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RESUMO

SANTOS, T. C. Uma Abordagem Descentralizada para Negociação de Tráfego de Veículos
Conectados e Autônomos e Resolução de Conflitos. 2023. 152 p. Tese (Doutorado em Ciências
– Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

O crescimento populacional e a rápida expansão urbana no último século geraram uma aglo-
meração metropolitana que causou inúmeros impactos sociais e econômicos. A alta demanda
por mobilidade resultou em um número crescente de veículos nas estradas, levando a tempos
de viagem mais longos, o que tem causado congestionamentos, aumento dos índices de aci-
dentes e aumento da poluição. Os Sistemas de Transporte Inteligente (ITS) têm o potencial
de revolucionar o transporte e a mobilidade urbana ao reduzir acidentes de trânsito, mitigar
congestionamentos e engarrafamentos.

A comunicação entre veículos permite negociação e cooperação que podem ser usadas em
vários contextos, como cruzamentos, junções de faixa e mudança de faixa. A resolução de
conflitos entre veículos é uma tarefa desafiadora devido à maior densidade de veículos e espaço
de manobra limitado, muitas vezes apenas mudanças de velocidade é permitido. Um número
significativo de estudos focam em soluções centralizadas que possuem uma forte dependência da
infraestrutura. Além disso, há poucas pesquisas sobre métodos de negociação descentralizada
que levem em consideração sistemas multiobjetivos onde cada veículo tem sua própria função
de custo privada e também existem poucos trabalhos focados em soluções generalizadas que
abordam diferentes cenários dinâmicos com fluxo de tráfego usando a mesma abordagem.

Esta tese propõe um método para resolução de conflitos entre veículos que possuem a capacidade
de se comunicar de forma descentralizada e que pode ser utilizado em múltiplos cenários
dinâmicos, tais como: cruzamentos, junções de faixa e mudanças de faixa. Também consideramos
veículos com diferentes características, dimensões e funções de custo privadas. A abordagem
proposta visa melhorar o fluxo de veículos e reduzir o tempo de viagem que pode ser traduzido
na redução de emissão de poluentes.

Para avaliar a proposta, utilizamos uma ferramenta de simulação para criar diversos cenários
de teste e comparamos os resultados com métodos existentes utilizando métricas comumente
utilizadas na literatura. Além disso, também foi necessário adaptar a ferramenta de simulação
para incluir recursos como cálculo de trajetória, detecção de colisão e gerenciamento de veículos
em relação ao processo de tomada de decisão.

Em todos os cenários, melhorias significativas foram alcançadas em termos de fluxo de veículos,
resultando em diminuição do tempo de viagem e aumento da velocidade média em relação aos
benchmarks utilizados.



Palavras-chave: Negociação descentralizada, Veículos Autônomos Conectados, Multi-objetivo,
Probabilidades Coletivas.



ABSTRACT

SANTOS, T. C. A Decentralized Approach for Connected and Autonomous Vehicles Traffic
Negotiation and Conflict Resolution. 2023. 152 p. Tese (Doutorado em Ciências – Ciên-
cias de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2023.

Population growth and fast urban expansion in the last century generated a metropolitan agglom-
eration that caused numerous social and economics impacts. The high demand for mobility has
resulted in a growing number of vehicles on the roads, leading to longer travel times, which
has caused traffic congestion, increased accident rates, and increased pollution. Intelligent
Transportation Systems (ITS) have the potential to revolutionize the transportation and urban
mobility to reduce traffic accidents, mitigate congestion and traffic jams.

The communication between vehicles allows negotiation and cooperation that can be used in
various contexts such as crossing intersections, on-ramp merge and lane change. Resolving
conflicts between vehicles is a challenging task due to the higher density of vehicles and limited
maneuverability, often limited to only speed changes. A significant number of studies focus
on solutions rely on centralized methods that have a heavy dependency on the infrastructure.
Additionally, there is limited research on decentralized negotiation methods that take into account
multi-objective systems where each vehicle has its own private cost function and also there is a
lack of work in generalized solutions that tackles different dynamic scenarios with traffic flow
using the same approach.

This thesis proposes a method for resolving conflicts between vehicles that have the ability to
communicate in a decentralized manner that can be used in multiple dynamic scenarios, such as:
crossing intersections, on-ramp merging and changing lanes. We also considered vehicles with
different characteristics, dimensions and private cost functions. The proposed approach aims to
improve the flow of vehicles and reduce travel time that can be translated into a reduction in the
emission of pollutants.

To evaluate our proposal, we use a simulation tool to create various test scenarios and compare
our results with existing methods using metrics commonly used in the literature. In addition, it
was also necessary to adapt the simulation tool to include features such as trajectory calculation,
collision detection and vehicle management in relation to the decision-making process.

In every scenario, significant improvements were achieved in terms of vehicle flow, resulting in a
decrease in travel time and an increase in average speed when compared to the benchmarks used.

Keywords: Decentralized negotiation, Connected Autonomous Vehicles, Multi-objective, Col-
lective Probabilities.
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CHAPTER

1
INTRODUCTION

Population growth and fast urban expansion in the last century generated a metropolitan
agglomeration that caused numerous social and economic impacts. The high demand for mobility
has resulted in a growing number of vehicles on the roads, leading to longer travel times, which
has caused traffic congestion, increased accident rates, and increased pollution (ENGLUND et

al., 2015).

Intelligent Transportation Systems (ITS) have the potential to revolutionize the trans-
portation system. Their main goal is to use the knowledge of Engineering, Computing, and
Information Technologies to reduce traffic accidents, mitigate congestion and traffic jams, reduce
travel time, and decrease pollution emissions, resulting in environmental sustainability, economic
efficiency, and social welfare (MALIK et al., 2020) (KHAYATIAN et al., 2020).

Many of these transformations have occurred since the 1950s with the advent of seat
belts and airbags. Over the past few decades, the world has seen a stunning transformation in
the car industry. The manufacturers, in collaboration with the academy, invested in Advanced
Driver Assistance Systems (ADAS) such as blind spot detection, lane keeping, cruise control and
parking assistance (KHAYATIAN et al., 2020) (MAKSIMOVSKI; FESTAG; FACCHI, 2021).

Most of these ADAS technologies emerged from initiatives in the 1980s with projects
related to Autonomous Vehicles (AV) (THORPE et al., 1988) (CRISMAN; THORPE, 1993)
(BROGGI et al., 1999). Two decades later, in 2004 and 2005, the Defense Advanced Research
Projects Agency (DARPA) promoted the first competition of AV, known as the DARPA Challenge,
where vehicles had to perform a fully autonomous route in the desert (THRUN et al., 2006).
In 2007 the same challenge was proposed, but in an urban setting (URMSON et al., 2008).
These competitions showed the technical viability of an AV in a controlled environment. Some
companies started initiatives to make AV commercially viable a few years later.

In 2011, the Netherlands hosted the Grand Cooperative Driving Challenge (GCDC),
which aimed to showcase the capabilities of connected vehicles (NUNEN et al., 2012). The main



28 Chapter 1. Introduction

focus of the competition was on merging two platoons in the same lanes, with participants tasked
with developing and implementing communication and Cooperative Adaptive Cruise Control
(CACC) technologies to control the longitudinal velocity and ensure a smooth merger.

In 2016, the Interoperable GCDC AutoMation Experience (i-GAME) (ENGLUND et

al., 2016) (PLOEG et al., 2018) introduced a series of additional challenges. The first challenge
involved lane-merging problem, where two platoons had to safely merge into a single lane
due to roadworks. The second challenge focused on automated T-junction interactions, and the
final challenge involved a special vehicle requesting priority passage. Overall, the i-GAME
competition aimed to test the capabilities of connected and automated vehicles in realistic
scenarios.

AVs typically use radars, lidars, camera, and stereo cameras for sensing and Artificial
Intelligence systems (AI), which allow the vehicle to perform a local scan of its surroundings.
However, this perception is limited by the physical capabilities of the sensors (ENGLUND et

al., 2015). Vehicle-to-vehicle communication might be essential in improving traffic efficiency
as it can overcome the sensors’ range and occlusion limitations (MAKSIMOVSKI; FESTAG;
FACCHI, 2021).

Communication also allows negotiation, cooperation, and organization of strategies
together that can be used in various contexts, such as platooning, cooperative merging at ramps,
automated roundabout management, cooperative lane changing, and intersection management
(KHAYATIAN et al., 2020). Instead of making predictions of a vehicle’s planning or intentions, it
is possible to exchange accurate information regarding driving intentions and planning algorithms
(MAKSIMOVSKI; FESTAG; FACCHI, 2021).

The concept of communication and negotiation between vehicles and infrastructure is
a recent development in the field of land vehicles. However, this subject has been researched
for decades in the aviation field, and it is already used in the aviation industry. The 1956 Grand
Canyon air disaster, caused by a communication failure between the airplanes and the Air Traffic
Control (ATC), led to the development of a collision avoidance system in aviation.

In the early stages of development, it was noticed that non-cooperative methods did
not have satisfactory results, leading to the development of cooperative systems. The Beacon
Collision Avoidance System (BCAS) was developed in the mid-1970s. Using a transponder, it
could detect other aircraft in the surrounding airspace, but it generated many false alarms. In 1978,
an accident in San Diego forced the Federal Aviation Administration (FAA) to accelerate the
development of collision avoidance systems. In 1981, the FAA decided to develop and implement
the Traffic Collision Avoidance System (TCAS) using the basic design of the BCAS. The TCAS
system utilizes a transponder to interrogate and track aircraft, providing Traffic Advisories for a
visual search of other aircraft and Resolution Advisories that recommend maneuvers to separate
aircraft. It is worth to mentioning that the TCAS system is an autonomous and decentralized
system that communicates with the surrounding aircraft. Based on a system of rules, it finds a set



1.1. Objectives 29

of maneuvers informed and executed by the pilots. Therefore, the final stage is not autonomous.

The latest version of TCAS II (7.1) was designed to operate in traffic densities of up
to 0.3 aircraft per square nautical mile (nmi), which means 24 aircraft within a 5 nmi radius
(9.26 km), which was expected to be the highest traffic density envisioned over the next 20 years
(FAA, 2011).

Unlike conflict resolution between aircraft, resolving conflicts between ground vehicles
is more challenging due to the higher density of vehicles and limited maneuverability, often
limited to only speed changes.

In the ground vehicles field, many studies focus on crossing intersections. Many of these
solutions rely on centralized methods, as demonstrated by the surveys by Chen and Englund
(2016) and Khayatian et al. (2020). The problem with centralized approaches is that they heavily
depend on the infrastructure (LIU et al., 2018).

Maksimovski, Festag and Facchi (2021) surveyed decentralized solutions and showed
that decentralized is a research trend that can solve problems only using communication between
vehicles without the need for infrastructure. Decentralized approaches are still an unexplored
area in the context of connected vehicles. It is also possible to notice a lack of work related to a
generalized solution that tackles different and dynamic scenarios with traffic flow using the same
approach.

1.1 Objectives

The main goal of this thesis is to develop a method for resolving conflicts between
vehicles that have the ability to communicate in a decentralized manner that can be used in
multiple dynamic scenarios, such as: crossing intersections, on-ramp merging and changing
lanes. Therefore, our proposal is generalized and addresses different problems. It also considers
that vehicles are agents with different private cost functions, different dimensions and random
speeds, resulting in a multi-objective system.

To evaluate the approach proposed, it was necessary to use a simulation tool to create
various test scenarios and compare our results with existing methods using metrics commonly
used in the literature, such as average travel time, average speed, average waiting time, number
of arrived vehicles, and flow. In addition, it was also necessary to adapt the simulation tool to
include features such as trajectory calculation, collision detection and vehicle management in
relation to the decision-making process.

The proposed method aims to improve the flow of vehicles and reduce travel time that
can be translated into a reduction in the emission of pollutants. The method will be evaluated
using metrics commonly used in similar studies and will be compared to methods that represent
a benchmark.
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1.2 Thesis Structure
Chapter 1 provides an overview of the research topic, background information, and a

statement of the research problem and its significance to the ITS field.

Chapter 2 presents a comprehensive review of the existing literature related to the research
topic. It highlights the current state of knowledge in the field, the gap in the literature that the
research aims to fill, and the theoretical framework used in the study.

Chapter 3 presents the Probability Collectives method in its original format and our
modification to work with multi-objective systems. In Chapter 3.2, we present the adaptations of
the method necessary for the context of connected vehicles, the mathematical formulations, and
the algorithm for resolving conflicts between vehicles. We also present some support functions
for the method to work with vehicles of different sizes and private cost functions.

Chapter 4 presents the simulation tool, provides definitions for vehicles and parameters,
and the development of support tools for our experiments. It also presents the definition of our
scenarios.

Chapters 5 and 6 present results for static and dynamic scenarios, respectively. Chapter 7
summarizes the key findings and contributions of the research and provides recommendations
for future work in the field. Finally, Appendix A includes additional experiments with multi-
objective benchmark functions, which demonstrate the general applicability of our proposal and
can be used in other contexts.
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CHAPTER

2
RELATED WORKS

2.1 Connected and Autonomous Vehicles

Recent advance in the fields of communication and networking have led to the develop-
ment of new methods and systems related to Vehicular Ad hoc NETworks (VANETs). According
to Yousefi, Mousavi and Fathy (2006), VANETs are ad-hoc networks that do not rely on a fixed
infrastructure and in which there are several mobile elements such as vehicles and pedestrians
and also fixed elements such as Road Side Unit (RSU). The concept of VANETs allows bidi-
rectional communications between vehicles that is generally classified as Vehicle-To-Vehicle
(V2V) and Vehicle-To-Infrastructure (V2I) communication. Some authors have also defined
Vehicle-To-Everything (V2X) as bidirectional communication between vehicles and any other
road element. This technology represents a promising solution for the transportation system to
reduce accidents, congestion, and pollution.

In practice, there are already some protocols to make possible the implementation of a
VANET. The Institute of Electrical and Electronics Enginners (IEEE) published the protocol
Wireless Access in Vehicular Environments (WAVE) which uses IEEE 802.11p based on Dedi-
cated Short-Range Communications (DSRC), which are short-range wireless communication
channels designed for vehicles, as shown by Kenney (2011). The International Organization for
Standardization (ISO) also proposed the Communications Access for Land Mobiles (CALM).
The Society of Automotive Engineers (SAE) specified standards to be used in communication
such as the SAE J2735 DSRC, which has a series of customized messages for vehicles such as
the BasicSafetyMessage exclusive for V2V. This message contains vehicle identification, size,
latitude, longitude, elevation, acceleration, and speed information.

Connected and Autonomous Vehicles (CAVs) are vehicles equipped with advanced tech-
nologies, such as on-board sensors (Lidars, Radars, and cameras) and wireless communication
capabilities, to enable them to operate not only autonomously, but also communicate with exter-
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nal agents such as other vehicles and RSUs, making them an element of VANETs. Therefore, in
addition to use the information in its surroundings, the vehicle can communicate and cooperate
with distant agents to enhance overall traffic efficiency. In this work, we use the terms CAV and
agent interchangeably to refer to entities (intelligent vehicles) that have the ability to perceive
and act on their environment, as defined by Russell and Norvig (2010).

Figure 1 illustrates the difference in functionality between AVs and CAVs. The circle
surrounding the vehicle represents the range of the sensors (not in scale). In Figure 1a, we can
see that the yellow vehicle is close to the red vehicle ahead, resulting in a limited view of the
intersection due to occlusion. In this scenario, the traffic light coordinates the intersection, but
the vehicles must use machine learning techniques to detect and interpret the traffic light’s status.
Finally, AVs must also detect and infer the actions of other AVs to perform decision-making.

In the case illustrated in Figure 1b, we present a cooperative scenario using communi-
cation and AVs, in which this combination represents CAVs. The traffic light was replaced by
a V2I system to transmit infrastructure information, and the vehicles maintain communication
by informing data about their positions, speeds, and actions through V2V communication. We
can notice a specific case where the buildings (grey hatched structure) can attenuate or prevent
communication between yellow and blue and blue, and green vehicles. This limitation is over-
come by the network itself, which can perform a broadcast and re-transmit information from
other vehicles.

Figure 1 – Autonomous Vehicles and Connected Autonomous Vehicles

(a) AVs. (b) CAVs

Source: Elaborated by the author.

According to the study by Tientrakool, Ho and Maxemchuk (2011), AVs can increase
traffic efficiency by 43%, while CAVs can increase traffic efficiency by 273% by increasing the
capacity of vehicles on the highway. Research by Arem, Driel and Visser (2006) and Talebpour
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and Mahmassani (2016) show that CAVs can improve traffic efficiency by decreasing string
stability using an approach known as Cooperative Adaptive Cruise Control (CACC). String
stability is a propagation effect of an action performed by the platoon leader.

VANETs enable vehicles to share information such as georeferenced position, speed,
trajectories, and actions, which makes it possible to implement several applications such as
collision avoidance systems for intersections, warning of risks of lateral collisions during lane
changes and merging, as stated by Karagiannis et al. (2011). Additionally, VANETs can support
logistics and general internet services, as cited by Karagiannis et al. (2011).

2.2 Applications and use cases of VANETs

This section provides a review of relevant works on applications and uses cases of
VANETs discussed in this thesis. We explore various approaches employed by authors to address
the associated challenges Intersection Management, Ramp Merge, and Lane Change.

2.2.1 Intersection Management

Intersection Management is one of the most studied applications in ITS because a
significant portion of traffic accidents occurs in intersections and it is also a conflict zone that
can cause traffic jams and congestions. Chen and Englund (2016) defined the intersection as
a shared resource that require scheduling for passage. They also classified the intersections in
two types: signalized and non-signalized. The first one are managed with traffic lights, while the
second are managed by drivers using road signs information.

Intersection Management has been extensively surveyed by several studies, such as
(CHEN; ENGLUND, 2016), (KHAYATIAN et al., 2020), and (GHOLAMHOSSEINIAN; SEITZ,
2022), which focus mainly on modeling and approaches for non-signalized intersections. The two
main approaches to modeling an intersection are: space discretization and trajectory modeling.
In the first approach, the intersection is implemented as an occupancy grid in which vehicles
allocate space resources at specific times. In the second approach, vehicles are modeled as
following pre-defined trajectories and an overlap test is performed over time. In addition, Chen
and Englund (2016) mentions a third way that would be a combination of space discretization
and trajectory modeling, this would be collision region modeling where only the conflict region
should be evaluated.

Figure 2a represents the space discretization that determines an occupancy grid, spaces
are also called cells or tiles. Vehicles allocate spaces according to their dimensions respecting
the size of the cells. In Figure 2b the trajectory model is presented in which the vehicle must
follow a predefined path during a period of time. Generally, in these regions, lane changes are
not defined since the paths must be followed.
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Figure 2 – Intersection modelling

(a) Space discretization (b) Vehicles’ trajectory

Source: Elaborated by the author.

Chen and Englund (2016) classified the methods in Resource Allocation and Trajectory
Modeling considering centralized and distributed methods. Khayatian et al. (2020) divided the
methods in centralized and distributed, and also organized the scheduling policy in First Come
First Serve (FCFS) approaches, optimizations and heuristics methods. Gholamhosseinian and
Seitz (2022) categorized the methods in a more conceptual way from the point of view of safety,
efficiency and environment.

Dresner and Stone (2004) proposed one of the first methods related to Resource Allo-
cation, a reservation-based intersection control policy in the context of Multi-Agent Systems
(MAS) using discretized intersection modeling in a centralized manner. It compares three differ-
ent intersection control mechanisms: overpass, traffic light, and reservation-based.

In the overpass method vehicles traveling in orthogonal directions can pass through one
another without stopping, which can help reduce delays and improve traffic flow. The traffic light
uses signals to control when vehicles can pass through the intersection, it is an approximation of
the actual traffic signals used in real scenarios. The reservation-based allows vehicles to reserve
time slots at intersections, which can help improve traffic flow and reduce delays. The authors
showed that the reservation-based system outperforms the traffic light method and approaches
the efficiency of the overpass method.

The limitations found concern the inability of vehicles to turn and the constraint that
vehicles may not change their speed while in the intersection. To overcome these limitations,
Dresner and Stone (2005) proposed an intersection control policy protocol to handle complex
situations such as turns and intersection accelerations. Heuristics manages the reservation
protocol to calculate the parameters. This protocol enhanced the system by allowing vehicles
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to turn, allowing acceleration within intersections, and improving their interaction capabilities
through a detailed protocol.

Azimi et al. (2014) introduces Spatio-Temporal Intersection Protocols for autonomous
vehicles, which are designed to increase safety and reduce traffic delays at intersections. The
intersection area is modeled as a grid that is divided into small cells. Each cell in the grid is
associated with a unique identifier. The protocols enable cooperative driving among approaching
vehicles to ensure their safe passage through the intersection and describes the FCFS method as
a ticket scheduling system in which vehicles are ordered by arrival time at the intersection, with
the shortest arrival time having the highest priority.

