
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

DeepRLGUIMAT: Deep Reinforcement Learning-based GUI
Mobile Application Testing Approach

Eliane Figueiredo Collins Ribeiro
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Eliane Figueiredo Collins Ribeiro

DeepRLGUIMAT: Deep Reinforcement Learning-based GUI
Mobile Application Testing Approach

Thesis submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Doctor in Science. EXAMINATION
BOARD PRESENTATION COPY

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. José Carlos Maldonado
Co-advisor: Prof. Dr. Arilo Dias-Neto

USP – São Carlos
February 2022

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

F475d
Figueiredo Collins Ribeiro, Eliane
 DeepRLGUIMAT: Deep Reinforcement Learning-based
GUI Mobile Application Testing Approach / Eliane
Figueiredo Collins Ribeiro; orientador José Carlos
Maldonado; coorientador Arilo Dias Neto. -- São
Carlos, 2022.
 122 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2022.

 1. TESTE E AVALIAÇÃO DE SOFTWARE. 2. AUTOMAÇÃO
DE TESTE DE SOFTWARE MÓVEL. 3. APRENDIZADO DE
MÁQUINA POR REFORÇO. I. Maldonado, José Carlos ,
orient. II. Dias Neto, Arilo, coorient. III. Título.

Eliane Figueiredo Collins Ribeiro

DeepRLGUIMAT: Abordagem de Aprendizado de Máquina
Profundo por Esforço Aplicado a Testes de GUI de

Aplicações Móveis

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutora em Ciências – Ciências de Computação
e Matemática Computacional. EXEMPLAR DE
DEFESA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. José Carlos Maldonado
Coorientador: Prof. Dr. Arilo Dias-Neto

USP – São Carlos
Fevereiro de 2022

“Dedico este trabalho à minha mãe Ermelinda,

que não pôde se formar professora mas ensinou aos filhos o

gosto pelos estudos. Às minhas finadas avós, que em sua época

não lhes era permitido ir além de ler e escrever, e às

gerações de mulheres que lutaram para que

hoje este sonho fosse possível.”

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Dr José Carlos Maldonado, for the opportunity to
be his student and the teachings along this journey. I thank my co-supervisor Arilo Dias Neto,
who opened the doors for this realization to be possible. Thanks to Professor Auri Vincenzi for
his attention and support in my research.

Special thanks to the Institute of Mathematics and Computer Sciences (ICMC) for
training, staff and teachers.

I thank my family, mother, and brothers who together and patiently supported this
incredible journey of doctoral research. To my husband, José Luiz, who contributed so much and
supported me in the most challenging moments with caring and pride. And I thank my friends
from LABES, highlighting Jorge Prates, who helped me keep going strong on this journey.

“To me programming is more than an important practical art. It is also a gigantic undertaking

in the foundations of knowledge.”

(Grace Hopper)

RESUMO

COLLINS, E. DeepRLGUIMAT: Abordagem de Aprendizado de Máquina Profundo por
Esforço Aplicado a Testes de GUI de Aplicações Móveis. 2022. 120 p. Tese (Doutorado em
Ciências – Ciências de Computação e Matemática Computacional) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Contexto: Os constantes avanços nas tecnologias de computação móvel e a demanda do mercado
por novos produtos e aplicativos que atendam a um público cada vez mais amplo representam
uma oportunidade e a necessidade de refletir sobre como garantir a qualidade desses aplicativos
móveis, sendo também o teste de software para esses aplicativos importante e fundamental.
A pesquisa nesta área tem sido cada vez mais necessária porque serve como evidência de
qualidade do sistema. No entanto, aplicativos móveis têm algumas características e limitações,
como a quantidade de memória a ser usada, a vida útil da bateria, a quantidade de dados de
entrada, o tamanho da tela do dispositivo móvel e os diferentes sistemas operacionais. As
ferramentas de teste disponíveis são ainda limitadas nas estratégias e critérios de de teste que
apóiam. Considerando o crescimento do uso desses aplicativos e os desafios que a automação de
teste enfrenta, como muitas combinações de operações, transições, cobertura de funcionalidade,
mudanças de elementos de interface e reprodução de falhas, pesquisas para contornar essas
dificuldades são encorajadas. Com isso, estudos de técnicas de Inteligência Artificial, como
Aprendizado de Máquina por Reforço, surgem como uma oportunidade de aprimorar esta área
para geração de casos de teste por meio da exploração de aplicativos. Objetivo: Este trabalho
propõe a abordagem DeepRLGUIMAT que utiliza a técnica de aprendizado por reforço profundo,
com o algoritmo Deep Q-Network para gerar casos de teste por meio da exploração do aplicativo
móvel utilizando tentativa e erro, produzindo uma variedade de dados de teste de entrada de
acordo com o método de Testes Funcionais Sistemáticos e seguindo a probabilidade distribuição
para satisfazer o propósito de cobrir funcionalidades da aplicação. Método: Foi conduzida uma
investigação na literatura técnica por meio de um mapeamento sistemático para conhecer os
principais estudos na área. Com base nas informações adquiridas a abordagem foi elaborada
e desenvolvida por meio de uma ferramenta para prova de conceito para executar a estratégia
elaborada em aplicações Android. Por fim foram conduzidos experimentos empíricos em 30
aplicações móveis e feita comparação com abordagens similares na literatura (ferramentas
com abordagem randômica Monkey, abordagem Model-based com Aprendizado de Máquina
Droidbot, e as abordagens que usam aprendizado de máquina por reforço DroidbotX e Q-testing)
em termos de métricas de cobertura de código, falhas encontradas e cobertura de funcionalidades.
Resultados: Foram observados que a abordagem proposta atingiu maior valor para cobertura de
código em instrução, branches, linhas de código e métodos em comparação com as ferramentas
de estado da arte. Em termos de falhar e travamentos encontrados, a ferramenta obteve resultado
igual ao das ferramentas de estado da arte. Em cobertura de funcionalidade, a abordagem

proposta exercitou mais operações funcionais em comparação com as ferramentas comparadas.
Conclusão:A abordagem proposta mostrou resultados promissores sendo mais efetiva para
navegação e em executar operações nas aplicações, gerando testes úteis e efetivos que exercitam
a variações de entrada de dados que facilitam a cobertura de funcionalidades de aplicações
móveis e com maior possibilidades de indentificar a presenção de erros/fallas.

Palavras-chave: Teste de Aplicações Móveis, Aprendizado de Máquina por Reforço, Automa-
ção de testes.

ABSTRACT

COLLINS, E. DeepRLGUIMAT: Deep Reinforcement Learning-based GUI Mobile Appli-
cation Testing Approach. 2022. 120 p. Tese (Doutorado em Ciências – Ciências de Com-
putação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2022.

The constant advances in mobile computing technologies and the market demand for new
products and applications that serve an increasingly broad audience represent an opportunity
and a need to reflect on how to guarantee the quality of these mobile applications, as well as
software testing important and fundamental for these applications. Research in this area has
been increasingly needed because it serves as evidence of system quality. However, mobile
applications have some characteristics and limitations such as the amount of memory to use,
battery life, amount of input data, mobile device screen size and different operating systems.
The testing tools available are still limited in the testing strategies and criteria they support.
Considering the growth in the use of these applications and the challenges that test automation
faces, such as many possible combinations of operations, transitions, functionality coverage,
interface element changes and fault reproduction, research to overcome these difficulties is
encouraged. Thus, studies of Artificial Intelligence techniques, such as Reinforcement Learning,
emerge as an opportunity to improve this area for the generation of test cases through the
exploration of applications. Objective: This work proposes the DeepRLGUIMAT approach,
which uses the technique of deep reinforcement learning, Deep Q-Network algorithm to generate
test cases through the exploration of the mobile application using trial and error, producing a
variety of input test data according to the Systematic Functional Testing method and following
the probability distribution to satisfy the purpose of covering application functionality. Method:
An investigation was carried out in the technical literature through a systematic mapping to
know the main studies in this area. The approach was designed and developed based on the
information acquired, built a tool for concept proof to execute the elaborated strategy. Finally,
empirical experiments were carried out in 30 mobile applications. A comparison was made with
similar approaches in the literature (tools with Monkey random approach, Model-based approach
with Droidbot Machine Learning, and approaches that use DroidbotX reinforcement machine
learning and Q-testing) in terms of code coverage metrics, found flaws, and feature coverage.
Results: It was observed that the proposed approach achieved greater value for code coverage
in instruction, branches, lines of code and methods compared to state-of-the-art tools. The tool
achieved the same result as state-of-the-art tools in terms of failures and crashes encountered. The
proposed approach exercised more functional operations than the compared tools in functionality
coverage. Conclusion: The proposed approach showed promising results, being more effective
for navigation and executing operations in applications, generating useful and effective tests that
exercise data entry variations that facilitate the coverage of mobile application functionalities

and with greater possibilities of identifying the presence of errors/failures.

Keywords: Mobile Application Testing, Reinforcement Learning, and Automated Testing.

LIST OF FIGURES

Figure 1 – Methodology . 23

Figure 2 – Test Process . 26

Figure 3 – Test Levels, (VEENENDAAL; GRAHAM; BLACK, 2008) 27

Figure 4 – Android, source (ANDROID, 2021) . 33

Figure 5 – Machine Learning differentiates from Programming 37

Figure 6 – Left: binary classification. Right: 3-class classification (SMOLA A. J.; VISH-
WANATHAN, 2020 (accessed June 3, 2020)) 38

Figure 7 – Regression (SMOLA A. J.; VISHWANATHAN, 2020 (accessed June 3, 2020)) 39

Figure 8 – Q-Learning. 42

Figure 9 – Pseudocode Deep Q-Network. 42

Figure 10 – Selection Process . 49

Figure 11 – Papers published by year . 53

Figure 12 – Countries . 54

Figure 13 – Papers quantity by Publication Source Type 54

Figure 14 – ML Types . 56

Figure 15 – ML Algorithms . 57

Figure 16 – Testing Level . 58

Figure 17 – Test Challenges . 59

Figure 18 – ML algorithm by Testing Challenge . 61

Figure 19 – DeepRLGUIMAT Workflow . 69

Figure 20 – Android Environment classes . 69

Figure 21 – Repetition Control . 70

Figure 22 – Test Case . 72

Figure 23 – Requirements . 73

Figure 24 – Actions Generation Flow . 73

Figure 25 – CNN, (ALI, 2019) . 74

Figure 26 – DQN architecture, (YOON, 2019) . 75

Figure 27 – DQN data frow . 76

Figure 28 – Use Case Diagram . 83

Figure 29 – Class Diagram . 84

Figure 30 – Directory Structure . 86

Figure 31 – File Settings . 86

Figure 32 – Coverage boxplot . 95

Figure 33 – Coverage trends . 95
Figure 34 – Reward values during test execution . 96
Figure 35 – DeepRLGUIMAT inputs example . 99
Figure 36 – Test Events . 100
Figure 37 – DeepRLGUIMAT Money Tracker Requirements 100
Figure 38 – Test Events Performed with Requirements 102
Figure 39 – Test Events Performed with Requirements 102

LIST OF ALGORITHMS

Algorithm 1 – Agent manager module . 77

LIST OF TABLES

Table 1 – Automated Mobile Test Tools . 36
Table 2 – PICOC . 46
Table 3 – Research Questions . 46
Table 4 – Search Results per Library . 48
Table 5 – Data Items . 51
Table 6 – Primary Studies . 52
Table 7 – Publication source . 55
Table 8 – Testing types and Sub-types| . 58
Table 9 – GUI Actions . 71
Table 10 – 30 Apps . 93
Table 11 – Code Coverage in 30 Apps . 94
Table 12 – Coverage (p-value) . 94
Table 13 – Faiures and Crashes (p-value) . 96
Table 14 – Distinct Failures and Crashes . 97
Table 15 – Functional Operations Coverage . 98
Table 16 – Functional Operations p-value . 99
Table 17 – Coverage Results . 100
Table 18 – Inputs Generated . 101
Table 19 – Coverage comparison with Inputs based on SFT 103
Table 20 – Functional Operations . 115

CONTENTS

1 INTRODUCTION . 19
1.1 Context . 19
1.2 Motivation . 21
1.3 Objective . 22
1.3.1 Specific Objectives . 22
1.4 Methodology . 22
1.4.1 Investigation of the Literature . 23
1.4.2 Proposal Elaboration . 23
1.4.3 Empirical Evaluation . 23
1.5 Organization . 24

2 BASIC CONCEPTS AND TERMINOLOGY 25
2.1 Initial Considerations . 25
2.2 Software Testing . 25
2.2.1 Testing Design Techniques . 27
2.2.1.1 Structural Testing . 27
2.2.1.2 Black Box Testing . 28
2.2.1.2.1 Systematic Functional Testing (SFT) . 28
2.2.1.3 Experience-based Testing . 29
2.2.2 Software Testing Automation . 30
2.3 Mobile Applications . 32
2.3.1 Android . 33
2.4 Mobile Application Testing . 34
2.4.1 Supporting Tools for Mobile Application Testing 35
2.5 Machine Learning . 37
2.5.1 Supervised Learning . 38
2.5.2 Unsupervised Learning . 39
2.5.3 Semi-supervised Learning . 40
2.5.4 Reinforcement Learning . 41
2.6 Final Considerations . 43

3 MACHINE LEARNING-BASED MOBILE APPLICATION TEST-
ING MAPPING . 45

3.1 Initial Considerations . 45
3.2 Systematic Mapping . 45
3.2.1 Research Questions . 46
3.2.2 Search Process . 47
3.2.3 Primary Study Selection Process . 48
3.2.4 Study quality assessment . 49
3.2.5 Data Extraction . 50
3.3 Results and Data Synthesis . 50
3.3.1 RQ1 - What type of ML techniques have been used to cope with

mobile application testing? . 53
3.3.2 RQ2: Which mobile application testing levels are automated by ML

algorithms? . 57
3.3.3 Which Mobile application Type and Operational System? 58
3.3.4 RQ3: Which mobile application testing challenges are treated by

ML? . 59
3.3.5 What advantages and limitations are found on ML based mobile

application testing? . 62
3.3.6 Threats to Validity . 63
3.4 Final Considerations . 64

4 PROPOSAL APPROACH DEEPRLGUIMAT 67
4.1 Initial Considerations . 67
4.2 DeepRLGUIMAT . 68
4.2.1 Environment Module . 69
4.2.1.1 Actions . 72
4.2.2 Deep Q-Network Module . 74
4.2.3 Agent Manager Module . 76
4.2.4 Studies Comparison . 78
4.3 Implementation . 78
4.4 Modelling . 83
4.5 Operational Aspects . 85
4.6 Final Considerations . 87

5 EMPIRICAL STUDY . 89
5.1 Initial Considerations . 89
5.2 Empirical Experiment Planning . 89
5.2.1 Hypotheses . 91
5.2.2 Empirical Experiment Design . 91
5.3 Results . 92
5.4 DeepRLGUIMAT case study with input Requirements 99

5.5 Test Input based on Systematic Functional Testing 102
5.6 Threats of Validity . 103
5.7 Final Considerations . 104

6 CONCLUSION . 105
6.1 Initial Considerations . 105
6.2 Contributions . 105
6.3 Limitations and Future Works . 106
6.4 Publications . 107

BIBLIOGRAPHY . 109

ANNEX A FUNCTIONAL OPERATION COVERAGE 115

19

CHAPTER

1
INTRODUCTION

1.1 Context

Mobile devices are an increasingly important part of our daily life, beyond simple
communication and messaging to carry out many essential tasks, such as business, health and
banking transactions systems. It is necessary to ensure software quality, reliability, and security
on these devices as a large audience shall access them. Moreover, because of the fierce market
competitiveness, the software industry must quickly release its products to the public at a low cost.
Failures in mobile applications (apps) cause dissatisfaction and losses for software companies.
In this sense, software app testing is necessary to prevent software failures from being found by
the end-user. Manual app testing is the most popular technique for testing. However, it is more
expensive, tedious, and error-prone (GAO et al., 2014).

