generate both box sets is efficient and warrants further investigation.

In summary, this study has demonstrated the effectiveness of the methods used here to
help companies determine an appropriate set of boxes to reduce the residual volume of their
packaging. The selection of box dimensions using the Herz grid that while ensuring a similar
volume distribution of orders proved to be effective. Additionally, packing one order in up to
two boxes further reduced the residual volume.

A critical aspect is whether implementing these strategies has business or practical
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limitations. For instance, several companies do not allow rotation on one or more axes, which
could result in poorer performance. In contrast, this study allows rotation on all axes, thus
exploring all possibilities. Another factor to consider is that packing items in two boxes may
result in logistical and practical complications, leading to cost escalation or impracticability.
Further studies could explore these practical limitations in detail.

Another important aspect in determining the set of boxes is the cost of manufacturing
the boxes, which has not been considered in this work. Typically, these expenses are linked
to the number of boxes of the same type and the amount of material required for production.
Investigating the same strategies while considering the cost would be an interesting aspect to
approach.

As previously stated, the HBnd box set exhibited the best overall performance, with
HB being better in instances with more items. As discussed in Subsection 3.3.5, this may be
attributed to the smaller volume distribution of the first set as opposed to the second set, which
allows the first set to pack smaller instances better and the second set to pack larger instances
better. Since both sets were generated by random sampling, the question arises as to whether
there are ways to improve the performance of the selected boxes further. To achieve this objective,
it is essential to investigate the strategy used to generate the boxes. Thus, Chapter 4 aims to
improve this strategy by utilizing a heuristic approach with this objective in focus.
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CHAPTER

4
BOX GENERATION PROBLEM

In Chapter 3, it was discussed how to improve item packing using a given set of boxes.
The proposed approach is efficient and indicates two new research challenges: i) define the
number of box types available (set of boxes); and ii) alter the dimensions of each box, focusing
on reducing total residual volume.

The first issue can be addressed by considering the solution of all orders together.
However, this results in a much more complex mathematical model, consequently harder to
solve. Similarly, the second issue may include new box types to the existing set. Nevertheless,
this approach becomes unreasonable due to the extensive array of potential box variations.

As outlined in Section 2.3, other authors have addressed these issues. For instance,
Fontaine and Minner (2022) aim to define a smaller set of boxes from a larger set capable of
packing all orders with minimal residual volume. While this approach addresses the challenge of
limiting box types, it does not generate new boxes. Alonso et al. (2016) solve a 2D cutting stock
packing model using a set of packed orders to define and restrict the number of used boxes. In
their approach, boxes are generated in prepacked patterns that are improved.

In this chapter, a new method is introduced to address the difficulties associated with
limiting the number of box types and the strategy for generating new boxes. This approach aims
to consolidate these challenges into a unified problem.

In Section 4.1, the problem is defined. Following this, Section 4.2 describes the solution
approach, followed by two constructive heuristics in Subsection 4.2.2. Then, Section 4.3 describes
a local search with two different neighbourhoods. Computational experiments for the heuristics
and local search are described in Section 4.4. Last, a summary of the results is made in Section
4.5.
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4.1 Problem Definition - Box Generation
The definition of the box set has two main objectives: i) reduce the residual space to pack

the orders, and ii) fix the number of boxes in the company stock. Two extreme solutions exist: i)
use one ideal box to pack each order, resulting in the smallest residual space, and ii) use just one
box where all orders can be packed, i.e., a box big enough to pack every order. In Figure 10, four
orders are packed according to these two extreme solutions with Figure 10a as the first example
and Figure 10b the second. In Figure 10c, it is presented a intermediary solution.

The first solution is optimal regarding residual volume, but it is unfeasible for companies
that have to deal with thousands of orders every day. On the other hand, the second solution
results in a high residual volume, which leads to high transport costs. The problem studied
consists of defining a set of boxes that allows a balance between these two main objectives.

The objective is to minimize the sum of all packed orders (i = 1, ...,o) residual volumes
(Vres i) (4.1).

VRES = min
o

∑
i=1

Vres i (4.1)

4.2 Solution Approach
The solution method developed started with a suggested number of boxes. Based on the

number of boxes, a box set is generated considering a set of representative orders. These boxes
undergo slight dimension adjustments to modify the overall residual volume. The box dimension
can be increased or reduced, as depicted in Figures 11 and 12, respectively.

In these figures, each scenario illustrates four orders, with some items (represented by
grey rectangles) packed within a box (indicated by the dashed line). In both scenarios, the
residual volume is outlined in red prior to the alteration of the box and in green post-adjustment.
In Figure 11a, the box containing order 1 is increased to reduce the total residual volume
(VRES 2 ≤VRES 1), then it packs orders 1, 2 and 3, as shown in Figure 11b. Correspondingly, the
second strategy involves reducing the box dimensions, as illustrated in Figure 12. Here, orders
1, 2, and 3 are packed in one box, while order 4 is placed in a larger second box (Figure 12a).
The dimension of the first box is reduced. Orders 1 and 2 are packed in the new box, and orders
3 and 4 are packed in the second box, Figure 12a. This new solution results in a smaller total
residual volume (VRES 4 ≤VRES 3).

In summary, the solution method is based on two steps: i) defining an initial box set and
ii) improving this set. In the next section, the definition of box sets is detailed. In sequence, two
constructive heuristics are proposed to define the initial box set. Finally, a local search heuristic
is developed to improve the box set and, consequently, the solution of the problem.
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Figure 10 – An example with three distinct approaches to packing four orders, with boxes denoted by
the dashed lines and items represented as grey squares. The red areas represent the residual
volume. The residual volumes are ordered as follows: VRES A ≥VRES C ≥VRES B.

(a) Four orders packed in four different boxes, minimizing residual
volume.

(b) Four orders packed in the same box limited by largest order,
maximal residual volume.

(c) Two smaller orders packed in one box and two larger orders on
another, showing a mid term scenario.
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Figure 11 – This figure depicts decreasing total residual volume by increasing a box dimension. Dashed
lines represent the boxes, and the items are shown as grey squares. The red area (VRES 1)
shows the initial residual volume before the change, while the green area (VRES 2) illustrates
the residual volume after the adjustment.

(a) Order 1 packed in one box and orders 2, 3 and 4 in a larger one.

(b) Box packing order 1 dimension is increased, now also packing
orders 2 and 3.

Figure 12 – This figure depicts decreasing total residual volume by reducing a box dimension. Dashed
lines represent the boxes, and the items are shown as grey squares. The red area (VRES 3)
shows the initial residual volume before the change, while the green area (VRES 4) illustrates
the residual volume after the adjustment.

(a) Order 1, 2 and 3 packed in one box, and order 4 in a larger box.

(b) Orders 1 and 2 are packed in a smaller box, and order 3 is now
packed in the same box as order 4.
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4.2.1 Defining HB Set

Before discussing the constructive and local search heuristics, it is important to define
the initial box set, which encompasses the boxes subject to exploration.

In this set, each box is defined by coordinates (x,y,z) representing its length, width, and
height, defined as HB. Consequently, HB = {(x0,y0,z0), . . . ,(xn,yn,zn)}, where n is the number
of boxes in the set and without loss of generality (xi ≥ yi ≥ zi).

The dimensions of boxes are defined based on the combination of three vectors corre-
sponding to each dimension of a box. These vectors are defined using the Herz grid (as described
in Subsection 3.3.2). For example, based the following sets X , Y and Z:

X = {1,6,9,14}

Y = {5,7,8,12}

Z = {1,3,7,15}

it is obtained:

HB = {(6,5,1),(6,5,3), . . .(14,12,7)}

4.2.2 Constructive Heuristics

Two constructive heuristics were developed, each one with different objectives. The first
one focuses on the quality of the solution, and the second heuristic was designed to be faster.
Both heuristics finish with a feasible solution.

Constructive Heuristic - H1

This heuristic starts by grouping orders into partitions based on their volumes then, for
each partition, determines the first box that accommodates the largest volume order. Once a box
from an initial set of boxes is chosen, the smaller orders are packed into it. If any order remains
unpacked, the box size is increased, and the process is repeated until all orders of the partition are
accommodated. A detailed description of the heuristics is present by Algorithm 1. The algorithm
inputs are: the set of orders to pack, the set of boxes available and the desired number of boxes.
The solution is the set of boxes selected to pack the orders.

First, the set of orders (O = {1, ...,n}) is sorted in non-decreasing order based on their
volume (line 2), which is the sum of the volumes of items composing each order. Subsequently,
all orders are divided into partitions (P = 1, ...,m). Each partition corresponds to a set of orders
that will be packed into the same box. In this classification, each partition is associated with an
integer, where the smaller integers are assigned to the smallest volume boxes. Consequently, if a
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box’s volume increases beyond the volume of the next partition, the partitions are reclassified to
maintain this order.