The authors divided the approach into two protocols, Minimal Concurrency Protocols,
and High Concurrency Protocols. The first protocol enables higher-priority vehicles to cross
the intersection without slowing down, while lower-priority vehicles come to a complete stop
and wait for an exit message from the higher-priority vehicle before proceeding. The second
protocol aims to increase parallelism in the intersection by allowing more vehicles to cross
simultaneously. It allows conflicting vehicles to navigate through the intersection by having
lower-priority vehicles stop before entering conflicting areas until higher-priority vehicles have
safely passed.

Levin and Rey (2017) proposed an Autonomous Intersection Management (AIM) based
on reservation timings and use a conflict point approach to vehicle separation to formulate
a Mixed Integer Linear Programming (MILP). The AIM protocol can only choose from the
reservations from the vehicles’ requests. It is used to specify intersection-optimized vehicle
trajectories and has been developed as a prerequisite to deploying the conflict point MILP. The
protocol has a limited ability to admit arbitrary vehicle trajectories, which led to the development
of a new protocol called AIM*. In AIM*, unlike the previous one, the intersection manager
specifies reservations for each vehicle using a conflict point approach to vehicle separation. The
authors conclude that AIM* performs much better than AIM with FCFS policy.

Dongxin et al. (2021) proposed the coordination of passage at the non-signalized inter-
section using predefined trajectories coordinated through a priority tree based on a Dynamic
Scheduling Algorithm and on an online formed priority tree. They also discretized the intersec-
tion center into sections used to calculate conflicts. In this approach, the tree is built according
to the priority of the vehicles, waiting vehicles and based on the traffic regulations and their
estimated arrival time.

2.2.2 Ramp Merge

The on-ramp scenario is a conflict zone similar to an intersection in which vehicles move
in approximately the same direction as depicted in Figure 3. The objective is to execute a safe
lane change maneuver, effectively merging the vehicles into a single lane.



36 Chapter 2. Related Works

A study by Zhao et al. (2019) surveyed and categorized various works related to the ramp
merge scenario into two categories: centralized and distributed. In centralized systems, control
is handled by a roadside unit or transportation management center. In contrast, in distributed
systems, vehicles have V2V capacity used to find a solution managed by the vehicles themselves.
According to the study, distributed systems have better scalability.

The hierarchical architecture is designed to coordinate ramp control across a corridor
with mixed traffic conditions, incorporating both infrastructure-based surveillance and CAVs
technology to estimate traffic states, model driving behavior, and optimize ramp metering.

Rios-Torres and Malikopoulos (2016) addressed the problem of on-ramp merge as an
unconstrained optimal control problem and applied Hamiltonian analysis to derive an analytical,
closed-form solution. The solution allows for online coordination of vehicles at the merging
zone, while ensuring collision avoidance and a smooth traffic flow without stop-and-go driving.

Eiermann et al. (2020) proposed a Collaborative Maneuver Protocol (CMP) for medium-
term planning before the actual merge maneuver in challenging on-ramp scenarios. The authors
defined the protocol in three steps, the planning, cooperation, and execution levels.

At the planning level, the function uses the CMP protocol for medium-term planning well
before the actual merge maneuver. This involves exchanging information about vehicle positions,
speeds, and intentions to determine a safe and efficient merging strategy. The cooperation level
uses role-based cooperation to ensure that each vehicle knows its own responsibilities and those
of other vehicles involved in the merging process. This helps to avoid conflicts and ensure a
smooth merging process. The execution level function uses trajectory planning and control to
execute the merging maneuver safely and efficiently. This involves adjusting vehicle speeds and
positions based on real-time feedback from sensors and communication with other vehicles.

Figure 3 – Ramp Merge

Conflict Zone

Source: Elaborated by the author.
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2.2.3 Lane Change and Lane Merge

Lane-changing is a common maneuver drivers use to transition from one lane to another
on a roadway. These maneuvers are often performed dynamically and are influenced by the
current traffic conditions. Several motivations can cause a lane change, such as the need to
follow a route, overtaking, or unexpected traffic problems. Figure 4 illustrates the dynamic lane
changing and the conflict region that is dynamically generated when there is a need to perform
the maneuver.

Figure 4 – Lane-changing

Conflict Zone

Source: Elaborated by the author.

Lane-changing maneuvers play a significant role in traffic dynamics and can cause speed
oscillations, which influence the traffic flow, as noted by Moridpour, Sarvi and Rose (2010).
Besides isolated lane change maneuvers, we can also consider lane-merging maneuvers, a
common feature in platooning scenarios, as presented by Ploeg et al. (2018). This paper discusses
the development of a layered control architecture for cooperative automated maneuvering in
driving. The goal is to extend cooperative adaptive cruise control and platooning to accommodate
common highway maneuvers, such as merging, and enable urban applications. The authors
present two scenarios, a highway lane-reduction scenario and an urban intersection-crossing
scenario, to demonstrate the effectiveness of their approach.

Poli et al. (2021) proposed a negotiation based on Cooperative Lane Merging called
Cellular-Vehicle-to-Everything, which is sidelink connectivity for Cooperative Lane Merging
services in a specific cross-border highway context. The negotiation protocol involves three
vehicles: the initiator, the second vehicle in charge of creating the gap, and the merging vehicle.
The negotiation procedure includes four messages: request message, recommendation message,
safe-to-merge message, and denial message.

Our analysis reveals a notable lack of unified approaches to address multiple scenarios
with the same method.

2.3 Negotiation, Protocols and Optimization
In this section, we present a review of research that applies negotiation, protocols, and

optimization methods to address the problems previously discussed scenarios. The approaches
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will be categorized into peer-to-peer, centralized, and decentralized.

As previously mentioned, the resolution of conflicts between vehicles extends to several
areas, especially in the field of aviation. The resolution of conflicts between aircraft has been
well-established, and solutions such as the TCAS has become a standard in the aviation industry.

Šišlák, Volf and Pěchouček (2011) has developed a method called Iterative Peer-to-Peer
Collision Avoidance (IPPCA) to resolve conflicts between aircraft. The method is based on
pairwise negotiation and no decision is taken centrally. In conflict situations with more than
three aircraft involved, they can negotiate in a pairwise manner and if new conflicts arise from
their decisions, new negotiation rounds are initiated. During the negotiation process alternative
trajectories are proposed and evaluated. As the negotiation evolves, new higher cost proposals
must be evaluated for conflict resolution.

The previous method is similar to the bargaining proposal studied by Nash (1950), a
bargaining game is played by two rational agents that have similar bargaining skills, both are
aware of each other’s preferences and can compare their desires. This was also used by Pritchett
and Genton (2017) who used Game Theory bargaining modeling to carry out negotiations
between aircraft without the need for a centralized air traffic controller. A bargaining process
between aircraft was used to resolve the conflict between them in a decentralized manner
and in a way that agents do not need to exchange private information. In this scenario, two
aircraft with communication capability detect that they are on a collision course and initiate a
negotiation to resolve the conflict. The aircraft could propose possible strategies in three ways to
generate the trajectories: right/left, up/down and faster/slower. The aircraft start the process at
zero cost and each one proposes maneuvers to change their trajectories. These trajectories are
intercommunicated and each aircraft calculates a response route to resolve the conflict at the
lowest cost.

The negotiation method converged in all experiments and, on average, resolved the
conflict at a cost 29% lower than the lowest cost resolution by any aircraft alone. It was verified
in the experiments that the resolution of the conflict in 10.1% generated a new conflict and
in 1.5% generated more than one conflict. The authors mention that, among other factors, the
density of vehicles is one of the factors for the generation of new conflicts.

Santos and Wolf (2019b) conducted experiments with CAVs using a similar bargaining
approach. Before the negotiation process, an agent decides to make a lane change and initially
communicates its maneuver to its neighboring vehicles. The neighbors check if the maneuver
may cause a collision and send a response to the first agent. If the neighbors detect that the
maneuver may cause a collision, the agent initiates a negotiation with the nearest agent that has a
higher likelihood of collision.

After the initial conflict detection and the decision of the agents to start the negotiation,
the bargaining process begins. Initially, the two Agents 1 and 2 assign zero value to the cost and
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calculate proposals that represent changes in speed, and these changes increase the cost. The
vehicles then communicate their proposals, in which Agent 1 and 2 communicate the proposals
to each other. If the proposals solve the conflict then an agreement has been found and the agents
undertake to execute the proposal. If the proposals do not solve the conflict then the cost is
increased according to the cost function of each agent. Also if the speed exceeds the highway
speed limit the cost is attenuated to avoid that the new proposals exceed the limit of speed in an
excessive way.

Through experiments, it was observed that the density of vehicles and the number of types
of strategies are also limiting since only speed changes were used. To address the issue of traffic
density, the proposed method prevents other vehicles from initiating negotiation maneuvers within
a 100 meters range when two vehicles begin negotiating to prevent simultaneous maneuvers that
can result in infeasible solutions.

One of the challenges presented at the GCDC 2016 was the lane merging scenario, where
two platoons (A and B), each traveling in separate lanes, were required to merge into a single lane
due to the roadworks. Each platoon had its own leader. The standard interaction protocol used in
GCDC 2016 is described and discussed by Bengtsson et al. (2015), Englund et al. (2016) and
Ploeg et al. (2018) and it consists of four phases. This method is a combination of a one-to-many
and one-to-one approach.

Leaders are responsible for adjusting the speed of vehicles within the platoon in a process
called Pace Making. This ensures that there are no major differences in speeds between vehicles.
Once they are aligned the leaders sends a message to request the merge. Then they start do make
a series of pair-up called Simultaneous Pair-up and Sequential Pair-up, the first one all vehicles
of the platoon B pairs up with the closest vehicle in front of it in the platoon A. The vehicles from
platoon B start to make gaps simultaneously. Next, the vehicles from platoon A pairs up with the
closest vehicle in front of it in the platoon B and the vehicles in platoon A start to make gaps in
sequential manner. After this alignment the CAVs start to send a Safe-To-Merge message and
once the gaps are ready, which means that they have a safe distance to complete the maneuver,
each vehicle in platoon B sends a STOM message to its pair in platoon A and starts a merging
maneuver in a sequential manner.

Gaciarz, Aknine and Bhouri (2015) proposed a negotiation method to control intersec-
tions in real time using a solution based on the Constraint Satisfaction Problem. They represented
the intersection in a discretized way and divided it into cells. Two policies were proposed to
manage the negotiation: Iterated Policy, in which agents enter negotiation in waves and decisions
cannot be revised, and Continuous Policy, agents can continuously enter negotiations and receive
information from other vehicles. If the strategy fails an FCFS policy can be applied.

Meng et al. (2018) proposed a comparison of an ad hoc negotiation based method which
is mainly based on FCFS and planning based. The results show that for small amounts of vehicles,
the two methods have similar results, but in traffic situations with greater demand, the planning
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based method presents better results. We need to take into account that the negotiation approach
implemented by the authors is a greedy approach to find the passing order of the vehicles.

One of the few works that present dynamic scenarios is presented by Liu et al. (2018)
proposed a graph based approach to conflict resolution for the scenario of crossing intersections
with flow of vehicles, but all vehicles are homogeneous, that is, they have the same physical
characteristics and cost functions. Regarding multiple scenarios, Nichting et al. (2020) carried
out a space time reservation work to resolve the conflict between vehicles for intersections and
lane change, but up to 3 vehicles were tried.

Philippe et al. (2019) proposed an approach based on Probability Collectives (PC) for
crossing intersections and roundabouts scenarios with 4 vehicles and later Philippe (2020) used
the same proposal for crossing intersections with vehicle flow. However more dynamic scenarios
must be evaluated and with vehicles with different characteristics and dimensions. It is also
necessary to evaluate multi-objective systems where vehicles have different private cost functions.
Finally, it is also important to investigate scenarios that do not have specific intersections, such
as lane changes.

2.4 Decentralized negotiation

The study by Sislak et al. (2011) presents a method for resolving conflicts between
aircraft that aims to minimize a common global objective, specifically, the safe distance between
aircraft. This is achieved by finding control inputs that optimize the trajectory of the aircraft. The
objective function penalizes changes to the original control inputs calculated by the aircraft that
are given as an optimal trajectory. The objective function also has constraints that impose aircraft
limitations and collisions are highly penalized. The proposed method is limited to changes in
heading as the only form of action, but the authors mention that other types of actions can be
used.

In each round of the algorithm, the costs of all the aircraft are added to compose a
global cost, making the process multi-objective.The approach is compared with the IPPCA, a
one-to-one solution also proposed by the same author, and it was found that the decentralized
PC method results in trajectories that are 10 times smaller than the IPPCA, leading to an
estimated 46% reduction in fuel consumption. However, it comes with the added cost of increased
communication flow, which is 6 times more than the semi-centralized approach.

The study by Philippe et al. (2019) applied the decentralized PC method to coordinate
vehicles at an crossroad and a roundabout. The intersections was modeled using predefined paths,
and the only degree of freedom available to vehicles was the ability to change speed. Similarly, in
the work of Santos and Wolf (2019a), the decentralized PC method was used for lane changing,
with speed again being the only degree of freedom available. The results of these studies showed
close approximation to those of a centralized method, indicating the algorithm’s effectiveness,
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since the centralized method has all the information for optimization gathered in just one node.

2.5 Final Remarks
Unlike conflict resolution between aircraft, resolving conflicts between ground vehicles

is more challenging. The main difference from the aviation area is the higher density of vehicles
and limited maneuverability, often limited to only speed changes.

Much of the research in the field has centered on resolving conflicts at intersections
using centralized methods. While one-to-one methods can be effectively applied to aviation
problems that offer more degrees of freedom for conflict resolution, they are more challenging for
ground vehicles, which are limited by their maneuverability and space restrictions. Furthermore,
decentralized one-to-one methods tend to create new conflicts, mainly when multiple conflicts
are being addressed simultaneously, which poses challenges to the scalability of the approach.

One-to-many methods are widely used mainly in platooning scenarios, but they also
fall into the problem of scalability and difficult use in intersection scenarios. Another problem
with one-to-many solutions is that management is performed by only one node or agent, which
generates problems if the main node fails or loses connection.

Many-to-many solutions are a promising approach for conflict resolution in the context
of CAVs as they can be treated as multi-agent systems where each vehicle has its own private cost
functions and objectives. However, there are limited studies that tackle the problem from a multi-
objective perspective, while considering dynamic scenarios with traffic flow and a generalized
approach that can be applied to various scenarios. The use of infrastructure in many-to-many
methods is also a consideration, as it can aid in managing data traffic and serve as a signal
repeater in intersections with occlusion.

This thesis focuses on developing a generalized method for conflict resolution in dynamic
traffic scenarios at crossing intersections with one and two lanes, on-ramp merging, and lane
changing. We also evaluate the performance of our proposal with vehicles varying characteristics
and dimensions. Finally, we consider agents with different private cost functions turning the
problem into a multi-objective system.
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CHAPTER

3
PROBABILITY COLLECTIVES

In this chapter, we introduce the PC method developed by Kulkarni, Tai and Abraham
(2015). We choose this approach due to its formulation that allows each agent to determine its
set of individual strategies from a range of possible strategies (called samples). Additionally,
Kulkarni, Tai and Abraham (2015) have shown that their PC method is able to converge with a
relatively small number of samples and iterations, which is a desirable feature for our problem
as it allows the vehicles to solve the optimization quickly, which is a significant improvement
over the original proposal by Wolpert, Strauss and Rajnarayan (2006).

While fast optimization is generally desirable in any context where optimization problems
are being addressed, we should note that computational performance is beyond the scope of this
thesis. Instead, our focus is on exploring the ability of the PC method to effectively organize
strategies and achieve convergence in the context of negotiation and conflict resolution. All of
the following formulations described in this chapter are based on the work of Kulkarni and Tai
(2010), Kulkarni and Tai (2011), Kulkarni and Tai (2013) and Kulkarni, Tai and Abraham (2015).

Let’s first consider the case where the PC method is used to solve general optimization
problems of functions with N number of variables. The PC method treats each variable as
an agent or a player defined as i. Each agent i randomly sets a strategy X from a predefined
sampling interval space referred to Ψi ∈ [Ψlower

i ,Ψupper
i ]. As a general case, the interval can also

be referred to as the sampling space and can be any real value from an interval.

Therefore, each agent i randomly samples strategy X [r]
i , r = 1,2, ...,m, wherein m is the

maximum number of strategies within the sampling interval Ψi that forms a strategy set Xi as

Xi = {X [1]
i ,X [2]

i , ...,X [m]
i }, i ∈ {1,2, ...,N} (3.1)

In order to begin the optimization process, each agent i selects its own set of strategies Xi

from the sampling interval Ψi. After selecting their individual strategies, the agents then form
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combined strategies Yi by sampling randomly from the strategies of other agents in the system.
Each agent i is able to make random guesses about the strategies that have been chosen by the
other agents in the system. We define one combined strategy for every m strategies according to
Equation 3.2.

Y [1]
i = {X [?]

1 ,X [?]
2 , ...,X [1]

i , ...,X [?]
N−1,X

[?]
N }

Y [2]
i = {X [?]

1 ,X [?]
2 , ...,X [2]

i , ...,X [?]
N−1,X

[?]
N }

...

Y [r]
i = {X [?]

1 ,X [?]
2 , ...,X [r]

i , ...,X [?]
N−1,X

[?]
N }

...

Y [mi]
i = {X [?]

1 ,X [?]
2 , ...,X [mi]

i , ...,X [?]
N−1,X

[?]
N }

(3.2)

The superscript [?] indicates that it is a "random guess" and not known in advance. It is
important to note that this process is carried out by all agents in the system.

After generating the combined strategy, each agent calculates the objective function
(cost) G(Y [r]

i ), this step is done for all m strategies. The main objective of each agent i is to
find a strategy that minimizes the sum of all costs ∑

mi
r=1 G(Y [r]

i ). The Equations 3.3, 3.4 and 3.5
present the calculation of the objective function costs followed by the sum of all these costs. The
equations exemplify the calculation for agent 1, i and N.

Y [1]
1 = {X [1]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [1]

1 )

Y [2]
1 = {X [2]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [2]

1 )
...

Y [r]
1 = {X [r]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [r]

1 )
...

Y [mi]
1 = {X [mi]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [mi]

1 )


⇒

mi

∑
r=1

G(Y [r]
1 ) (3.3)

Y [1]
i = {X [1]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [1]

i )

Y [2]
i = {X [2]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [2]

i )
...

Y [r]
i = {X [r]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [r]

i )
...

Y [mi]
i = {X [mi]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [mi]

N )


⇒

mi

∑
r=1

G(Y [r]
i ) (3.4)
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Y [1]
N = {X [1]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [1]

N )

Y [2]
N = {X [2]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [2]

N )
...

Y [r]
N = {X [r]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [r]

N )
...

Y [mi]
N = {X [mi]

1 ,X [?]
2 , ...,X [?]

i , ...,X [?]
N−1,X

[?]
N }⇒ G(Y [mi]

N )


⇒

mi

∑
r=1

G(Y [r]
N ) (3.5)

Minimizing ∑
mi
r=1 G(Y [r]

i ), which determines the optimal strategy, can be very hard to
solve and computationally expensive task (KULKARNI; TAI; ABRAHAM, 2015). To address
this problem, Wolpert, Strauss and Rajnarayan (2006) and Kulkarni, Tai and Abraham (2015)
proposed the use of Homotopy function, a method that transforms the function into another
topological space that is easier to minimize. The Homotopy function is defined by Equation 3.6
and is parameterized by T called temperature.

Ji(q(Xi),T ) =
mi

∑
r=1

G(Y [r]
i )−T E, T ∈ [0,∞) (3.6)

We denoted the "easier" function as E in the Equation 3.6. Wolpert, Strauss and Raj-
narayan (2006) and Kulkarni, Tai and Abraham (2015) suggested to use the entropy function
presented in the Equation 3.7.

Si(q) =−
mi

∑
r=1

q(X [r]
i ) · ln(q(X [r]

i )) (3.7)

One of the main advantages of the PC method is its ability to transform the domain value
G(Y [r]

i ) into the probability domain E(G(Y [r]
i )) (ELLIOTT; TALLANT; DOGAN, 2017). This

transformation is achieved through the use of the expectation operation (denoted by Equation 3.8),
which changes the goal from finding the optimal function value to searching for the optimal
probability distribution. The subscript (i) means every agent other than i.

E(G(Y [r]
i )) = G(Y [r]

i )q(X [r]
i )∏

(i)
q(X [?]

(i) ) (3.8)

At the beginning of the optimization the probability of each strategy q(X [?]
i ) is initialized

equally distributed with 1/mi. Equation 3.9 presents the initial probability distribution.

q(X [r]
i ) = 1/mi, r = 1,2, ...,mi (3.9)

Every agent calculates the expected collection of system objectives ∑
mi
r=1 E(G(Y [r]

i ))

which is the sum of all expected system objective E(G(Y [r]
i )). This process is carried out for all
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N agents following the Equations 3.10, 3.11 and 3.12. The equations exemplify the calculation
for agent 1, i and N.