For such a reason, researchers are studying different aspects related to the automation
for mobile applications (or simply mobile app testing). It becomes crucial and challenging
since applications can run on other platforms, devices and operational systems. In the case of
functional testing in mobile apps, they must help ensuring that the functionalities are following
the requirements specified by the customer. In addition, they must behave correctly in the limited
environment of a device that generally has memory constraint, processing, and data inputs but
operates with a variety of standards of communication networks and services (3G,4G, GPS,
NFC). For this reason, the validation should focus mainly on the application’ behavior, flow
navigation, mobile services, mobile web APIs (Application programming interface), transactions,
and the user interface (GAO et al., 2014).

Test automation in this scenario is necessary because it is possible to execute in a
few second tests that would require many people, many devices, and hours to be manually
performed, reducing costs and time. There are two critical aspects to the effectiveness of
automated mobile app testing. Firstly, mobile apps should be cheaper than traditional software

20 Chapter 1. Introduction

for the web, and desktop (GAO et al., 2014). On the other hand, they must be reliable and
functionally correct. Automation is undoubtedly among the essential means to keep the testing
cost low while ensuring an adequate degree of reliability. Secondly, current errors occur due
to interface changes, interoperability issues between the application, framework, the operating
system, and the hardware layers, as well as the influence of external conditions that affect the
functionality of the application, such as notification interruptions and wireless data network
(HALLER, 2013).

To reach these aspects is essential to work using support solutions that can enable
automated testing of mobile apps so that their execution becomes more adaptive to changes,
reliable and less dependent on human supervision and manual performance. Research in different
strategies for mobile apps test case generation and execution is done using random, model-based,
search-based, Machine Learning (ML) tools in state of the art. The disadvantages of the existing
tools are coverage of functionalities, the tests are hard to be reproduced, and faults are hard to be
localized (KONG et al., 2019). One point to note is that these tools do not concern themselves
with an important factor in software testing, the variation of test data input. There are several
techniques and criteria in the literature as Equivalence Partition, Boundary Value Analysis,
Systematic Functional Testing, and so on (DELAMARO MARIO JINO, 2016) about test data
input selection, and according to the method used, the test cases can be more efficient to find
failures.

In recent studies like (ADAMO et al., 2018), (KOROGLU; SEN,), (PAN et al., 2020)
Reinforcement Learning (RL) is applied to app testing with promising results exploring app
navigation and finding crashes. RL is the ML approach in which the agent learns through the
environment interaction, exploration and trial-error (SUTTON; BARTO, 2018).RL has been
used successfully to solve tasks as Atari games, Mario Bros game, or as complex as Go and Dota
achieving superhuman performance. These studies in the field of test generation do not provide
test cases to exercise the input variations, so the rules of input requirements are not covered. In
this context, having many opportunities since the apps and environments have become more
complex and demanding solutions on a large scale.

In this sense, this research proposes the DeepRLGUIMAT approach to generate test cases
using the RL method Deep Q-Network (DQN) to perform functional tests, cover application
functionalities, reveal failures, crashes and create test cases with a variety of input following
Systematic Functional Testing. The tool DeepRLGUIMAT was developed to perform the proof of
concept of this approach in Android mobile applications. Android platform was chosen because
of the large market share and it is an open source platform supported by a large community.

1.2. Motivation 21

1.2 Motivation

The technical literature presents some studies to understand how the industry has applied
test automation activities of software. The results highlighted the benefits and limitations of auto-
mated software testing, such as the main benefits of test automation are reusability, repeatability,
and effort saved in test executions (KIRUBAKARAN; KARTHIKEYANI, 2013). The limitations
found are the high initial cost in designing the test cases, cost of changes in maintainability,
buying a test automation tool, and training the staff.

Therefore, manual testing is adaptive when the app interface changes because the testers
perform it, but automated tests must be rewritten when the software is modified. Software
modifications are made rapidly in agile development environments hence rewriting the tests
takes a large portion of the development time. Nevertheless, manual testing is also very time-
consuming. It motivates the research of novel testing methods that are both adaptive and auto-
mated (KIRUBAKARAN; KARTHIKEYANI, 2013).

The mobile GUI (Graphical User Interface) automated testing is the process of using
software tools to perform app testing with a graphical user interface to ensure correct behaviour
and state of the GUI (KROPP; MORALES, 2010). It has two main challenges: i) Testing
whether different devices provide an adequate data rendering, and ii) Testing whether native
applications on different devices are correctly displayed. It is essential to make these test tasks
automatic to avoid repetitive manually interacting with the GUI, which is time-consuming and
costly. On the other side, they must be reproducible, reliable, and correct (KIRUBAKARAN;
KARTHIKEYANI, 2013).

Regarding these challenges and limitations found in test automation of mobile apps,
test case generation techniques have been studied mainly using model-based, search-based and
random (Kong et al., 2019). RL is the first Artificial Intelligence field to seriously address the
computational problems that arise when learning from interacting with an environment to achieve
goals (SUTTON; BARTO, 2018). So, RL techniques have been studied to be applied to test
generation, initially showing promising results. Although the current solutions focus on app
navigation and found crashes, they have limitations such as reproducing the failures; it takes a
lot of manual efforts to inspect the results to find out the issues (WANG et al., 2018); the tools
performs the same actions generating repeated tests and lacks test input variation that imposes a
challenge to create test cases to satisfy requirements (SAID et al., 2020).

Considering the exploration and the various types of actions that can be combined in the
interaction with applications, this research studies the RL technique DQN. It presents a good
performance in continuous spaces and has mechanisms that avoid overfitting accessing past
actions (memory replay) (PASZKE, 2017a). DQN does not need a database and learns through
trial and error; the training journey of this algorithm already contributes to the exploration of the
application. To RL efficiently vary many input types, it is not enough to perform several random

22 Chapter 1. Introduction

data inputs but to be guided by test techniques and criteria for competently input test data. In
this sense, the Systematic Functional Test stands out for combining other techniques and has
shown good results in mutation testing (LINKMAN; VINCENZI; MALDONADO, 2003). Thus,
allowing the RL agent to generate tests feasible for the tester to attend app functionalities.

1.3 Objective
Based on this context, motivation and shortcomings presented previously, the main

research question that guides this work is: How can Deep Reinforcement Learning technique
be incorporated into automated testing of mobile applications to contribute to the greater code
coverage, test input variation and detection of failures ?

This research aims to analyze the DQN Reinforcement Learning method and propose
an approach, DeepRLGUIMAT, to create test cases through exploring the mobile application,
identifying failures, and covering functionalities through test input variation, contributing to
improving the test automation environment.

1.3.1 Specific Objectives

Following the specific objectives for this research.

• Identifying approaches to allow the implementation of automated generation of test cases
available in the technical literature;

• Analyzing the context patterns for RL in automated black-box testing of mobile applica-
tions;

• Defining the criteria to define a set of input actions of UI elements in mobile applications
able to be automated;

• Creation of the approach that generates test cases in mobile applications

• Defining a method of evaluating the RL technique to identify metrics that prove the
effectiveness of the proposed test tool

1.4 Methodology
The development of this research follows three phases as shown the figure 1. The first

phase refers to a investigation of the literature, followed by a proposal approach in phase 2. Phase
3 to evaluate the proposal, was carried out through empirical evaluation.

Despite the methodological structure being demonstrated in sequential phases, the stages
of this research, several times, take place in parallel, given that the bibliographic review is always

1.4. Methodology 23

Figure 1 – Methodology

revisited and updated, from the beginning to the end of the work. Given this general perspective,
the details of each phase of the research plan will be described in the following sections.

1.4.1 Investigation of the Literature

In this phase, the investigation of the literature was performed to discover the works that
had a similar proposal. The systematic mapping (PETERSEN et al., 2008) of machine learning in
mobile application testing was conducted to identify the main trends in this area and the similar
approaches used in functional test case generation for mobile applications. Thus, this type of
review addresses a specific issue, uses explicit and transparent methods to conduct a thorough
literature search and critical assessment of individual studies, and concludes what we currently
know and don’t know about a particular issue or topic. The results are detailed in chapter 3.

1.4.2 Proposal Elaboration

The preparation of the thesis proposal was carried out based on the knowledge acquired
from the investigation of the literature, where the references for improving the testing automation
were extensively analyzed and compared with each other. However, the detailing of the strategy
for using the references that formed the conceptual basis of the work will be detailed along with
the presentation of its proposal in Chapter 4.

1.4.3 Empirical Evaluation

In this phase we perform the empirical evaluation in which results are derived by obser-
vation or experiment instead of theory (CARBON; CIOLKOWSKI, 2007). The same evaluation
pattern performed in the literature was followed, with the execution of a controlled experiment
and comparison with similar solutions present in the literature, the detail of the evaluation is
described in Chapter 6.

24 Chapter 1. Introduction

1.5 Organization
This thesis is organized as follows: Chapter 2, is presented the main conception of mobile

applications, software testing, machine learning, and reinforcement learning trends in this field.
In Chapter 3, a systematic Mapping Machine Learning based Mobile Application Testing is
showed to provide a context of these fields and the related works found. In Chapter 4, the
proposal approach DeepRLGUIMAT and the implementation aspects are described in. Chapter 5
presents the evaluation of the tool. Finally, in chapter 6, the conclusion and future work.

25

CHAPTER

2
BASIC CONCEPTS AND TERMINOLOGY

2.1 Initial Considerations

In this chapter, an overview of the topics that underlie the research of this thesis is
presented. The organization of the chapter will be as follows. Section 2.2 presents a theoretical
basis for contextualizing the study of software testing, a general introduction on the key elements
of functional testing and main techniques are presented. In section 2.3 presents the basis for
contextualizing the study of mobile applications; a general introduction on the key elements of
mobile application is presented and the Android operating systems. Section 2.4 shows the mobile
application testing is presented, highlighting the testing approaches, the types of mobile testing,
testing tools, and the failures factors that make mobile testing different from the traditional test
approach; the challenges and particularities present in this activity are also summarized. Section
2.5 presents the main concepts of Machine Learning; a general introduction to machine learning
techniques is presented.

2.2 Software Testing

According to (MYERS, 2004) (2004), software testing is a process, or a series of
processes, designed to ensure that computer code does what it was designed to do and does not
do anything unintended. Software testing has become essential to companies to ensure the quality
of the products regardless of whether the development methodology. The common terminology
of software testing:

• Mistake: A human action that produces an incorrect result;

• Fault (or Defect): An incorrect step, process, or data definition in a program;

26 Chapter 2. Basic Concepts and Terminology

• Failure: The inability of a system or component to perform its required function within the
specified performance requirement;

• Error: The difference between a computed, observed, or Measured value or condition and
the true, specified, or theoretically correct value or condition;

The test process, in general, consists of the following activities throughout the software
development: planning and control, analysis and design of test cases, implementation and
execution of tests, test reporting, and test closure, Figure 2 (VEENENDAAL; GRAHAM;
BLACK, 2008).

Figure 2 – Test Process

Source: Elaborated by the author.

Test managers or test leaders work with customers to establish the test objectives in the
test planning phase. Then, a test plan document is generated to describe strategies, test scope,
resources, methods, test techniques, completion criteria, and schedule of activities during the
project. The test plan can be based on the standard format established by the (829-2008. . . ,).
The test manager is responsible for the test team, ensuring the control of the test tasks established
in the testing process.

In the analysis and design of test cases, the test objectives are turned into tangible test
cases and test conditions. Test cases must be complete, reproducible, and independent. A test
case contains identification, prerequisites, steps, and expected output. In addition, they must be
designed to discover unexpected software failures. In this activity, test cases are created in a
document called Test Case Specification (VEENENDAAL; GRAHAM; BLACK, 2008).

The environment must be configured to allow coding test scripts in the implementation
phase. Then the test execution must be run, recording the results in a Test Execution Report and
communicated to the project team. Once the test activities meet the exit criteria in the test plan,
the activities such as results, logs, test documents related to the project are archived and used as
a reference for future projects.

However, in addition to the test activities, the software testing also has different levels
to which the software must be submitted: unit test, integration, system test, and acceptance test.

2.2. Software Testing 27

Thus, it allows focusing on testing the software under various development aspects, detecting
several types of failures according to the technique used in each phase as described in Figure 3.

Figure 3 – Test Levels, (VEENENDAAL; GRAHAM; BLACK, 2008)

2.2.1 Testing Design Techniques

This section briefly describes the main techniques that are used for software testing
design.

2.2.1.1 Structural Testing

The structural testing technique is also called white box testing. It validates the software
at the implementation level, testing the software’s logical paths, conditions, loops, and the use of
variables. Some criteria to use this technique are classified as following:

• Complexity-based criteria: The information about the program’s complexity is used to
derive test cases as the basic path complexity cyclomatic; this metric provides a quan-
titative measure of the difficulty of conducting the tests and an indication of reliability
(DELAMARO MARIO JINO, 2016);

• Control flow-based criteria: control flow analysis is used as the source of information to
derive the test cases. It determines how to test logical expressions (decisions) in computer
programs. Decisions are considered as logical functions of elementary logical predicates
(conditions) and combinations of conditions’values are used as data for testing of decisions
Vilkomir, Kapoor and Bowen (2003);

• Flow-based criteria: These criteria derive test cases using the Def-Usage Graph concepts,
which is the extension of the control flow graph. The information about the data flow

28 Chapter 2. Basic Concepts and Terminology

of the program is added, characterizing associations between points of the program in
which a value is assigned to a variable and points where this value is used (DELAMARO
MARIO JINO, 2016);

2.2.1.2 Black Box Testing

It is a technique used to design test cases evaluating the system as a black box and verify
if the inputs and outputs conform to the customer requirements. In general, the system must
addresses all possible data inputs. However, it can cause the test suites to be huge and even
infinite(exhaustive test). Therefore, some functional test criteria have been defined to evaluate
the system in the best possible way. Among the main functional test criteria are highlighted
(VEENENDAAL; GRAHAM; BLACK, 2008):

• Equivalence Partitioning: In this technique, software inputs are divided into groups(partitions)
that are expected to be similar behavior. The partitions identified can be valid data or
invalid data to achieve the testing coverage goals. This technique can be applied to all
levels of testing;

• Boundary Value Analysis: This technical analysis the behavior of the software at the edge
of each equivalence partition. The maximum and minimum values are its boundary valid
and invalid values to be tested. This technique also can be applied to all test levels;

• Decision Table: The decision table is used to analyze the conditions and actions of the
system. Each table of table corresponds to a business rule that defines a combination of
conditions resulting from the actions associated with that rule. The test cases are designed
to cover each column, exercising combinations of conditions;

• State Transition: In this technique, a state transition diagram is built to analyze the aspects
of the system, the inputs, events that are triggering changes (transitions). A state table
shows the relationship between the states, inputs, and the valid or invalid transitions. It is
used in embedded systems and also suitable for internet applications;

• Use Case Testing: The test cases are derived from use cases, their flows, regular scenarios,
and alternative scenarios. It is useful to model the acceptance testing and can combine it
with other techniques.