For each partition, the algorithm searches for the first box that can accommodate the last
order (the larger volume), see Lines 6 to 32. The biggest order of the partition (cO) is selected
to help in the definition of a box able to pack all orders of this partition. In Lines 14 to 21, the
box able to pack cO order is defined. In Lines 22 to 29, it is verified if this box can be used to
pack all the others in this partition. If not, a bigger box that is able to pack is chosen. This box is
saved as part of the solution (Line 30), and the next partition is analyzed. Finally, all orders are
packed using the generated boxes (line 33). This step is crucial for reallocating orders that might
benefit from smaller boxes, initially assigned to partitions with larger boxes. The result is a list
(solution) containing the box dimensions for each partition.

In Algorithm 1, the function boxFilter (Algorithm 2) identifies the index of the first box
meeting two criteria: having at least one dimension larger than the largest item dimension of
order O[cO], and the box volume being equal to or greater than the order volume. This filtering
step helps reduce the search time by excluding obviously infeasible boxes.

After filtering, the eligible boxes undergo testing (lines 16 - 21). Each order is packed
using the packing model discussed in Subsection 3.2.1, utilizing the function packingModel

(Algorithm 3). This function takes an order and a box or a set of boxes as input, and it packs the
order in the box that minimizes the residual volume. If a feasible solution is found, the function
returns the dimensions of the solution box. Otherwise, it returns an empty set, indicating that no
feasible packing was achieved.
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Algorithm 1 – Constructive Heuristic - H1
1: Inputs:
2: O as the set of orders
3: HB as the set of (x,y,z) Herz box coordinates
4: m as number of partitions
5: function CONSTRUCTIVEHEURISTICH1(O , HB, m)
6: Sort the orders of set O in non-decreasing order of volume
7: opp← ⌊ length(O)

m ⌋ // define the number of order per partition
8: solution← empty list // storage of solution box for each partition
9: rO← 1

10: // Finds the first largest box that fits all boxes
11: for p← 1 to m do
12: // Define the index of explored orders for each partition
13: if p = m then
14: cO← n // last order of partition p
15: pO← n−1 // second last order of partition p
16: else
17: cO← p ·opp // last order of partition p
18: pO← p ·opp−1 // second last order of partition p
19: end if
20: b← boxFilter(O[cO],HB)
21: box← /0
22: // Find the first box that fits the last partition’s order
23: while box = /0 do
24: box← packingModel(O[cO],HB[b])
25: if box = /0 then
26: b← b+1
27: end if
28: end while
29: // Test the defined box for all remaining orders in the partition
30: while rO≤ pO do
31: box← packingModel(O[rO],HB[b])
32: // If order is not packed, move to the next box ,
33: // otherwise move to next order
34: if box = /0 then
35: b← b+1
36: else
37: rO← rO+1
38: end if
39: end while
40: solution[p]← HB[b] // save chosen box b to partition p
41: rO← rO+2
42: end for
43: Run all orders O with solution boxes to reassign orders’s partitions
44: return solution
45: end function
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Algorithm 2 – Box filter.
1: Inputs:
2: order as the items dimensions of one order
3: HB as the set of (x,y,z) Herz box coordinates
4: function BOXFILTER(order,HB)
5: itL← largest item dimension from order
6: boxIndex← /0
7: i← 1
8: // Finds the first box that:
9: // Order volume is smaller than box volume

10: // Largest item dimension is less than largest box dimension
11: for box ∈ HB do
12: boxL← largest dimension form box
13: i← i+1
14: if boxL≥ itL and volume(box)≥ volume(order) then
15: boxIndex← i
16: return boxIndex
17: end if
18: end for
19: return boxIndex
20: end function

Algorithm 3 – Packing model function.
1: Inputs:
2: order as the items dimensions of one order
3: B as the set of (x,y,z) box coordinates
4: function PACKINGMODEL(order,B)
5: // With the order and the set B of box(xes), packing is solved with ZCLS2
6: if ZCLS2 is feasible then
7: bestBox← the solution box for B
8: else
9: bestBox← /0

10: end if
11: return bestBox
12: end function
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Constructive Heuristic - H2

The Constructive Heuristic H2 aims to produce a feasible solution rapidly. The method
involves randomly generating a specified number of boxes (m) from the Herz grid (HBnd),
ensuring that each generated box can accommodate at least one order. The complete pseudocode
is outlined in Algorithm 5.

This algorithm is structured into three phases, followed by a redistribution step. In the
first phase, it generates m boxes from the HB set, where each box corresponds to one partition.
Subsequently, it tries to pack all orders in one of these boxes (lines 2 - 5). If there exist any
infeasible orders (not packed), in the second phase, the dimensions of the largest box (partition
m) are increased until all orders become feasible (lines 6 - 19). Finally, boxes unused by any
orders are removed. If any box is removed, the partition with the largest residual volume (VRES,
Algorithm 4) is identified (partition p), and the first feasible box smaller than box p is added to
the set of boxes. For this, a subset of boxes that at least one dimension is smaller than the box
of the partition p but greater than p−1 is obtained from HB as HBmid . This process continues
until the desired number of partitions is achieved (lines 20 - 40). All orders of the instance are
repacked using the available generated boxes (line 32).

Lastly, all orders are packed using the solution boxes (line 41), as in the previous heuristic.
The result is a vector (solution) containing the box dimensions for each partition.

Algorithm 4 – Calculate VRES for each partition
1: Inputs:
2: O as the set of orders
3: m as number of partitions
4: function RESIDUALVOL(O , m)
5: // For each partition calculate the total residual volume (VRES[p])
6: for p← 1 to m do
7: VRES[p]← 0
8: for o ∈ Op do
9: VRES[p]←VRES[p]+Vres[o]

10: end for
11: end for
12: return VRES
13: end function
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Algorithm 5 – Constructive Heuristic - H2
1: Inputs:
2: O as the set of orders
3: HB as the set of (x,y,z) Herz box coordinates
4: m as number of partitions
5: function CONSTRUCTIVEHEURISTICH2(O , HB, m)
6: Sort O in non-decreasing order of volume
7: solution← Sample m boxes from HB based on O volume distribution
8: Sort solution in a non-decreasing order by box volumes
9: Run packingModel for all orders O with solution boxes, assign each feasible order to

the respective partition
10: Oin f easible← All infeasible orders from O
11: HBupper is the subset of boxes from HB,with all dimensions larger than solution[m] box
12: b← 1
13: o← 1
14: // For all infeasible orders find the first feasible box starting from the largest box
15: while o≤ |Oin f easible| do
16: box← packingModel(Oin f easible[o],HBupper[b])
17: if box = /0 then
18: b← b+1
19: solution[m]← HB[b]
20: else
21: o← o+1
22: end if
23: end while
24: Remove boxes from solution that do not pack any order
25: s← |solution|
26: VRES←residualVol(O ,s)
27: // Generate boxes on the highest residual volume partition, until there are m boxes
28: while s < m do
29: p← partition with the highest VRES
30: HBmid ←{box ∈ HB | solution[p−1]≤ box≤ solution[p]}
31: b← 1
32: Ot← Op−1∪Op
33: // Accept the first box that pack at least one order as a solution
34: for o← 1 to |Ot| do
35: box← packingModel(Ot[o],HBmid[b])
36: if box ̸= /0 then
37: solution[s+1]← HB[b]
38: Sort solution in a non-decreasing order by box volume
39: VRES←residualVol(O ,s)
40: s← s+1
41: Break
42: else
43: b← b+1
44: end if
45: end for
46: end while
47: Run all orders O with solution boxes to reassign orders’s partitions
48: return solution
49: end function
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4.3 Local Search

A local search heuristic is proposed to refine the initial packing solution obtained by
H1 or H2. The method uses two neighborhoods based on the Herz grid (Subsection 3.3.2) to
generate new boxes. Note that the model described in Subsection 3.2.1 was used to determine
the item packing.

4.3.1 Neighbourhood definition

The first neighbourhood, defined as Dimension Increase (N1), concentrates on increasing
the dimensions of the tested box. The second, known as Dimension Reduction (N2), focuses on
reducing the dimensions of the tested box. Both neighborhoods are applied to each partition one
at a time.

Figure 13 – This figure depicts the neighborhood definition and limits in two dimensions. The red point
shows the initial box that will be explored and the tiers range are defined by the black
rectangles, with A the dimension increase and R reduction.

Each neighborhood employs the Herz grid to select a range of potential boxes (neighbors)
of the tested partition box. These boxes are extracted from the set HB = (xo,yo,zo), ...,(x′,y′,z′),
with (x,y,z) beginning with the dimensions of the box in the tested partition (xp,yp,zp) and
extending up to t tiers for each dimension, see Figure 13. In the figure, it can be seen tiers that
increase the box dimension (1A and 2A) and tiers that reduce the dimensions (1R and 2R).
Each tier represents the number of elements a dimension may increase or decrease. This process
results in a set of boxes, denoted as HBt = (xp,yp,zp), ...,(xp+t ,yp+t ,zp+t), which becomes the
neighborhood. Notice that HB1 ⊆ HB2 ⊆ ...HBt .