G(Y [1]
1 )q(X [1]

1 )∏
(1)

q(X [?]
(1)) = E(G(Y [1]

1 ))

...

G(Y [r]
1 )q(X [r]

1 )∏
(1)

q(X [?]
(1)) = E(G(Y [r]

1 ))

...

G(Y [mi]
1 )q(X [mi]

1 )∏
(1)

q(X [?]
(1)) = E(G(Y [mi]

1 ))



⇒
mi

∑
r=1

E(G(Y [r]
1 )) (3.10)

G(Y [1]
i )q(X [1]

i )∏
(i)

q(X [?]
(i) ) = E(G(Y [1]

i ))

...

G(Y [r]
i )q(X [r]

i )∏
(i)

q(X [?]
(i) ) = E(G(Y [r]

i ))

...

G(Y [mi]
i )q(X [mi]

i )∏
(i)

q(X [?]
(i) ) = E(G(Y [mi]

i ))



⇒
mi

∑
r=1

E(G(Y [r]
i )) (3.11)

G(Y [1]
N )q(X [1]

N )∏
(N)

q(X [?]
(N)

) = E(G(Y [1]
N ))

...

G(Y [r]
N )q(X [r]

N )∏
(N)

q(X [?]
(N)

) = E(G(Y [r]
N ))

...

G(Y [mi]
N )q(X [mi]

N )∏
(N)

q(X [?]
(N)

) = E(G(Y [mi]
N ))



⇒
mi

∑
r=1

E(G(Y [r]
N )) (3.12)

As the expected collection of system objectives still hard to minimize we use it to
compose the Homotopy function and, finally, the Homotopy function to be minimized by each
agent i is presented in the Equation 3.13.
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Ji(q(Xi),T ) =
mi

∑
r=1

E(G(Y [r]
i ))−T Si

=
mi

∑
r=1

(
G(Y [r]

i )q(X [r]
i )∏

(i)
q(X [?]

(i) )

)
−T

(
−

mi

∑
r=1

q(X [r]
i ) · ln(q(X [r]

i ))

) (3.13)

The Homotopy function can be solved using an appropriate technique such as the Nearest
Newton Descent Scheme as suggested by Wolpert, Strauss and Rajnarayan (2006) and Kulkarni,
Tai and Abraham (2015). Thus, we can minimize the Homotopy function and solve the problem
using the iterative method described in Equations 3.14, 3.15 and 3.16, in which the parameter
k is initialized at 1 and updated up to the maximum number of iterations k f inal . The step size
is represented by the parameter αstep, which is initialized equally for all agents and kept fixed
throughout the optimization.

q(X [r]
i )k+1← q(X [r]

i )k−αstep ·q(X [r]
i )k · krupdate (3.14)

where

krupdate =
(Contribution of X [r]

i )k

T
+Sk

i + log2(q(X
[r]
i )k) (3.15)

and

(Contribution of X [r]
i )k = E(G(Y [r]

i ))k−

(
mi

∑
r=1

E(G(Y [r]
i ))k

)
(3.16)

By applying this iterative method, we can find the optimal solution for that agents
considering the chosen strategies. This will result in a strategy called favorable strategy X [ f av]

i ,
which will be the best strategy so far. After this convergence process, Kulkarni, Tai and Abraham
(2015) propose to continue the optimization by decreasing the search space Ψi around the
favorable strategy X [ f av]

i so that each agent composes a new set of Xi strategies and restart the
optimization.

We then compute the system objective favorable G(Y [ f av]) where Y [ f av] is given by the
Equation 3.17.

Y [ f av] =
{

X [ f av]
1 ,X [ f av]

2 , ...,X [ f av]
N−1 ,X

[ f av]
N

}
(3.17)

Upon completing this process, we have completed the first iteration of the optimization.
The optimization process ends when the stopping conditions is met, which is determined by
the following condition: T = Tf inal or T → 0 and if G(X [ f av]

i )n−G(X [ f av]
i )n−1 ≤ ε occur several

times in a row.
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Figure 5 summarizes the optimization algorithm, highlighting the steps involved in the
process. It is worth noting that the minimization step includes an iterative loop to apply the
Nearest Newton Descent Scheme to calculate the favorable probabilities.

Figure 5 – Probability Collectives Algorithm

Every agent  sets up the strategy  with  strategies from the sampling interval 

Every agent forms a combined strategy  for every strategy  of agent  and compute
the system objective 

Set up the parameters , , temperature  and 

Every agent sets the probabilities to uniform values 

Every agent computes expected collection of system objectives 

Form the modified Homotopy function 

Every agent minimizes the Homotopy function using the Nearest Newton Method

Every agent obtains the probability distribution  identifying its favorable strategy

Compute the system objective of the favorable strategy 

Current system objective  
Previous system objective

Discard current and
retain previous

objective
function with related
favorable strategies

Accept current
objective function and

related favorable
strategies

Y N

Convergence?

N

Accept final values

Y

Source: Adapted from Kulkarni and Tai (2010), Kulkarni, Tai and Abraham (2015).
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3.1 Decentralized and Multi-objective Probability Collec-
tives

Based upon the studies Sislak et al. (2011) and Waldock and Corne (2010), our proposal
incorporated two additional layers into the algorithm previously proposed by Kulkarni, Tai and
Abraham (2015). The algorithm is illustrated in Figure 6.

Each agent i randomly samples strategy X [r]
i , r = 1,2, ...,m within the sampling interval

Ψi that forms a strategy set Xi. They also randomize the strategy set that will be used to form a
combined strategy, this randomization is presented in Equation 3.18, where the superscript [?]
means a random strategy.

Xi = {X [?]
i ,X [?]

i , ...,X [?]
i }, i ∈ {1,2, ...,N} (3.18)

Unlike the algorithm shown in Figure 5, the combined strategy and system objective
are not calculated directly. There are two intermediate layers regarding the communication
between agents. The agents broadcast their sets of strategy to each other and then they can form
the combined strategies Yi. At this point, each combined strategy has the same value for all
agents, for example, Y [r]

1 =Y [r]
2 =Y [r]

N Each agent calculates the cost using their private functions,
represented in the Figure 6 by the g function.

Next, the agents broadcast again, now sharing the cost value g. They wait to receive all
the information and sum all costs to calculate the system objective. Equation 3.19 presents the
final calculation of the cost which is the sum of the costs of all agents. This scalarization process
for solving multi-objective problems is known as the weighting method and was first proposed
by Zadeh (1963).

Y [r]
1 = {X [r]

1 ,X [r]
2 , ...,X [r]

i , ...,X [r]
N−1,X

[r]
N }⇒ g1(Y

[r]
1 )

Y [r]
2 = {X [r]

1 ,X [r]
2 , ...,X [r]

i , ...,X [r]
N−1,X

[r]
N }⇒ g2(Y

[r]
2 )

...

Y [r]
i = {X [r]

1 ,X [r]
2 , ...,X [r]

i , ...,X [r]
N−1,X

[r]
N }⇒ gi(Y

[r]
i )

...

Y [r]
N = {X [r]

1 ,X [r]
2 , ...,X [r]

i , ...,X [r]
N−1,X

[r]
N }⇒ gN(Y

[r]
N )


⇒ G(Y [r]) =

N

∑
i=1

gi(Y
[r]
i ) (3.19)

Utilizing the computed total cost G(Y [r]), the optimization algorithm then proceeds as
described in the method proposed by Kulkarni, Tai and Abraham (2015).
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Figure 6 – Probability Collectives Algorithm

Every agent  sets up the strategy  with  strategies from the sampling interval 
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Source: Elaborated by the author.
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3.2 Problem Statement

Now we aim define the problems and scenarios that are the focus of this thesis. Using
the Probability Collectives definitions outlined in Section 3.1, we formulate our approach for
resolving conflicts of CAVs in the presented scenarios. Additionally, we examine how our
solution can be adapted to accommodate dynamic scenarios.

Consider the three scenarios depicted in Figure 7. In these scenarios, we can observe
different challenging situations where vehicles are in imminent conflict, requiring some interac-
tion to resolve effectively. These situations represent critical moments on the road where quick
decision-making and coordinated actions are essential to ensure safety and efficient traffic flow.

In the first scenario (Figure 7a), three vehicles approach an on-ramp simultaneously. We
can see that the yellow vehicle is approaching an on-ramp junction, but there is concurrent traffic
on the horizontal road. Without proper coordination, a collision becomes highly probable. The
second scenario (Figure 7b) presents a non-signalized crossroad. This type of scenario typically
involves a shared zone where vehicles from different directions may generate a conflict.

The third scenario (Figure 7c) depicts a challenging lane change situation. In this scenario,
the red vehicle needs to change lanes either to overtake the yellow vehicle ahead or just to follow
its intended route. However, the presence of other vehicles in adjacent lanes adds complexity
and increases the risk of collision. As the red vehicle navigates the lane change maneuver, it
must compete with the surrounding traffic for the same space. The proximity and movement of
the neighboring vehicles create a competitive environment where merging into the desired lane
becomes a critical task. The risk of side-swiping or rear-end collisions increases, demanding
precise timing, accurate decision-making, and effective communication among drivers.

The three situations represent a state of imminent conflict that can generate an impasse
for the decision-making system of the vehicles, and there is also the possibility of causing an
accident if the maneuvers are not well coordinated. Resolving these conflicts demands effective
negotiation and cooperation among drivers to ensure smooth traffic flow and prevent potential
accidents.

In the intersection crossroad and on-ramp merge scenarios, fixed negotiation zones
were defined. When CAVs enter these zones they are required to communicate and send their
information to other vehicles. We assume that vehicles can be in conflict and they can send their
strategies (trajectories) to other vehicles and also to the infrastructure that is in charge of relaying
the communication.

In the lane change scenarios, before the CAVs initiate any maneuver, they request the
maneuver by broadcasting their strategies and also asking the strategies of the other CAVs, in
order to calculate and assess the probability of collision.

In our static scenarios, where the vehicles are previously positioned before starting the
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Figure 7 – Representation of scenarios with imminent conflict

(a) Ramp merge scenario

4

(b) Crossroad intersection scenario

(c) Lane change scenario

Source: Elaborated by the author.

simulation, we always positioned the vehicles to force the conflict and the vehicles must negotiate
to avoid it. The objective of the CAVs are negotiate and generate strategies that are translated
into trajectories to solve the conflict. In the dynamic scenarios the vehicles are generated from a
Poisson distribution and thus a traffic flow is created (MENG et al., 2018) (BUCKMAN et al.,
2019).

Figure 8 illustrates the strategies expressed as the trajectories of the CAVs. The bounding
boxes of each vehicle’s color are used to represent the trajectories, the value inside the bounding
box represents the time. When the CAVs receive the trajectories from other vehicles, they can
determine whether their chosen strategies will result in collisions by analyzing the intersection
of their positions over time. Thus, we can notice in these situations that there are no collisions in
the trajectories.

We assume that the CAVs communicate and receive strategies from each other without
network delays or communication failures. By using these trajectories, it is possible to calculate
the private costs and collision constraints. The CAVs then communicate again by sending their
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Figure 8 – CAVs’ discretized trajectories with bounding boxes
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partial costs. After this process, all vehicles have knowledge of the costs and the optimization
process begins, which will occur for a predefined number of times. If the conflict is not resolved,
new iterations will be initiated by modifying the strategies.

3.3 Approach Definition

We will first present the Probability Collectives algorithm adapted for CAVs, as shown
in Figure 9. The process begins with a vehicle initiating a negotiation request, either due to a
maneuver such as a lane change or upon entering a fixed negotiation area, such as an intersection
or lane junction.

CAVs initialize their strategies by choosing changes in speed. For each strategy, the
trajectory is calculated for a given time interval and sampling time, and the trajectories represent
"pre-defined" routes as pointed out by Chen and Englund (2016). As proposed by Dongxin et

al. (2021) and Levin and Rey (2017), once a trajectory is chosen it is no longer changed and
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overtaking is not considered either. In this way, the positions are calculated in continuous space,
discretized time and a decision making is not changed.

At this point the CAVs are prepared to broadcast the information, for better understanding
we illustrate the process happening in a synchronized way but it doesn’t necessarily have to be.
The vehicles then send the trajectories to each of the strategies with the positioning information,
orientation, length and width of the vehicle and also a unique id. From these data, the vehicles are
able to calculate the bounding box oriented in each of the positions as shown in the illustrations
in Figure 8.

With these data, it becomes possible to determine if a collision occurs and calculate the
private cost function. The calculated cost values are then broadcasted. Upon receiving the data,
all agents will have the complete information needed to perform the optimization and find their
optimal strategy. Once the optimization is completed, vehicles start executing their strategies.

Figure 9 – Probability Collectives algorithm adapted for CAVs
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After a brief introduction of the method, we present the mathematical formulation and
the steps of the algorithm. Consider an agent i from a set of N agents. Each agent i randomly
sets a strategy X from a predefined sampling interval space referred to Ψ ∈ [Ψlower,Ψupper]. As
a general case, the interval can also be referred to as the sampling space and can be any real
value from an interval as we presented in Section 3. Here, we consider the sampling space to be
a set of integers.
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In our approach, the sampling space is represented by integer values that correspond
to changes in the speed profile. This values represents a modification in the speed originally
calculated by the planner of the CAVs (path planning and control). These speed values are
randomly selected from the sampling speed interval Ψspeed ∈ Z. This allows adjustments in the
CAV’s speed profile and consequently in their trajectories.

For instance, if we set the sampling interval as Ψspeed = [0,1,2,3,4,5,6,7,8], each value
represents a change in the CAV’s speed. A value of 0 means no change, while a value of 1
corresponds to an increase of 1 unit in the current speed of the vehicle. Similarly, a value of 2
represents an increase of 2 units in the current speed, and so on. It is also possible to use the
values to decrease the speed, suppose that the CAV’s trajectory planner has set the speed at s for
the next t seconds, and assuming that the speed limit cannot be exceeded, we can decrease the
planned speed by 1, 2, 3, and so on by using these values from the sampling interval. Despite the
possibility of using speed increases, in this work we only use speed decreases to ensure that the
CAVs do not exceed the road’s speed limit.

Unlike the sampling interval proposed by Kulkarni, Tai and Abraham (2015), we have
set the same Ψspeed for all agents and it remains unchanged throughout the optimization process,
because the sample size is limited to speed units, which restricts the size of our set. We use a
set of integers in a discretized manner to simplify the implementation and optimization process,
but it is also possible to use a continuous set. Furthermore, it has to be taken into account to
consider the number of decimal places used, because in real scenarios it may be difficult for a
CAV’s controllers to maintain speeds with high precision using many decimal places.

Therefore, each agent i randomly samples strategy X [r]
i ,r = 1,2, ...,m, wherein m is the

maximum number of strategies that forms a strategy set Xi as

Xi = {X [1]
i ,X [2]

i , ...,X [m]
i }, i ∈ {1,2, ...,N} (3.20)

Since the set Ψspeed remains fixed throughout the optimization, we store in the set Xi the
indices of the values of the set Ψspeed that were randomly chosen instead of the value itself. We
use the notation [X [r]

i ] to refer to the index of the set Ψspeed rather than the value.

Xi = {[X [1]
i ], [X [2]

i ], ..., [X [m]
i ]}, i ∈ {1,2, ...,N} (3.21)

Finally, we perform a randomization on the set Xi and we obtain the set Xi_random, as
shown in Equation 3.22, where the superscript ? means a random sampling without replacement
from the indexes set Xi.

Xi_random = {[X [?]
i ], [X [?]

i ], ..., [X [?]
i }], i ∈ {1,2, ...,N} (3.22)

The agents calculate the pose (position and orientation) estimation for each strategy. This
estimation is represented as a list of positions that denote the vehicle’s trajectory. The function



56 Chapter 3. Probability Collectives

P(X [r]
i ,∆t, ts) calculates the position estimation for the next time interval ∆t divided into ts time

steps. This function returns the list of positions corresponding to the strategy X [r]
i . The set of all

position lists, each corresponding to a particular strategy, is shown in Equation 3.23.

Pi = {P(X [1]
i ,∆t, ts),P(X [2]

i ,∆t, ts), ...,P(X [m]
i ,∆t, ts)}, i ∈ {1,2, ...,N} (3.23)

Each CAV broadcasts the positioning strategy information, in other words, each one
sends its set Pi to the other agents. Once all CAVs have sent their strategies, they wait to receive
the strategies of the other agents. After this sequence of communications, the agents form the
combined strategy Yi presented in Equation 3.2.

Consider the function C (P(X [r]
1 ,∆t, ts),P(X [r]

2 ,∆t, ts)). It calculates whether there is
a collision between the CAVs using the trajectory list. If there is a collision, the function
returns a significant high value to prevent this strategy from being chosen and thus represent a
constraint. On the other hand, if there is no collision then the function returns zero, described
in Equation 3.24. Here we represent a significantly high value as being infinite, but in terms of
implementation it should be avoided due to mathematical precision.

C (P(X [r]
1 ,∆t, ts),P(X [r]

2 ,∆t, ts), ...,P(X [r]
N ,∆t, ts)) =

∞, if there is any collision.

0, otherwise.
(3.24)

In order to evaluate the cost of each combined strategy, the agents consider both, the
potential for collision and the private cost function which is the deviation from the planned
speed multiplied by a weight. For each combined strategy Y [r]

i , the agents calculate the cost
G(Y [r]

i ) using Equation 3.25, which takes into account both the output of the collision function
and the absolute value of the proposed strategy’s deviation from the planned speed. This cost
function is similar to the function proposed by Sislak et al. (2011) that penalizes the deviation
from airplanes’ optimal trajectories.

In this study, the weighting factor w plays a crucial role in determining the cost function.
To distinguish between different vehicle classes, we employed a vehicle weight ratio as the value
of w. This approach enabled us to use diverse cost functions in the simulations and turn the
problem into multi-objective.

G(Y [r]
i ) = C (P(X [r]

1 ,∆t, ts),P(X [r]
2 ,∆t, ts), ...,P(X [r]

N ,∆t, ts))

+w(PlannedSpeed + |Ψspeed[X
[r]
i ]|)

(3.25)

After calculating the costs of each strategy, the list of costs [G(Y [1]
i ),G(Y [2]

i ), ...,G(Y [m]
i )]

is broadcasted to the other agents. As before, they wait to receive the cost lists from the other
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agents. Once all cost lists have been received, we sum the costs of each agent’s respective
strategies to obtain the total costs to be minimized.

We calculate the expected system objective E(G(Y [r]
i )) with random guesses to transform

from the domain value into the probability domain.

Figure 10 illustrates the structure of the strategy set and how it is used throughout the
algorithm’s steps. Initially, we defined the sampling interval as Ψspeed , where the strategies are
represented as integers. Each agent i randomly selects m values from the sampling interval Ψspeed

and stores their indices in the set Xi. Each agent randomizes the strategies in the set Xi_random. As
shown in Equation 3.9, the agents uniformly initialize the probabilities. After the optimization
process, it is expected that the favorable strategy, which will have the highest probability value,
will be selected.

Figure 10 also shows the inverse path (represented by a green arrow) used to find the
strategy that was selected through the optimization process, which resulted in a strategy with the
highest probability.

Figure 10 – Definition of the strategy set
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The Algorithm 1 outlines the procedure for the optimization process and consists of
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several steps as shown in the flowchart of the Figure 9 that we propose for solving the conflict.
It begins by specifying the number of participating agents and determining the speed interval
Ψspeed through sampling.

As noted by Antoine et al. (2004), the temperature T in the optimization process can
be fixed during the optimization. It is important to choose a value that has a good balance
between exploration and exploitation. This can be done experimentally by observing the number
of iterations required for convergence. In contrast to the generic PC algorithm presented in
Section 3.1, where T is dynamically adjusted, in this specific application to CAVs, we chose
to experimentally preset the value of T and maintain it fixed throughout the optimization and
simulation. Therefore, the parameter is not updated at each step and this also eliminates the need
for synchronizing the parameter with other agents, especially in dynamic scenarios.

The main loop of the algorithm starts by defining the set of strategies and their ran-
domization process. Then a uniform distribution is applied on the set of strategies, because at
the beginning of the optimization there is not enough information to increase or decrease the
probability of a specific strategy.

Then the CAVs calculate the trajectories and send them by broadcast. The vehicles
exchange pose information and calculate whether there is a collision and also calculate the
private cost function. The agents share the information again, this time with the cost values.
At this moment, all vehicles know the costs and start the optimization process to find the best
strategy for each one that generates the lowest cost.

