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ABSTRACT

PADILHA, V. A. Machine learning tools for bioinformatics problems. 2020. 154 p. Tese (Dou-
torado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2020.

In recent years, machine learning techniques have been extensively used for bioinformatics, due
to their capacity in solving hard problems by learning a function from a set of known examples,
being this function able to make predictions for unseen data. Motivated by these successful
applications, we tackle in this thesis three different bioinformatics problems using machine
learning techniques.

The first problem is related to the use of coherence measures for the analysis of biclustering
results in gene expression data analysis. Specifically, we conducted a detailed investigation of the
correlations between different bicluster coherence measures on a benchmark of 19 datasets of the
Saccharomyces cerevisiae organism. We were able to identify pairs of redundant measures and
also observed that such measures did not present any relation with external knowledge available
in the form of gene ontologies.

The second problem is related to the classification of CRISPR cassettes into their subtypes and the
prediction of potentially missing proteins. We proposed a novel tool, called CRISPRcasIdentifier,
which integrates classifiers and regressors for these tasks. It outperformed the competitors from
the literature on the most recent benchmark dataset available and is the first tool that is able to
recommend potentially missing proteins in CRISPR cassettes.

The third problem is related to the automatic identification of CRISPR cassettes in bacterial and
archaeal genomes. We introduced Casboundary, a new tool that detects CRISPR cassettes based
on gene signatures and their relations with neighboring genes. Moreover, this tool is able to point
out potentially new cas genes, as demonstrated by a case study. Finally, Casboundary is also
capable of decomposing a CRISPR cassette into its modules, which are related to the different
stages of the CRISPR systems.

Keywords: Machine Learning, Biclustering, Gene Expression Data Analysis, CRISPR-Cas
Systems, Cas Proteins.





RESUMO

PADILHA, V. A. Ferramentas de aprendizado de máquina para problemas de bioinformá-
tica. 2020. 154 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2020.

Recentemente, técnicas de aprendizado de máquina têm sido utilizadas de maneira extensiva em
problemas de bioinformática, devido à sua capacidade na resolução de problemas complexos por
meio do aprendizado de uma função a partir de uma amostra finita de exemplos, sendo tal função
capaz de realizar predições para novos dados. Motivado por essas aplicações bem sucedidas, este
trabalho aborda três problemas diferentes de bioinformática por meio de técnicas de aprendizado
de máquina.

O primeiro problema está relacionado ao uso de medidas de coerência para a análise de resultados
de bi-agrupamento em análise de dados de expressão gênica. Especificamente, foi conduzida
uma investigação detalhada acerca das correlações entre diferentes medidas de coerência de
bi-grupos em uma coleção de 19 bases de dados do organismo Saccharomyces cerevisiae. Com
isso, tornou-se possível identificar pares de medidas redundantes e observar que tais medidas não
apresentam qualquer relação com conhecimento externo disponível no formato de ontologias de
genes.

O segundo problema está relacionado à classificação de instâncias do sistema CRISPR em seus
diferentes subtipos e a predição de proteínas potencialmente ausentes em tais instâncias. Para
isso, uma nova ferramenta, chamada CRISPRcasIdentifier, foi proposta, a qual integra modelos
de classificação e regressão para as tarefas mencionadas. Tal ferramenta atingiu melhores
resultados do que os competidores encontrados na literatura na base de dados mais recente
disponível. Ademais, a CRISPRcasIdentifier é a primeira ferramenta capaz de recomendar
proteínas potencialmente ausentes em instâncias do sistema CRISPR.

O terceiro problema está relacionado à identificação automática de instâncias do sistema CRISPR
em genomas de organismos bacterianos e archaeanos. Para isso, a ferramenta Casboundary foi
proposta, a qual detecta instâncias do CRISPR ao considerar as relações entre genes assinatura
com seus vizinhos. Além disso, esta ferramenta é capaz de apontar genes cas potencialmente
novos, tal como demonstrado em um estudo de caso. Finalmente, a ferramenta Casboundary
é capaz de decompor as instâncias do CRISPR em seus diferentes módulos, os quais estão
relacionados aos diferentes estágios do sistema CRISPR.

Palavras-chave: Aprendizado de Máquina, Bi-Agrupamento, Análise de Dados de Expressão
Gênica, Sistemas CRISPR-Cas, Proteínas Cas.
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CHAPTER

1
INTRODUCTION

Machine Learning (ML) research investigates the development of new algorithms able to
learn specific tasks by identifying patterns given a finite sample of data. Research in this area
dates back to pioneering studies of Artificial intelligence in the 1950s, such as the famous Turing
Test (TURING, 1950) and the proposal of the Perceptron neural network (ROSENBLATT, 1957).
In the past few decades, it has attracted a large deal of attention, given the large amounts of
data generated for several applications every day and the increasing processing capabilities
of computers, which facilitate the process of building models that are suitable for complex
real-world problems. One of the areas that has benefited from the use of ML algorithms is the
Bioinformatics.

Bioinformatics can be described by its three main objectives (LUSCOMBE; GREEN-
BAUM; GERSTEIN, 2001): (i) to organize large amounts of unstructured biological data into
structured formats that can be easily retrieved and updated by specialists; (ii) to develop tools
that speed up the analysis of biological data by efficiently executing pipelines on structured
data; and (iii) to help in the extraction of meaningful biological knowledge, by identifying
patterns and novelties in these data. In this thesis, we proposed and experimentally investigated
ML approaches and tools to be applied to gene expression data analysis and classification of
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems.

This chapter is organized as follows. Section 1.1 introduces the biological concepts
and tools that were explored by us in the gene expression data analysis problem. Section 1.2
provides an overview of CRISPR systems, which have attracted the interest of the Bioinformatics
community due to their high potential for genome engineering and gene editing applications.
Section 1.3 summarizes our main contributions from this thesis. Finally, Section 1.4 presents an
overview of the chapters that compose this thesis.
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1.1 Gene expression data analysis

In this section, we introduce fundamental biological concepts of gene expression analysis
necessary to understand some of the problems approached by this thesis.

1.1.1 Biological concepts

Proteins are large molecules composed by smaller molecules called amino acids, which
are organized in a chain format1. They are responsible for many important functions in living
organisms, such as: structural proteins that constitute tissues and cells, enzymes that speed up
biochemical reactions, oxygen transport, antibody defense, etc (SETUBAL; MEIDANIS, 1997).
All the information necessary to build proteins is stored in the deoxyribonucleic acid (DNA).
During the gene expression, this information is copied into a ribonucleic acid (RNA) molecule
and carried to a sophisticated machinery called the ribosome, which is responsible to assemble
the protein. In this section, we give a brief overview about this process. For a more detailed and
technical view, we recommend the book of Lodish et al. (2008).

The DNA encodes the genetic information and is composed by simpler molecules called
nucleotides, which are identified by their base pairs. There are four base pairs that constitute
the DNA: adenine (A), guanine (G), cytosine (C) and thymine (T). The DNA is found in a
double helix structure, where the nucleotides from one helix are paired by hydrogen bonds
to the nucleotides from the other helix following two rules: A pairs with T and G pairs with
C (WATERMAN, 1995). An example of the DNA structure is shown in Figure 1a. Inside the
DNA there are some contiguous regions, known as genes, that store the information to build
specific proteins. The genes are identified by sequences called promoters, which indicate to the
cellular mechanism the position where a gene or group of genes starts in the DNA (SETUBAL;
MEIDANIS, 1997).

The RNA is usually found as a single helix molecule. Similarly to the DNA, it is also
composed by four base pairs: A, C, G and U, where U stands for Uracil. The pairing rules are
maintained with U now pairing with A (WATERMAN, 1995; SETUBAL; MEIDANIS, 1997).
An example of the RNA structure is illustrated in Figure 1b.

The Central Dogma of Molecular Biology explains how the information that is stored by
the DNA is transcribed into an RNA and then translated into a protein (ALKHNBASHI, 2017).
It is illustrated in Figure 2 and consists of four different processes (SETUBAL; MEIDANIS,
1997):

1. Replication: which is responsible for duplicating the DNA molecule. This process allows
an organism to grow from a single cell to billions of cells that are similar to the original

1 According to Lodish et al. (2008), proteins usually range between 100 and 1000 amino acids and a
"typical" protein has ∼ 400 amino acids.
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Figure 1 – Illustrations of the DNA and RNA structures.
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Figure 2 – The Central Dogma of Molecular Biology.
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one.

2. Transcription: which copies the information of a gene into a messenger RNA molecule
(mRNA). In eukaryotes, which are organisms whose cells contain a nucleus, some regions
that are not necessary to build the protein are removed from this molecule. These regions
are called introns, while the regions that remain are called exons.

3. Reverse transcription: which produces a DNA molecule from an mRNA molecule.

4. Translation: which is responsible for translating the information stored in the mRNA into
a protein. For such, the mRNA is transported to the ribosome, where it is read in codons.
Each codon consists of a nucleotide triplet and refers to a specific amino acid.
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Gene expression is the process of using the information stored by a gene to perform the
protein synthesis and is directly related to the transcription step described above (LODISH et

al., 2008). The levels of expression of multiple genes are measured by experiments with high-
throughput technologies among which microarrays became widely used (BROWN; BOTSTEIN,
1999). These technologies quantify the abundance of mRNA of different genes across different
samples, which vary from study to study, depending on its objective. One common example is in
the study of cancer, where one may collect cancerous tissues from different types and subtypes
(RHODES et al., 2004; SOUTO et al., 2008). After the results of multiple experiments are
collected, they can be presented in a matrix form:

X =

Biological samples
G

en
es

x11 x12 · · · x1m

x12 x22 · · · x2m
...

... . . . ...
xn1 xn2 · · · xnm

, (1.1)

where xi j is a real value that corresponds to the abundance of mRNA of the ith gene in the jth

sample (MADEIRA; OLIVEIRA, 2004).

Since gene expression matrices are composed by a large number of genes and samples,
clustering algorithms have been widely used to help researchers to better understand the data
to be analyzed by identifying hidden patterns across multiple gene expression data obtained by
different technologies, like microarrays (ZHANG, 2006) and RNAseq (WANG; GERSTEIN;
SNYDER, 2009).

1.1.2 Data clustering and biclustering

Data clustering is an exploratory data analysis task whose objective is to find a structure
that organizes a set of objects X = {x1, · · · ,xn} into k subsets called clusters (JAIN; DUBES,
1988; TAN; STEINBACH; KUMAR, 2006). For such, data clustering algorithms consider a
n×m data matrix representation of X , where each object is a vector described by m features, and
some measure that quantifies the (dis)similarity between pairs of objects considering all features.
As a result, it is expected that objects that are clustered together present high similarities (resp.
low dissimilarities) to each other and low similarities (resp. high dissimilarities) to the objects
of other clusters (TAN; STEINBACH; KUMAR, 2006). Formally, a hard clustering partition
C= {C1, · · · ,Ck} of k clusters is defined by Xu and Wunsch (2005) as:

1.
⋃k

i=1Ci =C1 ∪C2 ∪·· ·∪Ck = X ;

2. Ci ̸= /0 ∀i ∈ {1, · · · ,k};

3. Ci ∩C j = /0 ∀i, j ∈ {1, · · · ,k} and i ̸= j.
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Traditional clustering algorithms have been successfully applied to a wide variety of
tasks in gene expression data analysis studies, such as: to understand the functions of some genes
that were not known beforehand, understand the cellular processes that genes contained in the
same cluster take part in, identify potential subcell types, etc (JIANG; TANG; ZHANG, 2004).
However, the use of these techniques for gene expression data analysis have two main limitations
(MADEIRA; OLIVEIRA, 2004; PADILHA; CAMPELLO, 2017):

1. Frequently, the genes contained in the same cluster present similarity only for subsets of
the biological samples, due to the high dimensionality of the data available. In addition,
the subset of samples may vary from cluster to cluster.

2. Most traditional clustering techniques produce partitions that are mutually exclusive (i.e.,
clusters do not share objects) and exhaustive (i.e., all objects are clustered). However,
genes and samples may be involved in multiple biological processes and belong to one
cluster, multiple clusters2, or no cluster.

Thus, the biclustering paradigm was proposed to solve these these limitations, by pro-
viding algorithms that are able to detect clusters of genes contained in subsets of the available
samples (KRIEGEL; KRÖGER; ZIMEK, 2009). The search procedures employed by these
algorithms optimize different criteria that are analogous to the notion of (dis)similarity in the
traditional clustering literature. Such criteria are tipically called coherence measures.

Biclustering analysis dates back to the 1970s, when Hartigan (1972) proposed the
first algorithm able to cluster a data matrix into a set of submatrices. In that paper, the author
developed a divide-and-conquer procedure to help in the analysis of Republican voting data of the
United States of America, where the rows represented different states and the columns different
election years. Afterwards, Cheng and Church (2000) introduced a greedy algorithm focused on
gene expression data analysis, which revolutionized the literature. Their work motivated further
developments and expanded the applications of biclustering to varied types of problems. However,
the main researches are still conducted in the bioinformatics area (MADEIRA; OLIVEIRA,
2004; PONTES; GIRÁLDEZ; AGUILAR-RUIZ, 2015; XIE et al., 2019).

Although many studies have proved the relevance of biclustering techniques for gene
expression data analysis, the evaluation of results in a quantitative manner is still a challenging
task. The main problem arises from the fact that, to the best of our knowledge, there are no gene
expression datasets with labeled biclusters publicly available. To overcome this limitation, some
studies focus on the evaluation through bicluster coherence measures. However, it is hard to
compare the results of different algorithms using this approach, because they are usually based
on different coherence measures. Other studies use domain knowledge, available in the form of
gene ontologies. We describe these ontologies in the next section.
2 In this case, the clusters may be overlapped. The overlap may exist on genes, on samples or on both

dimensions simultaneously.
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1.1.3 Gene Ontology

According to Ashburner et al. (2000), many organisms present similar genes, which
motivates the unification of the information available about them, since the knowledge about
a specific gene in one organism likely helps to identify/predict the roles that it takes in other
organisms. The Gene Ontology (GO) is a collaborative project for the unification of all the
knowledge available for different genes in an interpretable structure. This structure consists of
a standardized vocabulary, which is organized as a directed acyclic graph, where each node
represents a term and each edge refers to the relation between two terms, such as "is-a" and
"part-of" (e.g., see Figure 3) (CONSORTIUM, 2004). Each term may refer to one or multiple
genes and is labeled with a unique GO identifier. There are three different ontologies available
(ASHBURNER et al., 2000; CONSORTIUM, 2004):

∙ Cellular Component ontology: refers to the locations where the material produced by
genes are active inside the cells. Examples of terms from this ontology are: "cell body"
(GO:0044297), "cytoplasm" (GO:0005737) and "lateral part of cell" (GO:0097574).

∙ Molecular Function ontology: specifies the activities that the genes are involved in. Ex-
amples of terms from this ontology are: "protein transporter activity" (GO:0140318),
"molecular carrier activity" (GO:0140104) and "binding" (GO:0005488).

∙ Biological Process ontology: describes the biological processes that genes may take part
in, which are defined by a sequence of molecular functions. Examples of terms from
this ontology are: "reproduction" (GO:0000003), "immune response" (GO:0006955) and
"response to drug" (GO:0042493).

After identifying the GO terms that are related to the genes of a bicluster, the significance
(also called over-representation) of each term is measured by the Fisher’s exact test (FISHER,
1922):

p =
b

∑
i=t

(c
i

)(n−c
b−i

)(n
b

) , (1.2)

where n is the total number of genes in the dataset (also called gene universe), c is the number
of genes from the dataset that are annotated with the target category, b is the number of genes
contained in the bicluster being analyzed, and t is the number of genes in the bicluster that
are annotated with the target GO term. The p-value quantifies the probability of obtaining at
least t genes annotated with a specific term in a random bicluster containing b genes (TANAY;
SHARAN; SHAMIR, 2002). Usually, a term is considered over-represented if it achieves a
p-value below 0.05 after the Benjamini and Hochberg multiple test correction (HOCHBERG;
BENJAMINI, 1990).
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Figure 3 – GO lineage of the term "blood coagulation" (GO:0007596).

Source – Image generated with the GOATOOLS package (TANG et al., 2015).

1.2 The CRISPR system

In this section we introduce the main components of the CRISPR system, an adaptive
immune system of bacterial and archaeal systems, as well as its immune mechanism stages. Such
systems became widely known, after their potential as gene editing tools has been demonstrated.

1.2.1 Components and defense mechanism

CRISPR systems are adaptive immune systems that are present in around 85% of archaeal
and 40% of bacterial genomes, according to the recent study of Makarova et al. (2019). These
systems are constituted by the following elements:

∙ CRISPR array (Figure 4a): which consists of short repeated nucleic acid sequences (called
repeats) interleaved with other sequences of similar length (called spacers) that store
information extracted from the nucleic acids of viruses that have either invaded the host
organism or its ancestors (RATH et al., 2015; ALKHNBASHI, 2017). When new viruses
invade the organism, the spacers acquired from them are usually added next to the CRISPR
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leader (Figure 4b). Thus, the CRISPR array can be seen as a chronological record of
infections (RATH et al., 2015; ALKHNBASHI, 2017).

∙ CRISPR leader (Figure 4b): which serves as the promoter region for the CRISPR array
and is adjacent to it. The leader is composed by nucloetide sequences of low complexity
that do not encode any protein (MOJICA; GARRETT, 2013; ALKHNBASHI, 2017).

∙ CRISPR-associated (Cas) proteins (Figure 4c): which are encoded by a set of adjacent cas

genes and necessary for the CRISPR defense mechanism to work. This set of consecutive
cas genes is usually called a cassette and the CRISPR system usually depends on different
subsets of genes for each of the stages that perform the immunity function of this system
(ALKHNBASHI, 2017). Such stages are described next.

Figure 4 – Illustration of the elements of the CRISPR system.

leader cas genes

repeat spacer

array

(a) (b) (c)
Source – Elaborated by the author.

In summary, the CRISPR system operates through three consecutive stages as discussed
by Rath et al. (2015), Alkhnbashi (2017):

1. Adaptation (or acquisition) stage: where the information contained in the DNA of the
invader is detected and stored as a new spacer in the CRISPR array. The acquisition of this
new spacer can occur by: (i) naïve acquisition, when the invader is new and has not been
encountered before, and (ii) priming acquisition, when the immune system has already
encountered the invader before and there is one or more spacers that match it. In the latter
case, the adaptation genes work in cooperation with the interference genes (which compose
the last stage of the CRISPR system) to increase the resistance against recurring infections.

2. Expression (or processing) stage: where the information contained in the CRISPR array
is transcribed into a long RNA molecule, called precursor CRISPR RNA (pre-crRNA),
which is then processed into smaller molecules called CRISPR RNAs (crRNAs).

3. Interference stage: where the produced crRNAs associated with Cas proteins locate and
cleave the foreign DNA element.

1.2.2 CRISPR classification

The cas genes that compose CRISPR systems belong to different families, present multi-
ple variations even inside the same family and have a fast evolutionary behavior (MAKAROVA
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et al., 2015; MAKAROVA et al., 2019). To reflect such characteristics, many studies that extend
the known CRISPR classifications have been published over the years. They aggregate the
information that can be extracted from the increasing amount of data that becomes publicly
available and the findings of diverse CRISPR studies that investigate different aspects of this
system. Next, we summarize the main studies dedicated to these tasks.

Jansen et al. (2002) conducted a detailed investigation of the components of CRISPR
systems that were found in 40 genomes of bacteria and archaea. In their analysis, the authors
found 4 core cas genes, named cas1–cas4, which were frequently contained in the CRISPR
cassettes found. Moreover, the authors observed some evidence that when multiple CRISPR
cassettes are contained in the same genome, they may evolve independently.

Haft et al. (2005) identified a total of 45 different cas gene families across different
archaeal and bacterial genomes. As a result, they defined 8 different CRISPR subtypes, based on
the specific cas genes contained in each genome. The subtypes were named after the organisms
where they were the only CRISPR instance detected: Ecoli, Ypest, Nmeni, Dvulg, Tneap, Hmari,
Apern and Mtube. In addition, the authors also defined two new core cas genes, cas5 and cas6,
which were associated with 5 and 4 of the CRISPR subtypes, respectively.

Makarova et al. (2011) improved previous studies by introducing a more complex cate-
gorization of CRISPR systems that took into account their evolutionary behavior. By analyzing
703 genomes, the authors proposed a hierarchical classification of CRISPR systems into 3 types
(I, II and III), which could be decomposed into 10 subtypes (I-A to I-F, II-A and II-B, III-A and
III-B), according to their gene combinations. Besides, they observed the presence of signature
cas genes, which are responsible for defining the subtype of each cassette, and increased the
size of the set of core cas genes by introducing cas7–cas10. Finally, the authors proposed the
names I-U, II-U and III-U, for CRISPR systems that contained no signature genes, but could
be assigned to one of the major types after performing structure and sequence analyses or even
define new subypes in the future.

Makarova et al. (2015) analyzed 2,751 genomes and identified two new CRISPR
(sub)types (IV and V). Additionally, the authors extended the previous CRISPR classifica-
tion by establishing an extra top level in the classification hierarchy containing two classes (1
and 2). The main difference between them is that class 1 systems (containing types I, III and IV),
which are the most common, rely on multiple Cas proteins for the interference stage, whereas
class 2 systems (constituted by types II and V) depend on a single long Cas protein for it. Finally,
the five types could be broken up into 16 subtypes (I-A to I-F, I-U, II-A to II-C, III-A to III-D,
IV and V).

Shmakov et al. (2015) hypothesized that class 2 systems could be decomposed into more
(sub)types, even though they are found in a much lesser extent when compared to class 1 systems.
They took cas1 as an anchor to search for potentially new (sub)types, since it is one of the
most common and conserved genes in CRISPR systems. As a result, 53 previously unclassified
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CRISPR systems containing long proteins, which are one of the main characteristics of Type II
systems, were identified. These systems could then be classified into two new subtypes (V-B and
V-C)3 and a new type (VI).

Makarova et al. (2019) collected 13,116 genomes and found 7,915 CRISPR systems.
During their investigation, they identified 3 new class 1 and 13 new class 2 subtypes, increasing
the CRISPR classification to 33 subtypes (I-A to I-G4, II-A to II-C, III-A to III-F, IV-A to IV-C,
V-A to V-I, V-K and VI-A to VI-D). Furthermore, supported by the new discoveries related to
class 2 systems, the authors presented a hypothetical outline of the CRISPR evolution.

Finally, we show a simplified overview of the classes and types of the CRISPR system.
Table 1 presents the combinations of Cas proteins that are involved in each stage of the CRISPR
defense mechanism, separated by class and type. The discussion of the Cas protein composition
and underlying differences of the mechanisms across the diverse CRISPR (sub)types is out of
the scope of this thesis and we recommend the interested reader the recent paper of Makarova et

al. (2019).

Table 1 – A simplified summary of the Cas proteins involved in each stage of the CRISPR system. Up to
date, 13 core Cas proteins have been identified (Cas1–Cas13). The signal transduction/ancillary
column refers to proteins whose roles are not certainly predicted.

Class Type Adaptation Expression Interference Signal transduction/
ancillary

1
I Cas1, Cas2, Cas4 Cas6 Cas3, Cas5, Cas7, Cas8, SS –

III Cas1, Cas2, RT Cas6 Cas5, Cas7, Cas10, SS
IV Cas1, Cas2 Cas6 Cas5, Cas7, Csf1, SS† DinG

2
II Cas1, Cas2, Cas4 Rnase III*, Cas9 Cas9 Csn2
V Cas1, Cas2, Cas4 Cas12 Cas12 –
VI Cas1, Cas2 Cas13 Cas13 –

SS: small subunit. Usually, it is a Cas11 protein.
RT: reverse transcriptase. It is an enzyme responsible for the reverse transcription (Section 1.1.1).
† may be dispensable.
* non-Cas protein.

Source – Extracted from Box 1b of Makarova et al. (2019).

1.2.3 Applications

The CRISPR system has attracted a large deal of attention, mainly because of the Cas9
protein that is present in Type II systems. This protein can be used as a simple and effective
approach for applications of genome engineering and gene editing (RAN et al., 2013; SANDER;
JOUNG, 2014; HSU; LANDER; ZHANG, 2014). Examples of applications that may benefit
from the use of CRISPR/Cas9 are: development of new cancer (ZHAN et al., 2019) and HIV
(EBINA et al., 2013) therapies; correction of genetic diseases (WU et al., 2013); design of

3 Shmakov et al. (2015) redesignated the type V systems identified by Makarova et al. (2015) as subtype
V-A.

4 Subtype I-U was reclassified as I-G.
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better crops with increased resistance against climate changes (KHATODIA et al., 2016); among
others.

1.3 Main contributions

After providing a general overview of the areas of the Bioinformatics covered by this
thesis, we present the main contributions of our work.

This thesis can be divided in two parts. The first one is directly related to the original
research project that was submitted to the ICMC/USP as the application for the PhD course.
Initially, we were planning on improving the evaluation of biclustering algorithms on real gene
expression datasets, by investigating the behavior of bicluster coherence measures. However,
in 2018 we had the opportunity to collaborate with the Bioinformatics Group of the University
of Freiburg. In this collaboration, we developed ML-based tools to solve CRISPR-related
challenges. The results of this collaboration constitute the second part of this thesis. In summary,
our contributions are:

∙ Regarding bicluster coherence measures (first part):

– A broad analysis of 17 bicluster coherence measures and their correlations with GO
over-representations.

– Time complexity analyses of the bicluster coherence measures, which we could not
find in the literature.

– The evaluation of 16 different experimental scenarios involving bicluster coherence
measures, 2 correlation coefficients and all three gene ontologies.

∙ Regarding CRISPR-related challenges (second part):

– A novel tool for the classification of CRISPR-Cas systems.

– The prediction of possibly missing Cas proteins inside CRISPR cassettes.

– A set of association rules that indicate Cas proteins that are biologically related.