To better understand how a tier is made, one must consider how the HB set is constructed,
see Subsection 4.2.1. There, it is possible to see that this set is constructed from three vectors. A
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tier is characterized by the t elements obtained from these vectors associated with a specified
box. With those elements, the HB set is narrowed down to a tier, which is denoted as HBt .

For example, considering the three vectors HBx, HBy, HBz obtained using the Herz grid:

HBx = {1,6,9,14}, HBy = {5,7,8,12}, HBz = {1,3,7,15},

The HB set for these vector would be:

HB = {(6,5,1),(6,5,3), . . .(14,12,7)},

Exploring box (6,5,3) with a tier t = 1 the vector will be:

HBx = {6,9}, HBy = {5,7}, HBz = {3,7},

HB1 = {(6,5,3),(9,5,3),(9,7,3),(9,7,7)},

Exploring box (6,5,3) with a tier t = 2 the vector will be:

HBx = {6,9,14}, HBy = {5,7,8}, HBz = {3,7,15},

HB2 = {(6,5,3),(9,5,3) . . . ,(14,8,7)}.

The strategy to obtain HBt set described above is used by Algorithm 6 for dimension
increase and Algorithm 10 for dimension reduction.

Algorithm 6 – Function to create a HBt set from HB, with larger boxes.
1: Inputs:
2: box as (x,y,z) coordinates for current box
3: HBx,HBy,HBz as vectors of Herz for x,y and z axis, respectively
4: t as tier size
5: function CREATETIERUP(box, HBx, HBy, HBz,t)
6: HBxt ← t coordinates from HBx that are larger than the x coordinate from box
7: HByt ← t coordinates from HBy that are larger than the y coordinate from box
8: HBzt ← t coordinates from HBz that are larger than the z coordinate from box
9: HBt ← boxes combining all dimensions from (HBxt ,HByt ,HBzt) respecting (L≥W ≥

H)
10: return HBt
11: end function
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4.3.2 Local Search using Neighbourhood N1

This local search aims to improve the initial solution using the Dimension Increase
Neighbourhood (N1). The objective is to identify partitions where the residual volume can be
reduced via a trade-off, by increasing the residual volume of a given partition (p) it is expected
to reduce the subsequent larger partition (p+1) residual volume via the packing of its smaller
orders, as illustrated in Section 4.1 (refer to Figure 11). The pseudocode outlining this local
search strategy is provided in Algorithm 9 and will be further elaborated upon in this subsection.

The algorithm uses the initial solution obtainable from either H1 or H2 (solution). It also
uses three vectors: HBx, HBy, and HBz. Additional arguments include the instance with orders
categorized into partitions (O), the size of tiers to be explored (t), and the number of boxes in
the initial solution (m).

The algorithm initiates by storing the best solution (line 2). Subsequently, for each
partition, beginning with the smallest and excluding the last one, boxes are examined with
dimensions increased from the current partition box (lines 4 - 32). The box in the last partition is
not assessed, as there is no advantage in increasing its dimensions, given the absence of orders
above it that could benefit from such adjustments.

The neighbor boxes are generated using the function createTierU p (line 5), as previously
detailed in this section. Subsequently, each box from the set HBt is evaluated, and the first box
that results in a better solution is accepted as the new solution (lines 6 - 30). This replacement is
conditional upon two factors: first, the dimensions of the new box (HBt [b]) must not match those
of the current box (newBox ̸= box), and second, the volume of the new box must be greater than
or equal to that of the current box, as determined by the function skipBox (refer to Algorithm 7).

The process of testing a neighbor box occurs in two distinct steps. First, the increased
residual volume of the current partition (p) is calculated (line 9) and subsequently stored as
increase. Then, all orders from the subsequent partition (p+1) are packed into this new box. If
this yields a feasible outcome, the reduction in residual volume is computed as reduction (lines
13 - 16), else nothing changes since this order is still in the same box.

It is essential to notice that this latter part is subject to specific conditions to avoid obvious
infeasible box dimensions. These conditions are determined by the function prepackingN1 (refer
to Algorithm 8), which excludes boxes whose largest dimensions are not greater than the largest
item’s dimension and boxes whose volumes are smaller than the order total volume.

Upon completion of the repacking, the reduction in residual volume is evaluated. If the
reduction (reduction) surpasses the initial increase (increase), a new solution is accepted (lines
19 - 28). The new solution is stored (line 20), orders are reassigned to updated partitions (line
21), and the partition is reset to the previous one, if it is not the initial one (lines 22 - 27).

This process is repeated for all partitions until the second last (m− 1), where a new
solution will be formed. In Section 4.4 the results of this neighborhood will be discussed.
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Algorithm 7 – Skip boxes that knowingly do not provide a better solution or is infeasible,
comparing with the current solution box.

1: Inputs:
2: newBox as (x,y,z) coordinates for neighbour box
3: box as (x,y,z) coordinates for current box
4: function SKIPBOX(newBox, box)
5: // Test if newBox dimensions are equal to box dimensions
6: if newBox = box then
7: return False
8: end if
9: // Test if newBox volume is larger than box volume

10: if volume(box)≤ volume(newBox) then
11: return False
12: end if
13: return True
14: end function

Algorithm 8 – Skip boxes for that do not yield better results or are infeasible, comparing with
the order.

1: Inputs:
2: order as as an order with its items dimensions and volume
3: newBox as (x,y,z) coordinates of neighbour box
4: function PREPACKINGN1(order, newBox)
5: // Test newBox feasibility
6: // Ensure that smallest item dimensions fits the box
7: itL← largest item dimension from order
8: nboxL← largest dimension form newBox
9: if nboxL≤ itL then

10: return False
11: end if
12: // Ensure that the item volume is smaller than box volume
13: if volume(order)≤ volume(newBox) then
14: return False
15: end if
16: end function
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Algorithm 9 – Pseudocode for Local Search with N1
1: Inputs:
2: O // as the set of orders
3: HBx,HBy,HBz as vector of Herz point for x,y and z axis, respectively
4: t as tier size
5: m as number of partitions
6: function LOCALSEARCHN1(O , solution, HBx, HBy, HBz, t, m)
7: bestSolution← solution
8: p← 1
9: // For each partition explore the neighbour boxes

10: while p≤ (m−1) do
11: HBt ← createTierUp(solution[p], HBx, HBy, HBz,t)
12: // Iteration through neighbour boxes
13: for b← 1 to |HBt | do
14: reduction← 0
15: // Testing only boxes with obvious better results
16: if skipBox(HBt [b], solution[p])) then
17: // Calculate the increase in residual volume for
18: // all orders from the current partition (p)
19: increase← volume(HBt)− volume(solution[p]) · |Op|
20: // Try to pack all orders from the next partition in the neighbour box
21: for order ∈ Op+1 do
22: // Testing only obviously feasible boxes
23: if prepackingN1(order, newBox) then
24: box← packingModel(order, HBt [b])
25: // If packed, calculate the residual volume reduction
26: if box ̸= /0 then
27: reduction← reduction//
28: +volume(solution[p+1])− volume(HBt)
29: end if
30: end if
31: end for
32: // If the reduction is larger than the increase,
33: // accept new box as a solution and go to next partition,
34: // else, go to next box
35: if reduction > increase then
36: bestSolution[partition]← HBt [b]
37: Reorganize O for partitions p and p+1
38: if p = 1 then
39: p← 0
40: else
41: p← p−2
42: end if
43: Break
44: end if
45: end if
46: end for
47: p← p+1
48: end while
49: return bestSolution
50: end function
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4.3.3 Local Search using Neighbourhood N2

This second local search explores better solutions using the Dimension Reduction Neigh-
bourhood (N2). The objective is to decrease the box dimensions of a given partition p, aiming
to enhance the packing efficiency of p and p− 1. However, as the dimensions are reduced,
some orders of p may become infeasible, requiring repacking into partitions with larger boxes,
leading to increased residual volume (refer to Figure 12). A better solution is obtained if the
extra residual volume from the repacked orders is less than the reduction gained by the improved
packing of the explored box. Further details regarding this are described in Section 4.1.

Although there are variations in the implementation of N1 and N2, the overall concept is
similar. Therefore, the algorithms of this local search are described in Appendix G.