Algorithm 1 – PC for CAV Algorithm
1: N ← number of agents
2: Ψspeed ← sampling speed interval
3: T ← INITIALIZETEMPERATURE()
4: while not converged do
5: X ← GENERATESTRATEGIES(Ψspeed)
6: Xrandom← RANDOMIZESTRATEGIES(X)
7: q← UNIFORMDISTRIBUTION()
8: while max number of iteration not reached do
9: Pi←CALCULATETRAJECTORY(Xrandom)

10: SENDBROADCAST(Pi)
11: P(i)← GETDATAFROMBROADCAST()
12: g← PRIVATECOSTCALCULATION(Pi, P(i))
13: SENDBROADCAST(Pi, g)
14: G← GETDATAFROMBROADCAST()
15: q← UPDATEDISTRIBUTION(Xrandom,q,T )
16: if CONVERGED(G) then
17: break
18: end if
19: end while
20: end while
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3.4 Final Remarks
In this chapter, we introduce the Probability Collectives approach in its generalized form

that can be used to optimize functions and benchmarks as shown in Appendix A.

According to Kulkarni, Tai and Abraham (2015), the variables of a function can be
associated to individual agents, who can propose strategies to minimize the function. In the
context of CAVs, each agent has an associated function that represents its private cost function.
The goal is to sum these functions through the weighting method and minimize the total cost for
all vehicles.

Therefore, this method can be adequately used for conflict resolution in a decentral-
ized manner, since the CAVs have the ability to communicate, enabling the calculation of the
weighting method.

We present the problem statement and define the scenarios used to conduct the experi-
ments. We also demonstrate the adaptation of the method for CAVs through the mathematical
formulation, as well as the main algorithm for conflict resolution.
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CHAPTER

4
SIMULATION TOOLS AND EVALUATION

METRICS

To evaluate the proposed method, we employ a microscopic traffic simulator that can
simulate the behavior of multiple vehicles. We also compare the performance of our method
with conventional methods already implemented in the simulator. To facilitate the development
of our method, supplementary modules were necessary. The details of the simulator and its
configuration are discussed in Section 4.1.

The simulator does not have an implementation of a feature for obtaining data on the
vehicles’ trajectories. That is, there is no function to relate the vehicle’s position and time. It is
crucial for the generating strategies step, it is worth remembering that the strategies are changes
in speed in relation to the original plan of the vehicle, we need to calculate the positioning of the
vehicles for each change in speed, which will be used for the collision detection. To overcome
this, we developed a trajectory estimation method, described in Section 4.2.

The trajectory is represented by points in continuous space related to time, however, we
also want to use information of the vehicles’ dimensions to turn the problem more realistic. To
this end, we employ a bounding box generation method to create a representation of the vehicle
dimensions around the calculated points, as described in Section 4.3. With this information, we
can then use an intersection detection algorithm to check for collisions between the proposed
strategies. This process is outlined in Section 4.4.

Finally, we developed an algorithm to manage strategies and CAVs within the simulation
tool. This algorithm separates the maneuver into two phases, speed adjustment and maneuver.
This process is presented in Section 4.5.
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4.1 Simulation of Urban MObility

The Simulation of Urban MObility (SUMO) is an open-source microscopic simulator
developed and maintained by the German Aerospace Center (BEHRISCH et al., 2011) (LOPEZ
et al., 2018). SUMO has a very active and growing community and has been widely adopted
by researchers in the field of ITS to investigate and propose alternatives for transportation
systems and evaluate traffic control strategies. SUMO is also a multi-modal, discrete-time, and
continuous-space simulator (KRAJZEWICZ et al., 2012).

As a microscopic traffic simulator, SUMO assigns a unique identifier to each vehicle in
the simulation and defines the vehicle’s parameters, such as dimensions, maximum speed and
acceleration, departure time, routes, and the car-following and lane-change models. Figure 11
presents some examples of simulations in the SUMO environment.

Figure 11 – Examples of simulations in SUMO

Source: Elaborated by the author.

To control the simulation in real-time, SUMO provides a tool called Traffic Control
Interface (TraCI). It is an Application Programming Interface (API) for on-line access to the
simulation data and allows getting and setting simulation parameters such as vehicles’ speed,
position, set speed, force a brake and request a lane-change maneuver.

In order to increase randomness in our experiments, we selected 4 different types of
vehicles, as defined in SUMO with few modifications and we named it Passenger1, Passenger2,
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Delivery and Truck. In this study, we utilized the Federal Highway Administration’s vehicle
weight classification system to differentiate between different vehicle classes. This system
has been used to create unique private cost functions for each vehicle that we defined. The
classification determine Class 1 is any vehicle weighing less than 6000lbs, Class 2 between
6001lbs and 10000lbs and Class 3 between 10001lbs and 14000lbs. The assigned weights were
Passenger1 with 6000lbs, Passenger2 with 8000lbs, Delivery with 10000lbs and Truck with
14000lbs. Passenger1 is the referral value with all others being a rounded percentage of that value.
For example, Passenger1 is 1 and Passenger2 is 1.3 which is 1.3 times the reference weight.

Figure 12 illustrates the dimensions of the vehicles, while Table 1 provides information
on their acceleration, deceleration, maximum deceleration, and probability of appearance during
the simulation. The probability values were chosen empirically, with a focus on ensuring that
passenger vehicles have the highest probability of appearing. All car-following models are based
on Krauss, Wagner and Gawron (1997) and Krauss (1998). Table 2 lists all the parameters used
for the vehicles during the simulations. While automatic lane change is disabled in our proposed
approach, other comparison algorithms may utilize this feature.

Figure 12 – Vehicles dimensions
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Table 1 – Vehicles’ parameters

Vehicle
Type

Acceleration
(m/s²)

Deceleration
(m/s²)

Percentage
(%)

Weight
cost w

Passenger 1 2.6 4.5 35 1.0
Passenger 2 2.6 4.5 35 1.3

Delivery 2.6 4.5 20 1.6
Truck 1.3 4.0 10 2.6

Source: Research data.

Table 2 – SUMO Simulation paramaters

Parameter Value
random true
time to teleport -1.0
collision action warn
lane change duration 5.0
step length 0.1
tau 1.0
sigma 0.0
speedFactor normc(1,0.025,0.925,1.075)
carFollowModel Krauss
lcStrategic 0.5
lcCooperative 0.5

Source: Research data.

4.2 Position estimation

Position estimation is the process of determining the position of an object in some
coordinate system. In this study, we use position estimation to predict the future positions of
vehicles in order to detect potential collisions and validate strategies.

To estimate the future positioning of vehicles over time, we employ two methods: the
Kinematic model and Absolute displacement. This was necessary because the SUMO simulator,
which is based on car-following and lane-changing models, does not include information about
the trajectory of vehicles during the simulation execution.

The Kinematic model uses information about the current position, velocity, and accelera-
tion of a vehicle to predict its future position. The Absolute displacement method, on the other
hand, estimates the future position of a vehicle based on its distance traveled using the SUMO
road network information. By using these two methods, we were able to accurately estimate the
future positioning of vehicles in the SUMO simulator, enabling us to detect potential collisions
and validate strategies.
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4.2.1 Kinematic model

Firstly, we use a kinematic model to describe the vehicle positioning concerning time.
We used this approach in cases where the vehicle drove on a straight road or changed lanes.

With respect to lane-changing, the SUMO default lane change path can be approximated
to a straight trajectory. The Figure 13 shows the lane-changing trajectory of a vehicle driving at
10 m/s. We can see that the path is a straight line, and we adopt that the vehicle always changes
lanes with a fixed angle θ . Klischat et al. (2019) proposed an alternative method to lane-changing
by coupling a motion planning in the simulator that can be used to generate a more realistic
trajectory.

Figure 13 – Lane-changing trajectory.
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Source: Elaborated by the author.

As we use SUMO’s car-following and lane-changing models, the simulator does not
provide motion planning. To deal with this problem, we executed 60 simulations of lane changes
on a straight road with speeds varying between 0.5 and 30 m/s with increments of 0.5 m/s for
each simulation. We collected the angle data from each simulation to model a curve and make a
polynomial interpolation fitting to calculate the angle θ for any speed within the closed interval
[0.5, 30] m/s.

The graph in Figure 14 presents the data collected from the simulation in green and or-
ange, the result of polynomial interpolation of degree 10. We opted for a high-degree polynomial
to have higher accuracy in the positioning estimation and avoid errors generated by this process.
Therefore, the R-squared (R2) of this interpolation is 0.998.
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Figure 14 – Theta interpolation.

0 5 10 15 20 25 30
Speed (m/s)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52

Th
et

a 
(d

eg
re

es
)

Polynomial interpolation of degree 10
Simulation

Source: Elaborated by the author.

The resulting solution was a polynomial with the following coefficients set: [5.35410503e-
10, -8.73918338e-08, 6.16904742e-06, -2.46737090e-04, 6.15496682e-03, -9.93795987e-02,
1.04419273e+00, -7.00644016e+00, 2.87424579e+01, -6.68907190e+01, 7.82450261e+01], we
present these results in scientific notation to preserve accuracy. Then, we can use Equation 4.1
to calculate every θ in the closed interval [0.5, 30], the interpolation(s) function denotes the
polynomial parameterized with s as speed.

θ = interpolation(v) (4.1)

To determine the vehicle position at time t, we first need to calculate acceleration/decel-
eration using the Equation 4.2 where v0 is the initial speed and v is the final speed considering
the accepted speed strategy.

v = v0 +at (4.2)

Then, we can calculate the vehicle positioning with the following set of kinematic
Equations 4.3 and 4.4. The k denotes the step and x and y are the Cartesian coordinate positioning.
The terms v0x and ax are the velocity’s and acceleration’s decomposition in the x direction,
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respectively. The v0y and ay are the velocity’s and acceleration’s decomposition in the y direction
respectively. The t is the discrete amount of time.

xk+1 = xk + v0xt +
1
2

axt2 (4.3)

yk+1 = yk + v0yt +
1
2

ayt2 (4.4)

The decomposition of velocity and acceleration in both x and y axes are given by
Equations 4.5, 4.6, 4.7, 4.8.

vx = vcos(θ) (4.5)

vy = vsin(θ) (4.6)

ax = acos(θ) (4.7)

ay = asin(θ) (4.8)

4.2.2 Absolute displacement

In this approach, we use the route data provided by the simulator to calculate the vehicles’
displacement. In SUMO, it is necessary to assign a route to every vehicle in the configuration files
before the simulation. We can also change the vehicles’ route during the simulation to perform
a rerouting. In this way, it is possible to determine in advance the planning of the vehicle’s
route, i.e., we know which roads and junctions will be used by the vehicles. Here, we will not
considering lane-changing neither rerouting, as the vehicles will follow the initial planning. Thus,
it is possible to determine in advance which lanes the vehicles will drive during navigation.

The Traci API provides functions for accessing map data and vehicles’ data as positioning
and orientation information. With it, we can obtain information about which route, roads and
lanes the vehicles will follow and vehicles’ displacement in the current road. These map data
are very useful to get information about roads’ geometry as shape and length, and we used to
calculate vehicles’ displacement. Some Traci functions are shown generically in Algorithm 2.

To calculate the vehicle displacement, we again need to calculate acceleration/decelera-
tion using the Equation 4.9 where v0 is the initial speed and v is the final speed considering the
accepted speed strategy.

v = v0 +at (4.9)

Then we calculate the displacement step by step according to Equation 4.10. The term
k represents the step, x represents the absolute displacement and not a Cartesian position. The
speed is denoted by vk and t is the discrete amount of time.
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xk+1 = xk + vkt +
1
2

at2 (4.10)

Equation 4.11 denotes the displacement with acceleration (deceleration) as xphase1 and
Equation 4.12 denotes the displacement with constant speed as xphase2, according to the strategies
phases mentioned in Figure 16.

xphase1 =
k

∑
0

xk where xk+1 = xk + vkt +
1
2

at2 (4.11)

xphase2 =
k

∑
0

xk where xk+1 = xk + vkt (4.12)

In the Equation 4.13, we denote ∆x as the absolute displacement.

∆x = xphase1 + xphase2 (4.13)

In Algorithm 2, we present how the position of a vehicle can be determined within a
road using the displacement ∆x calculated earlier. Initially, we attribute to d the sum of the
displacement ∆x with the vehicle’s current position on the road. Notice that the latter is not the
Cartesian position, but the vehicle’s offset in the current road. We find vehicle’s current road
segment and assign it as the initial segment. Then, we calculate the difference from d and the
road length. If the difference is greater than zero, we subtract the road length from d, otherwise
we return d and the road segment index to calculate the Cartesian positioning of the vehicle
using Traci.

Algorithm 2 – Find position on the segment list
1: procedure GETPOSITIONONSEGMENT(currentPosition, initialSegment, segmentList, ∆x)

▷ currentPosition is the position in the initialSegment
2: d← ∆x+ currentPosition
3: for i← FINDSEGMENT(initialSegment), roadList.size do ▷ findSegment should be a

function to find the index of the current segment and size is the total number of elements in
roadList

4: if (d− ROADLENGTH(roadList[i]))≥ 0 then▷ roadLength should be a function that
return the length of the segment in meters (or other unit)

5: d← d−ROADLENGTH(roadList[i])
6: else
7: return d, segment i
8: end if
9: end for

10: return Vehicle out of simulation ▷ Vehicle completed the route
11: end procedure
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4.3 Oriented Bounding Box

The Oriented Bouding Box (GOTTSCHALK; LIN; MANOCHA, 1996) method is one
of the more practical ways of describe the vehicles’ dimensions with orientation in space. The
geometric center of the vehicle was used as a reference point to calculate the positioning and
orientation. We also considered the dimensions of the vehicles assuming a rectangular shape,
and therefore it is necessary to know the width and length of the vehicles to define a rectangular
bounding box around them.

To define the vertices of the rectangular bounding box, we employed a set of parametric
Cartesian equations (presented as Equations 4.14 and 4.15) based on the parametric equations of
the Lamé (1818) curve.

x = lx(|cos p|cos p+ |sin p|sin p) (4.14)

y = ly(|cos p|cos p−|sin p|sin p) (4.15)

In Equations 4.14 and 4.15, we consider a rectangle with half-length and half-width
denoted as lx and ly, respectively. This rectangle, referred to as the bounding box, can have
the same size as the vehicles or be larger to account for positioning measurement errors. The
parameter p represents all points of the edges of the the rectangle, but we are only concerned
with the points that define the vertices of the rectangle. Therefore, the set of points of interest is
p = {0, pi, pi/2,3pi/2}.

Once the vertices of the bounding box have been determined, we can use the rotation
matrix from Equation 4.16 and the translation matrix from Equation 4.17 to apply a rotation and
translation to the points, positioning them correctly.

x′

y′

1

=

cosθ −sinθ 0
sinθ cosθ 0

0 0 1


x

y

1

 (4.16)

x′

y′

1

=

1 0 tx
0 1 ty
0 0 1


x

y

1

 (4.17)

With this approach, we can also consider a safety margin in addition to the exact size of
the vehicles. In this thesis we considered 1 m of length and 0.5 m width.
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4.4 Collision Detection
Gottschalk (1996) proposed a method called Separating Axis Theorem (SAT) that is used

to determine whether or not two convex shapes are intersecting. It is a useful tool in computer
graphics and game programming for collision detection. SAT states that if it is possible to draw a
line that separates the two shapes, then they are not intersecting. Thus, they will not be generating
a collision.

The first step of the algorithm is to determine the edges and normals of the two shapes
we want to test for intersection. In the Figure 15, the black lines in the graph represents the
normal lines segments that we use for projection.

Once we have these lines, we can make a projection from the vertices of the rectangles
to these lines. Figure 15 shows the projection of the vertices of the rectangles through dashes
on the black lines. We can use the SAT to check for overlap along each of them. If there is at
least one non-overlapping projection, then we can draw a line that separates the two shapes and
they are not intersecting, as illustrated by the red line in Figure 15a. If there is an overlap along
all projections, then it is not possible to draw a line that separates the two shapes, and they are
intersecting, as shown in Figure 15b.

Figure 15 – Separating Axis Theorem
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Source: Elaborated by the author.

4.5 Strategy Management
In order to manage the vehicle’s strategies, we developed two algorithms and a data

structure to support the execution during the SUMO simulation. The Strategy Management runs
every simulation step, but when the agents finish the optimization and reach a consensus on
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which strategies each one will execute, they store the strategy information in a list and execute
the strategies over time.

The data structure and the maneuver types are shown in Table 3. We simplify the
maneuvers into two types: Slowdown and Lane change. Slowdown is used to assign a speed to
the vehicle for a given time (duration) in a specific timestep, and only speed reductions are used.
It is also used to maintain a constant speed. Lane change refers to changing lanes, where the lane
index represents the desired lane. According to Toledo and Zohar (2007), the average lane change
time is 4.6 seconds, with a range from 1.0 to 13.3 seconds. In the simulation, the lane change
time for all vehicles is set to 5 seconds. It is worth to mention that both the Slowdown maneuver,
to maintain a constant speed, and the Lane change maneuver can be executed simultaneously.

Table 3 – Data structure for strategy management

Type of maneuver Data Duration Timestep
Slowdown speed duration timestep

Lane change lane index duration timestep
Source: Research data.

After consensus, each agent creates a maneuver queue with the data type of the Table 3
and these maneuvers are performed by each vehicle. In this structure we indicate the type of
maneuver, the specification of how to execute, the duration time and the start timestamp. In
general, this queue of maneuvers can be stored in the decision-making system of an autonomous
vehicle, where each item is sent to the control or trajectory planning system at its appropriate
timestamp. In this work, we perform the maneuvers using the functions provided by SUMO,
example, Slowdown is a function that can smoothly decrease as well as increase the speed of
vehicles, and Lane change is a function that performs the lane change maneuver for the lane
index requested.

Agents schedule strategies and execute them according to the time and order they were
added to the queue, as shown in Algorithm 3. For example, if an agent requests to slow down
and change lanes, it will queue up a speed decrease maneuver, followed by a lane change with a
simultaneous maneuver to maintain speed. After the execution, they remove the strategy from
the list.

The Algorithm 4 is an example of how we use the Strategy Management inside the
simulation main loop. At each simulation step the agents call the strategy manager. There are
two ways to implement, the first considering that strategy manager runs for all agents, the second
considering that each agent has its own manager (we selected the second for implementation).
When there are no strategy in the list, the manager skips the execution, and the simulation
continues.

We divide strategy management into two phases, speed adjustment and maneuver ex-
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Algorithm 3 – Strategy Management
1: procedure EXECUTEMANEUVER(maneuverList, simulationStep)▷ maneuverList is the list

of maneuvers with the proposed data structure presented in Table 3
2: for all maneuver ∈ maneuverList do
3: if maneuver.timestamp = simulationStep then
4: switch maneuver.type do
5: case slowdown
6: speed← maneuver.data
7: SLOWDOWN(speed, maneuver.duration)
8: case lanechange
9: laneIndex← maneuver.data

10: CHANGELANE(laneIndex, maneuver.duration)
11: REMOVEFROMLIST(maneuver) ▷ Remove maneuver from the list
12: end if
13: end for
14: end procedure

Algorithm 4 – Strategy Management Execution
1: while the simulation is not finished do
2: step← RUNSIMULATIONSTEP() ▷ run one simulation step
3: for all agent ∈ agentList do
4: maneuverList← GETMANEUVERLIST(agent)
5: EXECUTEMANEUVER(maneuverList, step)
6: end for
7: end while

ecution. Figure 16 illustrates how the two phases work. We can assign different amounts of
time to run Phase 1 and Phase 2, but the time for both phases must be the same for all agents
involved in the negotiation. In Phase 1, the vehicles adjust their speeds and increase the accelera-
tion/deceleration value (as shown in absolute terms in Figure 16a) if it is necessary to change the
speed. Furthermore, if the vehicle is already driving at the proposed speed strategy, the speed
will remain constant, as shown in Figure 16b. In phase 2, we assume that the vehicle remains at
a constant speed and performs a lane change maneuver if requested.
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Figure 16 – Phases to strategy execution
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Source: Elaborated by the author.

4.6 Scenarios Design
This section describes the scenarios used to conduct our experiments and evaluate our

method. To demonstrate the versatility of our approach, we have designed four distinct test
scenarios. The first two scenarios are cross intersections, one with a single lane and the other
with multiple lanes and more complex routes. An on-ramp merge scenario simulates the merging
of CAVs from an on-ramp. A lane change scenario simulates the movement of vehicles between
lanes. These test scenarios have been carefully designed to represent real-world situations and
test our method’s performance under different conditions.

These scenarios were used for both static and dynamic experiments. In the case of
dynamic experiments, the roads have communication zones used by the CAVs when accessing
them. The zones were based on the work of Gaciarz, Aknine and Bhouri (2015), who proposed
an inner and external area similar to the synchronization zones suggested by Philippe (2020),
where communication and decision-making occur. Both authors also define a conflict zone and a
shared zone for the intersection region.