– A new approach for identifying cassette boundaries inside a genome and labeling the
respective cas genes.

– A study case for the detection of putative new cas gene types.

1.4 Thesis organization

This thesis is organized as a collection of papers. The first part (chapter 2) and the
second part (chapters 3 and 4) reproduce the entire content of three papers that were published
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in international journals. They can be read in any particular order, as preferred by the reader,
since each one is self-contained with all the background necessary to understand it. The only
exception is chapter 5, which concludes this thesis. Below we briefly describe each chapter as
well as its main contributions.

1.4.1 Chapter 2

Title: "Experimental correlation analysis of bicluster coherence measures and gene

ontology information". A preliminary version of this chapter was published in the Proceedings of
the 7th Brazilian Conference on Intelligent Systems (BRACIS 2018) (PADILHA; CARVALHO,
2018), for which we received an honorable mention and were invited to extend it for publication in
the Applied Soft Computing journal by Elsevier. This chapter is this extended article (PADILHA;
CARVALHO, 2019).

We present a comparative study of 17 bicluster coherence measures from the literature
and analyze their behavior with respect to external knowledge extracted from the gene ontologies.
They are applied on the results obtained by 10 biclustering algorithms on a benchmark of 19
gene expression datasets. In summary, the contributions of this chapter are:

∙ The analysis of the correlation between the measures on real gene expression data, allowing
the identification of redundant measures.

∙ An extensive evaluation of scenarios involving the Biological Process, Cellular Component
and Molecular Function gene ontologies.

∙ The time complexity analyses of the evaluated measures.

1.4.2 Chapter 3

Title: "CRISPRcasIdentifier: Machine learning for accurate identification and classi-

fication of CRISPR-Cas systems". This chapter is an article that was written in collaboration
with Dr. Omer S. Alkhnbashi and Prof. Dr. Rolf Backofen from the Bioinformatics Group of
the University of Freiburg, Germany, and Dr. Shiraz A. Shah from COPSAC, University of
Copenhagen, Denmark. It was published in the GigaScience journal by Oxford University Press
(PADILHA et al., 2020a).

We introduce a holistic approach named CRISPRcasIdentifier, which uses ML models
to predict missing Cas proteins in CRISPR cassettes and their subtypes according to the most
recent CRISPR data publicly available (MAKAROVA et al., 2015; MAKAROVA et al., 2019).
In addition, our tool is also able to extract association rules constituted by Cas proteins that
frequently co-occur in CRISPR systems and may constitute a functional module. In summary,
the contributions of this chapter are:
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∙ The first approach for predicting possibly missing proteins in CRISPR cassettes.

∙ The classification of CRISPR subtypes with a high accuracy, clearly outperforming the
competing tools from the literature.

∙ The extraction of association rules from CRISPR-Cas systems, which indicate sets of Cas
proteins that frequently co-occur and are thus biologically related.

∙ The identification of signature genes from CRISPR systems based on the rules of decision
trees and on the importance of the Cas proteins for ensembles of decision trees.

1.4.3 Chapter 4

Title: "Casboundary: Automated definition of integral Cas cassettes". This chapter is an
article that was written in collaboration with Dr. Omer S. Alkhnbashi, Dr. Van Dinh Tran and
Prof. Dr. Rolf Backofen from the Bioinformatics Group of the University of Freiburg, Germany,
and Dr. Shiraz A. Shah from COPSAC, University of Copenhagen, Denmark. It was published
in the Bioinformatics journal by Oxford University Press (PADILHA et al., 2020c).

We propose a tool for automatic detection of cassette boundaries in archaeal and bacterial
genomes. Besides, it is also able to classify the cas genes of the cassette and to decompose it
into the different modules that constitute the CRISPR system. In summary, the contributions of
this chapter are:

∙ The mathematical formulation of the cassette boundary identification problem.

∙ The first tool that is able to detect cassette boundaries by taking the relations between a
potential signature gene and its neighbors into account.

∙ An approach for the classification of cas gene types that combines multiple features based
on Hidden Markov Models and properties of the respective proteins.

∙ The detection of potentially new cas gene types and a study case that shows the identifica-
tion of putative new gene families.

∙ The decomposition of a cassette into its modules (adaptation, expression and interference).

∙ A tool that, when integrated with CRISPRcasIdentifier, provides a full pipeline for the
detection of CRISPR cassettes, as well as cas type and cassette subtype classification.

1.4.4 Chapter 5

In this chapter we present our main conclusions, discuss some limitations and present
the directions of some possible future studies.
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CHAPTER

2
EXPERIMENTAL CORRELATION ANALYSIS

OF BICLUSTER COHERENCE MEASURES
AND GENE ONTOLOGY INFORMATION

Publication information: This chapter is an article that was published in the Applied Soft
Computing journal by Elsevier. According to the publisher’s policies, we retain the right to
include it in this thesis for non-commercial purposes* .

Reference: PADILHA, V. A.; CARVALHO, A. C. P. L. F. Experimental correlation analysis
of bicluster coherence measures and gene ontology information. Applied Soft Computing,
Elsevier, v. 85, p. 105688, 2019. Available: <https://doi.org/10.1016/j.asoc.2019.105688>.

2.1 Abstract

Biclustering algorithms have become popular tools for gene expression data analysis.
They can identify local patterns defined by subsets of genes and subsets of samples, which
cannot be detected by traditional clustering algorithms. In spite of being useful, biclustering
is an NP-hard problem. Therefore, the majority of biclustering algorithms look for biclusters
optimizing a pre-established coherence measure. Many heuristics and validation measures have
been proposed for biclustering over the last 20 years. However, there is a lack of an extensive
comparison of bicluster coherence measures on practical scenarios. To deal with this lack, this
paper experimentally analyzes 17 bicluster coherence measures and external measures calculated
from information obtained in the gene ontologies. In this analysis, results were produced by 10
algorithms from the literature in 19 gene expression datasets. According to the experimental
results, a few pairs of strongly correlated coherence measures could be identified, which suggests
redundancy. Moreover, the pairs of strongly correlated measures might change when dealing

*<https://www.elsevier.com/about/policies/copyright>

https://doi.org/10.1016/j.asoc.2019.105688
https://www.elsevier.com/about/policies/copyright
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with normalized or non-normalized data and biclusters enriched by different ontologies. Finally,
there was no clear relation between coherence measures and assessment using information from
gene ontology.

2.2 Introduction

High-throughput technologies, such as microarrays (BROWN; BOTSTEIN, 1999), allow
researchers to monitor the behavior of thousands of genes under specific biological samples.
Normally, the samples correspond to different points in a time series, different types of tissues,
different environmental conditions, different organs and/or different individuals (MADEIRA;
OLIVEIRA, 2004).

Gene expression data analysis studies investigate the behavior of thousands of genes
from an organism under multiple biological samples. Their results and conclusions can support a
better understanding of gene functions, biological processes, effects of treatments, among others
(BEN-DOR; SHAMIR; YAKHINI, 1999; TANAY; SHARAN; SHAMIR, 2002). For such, these
studies use a data matrix representation, which is obtained by concatenating the results from
multiple high-throughput experiments. In such a matrix, each row corresponds to a gene, each
column corresponds to a sample and each element quantifies the expression level of a gene in a
specific sample (MADEIRA; OLIVEIRA, 2004; JIANG; TANG; ZHANG, 2004).

Traditional clustering algorithms are often used to analyze gene expression data. They
allow researchers to improve their understanding of the functions of the genes from an organism.
However, some studies argue that a biological process may be active only under subsets of genes
and subsets of samples (CHENG; CHURCH, 2000; MADEIRA; OLIVEIRA, 2004; PONTES;
GIRLDEZ; AGUILAR-RUIZ, 2015), which characterizes clusters in subspaces of the original
dataset. Besides, some genes or samples may not take part in any cluster at all. Thus, a traditional
clustering method may not be able to answer some important research questions.

Biclustering overcomes the previously discussed clustering limitations. It looks for local
patterns, called biclusters, comprising subsets of genes and subsets of samples, which are usually
obfuscated by the high dimensionality of a dataset. Additionaly, biclustering may allow the
presence of overlapped biclusters and unclustered genes or samples.

Although biclustering has proved its importance, the size of its search space is in the
order of 2N+M for N genes and M samples, which characterizes an NP-hard problem (CHENG;
CHURCH, 2000; TANAY; SHARAN; SHAMIR, 2002; MADEIRA; OLIVEIRA, 2004; JIANG;
TANG; ZHANG, 2004). Therefore, many algorithms are based on the optimization of a bicluster
coherence measure through (meta-)heuristics, in order to produce approximate results in an
acceptable amount of time.

The selection or proposal of an appropriate coherence measure is crucial in the develop-



2.2. Introduction 43

ment of a biclustering algorithm (PONTES; GIRLDEZ; AGUILAR-RUIZ, 2015). Each measure
can detect a particular set of patterns and it is the main component that guides the algorithm
search for a good solution.

Since 2000, many biclustering algorithms and coherence measures have been proposed in
the literature. At the same time, extensive surveys (MADEIRA; OLIVEIRA, 2004; TANAY; SHA-
RAN; SHAMIR, 2005; BUSYGIN; PROKOPYEV; PARDALOS, 2008; PONTES; GIRÁLDEZ;
AGUILAR-RUIZ, 2015) and studies for the comparison of algorithms were carried out (PRELIĆ
et al., 2006; BOZDAĞ; KUMAR; CATALYUREK, 2010; EREN et al., 2012; OGHABIAN et

al., 2014; PADILHA; CAMPELLO, 2017). However, few studies have investigated the behaviors
of different coherence measures and to what extent they agree with the external biological
information available.

In a preliminary study (PADILHA; CARVALHO, 2018), we investigated the correlations
of 15 biclustering coherence measures for results generated by 9 biclustering algorithms in 19
gene expression datasets. For such, we considered two experimental scenarios on normalized
data to analyze relations between coherence criteria and biological significance of biclusters.
The present study extends this work, presenting the following contributions:

∙ Analysis of correlations between 17 coherence measures for results obtained by 10 biclus-
tering algorithms in the 19 gene expression datasets, to present evidence able to reduce the
use of redundant measures during evaluation;

∙ Evaluation of results for 16 different experimental scenarios, which encompass normalized
and non-normalized data, separate and aggregated analyses with the available ontologies.
Then, we have more evidence to assess if the performances of coherence measures agree
with those achieved by evaluation using external knowledge; and

∙ Computational complexity analyses of the measures, which are usually not provided in
their original studies, and were only provided in the supplementary material of (PADILHA;
CARVALHO, 2018). These analyses are important for applications where a large number
of biclusters needs to be assessed.

This paper is organized as follows. Section 2.3 presents the main related works found by
the authors. Section 2.4 introduces the coherence and external measures, biclustering algorithms
and the gene expression datasets selected for this study. Section 2.5 presents the experiments
carried out and discusses their results. Finally, Section 2.6 presents the main conclusions from
this study.
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2.3 Related work

There are several studies which propose new biclustering algorithms and/or coherence
measures. However, there is a lack of extensive comparisons between distinct measures on
the results of different algorithms. For instance, few related studies discuss how biclustering
coherence measures relate to each other.

The first study of biclustering in the context of gene expression data can be found in
Cheng and Church (2000). The well-known Mean Squared Residue (MSR) coherence measure
and an algorithm for its optimization were proposed. According to the experimental results
obtained, the biclustering paradigm used affects the gene expression data analysis. This study
became the main benchmark adopted when developing new bicluster coherence measures and
algorithms.

In Aguilar-Ruiz (2005), the authors formally analyze the MSR measure, showing its
limitation for identifying scaling patterns in biclusters, due to its high dependence on the
variances of scaling factors. Other studies, such as Divina et al. (2012), Giraldez et al. (2007),
Teng and Chan (2008), Mukhopadhyay, Maulik and Bandyopadhyay (2009), Pontes, Giráldez
and Aguilar-Ruiz (2010), Nepomuceno, Troncoso and Aguilar-Ruiz (2011), Flores et al. (2013),
introduced bicluster coherence measures able to overcome the limitations of MSR on certain
types of patterns. The improvements obtained were shown in the performance on synthetic and/or
real data.

In Santamaría, Quintales and Therón (2007), the authors proposed a coherence measure
and an internal biclustering evaluation index. They also discussed the main advantages and
disadvantages when using relative, internal and external measures. The authors tested their
proposals on synthetic datasets for the task of hyperparameter selection for two biclustering
algorithms.

A new measure, the Minimal Mean Squared Error (MMSE), to detect linear patterns in
biclusters, was proposed in Chen, Liu and Zeng (2015). The authors compared MMSE with five
measures from the literature. They also adapted the algorithm proposed in Cheng and Church
(2000) to optimize the new measure and performed experiments on synthetic and real datasets.
This modified algorithm was compared with 6 biclustering and 2 clustering algorithms from the
literature. According to the authors, the new measure and algorithm detected patterns not usually
found by other measures and algorithms.

A large number of coherence measures, 14 altogether, were discussed in Pontes, Girldez
and Aguilar-Ruiz (2015). From these 14 measures, 13 were tested on synthetic datasets and on
4 real datasets. In the experiments with synthetic datasets, to assess these coherence measures
when the biclusters do not follow perfect patterns, they were tested on 3 types of bicluster
patterns subject to different noise levels. In the experiments with real datasets, the measures were
applied to biclusters found by an evolutionary algorithm previously proposed. However, as this
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algorithm includes one of the investigated measures in its fitness function, there is a bias in the
experimental results. Afterwards, the coherence measures were compared to values obtained
from external biological information. According to the authors, the correlation between their
results and the biological measures according to a normalized Mutual Information (MI) score
showed a relation between many coherence measures with the biological information.

This paper goes one step forward in the previous analysis by comparing a larger number
of 17 biclustering measures in a larger number of datasets (19). Besides, in order to reduce
algorithmic bias, each measure was evaluated using 10 biclustering algorithms. In order to reduce
dependence on estimation algorithms or on data binning to calculate MI for continuous variables,
the Pearson and Spearman correlations were used. Additionally, the Wilcoxon signed-rank test
was applied to the results to assess any evidence of differences between the results from the two
correlation measures.

2.4 Methods

This section has a description of the main methods used. For such, it is organized as
follows. In Section 2.4.1, we discuss the types of numeric bicluster patterns. In Section 2.4.2, we
present the coherence measures investigated. In Section 2.4.3, we describe the 10 algorithms
used in the experiments. In Section 2.4.4, we present the 19 datasets selected. In Section 2.4.5,
we discuss the external evaluation using GO ontologies and the quantities calculated from them.
In Section 2.4.6, we detail our experimental methodology. Finally, in Section 2.4.7, we describe
the hyperparameter settings used for the algorithms.

2.4.1 Bicluster patterns

Let X = (R,C) be a gene expression matrix, where R is a set of N rows (genes) and C is
a set of M columns (samples). A bicluster corresponds to a submatrix B = (I,J), I ⊆ R, J ⊆C,
which presents some patterns between its values. Several numeric patterns have been described
in the literature. The most general among them are (PONTES; GIRÁLDEZ; AGUILAR-RUIZ,
2015):

∙ Shifting pattern, where each bicluster element bi j can be defined by a constant/typical value
πi for the ith row added to an adjustment factor β j for the jth column. Thus, bi j = πi +β j.

∙ Scaling pattern, where each bicluster element bi j is described by the constant/typical
value πi for the ith row multiplied by an adjustment factor α j for the jth column. Thus,
bi j = πiα j.

∙ Shifting-scaling pattern, where the bicluster presents both patterns simultaneously. Each
bicluster element bi j is obtained by multiplying πi by α j and adding the result to β j. Thus,



46
Chapter 2. Experimental correlation analysis of bicluster coherence measures and gene ontology

information

bi j = πiα j + β j. Note that shifting and scaling biclusters are special cases of shifting-
scaling patterns when α j = 1 and β j = 0 ∀ j ∈ J, respectively.

From the aforementioned patterns, some specific patterns that are also widely referenced
in the literature can be extracted, such as (MADEIRA; OLIVEIRA, 2004):

∙ Constant pattern, where all of the bicluster elements are equal to the same constant value
µ . Thus, πi = µ ∀i ∈ I, α j = 1 and β j = 0 ∀ j ∈ J.

∙ Constant row pattern, where the elements of each row of the bicluster are equal to the
same constant value, which can be different from one row to another. Thus, α j = 1 and
β j = 0 ∀ j ∈ J.

∙ Constant column pattern, where the elements of each column of the bicluster are equal to
the same constant value, which can be different from one column to another. Thus, πi = 1
∀i ∈ I.

It must be mentioned that, in real gene expression data, the expression values may be
obfuscated by the presence of noise. Therefore, one cannot expect the biclusters to always present
the perfect patterns previously described. Thus, for each element xi j of the original data matrix
X , there is generally an unknown ηi j value associated to it, which represents its amount of noise
(MADEIRA; OLIVEIRA, 2004). This motivates the use of coherence measures, which quantify
the extent of agreement between a noisy bicluster and a desired ideal pattern.

2.4.2 Coherence measures

The use of coherence measures is an important step to evaluate a set of biclusters that
were produced by one or more biclustering algorithms. These measures require only the data
available and inspect the quality of the biclusters’ elements regarding a set of predefined patterns.
By using different measures, the results can be assessed from different perspectives and, as
a consequence, cover different aspects of the data based on distinct approaches, such as: the
variability of the bicluster’s values (Variance-based), correlations among genes or biological
samples (Correlation-based), and correspondence of the bicluster’s elements with a general
tendency pattern that models their behavior (Standardization-based).

In this section, we introduce the coherence measures investigated in this paper. They are
the same measures investigated in Pontes, Girldez and Aguilar-Ruiz (2015) and four additional
measures which, to the best of our knowledge, have not been previously investigated in related
studies: three were the main contributions of the bicluster evaluation work in Santamaría,
Quintales and Therón (2007) that assesses constant patterns, constant row patterns and constant
column patterns; the fourth, proposed in Chen, Liu and Zeng (2015), can capture shifting-scaling
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biclusters that, although is the most general bicluster model discussed in the literature, is the
hardest one to deal with and only few measures are able to properly evaluate it.

Next, we present the measures, organized in the following categories, according to the
similarities of their approaches: Variance-based (Section 2.4.2.1), Correlation-based (Section
2.4.2.2) and Standardization-based (Section 2.4.2.3). We also provide the time complexity
analyses for the measures, which are usually not provided in their original publications. In Table
2, we present a summary of the measures: range of values, objectives (i.e., if a measure must be
maximized or minimized) and time complexity.

2.4.2.1 Variance-based measures

The measures from this category evaluate the coherence of the values of a bicluster
regarding their expected values predicted using quantities, such as the bicluster mean or the
bicluster row and column means. In this paper, biJ , bI j and bIJ stand for the mean of the ith row,
the mean of the jth column and the mean of all elements of a bicluster B, respectively. These
measures are presented next.

1. Variance (VAR) (HARTIGAN, 1972) is used to detect constant patterns:

VAR(B) =
|I|

∑
i=1

|J|

∑
j=1

(bi j −bIJ)
2. (2.1)

Clearly, the smaller the value, the closer a bicluster is to a constant pattern.

Time complexity analysis. The calculation of bIJ costs O(|I||J|). The sum of the squared
terms also costs O(|I||J|). Overall, the time complexity of VAR is O(|I||J|).

2. Mean Squared Residue (MSR) (CHENG; CHURCH, 2000) is based on the shifting bicluster
model, and produces smaller values for biclusters that agree more with this model. MSR is
defined as:

MSR(B) =
1

|I||J|

|I|

∑
i=1

|J|

∑
j=1

(bi j −biJ −bI j +bIJ)
2. (2.2)

Time complexity analysis. The calculations of biJ ∀i ∈ I, bI j ∀ j ∈ J and bIJ require O(|I||J|)
steps. The sum of all squared terms also requires O(|I||J|) steps. Overall, the time com-
plexity of MSR is O(|I||J|).

3. Mean Absolute Residue (MAR) (YANG et al., 2002) is also based on the shifting bicluster
model. The only difference between MAR and MSR is that MAR takes the absolute
difference between the bicluster elements and their expected values predicted by the row,
column and bicluster means. It is defined as:

MAR(B) =
1

|I||J|

|I|

∑
i=1

|J|

∑
j=1

|bi j −biJ −bI j +bIJ|. (2.3)
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Time complexity analysis. MAR has the same time of complexity of MSR, which is
O(|I||J|).

4. Relevance Index (RI) (YIP; CHEUNG; NG, 2004) identifies the constant columns pattern
based on the local and global variances of the columns in the bicluster. It is formulated as:

RI(B) =
|J|

∑
j=1

R j, (2.4)

where

R j = 1−
σ2

I j

σ2
j
, (2.5)

σ2
I j is the variance of the jth column of B and σ2

j is the variance of the jth column of the
full dataset.

Time complexity analysis. The calculation of each σ2
I j costs O(|I|). The calculation of each

σ2
j costs O(N). Therefore, any R j requires O(|I|)+O(N) = O(N) steps. Since B has |J|

columns, the complexity of RI is O(N |J|).

5. Constancy by rows (Cr) (SANTAMARÍA; QUINTALES; THERÓN, 2007) quantifies the
agreement of a bicluster with the constant column pattern:

Cr(B) =
1
|I|

|I|−1

∑
i=1

|I|

∑
k=i+1

√√√√ |J|

∑
j=1

(bi j −bk j)2. (2.6)

Time complexity analysis. The sum of the squared terms costs O(|J|). In a bicluster, there
is a total of (|I|(|I|−1))/2 = O(|I|2) pairs of rows. Overall, Cr runs in O(|I|2|J|).

6. Constancy by columns (Cc) (SANTAMARÍA; QUINTALES; THERÓN, 2007) expresses
the extent to which the values of a bicluster present a constant row pattern. It is the
transposed version of Cr.

Time complexity analysis. Since Cc is the transposed version of Cr, its time complexity is
O(|I||J|2).

7. Overall Constancy (OC) (SANTAMARÍA; QUINTALES; THERÓN, 2007) minimizes its
value when evaluating constant biclusters. For such, it integrates the constancy by rows
and the constancy by columns formulae:

OC(B) =
|I|Cr(B)+ |J|Cc(B)

|I|+ |J|
. (2.7)

Time complexity analysis. Since it requires the calculation of Cr and Cc, OC runs in
O(max(|I|2 |J|, |I| |J|2)).
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8. Scaling Mean Squared Residue (SMSR) (MUKHOPADHYAY; MAULIK; BANDYOPAD-
HYAY, 2009) is a modification of the MSR measure that is able to detect scaling biclusters:

SMSR(B) =
1

|I||J|

|I|

∑
i=1

|J|

∑
j=1

(biJ bI j −bi j bIJ)
2

b2
iJ b2

I j
. (2.8)

As in MSR, smaller values indicate biclusters that better suit the desired model.

Time complexity analysis. SMSR requires the same quantities as MSR and MAR (biJ ∀i ∈ I,
bI j ∀ j ∈ J and bIJ) to determine the differences among the values of the bicluster elements
and their expected values. Therefore, the complexity of SMSR is O(|I||J|).

9. Minimal Mean Squared Error (MMSE) (CHEN; LIU; ZENG, 2015) is based on the shifting,
scaling and shifting-scaling models. Its authors argue that it is better suited than previous
measures, such as MSR and SMSR, to identify negative correlated linear patterns. This
measure is formally expressed as:

MMSE(B) =
1

|I||J|

[
|I|

∑
i=1

|J|

∑
j=1

d2
i j −λmax(DDT )

]
, (2.9)

where di j = bi j −biJ , D is the matrix containing all di j elements, and λmax(DDT ) is the
eigenvalue of DDT with maximum absolute value.

The time complexity of MMSE is O(min(|I|, |J|) |I||J|). The complete analysis is provided
in the original paper.

2.4.2.2 Correlation-based measures

These measures assess the similarity between gene/sample behaviors, instead of the
magnitudes or deviations among their values (PONTES; GIRLDEZ; AGUILAR-RUIZ, 2015).
For such, they use either the Pearson or the Spearman correlation to measure gene/sample
similarities. In this paper, the former is denoted as r(·, ·) while the latter is represented as ρ(·, ·).
In addition, the ith row and the jth column of B are denoted as bi* and b* j, respectively. These
measures are detailed next.

1. Average Correlation (AC) (NEPOMUCENO; TRONCOSO; AGUILAR-RUIZ, 2011)
was proposed to detect shifting, scaling and shifting-scaling biclusters by calculating the
average Pearson correlation between its rows:

AC(B) =
2

|I|(|I|−1)

|I|−1

∑
i=1

|I|

∑
k=i+1

r(bi*,bk*). (2.10)

Time complexity analysis. The calculation of each r(bi*,bk*) costs O(|J|). There are
|I|(|I|−1)/2 = O(|I|2) pairs of rows in B. Overall, AC requires O(|I|2 |J|) steps.
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2. Sub-matrix Correlation Score (SCS) (YANG; DAI; YAN, 2011) was proposed to detect
shifting or scaling patterns. It takes into account correlations between rows and between
columns. The ideal bicluster would present strong correlations on both dimensions. SCS is
formally defined as:

SCS(B) = min{Srow(B),Scol(B)}, (2.11)

where

Srow(B) = min
i=1,··· ,|I|

{
1− 1

|I|−1

|I|

∑
k=1
k ̸=i

|r(bi*,bk*)|

}
, (2.12)

Scol(B) = min
j=1,··· ,|J|

{
1− 1

|J|−1

|J|

∑
l=1
l ̸= j

|r(b* j,b*l)|

}
. (2.13)

Time complexity analysis. The calculation of each r(bi*,bk*) and each r(b* j,b*l) costs
O(|J|) and O(|I|), respectively. The calculations of all Srow values and all Scol values
require O(|I|2 |J|) and O(|I| |J|2) steps, respectively. Overall, the time complexity of SCS
is O(max(|I|2 |J|, |I| |J|2)).

