• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.55.2018.tde-04072018-141630
Documento
Autor
Nombre completo
Marta Yukie Baba
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1994
Director
Tribunal
Rodrigues, Josemar (Presidente)
Achcar, Jorge Alberto
Hotta, Luiz Koodi
 
Título en portugués
INFERÊNCIA BAYESIANA PARA REGRESSÃO LINEAR SIMPLES COM ERRO NAS VARIÁVEIS
Palabras clave en portugués
Não disponível
Resumen en portugués
O objetivo deste trabalho é realizar uma Inferência Bayesiana para o coeficiente de inclinação do modelo de regressão linear simples com erros nas variáveis. Em consequência dos erros de mensuração os estimadores não-Bayesianos dos parâmetros envolvidos são viciados. O modelo com erros nas variáveis pode ser classificado de duas formas distintas: Modelo Funcional e Modelo Estrutural. Para o Modelo Funcional estudamos o parâmetro de inclinação sujeito a priori não-informativa e colocamos seu estimador de mínimos quadrados sob o modelo funcional com réplicas. Para o modelo estrutural analisamos o parâmetro de inclinação utilizando primeiramente a priori não- -informativa e depois é submetido a uma priori informativa seguindo a estrutura hierárquica que Lindley propôs em um artigo publicado em 1972. Utilizando esta estrutura hierárquica, a influência da priori sobre a média a posteriori é analisada no sentido de Robustez introduzido por Pericchi & Smith (1992). O método de Laplace é usado como uma alternativa para aproximar a densidade a posteriori do parâmetro de interesse quando não conseguimos determinar explicitamente suas soluções analíticas.
 
Título en inglés
Bayesian Inference for linear regression models with errors in variables
Palabras clave en inglés
Not available
Resumen en inglés
This work deals with Bayesian Inference for the slope coefficient of the simple linear regression model error in the variables. Due to measurement errors the non-Bayesian parameter estimators are biased. The model with error in the variables can be classified in two distinct ways: as the Functional Model or as the Structural Model. For the first one we study the slope parameter under noninformative prior analyzing its least square estimator via the functional model applied repeatedly. For the structural model we analyze the slope parameter using firstly a noninformative prior and then an informative one according to the hierarchical structure proposed by Lindley in 1972. Using this structure, the effect of the prior on the posterior average is analized via the robustness concept introduced by Pericchi & Smith (1992). The Laplace's method is used as an alternative to approximate the posterior density of the slope parameter when analytic solutions are not explicitly known.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
MartaYukieBaba.pdf (2.65 Mbytes)
Fecha de Publicación
2018-07-04
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Tesis y Disertaciones de la USP.