When a CAVs enters the communication and negotiation zone, it immediately sends out
a broadcast message to the other CAVs in the area. If there are other CAVs within the zone, they
will initiate a negotiation process. If, on the other hand, there are vehicles in the zone that have
completed the negotiation, they will simply share the decisions that they made in an updated
manner, allowing the new vehicle to make its own decision. The PC algorithm is used in the same
way, the only difference is that the agents are already following a previously established strategy.
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From a practical perspective, negotiation still takes place, but the vehicles always choose the
same strategy that is currently being executed. Once the vehicle leaves the communication zone,
it no longer needs to participate in the negotiation process and will not respond to any further
messages of this region.

4.6.1 Crossroad 1-lane Scenario Design

Figure 17 illustrates the Crossroad with 1 lane scenario, including the dimensions and
lengths of the roads. All roads have a maximum permitted speed of 60 km/h. The green region in
the figure represents the designated communication and negotiation area, which was arranged
equidistantly in all scenarios.

Figure 17 – Crossroad 1-lane Scenario Design
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Figure 18 shows the possible routes for all vehicles in the scenario. The red sector
represents the conflict zone, and the lines depict the possible trajectories. The white lines indicate
high-priority routes, while the gray lines indicate low-priority routes, meaning that vehicles must
yield the right-of-way to higher-priority vehicles.
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Figure 18 – Crossroad 1-lane Routes
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Source: Elaborated by the author.

4.6.2 Crossroad 2-lane Scenario Design

Figure 19 illustrates the Crossroad with 2 lanes scenario, including the dimensions and
lengths of the roads. All roads have a maximum permitted speed of 60 km/h. The green region in
the figure represents the designated communication and negotiation area, which was arranged
equidistantly in all scenarios.
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Figure 19 – Crossroad 2-lane Scenario Design
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Figure 20 illustrates the possible routes for all vehicles in the scenario. The red sector
represents the conflict zone, and the lines depict the possible trajectories. The white lines indicate
high-priority routes, while the gray lines indicate low-priority routes, meaning that vehicles must
yield the right-of-way to higher-priority vehicles.

It is worth to mention that in this 2 lane scenario, vehicles can only make left turns if they
are in the left lane and right turns if they are in the right lane. No lane changing or overtaking is
permitted in this scenario.
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Figure 20 – Crossroad 2-lane Routes

Source: Elaborated by the author.

4.6.3 Ramp Merge Scenario Design

Figure 21 illustrates the Ramp Merge with 1 lane scenario, including the dimensions and
lengths of the lanes. All roads have a maximum permitted speed of 60 km/h. The green region in
the figure represents the designated communication and negotiation area. The two routes have a
merging negotiation zone of 100 meters.

Figure 21 – Ramp Merge Scenario Design

223m

210m
 

13m

248m28m

27m
100m

         100m

Source: Elaborated by the author.

Figure 22 presents the possible routes for both routes. The red sector represents the
conflict zone, and the lines depict the possible trajectories. The white lines indicate high-priority
routes, while the gray lines indicate low-priority routes, meaning that vehicles must yield the
right-of-way to higher-priority vehicles.

In this case, the left lane has the highest priority and vehicles in the merging lane must
yield the right-of-way to vehicles in the left lane.
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Figure 22 – Ramp Merge Routes
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Source: Elaborated by the author.

4.6.4 Lane Change Scenario Design

The lane change scenario, presented in Figure 23, is represented simply by a 300m
two-lane road where vehicles in the right lane are required to change to the left lane, as the
right lane leads to a dead end. This scenario does not depict fixed communication zones, as
communication for negotiation is dynamically activated when required by the CAVs.

Figure 23 – Lane Change Scenario Design
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Source: Elaborated by the author.

4.7 Comparative Methods

SUMO provides some models for intersection management and lane-changing. They are
very complex and has several parameters that tries to replicate real world behavior that can be
used to study urban mobility. These models can also be used as benchmark as demonstrated in
the study by Dongxin et al. (2021).

SUMO models intersections in a discrete manner, dividing them into cells that stores
the right-of-way of vehicles based on their arrival time and time step. The model has links that
connect roads and lanes, allowing vehicles to request passage through the intersection. Vehicles
reserve their passage through the intersection using time slots, creating a structure that reproduces
realistic behaviors in intersection scenarios (KRAJZEWICZ; ERDMANN, 2013).

SUMO uses a decision tree scheme to handle the lane-changing (ERDMANN, 2015) and
regulates the ego vehicle speed in relation to the leader and follower respectively.

The first test is related to the scenario where the ego vehicle has a blocking leader. The
procedure evaluates if it is feasible to either overtake or remain behind the leader. If overtaking
is possible, the ego vehicle sends a request to the leader to reduce its speed. If the leader is not
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blocking, the speed is regulated to maintain a safe distance from the leader and prevent blocking.
Finally, if there is no leader, sets the maximum safe speed.

The second test examines if there is a blocking follower. If the ego vehicle is able to
perform a lane change, it requests the follower to reduce speed. The test also evaluates whether
the follower should overtake the ego vehicle. If it is possible, ego vehicle reduce the speed to
allow the follower to safely pass.

We also implemented a Traffic Light System (TLS) using SUMO to provide a comparison
in scenarios involving intersections. In the experiments we used fixed cycles with a total duration
of 60 seconds per cycle. The cycle is divided into two equal parts, each one dedicated to one
road at the intersection. We also used the default SUMO traffic light duration time, wherein each
half of the cycle is divided into 26 seconds of green light and 4 seconds of yellow light.

Finally, we use the metrics Average Travel Time, Average Speed, Average Waiting Time,
Arrived Vehicles and Traffic Flow to evaluate our method and compare with SUMO and TLS
methods. These metrics are widely used in several works in the literature (DONGXIN et al.,
2021), (LEVIN; REY, 2017), (SCHEPPERLE; BöHM; FORSTER, 2007), (LISSAC; DJAHEL;
HODGKISS, 2019) and (WANG; CAI; LU, 2020). As mentioned in the Section 1.1, our main
goal is to enhance the flow of vehicles and reduce travel time.

The Average Travel Time is the average time that the vehicles took to run the simulation,
that is, the time spent passing through the scenario. The Average Speed is the average speed
calculated in relation to all vehicles in the simulation. Average Waiting Time is the average
time the vehicles drives below 0.1 m/s. The Arrived Vehicles are the vehicles that finished the
simulation and the Traffic Flow is the number of vehicles that passed through the scenario in a
given time, and we used simulations of 120 seconds.

4.8 Final Remarks
In this chapter, we present the methods used to perform the experiments. We show the

necessary adaptations in the simulator to be able to run the strategies calculated by our approach,
as well as the tools required for collision detection position estimation. Finally, we also present
the methods and metrics used for comparison with other approaches.
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CHAPTER

5
PROBABILITY COLLECTIVES IN STATIC

SCENARIOS

In this chapter, we investigate the performance of our method in static scenarios to verify
the optimization capacity in addressing conflict situations in four different scenarios.

We start by testing the capability of our model in resolving conflicts in a crossroad with
one lane. The negotiation process is employed to solve the problem in a static manner, that
is, there is no traffic flow and the CAVs that participates in the negotiation were previously
inserted into the simulation. In this way, the negotiation will only occur once and when they
finish executing the adopted strategies the vehicles go back to driving at the road speed limit.

Next, we evaluate the optimization behavior by comparing scenarios where CAVs have
different private cost functions to scenarios where all CAVs have the same private cost function.

5.1 Number of strategies

In this experiment, we evaluated the relationship between the number of agents and the
number of strategies, and also investigate the number of interactions required to resolve conflicts.
It is important to note that each interaction represents two communication steps, as the vehicles
must exchange their strategies with positioning information, calculate the costs, and then resend
the costs to one another. In this static scenario, we intentionally arranged the positions of the
vehicles in such a way that collisions would occur if no action was taken to prevent them. It is
worth to mention that this scenario represents the worst case, as it represents a situation in which
the vehicles must change their speeds in order to avoid accidents.

Figure 24 illustrates the arrangement of the vehicles in the scenario. The figure provides
a visual representation of the position of the vehicles relative to one another and the layout of the
environment in which the experiments were conducted.
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The |Ψspeed| represents the size of the strategy set and m the maximum number of
strategies that can be chosen, as we already defined in Section 3.2.

Figure 24 – Vehicles Static Positioning

Source: Elaborated by the author.

In our experiments, we start each round with 2 agents and gradually increase the number
of agents up to 8. Once the agents find a set of strategies that successfully resolves the conflict,
we stop the optimization process and accept this set of strategies. The vehicles then execute these
strategies in order to avoid collisions. We set a stopping condition of a maximum of 50 iterations.
If the agents reach this limit, the negotiation stops and it is assumed that the optimization is not
feasible for the given number of agents and strategies.

To evaluate the performance of different strategies for conflict resolution, we conducted
25 rounds of experiments for each different number of agents. The results of these experiments
are presented in Tables 4, 5, 6 and 7 which show the mean, mode, and median statistical results
for the number of interactions required to resolve conflicts. We chose to include the mode in the
tables to highlight the most frequent numbers of interactions and the median to demonstrate the
tendency towards centrality.
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Table 4 – Evaluation of the number of interactions for conflict resolution for strategy set |Ψspeed |= 6 and
the maximum number of strategies that can be chosen m = 3.

Number
of Agents

Average
of Interactions

Mode
of Interactions

Median
of Interactions

2 2 1 1
3 13.84 13 13
4 43.76 50 50
5 50 50 50
6 50 50 50
7 50 50 50
8 50 50 50

Source: Research data.

Table 5 – Evaluation of the number of interactions for conflict resolution for strategy set |Ψspeed |= 9 and
the maximum number of strategies that can be chosen m = 5.

Number
of Agents

Average
of Interactions

Mode
of Interactions

Median
of Interactions

2 1.04 1 1
3 1.44 1 1
4 5.24 1 3
5 11.04 2 7
6 20.44 50 16
7 40.08 50 50
8 50 50 50

Source: Research data.

Table 6 – Evaluation of the number of interactions for conflict resolution for strategy set |Ψspeed |= 11
and the maximum number of strategies that can be chosen m = 7.

Number
of Agents

Average
of Interactions

Mode
of Interactions

Median
of Interactions

2 1 1 1
3 1.04 1 1
4 2.68 1 1
5 5.04 2 3
6 12.88 1 9
7 18.96 50 13
8 31.84 50 31

Source: Research data.
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Table 7 – Evaluation of the number of interactions for conflict resolution for strategy set |Ψspeed |= 14
and the maximum number of strategies that can be chosen m = 10.

Number
of Agents

Average
of Interactions

Mode
of Interactions

Median
of Interactions

2 1 1 1
3 1 1 1
4 1.08 1 1
5 1.76 1 1
6 2.52 1 2
7 3.8 2 3
8 7.92 1 4

Source: Research data.

As we increase the number of agents in the scenario, we find that it becomes necessary
to also increase the number of strategies in order to turn possible the convergence. This is
because the vehicles must have a strategy for altering their speed profiles and avoiding collisions,
particularly in this scenario where we have intentionally positioned the vehicles in a way that is
likely to result in a collision if no action is taken to prevent it.

The results in Table 4 indicate that for 5 strategies, only 4 agents can resolve the
conflict, with an average of 42.76 iterations. However, as the number of strategies increases, the
optimization allows for more agents to resolve the conflict with fewer iterations. For example,
with 9 strategies (Table 5), 4 agents can solve the conflict with an average of 5.24 iterations and
with 9 strategies it is possible to resolve the conflict for 7 agents. With 11 strategies (Table 6),
8 agents can resolve the conflict with an average of 31.84 iterations, and with 14 strategies
(Table 7), 8 agents can resolve the conflict with an average of 7.92 iterations.

Figure 25 presents a graphical illustration of the data found in Tables 4, 5, 6, and 7.
It allows us to compare the number of iterations necessary for the algorithm to converge and
resolve conflicts for different numbers of agents and varying strategy number.

In other words, as the complexity of the scenario increases with more vehicles interacting,
it becomes more difficult to find a solution that allows all of the vehicles to safely navigate the
environment. Therefore, a larger number of strategies may be needed to explore a wider range of
options and find a solution that works for all of the vehicles.
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5.2 CAVs with different private cost functions

In this section, we present the results of the negotiation in a static scenario, where the
negotiation occurs only once. The number of vehicles is fixed and there is no traffic flow. The aim
is to demonstrate the applicability of our method to various scenarios, as well as in optimizing
not only equal private cost function (when all vehicles have the same private cost function), but
also when there is different private cost functions among the vehicles.

In each scenario, we present three graphs: one showing the speed profile and global cost
for when the CAVs have equal costs, another for when the CAVs have different costs, and a third
graph that compares the chosen strategies. This strategy comparison shows the frequency with
which a particular strategy was chosen by a vehicle of a determined class.

There are 9 strategies, ranging from 0 to 8, with strategy 0 having the lowest cost and
strategy 8 having the highest cost. The blue bars represent the results when all vehicles have
equal costs, while the orange bars represent the results when each vehicle has a different, unique
cost function. The objective of this analysis is to verify the change in the profile of the strategy
choice when setting different cost functions for the CAVs, remembering that the experiments
were run 25 times for equal costs and 25 times for different costs.

5.2.1 Crossroad 1-lane

In the Crossroad 1-lane scenario, as described in Section 4.6.1, four vehicles were
positioned at equal distances from the center of the intersection. The positioning of each vehicle
was designed to force a conflict which is result in an imminent collision, for this each vehicle
was placed on an arm of the crossing. At the beginning of the simulation, all vehicles start at 60
km/h, and after a predetermined fixed time, the vehicles began negotiating to resolve the conflict.
Upon completion of the optimization process, the vehicles set the selected strategies and adjust
their speed profiles to ensure a safe passage through the intersection.

A sample of 25 experiments was taken and is presented in Figures 26 and 27, which
shows the speed profile and the global cost of the agents. The negotiation began at 3.5s and after
the optimization, the vehicles adjusted their speeds to safely navigate the intersection without
collision, and subsequently returned to the road’s speed limit. The cost was observed to decrease
over the iterations, as the optimization process caused the agents to search for solutions that
resolve the problem, although these solutions may not necessarily be the most optimal ones.
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Figure 26 – Speed profile of CAVs with equal private cost functions and the evolution of the Global Cost
over the iterations for the Crossroad 1-lane scenario
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Figure 27 – Speed profile of CAVs with different private cost functions and the evolution of the Global
Cost over the iterations for the Crossroad 1-lane scenario
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Figure 28 presents the comparison of strategies selected by the vehicles. The blue bars
represent the experiment where the vehicles have the same private cost function and the orange
bars, different private cost functions. In this case, we can verify that the strategies profile is
not significantly changed for the class Passanger1, Passenger2 and Delivery. We can noticed a
decrease in the frequency of the best strategies being chosen by the Passenger1 and Delivery
classes. However, for the Truck class, there was a significant increase in lower cost strategies.



88 Chapter 5. Probability Collectives in Static Scenarios
Fi

gu
re

28
–

C
om

pa
ri

so
n

of
st

ra
te

gi
es

ch
os

en
by

C
AV

s
w

ith
eq

ua
la

nd
di

ff
er

en
tp

riv
at

e
co

st
s

fo
rt

he
C

ro
ss

ro
ad

1-
la

ne
sc

en
ar

io

0
2

4
6

8
St

ra
te

gi
es

0246810
Number of times the
strategy was chosen

Co
m

pa
ris

on
 b

et
we

en
Pa

ss
en

ge
r1

Pa
ss

en
ge

r1
 h

om
og

en
eo

us
 c

os
ts

Pa
ss

en
ge

r1
 h

et
er

og
en

eo
us

 c
os

ts

0
2

4
6

8
St

ra
te

gi
es

0246810

Number of times the
strategy was chosen

Co
m

pa
ris

on
 b

et
we

en
De

liv
er

y

De
liv

er
y 

ho
m

og
en

eo
us

 c
os

ts
De

liv
er

y 
he

te
ro

ge
ne

ou
s c

os
ts

0
2

4
6

8
St

ra
te

gi
es

012345678

Number of times the
strategy was chosen

Co
m

pa
ris

on
 b

et
we

en
Pa

ss
en

ge
r2

Pa
ss

en
ge

r2
 h

om
og

en
eo

us
 c

os
ts

Pa
ss

en
ge

r2
 h

et
er

og
en

eo
us

 c
os

ts

0
2

4
6

8
St

ra
te

gi
es

02468

Number of times the
strategy was chosen

Co
m

pa
ris

on
 b

et
we

en
Tr

uc
k

Tr
uc

k 
ho

m
og

en
eo

us
 c

os
ts

Tr
uc

k 
he

te
ro

ge
ne

ou
s c

os
ts

So
ur

ce
:E

la
bo

ra
te

d
by

th
e

au
th

or
.



5.2. CAVs with different private cost functions 89

5.2.2 Crossroad 2-lanes

In the Crossroad 2-lanes scenario, as described in Section 4.6.2, four vehicles were
positioned at equal distances from the center of the intersection. The positioning of each vehicle
was designed to force a conflict which is result in an imminent collision, for this each vehicle
was placed on an arm of the crossing. At the beginning of the simulation, all vehicles start at 60
km/h, and after a predetermined fixed time, the vehicles began negotiating to resolve the conflict.
Upon completion of the optimization process, the vehicles set the selected strategies and adjust
their speed profiles to ensure a safe passage through the intersection.

A sample of 25 experiments was taken and is presented in Figures 29 and 30, which
shows the speed profile and the global cost of the agents. The negotiation began at 3.5s and after
the optimization, the vehicles adjusted their speeds to safely navigate the intersection without
collision, and subsequently returned to the road’s speed limit. The cost was observed to decrease
over the iterations, as the optimization process caused the agents to search for solutions that
resolve the problem, although these solutions may not necessarily be the most optimal ones.

Figure 29 – Speed profile of CAVs with equal private cost functions and the evolution of the Global Cost
over the iterations for the Crossroad 2-lanes scenario
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Figure 30 – Speed profile of CAVs with different private cost functions and the evolution of the Global
Cost over the iterations for the Crossroad 2-lanes scenario
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Figure 31 presents the comparison of strategies selected by the vehicles. The blue bars
represent the experiment where the vehicles have the same private cost function and the orange
bars, different private cost functions.

In this scenario, we see a significant change in all vehicle classes. Firstly, the Passenger1
class vehicles had a considerable decrease in lower cost strategies, on the other hand, the Truck
class had a significant increase in the number of lower cost strategies. The Passenger1 class went
from 14 to 4 lowest cost strategies, while the Truck class increased from 4 to 16 lowest cost
strategies.

In the case of Passenger2, the class had a significant increase in lower cost strategies. In
the case of the Delivery class, which has the second highest cost, it had a decline in relation to
equal costs. This can be explained by the significant increase in cost improvement of Truck class
vehicles to the detriment of Delivery vehicle class.
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5.2.3 Ramp Merge

In the Ramp Merge scenario, as described in Section 4.6.4, the Passenger1 and Passenger2
class vehicles were positioned on the upper road respectively in this order and the Truck and
Delivery class vehicles were positioned on the lower road respectively in this order that is an
on-ramp merge. The positioning of each vehicle was designed to force a conflict which is result
in an imminent collision, for this each vehicle was placed on an arm of the crossing. At the
beginning of the simulation, all vehicles start at 60 km/h, and after a predetermined fixed time,
the vehicles began negotiating to resolve the conflict. Upon completion of the optimization
process, the vehicles set the selected strategies and adjust their speed profiles to ensure a safe
passage through the intersection.

A sample of 25 experiments was carried out and it is presented in Figures 32 and 33,
which shows the speed profile and the global cost of the agents. The negotiation began at 4s
and after the optimization, the vehicles adjusted their speeds to safely navigate the intersection
without collision, and subsequently returned to the road’s speed limit. The cost was observed to
decrease over the iterations, as the optimization process caused the agents to search for solutions
that resolve the problem, although these solutions may not necessarily be the most optimal ones.

Figure 32 – Speed profile of CAVs with equal private cost functions and the evolution of the Global Cost
over the iterations for the Ramp merge scenario
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Figure 33 – Speed profile of CAVs with different private cost functions and the evolution of the Global
Cost over the iterations for the Ramp merge scenario
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In the comparison of the agents’ strategy choices, presented in Figure 34, we take into
consideration the different classes and private cost functions of the vehicles. The blue bars
represent the experiment where the vehicles have the same private cost function and the orange
bars, different private cost functions.

In this scenario, we can see a significant change in all vehicle classes. All classes had an
improvement and were able to choose more lower cost strategies. The Delivery vehicle class
achieved the best performance by choosing the best cost strategy 15 times. The Passenger2
and Truck classes had a more homogeneous improvement among the best cost strategies. The
Passenger1 class vehicles also had a significant improvement when they were able to improve
from the worst strategy to a more intermediate strategy.