3. Average Correlation Value (ACV) (TENG; CHAN, 2008) was designed to identify shifting
or scaling models. For such, it gives higher values for biclusters containing rows or columns
presenting a strong average Pearson correlation value:

ACV(B) = max

{
2

|I|(|I|−1)

|I|−1

∑
i=1

|I|

∑
k=i+1

|r(bi*,bk*)|,

2
|J|(|J|−1)

|J|−1

∑
j=1

|J|

∑
l= j+1

|r(b* j,b*l)|

}
.

(2.14)

Time complexity analysis. The average absolute correlation among the rows of B re-
quires O(|I|2 |J|) steps. The average absolute correlation between the columns of B costs
O(|I| |J|2). Therefore, ACV runs in O(max(|I|2 |J|, |I| |J|2)).

4. Average Spearman’s Rho (ASR) (AYADI; ELLOUMI; HAO, 2009) was proposed to
overcome any sensitivity of the ACV measure due to using the Pearson correlation. It is
formulated as:

ASR(B) = max

{
2

|I|(|I|−1)

|I|−1

∑
i=1

|I|

∑
k=i+1

ρ(bi*,bk*),

2
|J|(|J|−1)

|J|−1

∑
j=1

|J|

∑
l= j+1

ρ(b* j,b*l)

}
.

(2.15)

Time complexity analysis. The Spearman coefficient measures the correlation between the
ranks of the elements of two vectors. For such, it requires a sorting step, which can be
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performed in O(n logn) for n elements. Thus, each ρ(bi*,bk*) and each ρ(b* j,b*l) cost
O(|J| log |J|) and O(|I| log |I|), respectively. The first argument of max runs in O(|I|2|J|
log |J|). The latter argument of max requires O(|J|2 |I| log |I|) steps. Overall, ASR runs in
O(max(|I|2 |J| log |J|, |J|2 |I| log |I|)).

5. Spearman’s Biclustering Measure (SBM) (FLORES et al., 2013) was introduced to detect
shifting or scaling patterns by calculating the average Spearman correlation coefficient
between the rows and columns of a bicluster and weighting their influences in the final
result. Formally, this measure is defined as:

SBM(B) = ψ(B) ω(B) ρ̄I(B) ρ̄J(B), (2.16)

where

ρ̄I(B) =
2

|I|(|I|−1)

|I|−1

∑
i=1

|I|

∑
k=i+1

|ρ(bi*,bk*)|, (2.17)

ρ̄J(B) =
2

|J|(|J|−1)

|J|−1

∑
j=1

|J|

∑
l= j+1

|ρ(b* j,b*l)|, (2.18)

ψ(B) and ω(B) are hyperparameters that refer to the importance of the rows and the
columns of a bicluster. Their values are set by the user. In this paper, we used ω(B) = 1
and

ψ(B) =

1, if |J|> 9,
|J|
M

, otherwise,
(2.19)

which are the default values used by the original authors.

Time complexity analysis. SBM is calculated in constant time after ρ̄I(B) and ρ̄J(B) are
obtained. Therefore, SBM has the same time complexity of ASR: O(max(|I|2 |J| log |J|,
|J|2 |I| log |I|)).

In Pontes, Girldez and Aguilar-Ruiz (2015), the Pearson correlation was also included in
this category. However, this measure can only be calculated between pairs of rows or pairs of
columns and not for a whole bicluster. The authors did not mention how they summarized all the
Pearson correlation values for gene or sample pairs of a bicluster. The most simple approach
would be to return the average value. However, this is exactly what the AC measure does. For
this reason, the Pearson correlation was not considered as a bicluster coherence measure by itself
in this study.

2.4.2.3 Standardization-based measures

These coherence measures are based on standardization evaluation of the bicluster’s
rows/columns tendencies by scaling their values to make them comparable (PONTES; GIRLDEZ;
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AGUILAR-RUIZ, 2015). Thus, these measures are calculated on the standardized bicluster B′,
whose elements are defined as:

b′i j =
bi j −µi

σi
, (2.20)

where µi and σi are the mean and the standard deviation of the ith row (gene) of B, respectively.
These measures are detailed next.

1. Maximal Standard Area (MSA) (GIRALDEZ et al., 2007) defines a band for the set of
columns of a bicluster, which corresponds to the maximum and minimum values of each
column. The value of MSA is the total area of this band. This measure, which has been
applied to detect shifting or scaling bicluster patterns, is defined as:

MSA(B) =
|J|−1

∑
j=1

∣∣∣∣∣maxB′
j −minB′

j +maxB′
j+1−minB′

j+1

2

∣∣∣∣∣, (2.21)

where maxB′
j and minB′

j correspond to the maximum and minimum values of the jth column
of B′, respectively.

Time complexity analysis. maxB′
j and minB′

j require O(|I|) steps. Since we have |J| columns
in the bicluster, MSA runs in O(|I| |J|).

2. Virtual Error (VE) (DIVINA et al., 2012) calculates the difference between the bicluster
elements and a virtual row (gene) pattern that captures the general trend of the bicluster
values (PONTES; GIRLDEZ; AGUILAR-RUIZ, 2015). It is minimized when evaluating
biclusters with shifting or scaling patterns. This measure is defined as:

VE(B) =
1

|I||J|

|I|

∑
i=1

|J|

∑
j=1

|b′i j − p′j|, (2.22)

where p is the mean row vector of B, and p′ is its standardized version.

Time complexity analysis. p requires O(|I||J|) steps to be calculated. The standardization
of B takes O(|I||J|) steps. The standardization of p costs O(|J|). The absolute differences
between the elements of B′ and the elements of p′ require O(|I||J|). Overall, VE runs in
O(|I||J|).

3. Transposed Virtual Error (VEt) (PONTES; GIRÁLDEZ; AGUILAR-RUIZ, 2010) is the
VE measure applied in BT . It is able to detect all the patterns identified by VE and also the
shifting-scaling pattern.

Time complexity analysis. VEt requires the same number of steps as VE: O(|I||J|).

2.4.3 Algorithms

To investigate the behavior of the coherence measures, we selected 10 biclustering
algorithms often used in the literature, which have already been extensively studied and have
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Table 2 – Summary of the investigated measures.

Category Measure Reference Range Objective Time complexity

Variance-based

VAR (HARTIGAN, 1972) [0,∞) Min O(|I| |J|)
MSR (CHENG; CHURCH, 2000) [0,∞) Min O(|I| |J|)
MAR (YANG et al., 2002) [0,∞) Min O(|I| |J|)
RI (YIP; CHEUNG; NG, 2004) (−∞, |J|] Max O(N |J|)
Cr (SANTAMARÍA; QUINTALES; THERÓN, 2007) [0,∞) Min O(|I|2 |J|)
Cc (SANTAMARÍA; QUINTALES; THERÓN, 2007) [0,∞) Min O(|I| |J|2)
OC (SANTAMARÍA; QUINTALES; THERÓN, 2007) [0,∞) Min O(max(|I|2 |J|, |I| |J|2))
MMSE (CHEN; LIU; ZENG, 2015) [0,∞) Min O(min(|I|, |J|) |I| |J|)
SMSR (MUKHOPADHYAY; MAULIK; BANDYOPADHYAY, 2009) [0,∞) Min O(|I| |J|)

Correlation-based

AC (NEPOMUCENO; TRONCOSO; AGUILAR-RUIZ, 2011) [−1, 1] Max O(|I|2 |J|)
SCS (YANG; DAI; YAN, 2011) [0,1] Min O(max(|I|2 |J|, |I| |J|2))
ACV (TENG; CHAN, 2008) [0, 1] Max O(max(|I|2 |J|, |I| |J|2))
ASR (AYADI; ELLOUMI; HAO, 2009) [−1, 1] Max O(max(|I|2 |J| log |J|, |J|2 |I| log |I|))
SBM (FLORES et al., 2013) [0,ψ(B) ω(B)] Max O(max(|I|2 |J| log |J|, |J|2 |I| log |I|))

Standardization-based
MSA (GIRALDEZ et al., 2007) [0,∞) Min O(|I| |J|)
VE (DIVINA et al., 2012) [0,∞) Min O(|I| |J|)
VEt (PONTES; GIRÁLDEZ; AGUILAR-RUIZ, 2010) [0,∞) Min O(|I| |J|)
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free implementations which are publicly available. These algorithms are based on different
formulations and use diverse types of heuristics (e.g., greedy, divide-and-conquer, exhaustive
enumeration, etc.) to deal with biclustering tasks. Hence, they are able to identify different
types of bicluster patterns and bicluster structures (e.g., exclusive row or column biclusters,
non-overlapping biclusters in checkerboard structures, arbitrarily positioned biclusters, etc.).
Thus, they model different particularities of a dataset and reduce the bias towards a specific
coherence measure when evaluating the identified biclusters. These algorithms are:

∙ Cheng and Church’s Algorithm (CCA) (CHENG; CHURCH, 2000), which starts with
the full data matrix as a bicluster. Next, it iteratively prunes rows and columns out of the
bicluster, minimizing the MSR measure, until it satisfies a desired threshold. As a last step,
some rows or columns are added back to the bicluster as long as they do not violate the
MSR threshold.

∙ Statistical-Algorithmic Method for Bicluster Analysis (SAMBA) (TANAY; SHARAN;
SHAMIR, 2002), which constructs a bipartite graph for the dataset, where one set of
vertices represents the genes and the other set corresponds to the samples. Next, based
on a likelihood model, it enumerates the most significant complete bipartite subgraphs
(bicliques). Each biclique corresponds to a bicluster in the final solution.

∙ Order Preserving Sub-Matrix (OPSM) (BEN-DOR et al., 2003), which mines biclusters
containing columns that induce a permutation where the values of each row strictly
increases. The search procedure is performed by a greedy heuristic guided by a probabilistic
score.

∙ Spectral (KLUGER et al., 2003) which searches for constant biclusters organized in a
checkerboard structure. For such, it applies the singular value decomposition to the input
matrix. Then, it clusters rows and columns independently by projecting them on their best
partitioning eigenvectors and applying the k-means algorithm.

∙ Plaid (TURNER; BAILEY; KRZANOWSKI, 2005), which represents a set of biclusters
as a sum of linear layers plus an additional layer that models noise and background effects
in the data. The optimization problem consists of a sum of squared errors minimization
between the plaid model and the data, which is solved by a binary least squares algorithm.

∙ Binary Inclusion Maximal Biclustering Algorithm (Bimax) (PRELIĆ et al., 2006), which
discretizes the input dataset into a binary matrix based on the threshold (min(A) +
max(A))/2, where min(A) and max(A) indicate the maximum and minimum values
of the matrix. Next, it searches for upregulated biclusters whose values are all equal to
one, using an enumerative divide-and-conquer approach.
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∙ Bayesian Biclustering (BBC) (GU; LIU, 2008), which assumes the plaid model for the
input dataset, but restricts the overlap between biclusters to occur only in genes or only in
samples. For the plaid model fitting, it uses a Gibbs sampling procedure.

∙ Large Average Submatrices (LAS) (SHABALIN et al., 2009), which assumes a Gaussian
random matrix as a null model for the data and searches for biclusters with average
values that significantly deviate from such a model. For such, it uses a greedy procedure
to optimize a Bonferroni-based significance score that takes into account the size of a
bicluster and its average value.

∙ Qualitative Biclustering (QUBIC) (LI et al., 2009), which represents the data as a graph,
with genes as vertices, edge weights equal to the number of samples for which two genes
are similar. The algorithm consists of a greedy procedure that extracts biclusters that
correspond to heavy subgraphs where the genes present similar expression patterns in the
same subset of samples.

∙ Factor Analysis for Bicluster Acquisition (FABIA) (HOCHREITER et al., 2010), which
assumes a sum of multiplicative layers for a dataset, where each layer represents a different
bicluster, plus a noise layer. To fit this model, FABIA uses an expectation-maximization
approach for likelihood maximization.

In Table 3, we summarize the software packages used to implement the algorithms used
in the experiments of this paper. The algorithms are available in R, Java, C and Python packages.
In the experimental phase, we used biclustlib (PADILHA; CAMPELLO, 2017), which is a
Python library that provides wrappers for these implementations.

Table 3 – Algorithms’ software packages.

Algorithm Language Availability
CCA R <https://cran.r-project.org/web/packages/biclust/index.html>
SAMBA Java <http://acgt.cs.tau.ac.il/expander/>
OPSM Java <https://sop.tik.ee.ethz.ch/bicat/>
Spectral Python <https://scikit-learn.org/stable/>
Plaid R <https://cran.r-project.org/web/packages/biclust/index.html>
Bimax R <https://cran.r-project.org/web/packages/biclust/index.html>
BBC C <http://www.people.fas.harvard.edu/~junliu/BBC/>
LAS Python <https://github.com/padilha/biclustlib>
QUBIC C <https://github.com/maqin2001/qubic>
FABIA Python <https://github.com/bioinf-jku/pyfabia>

2.4.4 Data Collection

The experiments were performed using 19 datasets associated with the Saccharomyces

cerevisiae organism, one of the organisms most comprehensively studied in biology and, as a
consequence, with extensive and high-quality Gene Ontology information available (PRELIĆ et

https://cran.r-project.org/web/packages/biclust/index.html
http://acgt.cs.tau.ac.il/expander/
https://sop.tik.ee.ethz.ch/bicat/
https://scikit-learn.org/stable/
https://cran.r-project.org/web/packages/biclust/index.html
https://cran.r-project.org/web/packages/biclust/index.html
http://www.people.fas.harvard.edu/~junliu/BBC/
https://github.com/padilha/biclustlib
https://github.com/maqin2001/qubic
https://github.com/bioinf-jku/pyfabia
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al., 2006; CHRISTIE; HONG; CHERRY, 2009). This collection consists of the main biclustering
benchmarks of this organism available in the literature. They are represented by dense real-valued
data matrices obtained from time series microarray experiments, including the datasets used
in (CHENG; CHURCH, 2000)1 and (PRELIĆ et al., 2006)2, included in most biclustering
studies, and the benchmark of 17 datasets introduced by (JASKOWIAK; CAMPELLO; COSTA,
2013)3, whose data were systematically collected from previous gene expression data analyses
studies (SPELLMAN et al., 1998; CHU et al., 1998; GASCH et al., 2000) and were already
used in clustering (JASKOWIAK; CAMPELLO; COSTA, 2014) and biclustering (PADILHA;
CAMPELLO, 2017) analyses. The main aspects of these datasets are summarized in Table 4.

Table 4 – Gene expression datasets.

Name # of genes # of samples Reference
Alpha factor 1099 18 (JASKOWIAK; CAMPELLO; COSTA, 2013)
Cdc 15 1086 24 (JASKOWIAK; CAMPELLO; COSTA, 2013)
Cdc 28 1044 17 (JASKOWIAK; CAMPELLO; COSTA, 2013)
Elutriation 935 14 (JASKOWIAK; CAMPELLO; COSTA, 2013)
1mM menadione 1050 9 (JASKOWIAK; CAMPELLO; COSTA, 2013)
1M sorbitol 1030 7 (JASKOWIAK; CAMPELLO; COSTA, 2013)
1.5mM diamide 1038 8 (JASKOWIAK; CAMPELLO; COSTA, 2013)
2.5mM DTT 991 8 (JASKOWIAK; CAMPELLO; COSTA, 2013)
Constant 32nM H2O2 976 10 (JASKOWIAK; CAMPELLO; COSTA, 2013)
Diauxic shift 1016 7 (JASKOWIAK; CAMPELLO; COSTA, 2013)
Complete DTT 962 7 (JASKOWIAK; CAMPELLO; COSTA, 2013)
Heat shock 1 988 8 (JASKOWIAK; CAMPELLO; COSTA, 2013)
Heat shock 2 999 7 (JASKOWIAK; CAMPELLO; COSTA, 2013)
Nitrogen depletion 1011 10 (JASKOWIAK; CAMPELLO; COSTA, 2013)
YPD 1 1011 12 (JASKOWIAK; CAMPELLO; COSTA, 2013)
YPD 2 1022 10 (JASKOWIAK; CAMPELLO; COSTA, 2013)
Yeast sporulation 1171 7 (JASKOWIAK; CAMPELLO; COSTA, 2013)
S. cerevisiae 2993 173 (PRELIĆ et al., 2006)
Tavazoie 2884 17 (CHENG; CHURCH, 2000)

2.4.5 External Bicluster Evaluation Measures

For the external evaluation, we performed the gene enrichment analysis of the biclusters
found using the Gene Ontology (GO)4 (ASHBURNER et al., 2000) knowledge base, which
provides three ontologies: Biological Process, Molecular Function and Cellular Component. Each
ontology contains a structured general vocabulary comprising "is-a" and "part-of" relationships
between its terms to describe the role of the genes in an organism (CONSORTIUM, 2004).

In this study, we performed four different analyses using the GO database: (i) using
all the three ontologies; (ii) using only the Biological Process ontology; (iii) using only the
Cellular Component ontology; and (iv) using only the Molecular Function ontology. For each

1 <http://arep.med.harvard.edu/biclustering/>
2 <https://sop.tik.ee.ethz.ch/bimax/>
3 <http://lapad-web.icmc.usp.br/repositories/ieee-tcbb-2013/index.html>
4 <http://www.geneontology.org/>

http://arep.med.harvard.edu/biclustering/
https://sop.tik.ee.ethz.ch/bimax/
http://lapad-web.icmc.usp.br/repositories/ieee-tcbb-2013/index.html
http://www.geneontology.org/
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Figure 5 – Experimental methodology followed to obtain the results of the coherence and GO measures.
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analysis, after identifying the GO terms in each bicluster, the Fisher test was applied to assess
the over-representation of each term (TANAY; SHARAN; SHAMIR, 2002; PRELIĆ et al.,
2006; LI et al., 2009; PADILHA; CAMPELLO, 2017). In this study, a GO term was considered
significant in a bicluster if its p-value, after performing the Benjamini and Hochberg multiple
test correction (HOCHBERG; BENJAMINI, 1990), was lower than 0.05 (EREN et al., 2012;
PADILHA; CAMPELLO, 2017). Three different measures were extracted for each bicluster
containing at least one significant term (PONTES; GIRLDEZ; AGUILAR-RUIZ, 2015): the
mean p-value, the best p-value and the number of significant terms. The experiments investigated
correlations of these quantities with the coherence measures discussed in Section 2.4.2.

2.4.6 Experimental methodology

Briefly, the experimental methodology has 6 steps, which are illustrated in Figure 5. We
will now explain each step.

Given a dataset Xi, two different scenarios were considered in step (1) before applying
any algorithm and coherence measure. In the first scenario, the features (samples) of each dataset
were standardized to zero mean and unit variance. In the latter scenario, the algorithms and
coherence measures were applied to the original (non-normalized) data.

In step (2), the selected algorithms were run on both versions of Xi. Deterministic and
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non deterministic algorithms were selected for this study. For each dataset, the deterministic
algorithms (SAMBA, OPSM, Bimax and QUBIC) were run once, while the non deterministic
algorithms (CCA, Spectral, Plaid, BBC, LAS and FABIA) were run 30 times.

In step (3), the biclusterings found by each algorithm were compared with the GO
external evaluation. Four different scenarios were considered for the GO evaluation, which are
illustrated in step (4): (i) using all GO ontologies (ALL); (ii) using only the Biological Process
ontology (BP); (iii) using only the Cellular Component ontology (CC); and (iv) using only the
Molecular Function ontology (MF).

Given that 6 out of the 10 investigated algorithms are non deterministic, a pre-established
procedure was adopted to select which of their biclusterings would be analyzed for each dataset.
In step (5), two different approaches were followed. The first, called "count", selects, for each
dataset, the biclustering solution that contains the median number of significant biclusters. The
second, called "prop", selects, for each dataset, the biclustering solution that contains the median
proportion of significant biclusters for the total number of biclusters in the solution5. Both
approaches do not discard empty biclustering solutions to calculate the median.

Finally, in step (6), the 17 coherence measures from Section 2.4.2 and the 3 GO measures
from Section 2.4.5 are calculated for each bicluster containing at least one significant GO term,
according to the GO scenario being considered.

2.4.7 Hyperparameter values used for the algorithms

The hyperparameter values used in this study were usually based on the default settings
used or recommended by the original authors of each algorithm. However, to achieve results that
best fit the investigated scenarios, they were modified for some of the biclustering techniques.
These modifications are explained next.

CCA requires a maximum MSR threshold δ to produce biclusters. This quantity is
usually different from one dataset to another. In this paper, δ = (max(A)−min(A))2/12 ×
0.005 (HORTA; CAMPELLO, 2014), where max(A) and min(A) indicate the maximum and
minimum values of a dataset, respectively. This setting provides an approximation for the δ

values considered in the original work of Cheng and Church (2000).

Before running its Gibbs sampling procedure, BBC normalizes the dataset. The in-
terquartile range normalization (IQRN) on the features proposed by its original authors was not
used here. Instead, we used the zero mean and unit variance normalization for the scenario of
normalized data, to be in accordance with the other algorithms used in this study.

For the number of biclusters, 7 algorithms (CCA, Plaid, Bimax, BBC, LAS, QUBIC and
FABIA) were executed to search for 30 biclusters in each dataset. Spectral was run to search

5 This approach is different than "count" because it is not guaranteed that the heuristic adopted by each
algorithm will always return the same number of biclusters.
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for 15 gene clusters and 2 sample clusters. The other algorithms (SAMBA and OPSM) do not
receive the number of biclusters as a hyperparameter. Thus, all biclusters returned by them were
considered.

2.5 Results and discussion

Overall, we evaluated 16 different experimental scenarios, by combining: 2 versions of
the datasets (normalized and non-normalized), 4 ontology analyses (ALL, BP, CC and MF),
and 2 approaches to select biclusterings generated by non deterministic algorithms ("count" and
"prop"). For each scenario, the biclusters found by all algorithms in all datasets were initially
concatenated in an array. Next, the Pearson and Spearman correlations were calculated for the
previously discussed coherence and external measures. The results are illustrated as heatmaps in
Figures 6 and 7, where each element corresponds to the correlation value. To save space, only
the correlations with the "count" approach, normalized data, and the three GO ontologies (ALL)
are shown. The other 15 scenarios achieved similar results in most cases, allowing us to draw
similar conclusions. Their respective figures are available in our supplementary material6. Minor
differences are discussed in the text.

According to Figures 6 and 7, the measures from the external evaluation are not strongly
correlated with any coherence criterion. These results were observed for all investigated sce-
narios. Therefore, biclusters with high biological significance from the GO point of view do
not necessarily imply in good values for the coherence measures. Thus, it may be feasible to
recommend using multiple bicluster coherence criteria to complement the GO analysis. As a
result, the biclusters will also be evaluated by a set of predefined patterns of interest and one can
carefully inspect the quality of their trends.

It can be seen that some coherence criteria presented similar behavior according to
the correlations. Measures that must be either maximized or minimized were selected. Thus,
the interest is in strong correlations that can be either positive or negative. From the results, a
few pairs of strongly correlated measures, with a correlation above 0.9 or below −0.9, can be
extracted:

∙ (OC, Cr), (SCS, ACV) and (VE, AC) for both correlation coefficients in all experimental
scenarios;

∙ (MSR, MAR) for Spearman in all scenarios and for Pearson in all scenarios with normal-
ized data and in the scenario with non-normalized data and MF analysis;

∙ (VAR, Cr) and (VAR, OC) for the Pearson coefficient in all scenarios using non-normalized
data;

6 <http://padilha.github.io/asoc-2019-suppl>

http://padilha.github.io/asoc-2019-suppl
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Figure 6 – Results of the Pearson correlation using normalized data, all ontologies and the "count"
approach.
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∙ (VAR, Cc) and (MSA, Cc) for the Pearson coefficient in all scenarios with normalized data;
and

∙ (MSR, MMSE) for the Pearson correlation in all experimental scenarios.

It can be observed that the strong correlated pairs contain measures that detect similar
patterns. To avoid using paired criteria in the same application, since their results will be
redundant, the one that is able to detect the most general numeric patterns is recommended.

Some evidence can be found that data normalization may be determinant in the behavior
of some pairs of measures. This result was expected, since the algorithms do not return the
same biclustering solutions when dealing with non-normalized or normalized data. Moreover,
normalized data may alleviate the influence of different feature scales or outliers in the behaviors
of the measures.

In addition, the correlations between measures might be different when considering
different ontology scenarios for the enrichment, as was observed for (MSR, MAR) and the
Pearson correlation.
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Figure 7 – Results of the Spearman correlation using normalized data, all ontologies and the "count"
approach.
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Real applications may benefit from favouring measures with the lowest computational
complexities. Table 2 summarizes the investigated measures and their computational complexities.
Even if two coherence measures present lower correlations (e.g., around 0.7 or 0.8), those with
lower complexity should be preferred, especially if a large number of biclusters is evaluated.
From this table, the measures with the lowest complexities are: VAR, MSR, MAR, SMSR, MSA,
VE and VEt.

The difference between the results from the Pearson and Spearman correlations, shown
in Figure 8, were also analyzed. The difference observed was low for many pairs, which indicates
that the two correlations were compatible in most cases. To statistically validate this finding, the
Wilcoxon signed-rank test was applied to the difference matrix. Under a significance level of 0.05
no statistical evidence of difference was found, which supports the agreement of the correlation
matrices. We repeated the Wilcoxon signed-rank test on each of the other 15 experimental
scenarios. In all cases, we did not find statistical evidence to reject the null hypothesis.
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Figure 8 – Difference between Pearson and Spearman correlations.
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2.6 Conclusions

This paper extended the work of Pontes, Girldez and Aguilar-Ruiz (2015) by investigating
the behavior of 17 bicluster coherence measures. We applied them to the results of 10 well-
established biclustering algorithms. Our experiments were performed on a benchmark of 19
Saccharomyces cerevisiae time-course datasets.

