• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.55.2017.tde-05012017-144708
Document
Auteur
Nom complet
Danilo Habermann
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2016
Directeur
Jury
Osório, Fernando Santos (Président)
Branco, Kalinka Regina Lucas Jaquie Castelo
Ferreira, Janito Vaqueiro
Grassi Junior, Valdir
Silva, Ivan Nunes da
Titre en portugais
Localização topológica e identificação de obstáculos por meio de sensor laser 3D (LIDAR) para aplicação em navegação de veículos autônomos terrestres
Mots-clés en portugais
Classificação de obstáculos
Identificação de interseção de vias
LIDAR
Localização
Segmentação
Veículo autônomo
Resumé en portugais
O emprego de veículos terrestres autônomos tem se tornado cada vez mais comum nos últimos anos em aplicações civis e militares. Eles podem ser úteis para as pessoas com necessidades especiais e para reduzir os acidentes de trânsito e o número de baixas em combate. Esta tese aborda o problema da classificação de obstáculos e da localização do veículo em relação a um mapa topológico, sem fazer uso de GPS e de mapas digitais detalhados. Um sensor laser 3D é usado para coletar dados do ambiente. O sistema de classificação de obstáculos extrai as features da nuvem de pontos e usam-nas para alimentar um classificador que separa os dados em quatro classes: veículos, pessoas, construções, troncos de árvores e postes. Durante a extração de features, um método original para transformar uma nuvem 3D em um grid 2D é proposto, o que ajuda a reduzir o tempo de processamento. As interseções de vias de áreas urbanas são detectadas e usadas como landmarks em um mapa topológico. O sistema consegue obter a localização do veículo, utilizando os pontos de referência, e identifica as mudanças de direção do veículo quando este passa pelos cruzamentos. Os experimentos demonstraram que o sistema foi capaz de classificar corretamente os obstáculos e localizar-se sem o uso de sinais de GPS.
Titre en anglais
Topological localization and obstacles identification using a 3D laser sensor (LIDAR) in areas of autonomous ground vehicles
Mots-clés en anglais
Autonomous ground vehicle
Crossroads identification
LIDAR
Localization
Obstacle classification
Point clouds
Segmentation
Resumé en anglais
The employment of autonomous ground vehicles, both in civilian and military applications, has become increasingly common over the past few years. Those vehicles can be helpful for disabled people and also to reduce traffic accidents. In this thesis, approaches to the problem of obstacles classification and the localization of the vehicle in relation to a topologic map are presented. GPS devices and previous digital maps are not employed. A 3D laser sensor is used to collect data from the environment. The obstacle classification system extracts features from point clouds and uses them to feed a classifier which separates data into four classes: vehicle, people, building and light poles/ trees. During the feature extraction, an original method to transform 3D to 2D data is proposed, which helps to reduce the processing time. Crossing roads are detected and used as landmarks in a topological map. The vehicle performs self-localization using the landmarks and identifying direction changes through the crossing roads. Experiments demonstrated that system was able to correctly classify obstacles and to localize itself without using GPS signals.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-01-05
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2023. Tous droits réservés.