It is interesting to note that in this case the vehicles are "side by side" on the roads,
in which each road has only one lane. So in this arrangement the Delivery vehicle is next to
Passenger2, despite the algorithm being run for all vehicles at the same time we can interpret it
as a negotiation between these two vehicles which allowed the vehicle that has the most costly
private cost function to choose lowest cost strategies.
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5.2.4 Lane Change

In the Lane Change scenario, as described in Section 4.6.4, four vehicles were positioned
on the two lane road. The Truck and Delivery respectively in this order on the left lane and
the Passenger1 and Passenger2 respectively in this order on the right lane. In this case, the
experiment differs from the others because they randomly generate the intention to change lanes
and thus a negotiation is called. All vehicles driving on this road within a radius of 50m are called
for negotiation. In addition, vehicles that are already in the process of executing the negotiated
maneuver within a 90m radius are also called for negotiation to provide their planning. Again,
the positioning of each vehicle was designed to force a conflict which is result in an imminent
collision. For this, we positioned the vehicles side by side. At the beginning of the simulation,
all vehicles start at 60 km/h, and after a predetermined fixed time, the vehicles began to resolve
the conflict. Upon completion of the optimization process, the vehicles set the selected strategies
and adjust their speed profiles to ensure a safe passage through the intersection.

A sample of 25 experiments was carried out and is presented in Figures 35 and 36, which
shows the speed profile and the global cost of the agents. The negotiation began randomly when
vehicles generate intent to change lanes and after the optimization, the vehicles adjusted their
speeds to safely execute the lane change maneuver, and subsequently returned to the road’s
speed limit. In this case, we present a third graph that also represents the cost, because as the
intention to change lane is randomly generated, it may be that one of the vehicles does not
participate in the negotiation because the intention to change lane has not yet been generated. In
this way, when the intent is generated by the last vehicle, it initiates a negotiation call, but the
other vehicles cannot change their running strategies and therefore we see few cost changes. The
spike generated in Global Cost 2 is the choice of a high-cost strategy that was later discarded
with more iterations.

The cost was observed to decrease over the iterations, as the optimization process caused
the agents to search for solutions that resolve the problem, although these solutions may not
necessarily be the most optimal ones.

Figure 37 presents the comparison of strategies selected by the vehicles. Therefore, the
blue bars represent the experiment where the vehicles have the same private cost function and the
orange bars, different private cost functions. In this scenario, we see a significant improvement
in the choice of strategies for vehicles of the Delivery and Truck classes. The Passenger1 class
vehicle moved from low-cost strategies to mid-cost strategies. In the case of Passenger2, the
class had a significant decrease in lower cost strategies.
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Figure 35 – Speed profile of CAVs with equal private cost functions and the evolution of the Global Cost
over the iterations for the Lane Change scenario
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Figure 36 – Speed profile of CAVs with different private cost functions and the evolution of the Global
Cost over the iterations for the Lane Change scenario
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5.3 Final Remarks
The results of our analysis show that the distribution of strategy choices among vehicles

was not as uniform as expected when they had equal costs. This can be attributed to the fact that
the vehicles have different dimensions, which affects their strategy selection. The optimization
rebalanced the cost between agents with different private cost functions that needed to change
the profile of choosing strategies because of costs.

For the scenarios presented, at first, a frequency of choice of lower cost strategies by the
vehicles that have more expensive private cost functions was expected. This was confirmed for
the case of the Truck class, which has the most costly private cost function and had an increase
in the lowest cost strategies in all scenarios. In the case of the Delivery class vehicles, which
have the second most expensive private cost function, the only significant increase was in the
Ramp Merge and Lane Change scenario, in the Crossroad 2-lanes scenario it had a significant
worsening and in the Crossroad 1- lane followed the similar pattern.

Vehicles with less costly private cost function, Passenger1 and Passenger2, had improve-
ments only in the Ramp Merge scenario, in the rest they chose more costly strategies to the
detriment of vehicles with more costly private cost function class or maintained the same profile.
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CHAPTER

6
PROBABILITY COLLECTIVES IN DYNAMIC

SCENARIOS

In the previous chapter, we conducted a study to evaluate the effectiveness of the Proba-
bility Collectives for CAVs model in solving a static problem through one-shot negotiation. In
this chapter, we evaluate the method in a dynamic scenario, where there is a flow of vehicles and
we also assumed that the vehicle arrivals are based on Poisson distribution.

To present the results of the simulations, we first provide a summary of the results in
tables, detailing the variations of each proposed metric. Then, we present the results graphically
to have a better understanding of the performance of the models over the simulation time. It is
worth to mention that most of the results exhibit similar patterns and we will attempt to generalize
the analyses to other experiments when possible.

We conducted experiments in four distinct scenarios: a single-lane crossroad, a two lane
crossroad, a single-lane on-ramp merge, and a two lane road for lane change. For each scenario,
we performed simulations with homogeneous CAVs, heterogeneous CAVs, heterogeneous CAVs
with random speeds, and heterogeneous CAVs with different private cost functions and ran-
dom speeds. Each experiment set was performed 25 times because of the randomness of the
simulations.

Table 8 presents the distribution values used for each scenario. In each scenario, there are
multiple routes, and each route is associated with a specific Poisson distribution. Additionally,
Table 8 provides the overall distribution value used in the experiments.
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Table 8 – Poisson distribution used in test scenarios

Scenario
Number
of routes

Poisson distribution
by route

Total Poisson
Distribution

Crossroad 1-lane 12 0.04 0.48
Crossroad 2-lane 12 0.05 0.6

Ramp Merge 2 0.34 0.68
Lane Change 2 0.13 0.26

Source: Research data.

6.1 Crossroad 1-lane

The following Tables 9, 10, 11 and 12 summarize the results of the Crossroad 1-
lane scenario and the four experiment variations: homogeneous CAVs, heterogeneous CAVs,
heterogeneous CAVs with random speeds, and heterogeneous CAVs with different private cost
functions and random speeds. The tables present the average and standard deviation of the
proposed metrics based on the results of 25 runs for each model. This comparison allows us
to observe the impact of adding heterogeneity and randomness to the system, within the same
experimental variation and across different experiments.

If we now turn to the Table 9, the first experiment variation of the Crossroad 1-lane
scenario, we can see the comparison of the four models. The SUMO model has the highest
average travel time and lowest average speed because vehicles have to wait for the right of way
at the intersection, on the other hand, the TLS model improves the previous one as it has the
right of way guaranteed by the traffic lights. In any case, both models have to deal with the
traffic priorities by stopping some vehicles which increases the waiting time. Our PC-based
model performs better overall. It maintained an average speed close to the road speed limit and
consequently had the lowest average travel time compared to the other models. With a higher
average speed compared to the other models, it was possible to increase the number of vehicles
and traffic flow.

We can do the same analysis as before for each Crossroad 1-lane scenario presented in
the Tables 10, 11 and 12. Likewise, our model keeps the speed close to the road limit and with
a low standard deviation, even considering more complex situations. That led to a decrease in
average travel time by maintaining a continuous traffic flow.

In this Crossroad 1-lane scenario experiment, our model ensured the right of way by
modifying the speed profile of vehicles and maintaining a fluid flow of traffic. This resulted in
the highest vehicle throughput compared to the other models. Additionally, our model exhibited
higher stability in terms of speed, as evidenced by its lower standard deviation, thus avoiding
any oscillations in speed.
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Table 9 – Comparison of models in the crossroad 1-lane homogeneous vehicles scenario. For each model,
the table shows the average and standard deviation for each proposed metric.

Model SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 42.08 11.58 24.50 5.42 8.50 1.68

Average Speed (m/s) 5.72 1.72 7.84 1.23 16.53 0.16

Average Waiting Time (s) 26.68 11.67 10.14 3.37 0.00 0.00

Arrived Vehicles 42.76 5.26 48.32 4.63 60.36 7.86

Flow (veh/h) 1282.80 157.86 1449.60 139.03 1810.80 235.72
Source: Research data.

Table 10 – Comparison of models in the crossroad 1-lane heterogeneous vehicles scenario. For each
model, the table shows the average and standard deviation for each proposed metric.

Model SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 30.32 10.54 22.24 5.78 8.30 1.07

Average Speed (m/s) 7.94 2.64 8.77 1.63 16.55 0.14

Average Waiting Time (s) 15.21 9.62 9.28 3.73 0.00 0.00

Arrived Vehicles 35.36 3.72 37.00 4.71 47.44 5.72

Flow (veh/h) 1060.80 111.54 1110.00 141.24 1423.20 171.70
Source: Research data.

Table 11 – Comparison of models in the crossroad 1-lane heterogeneous vehicles with random speeds
scenario. For each model, the table shows the average and standard deviation for each proposed
metric.

Model SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 28.78 12.45 29.18 9.90 9.10 1.83

Average Speed (m/s) 8.82 3.03 7.35 2.26 16.54 0.26

Average Waiting Time (s) 14.84 11.21 13.03 6.79 0.00 0.00

Arrived Vehicles 38.24 4.14 45.64 5.09 49.16 4.87

Flow (veh/h) 1147.20 124.08 1369.20 152.70 1474.80 146.12
Source: Research data.
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Table 12 – Comparison of models in the crossroad 1-lane heterogeneous vehicles with random speeds
and different private cost functions scenario. For each model, the table shows the average and
standard deviation for each proposed metric.

Algorithm SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 30.18 12.46 20.63 6.18 9.27 2.16

Average Speed (m/s) 8.63 3.16 9.54 1.97 16.53 0.22

Average Waiting Time (s) 16.40 10.79 8.66 3.66 0.00 0.00

Arrived Vehicles 36.84 4.53 39.52 5.06 49.60 7.29

Flow (veh/h) 1105.20 136.02 1185.60 151.77 1488.00 218.57
Source: Research data.

Comparing Tables 9, 10, 11 and 12, i.e., between the variations of experiments within
the crossroad 1-lane scenario, we can verify the decrease in flow for all models. That is due to
the increase in complexity caused by the addition of heterogeneous vehicles and random speeds.
As we add more complexity to the system we see a decrease in flow and an increase in travel
time and average speed. However, our model was also able to guarantee the right of way and
keep the speed average close to the road limit.

As we can see in the previous tables, our model always keeps the average speed close to
the road limit the reason for this is that during optimization the agents mostly found strategies
that didn’t need to change speed, because no collisions were found and so they were left with
the lowest cost action. Figure 38 shows the summary statistics for the strategies chosen during
the 25 simulation runs for each scenario variation. The blue bars represent the average number
of times a strategy was chosen and the inner bars are the standard deviation. For all scenario
variations, agents mostly chose lower-cost actions.

The summary statistics for the strategies chosen during 25 simulation runs is displayed in
Figure 38. The blue bars indicate the average frequency of strategy selection, while the inner bars
show the standard deviation. It can be observed that most of the selected strategies were those
with the lowest cost. The randomness of vehicle arrivals allows the choice of better strategies
because most situations do not represent a worst case.

The graphs in Figures 39, 40, 41 and 42 present the results for average speed, average
waiting time, and the number of vehicles over the experiment for the Crossroad 1-lane experi-
ments and models. In this instance, we examine more closely the experiments conducted over
time to provide a more comprehensive analysis of the results presented in the previous tables.

First, as we can notice, there are several colored lines and a highlighted bold black line.
The colored lines of each graph in the background represent one specific run, and the black lines
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Figure 38 – Number of times that one strategy was chosen
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(b) Heterogeneous
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(c) Heterogeneous with random speeds
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(d) Heterogeneous with random speeds and different
private cost functions

Source: Elaborated by the author.

represent the mean of all runs.

Although each experiment has its particularities, it is possible to notice the same pattern
throughout the four experiments, homogeneous, heterogeneous, heterogeneous with random
speeds, and heterogeneous with different private cost functions and random speeds for each
model.

With regards to our PC-based model, there is no waiting time, as seen in the previous
tables. This is achieved by adjusting the speed profile of the vehicles, which guarantees the right
of way. As a result, both the average speed and the number of vehicles remain stable over time.
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6.2 Crossroad 2-lane
In this scenario, the following Tables 13, 14, 15 and 16 summarize the results of the

Crossroad 2-lane scenario and the four variations with homogeneous, heterogeneous, heteroge-
neous with random speeds, and heterogeneous with different private cost functions and random
speeds. These tables allow us to compare the models within each experiment variation and also
across experiments, taking into account the increasing complexity introduced by heterogeneous
with different private cost functions and random speeds. For each model, the tables show the
average and standard deviation of the proposed metrics, based on 25 runs.

If we compare the four models using the results from the Tables 13, 14, 15 and 16, as
we saw in the previous scenario, our PC-based model performs better on the average speed close
to the road speed limit and consequently has the lowest average travel time when compared to
the other models. The SUMO model has the highest average travel time because vehicles have
to wait for the right of way at the intersection; on the other hand, the TLS model improves the
previous one as it has the right of way guaranteed by the traffic lights. In any case, both models
have to deal with the right of way by stopping some vehicles and increasing the waiting time. Our
model guarantees the right of way by dynamically adjusting the speed profile of vehicles. This
optimization enables a higher flow of vehicles at the intersection compared alternative models.
Additionally, our model shows better speed stability indicated by a lower standard deviation,
effectively reducing speed oscillations and enhancing overall traffic stability.

If we make a comparison between the Tables 13, 14, 15 and 16, i.e., between the
variations of experiments within the crossroad 2-lane scenario, we can verify the decrease in flow
for all models. That is due to the increase in complexity caused by the addition of heterogeneous
vehicles and random speeds. Our model was also able to guarantee the right of way and keep the
speed average close to the road limit. But if one compares it with the previous experiments, we
could notice that traffic flow is higher than in the Crossroad 1-lane scenario. That is due to the
increase of a lane which allows a greater flow.

Table 13 – Comparison of models in the crossroad 2-lane homogeneous vehicles scenario. For each model,
the table shows the average and standard deviation for each proposed metric.

Model SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 26.58 10.41 19.12 4.25 9.52 1.71

Average Speed (m/s) 9.58 2.66 9.98 1.62 16.53 0.18

Average Waiting Time (s) 14.07 8.84 7.66 2.78 0.00 0.00

Arrived Vehicles 52.84 6.00 57.20 6.02 68.56 7.83

Flow (veh/h) 1585.20 180.14 1716.00 180.62 2056.80 234.96
Source: Research data.
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Table 14 – Comparison of models in the crossroad 2-lane homogeneous vehicles scenario. For each model,
the table shows the average and standard deviation for each proposed metric.

Model SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 26.19 11.03 17.53 3.66 9.48 1.85

Average Speed (m/s) 9.57 2.74 10.45 1.46 16.53 0.20

Average Waiting Time (s) 13.70 9.88 7.24 2.67 0.00 0.00

Arrived Vehicles 50.12 5.03 50.36 7.49 59.72 6.34

Flow (veh/h) 1503.60 150.83 1510.80 224.81 1791.60 190.23
Source: Research data.

Table 15 – Comparison of models in the crossroad 2-lane heterogeneous vehicles with random speeds
scenario. For each model, the table shows the average and standard deviation for each proposed
metric.

Model SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 25.61 9.48 20.58 4.34 9.11 1.81

Average Speed (m/s) 9.80 2.64 9.56 1.79 16.50 0.21

Average Waiting Time (s) 13.01 7.95 8.47 2.95 0.00 0.00

Arrived Vehicles 50.08 5.57 52.16 6.92 62.00 7.22

Flow (veh/h) 1502.40 167.01 1564.80 207.61 1860.00 216.51
Source: Research data.

Table 16 – Comparison of models in the crossroad 2-lane heterogeneous vehicles with random speeds
and different private cost functions scenario. For each model, the table shows the average and
standard deviation for each proposed metric.

Algorithm SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 23.90 9.49 18.66 3.74 9.04 1.69

Average Speed (m/s) 10.00 2.45 10.00 1.28 16.67 0.23

Average Waiting Time (s) 11.89 8.66 7.38 2.29 0.00 0.00

Arrived Vehicles 52.12 7.21 51.12 6.10 58.84 9.39

Flow (veh/h) 1563.60 216.22 1533.60 182.96 1765.20 281.65
Source: Research data.
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The summary statistics for the strategies chosen during 25 simulation runs is displayed in
Figure 43. The blue bars indicate the average frequency of strategy selection, while the inner bars
show the standard deviation. It can be observed that most of the selected strategies were those
with the lowest cost. The randomness of vehicle arrivals allows the choice of better strategies
because most situations do not represent a worst case.

Figure 43 – Number of times that one strategy was chosen in the crossroad 2-lane scenario
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Source: Elaborated by the author.

The graphs in the Figures 44, 45, 46 and 47 show the results for average speed, average
waiting time, and the number of vehicles over the experiment for the Crossroad 2-lane exper-
iments for all models. We analyze in depth the experiments conducted over time to provide a
more comprehensive analysis of the results presented in the previous tables.

First, as we analyzed before, there are several colored lines and a bold black line in the
graphs. The colored lines of each graph in the background represent one specific run, and the black
lines represent the mean of all runs. Although each experiment has its particularities, it is possible
to notice the same pattern throughout the four experiments, homogeneous, heterogeneous,
heterogeneous with random speeds, and heterogeneous with different private cost functions and
random speeds for each model.
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Although the SUMO model does not guarantee the right of way at intersections, this
time, there are some vehicles that could use one of the side lanes to make the turn and then the
flow result is higher. However, we still notice traffic jams over time because of the vehicle’s right
of way. As vehicles arrive randomly, some need to stop at the intersection, and consequently the
number of vehicles increases as well as the average waiting time and average speed decreases.
We can observe this pattern in SUMO’s graphical results.

As with the previous model, the TLS we can notice the same trend of decreasing
speed and increasing the average waiting time, consequently increasing the number of vehicles.
However, we can notice a wave pattern in the graphs where each phase corresponds to a cycle
of the traffic light system. Although this model guarantees the right of way, the entry of new
vehicles causes a decrease in the flow over time.

Concerning our PC-based model, there is no waiting time as presented in the previous
tables. That is because the model guarantees the right of way by changing the speed profile of the
vehicles. In this way, the average speed and the number of vehicles are remain stable over time.
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6.3 Ramp Merge

In this experiment, we have changed the type of scenario from crossroad to ramp merge.
The following Tables 17, 18, 19 and 20 summarize the results of the ramp merge scenario
and again we show the three variations, homogeneous vehicles, heterogeneous vehicles, and
heterogeneous vehicles with random speeds. We can compare the models within the same
experiment and also between experiments considering the increase in complexity, heterogeneous
vehicles and random speeds. The tables show the average and standard deviation for the proposed
metrics considering all 25 runs.

The Table 17 presents the first experiment variation of the Ramp Merge scenario. First,
we can notice the same pattern of results as in the previous scenarios. As the SUMO model does
not guarantee the right of way because some vehicles had to wait to pass through the junction, it
presented the highest average travel time; on the other hand, the TLS model controls the passage
of vehicles through the traffic light cycles and improves traffic flow. Our model, on the other
hand, presents the shortest travel time and the highest average speed, which allowed for greater
traffic flow.

We can do the same analysis as before for each crossroad 1-lane scenario presented in
the Tables 10 and 11. Likewise, our model keeps the speed close to the road limit and with a low
standard deviation, even considering more complex scenarios. That led to a decrease in average
travel time by maintaining a continuous traffic flow.

Table 17 – Comparison of models in the ramp merge homogeneous vehicles scenario. For each model,
the table shows the average and standard deviation for each proposed metric.

Algorithm SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 55.59 7.00 28.27 3.76 14.88 1.30

Average Speed (m/s) 6.44 0.91 9.87 1.17 16.62 0.05

Average Waiting Time (s) 33.67 7.83 7.45 2.23 0.00 0.00

Arrived Vehicles 33.52 4.18 45.60 4.50 60.76 7.63

Flow (veh/h) 1005.60 125.53 1368.00 135.00 1822.80 229.01
Source: Research data.
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Table 18 – Comparison of models in the ramp merge heterogeneous vehicles scenario. For each model,
the table shows the average and standard deviation for each proposed metric.

Model SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 58.80 9.53 28.68 3.00 14.72 1.96

Average Speed (m/s) 6.21 0.68 9.20 0.90 16.60 0.08

Average Waiting Time (s) 38.32 11.42 7.68 2.23 0.00 0.00

Arrived Vehicles 32.16 3.13 42.92 5.21 63.60 8.57

Flow (veh/h) 964.80 93.95 1287.60 156.35 1908.00 257.05
Source: Research data.

Table 19 – Comparison of models in the ramp merge heterogeneous vehicles with random speeds scenario.
For each model, the table shows the average and standard deviation for each proposed metric.

Model SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 57.93 7.89 29.69 3.69 14.78 2.11

Average Speed (m/s) 6.17 1.08 9.05 1.25 16.52 0.14

Average Waiting Time (s) 36.57 9.53 8.19 2.55 0.00 0.00

Arrived Vehicles 30.80 5.69 42.32 4.17 62.80 7.83

Flow (veh/h) 924.00 170.59 1269.60 125.12 1884.00 234.79
Source: Research data.