The correlations among the coherence and the external GO criteria were analyzed using
the Pearson and Spearman coefficients. According to the analysis, external GO evaluations did
not agree with any coherence measure. These results suggest that a high GO significance does
not automatically imply in good evaluations with coherence criteria. Besides, GO information
may be incomplete (SANTAMARÍA; QUINTALES; THERÓN, 2007). Thus, the use of bicluster
coherence measures together with the GO analysis may be a better alternative to achieve more
concrete conclusions.

These results conflict with those from Pontes, Girldez and Aguilar-Ruiz (2015), which
claimed that the coherence measures present some dependence with the external biological
measures. However, since this study employed 10 different algorithms, it reduced the bias
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regarding the evolutionary algorithm used in Pontes, Girldez and Aguilar-Ruiz (2015).

Overall, we analyzed 16 different experimental scenarios, which included: normalized
and non-normalized data, evaluation using all GO ontologies, and 2 different approaches to
select the results of non deterministic algorithms. We observed that normalization and the GO
validation approach may be determinant, since some pairs of measures presented strong Pearson
correlations in scenarios using either normalized or non-normalized data and specific ontologies
for the enrichment.

In practical applications, the users of the measures must take into account the types of
correlations among measures that they want to avoid. For such, we advise them to consider as
similar only the pairs that presented a strong correlation in all scenarios for the desired coefficient
(Pearson or Spearman) and data type (normalized or non-normalized).

This study also presented the time complexity analyses of the measures, usually not
provided in their original studies. In many applications, the time complexities may be an
important reason for choosing some measures rather than others. Mainly when a large number of
biclusters need to be evaluated and/or the biclusters may be constituted by a large number of
rows and columns, measures with the lowest complexities may be preferred.

Finally, the choice of the most appropriate bicluster coherence measure must also take
into account the task to be solved. In a few practical scenarios, one may favor particular types of
patterns compared to others and/or may prioritize measures with lower computational complexi-
ties. However, the use of heterogeneous measures allows the analysis of biclusters with different
points of view. According to the experimental results reported in this paper, it is possible to avoid
selecting a set of measures that present redundant behavior and may not bring new insights to
the analysis.
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3.1 Abstract

CRISPR-Cas genes are extraordinarily diverse and evolve rapidly when compared to
other prokaryotic genes. With the rapid increase in newly sequenced archaeal and bacterial
genomes, manual identification of CRISPR-Cas systems is no longer viable. Thus, an automated
approach is required for advancing our understanding of the evolution and diversity of these
systems, and for finding new candidates for genome engineering in eukaryotic models. We
introduce CRISPRcasIdentifier, a new machine learning based tool that combines regression and
classification models for the prediction of potentially missing proteins in instances of CRISPR-
Cas systems and the prediction of their respective subtypes. In contrast to other available tools,
CRISPRcasIdentifier can both detect cas genes and extract potential association rules that
reveal functional modules for CRISPR-Cas systems. In our experimental benchmark on the

*<https://creativecommons.org/licenses/by/4.0/>
† Contributed equally as first authors.

https://doi.org/10.1093/gigascience/giaa062
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most recently published and comprehensive CRISPR-Cas system dataset, CRISPRcasIdentifier
was compared with recent and state-of-the-art tools. According to the experimental results,
CRISPRcasIdentifier presented the best Cas protein identification and subtype classification
performance. Overall, our tool greatly extends the classification of CRISPR cassettes and, for the
first time, predicts missing Cas proteins and association rules between Cas proteins. Additionally,
we investigated the properties of CRISPR subtypes. The proposed tool relies not only on the
knowledge of manual CRISPR annotation but also on models trained using machine learning.

3.2 Introduction

CRISPR-Cas systems provide archaea and bacteria with a nucleic acid based adaptive
immune system against invading viruses and plasmids. Mechanistically, the immune response
can be divided into three stages, namely adaptation, processing and interference, each carried out
by different sets of protein complexes (GARNEAU, 2010). The universally conserved proteins
Cas1, Cas2 and, optionally Cas4, are responsible for the adaptation stage, when a fragment
of invader DNA is excised and stored in the host chromosome as a spacer in the non-coding
CRISPR region. The processing and interference stages are much more mechanistically diverse,
using different sets of proteins, depending on the type of CRISPR-Cas system. CRISPR-Cas
systems are found in many bacteria and most archaea, and have diversified as much as their host
organisms (MAKAROVA et al., 2015).

While the mechanistic principles are similar, with spacers comprising templates for
synthesis of CRISPR interference RNAs (crRNAs) against the invader, the different types and
classes of CRISPR-Cas systems show some important differences. Class 2 systems use a single
multi-domain protein for locating and cleaving the re-invading nucleic acid, whereas Class
1 systems employ a large multi-subunit complex for the same purpose. Class 2 systems can
be further subdivided into type II, V and VI, which appear to have evolved independently
from each other. Thus, the respective Cas9, 12 and 13 enzymes that carry out invader cleavage
rely on diverse mechanisms involving differing nuclease domains (MAKAROVA et al., 2015;
SHMAKOV et al., 2015; SHMAKOV et al., 2017).

Class 1 systems, on the other hand, with types I, III and IV, use structurally related
proteins to carry out similar functions, although the protein subunits have diverged considerably.
Common to all Class 1 systems is that Cas7 forms a helical backbone that spans the length
of the tightly bound crRNA. This backbone is terminated in one end by Cas5, which itself is
bound to Cas8 or Cas10 for type I and IV, or type III systems, respectively. Type I systems
use Cas8 for the recognition of the protospacer adjacent motif (PAM) (CASS et al., 2015),
which, along with invader crRNA hybridisation, comprises a signal for recruitment of the Cas3
helicase-nuclease protein that subsequently digests the invader chromosome (SINKUNAS et al.,
2011). Type III systems, however, use the Cas7 backbone for cleaving invader mRNA while the
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Cas10 HD nuclease cleaves transcribed DNA (ZHANG et al., 2012; DENG et al., 2012). Cas10
also synthesises a signaling molecule that recruits additional accessory Cas proteins for other
functions, such as cell suicide or activation of other defense systems (DENG et al., 2012; SHAH
et al., 2018).

The different types of CRISPR-Cas systems are themselves so diverse that each type can
be further subdivided into several subtypes. Type III, for example, is divided into four subtypes
III-A, B, C and D. While CRISPR-Cas systems of the same subtype encode similar proteins
that occupy the same roles, the proteins have often diverged beyond the point of recognition
by conventional sequence alignment methods such as BLAST, even within a subtype. This
level of sequence diversity makes proper identification of the found CRISPR-Cas systems
very challenging, and the field has thus far relied upon the gold standard of periodic manual
annotations by experts, published once every few years (HAFT et al., 2005; MAKAROVA et al.,
2011; MAKAROVA et al., 2015). The annotation involves profile HMM searches for finding
core genes, followed by the inspection of their neighborhoods, gauging operonic structures,
and manual BLAST and PSI-BLAST searches (MARCHLER-BAUER; BRYANT, 2004). With
the increasing number of genome sequences from uncultured microbes and metagenomic data,
however, manual annotations cannot keep up and an automated approach is needed, which yields
comparable accuracy to manual annotation. Furthermore, research groups working on organisms
not yet covered by published annotations have thus far made their own manual annotations,
leading to inconsistencies in nomenclature and inaccuracies in some cases.

There have been numerous attempts at devising computational pipelines for the identi-
fication of different elements of the CRISPR system, such as CRISPR arrays (LANGE et al.,
2013; ALKHNBASHI et al., 2014; BISWAS et al., 2016) and CRISPR leaders (ALKHNBASHI
et al., 2016). On the other hand, command line tools and webservers, usually based on Hidden
Markov Models (HMM) and HMMER (FINN; CLEMENTS; EDDY, 2011) or PSI-BLAST
(MARCHLER-BAUER; BRYANT, 2004), were proposed for CRISPR subtype prediction. Ex-
amples of such tools are: CRISPRdisco (CRAWLEY et al., 2018), CRISPRcasFinder (COUVIN
et al., 2018), Macsyfinder (ABBY et al., 2014), CRISPRone (ZHANG; YE, 2017) and Hmm-
Cas (CHAI et al., 2019). We found, however, that the existing tools usually lack the ability to
generalize unseen examples. Additionally, these tools are neither able to adapt to an extending
repertoire of cas genes, nor predict possibly missing proteins, nor can learn association rules
among proteins.

In this work, we present a machine learning (ML) approach intending to capture much of
the relevant essence of manual annotation. It is based on evidence for the different Cas proteins
to be contained in a series of consecutive genes that are part of a cas cassette, and thus represents
genomic CRISPR-Cas systems as cassettes of adjacently encoded proteins. These evidences are
calculated by newly designed sets of HMM models for each Cas protein, covering the diversity of
Cas protein families. The proposed approach solves the problem of classification of new systems
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into types and subtypes. As our features for the ML approach correspond to evidence for Cas
proteins, we can determine Cas proteins whose evidence is critical for predicting a subtype, which
corresponds to the concept of signature genes. We show that our approach correctly identifies
known signature genes for types and subtypes. In addition, our approach is able to provide more
information about the composition of cassettes. One application is to predict evidence for Cas
proteins that have been missed in the Cas protein screening. This provides researchers with hints
to search for remote homologs of the missing Cas proteins, or for new proteins that might replace
the associated function. Furthermore, we are able to learn association rules, which are subsets of
proteins being important to each other, indicating functional modules. As a proof of concept,
when we search for Cas proteins associated with an interference protein, our approach finds
other interference proteins to be most important. The more interesting cases are undoubtedly
with non-interference proteins, where our tool could correctly predict a strong association of the
ancillary protein Csn2 with Cas1, consistent with its hypothesized role in adaptation. For the
protein CasR we found that it is associated with different functional modules in subtypes I-A
and I-E, indicating a possible functional diversity. Thus, the set of protein associations derived in
this manner provides a proper resource for researchers that want to investigate the function of
different Cas proteins.

3.3 Methods

3.3.1 Data collection and preprocessing

All Cas proteins used in this study were selected from the current classified archaeal and
bacterial CRISPR-Cas systems (MAKAROVA et al., 2015; SHMAKOV et al., 2015; SHMAKOV
et al., 2017). We performed an all-against-all sequence similarity comparison on these data
using Fasta (PEARSON; LIPMAN, 1988). Subsequently, we clustered the proteins using the
Markov Cluster Algorithm (MCL) (ENRIGHT et al., 2002) based on custom similarity criteria
(ALKHNBASHI et al., 2016; SHAH et al., 2018). These criteria consider the size of the proteins,
the length alignment and the relative locations of similar regions between the two compared
proteins. After clustering the protein sequences from a specific Cas protein family, we generated
a multiple sequence alignment (MSA) using MUSCLE (EDGAR, 2004). Next, these alignments
were converted to HMM profile models by using hmmbuild (FINN; CLEMENTS; EDDY, 2011).
Except for MCL, all other tools were run with default parameters.

Throughout the text, each cassette in our training and test data sets is represented by
a tuple consisting of its genomic sequence containing all genes of the cassette, and the list
of all annotated Cas proteins. We extracted the genomic sequences as follows: we took the
Supplementary Table S7 from (MAKAROVA et al., 2015), which contains all gene loci (i.e.
genomic positions) in column "(sub)Type / Coordinates", and downloaded the sequences from
NCBI. For the second part, namely the list of all Cas proteins, we extracted the genomic sequence
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for each annotated Cas protein individually, again from the "coordinates" column and added 50
bases of context. The associated amino-acid sequences were generated by running the Prodigal
tool v2.6.3 (HYATT et al., 2010) on the respective gene sequences, and stored together with the
Cas annotation from the column "cas gene" in Table S7 from (MAKAROVA et al., 2015).

To generate the feature vectors, we ran all HMM profile models using hmmsearch against
the sequences of all cassettes. We selected the cassettes, which had a hit for all proteins annotated
for that subtype, and used this as training and test set for the classification pipeline. Cassettes that
had a missing protein were used instead as an independent test case for our regression models
and the full pipeline.

3.3.2 Classification of Cas cassettes

For this task, we apply ML algorithms onto a finite sample of CRISPR data in order to
obtain predictive models that are able to classify Cas cassettes into their respective subtypes
using a data matrix representation (see Results and discussion). Thus, based on the finite sample
of data, we investigate the application of classification algorithms that estimate a function which
is able to generalize the association between a cassette and its subtype. As a consequence, we
intend to use this function to classify new cassettes that were not seen during the training phase
into their respective subtypes with a high level of accuracy.

3.3.3 Prediction of missing Cas proteins

We also investigate the problem of predicting (possibly) missing Cas proteins by esti-
mating their normalized bit scores. For this problem, we modelled it as follows. Given m Cas
proteins, we filter, for each subtype, its set of l < m proteins (i.e., all Cas proteins whose bit score
is larger than zero for at least one cassette of the subtype). Next, we train l regressors, where
the jth regressor, j ∈ {1, · · · , l}, predicts the bit score of the jth Cas protein using the remaining
l −1 proteins as input.

3.3.4 Experimental evaluation of ML algorithms

Three ML algorithms were applied to the preprocessed dataset to train classification and
regression models:

∙ Classification and Regression Trees (CART) (BREIMAN et al., 1984), which trains a
predictive model represented by a decision tree. This algorithm can train decision trees for
classification (classification trees) and regression (regression trees) tasks. A decision tree
is composed by a set of interpretable rules extracted from the training dataset. These rules
explain the decisions made by the model to predict the class or regression value for new,
previously unseen, examples.
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∙ Support Vector Machines (SVM) (VAPNIK, 1995), which trains a binary classifier rep-
resented by a hyperplane that separates examples from two classes with the maximum
possible separation margin. By using kernel functions, an SVM can be applied to non-
linearly separable problems. For multiclass classification tasks, a multiclass dataset is
usually first decomposed into several classification binary datasets. SVMs can then be
applied to each binary dataset, and their predictions are combined for a multiclasss classi-
fication.

∙ Extremely Randomized Trees (ERT) (GEURTS et al., 2006), uses an ensemble of decision
trees, where each tree is trained using a random subset of the original features. Instead of
selecting the best discriminating threshold for each feature considered for a split, as would
be the case for classical decision trees, ERT chooses a random threshold value. The final
predictions are the average of the predictions of all the decision trees in the ensemble. We
can extract the importance of each feature in the classification or regression task from the
decision trees in the ensemble. The importance is represented by the decrease in impurity
caused by a node that splits the feature, weighted by the number of examples contained in
such a node (WU et al., 2008), and averaged over all trees of the ensemble.

The model selection and evaluation of predictive models is a widely studied problem in
the ML literature. Several works, such as Varma and Simon (2006), Cawley and Talbot (2010),
Krstajic et al. (2014), investigate the advantages and drawbacks of different methodologies.
Based on these previous studies, we use the nested cross-validation procedure. Given a set of data,
the classical cross-validation approach splits the data into K mutually exclusive and similar sized
subsets called folds. Next, at each iteration, K −1 folds are used for training an ML model and
the remaining fold for testing it (BISHOP, 2006; HASTIE; TIBSHIRANI; FRIEDMAN, 2009).
The nested cross-validation approach separates the model selection and evaluation steps, by
using two different cross-validation loops: an outer loop, which splits the data into K1 folds, and
is used for model evaluation; and an inner loop, which splits the training data into K2 folds, and is
used for model selection. In this paper, we set K1 = K2 = 10, and repeat the evaluation procedure
50 times, due to the variance of the results when considering different splits (KRSTAJIC et al.,
2014). It is important to mention that, during our experiments, to guarantee that examples from
all classes are present in each outer fold, we used only classes containing at least 10 examples.

For each cross-validation iteration, we aggregate the predictions from all folds and
calculate a single predictive performance evaluation, in order to avoid any averaging problems
that might arise, especially when the dataset is imbalanced (FORMAN; SCHOLZ, 2010). For
the classification experiments, we used the following evaluation measures: adjusted balanced
accuracy score (BRODERSEN et al., 2010; GUYON et al., 2015), an adaptation of the original
accuracy measure that gives higher weights to examples from smaller classes; and the F-score
with macro-averaging (SOKOLOVA; LAPALME, 2009), which is the average F-score among
all classes. Both measures treat different subtypes equally. Thus, they do not favor those with
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the largest numbers of cassettes. For the regression experiments, we used the mean absolute
error (WILLMOTT; MATSUURA, 2005), which is the average absolute difference between the
expected and the predicted target values.

Regarding the model selection step of each ML algorithm used, we performed a grid
search over 20 different hyperparameter combinations, based on the guidelines from the scikit-
learn package (PEDREGOSA et al., 2011). We describe these hyperparameter grids next. For
the CART algorithm, we varied the hyperparameters that determine the maximum depth of the
decision tree and the minimum number of examples necessary for a node to become a leaf. For
the former, we considered the values in {5,10,15,max}, where max allows the tree to grow as
deep as possible. For the latter, we varied the values in {5,6,7,8,9}. For the SVM algorithm,
we used a Gaussian kernel, due to its ability to model nonlinear decision boundaries and its
reduced number of hyperparameters when compared with another commonly used nonlinear
kernel, the polynomial kernel (HSU et al., 2003). For the cost hyperparameter C, we considered
the values in {1,10,100,1000}. Regarding the kernel coefficient γ , we assessed the values in
{0.01,0.1,1,10,100}. Finally, for the ERT algorithm, we varied the ensemble size using the
values in {25,50,75,100}, and the quantity of features to be considered when performing a split
from the set of values in {25%,50%,75%,100%,

√
m}, where m is the number of known Cas

protein families.

3.4 Results and discussion

3.4.1 A combined approach to determine Cas proteins and cassette
subtypes

The classification of a subtype is based on the membership for specific Cas proteins. Thus,
any ML-based classification of a cassette requires the detection of the contained Cas proteins as a
first step. While this first step is commonly performed using Hidden Markov models, a difficulty
arises from the fact that a single Cas protein family has to be split into different subfamilies due
to the high evolutionary diversity of their members. Due to missing values in the dataset for a
family, even the problem of splitting into different subfamilies is not an easy one. Even further,
we have observed that the splitting of Cas protein families influence the quality of ML-based
subtype classification. This would be quite obvious if subfamilies of individual Cas protein
would correlate well with subtypes. The real situation, however, is more complex, partially due
to the fact that cassettes are composed in a modular way, often involving horizontal gene transfer
(MAKAROVA et al., 2015; SHAH et al., 2018).

In brief and as described in more detail later, our classification approach takes the bit
scores for the contained Cas proteins as evidence of their membership to the cassette. We
use this information to apply a set of ML algorithms to classify the subtypes of cassettes. By
generating different divisions of subfamilies for each Cas protein, we obtain different evidences
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for the contained Cas proteins. Thus, we can investigate which division is best related to subtype
evolution. With this holistic view of Cas protein and subtype annotation, we can further examine
relations between subtypes and Cas protein membership and as a result reassure key components
of subtypes like signature genes.

3.4.2 Detection of Cas proteins by families of HMMer models

Our definition of Cas protein subfamilies is based on clustering the known sequences
of a specific Cas protein family. We use around 68594 Cas proteins as a database, and applied
different cluster criterion. Each cluster characterizes a subfamily, which is afterwards represented
by a HMM model. All models for a Cas protein are grouped, and the best matching HMM for
each Cas protein is used to score a new sequence. To cluster the sequences, we performed an
all-against-all sequence similarity comparison. Subsequently, we applied the Markov Cluster
Algorithm (MCL) (ENRIGHT et al., 2002) to cluster the known sequences for a specific Cas
protein family according to their sequence similarities. However, protein sequences can be
clustered in different ways, depending on the cut-off for sequence similarity and the requested
coverage of the alignment between two sequences. In addition, different hyperparameters for
the MCL clustering algorithm result in different data partitions. Each partition defines different
subfamilies, for which we train HMM models.

The different clustering approaches thus result in HMM models for different subfamilies,
with varying specificity and sensitivity to detect members of a Cas protein family. We created five
different collections of HMM models labeled HMM1 . . . HMM5 using different hyperparameter
values for the clustering algorithm and distinct threshold values for the all-against-all sequence
similarity detection (see Methods for detail; the number of models for each Cas protein family
is listed in Supplementary Table 11). For a given Cas protein sequence, we applied all HMM
models that are contained in a specific collection for that protein family and took the maximum
bit score, and zero otherwise. Non-zero values indicate that the investigated protein sequence
belongs to the Cas protein family defined by the HMMer model set.

We used different measurements to assess the quality of a specific division represented
by a set HMMi. One quality criteria for a set HMMi is clearly the capability for detecting known
members of Cas proteins. Table 5 shows the sensitivity for the five sets HMM1 . . . HMM5 by
reporting the number of cassettes found in each subtype. It is easy to see that the more fine
grained sets, HMM1, HMM2 and HMM3, clearly detect more Cas proteins than the less fine
grained sets HMM4 and HMM5.

In our holistic view of Cas protein detection and subtype classification, however, we
want to understand also how the division into subfamilies relates to the cassette subtype, and
thus influence the subtype classification. For that reason, we show in Table 5 also as another
quality criteria the median accuracy for correctly predicting the subtype of a cassette when using
the HMMi in a ML-based subtype classification approach as described in the next section. The
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Table 5 – Properties and Quality Measurements for the collections HMM1 . . . HMM5. (a) Sensitivity of
set HMMi in detecting Cas proteins, measured by the number of cassettes found per subtype.
Sets HMM1, HMM2 and HMM3 are more fine grained than sets HMM4 and HMM5, which
detect less Cas proteins overall. (b) Median Accuracy for the classification of subtypes when
using set HMMi with different ML-approaches to determine the evidence for a Cas protein in
a cassette. The quality difference is much lower in the overall task of subtype classification
compared to the task of detecting individual Cas proteins.

HMM1 HMM2 HMM3 HMM4 HMM5
No. models 379 385 416 209 201

No. sequences 14674 14674 23622 16018 16018

(a
)
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I-A 116 116 117 0 0
I-B 715 715 713 421 421
I-C 629 629 629 612 612
I-D 138 138 137 100 100
I-E 1114 1114 1116 1069 1069
I-F 354 354 353 339 339
I-U 136 136 82 8 8

II-A 320 320 331 249 249
II-B 28 28 35 35 35
II-C 327 327 333 328 328

III-A 376 376 364 326 326
III-B 292 292 290 178 178
III-C 93 93 93 83 83
III-D 184 184 186 49 49
IV-A 36 36 36 43 43
V-A 18 18 32 27 27

VI-A 6 6 4 6 6
VI-B 40 40 40 40 40

Total Sensitivy 4922 4922 4891 3915 3915

(b
)
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y

ERT 0.9900 0.9898 0.9909 0.9907 0.9907
CART 0.9629 0.9624 0.9636 0.9579 0.9583
SVM 0.9856 0.9856 0.9830 0.9868 0.9868

surprising result is that the sensitivity of a specific set HMMi in detecting Cas proteins does not
correlate with the accuracy that is achieved in a subtype classification using this set HMMi.

3.4.3 A pipeline for CRISPR cassette classification based on Cas
protein evidences

Our classification pipeline for CRISPR cassettes is described in Figure 9 and has five
steps. For each set HMM1 . . . HMM5, we build a data matrix for classification and regression
analysis of cassettes as follows. Usually, a CRISPR cassette C is a collection of Cas proteins
and is thus defined as a subset of all known Cas proteins P (i.e., C ⊂ P). However, when
predicting Cas proteins with HMMer models, this would imply a discretization of the bit score
that would omit the information about the evidence we have for the prediction. For this reason,
we define for each cassette Ci a real vector Xi of length m, where m is the number of known Cas
protein families, containing an entry for each possible Cas protein. Each element Xi j is defined
as the best bit-score obtained by P j among all HMM models of its family if it is detectable by
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the models, and zero otherwise (Figure 9a). By concatenating the vectors obtained for all the
n available cassettes, we obtain a data matrix X ∈ Rn×m

+ (Figure 9b). In addition, each cassette
is associated to a label that indicates its subtype, according to the classification provided by
(MAKAROVA et al., 2015; SHMAKOV et al., 2017; SHAH et al., 2018).

Figure 9 – Experimental methodology adopted for this study. (a) Every cassette from our positive set is
encoded into a feature vector, which has an entry for each Cas protein family. Given a specific
cassette with known Cas proteins, we apply to each Cas protein sequence all HMMs from the
set of HMMs that were generated for that specific Cas protein. The best bit-score is included
into the feature vector Xi encoding the ith cassette. (b) This feature vector is stored in the data
matrix X, together with the known subtype. (c) As the trained model highly depends on the
collection of used cassettes, we use the ten-fold cross-validation strategy. Thus, we split the
training set into 10 subsets called folds. We perform 10 runs, where, in each run, one of the
folds is used for testing and the remaining 9 for selecting and training the best ML model. (d)
For selecting the best ML model, a similar cross-validation strategy is applied to tune twenty
hyperparameter combinations that affect the model predictive performance. Then, in (e), the
selected model is trained using the whole training set. Finally, in (f) and (g) we apply the
trained model to the respective test set of the outer fold and evaluate its performance.
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This data matrix, along with the feature vectors and the subtype labels for all known
cassettes, is our training data for the subtype classification task. For the evaluation of our
classification models, we apply a ten-fold cross-validation procedure on this data matrix. For
this, we randomly split the data matrix X into 10 folds (Figure 9c), each one containing a subset
of cassettes encoded by the associated feature vector. Each vector is annotated (labeled) by
its true subtype. For model selection, we perform hyperparameter tuning by employing a grid
search over 20 hyperparameter combinations and applying an inner cross-validation loop (Figure
9d, see Methods for detail). After selecting and training the best model (Figure 9e), we have
a classifier that, along with a feature vector with HMM bit scores for all known Cas protein
families, predicts the subtype of new cassettes (Figure 9f and Figure 9g).
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3.4.4 The classification pipeline successfully predicts the subtype of
cassettes

To evaluate the pipeline, we first assessed whether it can successfully perform the
classification task, i.e., correctly predict the subtype of a cassette. As shown in Figure 10 for
HMM1, the predictive performances, measured by the adjusted balanced accuracy, for CART,
ERT and SVM algorithms are above 95% in general. These high values suggest that, though
imbalanced, the cassette subtypes are well-defined in the feature space. It is important to mention
that not all cassettes are complete in the investigated datasets. Some cassettes are composed
only by subsets of the Cas proteins that integrate its subtype definition. In Supplementary Table
12, we summarize the percentage of cassettes that are complete for each subtype, ignoring Cas
proteins that are contained in less than 5% of the cassettes of each subtype. We observed in the
experimental results that, even though some incomplete cassettes are present the three classifiers
were still able to capture the relations among the remaining proteins. The results for the other
four sets of HMM models, and for the F-score with the macro averaging measure were similar
and allowed us to draw similar conclusions (see Supplementary Figure 21).