4.4 Computational Experiments

In this section, five instances are generated in order to analyze the developed constructive
and local search heuristics. First, we evaluated the quality of initial solutions obtained by the
constructive heuristics H1 and H2. In sequence, an analysis of solution quality and computational
times is presented. Following this, the local searches are tested with the initial solution provided
by heuristic H1 and H2. However, before that, the tier is tested to determine an appropriately sized
neighborhood with a reasonable runtime. Then, the local searches are executed independently
using the defined tier, employing either N1 or N2, and then in sequence, N1 followed by N2
and vice versa. The resulting improvements in solution quality and computational runtimes are
compared and discussed.

Computational experiments were conducted on a system consisting of an Intel R○ CoreTM

i7-7700 CPU 3.60GHz x 8 with 15.5 GiB RAM and OS Ubuntu 20.04.4 LTS 64-bit. The
heuristics and local searches were developed using Julia version 1.7.2, and the packing models
were solved using Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (linux64), with a time limit of
1,800 seconds.

4.4.1 Instance Sets

The instances utilized are similar to those described in Subsection 3.3.1. However, the
main distinction lies in treating instances rather than considering each order as an individual
instance, a single instance is composed of a set of orders and their respective items. However,
the generation process is the same as outlined in that section.

A total of five instances were generated, each comprising 250 orders. Each order contains
one to five items. A reduction was made in the maximum items per order, opting for a limit of
five items as opposed to the previous 10. This reduction was implemented to mitigate the increase
in computational time resulting from orders with 6 up to 10 items, as discussed in Subsection
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3.3.5. These adjustments were made due to the reliance on the heuristics and local searches on
packing utilizing the model described in Subsection 3.2.1.

4.4.2 Analysing the Constructive Heuristics

The constructive heuristics H1 and H2 were applied to the above instances considering
m = 20, i.e., a set of 20 boxes. The computational results are presented in Table 33. The
first column represents the instances. The following two columns present the runtime and the
objective value (VRES) obtained by heuristic H1 for each instance. Columns 4-5 present the
same information for heuristic H2. The final column presents the Percentage Difference of the
objective value (H1−H2

H1 ).

This table shows that H1 yields superior results, achieving an overall 35.5% lower objec-
tive value compared to H2. However, regarding runtimes, H2 demonstrates better performance,
with a mean of 118 seconds compared to 8,662 seconds (approximately 2.4 hours) for H1. Both
results were expected, given that H1 was designed to provide a tighter solution by exploring
a broader range of boxes, resulting in a better objective value. On the other hand, H2 aims
for a quick initial solution, prioritizing speed over quality, with the intention of subsequent
enhancements by other methods.

The heuristic H2 starts with a random set of boxes, leading to variations in the solution
obtained for a given instance. To assess the variability in the solutions generated, the 5 instances
were executed 10 times each with seeds ranging from 1 to 10, resulting in 50 solutions. Table 34
contains the mean and standard deviation (SD) of runtime and objective value (VRES) for the
mentioned tests. The runtimes remained relatively constant, averaging around 103 seconds with
minimal variation (approximately 6.5 seconds). In contrast, the objective value exhibited a higher
variability of approximately 11.7% (168,277 out of 1,432,654). While this variability is not
substantial, it can impact subsequent methods by providing a wide range of viable solutions, as
will be further explored in this work.

Last, Table 35 shows a comparison of H1 results with the best results for H2, where
rows represent the instances and columns time in seconds, objective value (VRES) for H1 and
H2 in this order, and last percentile increase of the objective value of H1 to H2. In this table, it
is possible to see that in H2 best solutions, objective values are, on average 23.0% higher, and
times are significantly lower when compared with H1.
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Table 33 – Table with runtimes in seconds and objective value (VRES) for the Constructive Heuristic (H1)
and the Fast Constructive Heuristic (H2), percentage difference calculated as H1−H2

H1 of the
objective values.

H1 H2 Percentage
DifferenceInstance Time (s) VRES Time (s) VRES

1 9,251 926,646 137 1,509,856 -62.9%
2 8,518 1,001,971 113 1,564,715 -56.2%
3 8,172 1,134,401 117 1,199,237 -5.7%
4 8,713 1,004,537 112 1,306,586 -30.1%
5 8,655 933,352 109 1,196,526 -28.2%

Mean 8,662 1,000,181 118 1,355,384 -35.5%

Table 34 – Table with the variation of random starts for Fast Constructive Heuristic (H2), with mean and
standard deviation (SD) of times and objective values (VRES), executed for 20 boxes and 10
different seeds for each instance.

Time (s) VRES
Instance Mean SD Mean SD (%)

1 103.5 10.4 1,425,987 12.4%
2 102.5 2.6 1,532,823 10.1%
3 103.3 3.8 1,401,037 10.0%
4 105.4 9.0 1,454,074 8.5%
5 104.2 4.2 1,349,352 15.2%

Mean 103.8 6.5 1,432,654 11.7%

Table 35 – Table with time and objective value (VRES) for H1 and H2 best run and percentile difference
(Diff. = (H2−H1)

H1 ), executed for 20 boxes.

H1 H2 Best
Instance Time (s) VRES Time (s) VRES Diff. (%)

1 9,251 926,646 106 1,204,120 29.9%
2 8,518 1,001,971 101 1,332,366 33.0%
3 8,172 1,134,401 110 1,205,427 6.3%
4 8,713 1,004,537 104 1,270,432 26.5%
5 8,655 933,352 106 1,138,233 22.0%

Mean 8,662 1,000,181 105 1,230,116 23.0%
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4.4.3 Analysing the Tier Dimension

Before discussing the local search experiments, it is necessary to define the size of each
neighborhood, i.e., the tiers dimension. The computational experiments were conducted using
Instance 1 with the initial solution H2 with tiers ranging from 1 to 6 for N1 and N2. The results
are presented in Figure 14 and Table 36. They provide the same data in different formats to
facilitate the visualization.

In Figure 14, a bar plot represents the percentage objective value reduction of the initial
solution (Reduction, left axis), where N1 is depicted in light blue and N2 in blue. Additionally, a
line plot shows the time in seconds (right axis), with N1 in light purple and N2 in purple. The
x-axis represents the tier. Table 36 presents the same data, with the tiers on the rows and columns
displaying the time and objective value reduction (Red.) for both N1 and N2. Percentage values
indicate how much the initial solution is reduced.

Based on these results, it is possible to observe that increasing the tiers can lead to better
results and higher reduction rates. However, this improvement comes at the expense of increased
solving time. Tier 2 demonstrates the most optimal balance, showcasing the best results within a
reasonable time frame for both neighborhoods. Beyond Tier 2, the solving times start to escalate
significantly without corresponding significant improvements in results.

Figure 14 – Image with bar plot of objective value reduction (left y-axis) and line plot for times (right
y-axis) of each local search (N1 and N2) for each tier (x-axis) from 1 to 6. Results obtained
for Instance 1.
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Table 36 – Table with results of tier exploration, where rows represent tiers and columns the runtime in
second and percent objective value reduction from H2 solution for each local search (N1 and
N2).

LSN1 LSN2
Tier Time (s) Red. Time (s) Red.

1 597 8.2% 1,248 26.3%
2 3,481 17.6% 4,002 26.5%
3 6,538 12.1% 11,482 27.5%
4 12,351 12.2% 28,707 29.2%
5 20,207 12.2% 22,862 30.5%
6 29,663 12.2% 54,955 32.1%

4.4.4 Analysing the Local Search with Initial Solution H2

With the initial solution provided by H2, the local search is run to assess its ability
to improve the solution. First, the local search was applied using neighbourhoods N1 and N2
individually, labeled as LSN1 and LSN2, respectively. Subsequently, both neighbourhoods are
run in sequence: N1 followed by N2 (LSN1N2), and vice versa (LSN2N1). All variants of the local
search used tier 2. The obtained results are summarized in Table 37. In this table, rows represent
each instance, and columns display the outcomes of each neighbourhood in terms of runtime
in seconds (not including H2 runtimes) and the percentage reduction from the objective value
obtained by H2 (Red.= H2−LSN

H2 , where N is either N1, N2, N1N2 and N2N1).

Results indicate that LSN2 had a better performance than LSN1, achieving an average
reduction of 25.5% compared to the 11.2% achieved by LSN1. However, considering runtimes,
the scenario changes. In this case, LSN1 exhibits a faster runtime, averaging 2,183 seconds, while
LSN2 takes approximately three times that. The disparity in runtimes can be attributed to the
larger number of improved solutions by LSN2.

LSN1N2 and LSN2N1 achieved a similar reduction, approximately 28.9% and 29.6%,
respectively, demonstrating the effectiveness of the exploration in sequence. Regarding runtimes,
LSN2N1 had a slight advantage, taking about 300 seconds less on average. This outcome suggests
that employing both neighbourhoods together is beneficial. Moreover, the total runtimes are
slightly lower than the sum of the times when each local search is run separately (8,327 seconds).