Table 20 – Comparison of models in the ramp merge heterogeneous vehicles with random speeds and
different private cost functions scenario. For each model, the table shows the average and
standard deviation for each proposed metric.

Algorithm SUMO TLS PC

Statistical AVG STD AVG STD AVG STD

Average Travel Time (s) 56.43 8.45 28.82 3.36 14.82 1.83

Average Speed (m/s) 6.48 0.83 9.43 0.88 16.78 0.08

Average Waiting Time (s) 35.02 10.00 7.73 2.18 0.00 0.00

Arrived Vehicles 33.08 4.39 42.12 4.17 61.76 6.72

Flow (veh/h) 992.40 131.60 1263.60 125.00 1852.80 201.67
Source: Research data.
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If we compare the three models using the results from the Tables 17, 18 and 19, as we
saw in the previous scenario, our PC-based model performs better on the average speed close to
the road speed limit and consequently has the lowest average travel time when compared to the
other models. The SUMO model has the highest average travel time because vehicles have to
wait for the right of way at the junction, on the other hand, the TLS model improves the previous
one as it has the right of way guaranteed by the traffic lights. In any case, both models have to
deal with the right of way by stopping some vehicles and increasing the waiting time.

In this ramp merge 1-lane scenario our model guaranteed the right of way because it
changes the speed profile of the vehicles and tends to keep the traffic fluid. That allows more
vehicles to pass through the intersection, thus, obtaining the highest flow compared to the other
models. Our model also has higher stability in speed as it has a lower standard deviation, which
avoids speed oscillations.

If we make a comparison between the Tables 17, 18, 19 and 20, i.e., between the variations
of experiments within the Crossroad 2-lane scenario, we can verify the decrease in flow for
all models. That is due to the increase in complexity caused by the addition of heterogeneous
vehicles and random speeds. Our model was also able to guarantee the right of way and keep the
speed average close to the road limit. But if one compares it with the previous experiments, we
could notice that traffic flow is higher than in the crossroad 1-lane scenario. That is due to the
increase of a lane which allows a greater flow.

The summary statistics for the strategies chosen during 25 simulation runs is displayed in
Figure 48. The blue bars indicate the average frequency of strategy selection, while the inner bars
show the standard deviation. It can be observed that most of the selected strategies were those
with the lowest cost. The randomness of vehicle arrivals allows the choice of better strategies
because most situations do not represent a worst case.

The graphs in the Figures 49, 50, 51 and 52 show the results for average speed, average
waiting time, and the number of vehicles over the experiment for the ramp merge 1-lane experi-
ments for all models. In this instance, we present the experiments over time to provide a more
comprehensive analysis of the results presented in the previous tables.

First, as we analyzed before, there are several colored lines and a bold black line in the
graphs. The colored lines of each graph in the background represent one specific run, and the black
lines represent the mean of all runs. Although each experiment has its particularities, it is possible
to notice the same pattern throughout the three experiments, homogeneous, heterogeneous, and
heterogeneous with random speeds for each model.

Although the SUMO model does not guarantee the right of way at intersections, this
time, there are some vehicles that could use one of the side lanes to make the turn and then the
flow result is higher. However, we still notice traffic jams over time because of the vehicle’s right
of way. As vehicles arrive randomly, some need to stop at the intersection, and consequently the
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Figure 48 – Number of times that one strategy was chosen in the ramp merge scenario
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(b) Heterogeneous
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(c) Heterogeneous with random speeds
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(d) Heterogeneous with random speeds and different
private cost functions

Source: Elaborated by the author.

number of vehicles increases as well as the average waiting time and average speed decreases.
We can observe this pattern in SUMO’s graphical results.

As with the previous model, the TLS we can notice the same trend of decreasing
speed and increasing the average waiting time, consequently increasing the number of vehicles.
However, we can notice a wave pattern in the graphs where each phase corresponds to a cycle
of the traffic light system. Although this model guarantees the right of way, the entry of new
vehicles causes a decrease in the flow over time.

Concerning our PC-based model, there is no waiting time as presented in the previous
tables. That is because the model guarantees the right of way by changing the speed profile of
the vehicles. In this way, the average speed and the number of vehicles remain stable over time.
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6.4 Lane Change

This experiment is distinct from the others as the vehicles enter the simulation dynami-
cally, following a Poisson distribution, and their lane-change intentions are randomly generated,
triggering a negotiation. Because it is a lane change problem this experiment also does not have
a variation with TLS. Vehicles driving within a 50m radius in this road are called for negotiation.
In addition, vehicles that are executing a previously negotiated maneuver within a 90m radius
are also called for negotiation to share their planning.

The following Tables 21, 22, 23 and 24 summarize the results of the lane change scenario
and again we show the three variations, homogeneous vehicles, heterogeneous vehicles, and
heterogeneous vehicles with random speeds. We can compare results not only within the same
experiment, but also between experiments, considering increasing complexity, heterogeneous
vehicles, random speeds and different private cost functions. The tables show the average and
standard deviation for the proposed metrics considering all 25 runs.

The Table 21 presents the first experiment variation of the lane change scenario. First,
we can notice the same pattern of results as in the previous scenarios. As the SUMO model does
not guarantee the right of way because some vehicles had to wait to pass through the junction, it
presented the highest average travel time; on the other hand, the TLS model controls the passage
of vehicles through the traffic light cycles and improves traffic flow. Our model, on the other
hand, presents the shortest travel time and the highest average speed, which allowed for greater
traffic flow.

We can do the same analysis as before for each lane change scenario presented in the
Tables 22, 23 and 24. Likewise, our model keeps the speed close to the road limit and with a low
standard deviation, even considering more complex scenarios. That led to a decrease in average
travel time by maintaining a continuous traffic flow.

Table 21 – Comparison of models in the lane change homogeneous vehicles scenario. For each model, the
table shows the average and standard deviation for each proposed metric.

Model SUMO PC

Statistical AVG STD AVG STD

Average Travel Time (s) 34.52 6.30 29.98 3.09

Average Speed (m/s) 14.22 2.81 16.56 0.08

Average Waiting Time (s) 2.35 3.37 0.00 0.00

Arrived Vehicles 20.24 3.28 23.36 6.04

Flow (veh/h) 607.20 98.47 700.80 181.22
Source: Research data.
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Table 22 – Comparison of models in the lane change heterogeneous vehicles scenario. For each model,
the table shows the average and standard deviation for each proposed metric.

Model SUMO PC

Statistical AVG STD AVG STD

Average Travel Time (s) 38.23 6.87 29.98 3.54

Average Speed (m/s) 11.77 3.35 16.50 0.12

Average Waiting Time (s) 3.29 2.00 0.00 0.00

Arrived Vehicles 17.84 3.02 22.08 4.67

Flow (veh/h) 535.20 90.70 662.40 140.16
Source: Research data.

Table 23 – Comparison of models in the lane change heterogeneous vehicles with random speeds scenario.
For each model, the table shows the average and standard deviation for each proposed metric.

Model SUMO PC

Statistical AVG STD AVG STD

Average Travel Time (s) 35.38 6.38 29.80 3.01

Average Speed (m/s) 13.92 3.00 16.40 0.17

Average Waiting Time (s) 2.16 2.24 0.00 0.00

Arrived Vehicles 17.72 2.35 20.84 4.00

Flow (veh/h) 531.60 70.63 625.20 119.90
Source: Research data.

Table 24 – Comparison of models in the lane change heterogeneous vehicles with random speeds and
different private cost functions scenario. For each model, the table shows the average and
standard deviation for each proposed metric.

Algorithm SUMO PC

Statistical AVG STD AVG STD

Average Travel Time (s) 31.23 5.36 30.65 4.12

Average Speed (m/s) 15.88 1.01 15.80 0.40

Average Waiting Time (s) 1.05 2.22 0.00 0.00

Arrived Vehicles 13.40 4.00 14.20 3.77

Flow (veh/h) 402.00 120.00 426.00 113.25
Source: Research data.
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The summary statistics for the strategies chosen during 25 simulation runs is displayed
in Figure 53. The blue bars indicate the average frequency of strategy selection, while the inner
bars show the standard deviation. It can be observed that most of the selected strategies were
those with the lowest cost. In this case, we have a decrease in the amount of Heterogeneous with
random speeds and different private cost functions because we reduced the flow of vehicles and
fewer vehicles were used in the simulation.

Figure 53 – Number of times that one strategy was chosen in the lane change scenario
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(b) Heterogeneous
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Source: Elaborated by the author.

The graphs in the Figures 54, 55, 56 and 57 show the results for average speed, average
waiting time, and the number of vehicles over the experiment for the lane change experiments
for all models. In this instance, we present the experiments over time to provide a more compre-
hensive analysis of the results presented in the previous tables.

First, as we analyzed before, there are several colored lines and a bold black line in the
graphs. The colored lines of each graph in the background represent one specific run, and the black
lines represent the mean of all runs. Although each experiment has its particularities, it is possible
to notice the same pattern throughout the four experiments, homogeneous, heterogeneous,
heterogeneous with random speeds, and heterogeneous with different private cost functions and
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random speeds for each model.

With regards to our PC-based model, there is no waiting time, as seen in the previous
tables. This is achieved by adjusting the speed profile of the vehicles, which guarantees the right
of way. As a result, both the average speed and the number of vehicles remain stable over time.
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6.5 Final Remarks
When we analyze the overall profile across all scenarios, we can see that the behavior

of all methods is very similar regardless of complexity. However, in many cases, the flow of
vehicles decreases as the complexity of the scenario increases. In every scenario, significant
enhancements were achieved with regards to the flow of vehicles, reducing the travel time and
increasing the average speed.

In the case of the Crossroad 1-lane scenario, our approach showed an average improve-
ment in the traffic flow of 34.63% and 25.50% compared to the SUMO and TLS approaches,
respectively. It was also possible to achieve an improvement in travel time that decreased by an
average of 69.29% and 55.07% compared to SUMO and TLS.

In the Crossroad 2-lanes scenario, our approach showed an improvement in the traffic
flow in average of 12.89% and 15.10% compared to the SUMO and TLS approaches, respectively.
Additionally, it was also possible to improve the travel time, which decreased by an average of
62.19% and 51.58% compared to SUMO and TLS.

In the Ramp merge scenario, our approach showed a significant improvement in the
traffic flow on average of 86.69% and 46.62% compared to the SUMO and TLS approaches
respectively. Additionally, a improvement in travel time was achieved, which decreased on
average by 73.74% and 48.58% compared to SUMO and TLS.

In the Lane Change scenario, our approach showed an average improvement of 5.97%
compared to SUMO. It was also possible to achieve a improvement in travel time that decreased
by an average of 1.85% compared to SUMO. In the same scenario but with homogeneous
vehicles, the improvements were on average 15.41% for traffic flow and 13.13%. In this case,
we noticed a difficulty of the optimizer in dealing with the problem of vehicles with different
dimensions and costs. The increase in the complexity of the problem resulted in momentary
increases in density on the road during the simulations, which can lead the optimizer to not
converge due to vehicle density.
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CHAPTER

7
CONCLUSION AND DISCUSSION

The purpose of this thesis was to investigate the resolution of conflicts between Connected
and Autonomous Vehicles in a decentralized manner in various dynamic scenarios. Our goal was
to present a decentralized method for conflict resolution in dynamic environments, as well as
to integrate scenarios involving vehicles of varying dimensions, random speeds, and different
private cost functions.

Our adaptation of the Probability Collectives method was able to effectively resolve
conflict resolution problems in dynamic crossroad 1-lane, crossroad 2-lane, on-ramp merge, and
lane change scenarios using a unified solution. We conducted experiments using well established
methods in a simulation tool as benchmarks to evaluate the efficiency of our approach. This has
significant implications for ITS and urban mobility, generating a direct impact on increasing
traffic flow, reducing vehicle travel time and reducing pollutant emissions.

While this study has made a contribution to the ITS area, there are also limitations. We
noticed some limitation regarding the SUMO simulator, which was the main tool used in this
work, and also some limitations in our proposed method. However, these limitations provide a
valuable opportunity for future research to build upon and address these gaps.

The first limitation concerns the calculation of the future trajectory of vehicles. In SUMO
it is not possible to know the future trajectory, because the vehicles act according to the car-
following and lane-changing models. Our proposed method effectively addressed many of
the limitations commonly encountered with simplified maps, such as the ones we use in our
experiments. However, for more complex studies it may be interesting to use larger maps, such
as city sections, and in this case it will be necessary to adapt our trajectory calculation proposal
to improve efficiency and avoid problems at junctions, connections between different roads and
a large number of routes.

Another important issue regarding the simulator is the use of emergency braking when
two vehicles are very close. As we use the car-following model itself to guide the vehicles at
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times when our strategy execution manager is not activated, this could lead to some proximity
situations in which braking was activated. This was mostly noticed in lane change scenarios.

Regarding our proposal, future studies can explore different traffic situations such as
overtaking and different types of structures in a road network. And also consider using sections
of real cities and even performing a simulator calibration for that particular region with real data
as performed by Poli et al. (2021). Investigating negotiation algorithms in more complex and
realistic scenarios would be a major advancement for the field of ITS.

In this work, we simplified the negotiation protocol process by performing all negotiations
within a single simulation time step. However, it would be very interesting to carry out the
negotiation in such a way that each communication iteration is run in a simulation step. This
would increase the complexity of the problem, as vehicles would be negotiating while driving
the road. The negotiations might become invalid if they take too long to complete. According to
Poli et al. (2021), the longer negotiation time results in a higher rejection rate of proposals. In
such cases, it is likely that the trajectory time interval should be longer than the 10 seconds we
set in our experiments. This would provide vehicles with sufficient time to negotiate effectively.

One can also add a network simulator in this negotiation protocol to check the influence
of the network on the method. In which problems of delay, packet size, communication radius
and signal occlusion can be evaluated.

Comparing decision-making methods, especially those that involve randomness, can be
challenging. Implemented methods can introduce errors if not performed by the same author,
making it important to establish a benchmark for comparison. This thesis makes a small but
valuable contribution by presenting a way to compare our proposed method with established
methods in the simulation tool, providing detailed information on vehicle parameters and scenar-
ios. In this way, other authors can compare themselves with our method using the simulation
tool as a reference point.



135

BIBLIOGRAPHY

ANTOINE, N.; BIENIAWSKI, S.; KROO, I.; WOLPERT, D. Fleet assignment using collective
intelligence. 02 2004. Citation on page 58.

AREM, B. van; DRIEL, C. J. G. van; VISSER, R. The impact of cooperative adaptive cruise
control on traffic-flow characteristics. IEEE Transactions on Intelligent Transportation
Systems, v. 7, n. 4, p. 429–436, 2006. Citation on page 32.

AZIMI, R.; BHATIA, G.; RAJKUMAR, R. R.; MUDALIGE, P. Stip: Spatio-temporal intersec-
tion protocols for autonomous vehicles. In: 2014 ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS). [S.l.: s.n.], 2014. p. 1–12. Citation on page 35.

BEHRISCH, M.; BIEKER-WALZ, L.; ERDMANN, J.; KRAJZEWICZ, D. Sumo – simulation of
urban mobility: An overview. In: . [S.l.: s.n.], 2011. v. 2011. ISBN 978-1-61208-169-4. Citation
on page 62.

BENGTSSON, H. H.; CHEN, L.; VORONOV, A.; ENGLUND, C. Interaction protocol for
highway platoon merge. In: 2015 IEEE 18th International Conference on Intelligent Trans-
portation Systems. [S.l.: s.n.], 2015. p. 1971–1976. ISSN 2153-0009. Citation on page 39.

BROGGI, A.; BERTOZZI, M.; FASCIOLI, A.; CONTE, G. Automatic Vehicle Guidance:
the Experience of the ARGO Vehicle. Singapore: World Scientific, 1999. ISBN 9810237200.
Citation on page 27.

BUCKMAN, N.; PIERSON, A.; SCHWARTING, W.; KARAMAN, S.; RUS, D. Sharing is
caring: Socially-compliant autonomous intersection negotiation. In: 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). [S.l.: s.n.], 2019. p. 6136–6143.
Citation on page 52.

CHANKONG, V.; HAIMES, Y. Y. Multiobjective decision making: theory and methodology.
[S.l.]: Courier Dover Publications, 2008. Citation on page 143.

CHEN, L.; ENGLUND, C. Cooperative intersection management: A survey. IEEE Transactions
on Intelligent Transportation Systems, v. 17, n. 2, p. 570–586, 2016. Citations on pages 29,
33, 34, and 53.

CRISMAN, J.; THORPE, C. Scarf: A color vision system that tracks roads and intersections.
IEEE Trans. on Robotics and Automation, v. 9, n. 1, p. 49 – 58, February 1993. Citation on
page 27.

DEB, K.; AGRAWAL, S.; PRATAP, A.; MEYARIVAN, T. A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: Nsga-ii. In: SCHOENAUER, M.; DEB, K.;
RUDOLPH, G.; YAO, X.; LUTTON, E.; MERELO, J. J.; SCHWEFEL, H.-P. (Ed.). Parallel
Problem Solving from Nature PPSN VI. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
p. 849–858. ISBN 978-3-540-45356-7. Citation on page 143.



136 Bibliography

DONGXIN, L.; QIQIGE, W.; WENBO, C.; HUILONG, Y.; XIAOPING, D. A priority tree based
coordination method for intelligent and connected vehicles at unsignalized intersections. IET
Intelligent Transport Systems, v. 15, n. 8, p. 1053–1063, 2021. Available: <https://ietresearch.
onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12082>. Citations on pages 35, 53, 78, and 79.

DRESNER, K.; STONE, P. Multiagent traffic management: a reservation-based intersection
control mechanism. In: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems, 2004. AAMAS 2004. [S.l.: s.n.], 2004. p. 530–537.
Citation on page 34.

. Multiagent traffic management: An improved intersection control mechanism. In: Proceed-
ings of the Fourth International Joint Conference on Autonomous Agents and Multiagent
Systems. New York, NY, USA: Association for Computing Machinery, 2005. (AAMAS ’05), p.
471–477. ISBN 1595930930. Available: <https://doi.org/10.1145/1082473.1082545>. Citation
on page 34.

EIERMANN, L.; SAWADE, O.; BUNK, S.; BREUEL, G.; RADUSCH, I. Cooperative automated
lane merge with role-based negotiation. In: 2020 IEEE Intelligent Vehicles Symposium (IV).
[S.l.: s.n.], 2020. p. 495–501. Citation on page 36.

ELLIOTT, C. M.; TALLANT, G.; DOGAN, A. On probability collectives for distributed control
allocation. In: 2017 IEEE Aerospace Conference. [S.l.: s.n.], 2017. p. 1–11. Citation on page
45.

ENGLUND, C.; CHEN, L.; PLOEG, J.; SEMSAR-KAZEROONI, E.; VORONOV, A.; BENGTS-
SON, H. H.; DIDOFF, J. The grand cooperative driving challenge 2016: boosting the introduction
of cooperative automated vehicles. IEEE Wireless Communications, v. 23, n. 4, p. 146–152,
August 2016. ISSN 1536-1284. Citations on pages 28 and 39.

ENGLUND, C.; CHEN, L.; VINEL, A.; LIN, S. Y. Future applications of vanets. In: . Ve-
hicular ad hoc Networks: Standards, Solutions, and Research. Cham: Springer International
Publishing, 2015. p. 525–544. Available: <https://doi.org/10.1007/978-3-319-15497-8_18>.
Citations on pages 27 and 28.

ERDMANN, J. Sumo’s lane-changing model. In: BEHRISCH, M.; WEBER, M. (Ed.). 2nd
SUMO User Conference. Springer Verlag, 2015. (Lecture Notes in Control and Information
Sciences, v. 13), p. 105–123. Available: <https://elib.dlr.de/102254/>. Citation on page 78.

FAA, U. Introduction to TCAS II, Version 7.1. 2011. Citation on page 29.

GACIARZ, M.; AKNINE, S.; BHOURI, N. Automated negotiation for traffic regulation. In:
KOCH, F.; GUTTMANN, C.; BUSQUETS, D. (Ed.). Advances in Social Computing and
Multiagent Systems. Cham: Springer International Publishing, 2015. p. 1–18. ISBN 978-3-319-
24804-2. Citations on pages 39 and 73.

GHOLAMHOSSEINIAN, A.; SEITZ, J. A comprehensive survey on cooperative intersection
management for heterogeneous connected vehicles. IEEE Access, v. 10, p. 7937–7972, 2022.
Citations on pages 33 and 34.

GOTTSCHALK, S. Separating axis theorem. Technical Report TR96-024, Department of Com-
puter Science, UNC Chapel Hill, 1996. Citation on page 70.

https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12082
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12082
https://doi.org/10.1145/1082473.1082545
https://doi.org/10.1007/978-3-319-15497-8_18
https://elib.dlr.de/102254/


Bibliography 137

GOTTSCHALK, S.; LIN, M. C.; MANOCHA, D. Obbtree: A hierarchical structure for rapid
interference detection. In: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques. [S.l.: s.n.], 1996. p. 171–180. Citation on page 69.