Figure 10 – Adjusted balanced accuracy obtained for the 50 repetitions of nested ten-fold cross-validation
applying ML algorithms to the dataset generated by the HMM1 set. The x-axis corresponds
to the classifiers trained by different ML algorithms. The y-axis shows the range of adjusted
balanced accuracy values.
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In order to investigate the prediction quality for specific subtypes, we performed an
experiment using the one-vs-the-rest strategy (BISHOP, 2006). Given k different classes, the one-

vs-the-rest strategy trains k classifiers, one for each subtype, which learns how to discriminate
this subtype (positive class) from the remaining classes (negative class). In Table 6 we show
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the average F-scores, after 50 cross-validation repetitions, obtained by the classifiers using the
one-vs-the-rest strategy. It is clearly visible that the k classifiers were able to discriminate each
class with a high predictive performance, in agreement with our previous results. In the case
of SVM, one can use the margin separating positive and negative data as an additional quality
criterion (CHERKASSKY; DHAR, 2010). Again one can see here a clear separation of SVM
scores for the positive and negative classes (see Supplementary Figure 22).

Table 6 – Mean F-scores for 50 nested cross-validation repetitions using the one-vs-the-rest strategy and
Cas protein set HMM1.

Subtype CART SVM ERT

I-A 0.95 0.96 0.98
I-B 0.95 0.98 0.99
I-C 0.98 0.99 1.00
I-D 0.98 0.97 0.99
I-E 0.99 0.99 1.00
I-F 0.95 0.99 1.00
I-U 0.99 0.97 1.00
II-A 1.00 1.00 1.00
II-B 1.00 1.00 1.00
II-C 1.00 1.00 1.00
III-A 0.98 0.98 0.99
III-B 0.97 0.98 0.99
III-C 0.93 0.98 0.98
III-D 0.96 0.97 0.99
IV-A 1.00 1.00 1.00
V-A 1.00 1.00 1.00
VI-B 0.86 0.95 0.96

3.4.5 The classification pipeline detects signature proteins

Makarova et al. (2015) define the presence of unique signature Cas proteins that charac-
terize most of the investigated CRISPR subtypes. According to the authors, signatures usually
consist of either one or multiple Cas proteins that co-occur in the same cassette. Based on the
aforementioned results, we hypothesize that the classifiers were able to learn these signature
proteins. Since each one-vs-the-rest classifiers introduced in the last section learned how to
discriminate a different subtype, we assessed whether it is possible to derive insights about
signature proteins for each class by analyzing each classifier separately.

We thus propose a new approach to detect signature proteins for a subtype by determining
the importance of a specific feature (i.e, the evidence for a Cas protein in a cassette) to correctly
predict the subtype in the respective one-vs-the-rest classifier. The rationale is that Cas proteins
which are highly important for discriminating a specific subtype against all others are likely
signature proteins for this subtype. Figure 11 shows the importance of each Cas protein (see
Methods for definition of feature importance) in predicting the I-D subtype. As it can be seen,
the importance is specifically high for Cas10(d) (resp. Cas3), which is the signature protein for
the subtype I-D (resp. the type I) according to Makarova et al. (2015). Overall, we observed that
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Figure 11 – One-vs-the-rest average Cas protein importance of ERT for I-D subtype. The x-axis presents
different Cas proteins. The y-axis shows the importance of each Cas protein regarding the
decision trees of the ensemble split. The error bars refer to the standard deviation over all trees
in the ensemble. Note that the feature importance is not only related with the classification
into the I-D subtype, but may also be related to its contribution to classify a cassette into any
other subtype. Thus, some of the proteins in the figure may not be related to I-D, but to any
other subtype.
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Cas10 and Cas3 account, on average, for more than 50% of the feature importance for classifying
the I-D subtype.

To investigate the relation between the two signature genes for proteins Cas10 and Cas3
in more detail, we selected the decision tree obtained by CART for the I-D subtype (Figure 12).
In this tree, terminal nodes with the blue color indicate I-D classification (positive class), while
those with brown color indicate any other subtype classification (negative class). As shown in
Figure 12, Cas10 is the most important protein for identifying I-D, which is in agreement with
Makarova et al. (2015), where the subtype I-D is characterized by the presence of a variant of
the Cas10 protein (instead of a protein from the Cas8 family, which is common for the other I
subtypes) and two variants of the Cas3 protein. Interestingly, we need middle to strong evidence
for Cas10 and only weak evidence for Cas3. In the case of weak evidence for Cas10, we also
need weak evidence for both Cas3 and Cas1 in order to correct the missing 36 examples, albeit
in this case the classification would not be pure anymore. Overall, it can be observed that CART
was able to correctly model this signature, since most of the nonterminal nodes refer to these
proteins, indicating that they are the most important features in this subtype.

Since the current classification (MAKAROVA et al., 2015) is based only on the inter-
ference module, the adaptation-related Cas proteins (Cas1, Cas2 and Cas4) should not have
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Figure 12 – Reduced one-vs-the-rest CART for the I-D class (see Supplementary Figure 23 for full tree).
Cassetes that are labeled as subtype I-D are highlighted in blue, the others in brown. Each
node shows the fractions of class I-D and other cassetes, indicating the purity of the node.
The number of cassetes is shown under the "samples" entry. In each node, we query for
evidence of a specific Cas protein, indicated by the score calculated by the HMM family
models. As one can see, a strong evidence for Cas10 immediately points to a subtype I-D (top
node and right branch). Otherwise, if we have middle evidence for Cas10, we need at least
weak evidence for Cas3 to determine subtype I-D. Finally, if we have only weak evidence for
Cas10, we need at least weak evidence for Cas3 and also for Cas1 to determine subtype I-D
(left branch). However, the classification is not pure anymore (bottom nodes).
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a high importance for our classification pipeline. Thus, in another experiment, we removed
these proteins and the processing proteins (Cas6), and tested the predictive performance of our
classification pipeline when removing this information. The obtained results were similar to
those previously discussed in this section and support our discussion and main conclusions (see
Supplementary Figure 24), strengthening the hypothesis that our ML-based approach captured
biologically relevant information.

All the aforementioned examples illustrate how our ML models are able to learn the
protein signatures without any extra information other than the normalized bit scores and
cassette subtype labels. These results validate our hypothesis and provide models that are able to
automatically categorize new cassettes with a high predictive accuracy.
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3.4.6 Regression instead of classification learns association rules

In our next set of experiments, we were interested in answering the question of whether
some Cas proteins tend to be co-occurring frequently with other proteins. To answer this question,
we hypothesized that they form a functional module. However, as we have varying information
about the evidence for a specific Cas protein, and there is also some redundancy and flexibility
in forming this module, we followed an approach different from that described in the previous
section. We believe that if a specific Cas protein is frequently associated with other Cas proteins,
it is possible to predict the evidence for this protein by relying only on the known evidence for
the other members of the functional module. We can confirm this belief by removing a specific
Cas protein from the feature vector, and predicting the “expected” normalized bit score for this
protein from the remaining feature vector. This amounts to learning a regression model from
known examples.

Association rules can now be inspected by determining again the important features
(i.e., Cas proteins) to predict the correct evidence for a specific Cas protein. In Table 7, we list
the three most important proteins for some target Cas proteins in some subtypes. In this case,
for predicting evidence for Cas10d in subtype I-D, we need the information about Cas3, Cas5
and Cas7. In agreement with the fact that subtypes are mainly associated with the interference
complex (MAKAROVA et al., 2015), we find that for the interference proteins Cas10d, Cas3
and Cse2, the associated proteins are also interference proteins. For the non-interference proteins
Csn2 and Cas4 in II-A and II-B, not only is Cas9 an interference and signature protein for type
II, but it is associated with them as well as the adaptation proteins Cas1 and Cas2. Interestingly,
though Cas9 information is important for Cas4, Cas1 is actually more significant for Csn2. This
is in agreement with the hypothesized role of Csn2 in the adaptation process (NAM et al., 2011;
KOO et al., 2012; ARSLAN et al., 2013; LEE et al., 2012).

Table 7 – Top 3 most important proteins according to ERT when trying to predict a target protein across
different subtypes. For the interference proteins Cas10d, Cas3 and Cse2, the other most important
Cas proteins are also interference proteins. For non-interference proteins, other Cas proteins
linked to adaptation, e.g. Cas1 and Cas2, are also important. The helper protein CasR seems to
have different modules associated in I-A and I-E.

Subtype Target protein Most important proteins
I-D Cas10d (Cas3, 0.28), (Cas5, 0.26), (Cas7, 0.17)
I-D Cas3 (Cas11, 0.48), (Cas10, 0.20), (Cas5, 0.11)
I-E Cse2 (Cas7, 0.25), (Cas5, 0.23), (Cas8, 0.19)
II-A Csn2 (Cas1, 0.62), (Cas9, 0.23), (Cas2, 0.15)
II-B Cas4 (Cas9, 0.83), (Cas1, 0.09), (Cas2, 0.08)
I-A CasR (Csa5, 0.28), (Cas5, 0.16), (Cas6, 0.12)
I-E CasR (Cas1, 0.33), (Cas7, 0.25), (Cas8, 0.21)

An interesting case to consider is CasR (also known as CasRA or Csa3), a transcriptional
regulator of CRISPR interference and/or adaptation (HE et al., 2017; VESTERGAARD; GAR-
RETT; SHAH, 2014). This protein seems to have different roles in subtypes I-A and I-E, and
also appears to be associated with the different proteins in I-A and I-E (see Table 7, last two
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rows). In I-A, the most important proteins are Csa5, Cas5 and Cas6, whereas in I-E they are
Cas1, Cas7 and Cas8.

3.4.7 The ML-approach can handle missing Cas proteins

During our experiments, we left out cassettes that had one or more Cas proteins missing,
i.e., without hits in their corresponding HMM models during the preprocessing step (Figure
9a). Since these cases often occur in real application scenarios it is important to assess how our
ML-based pipeline can handle them. We observed that most of these cassettes contained only
one protein that did not present any hit for the HMM models of its family. For such, we worked
with the cassettes having all proteins annotated as ground truth, and removed one bit score for
a specific protein. We then learned a model able to predict this bit score using the evidence
information from the remaining proteins.

Specifically, we investigated the performance of predicting the missing evidence using
the previously described regression approach, trained on all subtypes. The basic idea is that a
high predicted evidence for a missing protein is a hint for researchers to perform an in-depth
attempt to either annotate the missing protein or to search for new proteins that might replace the
function of the missing protein.

Figure 13 shows the Cas protein regression results for ERT; the regressor with the best
predictive performance for subtypes I-A and I-E in the dataset generated by HMM1. Other
experimental results, for different subtypes and datasets, can be seen in our Supplementary
material, Figures 25–29. These results show that the missing proteins are predicted with a high
quality. For the core proteins Cas1 . . . Cas10, specifically, the proposed approach has very high
prediction rates, showing a strong interdependence between these core proteins and other Cas
proteins important for the subtype. We also observed that for proteins that are not core Cas
proteins such as CasR, the size of the data basis (i.e., number of known cassettes for the subtype
where this protein occurs) influences the prediction quality. While this is partially inherent in
the machine learning approach, it also might indicate a more variable or complex interaction
between these proteins and other proteins important for the subtype.

We also observed that, in general, ERT obtained the best results for Cas protein regression
(see Supplementary Figures 25–29). In most cases, ERT presented mean absolute error values
below 0.05 for the normalized bit score prediction. These results confirm the relevance of
building specific regressors for each Cas protein inside of a specific subtype for the identification
of unknown or possibly missing Cas proteins, when the label of the cassette of interest is known.

In order to assess whether the aforementioned setting would work on a more global
level, we replicated the previous experiment by training the regressor on the full datasets with all
subtypes. Most of the times, similar results were obtained (see Supplementary Figures 30–34).

Next, as a proof of concept, we looked at the cassettes with one missing protein that
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Figure 13 – Mean absolute error rates for Cas proteins contained in I-A (a) and I-E (b) subtypes over 50
nested cross-validation repetitions. The x-axis lists the different Cas proteins that were used
as target variables. The y-axis presents the mean absolute error values between the known bit
score, and the bit score predicted by our regression approach. In general, missing proteins are
well predicted, especially in the case of the core Cas proteins Cas1 to Cas7. For other Cas
proteins, like CasR, the prediction quality varies between I-A and I-E. This is likely due to
the higher amount of I-E cassettes in the data basis, indicating a more complex relationship
between CasR and other Cas proteins.
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Figure 14 – The cassettes with missing proteins. A) In this genome, we predicted a DinG protein missing
in the cassette with evidence > 0.5. The HHblits (REMMERT et al., 2012) search in this
genome for all ORFs determined 1 ORF 117nt upstream of the cassette with a high confidence
score for a DinG homology (E-value: 7.6e-22). B) In the case of Cas2, the predicted evidence
was lower, between 0.221 to 0.165. Nevertheless, we found 1 ORF with a high confidence
score for Cas2 homology (E-value: 1e-37) 3010nt downstream of the cassette.

117 nt

Aromatoleum aromaticum EbN1
(putative)

DinG csf5 csf1 csf2 csf3
1006 nt

Thermoanaerobacter italicus Ab9

cas3 cas5 cas7 cas8cas3cas2
(putative)

cas4

were left out of our experiments and constitute an independent test case (see Methods), and
applied our regression approach to identify the cassettes with a high predictive performance of
the evidence for having a specific missing protein. These cases would be good candidates for
missing annotations. We found 13 cassettes that predicted a missing DinG protein, 3 of them with
evidence of at least 0.5. By applying a HHblits (REMMERT et al., 2012) search for all ORFs in
the respective genome of these three cassettes, we found an ORF with convincing homology to
DinG-proteins in each case (see Figure 14A for an example). Another case was Cas2, when we
found 13 cassettes with a missing Cas2 protein predicted. We again used HHblits on all ORFs in
the genome of the top three cassettes, and found one case with a convincing Cas2 homology (see
Figure 14B).

Finally, we applied our regressors to the aforementioned test set, to predict the missing
protein annotations, and the classifiers to predict the subtype for these incomplete cassettes,
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Table 8 – Average adjusted balanced accuracy for classification on the independent test set, consisting of
cassettes with one Cas protein missing. "Clf." refers to "Classifier" while "Reg." to "Regressor".
The best results ≥ 0.7 are in bold. A dash in the second column means no regression (i.e., only
classification) was used.

Clf. Reg. HMM1 HMM2 HMM3 HMM4 HMM5

CART

– 0.50 0.50 0.68 0.48 0.48
CART 0.68 0.68 0.52 0.55 0.55

ERT 0.63 0.63 0.56 0.58 0.58
SVM 0.56 0.56 0.51 0.54 0.54

ERT

– 0.63 0.63 0.65 0.74 0.74
CART 0.70 0.70 0.63 0.64 0.63

ERT 0.69 0.69 0.63 0.64 0.65
SVM 0.60 0.60 0.63 0.63 0.62

SVM

– 0.50 0.50 0.58 0.64 0.64
CART 0.72 0.72 0.53 0.58 0.58

ERT 0.66 0.66 0.60 0.61 0.62
SVM 0.54 0.54 0.53 0.57 0.57

which were not included in the training set. Table 8 shows the classification results for all ML
algorithms on this independent test. In these results, the ERT- and SVM-based classifiers, when
combined with the CART regressor and the more fine grained models HMM1 and HMM2, can
predict the correct subtype with high predictive performance, even in the hard case of incomplete
annotation. The ERT-based classifier can also achieve high performance when combined with
the less fine grained models HMM4 and HMM5. However, in these cases, there are less subtypes
available, because only classes containing at least 10 examples were included in our experiments
(see Methods).

3.4.8 CRISPRcasIdentifier clearly outperforms existing tools

Finally, we assessed the quality of prediction in comparison with existing tools, to
assess whether they would be able to correctly classify cassettes that are not covered by the
manual annotations. This is a typical application scenario e.g. in the analysis of cassettes from
metagenomic data. For this purpose, we used CRISPRcasIdentifier with default parameters
and compared its performance with three command line CRISPR-Cas tools (CRISPRdisco
(CRAWLEY et al., 2018), CRISPRcasFinder (COUVIN et al., 2018) and Macsyfinder (ABBY
et al., 2014)) and two webservers (CRISPRone (ZHANG; YE, 2017) and HmmCas (CHAI et al.,
2019)).

To benchmark these tools we used the most recent and comprehensive set of cassettes as
listed in the very recent classification paper (MAKAROVA et al., 2019). This dataset has 6098
cassettes extracted from 4974 archaeal and bacterial genomes, including the following subtypes:
I-A to I-U, II-A to II-C, III-A to III-D, IV-A, V-A and VI-B. In Table 9 we present the adjusted
balanced accuracy scores and F-scores with the macro averaging obtained. The inferior results of
HmmCas and CRISPRone can partially be explained by the fact that they 1) use the existing Cas
HMMer models without any enhancement, and 2) rely on a concept that is similar to signature
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Table 9 – Predictive performance of CRISPR-Cas tools for different measures. The best results for each
measure are marked in bold.

Tool Adj. Bal. Acc. F-score

w
eb

-
se

rv
er CRISPRone 0.07 0.17

HmmCas 0.05 0.15

co
m

m
an

d-
lin

e

CRISPRdisco 0.52 0.63
CRISPRcasFinder 0.48 0.56
Macsyfinder 0.54 0.60
CRISPRcasIdentifier 0.89 0.91

gene for predicting the subtype.

According to Table 9 our tool clearly outperforms the others for all measures. Our
hypothesis is that the superior results are due to the generalization capability of ML models.
Thus, our tool is more suitable to handle unseen examples even if they contain missing proteins. It
occurs because it does not rely only on HMM profile searches but also on the general knowledge
extracted from the training data. It is also important to observe that CRISPRcasIdentifier not only
classifies unseen cassettes but also tries to predict potentially missing proteins which, to the best
of our knowledge, is a problem that has not been successfully addressed by the existing tools.

3.5 Conclusions

In this paper we introduced a new ML-based pipeline for the identification and classifica-
tion of genomic CRISPR-Cas systems. To assess the predictive performance of this approach,
we conducted an in-depth investigation into the suitability of ML algorithms that are commonly
used for this task, by using the normalized profile HMM search bit scores of Cas proteins as
input and classifying cassettes encoding Cas proteins to their respective subtypes according to
the most recent classification (MAKAROVA et al., 2015; SHMAKOV et al., 2017; SHAH et al.,
2018).

Overall, this work covers four different research issues: (i) the classification of Cas cas-
settes; (ii) the prediction of normalized bit scores for missing Cas proteins; (iii) the investigation
of the properties of CRISPR types and subtypes; and (iv) the comparison of our new tool to
the ones available in the literature. Concerning topic (i), our classification models were able to
achieve very high classification performance, above 0.95, in terms of the adjusted balanced accu-
racy score. Thus, they are well placed for the prediction of CRISPR systems of newly sequenced
organisms, or metagenomic data with sufficient read length to cover the full cassette in one contig.
In addition, we introduced a new method for determining signature genes, which are genes most
important for predicting the correct subtype. This approach was able to properly learn the known
signature genes of CRISPR-Cas subtypes without any extra information other than the available
gene cassettes and their labels, but provides additional information about the composition of
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cassettes. In topic (ii), our regressor models achieved very small deviations between the expected
and predicted normalized bit scores for different Cas proteins across the different subtypes. This
illustrates the usefulness of these regressors on new cassettes that have missing hits for some Cas
proteins. A high bit score provides a hint to researchers to search for more diverged forms of the
protein, or to look for proteins which could replace the missing function. The analysis performed
under topic (iii) enabled us to correctly identify known signature genes, and to identify putative
functional modules. Overall, it provided us with a set of association rules for potential use in
more advanced classification scenarios, in addition to providing insights about the biology of the
systems. Finally, concerning (iv), our tool outperformed five other tools from the literature on
the most recent and comprehensive CRISPR classification dataset published.

Manual annotation is the gold standard when it comes to classification and identification
of genomic CRISPR-Cas systems. Supporting this process or annotating cassettes as part of an
overall automatic pipeline such as the analysis of metagenomic data requires a classification
approach with a degree of flexibility that is challenging to model. CRISPRcasIdentifier provides
a boost in classification accuracy when compared to existing tools, because it builds not only on
an understanding of the manual annotation process but also on the generalization power of ML
algorithms. We made CRISPRcasIdentifier available for researchers to use with their own data.

3.6 Availability of Source Code and Requirements
Project name: CRISPRcasIdentifier
Project home page: <https://github.com/BackofenLab/CRISPRcasIdentifier>
RRID: SCR_018296
BiotoolsID: crisprcasidentifier
Operating system(s): Platform independent
Programming language: Python
Other requirements: Anaconda, Docker
License: GNU General Public License version 3 (GPLv3)

3.7 Availability of Supporting Data and Materials
The data that supports the present work are available from the studies of (MAKAROVA

et al., 2015; SHMAKOV et al., 2015; SHMAKOV et al., 2017; MAKAROVA et al., 2019). An
archival copy of the code and supporting data are also available via the GigaScience database
GigaDB (PADILHA et al., 2020b).

https://github.com/BackofenLab/CRISPRcasIdentifier
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Publication information: This chapter is an article that was published in the Bioinformatics
journal by Oxford University Press. The article is licensed under CC BY 4.0* .

Reference: PADILHA, V. A.†; ALKHNBASHI, O. S.†; TRAN, V. D.; SHAH, S. A.; DE
CARVALHO, A. C. P. L. F.; BACKOFEN, R. Casboundary: Automated definition of integral
Cas cassettes. Bioinformatics, 2020. ISSN 1367-4803. Btaa984. Available: <https://doi.org/10.
1093/bioinformatics/btaa984>.

4.1 Abstract

CRISPR-Cas are important systems found in most archaeal and many bacterial genomes,
providing adaptive immunity against mobile genetic elements in prokaryotes. The CRISPR-Cas
systems are encoded by a set of consecutive cas genes, here termed cassette. The identification
of cassette boundaries is key for finding cassettes in CRISPR research field. This is often carried
out by using Hidden Markov Models and manual annotation. In this paper, we propose the first
method able to automatically define the cassette boundaries. In addition, we present a Cas type
predictive model used by the method to assign each gene located in the region defined by a
cassette’s boundaries a Cas label from a set of pre-defined Cas types. Furthermore, the proposed
method can detect potentially new cas genes and decompose a cassette into its modules. We
evaluate the predictive performance of our proposed method on data collected from the two most
recent CRISPR classification studies. In our experiments, we obtain an average similarity of 0.86

*<https://creativecommons.org/licenses/by/4.0/>
† Contributed equally as first authors.

https://doi.org/10.1093/bioinformatics/btaa984
https://doi.org/10.1093/bioinformatics/btaa984
https://creativecommons.org/licenses/by/4.0/
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between the predicted and expected cassettes. Besides, we achieve F-scores above 0.9 for the
classification of cas genes of known types and 0.73 for the unknown ones. Finally, we conduct
two additional study cases, where we investigate the occurrence of potentially new cas genes
and the occurrence of module exchange between different genomes.

4.2 Introduction

Prokaryotes face tremendous evolutionary pressures from viral predators, such as bacte-
riophages, which are responsible for eradicating almost half of the earth’s bacterial population
each day (SUTTLE, 2016). This constant threat has been hypothesised to comprise the single
most important driver of the planet life evolution (KOONIN et al., 2020). Bacteria and archaea
face an enormous incentive to defend themselves against viral invaders by evolving defense
systems, some of which are innate and others adaptive. Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPRs) constitute one such nucleic acid based adaptive immune system,
which functions through three distinct stages: acquisition, processing and interference. Upon a
naive infection, a piece of viral nucleic acid is incorporated as a spacer between the repeats of
the CRISPR locus on the host chromosome during its acquisition. The whole CRISPR locus,
which includes memories from dozens of past viral infections, is transcribed into a long piece
of RNA that is processed into small mature CRISPR RNAs (crRNAs), each corresponding to a
different acquired viral epitope. crRNAs are loaded onto the Cas (Crispr ASsociated) interference
complex, which then scans all intracellular nucleic acid for a matching nucleotide sequence, in
which case the target nucleic acid is cleaved, effectively protecting the cell from reinfection by
any virus for which a matching spacer exists.