These findings suggest that employing LSN2N1 is, albeit marginally, the best approach
evaluated for implementing these local searches. Consequently, this will be the chosen method
moving forward.
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Table 37 – The experiment results obtained by the Local Search method using neighbourhood N1, N2,
N1N2 and N2N1. Times do not include H2 runtimes.

LSN1 LSN2 LSN1N2 LSN2N1
Instance Time (s) Red. Time (s) Red. Time (s) Red. Time (s) Red.

1 3,356 17.6% 4,062 26.5% 8,885 40.1% 5,788 31.6%
2 2,076 9.5% 5,824 31.0% 5,648 31.9% 7,509 34.4%
3 1,637 2.7% 6,494 24.8% 9,813 20.8% 8,171 30.4%
4 1,704 15.7% 6,244 24.1% 6,600 28.8% 7,990 29.8%
5 2,140 10.7% 8,098 21.1% 9,622 23.1% 9,154 21.8%

Mean 2,183 11.2% 6,144 25.5% 8,114 28.9% 7,722 29.6%

4.4.5 Comparing results from H1 with LSN2N1

In this section, the results obtained by the best constructive heuristic (H1) are compared
with the best Local Search (LSN2N1). In Table 38, the results are summarized, where rows repre-
sent instances, and columns show runtimes (including H2 runtimes for LSN2N1) and objective
function values (VRES) for H1 and LSN2N1, respectively. The last column (Diff. = (H1−LS)

H1 ) is the
percent difference of the objective values.

The objective values achieved by LSN2N1 are better when compared to H1. On average,
the method was able to outperform H1 by 5.1%. Detailed analysis of the results reveals that all
instances presented either a superior or comparable performance, except for Instance 1, which
exhibited poorer performance. However, it is important to highlight that Instance 3 significantly
impacts this result, lowering the mean. Finally, in terms of runtimes, LSN2N1 showcased shorter
times on average (7,840 seconds) compared to H1 (8,662 seconds).

Table 38 – Table comparing results from H1 with H2 run with N2N1 (H2&N2N1). Where rows have the
instances and columns time in seconds and objective value (VRES). Times include H2 runtimes
for LSN2N1

H1 LSN2N1 Diff. (%)
Instance Time (s) VRES Time (s) VRES VRES

1 9,251 926,646 5,925 1,032,576 11.4%
2 8,518 1,001,971 7,622 1,026,406 2.4%
3 8,172 1,134,401 8,288 834,659 -26.4%
4 8,713 1,004,537 8,101 917,581 -8.7%
5 8,655 933,352 9,264 936,153 0.3%

Mean 8,662 1,000,181 7,840 949,475 -5.1%

4.4.6 Analysing the Local Search with Initial Solution H1

With the conclusion that the local search is more effective and faster than H1, the question
arises: Could H1 be further improved using these methods? To explore this, H1 is employed
as an initial solution of LSN2N1. The results are presented in Table 39, with instances listed as



94 Chapter 4. Box Generation Problem

rows, runtimes in seconds and objective value reduction (V RES) for H1 and LSH1
N2N1, and the

corresponding percentage reduction (Red. = (H1−LSN2N1)
H1 ).

From this table, it is evident that there is still potential to improve the objective value by
applying the local search. The results indicate on average there is a 15.5% reduction from the
initial objective value.

Upon examining the runtimes, a significant reduction is observed compared to the
local search when used with H2. This reduction can be attributed to the fewer number of new
solutions found, given that H1 already provides a superior solution. Overall, it is valuable to
continue refining the H1 solution. However, it is crucial to consider the time aspect. Despite the
reduced execution times for the local searches, H1 still requires a longer runtime. Therefore, the
decision to implement these enhancements would depend on the available time for making such
determinations.

Table 39 – Table with runtimes, objective values (VRES) and percentage reduction (Red.) of H1 and H1
solution run with LSN2N1.

Time VRES
Instance H1 LSH1

N2N1 H1 LSH1
N2N1 Red. (%)

1 9,251 5,109 926,646 813,661 12.2%
2 8,518 5,445 1,001,971 863,860 13.8%
3 8,172 8,096 1,134,401 848,187 25.2%
4 8,713 4,442 1,004,537 927,546 7.7%
5 8,655 5,919 933,352 779,348 16.5%

Mean 8,662 5,802 1,000,181 846,520 15.1%

4.5 Conclusions

In summary, analysing constructive heuristics, it was observed that H1 had better results
but worse runtime than H2, see Figure 15 and Table 40. As expected, the local search heuristics
presented the best results and the worst runtimes.

The local search method based on altering the dimensions of already existing boxes
works and is viable. The method significantly improved initial solutions when used with both
heuristics. Furthermore, compared to a constructive heuristic, it showed better results. This
answers the proposition made for this chapter: while generating a limited number of boxes, its
dimensions were altered to provide the best packing for a set of orders.
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Figure 15 – This figure contains a bar plot with the objective value (VRES) for both heuristics (H), H1 in
blue and H2 in orange, and local search using initial solution H1 or H2 (LSH1

N2N1 or LSH1
N2N1).

Values are the mean for all instances, and the vertical bar as the standard deviation between
instances.

Table 40 – The table presents the runtimes in seconds and objective values for H1 and H2 executed as an
initial solution for the local search LSN2N1. Last column represents the percent difference of
the values (Diff. = LSH1

N2N1−LSH2
N2N1

LSH1
N2N1

).

LSH1
N2N1 LSH2

N2N1 Diff. (%)
Instance Time (s) VRES Time (s) VRES VRES

1 14,360 813,661 5,925 1,032,576 -26.9%
2 13,627 863,860 7,622 1,026,406 -18.8%
3 13,281 848,187 8,288 834,659 1.6%
4 13,822 927,546 8,101 917,581 1.1%
5 13,764 779,348 9,264 936,153 -20.1%

Mean 13,771 846,520 7,840 949,475 -12.2%
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CHAPTER

5
CONCLUSIONS AND FUTURE RESEARCHES

In this work, two goals were established: i) to study packing models in the e-commerce
scenario, and ii) to define an optimal set of boxes to pack a set of orders. To accomplish these
objectives, first, packing models were studied and analysed in Chapter 3. Subsequently, a new
methodology to define boxes was proposed. Based on a local search, this methodology generates
and improves boxes and is described in Chapter 4.

The first objective, following the definition of the models, had three phases. Phases
1 and 2 aimed to choose the best model regarding residual volume reduction and time. The
computational experiments revealed that ZCLS exhibited superior performance. Despite its longer
runtimes, particularly evident with 6 to 10 items, it demonstrated the most substantial reduction
in residual volume. Consequently, the decision is to use the ZCLS model in Phase 3.

In Phase 3, two aspects of the boxes were analyzed. First, a novel methodology for
generating boxes was tested. Then, the impact of employing up to two boxes for packing
was measured. The results show that the proposed HBnd box generation method exhibited
superior performance. Concerning the packing of orders into two boxes, the outcomes, in general,
suggested a further reduction in residual volume alongside an increase in computational times.
This implies that both methods with the selected model were efficient in the packing processes.

The second objective encompassed two challenges: fixing the number of boxes and
generating new boxes. To address these, two constructive heuristics were formulated to provide
an initial solution to the problem. Also, a local search employing two neighborhoods that altered
the dimensions of the boxes was outlined. The local search LSN2N1 demonstrated a notable
reduction in the initial solutions. Additionally, in terms of the cost-benefit between time and
objective value, executing the local search with H2 as an initial solution proved more favorable.

Even though this work achieved its objectives, some aspects could still be explored. One
such aspect is to consider the box acquisition costs. Including these costs could significantly
impact the solutions obtained in this study, as box costs are not exclusively determined by the
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box area and can be quite complex, as highlighted by Fontaine and Minner (2022).

A limitation of the proposed methods is their reliance on exact methods for packing.
While these methods ensure optimal packing solutions, the model complexity escalates quickly as
the number of items increases. Alternative packing methods, such as those presented by [Alonso
et al. (2016)], could offer an interesting alternative, particularly in realistic scenarios involving
thousands of daily orders. In such cases, clustering orders and defining a set of boxes for each
cluster could also help reduce the packing volume.

Last, the described neighborhoods and the HBnd box set could still be used by other
meta-heuristics, such as Variable Neighborhood Search (VNS) or Genetic Algorithms (GA).
Since both are versatile for this problem, alternative strategies could be tested. For example,
experimenting with the generation of populations of sampled HBnd boxes by a GA algorithm
would be interesting.

In summary, this work showed that packing models can be a viable option for e-commerce,
coupled with the option to generate boxes (HBnd). Additionally, a method to enhance a box set
by adjusting its dimensions was developed and tested.
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APPENDIX

A
INSTANCE - ITEMS

Table 41 containing all 90 items from Fanslau and Bortfeldt (2010) not adjusted by factor
(4.64), as described in Subserction 3.3.3 .

Table 41 – Table containing items dimensions.