2.2.1.2.1 Systematic Functional Testing (SFT)

SFT attempts to combine the functional testing criteria (Equivalence Partitioning and
Boundary Value Analysis). Once the input and output domain has been partitioned, STF requires
at least two test cases of each partition to minimize the problem of co-incident errors masking
faults. It also requires the evaluation at and around the boundaries of each partition (LINKMAN;

2.2. Software Testing 29

VINCENZI; MALDONADO, 2003). This approach presents guidelines for input data of various
types of functions, input and output domains, as follows (VIDAL, 2011):

1. For discrete numerical values, input and output data must be considered and test cases are
generated for each class.

2. For numerical value ranges, input and output data must also be considered, and the test
cases are derived contemplating the limits and an internal value of each range.

3. Test cases with different values from the expected and with special cases must be generated,
both for the input data and the output data.

4. Test Cases that exploit illegal values are needed to show that the software under test
handles deviations from the success path. Thus, considering values outside the maximum
and minimum limits of an interval, for example, are relevant test cases.

5. When creating test cases that include real numbers, specificity must be observed, this type
of data does not have an exact limit. Normally, real numbers are entered in the base often,
stored in a base of two, and finally retrieved in the base often, thus generating inconsistent
data. Thus, test cases that address this situation must be created, adopting an error accuracy
interval, with different limit values. In addition, test cases must be created that consider
very small real values and the value zero.

6. For variable range values that depend on one or more variables, test cases must be created
that cover all possible combinations of possible values.

7. When the information to be tested involves vector or data matrix, test cases that evaluate
the data must be created: matrix size and matrix data. The size of the array must be
tested, in all dimensions and all possible combinations, in its minimum, maximum and
intermediate values. For array data values, the issues raised above should be considered.

8. In case of texts or data strings, it is necessary to validate the variation in size and validity
of each character, considering the alphabet of characters only or the alphanumeric or even
the punctuation only.

2.2.1.3 Experience-based Testing

In experience-based techniques, the primary source of information is the experience and
knowledge of testers. Depending on the tester’s approach and experience, these techniques may
achieve widely varying degrees of coverage and effectiveness. Theses techniques are considered
complementary to specification-based testing (ISTQB, 2018):

• Error guessing technique creates a list of possible errors, defects, and failures, and design
tests that will expose those failures and the defects that caused them. These errors, defects

30 Chapter 2. Basic Concepts and Terminology

can build failure lists based on experience, defect, and failure data or common knowledge
about why software fails;

• Exploratory testing is informal (not pre-defined) tests designed, executed, logged, and
evaluated dynamically during test execution. The test results are used to learn more about
the component or the system, and to create tests for the areas that may need more testing;

• Checklist-based testing, the testers design, implement and execute tests to cover test
conditions found in a checklist. As part of the analysis, testers create a new checklist
or expand an existing checklist, but testers may also use an existing checklist without
modification;

2.2.2 Software Testing Automation

Software Testing Automation refers to the process of use some standard software solu-
tions to control the execution of test-cases on the Software Under Test (KUMAR; MISHRA,
2016).It involves programming skills and knowledge in automation tools and frameworks. The
investment in test automation is justified by the high cost and time-consuming manual test
execution of large test suites. Other advantage is the increase of test coverage because multiple
testing tools can be used at once allowing for parallel testing of different test scenarios. The main
disadvantages include effort to choose and evaluate test tools and the cost of proprietary tools
and code maintenance can be expensive.

There are approaches to automate test cases, among them, the use of Graphical interface-
based tools that have the ability to record actions and execute them stands out. These are the
tools known as rec-and-play (Record and Playback). In this approach, the tool interacts directly
with the application, simulating a real user. As the application is being executed manually, the
tool offers recording support: it captures the actions and transforms them into scripts. Another
way widely used of automating test cases is Script Programming. In this approach, for unit tests,
from largest to the smallest portions of code are tested: functions, methods, classes, components.
In black-box testing, the UI elements code of the application is called, and the interaction with
the graphical interface is programmed using a library or framework tool. The maintenance of the
code is simpler and more productive. The code is often improved (Refactoring) and standardized.
Professionals with knowledge of code and programming are required to create automated scripts
(MEIRELES et al., 2015).

Software testing automation tools can be divided into different categories as follows
(KUMAR; MISHRA, 2016):

• Unit Testing Tools: It involves testing the most basic units of code, Developers write unit
test cases in a programming language and the test cases can be executed automatically.
Example of unit testing tools: JUnit, NUnit, and TestingNG.

2.2. Software Testing 31

• Functional Testing Tools: The functional testing tools receive input and examine the
obtained output in comparison with the specified test oracle in the given test case. Some
examples of Functional Testing Tools: Selenium, TestComplete, and Watir.

• Code Coverage Tools: It measures the number of lines, statements, or blocks of code tested
using automated test suites. Code coverage testing is an essential metric to understand the
quality of Quality Assurance. Some examples of tools: Cobertura, CodeCover, Jacoco, and
EMMA.

• Test Management Tools: These tools are used to automate test activities such as test case
specification, defect tracking, test report, and others. It also helps teams manage projects
easily by providing a searchable and maintainable placeholder for test activates. Some
examples of tools include Testlink, Mantis, and Jira.

• Performance Testing Tools: These tests tools aid to determine how the software will
perform in terms of responsiveness and stability under various conditions and workloads.
Example of tools: JMeter, Rational Performance Tester, HP LoadRunner.

Software testing automation frameworks (test automation frameworks) provide the basic
set of software tools and services that can aid testers as they develop automated test cases. A good
test automation framework should be general enough to provide functions that help a tester create
automated tests for all the different components of the delivered software system (CERVANTES,
2009). There are different types of test automation frameworks, the author (KUMAR; MISHRA,
2016) considered the following main types:

• Linear Automation Framework: That is used to test user interface (UI). The tester records
each step action such as navigation, user input, or checkpoints, and then playback to
conduct the test in a sequential order without the need to write code to create functions.

• Modular Based Framework: A test script is created for each module of the software and
then combined to build larger tests in a hierarchical approach. These larger sets of tests
will begin to represent various test cases.

• Library Architecture Framework: It identified similar functionalities within the software
that need to be tested and grouped them by function instead of dividing the software under
test into modules to be tested in isolation each with its test scripts.

• Data-Driven Framework: In this approach the test data are separated from script logic and
stored externally to an external data source, such as Text Files, Excel Spreadsheets, CSV
files, SQL Tables, or ODBC repositories, thus allowing testers to test the same function or
feature of software multiple times with different sets of test data.

32 Chapter 2. Basic Concepts and Terminology

• Keyword-Driven Framework: With this approach, similar to data-driven but keywords are
also stored along with their associated objects in an external data source, making them
independent from the automation tool being used to execute the tests. Keywords are part
of a script representing various actions being performed to test the software.

• Hybrid Testing Framework: The hybrid framework combines two or more frameworks
types set up to get the best practices of different frameworks suitable for a software project
needs.

2.3 Mobile Applications

Smart devices as smartphones or tablets are in people’s daily lives. According to the
International Data Corporation (IDC) the researchers pointed to more than 1.4 billion mobile
devices in circulation in the year 2015 and estimates an increase of 1.9 billion over the next four
years (GAO et al., 2014). Best known for smart devices, tablets, e-readers, and wearables, these
devices have led software development to a new application class, mobile applications (MARTIN
et al., 2016). These applications performed on mobile devices require operating systems as
Android(Developers, 2011) and Apple iOS (DEVELOPERS, 2021).

A mobile application (or mobile apps) is software designed to run on smartphones,
cellphones, tablets, and other mobile devices considering the contextual input information. In
mobile computing, an application is considered mobile if it runs on an electronic device that
can move. The software for mobile computing has some constraints: limited resources, security,
vulnerability, performance variability, reliability, and finite energy source. In the computing
context, a mobile application is sensitive to the computing environment in which it is executed.
It should adapt or react according to its user, environment, or time context. The contextual
information can be categorized into human factors and physical environments (DELAMARO
MARIO JINO, 2016).

According to (MASI et al., 2012) (2012), mobile applications can be classified into three
categories:

• Native Applications: it is software executed in the device’s operational system (OS).
These applications can access the APIs (Application Programming Interface) of the OS.
The source code is developed using a development toolkit provided by the vendor, it is
compiled, and the executable program must be embedded in the device Silva, Jino and
Abreu (2010). The development and maintenance cost is high;

• Web Applications: It is related to apps that run on browsers. These applications have
low-cost and resources, but they are limited and need internet connections to be executed;

2.3. Mobile Applications 33

• Hybrid Applications: these apps combine native and web technologies.They often are
written in HTML, JavaScript, CSS, and media files packaged and stored locally on the
device, they have a lightweight interface, are portable, and can run offline in the device;

2.3.1 Android

The Android is an open-source operating system based on the Linux Kernel. Initially, it
was developed by the company Android Inc acquired by Google in 2005. This operating system
can be customized for hardware from different manufacturers like Samsung, LG, Asus, Motorola,
etc. This platform attracts many developers and manufacturers, being since 2013 the leading
platform in the mobile device market (ANDROID, 2021).

The Android user interface is based on direct manipulation, using touch input gestures
that correspond to real-world actions to manipulate objects on the screen. It has internal hardware
such as accelerometers, gyroscopes, and proximity sensors used by some applications to respond
to additional user actions such as adjusting from portrait to landscape, depending on how the
device is oriented. Android allows users to customize the home screen with application shortcuts
and widgets, which allow users to view live content such as emails and weather information.
According to an April 2017 StatCounter report, Android overtook Microsoft Windows to be-
come the most popular operating system for total Internet usage. The Android architecture is
component-based, as show the Figure 4.

Figure 4 – Android, source (ANDROID, 2021)

Like Linux for computers, the Kernel manages security, memory, and processes, in
and out of files and network, and device drivers. The Linux kernel for android specifically

34 Chapter 2. Basic Concepts and Terminology

manages power, memory sharing, low memory killer, interprocess communication, etc. The
Librarians have native libraries, Surface Manager, Display Manager, Audio / Video Framework,
browser engine, graphics engine, and database. Android Runtime has two main components:
Core java libraries and Dalvik Virtual Machine that runs the android applications. The Dalvik
Virtual Machine is designed to reproduce the low-memory environment, slow CPU, and limited
battery life. Application Frameworkkeeps control of application packages on the device, common
interface, lifecycle and navigation, notifications, and so on (DEVELOPERS, 2021).

2.4 Mobile Application Testing
Mobile Application Testing refers to testing native mobile apps, device testing, mobile

web application, and hybrid applications. Native application testing aims to validate the quality
of mobile applications downloaded and executed on select mobile platforms on different mobile
devices. The focus is on functionality, behavior, QoS (quality of service) requirements, usability,
security, and privacy. Web application testing aims to validate the quality using different Web
browser’s diverse mobile devices. These applications usually provide users with a thin mobile
client to access functions online from the server. Hybrid applications are combinations of native
and web applications. They can run on devices offline and are written using web technologies
like HTML5and CSS. The main testing approaches for mobile applications include (GAO et al.,
2014):

• Emulation-based Testing: this approach involves using a mobile device emulator in the
computer simulating the mobile device. This approach is not expensive, but it has limita-
tions as not possible to use all possibilities of gestures, the specific hardware characteristics,
and the limited scale for testing QoS;

• Device-based Testing: It is a very costly approach since it is necessary to invest in the
testing laboratory and purchase real mobile devices. It has many advantages, as testing
mobile network, verify hardware interaction, functions, and environment. The disadvan-
tages include the rapid changes of device models, not possible testing large scale of QoS
because it depends on of many devices distributed what it is not feasible for the majority
of enterprises;

• Cloud Testing: This approach is offered by many vendors. Basically, a mobile device cloud
is built that can support testing services on a large scale. It also allows different mobile
users to provide testing services cost-effective;

• Crowd-based Testing: A crowd-based testing infrastructure is built using freelance or
contracted testing professionals. The testing process is managed in an ad hoc way with
minimal mobile test automation tools. It is cost-effective, but the risk includes an uncertain
quality level and schedule;

2.4. Mobile Application Testing 35

Mobile application testing is applied at each application level as in traditional software
testing (unit testing, integration testing, system testing, and acceptance testing). As for test types
just like traditional testing, structural and functional tests use the same test criteria.

However, taking into account the target device, approaches can be highlighted to assess
the behavior of the software upon interruptions in the operating system or other applications
(messages, notifications, calls, etc.), as well as tests with different types of connections (4G, WIFI,
Airplane Mode), location (GPS), connectivity with other devices (Bluetooth communication,
approximation) among other aspects (GAO et al., 2014).

The authors (KIRUBAKARAN; KARTHIKEYANI, 2013) emphasize that apps are
expected to receive inputs from different context providers (example, users, sensors, and con-
nectivity devices). The inputs can vary from the different contexts the mobile device can move
toward. The testing may lead to unpredictability and high variability of the application behavior
is potentially receiving.

2.4.1 Supporting Tools for Mobile Application Testing

A wide range of studies has developed techniques to help mobile application developers
improve mobile application testing, particularly attempting the improvement of UI and system
testing coverage. One of the biggest challenges that researchers face in their current line of
research on automated tests for mobile apps is that they cannot achieve high code coverage.
Many problems are caused by a lack of engagement in proper regression tests, which causes
frequent crashes, as not being able to install and start the software and buggier new versions.
Device tests and automated testing can address the regression tests improving the application
quality and customer satisfaction (NAGAPPAN; SHIHAB, 2016).

Automated mobile app testing raises two further issues: the lack of standardization in
mobile test infrastructure, scripting languages, and connectivity protocols between mobile test
tools and platforms; and the lack of unified test automation infrastructure and solutions that cross
platforms and browsers mobile devices. In test automation for functional system testing in mobile
applications, it is important to automatically execute scripts captured during the user interaction
and replayed and modified even on different devices. It is necessary to make this task automatic
to avoid manually interacting with the GUI that is a time-consuming task (KIRUBAKARAN;
KARTHIKEYANI, 2013).