Bacteriophages and archaeal viruses evade CRISPR immunity by several mechanisms.
Known mechanisms include direct mutations of the nucleic acid such that it is no longer targeted
by the host (HORVATH et al., 2008), or the evolution of small anti-CRISPR proteins. These
proteins interfere with the proper function of the Cas proteins that mediate CRISPR immunity by
either clogging catalytic sites or preventing complex assembly. Hosts evade such anti-CRISPR
immunity by carrying several distantly related CRISPR-Cas systems at once, and by frequently
exchanging their CRISPR-Cas systems for different ones through horizontal gene transfer.
This dynamic has driven the diversification of CRISPR-Cas systems into six types that are
further subdivided into 33 subtypes (MAKAROVA et al., 2019), each with its own evolutionary
trajectory. Corresponding Cas protein subunits from two different hosts, even when belonging
to the same subtype, can have sequences so distant that they are unalignable despite sharing
the same underlying protein structure. Such extreme diversification is caused by Cas proteins
mutating in order to avoid being inactivated by phage anti-CRISPRs. The rapid evolution of
CRISPR-Cas systems makes their detection difficulty in metagenomic sequences of uncultured
bacteria and archaea, because none of the existing known CRISPR-Cas systems in completely
sequenced genomes is a close enough match. Although the new Cas proteins are structurally
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similar to known Cas proteins, the amino acid sequences have diverged to an extent that makes
them difficult to detect even using the most sensitive sequence alignment methods (REMMERT
et al., 2012). While some Cas proteins such as Cas1 are easy to detect due to its very conserved
sequence, other proteins, such as Cas8, are notoriously difficult to identify, owing to their strong
sequence heterogeneity. Thus, even the most modern bioinformatics pipelines for annotation
of genomic CRISPRCas loci have difficulties in detecting all cas genes comprising a complete
CRISPR cassette.

According to comparative genomics studies of chromosomally encoded CRISPR-Cas
systems (GARRETT et al., 2011; VESTERGAARD; GARRETT; SHAH, 2014; MAKAROVA et

al., 2015; SHAH et al., 2018), these systems are carried on genomic cassettes, which are further
divided into modules corresponding to the different functional stages of the immune response.
Cassettes, as well as modules, are normally integral, meaning they have defined boundaries and
are not intermixed with foreign genes. Thus, a typical bacterium may carry several Cas cassettes,
and each cassette can be further divided into several operons, each corresponding to a functional
module. Class 1 systems, in particular, have elaborated heteromultimeric interference complexes
typically consisting of between four and eight genes. Knowing where the module starts and ends
on the genome narrows down the possibilities and is an invaluable aid in annotating the cas

genes that do not yield matches to any known Cas proteins.

Current bioinformatics pipelines for annotating cas genes treat each gene separately,
while a cassette-aware pipeline could infer the identities of missing genes by simple exclusion
(LANGE et al., 2013; ALKHNBASHI et al., 2014; ALKHNBASHI et al., 2016; ZHANG; YE,
2017; CRAWLEY et al., 2018; COUVIN et al., 2018; ALKHNBASHI et al., 2020).

In this paper, we propose a new method to automatically define the boundaries of a
CRISPR cassette. The proposed method takes into account the relation of a potential signature
gene and genes that are contained in its neighboring region. Furthermore, the method labels the
cas genes after the cassette boundaries have been defined, being also able to indicate genes that
may belong to new putative types.

4.3 Methods

This section introduces notation, definitions and problems addressed in this paper. After-
wards, it describes our proposed method for cassette boundary detection and Cas type prediction
in details.

4.3.1 Problem statement and notations

For a given genome, let g1, . . . ,gn be all genes of the genome ordered by its genomic
location (i.e. gi is located between gi−1 and gi+1 on the genome), and let G = {gi|i ∈ [1 : n]} be
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the set of all genes in the genome. With Gc we denote the set of all cas genes in this genome, and
the set of all cas signature genes by Gs. Gu = G ∖Gc is the set of all non-cas genes.

We denote Si j ⊆ G as a set of consecutive genes Si j = {gi, . . . ,g j} and the set of all
its consecutive subsets as Sub(Si j). Note that Sub(Si j) is not exponential in size as we are
considering only subsets that contain all genes in a genomic region. A consecutive subset C is
called a cassette if it contains a sufficient number of cas genes and not too long stretches of
non-cas genes. Formally, C = Spq is a cassette if

1. gp ∈ Gc and gq ∈ Gc (first and last gene is a cas gene)

2. gp−1 ̸∈ Gc and gq+1 ̸∈ Gc (the cassette is maximal)

3. p−q+1 ≥ 3 (the cassette contains at least three genes)

4. ∀U ∈ Sub(Spq) : U ⊆ Gu → |U | ≤ 3 (each consecutive subset of non-cas genes (called
gap) is smaller than 3).

We call gp and gq lower bound and upper bound of the cassette, respectively. A cassette is often
recognized by the presence of its signature gene, gs

i . The set of all cassettes is notated as Gcs.

We formalize the problems addressed in this paper as follows:

∙ Cassette boundary detection: in the first task, we aim at detecting the boundary for each
cassette, given its signature cas gene. For such, we define a function fc(R,gs

i ) that takes a
potential region R and a signature gene gs

i ∈ R as its input and returns the boundaries of
the maximal cassette Spq ∈ Gcs with Spq ⊆ R and gs

i ∈ Spq.

∙ Cas type prediction: in the second task, we want to determine the label for every cas gene.
Formally, we define function fl : Gc → L∪{N}, which maps a cas gene in Gc to a label
in L∪{N}, where L is the set of known Cas labels (such as Cas1, Cas2 etc.) and N is the
label for unannotated cas genes.

4.3.2 Detection of cassette boundaries

In this section we describe our proposed method for cassette boundary detection imple-
menting the function fc. Our method is based on our assumption that the relation between a
cas gene in a cassette and its signature gene is stronger than the relation for a gene that does
not belong to that cassette. This assumption is motivated by the common understanding that
signature genes gs ∈ Gs play an important role in defining the cassettes (MAKAROVA et al.,
2015; MAKAROVA et al., 2019) and should be used as an anchor point in learning the cassette
detection function fc. Furthermore, to simplify the problem of cassette detection, we define an
auxiliary function f (g j,gs

i ) that is 1 (positive) if both genes are located in the same cassette and
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0 (negative) otherwise. Thus, the first step of our method is to train a binary classification model
for this auxiliary function f . We then use this trained model to detect cassette boundaries in an
incremental manner as follows.

First, we slide over the genome. Whenever a signature gene gs
i is identified, a potential

region, R, is defined for detecting the cassette boundary as R = Si−k,i+k, where k > 0 is large
enough such that the full cassette is located inside this region. Next, the model is applied to
predict the label for every tuple (g j,gs

i ), g j ∈ R, starting from the genes located next to gs
i and

extending the range in a stepwise manner. Finally, the boundaries p,q are predicted by Algorithm
1.

Theorem. Let R = Si−k,i+k be the region around a signature gene gs
i and Spq be the

associated cassette predicted by Algorithm 1. Then Spq = fc(R,gs
i ).

Proof. Let fc(R,gs
i ) = Ss,t ∈ Gcs. First we note that R∩Spq ̸= /0 as both R and Spq contain

gs
i . To show equality, we proof by contradiction that there are no left-handed differences. The

right-handed cases are analogous. Now lets assume that s < p. In this case, let r be maximal in
s ≤ r < p ≤ i such that gr ∈ Gc, which must exist as gs ∈ Gc by definition of a cassette. Then
U = {gr+1, . . . ,gp−1} ⊆ Gu by construction. As Ss,t is a cassette and gr ∈ Ss,t ∧ gs

i ∈ Ss,t , we
know that f (gr,gs

i ) = 1 and |U | ≤ 3. Hence, gr would have been detected on the first loop of
Algorithm 1 as it started from position i > p and must have considered position p, which is a
contradiction.

For the other case let’s assume p < s. Note that s must have been visited in the first loop
of Algorithm 1 as s ≤ i. Let be gr be a cas gene with p ≤ r < s ≤ i and r maximal. This must
exist as gp ∈ Gc by the stop condition of the first loop in Algorithm 1. Let U = {gr+1, . . . ,gs−1}.
By the first loop of algorithm 1, we know f (gr,gs

i ) = 1 and |U | ≤ 3. Thus, Sr,t ⊃ Ss,t is a larger
cassette, which is a contradiction to the maximality of Ss,t .

Finally, we get s = p and analogously t = q, which proofs our claim.

4.3.3 Classification of Cas proteins

Given the boundaries of a cassette, it is important to know the type of each cas gene in
the cassette. A cas gene may belong to a set of predefined types or to a new type (i.e., previously
undefined). To create a model able to identify the type of a cas gene, we train a multiclass
classification model whose output indicates the probabilities of a given cas gene to belong to
each Cas type. For such, we follow the procedure for word classification proposed in Shu, Xu
and Liu (2017), briefly described next:

1. We assume that the probability values of all examples gi that belong to each class C j

are normally distributed and centered at µ(C j) = 1. To create the other half of the dis-
tribution, we mirror each of these probability values around µ(C j) (i.e., for each prob-
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Algorithm 1 – Detection of CRISPR boundaries.
Input:
- f : Auxiliary model,
- k: Potential region size parameter,
- R = Si−k,i+k: The potential region,
- gs

i : Signature gene.
Output: C ⊆ R: Cassette
begin

init: r = 1, p = 0, gap = 0;
while r ≤ k and gap ≤ 3 do

if fc(gi−r,gs
i ) = 1 then

p = r;
gap = 0;

else
gap = gap+1;

end if
r = r+1;

end while
init: r = 1, q = 0, gap = 0;
while r ≤ k and gap ≤ 3 do

if fc(gi+r,gs
i ) = 1 then

q = r;
gap = 0;

else
gap = gap+1;

end if
r = r+1;

end while
C = Si−p,i+q;
if |C | < 3 then

return /0;
end if
return C ;

end

ability value P(C j|gi) associated to a training example gi, we create the artificial point
1+(1−P(C j|gi))).

2. We estimate the standard deviation σ(C j) using the obtained probabilities and the artificial
mirrored values.

3. Finally, for each class C j, if the predicted probability for a test example gk is below the
threshold t(C j) = max(0.5, 1−α σ(C j)), gk is considered as an outlier for C j. If the
example is considered as an outlier for all classes, we label it as N (unnanotated). As
suggested by Shu, Xu and Liu (2017), we used α = 3. Otherwise, if the cas gene is not
considered as an outlier, we assign to it the label with the highest probability.
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In the original paper, Shu, Xu and Liu (2017) used the training examples to estimate
all thresholds t(C j). However, in our study, we found out that this approach may yield overly
optimistic estimations. To overcome this limitation, we used instead a validation set to estimate
the thresholds.

4.3.4 Cassette modularization

Earlier studies (GARRETT et al., 2011; SHAH et al., 2011; VESTERGAARD; GAR-
RETT; SHAH, 2014) have found that Cas cassettes can be subdivided into discrete functional
modules, with each module carrying out a separate function, and with its genes being spatially
separate from other modules within the cassette. Annotating the constituent modules inside a
cassette can reveal important information in terms of the functional organisation of the CRISPR-
Cas system. Typically, a cassette is composed by three types of modules: adaptation, processing
and interference. The processing module typically consists of a single cas gene, which is located
either close by the interference module or far away from the region defined by the cassette
boundaries. For these reasons, we take only the adaptation and interference modules into account.
The adaptation module contains genes that are the most conserved across different genomes,
being easy to detect. Therefore, in the first step of our method, we want to detect the adaptation
module by searching for a sub-region containing Cas1, Cas2 and/or Cas4. Next, the sub-regions
which are adjacent to the adaptation module will be considered as the interference modules.

In CRISPR-Cas field, a cassette can have one or more interference modules. Based on
the number of interference modules, we define cassettes with a single interference module as
single cassettes and cassettes with more than one interference module as multi-module cassettes.
Note that the interference modules in a multi-module cassette might be overlapped or separated.

4.4 Empirical evaluation

4.4.1 Data collection and preprocessing

We collect CRISPR data publicly available from Makarova et al. (2015), Makarova et

al. (2019). Our dataset has 52730 Cas proteins, with 7793 CRISPR cassettes distributed into 22
different subtypes (see Supplementary Table 30). We download the genomes from the NCBI
database and extract the Cas protein sequences by applying the Prodigal tool v2.6.3 (HYATT et

al., 2010) on the respective gene sequences. For each CRISPR cassette, we identify its signature
gene gs

i , the most important gene to define the cassette of interest (MAKAROVA et al., 2015;
MAKAROVA et al., 2019). Next, we extract k genes downstream and k genes upstream to gs.
Usually, the length of a CRISPR cassette ranges from 3 to 15 genes (MAKAROVA et al., 2015;
MAKAROVA et al., 2019). Thus, we set k = 50, which safely includes the full cassette in the
extracted region.
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To define the features for each gene, we use three different types of features, described
as follows:

1. General HMM features: we collect all available Hidden Markov Models (HMM) from
the following public databases: TIGRFAM (HAFT; SELENGUT; WHITE, 2003), Pfam
(BATEMAN et al., 2004), COG (TATUSOV et al., 2000) and CDD (MARCHLER-BAUER
et al., 2010), totalizing 38847 HMMs. For each protein sequence, the features are defined
as the bitscores generated by each HMM. We reduce the number of features to 500 using
the Truncated Singular Value Decomposition (MANNING; RAGHAVAN; SCHÜTZE,
2009), with 60% of the original data variance preserved.

2. Protein properties features: we calculate 12 features related to the properties of each
extracted protein, such as: molecular weight, length, isoelectric point, number of negatively
charged residues, number of positively charged residues, extinction coefficient (with and
without cysteine), instability index, hydrophobicity and secondary structure properties
(fraction of turn, sheet and helix).

3. Specific HMM features: we build 623 HMM models for the different Cas protein models
based on the core and signature genes from the dataset used (MAKAROVA et al., 2015;
MAKAROVA et al., 2019). Since these HMM models are more specific to the CRISPR
domain, we believe that they may be better suited for the task of identifying potentially
new Cas types.

We create a dataset of 7793 cassettes, out of which 7687 are single cassettes, such as
those illustrated in Figure 15. Each one of the remaining 106 cassettes, which are multi-module
cassettes, can be decomposed into two or three single cassettes whose signatures are close in the
genome. We divide these 106 cassettes into 2 subgroups: (i) the Separated set, which contains 74
multi-module cassettes that can be broken up into 145 single cassettes that do not overlap (e.g.,
see Figure 16a); and (ii) the Overlapped set, which contains 32 multi-module cassettes that can
be broken up into 70 single cassettes that present some degree of overlap (e.g., see Figure 16b).

Figure 15 – Examples of the structure of CRISPR cassettes: (a) single CRISPR cassette; and (b) single
CRISPR cassette with a gap. The signature genes are in bold. Blue arrows are interference
genes while purple arrows are adaptation genes.
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Figure 16 – Examples of the structure of multi-module CRISPR cassettes: (a) multi-module cassette
without overlap; and (b) multi-module cassette with overlap. The signature genes are in bold.
The blue and red arrows are interference genes, yellow arrows are processing genes and
purple arrows are adaptation genes.

4.4.2 Machine learning algorithms

Our method for cassette boundary detection requires a binary classification model,
whereas the Cas type prediction demands a multiclass classification model. In our experiments,
we use two algorithms to train them which, in addition to be known for their good performance
in several tasks, have different learning biases:

∙ Extremely Randomized Trees (ERT) (GEURTS et al., 2006), which is a classifier that
integrates multiple decision trees in an ensemble. To define the splits for each tree, this
method selects, at each step, a random subset of v features and a subset of v thresholds
(one for each feature). Afterwards, the feature that contains the best randomly chosen
threshold according to the quality criterion is selected. After training, the class predicted
for unseen examples is defined by the majority vote of all trees.

∙ Deep Neural Networks (DNNs) (GOODFELLOW; BENGIO; COURVILLE, 2016), which
are neural networks with a large number of layers whose neurons’ total input is a dot
product between a numeric vector input and the neuron’s synaptic weights followed by the
application of a non-linear activation function. By using the first layers to extract relevant
features, DNNs can learn highly complex functions. DNNs are usually computationally
expensive to train. However, with the recent advances in the computer processing power,
they have obtained the best predictive performance in a wide range of applications (LIU et

al., 2017).

4.4.3 Experimental setup

Two experiments are carried out to evaluate the predictive performance of the proposed
method. The first assesses the ability of our method to detect cassette boundaries. For such,
we use 10-fold cross-validation for the dataset with 7687 single cassettes, separating one of
the training folds for validation, and hold-out for the dataset with 106 multi-module cassettes.
The second experiment evaluates how well the proposed method classifies Cas proteins. In this
experiment, we employ hold-out for a dataset with 52730 Cas proteins.
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4.4.3.1 Cross-validation.

We split the data into 10 folds. Before training, we undersample the majority (negative)
class, to mitigate the negative effect of data imbalance on the model training. We repeat the
experiment 10 times and report the average and standard deviation of the performance over the
10×10 runs.

4.4.3.2 Hold-out.

For the Cas type classification, we leave 20% of the data out for testing and the remaining
for training (80%) and a fifth of the training set, for validation. To evaluate the performance for
undefined cas genes, we leave in turn 1 and 3 Cas types out of the training and validation set
to simulate undefined Cas types scenarios. We repeat this procedure to ensure that every Cas
type is left out once. We run the experiment 10 times. Regarding the boundaries detection for
multi-module cassettes, we use the 7687 single cassettes as a training and validation set and the
106 multi-module cassettes as the test set.

4.4.3.3 Model selection.

To tune the hyperparameters of each learning algorithm, we employ the grid search
with 32 different hyperparameter combinations. For ERT, we tune the number of trees in
{50,100,150,200}, the number of features randomly selected for each split in {

√
m, log2 m}

and the minimum number of examples to be at a leaf node in {1,4,7,10}. For DNNs, we use
two hidden layers and vary their numbers of neurons in {25,50,75,100}, the Adam optimizer
(KINGMA; BA, 2015) and consider the learning rate values in {0.01,0.001}. Concerning
maximum gaps, we consider values between 0 and 3.

4.4.3.4 Evaluation metrics.

For the evaluation of cassette boundaries detection, we use the following measures:

∙ The Jaccard Similarity (JS), which is a popular measure for comparing different sets and
is defined as:

JS(C t ,C p) =
|C t ∩C p|
|C t ∪C p|

,

where C t and C p are the true and the predicted cassette, respectively. This measure lies in
the interval [0,1] where 1 indicates a perfect match.

∙ The Cassette Loss (CL), which is an adaptation of the mean absolute error, a popular
measure for the evaluation of regression tasks. CL quantifies the gene-wise mean absolute
error and is defined as:

CL(C t ,C p) =
|pt − pp|+ |qt −qp|

2
,



4.5. Results and discussion 95

where pt (resp. pp) and qt (resp. qp) refer to the index of the first and the last gene of the
true (resp. predicted) cassette, respectively. This measure lies in the interval [0,∞) where
0 indicates a perfect match, i.e., the boundaries of the predicted cassette are in perfect
agreement with true cassette. Intuitively, CL denotes the average boundary deviation for
the left and right end together.

For the evaluation of the Cas protein classification, we use the F-score with macro-
averaging. Given a binary classification task where we have a specific class of interest (positive
class), the classical F-score is defined as:

F-score =
2TP

2TP+FP+FN

where TP, FP and FN correspond to the number of true positives, false positives and false
negatives, respectively. For the multiclass scenario, the macro-averaging consists of calculating
the F-score for each individual class and reporting the average F-score as the global performance
measure. The main advantage of macro-averaging is that it treats all classes with the same weight,
independently of the number of examples that they contain (SOKOLOVA; LAPALME, 2009).

4.5 Results and discussion

In this section we report and analyze the results obtained from our experiments.

4.5.1 Detection of cassette boundaries

We report the histogram of JS and CL values for single cassette prediction in Figure
17, using only the general HMM features, which were our best results. For the histograms of
other types of features, please check our Supplementary Material (Figures 35 and 36). From
Figures 17a and 17c, it can be noticed that most of the JS values are 1.0 and CL values are 0.0,
indicating that our model is able to correctly predict most of the cassettes. In addition, in Table
10, we show the average JS and CL values that we obtained for both single and multi-module
cassettes. When comparing our results to those achieved by CRISPRCasFinder (COUVIN et al.,
2018), the closest tool to our method, it is possible to note that we achieved around 16% of JS
improvement in the best case for single cassettes. In particular, our tool would predict cassette
boundaries correctly with a precision of roughly one position, whereas CRISPRCasFinder would
be roughly 5 positions away on average. Regarding multi-module cassettes, we obtained JS
values above 0.70, while CRISPRCasFinder achieved extremely low JS values which are less
than 0.15 in both separated and overlapped cases. It confirms the superiority of our method over
CRISPRCasFinder in the detection of cassette boundaries. Besides, to illustrate the capability of
our method in this scenario, we present in Figure 18 an example of cassette prediction for the
organism Thermotoga sp. RQ2.
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Figure 17 – Histogram containing 100 equally sized bins of the Jaccard Similarity and Loss for single
cassette prediction using ERT (a, b) and DNN (c, d). The inner figures are the zoom of the
corresponding outer ones without considering the most dominant bin.
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Table 10 – Performance of our method and CRISPRcasFinder for the identification of single and multi-
module cassettes in terms of JS and CL. For multi-module cassettes, the prediction quality
for boundary detection drastically drops for CRISPRcasFinder, whereas our tool has similar
performance to the single cassette case.

Method
Single cassettes Multi-module cassettes

Separated set Overlapped set
JS CL JS CL JS CL

ERT 0.86±0.01 1.09±0.12 0.79 1.10 0.72 1.93
DNN 0.83±0.01 1.39±0.20 0.74 1.77 0.73 2.21

CRISPRcasFinder 0.70 4.87 0.13 30.52 0.10 19.88

4.5.2 Classification of Cas proteins

In Figure 19, the average F-scores for Cas type prediction of our method using a combi-
nation of specific HMMs and gene properties features are shown. For details of the performance
of the models using different types of features, please see our Supplementary Material (Figures
38–46).
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Figure 18 – Examples of our method’s cassette prediction for the organism Thermotoga sp. RQ2. Specif-
ically, it found two cassettes composed by single interference modules, represented by the
orange and green arrows, and a multi-module cassette with two interference modules (blue
and red arrows) and an adaptation module (purple arrows). See Figure 37 for more details.

Overall, our method achieved high predictive performances for all Cas types using both
ML models. More precisely, for the known Cas types predictions most values are equal to
or higher than 0.9. Regarding the prediction of unknown Cas types, ERT and DNN achieved
average F-scores of 0.73 and 0.80, respectively. Although the results for unknown Cas types are
relatively lower than those of known Cas types, this reduction is expected, given the difficulty of
the task for detecting new classes caused by the balancing between the high F-scores for known
classes and the ability to potentially point out new genes. The high predictive performance of
our models shows their potential for the classification of Cas types for genes in general and for
un-predefined cas genes observed in many cassettes in particular.

Figure 19 – Comparison of Cas type prediction F-scores between our models (using a combination of
the specific HMM and protein properties features) and CRISPRCasFinder. For a comparison
between the runtime of Casboundary and CRISPRCasFinder, see Table 32.
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4.5.3 Prediction of potentially new Cas proteins

In this task, we use our method to investigate the problem of predicting (potentially)
new Cas proteins, which is a typical scenario for the analysis of novel cassettes. For such we
integrated into our method the best ML models that we obtained in the previous section. They
are able not only to integrate the knowledge extracted from multiple HMM models and protein
properties, but also to generalize the relations among those features.
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First, given the cassette boundaries for a genome, we applied our classification methods to
label each protein contained in it. Then, we analyzed the proteins that were labeled as "unknown",
by performing a clustering search against our database. In Figure 20a, our method labeled two
proteins as potentially new. One of them presented a good degree of similarity with a few Cas8
proteins (see our Supplementary Material, Figures 47–49). Since this family is very diverse, this
result suggests that it may belong to a new Cas8 subfamily and we labeled the respective gene
as "putative cas8". In Figure 20b, our method labeled two genes as potentially new. We did not
find any convincing resemblance with the proteins we had in our database. Thus, we believe that
such proteins may represent new protein families and we label the respective genes as "putative
new cas gene".

Figure 20 – Examples of the application of our method for the identification of potentially new Cas
proteins, which are marked in bold. In (a), our method predicted two proteins as "new", where
one of them has some similarity with Cas8 proteins and may be a new subfamily of Cas8. In
(b), our method predicted two proteins as "new", which do not have any similarity to other
known Cas proteins and may indicate two new genes.

4.5.4 Occurrence of exchangeable modules

CRISPR cassettes are multi-module structures which are made up of several functional
modules each responsible for their own stage of the immune response (VESTERGAARD;
GARRETT; SHAH, 2014), including adaptation, processing and interference, in addition of
optional accessory modules. The genes comprising each module within a cassette are separated
from each other into distinct operons, such that the modules themselves are integral (SHAH
et al., 2011). Such a structure enables differential regulation of the expression of the different
immune stages, but also enables independent horizontal transfer of a module within a cassette
without affecting the functionality of the rest of the immune response. There have been previous
reports of CRISPR cassettes from related organisms having undergone such shuffling of modules
(GARRETT et al., 2011), although no systematic survey has been made. The capability of our
method to define the edges of both Cas modules and cassettes was employed on a database of
bacterial and archaeal genomes (Section 4.4.1) and the identities of the detected modules were
compared in order to gauge the extent of modular exchange in natural CRISPR-Cas systems.

All cassettes consisting of no more than a single adaptation module and a single interfer-
ence module were included in the analysis. Adaptation modules from different cassettes were
aligned against each other in order to determine their similarity degree. The subtype of each
cassette was determined by looking at the interference module. Finally, for each adaptation
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module, the subtype of its closest match from a different cassette was recorded in Supplementary
Table 31.

Subtypes with a high diagonal percentage close to 100 almost never share their adaptation
module with other subtypes of interference modules. I-E and I-F are a good examples of such
subtypes, and this observation is consistent with that fact that the adaptation and inferencence
stages are coupled in systems of these subtypes, with Cas3 being involved in both stages
(WESTRA et al., 2013; VORONTSOVA et al., 2015). On the contrary, and consistent with earlier
reports (VESTERGAARD; GARRETT; SHAH, 2014; GARRETT et al., 2011), subtypes I-A, I-
B, I-D frequently engage in modular exchange, probably because the adaptation and interference
stages are independent in these subtypes (PLAGENS et al., 2012). Besides, most Type III
systems have been known for long to piggyback on adaptation and processing machineries of
co-occurring Type I systems (HAFT et al., 2005; HALE et al., 2009; MAKAROVA et al., 2011)
because they have no such modules of their own, explaining their particularly low diagonal
percentages. The extremely low diagonal percentage (37) found for subtype I-U suggests very
frequent modular exchange comparable to Type III systems. This result indicates that the subtype
co-functions with other CRISPR-Cas systems belonging to subtypes as I-A, I-C, and Type III.
This subtype may not have specific adaptation system of its own, like Type III systems. Given
that very little experimental data exists on subtype I-U systems, these observations still need
confirmation.