Index Length Width Height Volume

1 25 74 64 118,400

2 67 49 90 295,470

3 26 96 41 102,336

4 79 81 37 236,763

5 47 57 87 233,073

6 26 69 29 52,026

7 58 114 71 469,452

8 71 114 58 469,452

9 88 53 77 359,128

10 25 74 64 118,400

11 58 114 71 469,452

12 98 87 78 665,028

13 56 59 37 122,248

14 47 87 57 233,073

15 94 53 92 458,344

16 38 44 64 107,008

17 94 97 37 337,366

18 37 59 56 122,248

19 42 27 44 49,896

20 49 65 115 366,275

21 98 87 78 665,028
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22 100 101 69 696,900

23 38 44 64 107,008

24 84 114 72 689,472

25 100 101 69 696,900

26 84 114 72 689,472

27 25 64 74 118,400

28 44 64 38 107,008

29 57 47 87 233,073

30 37 56 59 122,248

31 79 81 37 236,763

32 106 48 35 178,080

33 106 48 35 178,080

34 37 81 79 236,763

35 71 114 58 469,452

36 26 29 69 52,026

37 67 49 90 295,470

38 42 74 77 239,316

39 37 97 94 337,366

40 26 96 41 102,336

41 100 101 69 696,900

42 25 74 64 118,400

43 94 53 92 458,344

44 94 53 92 458,344

45 49 65 115 366,275

46 44 38 64 107,008

47 37 97 94 337,366

48 98 87 78 665,028

49 77 88 53 359,128

50 42 74 77 239,316

51 67 49 90 295,470

52 37 97 94 337,366

53 25 74 64 118,400

54 92 94 53 458,344

55 42 44 27 49,896

56 79 81 37 236,763

57 88 53 77 359,128

58 42 44 27 49,896
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59 100 101 69 696,900

60 49 65 115 366,275

61 105 74 115 893,550

62 79 81 37 236,763

63 26 29 69 52,026

64 74 115 105 893,550

65 26 96 41 102,336

66 78 87 98 665,028

67 26 69 29 52,026

68 67 49 90 295,470

69 98 87 78 665,028

70 94 97 37 337,366

71 37 56 59 122,248

72 78 87 98 665,028

73 37 56 59 122,248

74 47 57 87 233,073

75 44 42 27 49,896

76 67 49 90 295,470

77 94 53 92 458,344

78 42 44 27 49,896

79 58 114 71 469,452

80 47 57 87 233,073

81 58 114 71 469,452

82 57 47 87 233,073

83 74 25 64 118,400

84 49 65 115 366,275

85 69 26 29 52,026

86 26 96 41 102,336

87 67 49 90 295,470

88 47 57 87 233,073

89 98 87 78 665,028

90 88 53 77 359,128
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APPENDIX

B
INSTANCE - ORDERS & ITEMS

Table 42 containing the first 20 orders of instance described in Subsection 3.3.1, with
dimensions of the items adjusted by factor (4.64).

Table 42 – Table with 20 orders and their items.

Order Number Length Width Height Volume

1 14 11 19 2,926

1 21 19 17 6,783

2 12 10 19 2,280

2 9 16 17 2,448

2 9 9 6 486

3 9 14 8 1,008

3 19 11 17 3,553

4 11 14 25 3,850

4 21 19 17 6,783

5 20 20 11 4,400

5 22 22 15 7,260

5 21 19 17 6,783

6 9 9 6 486

6 23 16 25 9,200

6 14 11 19 2,926

6 21 19 17 6,783

6 19 11 17 3,553

7 5 16 14 1,120

7 17 17 8 2,312

8 12 25 15 4,500

9 20 11 20 4,400
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9 5 16 14 1,120

10 6 21 9 1,134

10 15 25 12 4,500

10 21 19 17 6,783

11 5 16 14 1,120

11 8 17 17 2,312

12 11 14 25 3,850

12 8 12 13 1,248

13 21 19 17 6,783

13 16 25 23 9,200

14 16 5 14 1,120

15 18 25 16 7,200

15 14 11 19 2,926

15 20 11 20 4,400

16 9 16 17 2,448

16 6 21 9 1,134

17 17 17 8 2,312

17 19 11 17 3,553

17 10 19 12 2,280

17 11 14 25 3,850

17 18 25 16 7,200

17 9 14 8 1,008

17 17 17 8 2,312

17 22 22 15 7,260

17 20 21 8 3,360

17 17 17 8 2,312

18 10 12 19 2,280

18 9 16 17 2,448

19 14 11 19 2,926

19 10 12 19 2,280

20 12 25 15 4,500
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C
INSTANCE - BOX SET AMB

Table 43 containing the 123 Amazon boxes extracted from Amazon Boxes (2021).
Extraction date was on 21 of September 2022.

Table 43 – Table containing AMB dimensions.

Box Id Box Name Length Width Height Volume

1 Z14 46 33 14 21,252

2 130 (Z13) 34 21 27 19,278

3 20 23 15 13 4,485

4 120 (Z12) 39 24 17 15,912

5 2BK 48 42 30 60,480

6 100 (Z10) 34 28 13 12,376

7 28 (ZM1) 25 20 11 5,500

8 50 (Z05) 33 29 9 8,613

9 1B2 (BO1) 40 32 9 11,520

10 3A3 (B75) 52 79 9 36,972

11 60 30 23 13 8,970

12 B70 (PD) 76 18 15 20,520

13 56 20 28 15 8,400

14 80 30 41 8 9,840

15 D37 64 51 35 114,240

16 10 23 15 9 3,105

17 81 38 25 11 10,450

18 40 25 16 18 7,200

19 70 46 13 15 8,970

20 170 (Z17) 44 34 20 29,920

21 1BK (B73) 53 41 12 26,076
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22 118 36 28 15 15,120

23 110 (Z11) 46 36 9 14,904

24 176 46 36 25 41,400

25 143 41 31 18 22,878

26 93 30 24 18 12,960

27 0A0 23 17 6 2,346

28 BP0 (V4) 25 20 5 2,500

29 A0 (BR0) 26 18 6 2,808

30 A1 25 18 8 3,600

31 A1 (BH0, BY0, BYO) 25 18 8 3,600

32 BP1 (V4) 34 24 6 4,896

33 BM2 30 24 6 4,320

34 A3 32 24 8 6,144

35 A3 (BH1, BY1) 25 18 13 5,850

36 1A3 (BY4) 32 25 8 6,400

37 1A1 (BY2) 29 22 11 7,018

38 BM5 30 23 10 6,900

39 Z1 30 23 10 6,900

40 1AD (BY8, BND) 34 24 9 7,344

41 W01 (BDA) 25 20 17 8,500

42 1B2 38 30 8 9,120

43 BM3 30 24 13 9,360

44 E1 41 23 10 9,430

45 1A5 (B45,BF5) 34 28 12 11,424

46 A4 30 22 18 11,880

47 E4 41 30 10 12,300

48 2B4 36 43 8 12,384

49 1AB (BFA) 36 23 16 13,248

50 N3 38 28 13 13,832

51 1A7 (B47,BF7) 37 20 18 13,320

52 1BF 49 36 8 14,112

53 S6A (BT8) 89 13 13 15,041

54 BT9 (S6A) 13 13 90 15,210

55 2A5 51 28 11 15,708

56 C1 48 33 10 15,840

57 N3 (B41, BF1, BJ0) 41 30 13 15,990

58 1AE (BY9-BNB) 33 25 21 17,325
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59 BT2 (S7) 61 38 8 18,544

60 J7 (B7H) 103 13 13 17,407

61 1B9 46 23 18 19,044

62 W02 (BDB) 32 28 22 19,712

63 N6 (B40) 16 30 41 19,680

64 Z4 41 31 16 20,336

65 Q3 93 27 8 20,088

66 C2 48 33 15 23,760

67 J7A 133 13 13 22,477

68 1B9 (B4E, BFE) 46 23 23 24,334

69 1AC (B7N) 34 29 25 24,650

70 Z16 41 36 17 25,092

71 PC 60 41 10 24,600

72 P8 46 58 10 26,680

73 E6 41 30 20 24,600

74 K3 (B42-BF2) 48 34 16 26,112

75 S8 (B7M) 66 38 10 25,080

76 U3 (BFR) 102 27 10 27,540

77 2AA 61 41 11 27,511

78 1A9 (B48) 36 32 24 27,648

79 Z05 41 26 26 27,716

80 2A7 61 44 11 29,524

81 1B4 43 33 20 28,380

82 C3 48 33 20 31,680

83 C3 48 33 20 31,680

84 P1 (BS5) 54 39 16 33,696

85 1BG 46 55 13 32,890

86 B0 43 28 28 33,712

87 1B4 (B4D, BFD) 45 36 21 34,020

88 K4 (B5E) 50 33 21 34,650

89 U1 (BCS – B7T) 102 25 14 35,700

90 Q4 51 94 8 38,352

91 2A0 51 41 18 37,638

92 Z06 41 36 26 38,376

93 B0 (BS2) 44 30 29 38,280

94 2B5 (B31) 39 33 30 38,610

95 1BA (B4F, BFF) 48 31 29 43,152
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96 B11 71 41 15 43,665