The automated unit testing for unit testing in mobile applications, there are supporting
tools for each platform, such as Android Test, which is a framework that includes several levels
of unit testing is an integral part of the Android development environment (DEVELOPERS,
2021).

The tool Robolectric is also a unit testing framework specific to Android. It runs the
tests inside the JVM and allows you to load native Android features so that real device tests

36 Chapter 2. Basic Concepts and Terminology

are performed (ROBOLECTRIC, 2021). Another framework used in several platforms is xUnit
allows performing unit tests to determine if the sections of the code are processing expectedly in
diverse circumstances and are available for the main languages like ASP, C++, C, Delphi, Java,
Perl, and PHP (JUNIT.ORG, 2021).

Table 1 – Automated Mobile Test Tools

Tools Platform App
Type Environment Record &

Replay
Cloud
Service Free

Appium Android/IOS
Native/Web/

Hybrid
Device/

Emulator no no yes

Calabash Android/IOS Native/Hybrid
Device/

Emulator yes no yes

EggPlant Android/IOS
Native/Web/

Hybrid Emulator no yes no

Espresso Android Native
Device/

Emulator no no yes

MITE Android/IOS Web
Device/

Emulator yes no no

Monkey Android Native/Hybrid
Device/

Emulator no no yes

Monkey
Talk Android/IOS

Native/Web/
Hybrid

Device/
Emulator yes yes no

Perfecto
Mobile Android/IOS

Native/Web/
Hybrid Emulator yes yes no

Robot
Framework Android/IOS

Native/Web/
Hybrid

Device/
Emulator no no yes

Robotium Android Native/Hybrid
Device/

Emulator no no yes

SeeTest
Mobile Android/IOS

Native/Web/
Hybrid

Device/
Emulator yes no no

Selendroid Android/IOS
Native/Web/

Hybrid
Device/

Emulator yes no yes

Sikuli Android/IOS
Native/Web/

Hybrid Emulator yes no yes

UI
Automator Android Native

Device/
Emulator no no yes

The test automation for functional testing is a challenge in mobile apps since it is difficult
on all possible devices. The existing simulators cannot simulate real-world phones with their
sensors, GPS, among other internal characteristics. Many tools for simulating functional testing
use the technique capture-and-replay for recording, executing, and replay contextual inputs
selected during the test election phase. It is important to consider the increased success of
multiple platforms and now many cross-platform applications. Additionally, all the platforms
need to run on different hardware with different versions of the OS. Thus even if the application
is automated tested on one device, there is no guarantee that it may work on another device.

2.5. Machine Learning 37

However, these problems are not new. A study by (JOORABCHI; MESBAH; KRUCHTEN,
2013) describes a tool, CHECKCAMP, that tests for inconsistencies between iOS and Android
versions of mobile apps using extracted abstract models. Currently, automated tools should
consider this scenario.

Table 1 shows some popular test tools and their characteristics of these tools as Gui-based
function, which is related to create test scripts to validate the application user interface. The
native attribute is about tools that enable automated testing of native applications. The Web is
regarding the apps which can run using browsers and network connection. The Record and Play
relate to record the interaction steps of the tests and execute them after the script is created. The
Environment attribute is about execution in Devices and Emulators. Cloud service is about tools
that offer to test in the cloud. Free or Open Source is the tools that are open source.

These key attributes to choose the tool must be considered especially when it is a
proprietary tool. In the case of open-source tools, the company has the option to customize them
to suit your needs better. There is a growth of tools that use cloud computing for its execution
in the market, also offering services of tests in the cloud. This trend is driven by the need for
scalability in testing and various models, brands, and platforms for mobile devices.

2.5 Machine Learning

According to (MITCHELL, 1997)(1997), ”Machine Learning (ML) is the ability to
improve performance in executing some task through experience.” It means computers are

Figure 5 – Machine Learning differentiates from Programming

Source: Elaborated by the author.

38 Chapter 2. Basic Concepts and Terminology

programmed to learn from past experiences. It is used a principle of inference called induction,
in which one obtains generic conclusions from a particular set of examples. Figure 5 illustrates
how ML differentiates from traditional programming.

The Machine Learning algorithms aim to learn from a data subset called a training set,
a model or hypothesis able to relate input attribute values with output attributes. An important
requirement is the capability to work with imperfect data. It means data noises, redundancy, or
absent data. Its turn, the usage of pre-processing data techniques is important to identify the
problems. The inductive biases important, since when the algorithm is learning from a subset
of data training, it is looking for a hypothesis between a space of possible hypotheses, able to
describe the relationship of objects that best match with data training (FACELI et al., 2011).

Learning is a wide domain. Consequently, machine learning has branched into several
subfields dealing with different types of problems and learning tasks. The four parameters along
which learning types can be classified are described below.

2.5.1 Supervised Learning

This is called supervised because a " teacher knows the output." The goal is to learn a
general rule that maps inputs to predict outputs. The teacher evaluates the ability of the inducted
hypothesis to predict the output for new samples. The tasks of Supervised Learning (SL) can be
Classification and Regression (MITCHELL, 1997).

In classification, the goal is to predict what class an instance of data should fall into,
discrete output. The Classification can be binary, the Multiclass Classification is the logical
extension of binary classification demonstrated in Figure 6 (SMOLA A. J.; VISHWANATHAN,
2020 (accessed June 3, 2020)).

Figure 6 – Left: binary classification. Right: 3-class classification (SMOLA A. J.; VISHWANATHAN,
2020 (accessed June 3, 2020))

In Regression, the goal is the prediction of a numeric value. The output is continuous.
The goal is to estimate a real-valued variable, Figure 7. An example is a system that can predict
the price of a used car. Inputs are the car attributes brand, year, engine capacity, mileage, and
other information that we believe to affect a car’s worth. The output is the price of the car
(MITCHELL, 1997).

2.5. Machine Learning 39

Figure 7 – Regression (SMOLA A. J.; VISHWANATHAN, 2020 (accessed June 3, 2020))

SL has several algorithms, among the most popular, are highlighted below (Singh et al.,
2016):

• Naïve Bayes classifier is based on Bayes’ theorem with strong (naive) independence
assumptions between the features. It analysis each attribute and assumes that all of them
are independent;

• Support vector machine constructs a hyperplane or set of hyperplanes in a high or infinite-
dimensional space. It considers achieving a good separation when the hyperplane has the
largest distance to any class’s nearest training data point. In general, the larger the margin,
the lower the generalization error of the classifier;

• Logistic Regression: the dependent variable is categorical. Situations where the dependent
variable has more than two outcome categories may be analyzed in multinomial logistic
regression, or, if the multiple categories are ordered, in ordinal logistic regression;

• Decision tree classifier is based on the decision tree to go from observations as the decision
node, branches, and leaves. The mechanism is transparent and the structure can be followed
to see how the decision is made.

• K-nearest neighbors (k-NN) classification, the output is a class membership. An object is
classified by a majority vote of its neighbors, with the object being assigned to the class
most common among its k nearest neighbors.

• Neural Network Multilayer Perceptron (MLP) is a class of feedforward artificial neural
network (ANN), consists of at least three layers of nodes: an input layer, a hidden layer
and an output layer.

2.5.2 Unsupervised Learning

In Unsupervised Learning (UL), there’s no label or target value given for the data. There
is no evaluation of the accuracy of the structure that is output by the relevant algorithm. The goal
of this ML type is learning to group similar items together. It is a task called clustering. In UL,
the statistical values that describe the data are found. This is a task known as density estimation.
Another task of UL is reducing the data from many features to a small number to visualize it

40 Chapter 2. Basic Concepts and Terminology

properly in two or three dimensions (SMOLA A. J.; VISHWANATHAN, 2020 (accessed June 3,
2020)).

The main algorithms of UL are described below (MITCHELL, 1997):

• Clustering K-means aims to partition n observations into k clusters so that each observation
belongs to the cluster with the nearest mean, serving as a cluster prototype;

• Hierarchical Clustering aims to find groups such that instances in a group are more similar
to each other than in different groups. It has two strategies, Agglomerative (bottom-up)
and Divisive (top-down);

• Anomaly detection aims to identify the items, events, or observations which do not
conform to an expected pattern or other items. It is used mainly in applications for
intrusion detection, fraud detection, and fault detection;

• Neural Network - Generative adversarial networks generative network learns to map
from a latent space to particular data distribution. In contrast, the discriminative network
discriminates between instances from the generator’s true data distribution and candidates.

2.5.3 Semi-supervised Learning

Semi-supervised Learning is suitable to tackle training sets with large amounts of unla-
beled data and a small quantity of labeled data. The goal is to learn a predictor that predicts future
test data better than the predictor learned from the labeled training data alone. The acquisition of
self-labeled data follows an iterative procedure, aiming to obtain an enlarged labeled data set, in
which they accept that their own predictions tend to be correct (GONZÁLEZ et al., 2018).

The brief of main methods for semi-supervised learning is presented below (CHAPELLE;
SCHOLKOPF; ZIEN, 2009):

• The Generative models assume that the distributions take some particular form are param-
eterized by a vector. If these assumptions are incorrect, the unlabeled data may actually
decrease the accuracy of the solution relative to what would have been obtained from
labeled data alone;

• Low-density separation This method aims to label the unlabeled data such that the decision
boundary has a maximal margin over all of the data;

• The Graph-based methods use a graph representation of the data. It has a node for each
labeled and unlabeled example. The graph may be constructed using domain knowledge
or the similarity of examples;

2.5. Machine Learning 41

• Heuristic approaches are commonly used with a supervised learning algorithm trained
based on the labeled data only. Then, this classifier is applied to the unlabeled data to
generate more labeled examples as input for the supervised learning algorithm.

2.5.4 Reinforcement Learning

In this ML type, there is, for example, a decision-maker called the agent that is placed
in an environment. The environment is in a certain state that is one of a set of possible states.
Typically, the environment is formulated as a Markov decision process. The decision-maker has
a set of actions possible, and once an action is chosen and taken, the state changes. The solution
to the task requires a sequence of actions. It gets feedback in the form of a reward (ALPAYDıN,
2011).

Typically in RL, the environment is formulated as a Markov decision process (PUTER-
MAN, 1990), which is defined by (SUTTON; BARTO, 2018):

• A set of possible states: S

• A reward function for the next state given a (state, action) pair: R(st,at,st +1)

• A transition probability i.e distribution over the next state given a (state, action) pair:
T (st +1|st,at)

• A discount factor γ ∈ [0,1], where lower γ emphasizes more on immediate rewards

The decision-maker has a set of possible actions; once an action is chosen and taken, the state
changes. The solution to the task requires a sequence of actions. It gets feedback, in the form
of a reward (SUTTON; BARTO, 2018). RL has been used successfully to solve tasks as Atari
games, Mario Bros game, or as complex as Go and Dota achieving superhuman performance.
Q-Learning is a model-free RL algorithm to learn a policy telling an agent which action to take
under certain circumstances, as shown in Figure 8. The main idea is Q∗ : State×Action→ R
taking action in a given state, then its possible to construct a policy that maximizes the rewards
(WATKINS; DAYAN, 1992). It does not require a model of the environment, and it can handle
problems with stochastic transitions and rewards without requiring adaptations. For finite Markov
decision process (FMDP), Q-learning finds an optimal policy in the sense of maximizing the
expected value of the total reward overall successive steps, starting from the current state. This
algorithm can identify an optimal action-selection policy for any given FMDP, given infinite
exploration time and a partly-random policy (MELO, 2001).

Deep Q-Learning algorithm can be cast as an extension of the Q-learning algorithm that
uses a deep neural network to approximate the action-value function. DeepMind developed the
DQN (Deep Q-Network) algorithm in 2015. It solved a wide range of Atari games by combining
reinforcement learning and deep neural networks at scale. The algorithm was developed by

42 Chapter 2. Basic Concepts and Terminology

Figure 8 – Q-Learning.

enhancing a classic RL algorithm called Q-Learning with deep neural networks and a technique
called experience replay. In DQN, decision-making regarding which action to take involves a
fundamental choice. Exploitation makes the best decision given the current information, and
Exploration gathers more information and explores possible new paths. In exploration, ε-Greedy
policy allows the AI agent to take random actions from the action-space with a certain probability
ε (FAN et al., 2020).

DQN uses a technique called Experience Replay; it uses replay memory to store the
trajectory of the Markov decision process (MDP). At each iteration of DQN, a mini-batch of
states, actions, rewards, and next states are sampled from the replay memory as observations to
train the Q-network, which approximates the action-value function (FAN et al., 2020).

Figure 9 – Pseudocode Deep Q-Network.

Figure 9 shows the DQN algorithm. The episode means one a sequence of states, actions,
and rewards, which ends with a terminal state (a terminal state can be a completed mission or a
failure). For each action selected and performed, the reward and the next state are observed. The
replay memory stores the state, action, reward, and the next state and samples at random from D
when performing updates. This approach is limited since the memory buffer is overwritten by
recent transitions due to the finite memory size N (PASZKE, 2017b).

2.6. Final Considerations 43

2.6 Final Considerations
The Software Testing area has adapted to the new software platforms, called mobile

application Testing. In general, research in this area presents some techniques and supporting
tools for different types of testing in mobile apps. However, there is a tendency to adapt strategies
and tools developed for other platforms. As has been observed, mobile app testing has challenges
and difficulties like different requirements, types, and techniques. This area also has several
subdivisions, some of which are little explored. Many challenges and barriers to overcome in
mobile app testing and Artificial Intelligence techniques such as Machine Learning are studied
as an excellent resource to the evolution of software testing support tools. The next chapter will
present the systematic mapping of machine learning and mobile app testing.

45

CHAPTER

3
MACHINE LEARNING-BASED MOBILE

APPLICATION TESTING MAPPING

3.1 Initial Considerations

The popularity of smartphones and the market demand are challenging to assure the
quality of the mobile applications (apps). Manual test in a variety of devices and operating
systems is costly. For this reason, research in test automation and artificial intelligence techniques
(ML) are highlighted. To find the related works in the context of ML-based app testing, we
conducted a Systematic Mapping (SM) to find the trends and challenges in this area. The results
were categorized as ML type, ML algorithm, app testing level, app type, operational system, and
app testing research challenges. We analyzed 31 primary studies addressed to ML-based app
testing. Supervised Learning is the most ML type used to defect detection, vulnerability and
cost prediction, test case prioritization, and GUI error recognition. Investigations in the system
test level are highlighted mainly in GUI test generation. Studies indicate promising results in
failure prediction, detection, and test generation. However, research has been restricted to native
Android apps. The limitations of ML include performance, availability of large amounts of data,
and lack of test oracle.