4.5.5 Automated annotation of Cas Cassettes and modules

We made our method available as an open source tool in GitHub1. It was implemented in
Python and is based on the method that integrates our best ML models. Casboundary accepts
a complete or partial genome sequence as input, identifies the potential signature genes by
using Cas-specific HMM models (MAKAROVA et al., 2019) (see Section 4.4.1), and provides
a full identification of the CRISPR cassettes. Next, it labels the genes of the cassette and, as
a post-processing step, it can also perform the decomposition of the identified cassette into
modules.

Casboundary can be easily integrated with CRISPRcasIdentifier (PADILHA et al.,
2020a), a recent tool for the classification of CRISPR cassettes. Casboundary outputs a set
of Fasta files containing the identified cassettes, which can be given as input to CRISPRcasIden-
tifier. As a next step, CRISPRcasIdentifier can classify each cassette into its respective subtype
and also predict potentially missing proteins in it. By integrating these tools, the users have a
complete CRISPR detection and classification pipeline.

1 <https://github.com/BackofenLab/Casboundary>

https://github.com/BackofenLab/Casboundary


100 Chapter 4. Casboundary: Automated definition of integral Cas cassettes

4.6 Conclusion
In this paper, we introduce the first method for automated cassette boundary detection,

Cas protein annotation and classification. We apply our method on the datasets from Makarova
et al. (2015), Makarova et al. (2019), which comprise single and multi-module cassettes. Addi-
tionally, we also present two real study cases, where we analyze the occurrence of exchangeable
models and the prediction of potentially new Cas protein classes.

With respect to boundary detection, the approach followed by our method combines
the information available for different genes and a potential signature gene of interest. In our
experiments, the method obtains promising predictive performance results as measured by the JS
and CL. For single cassettes, we obtain an average JS of 0.86 and CL below 1.09 with the best
ML model. For composite cassettes, such a model reaches average JS (resp. CL) values of 0.79
(resp. 1.10) and 0.72 (resp. 1.93) for separated and overlapped cassettes, respectively.

Concerning the Cas protein classification, our method is not only able to assign the Cas
type labels for known Cas proteins but also to label a Cas protein as a potentially new type. In
our experiments, where we simulate the occurrence of new Cas types by leaving out either 1 or
3 subtypes, our models achieve F-scores above 0.9 for known cas types. Besides, we perform
a real study case where our method is able to suggest new putative cas genes. Moreover, we
conduct another study case to analyze the occurrence of exchangeable models in CRISPR-Cas
systems. Our analysis presents evidence of the exchange of adaptation and interference modules
in different archea and bacteria CRISPR-Cas systems.

Finally, our method is available as an open source tool in GitHub. At each run, it loads
our best ML models and allows the user to apply all the developed methods in an easy and
pragmatic way to new CRISPR cassettes.
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CHAPTER

5
CONCLUSION

In this thesis, we described and presented experimental results from research investiga-
tions and the development and experimental assessment of computational tool in two sub-areas
of bioinformatics: (i) application of biclustering coherence measures for the evaluation of biclus-
tering algorithms in gene expression data analysis; and (ii) classification and characterization of
CRISPR systems in bacteria and archaea.

Concerning (i), we introduced in Chapter 2 a comparative study of 17 biclustering
coherence measures for the evaluation of biclustering results. Specifically, we analyzed when
these measures are correlated with external information in the form of gene ontologies for the
results of 10 biclustering algorithms that are typically used. A total of 16 different experimental
scenarios were investigated which allowed us to show which pairs of measures are redundant in
which scenarios. Furthermore, with the time complexity analyses, we were able to recommend the
measures that require less computational effort, which is an important topic to consider for large-
scale applications. Finally, we observed that no coherence measure presented strong correlations
with the information from the gene ontologies. Thus, combining both types of evaluation may
improve the relevance of the experimental results in an analysis of gene expression using
biclustering algorithms.

With respect to (ii), we presented two experimental studies and tool developments,
in Chapters 3 and 4. In Chapter 3, we introduced CRISPRcasIdentifier, a computational tool
for classifying CRISPR cassettes. This new tool was designed in agreement with the most
recent CRISPR classification studies of Makarova et al. (2015), Makarova et al. (2019). In our
experiments, CRISPRcasIdentifier presented very high accuracy results, above 0.95, and also
achieved better results than other tools on the last published CRISPR dataset (MAKAROVA et

al., 2019). Specifically, CRISPRcasIdentifier reached an adjusted balanced accuracy of 0.89 and
a F-score with macro averaging of 0.91 against 0.54 and 0.63 for Macsyfinder and CRISPRdisco,
which are currently the best competitors, respectively. Moreover, CRISPRcasIdentifier is the
first tool that can estimate the normalized bit-score of potentially missing proteins in CRISPR
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cassettes. In the correspondent experiments, CRISPRcasIdentifier obtained, in general, mean
absolute errors below 0.05.

In Chapter 4, we presented Casboundary, which is the first tool that defines the boundaries
of the cassettes of archaeal and bacterial genomes. Specifically, it takes into account the relation
between potential signatures and their neighboring genes to define the CRISPR cassettes. It also
allows the decomposition of cassettes into modules. Moreover, it performs the classification
of core and signature genes and predicts potentially new cas gene types. Finally, we presented
a study case that illustrated the application of our tool in a real scenario, where we reported
putative new cas gene types.

5.1 Limitations and future work

Most of the biclustering coherence measures that were analyzed in this thesis can be
easily influenced by the bicluster size. In particular, it is known that biclusters containing
few rows and/or columns may present coherent patterns only due to chance (HENRIQUES;
MADEIRA, 2018). Recently, Iorio, Chiaromonte and Cremona (2020) discussed this bias for
the MSR measure and proposed a simple normalization scheme for its correction, supported
by theoretical proofs. It might be relevant to investigate how to extend their study for other
frequently used measures, such as VE and VEt, that are able to identify more patterns than the
MSR.

Another possibility is to investigate on how to empirically adjust some coherence mea-
sures for chance or to estimate p-values that indicate the significance of their experimental
results. Although this approach is computationally expensive when compared to the approach
investigated in Iorio, Chiaromonte and Cremona (2020), it has the advantage of being easily
applicable to many coherence measures with minor modifications. Some studies have already
proposed sampling procedures for problems such as graph mining (HANHIJÄRVI; GARRIGA;
PUOLAMÄKI, 2009), clustering (OJALA et al., 2009), or frequent itemset mining (HANHI-
JÄRVI et al., 2009). Those methods usually perform some perturbation to the original dataset,
but without modifying some of its core characteristics, such as the distributions of row or column
values. We believe that these additional studies may provide interesting starting points for the
investigation of experimental chance adjustment or p-value estimation for biclustering.

CRISPRcasIdentifier is not able to identify potentially new CRISPR subtypes. Casbound-
ary can indicate potentially new Cas proteins, but it is not capable of discriminating unseen
classes. Hence, the application of methods able to learn potential new classes formed by large
sets of putative new cassette subtypes or protein families could provide important research
contributions. Recently, zero-shot learning methods have been developed and mainly applied to
image classification datasets. These approaches assume that not all classes are available during
training. Thus, they try to transfer the knowledge obtained in this step to learn new classes in the
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test phase (WANG et al., 2019). For such, besides the original feature space of the problem, it is
also necessary another space, called semantic space. Semantic spaces are expected to summarize
general information of the seen and unseen classes as different prototypes, which consist of
feature vectors in this space.

We believe that it may be also be relevant to investigate the adaption or development of
new zero-shot learning techniques for CRISPR-Cas systems. As a starting point, the features
that have been used in Chapters 3 and 4 could be investigated as the original feature space.
The semantic space could be defined by extra gene and protein-related features, such as those
implemented in the packages protr (XIAO et al., 2015), iFeature (CHEN et al., 2018) and PyFeat
(MUHAMMOD et al., 2019).

Zero-shot learning may fit well for the classification of protein families and cassettes
of CRISPR-Cas systems. Furthermore, a new tool could speed up analyses with new archaeal
and bacterial genomes and help in the new classification studies that are periodically published ,
especially considering the fast evolutionary characteristic of these systems.





105

BIBLIOGRAPHY

ABBY, S. S. et al. Macsyfinder: A program to mine genomes for molecular systems with an
application to crispr-cas systems. PLOS ONE, Public Library of Science, v. 9, n. 10, p. 1–9,
10 2014. Available: <https://doi.org/10.1371/journal.pone.0110726>. Citations on pages 67
and 82.

AGUILAR-RUIZ, J. S. Shifting and scaling patterns from gene expression data. Bioinformatics,
Oxford University Press, v. 21, n. 20, p. 3840–3845, 2005. Citation on page 44.

ALKHNBASHI, O. S. Computational Characterisation of Genomic CRISPR-Cas Systems
in Archaea and Bacteria. Phd Thesis (PhD Thesis) — Albert-Ludwigs-Universität Freiburg,
2017. Citations on pages 28, 33, and 34.

ALKHNBASHI, O. S.; COSTA, F.; SHAH, S. A.; GARRETT, R. A.; SAUNDERS, S. J.;
BACKOFEN, R. CRISPRstrand: Predicting repeat orientations to determine the crRNA-encoding
strand at CRISPR loci. Bioinformatics (Oxford, England), v. 30, n. 17, p. i489–496, Sep. 2014.
ISSN 1367-4811. Citations on pages 67 and 87.

ALKHNBASHI, O. S. et al. Characterizing leader sequences of crispr loci. Bioinformatics,
v. 32, n. 17, p. i576–i585, 2016. Citations on pages 67, 68, and 87.

. Crispr-cas bioinformatics. Methods, p. 3–11, 02 2020. Citation on page 87.

ARSLAN, Z. et al. Double-strand DNA end-binding and sliding of the toroidal CRISPR-
associated protein Csn2. Nucleic Acids Research, v. 41, n. 12, p. 6347–6359, 04 2013. ISSN
0305-1048. Citation on page 79.

ASHBURNER, M.; BALL, C. A.; BLAKE, J. A.; BOTSTEIN, D.; BUTLER, H.; CHERRY,
J. M.; DAVIS, A. P.; DOLINSKI, K.; DWIGHT, S. S.; EPPIG, J. T. et al. Gene ontology: tool for
the unification of biology. Nature genetics, Nature Publishing Group, v. 25, n. 1, p. 25, 2000.
Citations on pages 32 and 56.

AYADI, W.; ELLOUMI, M.; HAO, J.-K. A biclustering algorithm based on a bicluster enumera-
tion tree: application to dna microarray data. BioData mining, BioMed Central, v. 2, n. 1, p. 9,
2009. Citations on pages 50 and 53.

BATEMAN, A.; COIN, L.; DURBIN, R.; FINN, R. D.; HOLLICH, V.; GRIFFITHS-JONES,
S.; KHANNA, A.; MARSHALL, M.; MOXON, S.; SONNHAMMER, E. L. et al. The pfam
protein families database. Nucleic acids research, Oxford University Press, v. 32, n. suppl_1, p.
D138–D141, 2004. Citation on page 92.

BEN-DOR, A.; CHOR, B.; KARP, R.; YAKHINI, Z. Discovering local structure in gene expres-
sion data: the order-preserving submatrix problem. Journal of computational biology, Mary
Ann Liebert, Inc., v. 10, n. 3-4, p. 373–384, 2003. Citation on page 54.

BEN-DOR, A.; SHAMIR, R.; YAKHINI, Z. Clustering gene expression patterns. Journal of
computational biology, Mary Ann Liebert, Inc., v. 6, n. 3-4, p. 281–297, 1999. Citation on
page 42.

https://doi.org/10.1371/journal.pone.0110726


106 Bibliography

BISHOP, C. M. Pattern recognition and machine learning. [S.l.]: springer, 2006. Citations
on pages 70 and 75.

BISWAS, A.; STAALS, R. H. J.; MORALES, S. E.; FINERAN, P. C.; BROWN, C. M. Crisprde-
tect: A flexible algorithm to define crispr arrays. BMC Genomics, p. i356–i356, 2016. Citation
on page 67.
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APPENDIX

A
SUPPLEMENTARY MATERIAL FOR

"CRISPRCASIDENTIFIER: MACHINE
LEARNING FOR ACCURATE

IDENTIFICATION AND CLASSIFICATION OF
CRISPR-CAS SYSTEMS"

This supplementary material is also available online: <https://doi.org/10.1093/gigascience/
giaa062>.

In Table 11, we summarize the five different collections of HMM models, labeled HMM1

. . . HMM5, by listing the number of models for each Cas protein family.

In Table 12, we summarize the percentage of cassettes that are complete for each subtype,
ignoring Cas proteins that are contained in less than 5% of the cassettes of each subtype. We
observed in the experimental results that, even though some incomplete cassettes are present,
the three classifiers were still able to capture the relations among the remaining proteins. The
complete results for all sets of HMM models and the two evaluation measures (adjusted balanced
accuracy and F-score) are presented in the Supplementary Figure 21.

Concerning our one-vs-the-rest experiments we can use, in the case of SVM, the margin
separating positive and negative data as an additional quality criteria. In Figure 22, we present an
example with subtype I-D, where a clear separation of SVM scores for the positive (I-D) and
negative classes (other subtypes) can be observed.

In Figure 23, we present the full one-vs-the-rest CART for the I-D subtype. As one can
see, a strong evidence for Cas10 immediately points to a subtype I-D (top node and right branch).
Otherwise, if we have middle evidence for Cas10, we need at least weak evidence for Cas3
to determine subtype I-D. Finally, if we have only weak evidence for Cas10, we need at least

https://doi.org/10.1093/gigascience/giaa062
https://doi.org/10.1093/gigascience/giaa062
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weak evidence for Cas3 and also for Cas1 to determine subtype I-D (left branch). However, the
classification is not pure anymore.

Since the current classification (MAKAROVA et al., 2015) is based only on the inter-
ference module, the adaptation-related Cas proteins (Cas1, Cas2 and Cas4) should not have
a high importance for our classification pipeline. Thus, we removed, in another experiment,
these proteins and the process proteins (Cas6), and tested the predictive performance of our
classification pipeline when removing this information. The obtained results were similar to those
discussed in our paper and support our discussion and main conclusions (see Supplementary
Figure 24), strengthening the hypothesis that our ML-based approach captured biologically
relevant information.

In Figures 25–29 we present the remaining regression results, concerning the other
subtypes and datasets. In general, we can observe that the proteins can be well predicted. In
Figures 30–34, we present regression results considering the full datasets (i.e., not separating by
subtype).

In Tables 13–28 we present all association rules found for the HMM1 dataset for each
subtype separately.
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Table 11 – Number of models for each Cas protein family

Cas Protein # of models HMM1 # of models HMM2 # of models HMM3 # of models HMM4 # of models HMM5

cas1 17 18 15 10 8
cas10 18 18 18 6 6
cas11 2 2 2 2 2
cas12 2 4 4
cas13 3 4 4
cas2 90 93 78 35 38
cas3 25 25 19 14 10
cas4 18 19 19 12 12
cas5 37 35 34 17 17
cas6 36 36 37 4 4
cas7 19 21 19 11 15
cas8 38 38 48 27 20
cas9 4 3 11 6 4
casR 2 1 2 2 2
cmr1 5 5 3 2 2
cmr3 2 2 2 3 3
cmr4 2 2 2 2 2
cmr5 3 3 3 4 4
cmr6 3 3 2 3 3
cmr7 1 1 1 1
cmr8 1 1
cpf1 1 1
csa3 1 1 1
csa5 2 2 2 1 1
casX 1 1
csb1 1 1 1 1
csb2 1 1 3 1 1
csb3 1 1 1 1
csc1 1 1 2 1 1
csc2 1 1 1 1 1
cse1 1 1
cse2 2 2 17 1 1
csf1 1 1 1 2 2
csf2 1 1 1 2 2
csf3 1 1 1 2 2
csf4 1 1 1 2 2
csf5 1 1 1
csm2 4 4 4 3 3
csm3 22 25 5 5 5
csm4 3 3 5 2 2
csm5 2 2 2 2 2
csm6 6 6 7 1 1
csn2 5 5 4 1 1
csx 39
csx10 2 2
csx17 1 1
csx19 1 1
csy1 1 1
csy2 1 1
csy3 1 1
total 379 385 416 209 201
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Table 12 – Percentage of complete cassettes across the different subtypes after ignoring Cas proteins that
are present in less than 5% of the cassettes of each subtype.

Subtype % Complete cassettes
I-A 26.72
I-B 71.89
I-C 77.42
I-D 8.7
I-E 80.34
I-F 84.46
I-U 0.0
II-A 93.44
II-B 60.71
II-C 83.79
III-A 29.79
III-B 3.08
III-C 11.83
III-D 1.63
IV-A 0.0
V-A 55.56
VI-B 100.0
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Figure 21 – Adjusted balanced accuracy and F-score values achieved for 50 nested ten-fold cross-
validation repetitions in all datasets.
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Figure 22 – One-vs-the-rest SVM histogram of projections (CHERKASSKY; DHAR, 2010) for the I-D
subtype. The solid line represents SVM’s optimal hyperplane. The dashed lines represent
SVM’s margins. The x-axis corresponds to the distance of a cassette to the decision boundary.
The y-axis indicates the frequency of cassettes that have different distances to the decision
boundary.
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Figure 23 – Full one-vs-the-rest CART for the I-D subtype. Cassettes that are labeled as subtype I-D are
labeled in blue, the others in brown. Each node shows the fractions of class I-D and other
cassettes, indicating the purity of the node. The number of cassettes is shown under "samples"
entry.
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Figure 24 – Adjusted balanced accuracy and F-score values achieved for 50 nested ten-fold cross-
validation repetitions in all datasets after removing Cas1, Cas2, Cas4 and Cas6.
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Figure 25 – Mean absolute error results for all subtypes in HMM1 over 50 nested cross-validation repeti-
tions.
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Figure 26 – Mean absolute error results for all subtypes in HMM2 over 50 nested cross-validation repeti-
tions.
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Figure 27 – Mean absolute error results for all subtypes in HMM3 over 50 nested cross-validation repeti-
tions.
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Figure 28 – Mean absolute error results for all subtypes in HMM4 over 50 nested cross-validation repeti-
tions.
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Figure 29 – Mean absolute error results for all subtypes in HMM5 over 50 nested cross-validation repeti-
tions.
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Figure 30 – Mean absolute error results for the full HMM1 dataset (i.e., without separating by subtype) over 50 nested cross-validation repetitions.
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Figure 31 – Mean absolute error results for the full HMM2 dataset (i.e., without separating by subtype) over 50 nested cross-validation repetitions.
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Figure 32 – Mean absolute error results for the full HMM3 dataset (i.e., without separating by subtype) over 50 nested cross-validation repetitions.
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Figure 33 – Mean absolute error results for the full HMM4 dataset (i.e., without separating by subtype) over 50 nested cross-validation repetitions.
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Figure 34 – Mean absolute error results for the full HMM5 dataset (i.e., without separating by subtype) over 50 nested cross-validation repetitions.
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Table 13 – Rules generated for subtype I-A.

Target protein Most important proteins
Cas3 (Cas8, 0.28), (Cas5, 0.24), (Cas7, 0.17), (Csa5, 0.09), (Casr, 0.06), (Cas6, 0.05), (Cas1, 0.04),

(Cas4, 0.04), (Cas2, 0.03)
Cas8 (Cas3, 0.21), (Csa5, 0.19), (Casr, 0.18), (Cas5, 0.12), (Cas7, 0.10), (Cas2, 0.06), (Cas4, 0.05),

(Cas1, 0.04), (Cas6, 0.04)
Cas7 (Casr, 0.31), (Csa5, 0.21), (Cas8, 0.18), (Cas5, 0.09), (Cas3, 0.07), (Cas1, 0.05), (Cas4, 0.04),

(Cas6, 0.03), (Cas2, 0.02)
Cas5 (Casr, 0.30), (Csa5, 0.23), (Cas3, 0.13), (Cas8, 0.09), (Cas6, 0.09), (Cas7, 0.05), (Cas4, 0.04),

(Cas1, 0.03), (Cas2, 0.03)
Cas6 (Cas3, 0.52), (Cas5, 0.17), (Cas2, 0.08), (Cas8, 0.07), (Csa5, 0.05), (Cas4, 0.03), (Cas7, 0.03),

(Cas1, 0.03), (Casr, 0.02)
Cas1 (Casr, 0.44), (Csa5, 0.11), (Cas4, 0.10), (Cas7, 0.08), (Cas3, 0.08), (Cas8, 0.07), (Cas6, 0.06),

(Cas2, 0.03), (Cas5, 0.03)
Cas2 (Cas4, 0.20), (Csa5, 0.16), (Cas7, 0.12), (Cas6, 0.11), (Casr, 0.10), (Cas8, 0.09), (Cas1, 0.08),

(Cas3, 0.07), (Cas5, 0.07)
Cas4 (Cas2, 0.21), (Cas3, 0.18), (Cas1, 0.17), (Casr, 0.09), (Cas5, 0.08), (Cas8, 0.08), (Cas7, 0.07),

(Csa5, 0.06), (Cas6, 0.05)
Csa5 (Csm6, 0.37), (Casr, 0.18), (Cas3, 0.10), (Cas7, 0.09), (Cas5, 0.08), (Cas6, 0.06), (Cas8, 0.05),

(Cas2, 0.03), (Cas1, 0.02), (Cas4, 0.02)
Casr (Csa5, 0.28), (Cas5, 0.16), (Cas6, 0.12), (Cas3, 0.12), (Cas8, 0.10), (Cas7, 0.09), (Cas2, 0.05),

(Cas4, 0.05), (Cas1, 0.03)

Table 14 – Rules generated for subtype I-B.

Target protein Most important proteins
Cas3 (Cas5, 0.48), (Cas7, 0.19), (Cas8, 0.18), (Cas2, 0.05), (Cas4, 0.04), (Cas6, 0.03), (Cas1, 0.02)
Cas8 (Cas6, 0.28), (Cas3, 0.18), (Cas5, 0.18), (Cas7, 0.14), (Cas2, 0.08), (Cas1, 0.08), (Cas4, 0.06)
Cas7 (Cas3, 0.28), (Cas5, 0.18), (Cas6, 0.12), (Cas4, 0.12), (Cas8, 0.11), (Cas2, 0.10), (Cas1, 0.09)
Cas5 (Cas3, 0.54), (Cas7, 0.16), (Cas8, 0.11), (Cas6, 0.07), (Cas2, 0.05), (Cas4, 0.04), (Cas1, 0.03)
Cas6 (Cas8, 0.37), (Cas7, 0.18), (Cas3, 0.12), (Cas5, 0.11), (Cas2, 0.10), (Cas4, 0.06), (Cas1, 0.06)
Cas1 (Cas4, 0.87), (Cas7, 0.03), (Cas8, 0.03), (Cas3, 0.02), (Cas6, 0.02), (Cas2, 0.02)
Cas2 (Cas8, 0.19), (Cas5, 0.18), (Cas6, 0.14), (Cas7, 0.13), (Cas3, 0.12), (Cas4, 0.11), (Cas1, 0.11), (Casr, 0.02)
Cas4 (Cas1, 0.87), (Cas7, 0.05), (Cas3, 0.02), (Cas8, 0.02), (Cas6, 0.02)
Cas10 (Cas8, 0.28), (Cas5, 0.21), (Cas6, 0.18), (Cas1, 0.18), (Cas2, 0.15)
Casr (Cas6, 0.23), (Cas8, 0.21), (Cas3, 0.19), (Cas5, 0.15), (Cas1, 0.08), (Cas7, 0.08), (Cas2, 0.03), (Cas4, 0.03)
Cas11 (Cas7, 0.28), (Cas6, 0.21), (Cas8, 0.19), (Cas5, 0.14), (Cas3, 0.09), (Cas4, 0.07), (Cas2, 0.02)
Csm6 (Cas7, 0.36), (Cas4, 0.35), (Cas3, 0.29)

Table 15 – Rules generated for subtype I-C.

Target protein Most important proteins
Cas3 (Cas7, 0.30), (Cas5, 0.18), (Cas8, 0.17), (Cas4, 0.12), (Cas2, 0.11), (Cas1, 0.11)
Cas8 (Cas7, 0.45), (Cas5, 0.29), (Cas3, 0.08), (Cas2, 0.07), (Cas4, 0.06), (Cas1, 0.04)
Cas7 (Cas5, 0.38), (Cas8, 0.26), (Cas3, 0.22), (Cas2, 0.05), (Cas1, 0.05), (Cas4, 0.04)
Cas5 (Cas7, 0.40), (Cas8, 0.25), (Cas3, 0.10), (Cas2, 0.10), (Cas4, 0.08), (Cas1, 0.07)
Cas1 (Cas4, 0.26), (Cas8, 0.19), (Cas2, 0.18), (Cas3, 0.17), (Cas7, 0.10), (Cas5, 0.09)
Cas2 (Cas5, 0.20), (Cas4, 0.19), (Cas1, 0.19), (Cas8, 0.16), (Cas3, 0.13), (Cas7, 0.12)
Cas4 (Cas2, 0.24), (Cas5, 0.18), (Cas1, 0.18), (Cas8, 0.16), (Cas7, 0.13), (Cas3, 0.12)

Table 16 – Rules generated for subtype I-D.