97 U4 (B76) 102 23 19 44,574

98 C4 48 34 30 48,960

99 P4 (BS8) 66 41 18 48,708

100 Q6 94 74 8 55,648

101 B05 56 38 13 27,664

102 Q5 76 94 8 57,152

103 PA (BS3) 51 35 31 55,335

104 B14 61 46 20 56,120

105 1BB (B4G, BFG) 49 37 31 56,203

106 2A6 53 43 27 61,533

107 PB (BCS) 58 38 30 66,120

108 F3 66 48 22 69,696

109 U0 (BSG) 102 30 23 70,380

110 2A8 66 48 23 72,864

111 K89 113 25 25 70,625

112 P7 (BSB) 71 50 21 74,550

113 CB4 (B58) 17 30 147 74,970

114 D4 56 46 30 77,280

115 P9 (B77-B87) 70 57 20 79,800

116 S5 (B44) 57 46 31 81,282

117 2BB 56 42 36 84,672

118 P2 53 45 39 93,015

119 3A1 79 52 27 110,916

120 P5 65 53 42 144,690

121 Q2 86 56 34 163,744

122 U5 (B80) 102 51 36 187,272

123 U2 (BFR) 102 57 41 238,374
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D
INSTANCE - BOX SET HB

Table 44 containing the 123 HB boxes generated as described in Subsection 3.3.2.

Table 44 – Table containing HB dimensions.

Box ID Length Height Width Volume

1 24 6 6 864

2 24 8 5 960

3 15 9 9 1,215

4 14 12 8 1,344

5 28 15 6 2,520

6 43 12 5 2,580

7 22 13 12 3,432

8 27 25 6 4,050

9 20 15 15 4,500

10 19 17 14 4,522

11 27 14 12 4,536

12 43 19 6 4,902

13 38 31 5 5,890

14 45 29 5 6,525

15 47 29 5 6,815

16 25 23 13 7,475

17 44 35 5 7,700

18 30 27 10 8,100

19 44 37 5 8,140

20 45 16 12 8,640

21 36 19 13 8,892

22 34 18 17 10,404
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23 37 21 14 10,878

24 33 31 11 11,253

25 46 42 6 11,592

26 43 18 15 11,610

27 27 23 19 11,799

28 34 24 15 12,240

29 32 22 18 12,672

30 44 31 10 13,640

31 47 35 9 14,805

32 32 31 15 14,880

33 32 31 15 14,880

34 39 20 20 15,600

35 31 23 22 15,686

36 46 44 8 16,192

37 33 25 20 16,500

38 40 35 12 16,800

39 47 50 8 18,800

40 35 32 18 20,160

41 45 27 17 20,655

42 44 24 20 21,120

43 46 46 10 21,160

44 46 42 11 21,252

45 29 29 27 22,707

46 31 31 24 23,064

47 30 28 28 23,520

48 40 31 19 23,560

49 40 30 21 25,200

50 41 28 22 25,256

51 34 34 22 25,432

52 44 40 15 26,400

53 46 36 16 26,496

54 32 30 28 26,880

55 44 44 14 27,104

56 43 34 19 27,778

57 46 32 19 27,968

58 42 26 26 28,392

59 34 34 26 30,056
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60 46 41 16 30,176

61 44 35 20 30,800

62 45 37 19 31,635

63 40 35 23 32,200

64 36 36 25 32,400

65 47 50 14 32,900

66 46 46 16 33,856

67 46 37 20 34,040

68 39 35 25 34,125

69 42 39 21 34,398

70 39 35 26 35,490

71 39 37 25 36,075

72 47 48 16 36,096

73 43 37 23 36,593

74 47 47 17 37,553

75 39 38 26 38,532

76 38 37 28 39,368

77 46 46 19 40,204

78 43 43 22 40,678

79 46 37 24 40,848

80 40 38 27 41,040

81 43 40 24 41,280

82 45 42 22 41,580

83 36 34 34 41,616

84 36 36 33 42,768

85 46 31 30 42,780

86 41 37 29 43,993

87 41 40 28 45,920

88 45 43 24 46,440

89 46 44 23 46,552

90 46 44 23 46,552

91 45 45 23 46,575

92 40 38 31 47,120

93 45 35 30 47,250

94 47 36 28 47,376

95 45 44 24 47,520

96 46 43 25 49,450
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97 43 34 34 49,708

98 45 43 26 50,310

99 37 37 37 50,653

100 43 38 31 50,654

101 42 39 31 50,778

102 42 37 33 51,282

103 45 44 26 51,480

104 47 38 29 51,794

105 45 36 32 51,840

106 46 38 30 52,440

107 45 42 29 54,810

108 44 39 32 54,912

109 44 41 31 55,924

110 45 39 32 56,160

111 45 44 29 57,420

112 45 44 29 57,420

113 42 37 37 57,498

114 46 37 34 57,868

115 41 39 37 59,163

116 45 44 30 59,400

117 47 46 28 60,536

118 44 43 32 60,544

119 45 41 33 60,885

120 47 45 29 61,335

121 44 41 34 61,336

122 46 42 32 61,824

123 47 49 27 62,181
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E
INSTANCE - BOX SET HBND

Table 45 containing the 123 HBnd boxes generated as described in Subsection 3.3.2.

Table 45 – Table containing HBnd dimensions.

Box Id Length Height Width Volume

1 26 26 17 11,492

2 34 48 18 29,376

3 12 37 9 3,996

4 20 31 5 3,100

5 17 35 6 3,570

6 32 42 9 12,096

7 39 39 17 25,857

8 16 18 11 3,168

9 23 49 14 15,778

10 32 32 13 13,312

11 14 43 11 6,622

12 32 36 32 36,864

13 32 33 19 20,064

14 14 42 14 8,232

15 31 47 10 14,570

16 31 41 10 12,710

17 36 45 29 46,980

18 35 46 6 9,660

19 21 21 10 4,410

20 23 33 10 7,590

21 32 32 6 6,144

22 5 30 39 5,850
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23 12 29 8 2,784

24 21 28 16 9,408

25 28 44 18 22,176

26 32 48 9 13,824

27 25 29 16 11,600

28 34 40 5 6,800

29 25 29 14 10,150

30 36 44 28 44,352

31 16 20 9 2,880

32 35 41 12 17,220

33 38 41 9 14,022

34 34 35 14 16,660

35 18 39 11 7,722

36 33 38 25 31,350

37 34 40 6 8,160

38 26 33 18 15,444

39 33 44 32 46,464

40 39 42 5 8,190

41 16 20 15 4,800

42 21 47 10 9,870

43 17 35 12 7,140

44 22 44 5 4,840

45 27 29 19 14,877

46 31 39 31 37,479

47 27 40 15 16,200

48 34 40 9 12,240

49 23 27 13 8,073

50 33 43 15 21,285

51 27 39 26 27,378

52 28 28 17 13,328

53 32 46 22 32,384

54 31 31 18 17,298

55 35 37 18 23,310

56 20 48 10 9,600

57 22 41 22 19,844

58 22 43 5 4,730

59 38 41 9 14,022
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60 21 33 15 10,395

61 19 36 5 3,420

62 14 23 10 3,220

63 25 26 10 6,500

64 11 20 11 2,420

65 25 33 8 6,600

66 17 27 12 5,508

67 11 24 6 1,584

68 17 27 12 5,508

69 29 49 18 25,578

70 39 47 18 32,994

71 39 41 10 15,990

72 28 28 10 7,840

73 13 24 10 3,120

74 33 33 13 14,157

75 34 42 6 8,568

76 31 36 14 15,624

77 16 31 16 7,936

78 18 32 39 22,464

79 33 36 27 32,076

80 39 40 23 35,880

81 14 17 14 3,332

82 37 42 19 29,526

83 30 30 22 19,800

84 15 25 10 3,750

85 33 39 18 23,166

86 33 37 5 6,105

87 30 38 10 11,400

88 6 22 6 792

89 29 41 24 28,536

90 35 35 13 15,925

91 35 38 34 45,220

92 34 38 8 10,336

93 36 46 10 16,560

94 27 31 19 15,903

95 24 42 9 9,072

96 38 39 9 13,338
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97 30 33 17 16,830

98 35 37 8 10,360

99 18 47 16 13,536

100 22 47 16 16,544

101 25 26 5 3,250

102 19 34 15 9,690

103 29 33 28 26,796

104 33 47 9 13,959

105 19 49 14 13,034

106 23 42 16 15,456

107 17 17 13 3,757

108 30 39 28 32,760

109 33 33 15 16,335

110 35 37 8 10,360

111 13 23 6 1,794

112 21 36 20 15,120

113 16 21 12 4,032

114 16 31 9 4,464

115 30 42 16 20,160

116 28 40 14 15,680

117 23 30 21 14,490

118 26 30 16 12,480

119 28 36 28 28,224

120 31 47 10 14,570

121 18 44 17 13,464

122 29 31 23 20,677

123 27 46 25 31,050
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APPENDIX

F
TABLES - RELAXATION AND TIMES

RESULTS FOR Q=1

Appendix containing tables with results for the relaxed models constraints comparison
for Q = 1, mentioned in Subsection 3.3.5. Table 46 contains summary data with mean, median
and standard deviation (SD) of the percentage improvement of the relaxed objective value of the
two different constraints by item quantity, calculated as ZRel

T MKa2−ZRel
T MKa1

ZRel
T MKa2

·100. Tables 47 and 48,
contains summary of runtimes for mix-integer models, respectively ZT MKa [Tsai, Malstrom and
Kuo (1993)] and for ZCLSwr [Chen, Lee and Shen (1995)].

