• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2018.tde-05032018-164707
Documento
Autor
Nombre completo
Cláudio Alex Jorge da Rocha
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1999
Director
Tribunal
Rezende, Solange Oliveira (Presidente)
Lôbo, Raysildo Barbosa
Monard, Maria Carolina
Título en portugués
Redes Bayesianas para Extração de Conhecimento de Bases de Dados, Considerando a Incorporação de Conhecimento de Fundo e o Tratamento de Dados Incompletos
Palabras clave en portugués
Não disponível
Resumen en portugués
O interesse cada vez maior das empresas em adquirir novas tecnologias de processarnento e armazenamento de dados, além de visualizar a informação como seu maior patrimônio, tem direcionado várias pesquisas para o estudo do processo de transformação desses dados em conhecimento, o que pode proporcionar um auxílio efetivamente inteligente à tomada de decisão. Nesse contexto, o processo de Extração de Conhecimento de Bases de Dados (KDD - Knowledge Discovery in Database) desponta como uma tecnologia capaz de cooperar amplamente na busca do conhecimento embutido nos dados. Essa busca pode ser realizada utilizando métodos estatísticos e/ou técnicas de Inteligência Artificial, especialmente as que manipulam incerteza, que são amplamente aplicados na análise de dados com objetivo de encontrar relações de interesse. As redes Bayesianss representam um dos modelos mais proeminentes para encontrar essas relações. Este trabalho envolve a investigação dos conceitos, técnicas, métodos e ferramentas Bayesianas para auxiliar o processo de extração de conhecimento de bases de dados, considerando a incorporação de conhecimento de fundo, bem como o tratamento de dados incompletos.
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
The fa.ct that companies are becoming more and more interested in acquiring new technologies for processing and storing data, as well as the view that information is their largest asset, has led to much regearch about the process of transforming this data into knowledge, which can malce it possible to aid decision-making in an effective and intelligent miner. In this context, the Knowledge Discovery in Databases (KDD) proress has emerged as a technology well suited to searching for knowledge that is embedded in the data. This search can be made using statistical methods and/or Artificial Intelligence techniques, especially those that manipulate uncertainty, which are widely used to analyze data and find interesting relations. Bayesian networks represent one of the more proeminent models for finding these relations. This work involves the investigation of Bayesian concepts, techniques, methods and tools to aid the process of extracting knowledge from databases, considering the inclusion of background knowledge, as well as treatment of incomplete data.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-03-05
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.