3.2 Systematic Mapping

A systematic mapping (SM) can be defined to build a classification scheme and structure
for a software engineering field of interest. The analysis of results focuses on frequencies of
publications for categories within the scheme (PETERSEN et al., 2008). This research aims to
set out to review the state of the art of how ML has been explored to automatically streamline
mobile application testing and provide an overview of the research intersection of those two
fields by conducting a systematic mapping review.

46 Chapter 3. Machine Learning-based Mobile Application Testing Mapping

The methodology for retrieving state of the art comprises four planning phases; the
definition of research questions as part of the objective, the definition of selection criteria, the
creation of a search string, and the determination of reference databases. The research question
can be reflected through the representation of PICOC (PETERSEN et al., 2008), described in
Table 2 below:

Table 2 – PICOC

Population Mobile Application Testing
Intervention Machine Learning
Comparison N/A
Outcomes machine learning based mobile application testing

Context
Reviews all empirical studies of machine learning
in the domain of mobile application testing

3.2.1 Research Questions

The Research Questions (RQ) emphasizes the literature classification so that the commu-
nity of researchers and professionals gives them insights into how ML has been addressed to
mobile app testing. According to the goal of our study, the research questions of this study are
shown in Table 3.

Table 3 – Research Questions

ID Question

RQ1 What type of ML techniques have been used to cope with mobile
app. testing? RQ1.1 Which ML Algorithms?

RQ2 Which testing levels are automated by ML algorithms?
RQ2.1 Which Testing techniques and types?

RQ3 Which Mobile application Type and Operational System ?
RQ4 Which mobile app. testing challenges are treated by ML?

RQ5 What advantages and limitations are found on ML based mobile
app. testing?

The main idea of RQ1 is to identify the ML types that have been applied in mobile
app testing. RQ1.1 complements with information of which ML algorithm is the most applied
and how. RQ2 focuses on identifying which mobile app test level are automated by ML, in
RQ2.1 extend to know the testing techniques and test types, important information for testing
professionals. RQ3 identifies the mobile app type where ML is applied, such as native, web,
or hybrid, and the Operational system (Android or IOS) and, for consequence, to know the
platform limitation of the studies.RQ4 classifies the test challenges that have been studied with
the application of ML, and RQ5 shows the advantage and limitations observed by the studies,
which can help researches.

3.2. Systematic Mapping 47

3.2.2 Search Process

In this phase, automated searching using five digital reference libraries was performed.
According to the relevance in the field and to obtain good results, the libraries are:

1. Elsevier’s Scopus

2. ScienceDirect

3. IEEE Xplore Digital Library

4. ACM Digital Library

5. Web of Science

The search protocol was created considering the combination of keywords of three main
aspects: machine learning, mobile applications, and testing. Therefore, the search string has three
parts, as shown: The first part is explicitly related to terms of ML linking them using the operator
OR. Furthermore, the mobile application terms and software testing terms and variations were
included. The three parts are linked with the operator AND.

• (("machine learning" OR "supervised learning" OR "unsupervised learning" OR "rein-

forcement learning" OR "q-learning" OR "natural language" OR NLP OR "Text mining"

OR predict OR prediction OR classification) AND ("mobile application" OR "mobile

app" OR "mobile software" OR "Android" OR "IOS") AND (test OR testing))

This string could be applied entirely in IEEExplore, ACM Digital Library, Scopus, and
Web of Science. For Science Direct, the search has a limitation of 8 boolean connectors, so we
divided into two search strings to perform the search and not to miss any potential result:

1. (("machine learning" OR "supervised learning" OR "reinforcement learning" OR "q-

learning" OR "predict") AND ("mobile app" OR "Android" OR "IOS") AND Test)

2. (("machine learning" OR "natural language processing" OR "Text mining" OR classifi-

cation) AND ("mobile app" OR "mobile software" OR "Android" OR "IOS") AND Test

).

In Scopus, Science Direct, and Web of Science, we filtered to exclude results of ar-
eas not linked, such as Medicine, Biomedicine, Humanities, Healthy, Psycology, Mechanics,
Neuroscience, Hardware and other related.

These criteria formed the homogeneous selection of studies during selection phases. The
research did not restrict the selection regarding the publication date to identify all available
papers based on the definition criteria until the execution of this search in early 2021.

48 Chapter 3. Machine Learning-based Mobile Application Testing Mapping

The search process was conducted using the string created in the automated search of
selected libraries. The automated search had no restriction to year. For libraries ScienceDirect,
Web of Science, and Scopus, the Computer Science area filtered the results.

The search string returned a total of 3049 results. Table 3 shows the results returned
separated by the library.

Table 4 – Search Results per Library

Library Papers

ACM Library 162
IEEE 571

ISI Web of Science 305
Science@Direct 648

Scopus 1363

The technique snowballing backward and forward were applied in order to identify
similar studies in the references of selected papers and search for new studies through citations.
Snowballing is an approach for selection of papers, it requires a set of initial articles to start the
process. There are two approaches: backward snowballing, which selects papers referenced by
the initial set of papers. The other approach is forward snowballing, which selects papers that
do cite the set of papers. The selected papers from an iteration of the snowballing algorithm
compose the group of articles, which will be the seeds for the following iteration. The process
continues until a stopping criterion is satisfied (BADAMPUDI; WOHLIN; PETERSEN, 2015).

3.2.3 Primary Study Selection Process

This section presents the inclusion (IC) and exclusion criteria (EC) used in the secondary
study. The inclusion criteria were specified as follows:

• (IC1) The result must be fully available

• (IC2) The result must be in English

• (IC3) A concrete approach is described or a survey about machine learning and mobile
application testing is provided.

The exclusion criteria were also specified as follows:

• (EC1) The result is not in the context of mobile application testing.

• (EC2) The result is in the context of hardware, network security and operational system
security.

3.2. Systematic Mapping 49

• (EC3) Studies related to testing embedded systems in general, and not running on mobile
devices.

• (EC4) Review papers and studies such as surveys, SLR, and SMS related to the topic.

• (EC5) The result is not in the context of mobile application testing.

• (EC6) The paper has only the character of a (advertisement) brochure without details.

• (EC7) The paper is sketchy or under reported, such as a one page or a vision paper.

The Selection Process had the following stages: First, the duplicated papers are removed,
then the EC is applied to filter the studies by title, keywords, and abstracts. The papers accepted
are verified according to the IC. The papers selected were examined to cope with quality
assessment, reading them entirely. Figure 10 shows this selection process in detail.

Figure 10 – Selection Process

3.2.4 Study quality assessment

We evaluated the quality assessment (QA) of the studies after the selection process. The
following checklist was used to assess the reliability and thoroughness of the selected papers.

• Q1: Does the study clearly present the application of ML in mobile app testing?

50 Chapter 3. Machine Learning-based Mobile Application Testing Mapping

• Q2: Does the study clearly present the ML type and technique defined?

• Q3: Does the study clearly propose a solution to mobile app testing issue?

• Q4: Does the study present evaluation strategy and results ?

Each of the questions was answered as “Yes” “Partially,” or “No”. We attributed the
punctuation value for each answer Yes corresponds to 1.0, Partially is 0.5, and 0 for No. We
considered a study as partial in cases where the methodological details could have been derived
from the text, even if they were not clearly described. Its quality score was computed by summing
up the punctuation of the answers to all four questions. The quality classification level into High
(score value=4), Medium (score value from 2 to 4), and Low (score value less than 2).

3.2.5 Data Extraction

In this study, to answer the RQs, a data extraction form was created that includes the fields
designed to bring together publication information, such as title, affiliation, year of publication,
and the fields included to understand and answer the RQs. The data extracted were stored in a
spreadsheet and checked to ensure that information is valid for analysis. The data items (DI) are
described in Table 5.

3.3 Results and Data Synthesis
The data synthesis activity involves compiling the data extracted from each primary

study included in the SM.The visual synthesis and classification of the selected studies were
summarized to answer each RQs described in section 3.2.1.

According to the inclusion and exclusion criteria, the studies were selected using the
tool Parsifal (PARSIFAL, 2020 (accessed June 3, 2020)). In the total of 3049 papers returned,
653 duplicated papers were removed. 2396 papers were rejected by title and abstract, and 50
papers were accepted to be fully analyzed. According to the selection criteria, 30 papers were
selected. The snowballing returned 2 studies (S18, S22) added, and a total of 32 papers were
fully accepted. The Table 5 shows the primary studies selected.

Regarding the year of the publications, in Figure 11, the year 2018 had the highest
number of publications in this field of study. In 2019, there was a drop in publications. In 2020 a
modest growth.

Despite the popularity, from 2018, there were no big changes in the performance of
ML algorithms. They still demand a learning curve for professionals to combine testing and
ML, computational processing, and good hardware resources be executed, which can hinder the
development of tests tools.
0 *Snowballing results

3.3. Results and Data Synthesis 51

Table 5 – Data Items

Title Description RQ
DI1 ID identification of paper RQ1
DI2 TITLE title of paper RQ1
DI3 AUTHOR author of the paper RQ1
DI4 YEAR publication year RQ1
D15 COUNTRY publication country

DI6 PUBLICATION SOURCE TYPE
publication source type such as conference
of software engineering and testing or
journal of Artificial Intelligence area

RQ1

DI7 EVALUATION TYPE
type of study such as study case, experiment,
experience report, systematic review RQ1-4

DI8 ML TYPE
machine learning technique classification
such as supervised, not supervised,
reinforcement learning and deep learning

RQ1

DI9 ML ALGORITHM
the ml algorithm used such as support vector
machine, decision three, neural network,
q-learning etc.

RQ1

D10 TESTING LEVEL
the software testing level such as system test,
unit testing, test integration RQ2

DI11 TESTING TECHNIQUES
software testing techniques e.g. functional,
non-functional, structural. RQ4

DI12 TESTING TYPES
software testing types , e.g. black box testing,
security testing, compatibility testing. RQ2.1

DI13 TESTING APPROACH
approach used to testing applications, e.g.
GUI testing, code features and attributes. RQ2.1

DI14 TESTING CHALLENGES
research challenges in software testing,
test case generation, defect prediction,
test input generation etc

RQ5

DI15 APPLICATION TYPE
type of mobile application: native,
hybrid or web RQ3

DI16 OPERATIONAL SYSTEM android, ios or other RQ3
DI17 ADVANTAGES Advantages of the studies and results RQ4
DI18 DISADVANTAGES disadvantages, weakness of the study RQ4

Figure 12 shows the distribution of research papers by country. Most of the studies are
from China (11), followed by the USA (5), India (3), Italy (3), Japan (2), Turkey (2), Indonesia
(1), Germany (1), Netherlands(1), Taiwan (1) and Malaysia (1).

Table 7 presents the publication sources of the selected papers, 19 are conference papers,
2 are workshops, and 11 are journal papers. The source of publications was classified by results
from Testing and Software Engineering related conferences, Testing, Software Engineering
related journals, Software Engineering related Workshops, Mobile Software related conferences,
Artificial Intelligence related journals, Computer Science related journals, Mobile software
related Conferences, Eletronic Journals, Eletronic Conferences, Security related Conferences,
Security related Journals and Multidisciplinary journal. Figure 13 shows the distribution of
studies by publication source type. Regarding evaluation type, 30 studies presented empirical

52 Chapter 3. Machine Learning-based Mobile Application Testing Mapping

Table 6 – Primary Studies

ID Title Authors Year

S1
QBE: QLearning-Based Exploration
of Android Applications Y. Koroglu et al. 2018

S2
Reinforcement learning for android
GUI testing

Adamo, David & Khan, Md & Koppula,
Sreedevi & Bryce, Renée. 2018

S3
A reinforcement learning based
approach to automated testing of android
applications

Thi Anh Tuyet Vuong and Shingo Takada. 2018

S4
Humanoid: A deep learning-based
approach to automated black-box android
app testing

Y. Li, Z. Yang, Y. Guo and X. Chen 2019

S5
Combining Automated GUI Exploration
of Android apps with Capture and Replay
through Machine Learning

Domenico Amalfitano, Vincenzo Riccio,
Nicola Amatucci,Vincenzo De Simone,
Anna Rita Fasolino

2018

S6
Automation of Android applications
functional testing using machine learning
activities classification

A. Rosenfeld, O. Kardashov and O. Zang 2018

S7
AIMDROID: Activity-insulated multi-level
automated testing for android applications T. Gu et al. 2017

S8
Guided GUI testing of android apps with
minimal restart and approximate learning

Wontae Choi, George Necula, and
Koushik Sen. 2013

S9
UIChecker: An Automatic Detection
Platform for Android GUI Errors M. Ji 2018

S10
Semantic analysis for deep Q-network
in android GUI testing Vuong, Thi & Takada, Shingo. 2019

S11
AppFlow: Using Machine Learning to
Synthesize Robust, Reusable UI Tests Gang Hu, Linjie Zhu, and Junfeng Yang. 2018

S12
Deep Learning-Based Mobile Application
Isomorphic GUI Identification for
Automated Robotic Testing

T. Zhang, Y. Liu, J. Gao, L. P. Gao 2020

S13
Guiding App Testing with Mined
Interaction Models

Nataniel P. Borges, Maria Gómez, and
Andreas Zeller. 2018

S14
Automatic Text Input Generation for
Mobile Testing

P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M.
Marques and L. Zeng, 2017

S15
Learning to Prioritize GUI Test Cases
for Android Laboratory Programs

Cheng-Zen Yang, Yuan-Fu Luo,
Yu-Jen Chien, and Hsiang-Lin Wen. 2016

S16
Prioritizing Test Cases for Memory
Leaks in Android Applications Qian, J., Zhou, D. 2016

S17
Cross-Project Just-in-Time Bug Prediction
for Mobile Apps: An Empirical Assessment G. Catolino, D. Di Nucci and F. Ferrucci 2019

S18 *Mobile application software defect prediction M. Y. Ricky, F. Purnomo and B. Yulianto 2016

S19
Software fault prediction based on change
metrics using hybrid algorithms: An
empirical study

Wasiur Rhmann, Babita Pandey, Gufran
Ansari, D.K. Pandey 2020

S20
An empirical framework for defect
prediction using machine learning
techniques with Android software

Ruchika Malhotra. 2016

3.3. Results and Data Synthesis 53

ID Title Authors Year

S21
Application of machine learning
on process metrics for defect prediction
in mobile application

Kaur, Arvinder & Kaur, Kamaldeep
& Kaur, Harguneet. 2016

S22
*High-Frequency Keywords to Predict
Defects for Android Applications Y. Fan, X. Cao, J. Xu, S. Xu and H. Yang 2018

S23
Defect Prediction in Android Binary
Executables Using Deep Neural Network

Feng Dong, Junfeng Wang, Qi Li,
Guoai Xu, and Shaodong Zhang. 2018

S24
Compatibility Testing Service for Mobile
Applications T. Zhang, J. Gao, J. Cheng and T. Uehara 2015

S25
Vulnerability Detection on Mobile
Applications Using State Machine Inference W. van der Lee and S. Verwer 2018

S26
Dynamic Loading Vulnerability Detection
for Android Applications Through Ensemble
Learning

T. Yang, H. Cui and S. Niu. 2017

S27
New deep learning method to detect code
injection attacks on hybrid applications

Ruibo Yan, Xi Xiao, Guangwu Hu,
Sancheng Peng, Yong Jiang. 2018

S28
A Novel Android Application Penetration
Analysis Method

Zengshuai, Hao & Leizi, Meng & Xiong,
Zhan & Jie, Wang & Jianbo, Yu. 2017

S29
Reinforcement learning-based curiosity-driven
testing of Android applications

Minxue Pan, An Huang, Guoxin Wang,
Tian Zhang, Xuandong Li 2020

S30
Functional test generation from UI test scenarios
using reinforcement learning for android applications

Yavuz Koroglu Alper Sen 2020

S31
Automated Test Selection for Android Apps Based
on APK and Activity Classification

L. Ardito, R. Coppola, S. Leonardi, M. Morisio
and U. Buy 2020

S32
DroidbotX: Test Case Generation Tool for Android
Applications Using Q-Learning

Husam N. Yasin, Siti Hafizah Ab Hamid
Raja Jamilah Raja Yusof 2020

Figure 11 – Papers published by year

evaluation results, 2 papers of case studies.

