Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.55.2016.tde-04102016-110603
Document
Auteur
Nom complet
Daniel Carnieto Tozadore
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2016
Directeur
Jury
Romero, Roseli Aparecida Francelin (Président)
Aróca, Rafael Vidal
Isotani, Seiji
Meneghetti, Renata Cristina Geromel
Titre en portugais
Aplicação de um robô humanoide autônomo por meio de reconhecimento de imagem e voz em sessões pedagógicas interativas
Mots-clés en portugais
Human-robot interaction (HRI)
Reconhecimento imagem e fala
Robótica pedagógica
Resumé en portugais
A Robótica Educacional consiste na utilização de robôs para aplicação prática dos conteúdos teóricos discutidos em sala de aula. Porém, os robôs mais usados apresentam uma carência de interação com os usuários, a qual pode ser melhorada com a inserção de robôs humanoides. Esta dissertação tem como objetivo a combinação de técnicas de visão computacional, robótica social e reconhecimento e síntese de fala para a construção de um sistema interativo que auxilie em sessões pedagógicas por meio de um robô humanoide. Diferentes conteúdos podem ser abordados pelos robôs de forma autônoma. Sua aplicação visa o uso do sistema como ferramenta de auxílio no ensino de matemática para crianças. Para uma primeira abordagem, o sistema foi treinado para interagir com crianças e reconhecer figuras geométricas 3D. O esquema proposto é baseado em módulos, no qual cada módulo é responsável por uma função específica e contém um grupo de funcionalidades. No total são 4 módulos: Módulo Central, Módulo de Diálogo, Módulo de Visão e Módulo Motor. O robô escolhido é o humanoide NAO. Para visão computacional, foram comparados a rede LEGION e o sistema VOCUS2 para detecção de objetos e SVM e MLP para classificação de imagens. O reconhecedor de fala Google Speech Recognition e o sintetizador de voz do NAOqi API são empregados para interações sonoras. Também foi conduzido um estudo de interação, por meio da técnica de Mágico-de-Oz, para analisar o comportamento das crianças e adequar os métodos para melhores resultados da aplicação. Testes do sistema completo mostraram que pequenas calibrações são suficientes para uma sessão de interação com poucos erros. Os resultados mostraram que crianças que tiveram contato com uma maior interatividade com o robô se sentiram mais engajadas e confortáveis nas interações, tanto nos experimentos quanto no estudo em casa para as próximas sessões, comparadas às crianças que tiveram contato com menor nível de interatividade. Intercalar comportamentos desafiadores e comportamentos incentivadores do robô trouxeram melhores resultados na interação com as crianças do que um comportamento constante.
Titre en anglais
Application of an autonomous humanoid robot by image and voice recognition in interactive pedagogical sessions
Mots-clés en anglais
Human-robot interaction (HRI)
Image and speech recognition
Pedagogical robotics
Resumé en anglais
Educational Robotics is a growing area that uses robots to apply theoretical concepts discussed in class. However, robots usually present a lack of interaction with users that can be improved with humanoid robots. This dissertation presents a project that combines computer vision techniques, social robotics and speech synthesis and recognition to build an interactive system which leads educational sessions through a humanoid robot. This system can be trained with different content to be addressed autonomously to users by a robot. Its application covers the use of the system as a tool in the mathematics teaching for children. For a first approach, the system has been trained to interact with children and recognize 3D geometric figures. The proposed scheme is based on modules, wherein each module is responsible for a specific function and includes a group of features for this purpose. In total there are 4 modules: Central Module, Dialog Module, Vision Module and Motor Module. The chosen robot was the humanoid NAO. For the Vision Module, LEGION network and VOCUS2 system were compared for object detection and SVM and MLP for image classification. The Google Speech Recognition speech recognizer and Voice Synthesizer Naoqi API are used for sound interactions. An interaction study was conducted by Wizard-of-Oz technique to analyze the behavior of children and adapt the methods for better application results. Full system testing showed that small calibrations are sufficient for an interactive session with few errors. Children who had experienced greater interaction degrees from the robot felt more engaged and comfortable during interactions, both in the experiments and studying at home for the next sessions, compared to children who had contact with a lower level of interactivity. Interim challenging behaviors and support behaviors brought better results in interaction than a constant behavior.
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2016-10-04
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées
cliquant ici.