HAN, Z.; NING, C.; WEI, Y. Mopso for bim: a multi-objective optimization tool using particle
swarm optimization algorithm on a bimbased visual programming platform. Hello, Culture, p.
39–51, 2019. Citations on pages 143 and 147.

KARAGIANNIS, G.; ALTINTAS, O.; EKICI, E.; HEIJENK, G.; JARUPAN, B.; LIN, K.;
WEIL, T. Vehicular networking: A survey and tutorial on requirements, architectures, challenges,
standards and solutions. IEEE Communications Surveys Tutorials, v. 13, n. 4, p. 584–616,
Fourth 2011. ISSN 1553-877X. Citation on page 33.

KENNEY, J. B. Dedicated short-range communications (dsrc) standards in the united states.
Proceedings of the IEEE, v. 99, n. 7, p. 1162–1182, 2011. Citation on page 31.

KHAYATIAN, M.; MEHRABIAN, M.; ANDERT, E.; DEDINSKY, R.; CHOUDHARY, S.;
LOU, Y.; SHIRVASTAVA, A. A survey on intersection management of connected autonomous
vehicles. ACM Trans. Cyber-Phys. Syst., Association for Computing Machinery, New York,
NY, USA, v. 4, n. 4, aug 2020. ISSN 2378-962X. Available: <https://doi.org/10.1145/3407903>.
Citations on pages 27, 28, 29, 33, and 34.

KLISCHAT, M.; DRAGOI, O.; EISSA, M.; ALTHOFF, M. Coupling sumo with a motion
planning framework for automated vehicles. In: . [S.l.: s.n.], 2019. Citation on page 65.

KRAJZEWICZ, D.; ERDMANN, J. Road intersection model in sumo. In: . [S.l.: s.n.], 2013. p.
212–220. Citation on page 78.

KRAJZEWICZ, D.; ERDMANN, J.; BEHRISCH, M.; BIEKER, L. Recent development and
applications of SUMO - Simulation of Urban MObility. International Journal On Advances in
Systems and Measurements, v. 5, n. 3&4, p. 128–138, December 2012. Citation on page 62.

KRAUSS, S. Microscopic modeling of traffic flow: investigation of collision free vehicle
dynamics. 1998. Citation on page 63.

KRAUSS, S.; WAGNER, P.; GAWRON, C. Metastable states in a microscopic model of traffic
flow. Phys. Rev. E, American Physical Society, v. 55, p. 5597–5602, May 1997. Available:
<https://link.aps.org/doi/10.1103/PhysRevE.55.5597>. Citation on page 63.

KULKARNI, A.; TAI, K. Probability collectives: A distributed optimization approach for
constrained problems. In: . [S.l.: s.n.], 2010. v. 86, p. 1–8. Citations on pages 43 and 48.

KULKARNI, A. J.; TAI, K. Solving constrained optimization problems using probability collec-
tives and a penalty function approach. International Journal of Computational Intelligence
and Applications, v. 10, n. 04, p. 445–470, 2011. Citation on page 43.

. A probability collectives approach for multi-agent distributed and cooperative optimization
with tolerance for agent failure. In: . Agent-Based Optimization. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013. p. 175–201. Citation on page 43.

KULKARNI, A. J.; TAI, K.; ABRAHAM, A. Probability Collectives: A Distributed Multi-
Agent System Approach for Optimization. [S.l.]: Springer Publishing Company, Incorporated,
2015. ISBN 3319159992. Citations on pages 43, 45, 47, 48, 49, 55, 59, and 143.

https://doi.org/10.1145/3407903
https://link.aps.org/doi/10.1103/PhysRevE.55.5597


138 Bibliography

LAMÉ, G. Examen des différentes méthodes employées pour résoudre les problèmes de
géométrie. Librairie scientifique J. Hermann, 1818. Available: <https://books.google.com.br/
books?id=FjMDAAAAQAAJ>. Citation on page 69.

LEVIN, M. W.; REY, D. Conflict-point formulation of intersection control for autonomous
vehicles. Transportation Research Part C: Emerging Technologies, v. 85, p. 528–
547, 2017. ISSN 0968-090X. Available: <https://www.sciencedirect.com/science/article/pii/
S0968090X17302735>. Citations on pages 35, 53, and 79.

LISSAC, A.; DJAHEL, S.; HODGKISS, J. Infrastructure assisted automation of lane change
manoeuvre for connected and autonomous vehicles. In: 2019 IEEE International Smart Cities
Conference (ISC2). [S.l.: s.n.], 2019. p. 173–180. Citation on page 79.

LIU, C.; LIN, C.-W.; SHIRAISHI, S.; TOMIZUKA, M. Distributed conflict resolution for
connected autonomous vehicles. IEEE Transactions on Intelligent Vehicles, v. 3, n. 1, p.
18–29, 2018. Citations on pages 29 and 40.

LOPEZ, P. A.; BEHRISCH, M.; BIEKER-WALZ, L.; ERDMANN, J.; FLÖTTERÖD, Y.-P.;
HILBRICH, R.; LÜCKEN, L.; RUMMEL, J.; WAGNER, P.; WIESSNER, E. Microscopic
traffic simulation using sumo. In: The 21st IEEE International Conference on Intelligent
Transportation Systems. IEEE, 2018. p. 2575–2582. Available: <https://elib.dlr.de/127994/>.
Citation on page 62.

MAKSIMOVSKI, D.; FESTAG, A.; FACCHI, C. A survey on decentralized cooperative ma-
neuver coordination for connected and automated vehicles. In: . [S.l.: s.n.], 2021. p. 100–111.
Citations on pages 27, 28, and 29.

MALIK, F. M.; KHATTAK, H. A.; ALMOGREN, A.; BOUACHIR, O.; DIN, I. U.; ALTAMEEM,
A. Performance evaluation of data dissemination protocols for connected autonomous vehicles.
IEEE Access, v. 8, p. 126896–126906, 2020. Citation on page 27.

MENG, Y.; LI, L.; WANG, F.-Y.; LI, K.; LI, Z. Analysis of cooperative driving strategies
for nonsignalized intersections. IEEE Transactions on Vehicular Technology, v. 67, n. 4, p.
2900–2911, 2018. Citations on pages 39 and 52.

MORIDPOUR, S.; SARVI, M.; ROSE, G. Lane changing models: A critical review. Transporta-
tion Letters: The International Journal of Transportation Research, v. 2, p. 157–173, 07
2010. Citation on page 37.

NASH, J. The bargaining problem. Econometrica, v. 18, n. 2, p. 155–162, 1950. Available:
<https://EconPapers.repec.org/RePEc:ecm:emetrp:v:18:y:1950:i:2:p:155-162>. Citation on
page 38.

NICHTING, M.; HEß, D.; SCHINDLER, J.; HESSE, T.; KöSTER, F. Space time reservation
procedure (strp) for v2x-based maneuver coordination of cooperative automated vehicles in
diverse conflict scenarios. In: 2020 IEEE Intelligent Vehicles Symposium (IV). [S.l.: s.n.],
2020. p. 502–509. Citation on page 40.

NUNEN, E. van; KWAKKERNAAT, R.; PLOEG, J.; NETTEN, B. Cooperative competition
for future mobility. Intelligent Transportation Systems, IEEE Transactions on, v. 13, n. 3, p.
1018–1025, 2012. Citation on page 27.

https://books.google.com.br/books?id=FjMDAAAAQAAJ
https://books.google.com.br/books?id=FjMDAAAAQAAJ
https://www.sciencedirect.com/science/article/pii/S0968090X17302735
https://www.sciencedirect.com/science/article/pii/S0968090X17302735
https://elib.dlr.de/127994/
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:18:y:1950:i:2:p:155-162


Bibliography 139

PHILIPPE, C. Reliable and safe control Navigation for Autonomous Vehicles in Dynamic
Urban Environments. Phd Thesis (PhD Thesis), 06 2020. Citations on pages 40 and 73.

PHILIPPE, C.; ADOUANE, L.; TSOURDOS, A.; SHIN, H.-S.; THUILOT, B. Probability col-
lectives algorithm applied to decentralized intersection coordination for connected autonomous
vehicles. In: 2019 IEEE Intelligent Vehicles Symposium (IV). [S.l.: s.n.], 2019. p. 1928–1934.
Citation on page 40.

PLOEG, J.; SEMSAR-KAZEROONI, E.; MEDINA, A. I. M.; JONGH, J. F. C. M. de; SLUIS, J.
van de; VORONOV, A.; ENGLUND, C.; BRIL, R. J.; SALUNKHE, H.; ARRUE, A.; RUANO,
A.; GARCIA-SOL, L.; NUNEN, E. van; WOUW, N. van de. Cooperative automated maneu-
vering at the 2016 grand cooperative driving challenge. IEEE Transactions on Intelligent
Transportation Systems, v. 19, n. 4, p. 1213–1226, April 2018. ISSN 1524-9050. Citations on
pages 28, 37, and 39.

POLI, F.; DENIS, B.; MANNONI, V.; BERG, V.; MARTíN-SACRISTáN, D.; GARCIA-ROGER,
D.; MONSERRAT, J. F. Evaluation of c-v2x sidelink for cooperative lane merging in a cross-
border highway scenario. In: 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-
Spring). [S.l.: s.n.], 2021. p. 1–5. Citations on pages 37 and 134.

PRITCHETT, A. R.; GENTON, A. Negotiated decentralized aircraft conflict resolution. IEEE
Transactions on Intelligent Transportation Systems, PP, n. 99, p. 1–11, 2017. ISSN 1524-9050.
Citation on page 38.

RIOS-TORRES, J.; MALIKOPOULOS, A. A. Automated and cooperative vehicle merging at
highway on-ramps. IEEE Transactions on Intelligent Transportation Systems, IEEE, v. 18,
n. 4, p. 780–789, 2016. Citation on page 36.

RUSSELL, S.; NORVIG, P. Artificial Intelligence: A Modern Approach. Prentice Hall,
2010. (Prentice Hall series in artificial intelligence). ISBN 9780136042594. Available: <https:
//books.google.com.br/books?id=8jZBksh-bUMC>. Citation on page 32.

SANTOS, T. C. dos; WOLF, D. F. Automated conflict resolution of lane change utilizing
probability collectives. In: 2019 19th International Conference on Advanced Robotics (ICAR).
[S.l.: s.n.], 2019. p. 623–628. Citation on page 40.

. Bargaining game approach for lane change maneuvers. In: 2019 19th International
Conference on Advanced Robotics (ICAR). [S.l.: s.n.], 2019. p. 629–634. Citation on page
38.

SCHAFFER, J. Multiple objective optimization with vector evaluated genetic algorithms. In: .
[S.l.: s.n.], 1985. p. 93–100. Citation on page 143.

SCHEPPERLE, H.; BöHM, K.; FORSTER, S. Towards valuation-aware agent-based traffic
control. In: Proceedings of the 6th International Joint Conference on Autonomous Agents
and Multiagent Systems. New York, NY, USA: Association for Computing Machinery, 2007.
(AAMAS ’07). ISBN 9788190426275. Available: <https://doi.org/10.1145/1329125.1329349>.
Citation on page 79.

SISLAK, D.; VOLF, P.; PECHOUCEK, M.; SURI, N. Automated conflict resolution utilizing
probability collectives optimizer. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), v. 41, n. 3, p. 365–375, 2011. Citations on pages 40, 49, 56,
and 143.

https://books.google.com.br/books?id=8jZBksh-bUMC
https://books.google.com.br/books?id=8jZBksh-bUMC
https://doi.org/10.1145/1329125.1329349


140 Bibliography

TALEBPOUR, A.; MAHMASSANI, H. Influence of connected and autonomous vehicles on
traffic flow stability and throughput. Transportation Research Part C: Emerging Technologies,
Elsevier Limited, v. 71, p. 143–163, Oct. 2016. ISSN 0968-090X. Citation on page 33.

THORPE, C.; HEBERT, M.; KANADE, T.; SHAFER, S. Vision and navigation for the carnegie-
mellon navlab. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 10, n. 3,
p. 362 – 373, May 1988. Citation on page 27.

THRUN, S.; MONTEMERLO, M.; DAHLKAMP, H.; STAVENS, D.; ARON, A.; DIEBEL, J.;
FONG, P.; GALE, J.; HALPENNY, M.; HOFFMANN, G.; LAU, K.; OAKLEY, C.; PALATUCCI,
M.; PRATT, V.; STANG, P.; STROHBAND, S.; DUPONT, C.; JENDROSSEK, L.-E.; KOELEN,
C.; MARKEY, C.; RUMMEL, C.; NIEKERK, J. van; JENSEN, E.; ALESSANDRINI, P.;
BRADSKI, G.; DAVIES, B.; ETTINGER, S.; KAEHLER, A.; NEFIAN, A.; MAHONEY, P.
Stanley: The robot that won the darpa grand challenge: Research articles. J. Robot. Syst., John
Wiley and Sons Ltd., Chichester, UK, v. 23, n. 9, p. 661–692, Sep. 2006. ISSN 0741-2223.
Available: <http://dx.doi.org.ez67.periodicos.capes.gov.br/10.1002/rob.v23:9>. Citation on page
27.

TIENTRAKOOL, P.; HO, Y.-C.; MAXEMCHUK, N. F. Highway capacity benefits from using
vehicle-to-vehicle communication and sensors for collision avoidance. In: 2011 IEEE Vehicular
Technology Conference (VTC Fall). [S.l.: s.n.], 2011. p. 1–5. Citation on page 32.

TOLEDO, T.; ZOHAR, D. Modeling duration of lane changes. Transportation Research
Record, v. 1999, n. 1, p. 71–78, 2007. Citation on page 71.

URMSON, C.; ANHALT, J.; BAGNELL, D.; BAKER, C.; BITTNER, R.; CLARK, M. N.;
DOLAN, J.; DUGGINS, D.; GALATALI, T.; GEYER, C.; GITTLEMAN, M.; HARBAUGH, S.;
HEBERT, M.; HOWARD, T. M.; KOLSKI, S.; KELLY, A.; LIKHACHEV, M.; MCNAUGHTON,
M.; MILLER, N.; PETERSON, K.; PILNICK, B.; RAJKUMAR, R.; RYBSKI, P.; SALESKY,
B.; SEO, Y.-W.; SINGH, S.; SNIDER, J.; STENTZ, A.; WHITTAKER, W. R.; WOLKOWICKI,
Z.; ZIGLAR, J.; BAE, H.; BROWN, T.; DEMITRISH, D.; LITKOUHI, B.; NICKOLAOU, J.;
SADEKAR, V.; ZHANG, W.; STRUBLE, J.; TAYLOR, M.; DARMS, M.; FERGUSON, D.
Autonomous driving in urban environments: Boss and the urban challenge. J. Field Robot.,
John Wiley and Sons Ltd., Chichester, UK, v. 25, n. 8, p. 425–466, Aug. 2008. ISSN 1556-4959.
Available: <http://dx.doi.org.ez67.periodicos.capes.gov.br/10.1002/rob.v25:8>. Citation on page
27.

WALDOCK, A.; CORNE, D. Multi-objective probability collectives. In: Applications of Evo-
lutionary Computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 461–470.
Citation on page 49.

WANG, Y.; CAI, P.; LU, G. Cooperative autonomous traffic organization method for connected
automated vehicles in multi-intersection road networks. Transportation Research Part C:
Emerging Technologies, v. 111, p. 458–476, 2020. ISSN 0968-090X. Available: <https://www.
sciencedirect.com/science/article/pii/S0968090X19305686>. Citation on page 79.

WOLPERT, D. H.; STRAUSS, C. E.; RAJNARAYAN, D. Advances in distributed optimization
using probability collectives. Advances in Complex Systems, World Scientific, v. 9, n. 04, p.
383–436, 2006. Citations on pages 43, 45, and 47.

YOUSEFI, S.; MOUSAVI, M. S.; FATHY, M. Vehicular ad hoc networks (vanets): Challenges
and perspectives. In: 2006 6th International Conference on ITS Telecommunications. [S.l.:
s.n.], 2006. p. 761–766. Citation on page 31.

http://dx.doi.org.ez67.periodicos.capes.gov.br/10.1002/rob.v23:9
http://dx.doi.org.ez67.periodicos.capes.gov.br/10.1002/rob.v25:8
https://www.sciencedirect.com/science/article/pii/S0968090X19305686
https://www.sciencedirect.com/science/article/pii/S0968090X19305686


Bibliography 141

ZADEH, L. Optimality and non-scalar-valued performance criteria. IEEE Transactions on
Automatic Control, v. 8, n. 1, p. 59–60, 1963. Citation on page 49.

ZHAO, Z.; WANG, Z.; WU, G.; YE, F.; BARTH, M. J. The state-of-the-art of coordinated
ramp control with mixed traffic conditions. In: 2019 IEEE Intelligent Transportation Systems
Conference (ITSC). [S.l.: s.n.], 2019. p. 1741–1748. Citation on page 36.
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APPENDIX

A
PROBABILITY COLLECTIVES FOR

MULTI-OBJECTIVE

In this appendix, we evaluate the solutions obtained for resolving three benchmark
problems in multi-objective optimization using our proposed algorithm in Section 3.1, which is
based on (SISLAK et al., 2011) and (KULKARNI; TAI; ABRAHAM, 2015). Our objective is to
evaluate the convergence of the algorithm and compare with Non-dominated Sorting Genetic
Algorithm (NSGA-II) (also known as NSGA2) proposed by Deb et al. (2000), which is able to
find the Pareto frontier.

We analyzed three functions: the Chankong and Haimes function which was proposed
by Chankong and Haimes (2008), the Schaffer function N. 1 proposed by Schaffer (1985) and
the Constr-Ex problem proposed by Han, Ning and Wei (2019).

For this study, we use the pymoo Multi-objective Optimization in Python version 0.5.0
tool, which includes an NSGA2 implementation for Python 3. We defined the multi-objective
problems and collect the Pareto frontier points which are represented by the red color in the
graphs below.

For all functions, after collecting the Pareto frontier points, we run our proposed Prob-
ability Collectives for optimizing generic functions presented in Section 3.1 and compare the
solution with the NSGA2 Pareto frontier.
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A.1 Chankong and Haimes function

Minimize =


f1(x,y) = 2+(x−1)2 +(y−1)2

f2(x,y) = 9x− (y−1)2

Subject to =


g1(x,y) = x2 + y2 ≤ 255

g2(x,y) = x−3y+10≤ 0

Search domain =−20≤ x,y≤ 20

(A.1)

Figure 58 – The outcome of minimizing the Chankong and Haimes function is shown. Black points denote
invalid values, while green points indicate valid values that fulfill the constraints but are not
optimal. The red points depict the Pareto frontier calculated with NSGA2, and the blue point
represents the optimal result of the optimization carried out by the PC.
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Source: Elaborated by the author.
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Figure 59 – The figure provides a closer look at the Pareto frontier area of the Chankong and Haimes
function
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Source: Elaborated by the author.

In this first problem, the algorithm found a point close to the Pareto frontier and coinci-
dentally close to a "knee point", which in this case is a point that has a good cost balance.

Probability Collectives best value


x = 10.248385761510693

y = −0.0006819504549753219

A.2 Schaffer function N. 1

Minimize =


f1(x) = x2

f2(x) = (x−2)2

Search domain =−10≤ x≤ 10

(A.2)
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Figure 60 – The outcome of minimizing the Schaffer function N. 1 is shown. Green points indicate valid
values that fulfill the constraints but are not optimal. The red points depict the Pareto frontier
calculated with NSGA2, and the blue point represents the optimal result of the optimization
carried out by the PC.
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Figure 61 – The figure provides a closer look at the Pareto frontier area of the Schaffer function N. 1
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The PC algorithm converged to a central point on the Pareto frontier that has the best
cost balance between the two functions.
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Probability Collectives best value


x = 0.9999596333093044

y = 1.000040367505447

A.3 Constr-Ex problem

This function was proposed by Han, Ning and Wei (2019).

Minimize =


f1(x,y) = x

f2(x,y) = (1+ y)/x

Subject to =


g1(x,y) = y+9x≥ 6

g2(x,y) =−y+9x≥ 1

Search domain =


0.1≤ x≤ 1

0≤ y≤ 5

(A.3)
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Figure 62 – The outcome of minimizing the Constr-Ex problem is shown. Black points denote invalid
values, while green points indicate valid values that fulfill the constraints but are not optimal.
The red points depict the Pareto frontier calculated with NSGA2, and the blue point represents
the optimal result of the optimization carried out by the PC.
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Figure 63 – The figure provides a closer look at the Pareto frontier area of the Constr-Ex problem
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In this case, the point was slightly displaced from the center of the Pareto frontier, but
the point found by the PC algorithm also has a good balance between costs.
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Probability Collectives best value


x = 0.961140297837971

y = 1.040432149973398
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