3.3.1 RQ1 - What type of ML techniques have been used to cope
with mobile application testing?

The studies were classified by ML techniques described in section II: Supervised Learn-
ing, Unsupervised Learning, Semi-supervised learning and Reinforcement Learning. The results
in Figure 14, indicate Supervised Learning is the most used ML type present in 22 papers

54 Chapter 3. Machine Learning-based Mobile Application Testing Mapping

Figure 12 – Countries

Figure 13 – Papers quantity by Publication Source Type

(68,75%), followed by RL with 8 studies (25%), and UL in 2 studies selected (6,25%). Super-
vised Learning approaches require labeled data, and in general, there are test tools that generate a
lot of data from test analysis, code analysis, app logs, and historical execution. This facilitates the
generation of labeled datasets to use Supervised Learning approaches. However, this approach
has the drawback of often having too much cost to collect large amounts of data, and process the
data to form a quality dataset.

The research question RQ1.1 Which ML Algorithms? Figure 15 shows 21 different
ML algorithms. The RL algorithm Q-learning is the most cited, found in 6 studies (S1, S2, S3,
S7, S29, and S32), followed by DNN in 5 studies, then Active learning, NB and SVM got 2
citations. All other algorithms used were found in one study each. Q-learning has been explored
for testing interfaces. This approach has a Q-function implemented as a table of states and actions
(Q-values for each s, a pair are stored there). It uses the Value Iteration algorithm to update the
values as the agent accumulates knowledge directly. In testing, the states are the application
screen and the actions the steps applied in UI elements. The variations of this algorithm Double

3.3. Results and Data Synthesis 55

Table 7 – Publication source

Publication source Indexed by
Testing and Software Engineering related conferences
IEEE 11th International Conference on Software Testing,

Verification and Validation (ICST) IEEE

Proceedings - 2019 34th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2019 IEEE/ACM

International Conference on Software Maintenance and Evolution(ICSME) IEEE
ACM SIGPLAN international conference on Object oriented

programming systems languages & applications (OOPSLA ’13) ACM

9th International Conference on Software Engineering and
Service Science (ICSESS) IEEE

Proceedings of the International Conference on Software
Engineering and Knowledge Engineering, SEKE IEEE

26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE 2018)
ACM

39th International Conference on Software Engineering (ICSE) IEEE/ACM
IEEE Symposium on Service-Oriented System Engineering (SOSE) IEEE

42nd Annual Computer Software and Applic. Conference (COMPSAC) IEEE
IEEE Symposium on Service-Oriented System Engineering IEEE

ISSTA 2020: Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis ACM

Testing and Software Engineering related journals
Information and Software Technology Science Direct

Applied Soft Computing Journal Science Direct
Journal of Systems and Software, Science Direct

Software Testing Verification Reliability IEEE
Mobile Software related conferences

IEEE/ACM International Conference on Mobile Software
Engineering and Systems ACM

Artificial Intelligence related conferences
International Conference on Artificial Intelligence and Robotics and the

International Conference on Automation, Control and Robotics
Engineering (ICAIR-CACRE ’16)

ACM

Artificial Intelligence related journals
Advances in Intelligent Systems and Computing Scopus

Computer Science related journals
Journal of Computer Science and Technology Scopus

Journal of King Saud University - Computer and Information Sciences Scopus
IEEE Computer Society IEEE
Electronic Conference

Conference: 2017 2nd Joint International Information Technology,
Mechanical and Electronic Engineering Conference (JIMEC 2017) Web of Science

56 Chapter 3. Machine Learning-based Mobile Application Testing Mapping

Electronic Journal
Chinese Journal of Electronics IEEE

Security Conferences
IEEE European Symposium on Security and Privacy Workshops IEEE

Security Journals
Wireless Personal Communications: An International Journal Science Direct

Multidisciplinary Journals
IEEE Access IEEE

Simetry Science Direct

Figure 14 – ML Types

Q-learning and Deep Q-learning, are also present in the studies S10 and S30. They demanded
more computational power but presented the advantage to infer large search spaces, useful
for large applications. The RL algorithms don’t need a dataset, so the learning journey of the
algorithm is useful to explore the GUI app finding new states and app failures. Most of the
studies focused on the reward policy in identify new states to increase the coverage. Still, no
discussion was found regarding the quality of the training phase of this approach to guarantee
better performance, and the non-deterministic nature is a limitation to reproduce the results.

DNN is the second most used, present in S4, S12, S27, and S31. This algorithm is used
in an image recognition context and intended to predict the class labels of the observed data
for pattern analysis and classification. The strategy in S4, S12, and S31 attempt to use image
recognition to guide test actions without the dependency of app code. The need for a large-quality
dataset is an important point to this approach be well succeed.

The SL algorithms Naïve Bayes, Kstar, Active Learning, Decision tree, Logistic Re-
gression, RandomForest, Rankboost, Ranking SVM, GFS-logitboost-c, MultilayerPerceptron,
Simple Linear Regression, Deep Belief Network, Ensemble Learning are present in studies S8,
S9, S11, S13, S15, S16, S17, S18, S19, S20, S21, S22, S25, S26, and S28 in different strategies.

3.3. Results and Data Synthesis 57

Figure 15 – ML Algorithms

These algorithms have been used learning patterns from a dataset of historical data, or software
code metrics and software characteristics main for prediction and classification.

3.3.2 RQ2: Which mobile application testing levels are automated
by ML algorithms?

Regarding test levels, Figure 16 shows the system test is the most appearing in 23 studies
(71,87%)(S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S24, S25,S28,
S29, S30, S31 and S32). Component test is observed in 6 studies (18,75%) (S17,S18, S19, S20,
and S21), and integration tests appeared in 4 studies (12,5%)(S22, S23, S26, and S27). Through
GUI, system test is costly for mobile apps because of the user input limitation, context sensitive
information, variety of device models and versions. So, the research in these conditions is more
targeted. The figure also shows which ML type is more applied to Testing Level. We observe SL
is the most applied to system test followed by RL and UL in the minor. In the integration test
and component test, just SL approaches are applied. The component test studies evaluated SL
algorithms for defect prediction using labeled datasets, achieving high accuracy. The integration
test studies used SL to verify vulnerabilities through the code in android apps.

Regarding RQ2.1, Which Testing techniques and types? Table 8 shows classification
according to ISTQB syllabus 2018 (ISTQB, 2018) as Testing types and sub-types. Most of the
studies (62,50%) selected are Functional testing with sub-type GUI Testing. Seven studies are
non-functional testing (21,87%), one testing type Compatibility Testing (S24). Six studies regard
security testing (S22, S23, S25, S26, S27 e S28), these studies used the approach attack paths,
code injection, penetration test, OWASP, and keyword from Abstract Syntax Trees (WYSOPAL
et al., 2006) respectively. Three studies (S18, S20, and S21) were classified as structural testing
(9,37%); they used basis path testing and the approaches McCabe Object-Oriented, and McCabe

58 Chapter 3. Machine Learning-based Mobile Application Testing Mapping

Figure 16 – Testing Level

code metrics (MCCABE. . . ,). Finally, two studies(S17 and S19) were classified as Change-
related testing (6,25%). It is a technique designed to verify that a change to the software
does not have any adverse effects when code changes (VEENENDAAL; GRAHAM; BLACK,
2008). These studies are in regression testing to predict defects through code change measures
(component test level).

Table 8 – Testing types and Sub-types|

Testing Types Testing Sub-types Papers

Functional Testing GUI Testing

S1, S2, S3, S4, S5, S6, S7,
S8, S9,S10, S11,S12, S13,
S14, S15, S16, S29, S30,
S31, S32

Non- Functional
Testing

Compatibility
Testing S24

Security
Testing S25, S27, S28, S22, S23, S26

Structural Testing
Basis Path
Testing S18, S20, S21

Change related
Testing

Regression
Testing S17, S19

3.3.3 Which Mobile application Type and Operational System?

To define this classification, it was considered that the selected studies could be applied
to Android, IOS, or hybrid apps. The experiments described were analyzed to arrive at this
classification. Most of the studies selected are solutions to the apps for android platform (96,87%),
one study, S14, is a solution applied to IOS, and S27 attends both android and IOS. From results,
28 present solutions for native apps(87,5%), four studies (S5, S14, S17, and S27) for hybrid apps.
Android platform is open source; this facilitates the access of implementation and research tools.

3.3. Results and Data Synthesis 59

But hybrid apps are becoming popular (??), so test solutions in that context are also needed. The
research is challenging due to the development technology of these apps not being native to the
operational system, so native tools from the Android platform cannot easily read UI elements or
collect logs. They need to be tested and monitored in different operational systems.

3.3.4 RQ3: Which mobile application testing challenges are treated
by ML?

The selected studies present researches to solve testing challenges for mobile applications.
Figure 17 shows the testing challenges identified as follows. Test Generation appears as the most
testing challenge present in the research, followed by Defect Prediction, Vulnerability detection,
Test Case Prioritization and selection, GUI Error Detection and Identification, and Test Effort.
Figure 18 shows the ML algorithms applied to each test challenge in the studies selected.

Figure 17 – Test Challenges

The test design is a labor-intensive task in software testing. It also has a strong impact
on the effectiveness and efficiency of testing. For these reasons, test generation has been one of
the most active research topics, resulting in many different approaches and tools (ANAND et

al., 2013). Regarding this topic, the studies S1, S2, S3, S7, S29, and S32 used the RL algorithm
Q-Learning , they achieved better results in code coverage metrics than test case generation
tools from literature such as Monkey, Sapienz, Puma, and others; The studies S10 and S30 also
got higher code coverage using the variation of RL algorithms Deep Q-learning and Double
Q-learning. The Studies S6, S8, S13 used different strategies with SL algorithms kstar, Active
Learning, RandomForest, respectively, using a labeled dataset of GUI to guide the tests. S14 used
a different strategy applying the unsupervised deep learning approach RNN (recurrent neural
network) to create text input to mobile application tests covering use case context, this study
performed better than state of art automatic text input tools.

60 Chapter 3. Machine Learning-based Mobile Application Testing Mapping

In defect prediction, the ML should learn from a dataset of code metrics to identify the
modules that are defect prone and require extensive testing (ARORA; TETARWAL; SAHA,
2015). Mobile apps are often run on different versions of the operating system or different
hardware, making the accuracy of the prediction more complex. We found different strategies
highlighted from papers that address this topic: The study S17 used the dataset of metric feature
selection technique for mobile apps, and the Naive Bayes model achieved the best results
outperforming some well-known ensemble techniques. The study S18 used open datasets of
static code analysis. This study found that SVM achieved higher accuracy of 83%, performing
better than other ML models. The study S19 employs the code change metric to predict the faults
instead of just historical data or static analysis metrics, and this strategy was applied verifying
GitHub apps repository and achieved good performance with the GFS-logitboost-c algorithm.
Study S20 proposes a framework of defect prediction using object-oriented metrics for predicting
defective classes. The algorithm Multilayer Perceptron achieved a better score of 0.7 of AUC
(area under curve metric). In S21, the authors created a dataset of process metrics to predict
defects, Simple Linear Regression model obtained the best prediction than other regression
approaches, and the study confirmed that this kind of SL method achieved the best performance
using process metric. S22 and S23 used SL algorithms Deep Belief Network and Deep Neural
Network to predict security defects in mobile apps. The first one used the strategy to learn the
functional and semantic information to predict whether files contain defects. The second one
trains the algorithm with extracts both token and semantic features of the defective files in apks
to predict them.

A software vulnerability can be seen as a flaw, weakness, or even an error in the system
that an attacker can exploit to alter the system’s normal behavior (JIMENEZ; MAMMAR;
CAVALLI, 2009). Detection of vulnerabilities in mobile apps is important to assure reliability
and avoid security failures, such as invasion of apps, attack paths, and code injections. In study
25, this topic is addressed using active learning (??) in combination with algorithms that discover
attack paths in the learned state machine. The detection techniques attempt to discover a path
that exploits a given class of vulnerabilities specified in the OWASP Top10. If such a malicious
path exists in the inferred model, the application must contain a specific vulnerability. In study
26, to detect the vulnerability, the static analysis is used to determine the location information of
the loading point. It extracts the feature vector for each loading procedure and the classification
of the extracted feature vector through constructed multilabel classification ensemble learning
algorithm. The results obtained that the detection method can detect vulnerabilities of dynamic
loading effectively and is more comprehensive. Study 27, construct a novel deep learning network,
Hybrid Deep Learning Network (HDLN), and use it to detect these attacks. This study extracts
more features from the Abstract Syntax Tree (AST) of JavaScript. It employs three methods to
select key features and train the DL to distinguish vulnerable applications from normal ones
achieving 97.55% accuracy. In S28, the SVM algorithm is used to identify vulnerabilities in
Android apps that allow penetration invasion. A sample set of apps under test was created after

3.3. Results and Data Synthesis 61

summarizing defect collection, and an attacking API sequence was extracted, achieving above
81% of accuracy applied in three different kernel functions.

Figure 18 – ML algorithm by Testing Challenge

Test case prioritization is useful to reduce the cost of regression testing. Testers may
prioritize their test cases so that those which are more important, by some measure, are run earlier
in the testing process (ELBAUM et al., 2004). For mobile apps, the prioritization of test cases
that have the likelihood to reveal important failures in the early development stage is important
due to the various testing types to be executed in this context. Study S15 proposes a learning
framework based on the RankBoost learning-to-rank approach to facilitate the verification task
by learning to prioritize GUI test cases. The results show that this study can effectively rank the
test cases if there are enough pairwise priority relations in the training test cases. S16, proposes a
novel approach to prioritize test cases according to their likelihood to cause memory leaks in
android apps using Ranking SVM algorithm, It firstly builds a prediction model to determine
whether each test can potentially lead to memory leaks. Then, for each input test case, it partly
run it to get its code features and predict its likelihood to cause leaks prioritizing to run first.
Study S31 presents a novel testing framework that allows the tester to write scripts, creates a
model of the app’s GUI, identifying activities, an app classifier that determines the type of apps,

62 Chapter 3. Machine Learning-based Mobile Application Testing Mapping

and activity classifier, and a test adapter that executes test scripts that are compatible with the
specific app. Using a DNN for App classification and LR for activity classification, this study
adapted high-level test cases to 28 out of 32 apps. It reduced the LOCs of the test scripts by
around 90%.