Target protein Most important proteins
Cas3 (Cas11, 0.48), (Cas10, 0.20), (Cas5, 0.11), (Cas7, 0.08), (Cas6, 0.04), (Cas4, 0.03), (Cas2, 0.03), (Cas1, 0.02)
Cas7 (Cas5, 0.56), (Cas3, 0.07), (Cas2, 0.07), (Casr, 0.07), (Cas6, 0.07), (Cas10, 0.06), (Cas1, 0.05), (Cas11, 0.03),

(Cas4, 0.03)
Cas5 (Cas7, 0.66), (Cas10, 0.12), (Cas3, 0.07), (Cas6, 0.05), (Cas2, 0.04), (Cas4, 0.02), (Casr, 0.02), (Cas1, 0.02)
Cas6 (Cas3, 0.20), (Cas2, 0.19), (Cas10, 0.17), (Cas4, 0.14), (Cas7, 0.12), (Cas5, 0.10), (Casr, 0.03), (Cas1, 0.02)
Cas1 (Cas7, 0.36), (Cas5, 0.15), (Cas4, 0.15), (Cas10, 0.11), (Cas2, 0.08), (Cas3, 0.07), (Casr, 0.05), (Cas6, 0.04)
Cas2 (Cas10, 0.21), (Cas5, 0.20), (Cas3, 0.15), (Cas4, 0.14), (Cas6, 0.12), (Cas7, 0.08), (Casr, 0.05), (Cas1, 0.04)
Cas4 (Cas10, 0.24), (Cas3, 0.18), (Cas2, 0.11), (Cas7, 0.10), (Cas1, 0.10), (Casr, 0.09), (Cas5, 0.08), (Cas6, 0.06),

(Cas11, 0.03)
Cas10 (Cas3, 0.28), (Cas5, 0.26), (Cas7, 0.17), (Cas4, 0.08), (Cas2, 0.06), (Cas6, 0.05), (Casr, 0.05), (Cas1, 0.04),

(Cas11, 0.02)
Casr (Cas5, 0.21), (Cas10, 0.18), (Cas2, 0.16), (Cas7, 0.14), (Cas1, 0.12), (Cas4, 0.09), (Cas3, 0.07), (Cas6, 0.04)
Cas11 (Cas3, 0.47), (Cas10, 0.36), (Cas5, 0.15)
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Table 17 – Rules generated for subtype I-E.

Target protein Most important proteins
Cas3 (Cas8, 0.74), (Cse2, 0.08), (Cas7, 0.07), (Cas5, 0.04), (Cas1, 0.03), (Cas6, 0.02)
Cas8 (Cas3, 0.68), (Cse2, 0.13), (Cas5, 0.07), (Cas7, 0.05), (Cas1, 0.03), (Cas6, 0.03), (Cas2, 0.02)
Cse2 (Cas7, 0.25), (Cas5, 0.23), (Cas8, 0.19), (Cas1, 0.13), (Cas3, 0.10), (Cas6, 0.08), (Cas2, 0.02)
Cas7 (Cas6, 0.21), (Cas8, 0.18), (Cse2, 0.16), (Cas3, 0.14), (Cas1, 0.13), (Cas5, 0.11), (Cas2, 0.06)
Cas5 (Cse2, 0.19), (Cas1, 0.19), (Cas6, 0.18), (Cas7, 0.14), (Cas8, 0.13), (Cas2, 0.09), (Cas3, 0.08)
Cas6 (Cas5, 0.26), (Cas2, 0.16), (Cas7, 0.16), (Cas1, 0.15), (Cse2, 0.12), (Cas8, 0.10), (Cas3, 0.05)
Cas1 (Cas7, 0.21), (Cas5, 0.20), (Cse2, 0.18), (Cas3, 0.13), (Cas8, 0.13), (Cas6, 0.10), (Cas2, 0.06)
Cas2 (Cas6, 0.24), (Cas5, 0.19), (Cas7, 0.14), (Cas8, 0.12), (Cas1, 0.12), (Cse2, 0.11), (Cas3, 0.08)
Casr (Cas1, 0.33), (Cas7, 0.25), (Cas8, 0.21), (Cas5, 0.06), (Cas2, 0.04), (Cas6, 0.04), (Cse2, 0.03), (Cas3, 0.03)

Table 18 – Rules generated for subtype I-F.

Target protein Most important proteins
Cas3 (Cas8, 0.39), (Cas5, 0.29), (Cas7, 0.15), (Cas1, 0.10), (Cas6, 0.07)
Cas8 (Cas5, 0.67), (Cas3, 0.10), (Cas7, 0.09), (Cas6, 0.07), (Cas1, 0.07)
Cas7 (Cas8, 0.28), (Cas5, 0.20), (Cas6, 0.19), (Cas1, 0.18), (Cas3, 0.16)
Cas5 (Cas8, 0.65), (Cas6, 0.13), (Cas7, 0.11), (Cas1, 0.07), (Cas3, 0.04)
Cas6 (Cas7, 0.28), (Cas8, 0.24), (Cas5, 0.23), (Cas1, 0.20), (Cas3, 0.06)
Cas1 (Cas7, 0.36), (Cas8, 0.19), (Cas5, 0.18), (Cas3, 0.14), (Cas6, 0.13)

Table 19 – Rules generated for subtype I-U.

Target protein Most important proteins
Cas3 (Csb2, 0.53), (Cas8, 0.33), (Csb1, 0.05), (Cas7, 0.03), (Cas5, 0.02)
Cas8 (Cas3, 0.53), (Csb1, 0.18), (Csb2, 0.15), (Cas7, 0.06), (Cas2, 0.04), (Cas4, 0.03), (Cas1, 0.02)
Cas7 (Csb2, 0.43), (Cas8, 0.29), (Cas3, 0.24), (Cas2, 0.03)
Cas6 (Cas8, 0.28), (Cas3, 0.28), (Csb2, 0.24), (Csb1, 0.20)
Cas1 (Cas4, 0.85), (Cas3, 0.06), (Csb2, 0.04), (Cas8, 0.02), (Cas2, 0.02)
Cas2 (Csb3, 0.34), (Cas1, 0.22), (Cas4, 0.19), (Cas8, 0.14), (Cas3, 0.05), (Csb2, 0.04)
Cas4 (Cas1, 0.86), (Cas2, 0.06), (Cas3, 0.03), (Cas8, 0.02), (Csb2, 0.02)
Csb2 (Cas3, 0.72), (Cas8, 0.17), (Csb1, 0.02), (Cas2, 0.02), (Cas1, 0.02), (Cas4, 0.02)
Csb1 (Cas8, 0.62), (Cas3, 0.11), (Cas2, 0.11), (Csb3, 0.07), (Csb2, 0.06), (Cas1, 0.02)
Csb3 (Cas2, 0.33), (Cas1, 0.17), (Csb1, 0.17), (Cas4, 0.12), (Csb2, 0.12), (Cas3, 0.08)

Table 20 – Rules generated for subtype II-A.

Target protein Most important proteins
Cas1 (Csn2, 0.42), (Cas9, 0.36), (Cas2, 0.23)
Cas2 (Cas9, 0.55), (Csn2, 0.27), (Cas1, 0.18)
Cas9 (Cas1, 0.41), (Cas2, 0.32), (Csn2, 0.27)
Csn2 (Cas1, 0.62), (Cas9, 0.23), (Cas2, 0.15)

Table 21 – Rules generated for subtype II-B.

Target protein Most important proteins
Cas1 (Cas9, 0.88), (Cas4, 0.07), (Cas2, 0.05)
Cas2 (Cas9, 0.46), (Cas4, 0.41), (Cas1, 0.14)
Cas4 (Cas9, 0.83), (Cas1, 0.09), (Cas2, 0.08)
Cas9 (Cas1, 0.66), (Cas4, 0.32), (Cas2, 0.02)

Table 22 – Rules generated for subtype II-C.

Target protein Most important proteins
Cas6 (Cas2, 0.37), (Cas1, 0.36), (Cas9, 0.27)
Cas1 (Cas9, 0.75), (Cas2, 0.25)
Cas2 (Cas1, 0.59), (Cas9, 0.41)
Cas9 (Cas1, 0.68), (Cas2, 0.32)
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Table 23 – Rules generated for subtype III-A.

Target protein Most important proteins
Cas3 (Csb2, 0.23), (Csb1, 0.22), (Cas7, 0.21), (Cas4, 0.13), (Cas2, 0.07), (Cas6, 0.06), (Cas1, 0.04), (Casr, 0.02),

(Cas8, 0.02)
Cas7 (Cas5, 0.38), (Cas10, 0.19), (Cas6, 0.13), (Csm2, 0.11), (Cas2, 0.08), (Cas1, 0.05), (Csm6, 0.03)
Cas5 (Cas6, 0.27), (Cas10, 0.25), (Cas7, 0.16), (Csm2, 0.12), (Cas2, 0.08), (Cas1, 0.06), (Csm6, 0.06)
Cas6 (Cas10, 0.27), (Csm6, 0.25), (Cas5, 0.17), (Csm2, 0.13), (Cas2, 0.12), (Cas7, 0.04), (Cas1, 0.02)
Cas1 (Cas4, 0.25), (Cas2, 0.19), (Cas5, 0.13), (Csm2, 0.11), (Cas10, 0.08), (Cas7, 0.08), (Cas6, 0.08), (Csm6, 0.04),

(Casr, 0.02)
Cas2 (Csm6, 0.38), (Cas6, 0.21), (Cas10, 0.11), (Cas7, 0.09), (Csm2, 0.08), (Cas1, 0.07), (Cas5, 0.05)
Cas4 (Cas1, 0.73), (Cas7, 0.08), (Cas6, 0.05), (Cas5, 0.04), (Cas2, 0.04), (Cas10, 0.02), (Csm2, 0.02)
Cas10 (Cas5, 0.40), (Cas6, 0.24), (Csm2, 0.10), (Cas7, 0.09), (Csm6, 0.07), (Cas2, 0.04), (Cas1, 0.03)
Casr (Cas2, 0.27), (Cas3, 0.22), (Cas8, 0.19), (Cas6, 0.10), (Cas1, 0.07), (Cas10, 0.07), (Cas4, 0.06), (Cas5, 0.02),

(Csm2, 0.02)
Csm6 (Cas6, 0.48), (Cas7, 0.19), (Cas2, 0.15), (Cas10, 0.08), (Csm2, 0.05), (Cas5, 0.03)
Csm2 (Cas5, 0.27), (Cas6, 0.22), (Cas10, 0.16), (Cas7, 0.12), (Cas2, 0.07), (Csm6, 0.06), (Cas1, 0.05)

Table 24 – Rules generated for subtype III-B.

Target protein Most important proteins
Cas3 (Casr, 0.19), (Cas7, 0.16), (Cmr5, 0.16), (Csm6, 0.15), (Cas1, 0.15), (Cas4, 0.12), (Cas2, 0.07)
Cas7 (Cas10, 0.24), (Cas2, 0.21), (Cas5, 0.19), (Cmr5, 0.12), (Csm6, 0.09), (Cas6, 0.08), (Cas1, 0.06)
Cas5 (Cmr5, 0.32), (Cas10, 0.24), (Cas7, 0.21), (Cas2, 0.07), (Cas6, 0.05), (Cas1, 0.04), (Csm6, 0.03), (Cas4, 0.02)
Cas6 (Cas1, 0.79), (Cas2, 0.07), (Cmr5, 0.05), (Cas5, 0.04), (Cas10, 0.02), (Cas7, 0.02)
Cas1 (Cas6, 0.84), (Csb2, 0.04), (Cas4, 0.04), (Cas2, 0.04)
Cas2 (Cas7, 0.20), (Cas5, 0.18), (Cas6, 0.16), (Cas10, 0.13), (Cas1, 0.11), (Cmr5, 0.10), (Csm6, 0.07), (Cas4, 0.03),

(Csa3, 0.02)
Cas4 (Csb2, 0.67), (Cas1, 0.22), (Cmr5, 0.03), (Cas2, 0.03), (Cas7, 0.02)
Cas10 (Cas7, 0.31), (Cas5, 0.22), (Cas6, 0.16), (Cmr5, 0.11), (Cas1, 0.08), (Cmr7, 0.06), (Cas2, 0.04), (Csm6, 0.03)
Casr (Cmr5, 0.21), (Cas7, 0.17), (Cas3, 0.16), (Csm6, 0.14), (Cas10, 0.13), (Cas5, 0.07), (Cas1, 0.05), (Cas4, 0.05)
Csm6 (Cmr5, 0.27), (Cas5, 0.26), (Cas10, 0.20), (Cas7, 0.12), (Cas6, 0.08), (Cas1, 0.03), (Cas2, 0.02)
Cmr5 (Cas5, 0.32), (Cas7, 0.21), (Cas10, 0.17), (Cas1, 0.13), (Csm6, 0.10), (Cas2, 0.04), (Cas6, 0.02)
Cmr7 (Cas7, 0.33), (Cmr5, 0.30), (Cas10, 0.21), (Cas5, 0.16)
Csa3 (Cas7, 0.28), (Cas6, 0.16), (Cmr5, 0.12), (Cas4, 0.12), (Cas1, 0.12), (Cas5, 0.12), (Cas2, 0.08)

Table 25 – Rules generated for subtype III-C.

Target protein Most important proteins
Cas7 (Cas10, 0.46), (Cas5, 0.38), (Cas2, 0.05), (Cmr5, 0.04), (Cas1, 0.04), (Cas6, 0.02)
Cas5 (Cas3, 0.31), (Csa5, 0.27), (Cmr5, 0.16), (Cas7, 0.13), (Cas10, 0.06), (Cas2, 0.03), (Cas6, 0.02)
Cas6 (Cas1, 0.33), (Cas10, 0.31), (Cas7, 0.16), (Cmr5, 0.09), (Cas2, 0.05), (Cas5, 0.04), (Cas4, 0.02)
Cas1 (Cas6, 0.49), (Cas4, 0.20), (Cas2, 0.10), (Cas7, 0.06), (Cas10, 0.06), (Cmr5, 0.06), (Cas5, 0.02)
Cas2 (Cas7, 0.29), (Cas6, 0.23), (Cas10, 0.17), (Cas1, 0.12), (Cas4, 0.09), (Cas5, 0.07), (Cmr5, 0.02)
Cas4 (Cas3, 0.19), (Cas7, 0.16), (Csa5, 0.13), (Cas5, 0.13), (Cas6, 0.12), (Cmr5, 0.10), (Cas1, 0.09), (Cas10, 0.08)
Cas10 (Cas7, 0.46), (Cas5, 0.29), (Cmr5, 0.14), (Cas6, 0.05), (Cas2, 0.03), (Cas1, 0.02)
Cmr5 (Cas5, 0.34), (Cas10, 0.25), (Cas7, 0.17), (Cas2, 0.09), (Cas6, 0.08), (Cas1, 0.06)

Table 26 – Rules generated for subtype III-D.

Target protein Most important proteins
Cas3 (Cas6, 0.20), (Cas4, 0.13), (Cas2, 0.13), (Cas1, 0.13), (Cas8, 0.13), (Cas10, 0.10), (Cas7, 0.10), (Cas5, 0.08)
Cas8 (Cas3, 0.51), (Cas5, 0.41), (Cas2, 0.06)
Cas7 (Cas10, 0.36), (Csm2, 0.27), (Csm6, 0.15), (Cas5, 0.10), (Cas6, 0.04), (Cas1, 0.03), (Cas2, 0.03)
Cas5 (Cas6, 0.33), (Cas1, 0.25), (Cas2, 0.15), (Cas7, 0.09), (Cas10, 0.06), (Cas3, 0.03), (Cas4, 0.03), (Csm6, 0.02)
Cas6 (Cas10, 0.34), (Cas1, 0.32), (Cas7, 0.09), (Csm6, 0.08), (Csm2, 0.07), (Cas5, 0.06), (Cas2, 0.02)
Cas1 (Cas6, 0.48), (Cas5, 0.26), (Cas4, 0.10), (Cas7, 0.06), (Cas10, 0.05), (Cas2, 0.04)
Cas2 (Cas10, 0.17), (Csm2, 0.15), (Cas7, 0.13), (Cas5, 0.13), (Csm6, 0.10), (Cas8, 0.09), (Cas1, 0.08), (Cas4, 0.07),

(Cas6, 0.07), (Cas3, 0.02)
Cas4 (Cas1, 0.48), (Cas6, 0.26), (Cas2, 0.12), (Cas7, 0.07), (Cas5, 0.04)
Cas10 (Csm2, 0.50), (Cas7, 0.21), (Cas5, 0.14), (Cas6, 0.09), (Csm6, 0.04)
Csm6 (Cas5, 0.26), (Cas2, 0.19), (Cas10, 0.18), (Cas1, 0.17), (Cas7, 0.08), (Cas6, 0.07), (Csm2, 0.05)
Csm2 (Cas6, 0.47), (Cas10, 0.33), (Cas7, 0.12), (Cas5, 0.04), (Csm6, 0.03)
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Table 27 – Rules generated for subtype IV-A.

Target protein Most important proteins
Cas7 (Ding, 0.34), (Csf1, 0.28), (Cas5, 0.20), (Cas6, 0.18)
Cas5 (Csf1, 0.46), (Cas7, 0.30), (Ding, 0.19), (Cas6, 0.04)
Cas6 (Cas7, 0.68), (Csf1, 0.20), (Cas5, 0.12)
Ding (Cas7, 0.64), (Csf1, 0.26), (Cas5, 0.10)
Csf1 (Ding, 0.33), (Cas7, 0.30), (Cas5, 0.25), (Cas6, 0.11)

Table 28 – Rules generated for subtype V-A.

Target protein Most important proteins
Cas1 (Cas2, 0.64), (Cas4, 0.25), (Cas12, 0.11)
Cas2 (Cas1, 0.54), (Cas4, 0.38), (Cas12, 0.08)
Cas4 (Cas1, 0.63), (Cas2, 0.33), (Cas12, 0.04)
Cas12 (Cas2, 0.50), (Cas1, 0.30), (Cas4, 0.20)

Table 29 – Example for using non-custom HMM models such as PFAM or TIGRFAM

I-A proteins # of proteins[2] Our tool TIGRFAMs PFam.
cas1 36 36 36 36
cas2 39 39 39 18
cas3 85 85 52 25
cas4 70 70 62 45
cas5 49 49 31 25
cas6 38 38 30 17
cas7 117 117 53 53
cas8 59 55 19 14



Table S19. Summary of the compared tools.
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Method Input
CRISPRone Yes Yes No No No No HMM and HMMER tool DNA only
HmmCas Yes No No No No No HMM and HMMER tool Cassette of proteins
CRISPRminer Yes Yes No No No No HMM and CRISPRcasFinder DNA only
CRISPRminer2 Yes Yes No No No No HMM, PSI-Blast and CRISPRcasFinder DNA only
Macsyfinder Yes Yes No No No No HMM and HMMER tool Proteins
CRISPRcasFinder Yes Yes No No No No HMM and Macsyfinder DNA only
CRISPRdisco Yes Yes No No No No PSI-Blast DNA and Proteins
CRISPRcasIdentifier Yes Yes Yes Yes Yes Yes HMM and 3 different ML approaches DNA or Proteins
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In Table 30, we show the distribution of CRISPR cassettes into the 22 different subtypes
contained in the collected dataset.

In Figures 35 and 36 we present the remaining results for the cassette boundary detection,
using a combination of the general HMM features with the protein properties features and using
only the protein properties features, respectively.

In Figures 38–46 we present the additional results for Cas type classification.

In Figures 47–49 we show the results for the study case on the identification of potentially
new Cas proteins.

Finally, in Table 31, we show the results of the occurrence of exchangeable modules.
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Table 30 – Number of cassettes for each CRISPR subtype in the collected dataset.

CRISPR Subtype # of cassettes CRISPR Subtype # of cassettes

I-A 146 III-B 377
I-B 976 III-C 72
I-C 855 III-D 257
I-D 135 III-E 1
I-E 2122 IV-A 105
I-F 698 V-A 38
I-U 169 V-F 27
II-A 722 VI-A 6
II-B 60 VI-B 53
II-C 563 VI-C 5
III 1 VI-D 1

III-A 518

Figure 35 – Histogram of the JS and CL for single cassettes using general HMM and protein properties
features.
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Figure 36 – Histogram of the JS and CL for single cassettes using protein properties features.
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Figure 37 – Comparison between (a) our method’s and (b) CRISPRCasFinder’s cassette prediction for the
organism Thermotoga sp. RQ2. The genome has two single cassettes and one multi-module
cassette. Our tool can easily handle those cassettes by identifying them as it should be in
nature. In contrast, CRISPRCasFinder struggles to report such cases. For example, in cassette
1 (orange) and cassette 2 (green), one gene is missing. Moreover, cassette 3 and 4 must be one
cassette containing three different modules (two interference modules and a single adaptation
module). However, CRISPRCasFinder splits it into two different cassettes, which is different
to what is expected in nature.
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Figure 38 – Cas type prediction F-scores with 3 cas types left out, using a combination of the specific
HMM and protein properties features.
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Figure 39 – Cas type prediction F-scores with 1 cas type left out, using the specific HMM features.
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Figure 40 – Cas type prediction F-scores with 3 cas types left out, using the specific HMM features.
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Figure 41 – Cas type prediction F-scores with 1 cas type left out, using the general HMM features.
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Figure 42 – Cas type prediction F-scores with 3 cas types left out, using the general HMM features.
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Figure 43 – Cas type prediction F-scores with 1 cas type left out, using a combination of the general
HMM and protein properties features.
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Figure 44 – Cas type prediction F-scores with 3 cas types left out, using a combination of the general
HMM and protein properties features.
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Figure 45 – Cas type prediction F-scores with 1 cas type left out, using the protein properties features.
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Figure 46 – Cas type prediction F-scores with 3 cas types left out, using the protein properties features.
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Figure 47 – Phylotree of Cas8 and putative cas8. The tree is generated based on the Neighbour-joining
method. Here we showed the distance between the closest 29 proteins from Cas8-family along
with the putative cas8 protein.
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Figure 48 – Multiple Sequence Alignment of Cas8 proteins and the putative Cas8 proteins. The alignment
obtained from MUSCLE alignments of 29 Cas8 family and the putative Cas8. The conserved
regions are shown on the bottom of the alignment.
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Figure 49 – Multiple Sequence Alignment of Cas8 proteins and the putative Cas8 proteins. The alignment
obtained from MUSCLE alignments of 29 Cas8 family and the putative Cas8. The conserved
regions are shown on the bottom of the alignment.
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Table 31 – Percentage of closest matches for Cas1 under each subtype. The analysis was carried out using the k-nearest neighbors approach with k = 5.

I-A I-B I-C I-D I-E I-F I-U II-A II-B II-C III-A III-B III-C III-D III-E IV-A V-A VI-A

I-A 66.59 19.06 0.00 5.65 0.00 0.00 0.24 0.00 0.00 0.00 1.65 2.59 0.94 3.29 0.00 0.0 0.00 0.0
I-B 1.48 94.15 0.15 2.10 0.03 0.03 0.15 0.00 0.15 0.03 0.79 0.38 0.41 0.06 0.00 0.0 0.12 0.0
I-C 0.00 0.26 98.75 0.00 0.00 0.00 0.23 0.00 0.00 0.10 0.31 0.13 0.16 0.05 0.00 0.0 0.00 0.0
I-D 4.48 12.24 0.17 76.55 0.00 0.00 0.00 0.00 0.00 0.00 4.83 1.55 0.00 0.17 0.00 0.0 0.00 0.0
I-E 0.00 0.03 0.01 0.00 99.71 0.02 0.00 0.09 0.00 0.01 0.04 0.06 0.00 0.03 0.00 0.0 0.00 0.0
I-F 0.00 0.10 0.03 0.00 0.00 99.53 0.00 0.03 0.00 0.10 0.03 0.07 0.07 0.00 0.00 0.0 0.03 0.0
I-U 1.54 0.00 20.00 0.00 0.00 0.00 36.92 0.00 0.00 0.00 23.08 13.85 0.00 4.62 0.00 0.0 0.00 0.0
II-A 0.00 0.03 0.03 0.00 0.06 0.03 0.00 96.69 0.00 2.89 0.23 0.00 0.00 0.00 0.00 0.0 0.06 0.0
II-B 0.00 0.49 0.49 0.00 0.49 0.00 0.00 0.49 94.63 0.49 1.46 0.00 0.00 1.46 0.00 0.0 0.00 0.0
II-C 0.00 0.04 0.04 0.00 0.00 0.08 0.00 3.96 0.00 95.38 0.23 0.04 0.08 0.08 0.00 0.0 0.08 0.0
III-A 0.62 4.38 0.68 1.93 0.00 0.00 0.17 1.36 0.06 0.74 79.55 6.02 0.85 3.47 0.06 0.0 0.11 0.0
III-B 2.60 4.25 0.96 1.23 0.14 0.00 0.27 0.00 0.00 0.00 17.67 63.56 0.00 9.18 0.14 0.0 0.00 0.0
III-C 6.67 30.00 0.00 0.00 0.00 3.33 0.00 0.00 3.33 3.33 23.33 1.67 16.67 8.33 0.00 0.0 3.33 0.0
III-D 4.25 2.00 0.25 1.25 0.00 0.00 0.75 0.00 1.00 1.00 26.00 25.25 2.25 34.75 0.75 0.0 0.00 0.5
III-E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.00 80.00 0.00 0.0 0.00 0.0
IV-A 0.00 0.00 0.00 0.00 80.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.0 0.00 0.0
V-A 0.00 1.76 0.59 1.18 0.00 0.59 0.00 1.18 0.00 0.59 2.35 0.00 1.18 0.00 0.00 0.0 90.59 0.0
VI-A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 80.00 20.00 0.0 0.00 0.0

Table 32 – Runtime and RAM usage comparison. We selected a set of 650 genomes and achieved the following results using an Intel i5 machine with 8 GB of RAM.

Tool CPU runtime RAM usage

Casboundary 7 Hrs 23 Sec 5.3 MB
CRISPRCasFinder 3 Hrs 58 Sec 2.2 MB
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