Table 46 – Percentage difference between linear relaxations (Q = 1).

Improvement
Items Mean Median SD

1 0.00% 0.00% 0.00%
2 0.13% 0.11% 0.09%
3 0.17% 0.16% 0.10%
4 0.20% 0.19% 0.10%
5 0.27% 0.27% 0.12%
6 0.25% 0.25% 0.09%
7 0.29% 0.30% 0.08%
8 0.29% 0.26% 0.11%
9 0.30% 0.30% 0.10%

10 0.33% 0.32% 0.11%
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Table 47 – Run times for the two formulations of ZT MKa (without rotation) by the number of items
considering AMB box set and Q = 1.

ZT MKa1 ZT MKa2
Items Mean Median SD Total Mean Median SD Total Instances

1 <1 <1 <1 2 <1 <1 <1 2 251
2 <1 <1 <1 5 <1 <1 <1 6 380
3 <1 <1 <1 3 <1 <1 <1 3 155
4 <1 <1 <1 2 <1 <1 <1 2 71
5 <1 <1 <1 1 <1 <1 <1 1 18
6 <1 <1 <1 2 <1 <1 <1 2 25
7 <1 <1 <1 4 <1 <1 <1 4 31
8 <1 <1 <1 7 <1 <1 <1 7 31
9 6 <1 15 90 5 <1 13 76 16
10 4 1 7 87 3 1 4 62 22

Total 1 <1 2 201 1 <1 2 165 1000

Table 48 – Run times for the two formulations of ZCSLwr (without rotation) by the number of items
considering AMB box set and Q = 1.

ZCLSwr1 ZCLSwr2
Items Mean Median SD Total Mean Median SD Total Instances

1 0 0 0 2 0 0 0 2 251
2 0 0 0 4 0 0 0 5 380
3 0 0 0 2 0 0 0 3 155
4 0 0 0 2 0 0 0 2 71
5 0 0 0 1 0 0 0 1 18
6 0 0 0 2 0 0 0 3 25
7 0 0 0 4 0 0 0 5 31
8 0 0 0 8 0 0 0 9 31
9 1 0 2 16 1 0 2 18 16
10 1 1 2 29 1 1 1 26 22

Total 0 0 0 70 0 0 0 73 1000
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APPENDIX

G
ALGORITHMS - LOCAL SEARCH USING N2

Algorithms for local search with Dimension Decrease (N2) are presented here, as men-
tioned in Subsection 4.3.3. The main difference for Algorithm 10 is that the HBt set is created
with dimensions smaller than the explored box down to tier t. Algorithm 11 has an extra condition
that requires the tested box volume to be less than the current solution box (currBox) volume.
Last, Algorithm 12 main difference is that orders from the current explored partition have to be
packed either into the new box or into a larger already existing box (lines 25 - 34). This occurs
because when a box’s dimensions are reduced, some orders will not fit, so they must be packed
into larger partitions.

Algorithm 10 – Function to create a HBt set of boxes from HB, with smaller boxes.
1: Inputs:
2: box as (x,y,z) coordinates for current box
3: HBx,HBy,HBz as vector of Herz point for x,y and z axis, respectively
4: t as tier size
5: function CREATETIERDOWN(box, HBx, HBy, HBz,t)
6: HBxt ← t coordinates from HBx that are smaller than the x coordinate from box starting

from the last
7: HByt ← t coordinates from HBy that are smaller than the y coordinate from box starting

from the last
8: HBzt ← t coordinates from HBz that are smaller than the z coordinate from box starting

from the last
9: HBt ← boxes combining all dimensions from (HBxt ,HByt ,HBzt) respecting (L≥W ≥

H)
10: return HBt
11: end function
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Algorithm 11 – Skip boxes for that do not yield better results or are infeasible, comparing with
the order.

1: Inputs:
2: order as an order with its items dimensions and volume
3: newBox as (x,y,z) coordinates of neighbour box
4: currBox as (x,y,z) coordinates of current box solution
5: function PREPACKINGN2(order, newBox, currBox)
6: // Test newBox feasibility
7: // Ensure that smallest item dimensions fits the box
8: itL← largest item dimension from order
9: nboxL← largest dimension form newBox

10: if nboxL≤ itL then
11: return False
12: end if
13: // Ensure that the order volume is smaller than box volume
14: if volume(order)≤ volume(newBox) then
15: return True
16: end if
17: // Ensure that the new box volume is smaller than the current box volume
18: if volume(newBox)≤ volume(currBox) then
19: return True
20: end if
21: end function
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Algorithm 12 – Pseudocode for Local Search with N2
1: Inputs:
2: O as the set of orders
3: solution as a list with the boxes of an initial solution
4: HBx,HBy,HBz vector of Herz point for x,y and z axis, respectively
5: t as the tier size
6: m as the number of partitions
7: function DIMENSIONREDUCTIONN2(O , solution, HBx, HBy, HBz, t, m)
8: bestSolution← solution
9: p← m−1

10: while partition≥ 1 do
11: HBt ← createTierDown(solution[n], HBx, HBy, HBz,t)
12: for b← 1 to |HBt | do
13: reduction← 0
14: increase← 0
15: if skipBox(HBt [b], solution[p]) then
16: for order ∈ Op−1 do
17: if prepackingN2(order, HBt [b], solution[p−1]) then
18: box← packingModel(order, HBt [b])
19: if box ̸= /0 then
20: reduction← reduction//
21: +volume(solution[p−1])− volume(HBt [b])
22: end if
23: end if
24: end for
25: for order ∈ Op do
26: box← packingModel(order, HBt [b]+ solution[p+1,m])
27: if box = HBt [b] then
28: reduction← reduction//
29: +volume(solution[p−1])− volume(HBt [b])
30: else
31: increase← increase//
32: +volume(box)− volume(solution[p])
33: end if
34: end for
35: if reduction > increase then
36: bestSolution[partition]← HBt [b]
37: Reorganize O for partitions p and p−1
38: if p = (m−1) then
39: p← m
40: else
41: p← p+2
42: end if
43: Break
44: end if
45: end if
46: p← p−1
47: end for
48: end while
49: return bestSolution
50: end function



U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o


	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of algorithms
	List of Tables
	Contents
	Introduction
	Research Objectives
	Document Outline

	Literature Review
	Bibliographic Review Method
	Collected Data
	Overview of Packing Problems
	Related Works
	Summary of Bibliography Review

	Packing Problem
	Problem Definition
	Mathematical Models
	Chen, Lee and Shen Model
	Chen, Lee and Shen Model Without Rotation
	Tsai, Malstrom and Kuo Model
	Adapted Tsai, Malstrom and Kuo Model
	Equivalent Constraints
	A Toy Problem
	Models Analysis

	Computational Experiments
	Instances Sets
	Box Sets
	Item Sets
	Exploration Goals
	Computational Results

	Conclusions

	Box Generation Problem
	Problem Definition - Box Generation
	Solution Approach
	Defining HB Set
	Constructive Heuristics

	Local Search
	Neighbourhood definition
	Local Search using Neighbourhood N1
	Local Search using Neighbourhood N2

	Computational Experiments
	Instance Sets
	Analysing the Constructive Heuristics
	Analysing the Tier Dimension
	Analysing the Local Search with Initial Solution H2
	Comparing results from H1 with LSN2N1
	Analysing the Local Search with Initial Solution H1

	Conclusions

	Conclusions and Future Researches
	Bibliography
	Instance - Items
	Instance - Orders & Items
	Instance - Box Set AMB
	Instance - Box Set HB
	Instance - Box Set HBnd
	Tables - Relaxation and Times Results for Q=1
	Algorithms - Local Search using N2