In GUI error detection, ML is applied to examine some image details that are hard to
identify by testing tools, such as wrong icon position, field format breaks, and other unpredictable
interface issues that make these apps more likely to have interface problems. Study S9 proposed
an automatic detection platform for GUI errors of mobile apps related and image-related widget
error classification model through decision tree algorithm, which detects the error of widgets,
achieving f 98.06% for text-related and 95.44% for image related. In S12, used a DNN end-to-
end trainable model to determine the similarity between GUIs and identify isomorphic GUIs in
robotic testing of mobile apps. In this study, The camera captures GUI information and monitors
test execution, and the robotic arm interacts with mobile devices like the test performer. This
method achieved 97.6% of accuracy, demonstrating effectiveness.

Test effort is related to testing costs. In S26, a statics method is applied to cluster mobile
devices with similar configurations and appliances to avoid redundant testing reducing the test
cost in compatibility testing using an unsupervised learning k-means algorithm to generate an
optimized compatibility test sequence. The results obtained showed potential application and
effectiveness.

3.3.5 What advantages and limitations are found on ML based mo-
bile application testing?

Mobile app testing is specially challenged in the software testing area. Finding good tools
and good coverage of test scripts are considered difficult to achieve due to mobile app limitations
as described in chapter 2. Different ML types have been studied to fit human interaction simula-
tion, defect prediction, and classification. Researches using SL algorithms have been present in
various app testing challenges such as test generation, test case prioritization, defect prediction,
and GUI error detection. The SL algorithms NB, SVM, Decision Tree, LR, GFS-logit boost-c,
Multilayer Perceptron, and Simple Linear Regression are applied successfully through a dataset
of app code metrics, recognizing the app patterns. The limitation of the presented research is
the dependence on a large dataset of code metrics. SL also showed promising results with DNN
for app GUI error identification. It can search, correlate and combine data to get faster learning.
However, imperfections in the training dataset make them vulnerable. The known limitation of
this approach is the need for a large amount of annotated data. Depending on the display, image
quality, luminosity conditions, or overlap of screens, the detection can fail.

Reinforcement Learning, specifically Q-learning algorithm is the most used in test case
generation for GUI testing. In S3, the author highlighted the Q-Learning algorithm has the

3.3. Results and Data Synthesis 63

capability of finding the optimal way to reach a certain state of the environment, it is used to
guide the exploration to reach states that reveal application’s functionalities or hard-to-reach
states. The empirical evaluation of studies S1, S2, S3, S7, S10 and S32 showed q-learning has the
advantage to explore mobile applications and generate more test scenarios based on GUI state,
improved the coverage and found more crashes than other approaches. The research evaluations
presented as limitation the lack of the dataset to probability distribution since different apps may
require quite different sequences of actions to satisfy the same objective. Researches in SL have
been widely used in various mobile app testing challenges such as test case generation, test case
prioritization, test input generation, defect prediction, GUI error detection and identification.
Defect Prediction in unit testing level is the most applied SL algorithm based on test metrics
or code metrics dataset. The limitation of the presented research is the dependence of a large
dataset of history mobile app data with metrics used for prediction.

Some deep learning approaches presented in S4, S12 and S31 showed promising re-
sults for application GUI identification for input testing generation, GUI error diagnosis, UI
components detection and GUI isomorphic relation. Deep learning can search, correlate and
combine data in order to get faster learning, however, imperfections in the training dataset of
DNN make them vulnerable. The known limitation of this approach is the need of a large amount
of annotated data. Depending on the display, image quality, illuminosity conditions or overlap of
screens, the detection can fail.

The availability of larger mobile app dataset, history data, quality of data provided
(treatment and preprocessing) are the barriers highlighted by the most studies observed. It is
important to note that it can be difficult for the adoption of ML in mobile app testing in the
industry. The need to invest in a good computational resource for processing the ML algorithms
and the investment in training and allocation of test professionals to work with the treatment and
creation of data and in understanding the algorithms and your results returned.

We also observed that most of the studies only focused on android native apps, limiting
the employment in hybrid apps tests. The barriers observed in the studies are highlighted large
datasets, quality of data, and hardware structure. To apply in the industry requires investment in
hardware resources and qualified professionals.

3.3.6 Threats to Validity

This mapping considered the main studies of ML and mobile application testing, to
guarantee the corrected analysis of the main concepts of these two research areas, the results clas-
sification obtained were reviewed according to the authors consensus in the technical literature
and internally in order to avoid the Researcher bias.

In order to capture relevant results to answer the RQs, the research was conducted using
the main databases: IEEE, ACM, Scopus, Web of Science and Science Direct. One threat to

64 Chapter 3. Machine Learning-based Mobile Application Testing Mapping

validity is related to the possibility of several relevant studies missing during the conduction of
the automated search in these databases because of different types of search in each database.
To avoid it, the search using the string was performed in the ACM library join search using the
string to capture by Title, Abstract and Keywords. In Science direct, due to limitations of the
number of keywords and operations to perform the automated search, the string were adapted
and a join was performed observing the results returned when run the main keywords (taken
from RQs) of each area. Another action taken to avoid this risk of missing relevant studies was
to conduct searches on Google Scholar and perform the snowballing to dig for relevant papers
that might not be returned on the date of the search.

A difficulty found during results analyses is certain papers did not describe in detail the
ML algorithm and the type of dataset used and the processing of data, to achieve this information,
the references were consulted to obtain a clue to apply the correct classification. Another barrier
was to find the reference in the papers of mobile applications type, most of the studies just
mention the operational system. Finally, in few studies were found a section describing the
difficulties or concerns about the ML techniques applied in mobile application testing.

One Internal validity identified is related to the possibility of several relevant studies
missing during the conduction of the automated search in these databases To avoid it was to
perform snowballing to dig for relevant papers that might not be returned on the date of the
search. The external validity found was that certain papers did not describe the ML algorithm,
dataset information missing, and few studies describing the difficulties or concerns about the
ML-based mobile app testing. The mitigation applied was by consulting the references to obtain a
clue to apply the correct information. The conclusion validity during the study is to find different
definitions of test types and test techniques in the literature. Therefore, the definition by ISTQB
was used.

3.4 Final Considerations

This SM pointed that mobile app testing and ML have increasing attention over the
last few years. Concerning our research questions, SL is the most ML type observed in the
studies. It has successfully performed defect prediction using static code data. Moreover, these
studies presented the dependence of the large dataset to perform the prediction efficiently. This
same challenge is observed in vulnerability detection and GUI error detection. Q-learning is the
most cited algorithm to solving test generation and exploration through GUI apps regarding the
ML algorithms. The challenge of this approach is to create a sequence of actions of test cases
automatically and create the test oracle to cover the app’s functionality. Due to the high cost, test
generation through the app’ GUI at the system test level is the most researched in the studies.

The advantages and limitations presented by the study (RQ5) highlighted that ML algo-
rithms could improve performance over time but depends on storage and computational capability.

3.4. Final Considerations 65

Concerns in the industry involve few studies applied to hybrid apps, resource investment for
hardware, and qualified professionals to create and maintain these systems. However, the creation
of tools to support the mobile app challenges reported is in the initial stages of maturity. The
SM results can be useful to researchers to obtain information to identify research directions for
performing a rigorous evaluation of their work also in industry. The future of this work will
identify ML-based app testing solutions in real-world companies.

67

CHAPTER

4
PROPOSAL APPROACH DEEPRLGUIMAT

4.1 Initial Considerations

The advances in mobile computing and the market demand for new products that meet
an increasingly public represent the importance of ensuring the quality of mobile applications.
In this context, automated GUI testing has become highlighted in the research. However, studies
indicate that there are still limitations to achieving many possible combinations of operations,
transitions, functionality coverage, the bottleneck in manual test design, and fault reproduction
(KONG et al., 2019).

Several techniques are applied to overcome these limitations, such as Random, which
produces pseudo-random events to test. However, it has no guidance may get stuck when dealing
with complex transitions. Model-Based it extracts test cases from navigation models built by
static or dynamic analysis. Their performance is limited when the amount of space and actions
increase. Search-based using evolutionary algorithms as Genetic Algorithms has shown excellent
results since a specific coverage target guides them. However, they do not take advantage of past
exploration successes to learn the most compelling exploration strategy dynamically, it needs
computational power, and they do not scale well with the complexity (Kong et al., 2019).

Machine Learning techniques are popular in many commercial applications, and it is
now accessible technology. However, supervised approaches need a large amount of data to get
learning. RL is a technique that the agent learns through environment interaction and trial-error in
this context. It does not need a dataset. According to the literature, the RL algorithm Q-learning
is the most used to generate test cases for GUI testing. It learns the value of an action in a
particular state. The "Q" refers to the algorithm’s function computes the expected rewards for an
action taken in a given state. This approach has the limitation of applying only to discrete action
and small state spaces, being inefficient in a large amount of action-state combinations. Another
difficulty is that the agent Q-learning cannot estimate the value to other states (PASZKE, 2017a).

68 Chapter 4. Proposal Approach DeepRLGUIMAT

So, the current Q-learning approaches do not consider significant variations of input test data.

The RL algorithm DQN uses a deep neural network instead of a Q-table to approximate
values to overcome the Q-learning limitation. The mechanism of Experience Replay accelerates
learning. The agent DQN learns leading with deferred rewards learning to link to actions that
cause them. So, DQN is suitable in this research focused not only on app exploration and finding
crashes but on producing useful test cases finding failures exercising the test input variation.

The test input variation in software testing is important for efficiently finding faults, as
exhaustive testing is impractical (ISTQB, 2018). In this sense, testing techniques and criteria
help select test inputs, as explained in chapter 2, covering a range of input values and may
reveal failures that violate input requirements. Systematic Functional Testing (SFT) combines
the main input criteria (equivalence partition and Boundary value analysis), is successful in
functional and structural tests and has good results in mutation testing (LINKMAN; VINCENZI;
MALDONADO, 2003). Therefore, this work is based on SFT guides, seeking the agent to
perform combinations that can be efficient to reveal functional failures. It is a novel aspect for
test generation tools.

This chapter describes the approach DeepRLGUIMAT to test case generation for mobile
apps and the implementation of the tool applied to Android for proof of concept. Section 4.2
shows the approach modules details Environment, DQN and Agent Manager. The implementation
environment and Operational use details are described in 4.3,4.4 and 4.5.

4.2 DeepRLGUIMAT

Figure 19 represents the workflow of the approach DeepRLGUIMAT.It contains three
modules: Agent Manager, DQN and the Environment. Agent Manager is the RL agent which
interacts with the RL environment (Android Environment) and sends the information of actions,
rewards and states to module DQN. The environment is the world through which the agent moves
and responds to the agent, in our case the representation of Android app. The environment takes
the agent’s current state and action as input and returns its reward and its next state as output.

The DeepRLGUIMAT input is the mobile app (android apk) only. The module agent
manager calls the environment to install and launch the application on an emulator or device. It
reads the state of app GUI and generates a vector of GUI possible input actions. Agent manager
calculates the reward and sends them to DQN, which processes state, actions, and reward value
to select the best action back to the agent manager to be addressed to the device. The agent can
perform the tests in two ways: without entry requirements, the agent explores the app using
general actions with default input types; and with entry requirements to guide the app exploration.

4.2. DeepRLGUIMAT 69

Figure 19 – DeepRLGUIMAT Workflow

4.2.1 Environment Module

There are several RL environments available to try RL algorithms in OpenAI gym
(GYM, 2020). The Environment in DeepRLGUIMAT allows to connect to an Android device or
emulator, install and launch the app, send actions and collect the state (app screen), the activity,
the code coverage, and the test results. Figure 20 shows the Android Environment attributes and
operations.

Figure 20 – Android Environment classes

The operation get reset app uses commands to install and launch the application under

70 Chapter 4. Proposal Approach DeepRLGUIMAT

test in a target device or emulator; get activity returns the name of the app screen launched. In
get actions all GUI elements of the screen are read, and a vector of possible actions for the GUI
elements is created and returned to the Agent manager module.

The repetition control (Figure 21) is a mechanism to prevent the tool from getting stuck
in an action execution bias. As training is carried out, if there is no variety of actions for the
agent to learn, biases characterized by repetition of actions on the same screen may occur. It
regulates the actions performed at the same screen. It does not prevent from repeating actions,
it can repeat, but in a limited way in the same screen. While the action is in the screen, this
mechanism encourages attributing a smaller reward to return the actions not yet performed in the
screen context (all new actions performed are stored in a vector) until the agent leaves the screen,
the Action stored vector is empty and the actions of other state are stored and verified again.

Figure 21 – Repetition Control

In get state, it takes the screenshot of the device and store in a states directory. The
operation get code coverage is a feature that collects the code coverage. The function get errors

and get crash monitor the app, identifying if an action provokes an error or a crash. An app crash
is an unexpected exit caused by an unhandled exception. The method execute actions, has as a
parameter the action in Actions class; this function sends the screen name, the code coverage
after the action performed if the action caused the failure or crashes. In get requirements, the
requirements file is read to store the information to be guide the exploration.

The Action Class has the attribute action types, and its can be GUI app: Click, Scroll,
Set Text, Select, Long Click, Check and Android device actions: Home, Back, Volume, Rotate
and Android menu. Table 9 shows the GUI actions in the first column, the action subtypes in
the second column, and from columns 3 to 7, the parameters. This set of standard actions were

4.2. DeepRLGUIMAT 71

inspired by the SFT guidelines for numbers and text, when there are no system requirements,
we consider the default value limits generated through a random function were adopted with
sizes ranging from 1 and 2 for small text, 10 to 20 for medium text and 100 to 200 for large text.
The same for numbers, symbols and mixed (mixed text and number values) and we applied the
SFT guidelines to offer actions that provide tests with extreme values (small text, small number,
large text, large number), acceptable values (medium text, medium number), special cases and
illegal cases (empty, symbols, mixed) . In case of field size requirements provided, then inputs
are generated to cover them, threshold values and disallowed values.

Table 9 – GUI Actions

GUI
Actions SubActions Param 1 Param 2 Param 3 Param 4 Param 5

Click - x y - - -
center x y - - -
top left x y tl - -

LongClick botom x y br - -

text medium x y string
(size 10
to 20) -

text large x y string
(size 100
to 200) -

text small x y string (size 1 to 2) -
number
medium x y number

(size 10
to 20) -

number large x y number
(size 100
to 200) -

number small x y number (size 1 to 2) -

symbols x y symbols
(size 10
to 20) -

Text mixed x y
string,

and number
(size 10
to 20) -

swipe down x1 x2 y1 y2 -
swipe up x1 x2 y1 y2 length

swipe right x1 x2 y1 y2 -
Scroll swipe left x1 x2 y1 y2 length
Device
Actions Parameter

Back -
Home -
Menu Android menu itens

Volume up / down
Rotate landscape / portrait

The action long click has 3 variations center, top left, and bottom. These variations
facilitate to access long-click menu in mobile apps. The Text action has 8 sub-types, and they
vary according to the data types letter, number and symbols, and size (column Param 4 the size

72 Chapter 4. Proposal Approach DeepRLGUIMAT

in character number). The action sub-types of Scroll are Up, Down, Right, and Left; the duration
value default is 10 steps. The device actions include Back, Home, Menu (random click on menu
items), Volume (up and down), Rotate (landscape and portrait).

The test events generation is a useful feature since the manual input of automated
test scripts is a bottleneck in the development process. DeepRLGUIMAT registers the actions
performed in text files called test events to debug a scenario. The file contains the screen name,
the sequence of actions performed red underlined in the picture (click, type, check, etc.), input
value, the location of GUI element (bounds), element name, the screenshot of the device, and if
it has an error.

Figure 22 – Test Case

The Figure 22 shows a test event file generated by DeepRLGUIMAT. This file is formed
in the first line by the name of the Activity where the events occurred. In the next lines, we see
the actions performed on which type of UI element (button, text, image button, ...) the identifier
of the element if it exists (resource id or element text), the entered value (in the case of a text),
the location of the action (bounds) and the screenshot of the screen. In the figure, we highlight
the actions underlined in red, and in blue, we underline the expected result information. In the
circle, we highlight the text of an element used for its identification. Finally, we have if the test
result is following the requirements, Test Passed. Otherwise, the result would be Test Failed.

4.2.1.1 Actions

In the DeepRLGUIMAT tool, the generation of actions vector is done by extracting
elements from the app’s interface to derive the sub-types of action (Table 9). In case there are
requirements, these are used to generate more actions according to the field specification, using
the systematic functional testing technique for test inputs to cover the requirements. Having the
requirements is to explore the application more efficiently and generate test events with defined
expected results.

Figure 23 shows the requirements information that is needed for the tool: in the first
column is the current activity information, in the second column the field type information

4.2. DeepRLGUIMAT 73

Figure 23 – Requirements

(edit text, button, image button, select, scroll, etc.), the third column is the id of the element
(resourceid). In the fourth column, the action to be performed (type, click, long click, check). In
the fifth column, the type of value input (text), number, or text, or symbols, and none if it has
no input. The size_start and size_end columns are for specifying the minimum size limit
for value input and the maximum size limit. This data is important for generating test entries.
The value column is to specify an input value. Finally, the Result_activity, Result_elem,
Result_text columns represent the values to be checked in the final result to assess whether
the test passed or failed.

Figure 24 – Actions Generation Flow

74 Chapter 4. Proposal Approach DeepRLGUIMAT

To better understanding, Figure 24 illustrates the flow for generating the actions vector.
First, the method get actions extracts the UI fields from the actual activity and stores them in
a list. For each field in the list, the element type is verified. If the field is clickable, the action
"click" is added to a set of actions, same for "long clickable", "checkable," and "scrollable". For
edit texts fields, if it has no requirements, the general actions for input texts are added to a set of
actions (Table 9 shows GUI Actions). If It has requirements information, test inputs are derived
according to the requirements, such as input value less than the limit (less start size), input value
in the inferior limit (input value start size), input value higher than the superior limit (input value
higher end size) and so on. The set of actions are returned in a vector to be sent to the DQN
module.

The purpose of this feature is to enable the test generation that cover technical require-
ments for data entry in order to have automatic tests that check the basic conditions, not only
navigation, ensuring that the application does not break when performing data entry different
from the requirements. With this, the tester will be able to focus efforts on testing business rules
that add value to the product.

4.2.2 Deep Q-Network Module

The module Deep Q-Network (DQN) has the goal to select actions that maximize
cumulative future reward. In this sense, the convolutional neural network (CNN) is used to
approximate the optimal action-value function. CNNs are a type of deep feedforward neural
network specialized in image visualization and processing. A classical neural network has a
structure divided into layers formed by neurons, with only the hidden ones working differently.
The detection of characteristics of a CNN is done in the convolutional stage by convolutional
filters, also called kernel, which are arrays much smaller than the input, but with the same number.
Of dimensions, which in many cases is 3: height, width, and color channels, Figure 25 represents
how CNN works (TAMADA,).

Figure 25 – CNN, (ALI, 2019)

In DQN, the images are the input, processing takes place in the hidden layers, and in
the output layer, each neuron has a value that determines the action taken. However, as the past

4.2. DeepRLGUIMAT 75

images are not labeled, the evaluation of the network output is done in another way, through
reinforcement learning. In other words, while the characteristics of the environment are defined
by the network, the calculation of the error for the optimization of weights is done by the RL
(TAMADA,).Figure 26 represents the DQN architecture.

Figure 26 – DQN architecture, (YOON, 2019)

When the transition probabilities are not known, so the Q function policy recommended
is the Bellman’s equation to obtain the value function from observations made about the environ-
ment (DANA; VAN, 1990):

Qπ(s,a) = r+ γQπ(s′,π(s′))

This module has the optimization function that performs a single step of the improvement.
It first samples a batch, concatenates all the tensors into a single one, computes Q(st ,at) and
V (st+1) = maxaQ(st+1,a), and combines them into our loss. By definition we set V (st) = 0 if s

as a terminal state. To minimize the errors in the optimization function, Huber loss, which works
like the mean squared error when the error is small, but as the mean absolute error when the
error is large (PASZKE, 2017a).

L = 1
|B|∑(s,a,s′,r) ∈ B L (δ)

where L (δ) =

1
2δ 2 for |δ | ≤ 1,

|δ |− 1
2 otherwise.

(4.1)

This function is quadratic for small values of a, and linear for large values, with equal values
and slopes of the different sections at the two points where |a|= δ |a|= δ . The variable refers
to the difference between the observed and predicted values a = y− f (x)a = y− f (x). Figure
23 shows the DQN module data flow. The Agent module sends action, state, and reward to be
recorded in the replay memory and also runs optimization steps on every iteration. Optimization
picks a random batch from the replay memory to do training of the new policy. The target net is
also used in optimization to compute the expected Q values; it is updated occasionally to keep it
current (PASZKE, 2017a).

The Reward is an important input to DQN. A reward is a function that provides a
numerical score based on the state of the environment. The goal, in general, is to solve a given

76 Chapter 4. Proposal Approach DeepRLGUIMAT

Figure 27 – DQN data frow

task with the maximum reward possible. It is through this that the agent will select the best
action. Function 4.2 shows the reward rules.

r =



Γ if s /∈ Ssv

Γ if a ∈ Ra

−Γ if a is repeated

−Γ if s 6= AUT or Crash

0 other cases

(4.2)

The reward is high (Γ) if the state(s) never observed before in the set of visited states
(Ssv) and the action is in requirements. The reward is lower (−Γ) if the same action is repeated
or the state is out of AUT (app under test), and when the app crashes, the reward is lower too. In
all other cases, the reward value is 0.

Generally, actions that cause crashes close the application forcing to restart the appli-
cation, and this step finishes the episode. The failures that cause crashes are important, but
to prevent the agent bias from returning to the same crash action, the decrease in the reward
manages to avoid the repetition of the same step several times in a new episode.

4.2.3 Agent Manager Module

Agent manager module generates tests through a selection of sequences of actions and
states that maximizes cumulative reward. Algorithm 1 shows pseudocode for the proposed DQN
based test generation algorithm. It takes as input the AUT, the end criteria (c) is the time to run
the tool. Line 3 is the first loop while the episode is not completed, the AUT is started in line 4
(emulator or Device connected by USB), the android environment returns the actual state and
actions for the application launched on line 5. In line 6, the vector activities are initialized; this
vector stores the activities of the application accessed.

4.2. DeepRLGUIMAT 77

The strategy of this algorithm is to explore the entire application giving high reward to
actions which discovery new activities and comply entry requirements (lines 15 to 18) to prioritize
the selection of different actions to avoid repetition. However, actions performed outside the
application, recently repeated actions and actions that cause crashes receive a decrease in reward
(lines 10,11 and 13,14). Memory replay (DQN module) stores the state, action, next state, and
reward in line 19. In line 22, the Optimization function (DQN module) described in Section 4.2
is called. If the terminal state criteria are satisfied in line 23, the episode is finished.

Algorithm 1 – Agent manager module
1 initialization episode duration
2 c = end criteria
3 while episode (i) not completed do
4 start AUT
5 state, actions = AUT environment
6 activities = []
7 steps =0
8 while True do
9 action = select action(state, actions)

10 if action was already performed in same state then
11 reward = small reward

end
12 next state, actions, crash, activity = execute actions(action)
13 if activity is not AUT or App crashed then
14 reward = small reward

end
15 if action comply requirements then
16 reward = large reward

end
17 if activity is new then
18 reward = large reward

end
19 Store in DQN memory replay (state, action, next state, reward)
20 state = next state
21 steps = steps+1
22 DQN Optimization model
23 if c or crash then
24 next state = 0
25 Epoch complete in steps
26 breaks

end
end

end

The execute action function in line 12 will send the action to Android Environment.
It will perform the action, returning the State resulted (next state), the set of possible actions

78 Chapter 4. Proposal Approach DeepRLGUIMAT

(actions vector generated), name of the activity and a boolean value for crash (True or False). In
the Android Environment, the execution is monitored and the tests performed, errors in Logcat,
and application screens are registered.

Every episode lasts until covering actons vector, or the action is out of the app or if
the app crashes. Once an episode comes to an end, the app is restarted, and the tool uses the
acquired knowledge to explore the app in the next episode. The algorithm’s journey encourages
the discovery of happy path scenarios, alternative paths, input variation and discovery of failures
in the application.

4.2.4 Studies Comparison

Through the systematic mapping described in Chapter 3, we identified 13 studies referring
to methods and tools similar to the solution proposed in this work, in the Table 10 we indicate
these works in the column papers, the other columns refer to the characteristics that these tools
have in comparison to the tool proposed in this work.

The column System Req. Entry means the tool has the feature of accepting requirements
as input. The Test Case Output column indicates whether the tool generates test cases files as
output. The column Test Input Variation refers to whether the tool performs different input
types. The Test Report column indicates whether the tool generates a report or file of final
results and failures found. The Tool column is for knowing if the job is a complete tool or
complement another existing tool. The Available for download column reveals whether the tool
is published and available for download. The Android 9+ column indicates whether the work can
be performed on the latest Android 9+, which make up most of the current market. And lastly,
column Results Verification means the tool verify the expected results. The answers N means
No, Y is yes, and P is partial.

In comparison with other tools, DeepRLGUIMAT (DG) has functionalities that are
useful for app test execution, since to generate tests that can be used it is necessary that they
be registered to be reproduced and, in case of failure, debug. Another important point is the
possibility of having as input requirements for data entry into the system, it allows for the tool to
exercise the happy path and the alternative paths.The results verification is partially attended,
since the tool just can verify what is specified in input requirements.

4.3 Implementation
The tool DeepRLGUIMAT was developed using Python language due to the wide variety

of libraries for reading and writing images, CSV and XML files, and scientific libraries such as:

• Pytorch: It is a library for deep learning on irregular input data such as graphs, point clouds,
and manifolds (PYTORCH, 2021).

4.3. Implementation 79

Papers
System

Req.
Entry

Test
Case

Output

Input
Variation

Test
Report Tool

Available
for

download

Android
9+

Results
Verifi-
cation

S1 N N N N Y N N N
S2 N N N N Y N N N
S3 N N N N Y N N N
S4 N Y Y Y N Y Y N
S5 N N N N Y N N N
S7 N N N N Y Y N N
S8 N N N N Y N N N

S10 N N N N Y N N N
S11 Y N N N Y N N N
S13 N N N N Y N N N
S29 N Y N N Y Y Y P
S30 Y Y N N Y N N Y
S32 N Y N Y N Y Y N
DG Y Y Y Y Y Y Y P

• Tensorflow: It is an open source artificial intelligence library, using data flow graphs to
build models (TENSORFLOW, 2021).

• Numpy: It is the fundamental package for scientific computing in Python (NUMPY, 2021).

• Pandas: It is an open source data analysis and manipulation tool (PANDAS, 2021).

• Android Studio: It is an integrated development environment for developing for the Android
platform. It was used to instrument the Android apps to capture the code coverage.

• Ui Automator: It is a cross-program test library developed by Google for the Android
platform (UIAUTOMATOR, 2021).

Anaconda is the python distribution platform used for implementation. It has a toolkit to
perform Python/R data science and machine learning on a single machine, facilitates the configu-
ration and installation of scientific libraries. (ANACONDA, 2021). The computer configuration
used is notebook 64-bit with Ubuntu 18.04.5, processor Intel Core i7-7600U CPU 2.70GHz GPU
Nvidia GeForce 940MX and memory RAM 15,2 GB.

The Android environment implementation used the UI Automator python library to
dump the screen hierarchy of the GUI in the starting activity of the AUT. The screen hierarchy is
analyzed by searching for edit texts, clickable, long-clickable, checkable and scrollable. These
activities are stored in a dictionary containing several associated attributes (resource-id, content-
desc, class name, package and bounds) and compose the action vector. At each step, the agent
takes action according to the behaviour of the exploration algorithm.

The DQN implementation reference in this research followed (PASZKE, 2017a) adapted
to the Android environment; in this case, the model receives the app’s screenshot as state, next

80 Chapter 4. Proposal Approach DeepRLGUIMAT

state, action, and the reward. The action is selected according to the epsilon greedy policy. It
sometimes means a convolutional network chooses the action, and sometimes one other is chosen
randomly with probability ε as shows the python code below.

1: EPS_START = 0 . 9
2: EPS_END = 0 . 0 5
3: EPS_DECAY = 300
4:
5: def s e l e c t _ a c t i o n (s t a t e) :
6: g l o b a l s t e p s _ d o n e
7: sample = random . random ()
8: e p s _ t h r e s h o l d = EPS_END + (EPS_START − EPS_END)
9: math . exp (− 1 . * s t e p s _ d o n e / EPS_DECAY)

10: s t e p s _ d o n e += 1
11: i f sample > e p s _ t h r e s h o l d :
12: w i th t o r c h . no_grad () :
13: v a l s = model (V a r i a b l e (s t a t e . type (d t y p e))) . d a t a [0]
14: max_idx = v a l s [: l e n (a c t i o n s)] . max (0) [1]
15: re turn LongTensor ([[max__idx]])
16: e l s e :
17: re turn LongTenso ([[random . r a n d r a n g e (n _ _ a c t i o n s)]])

EPS_START and will decay exponentially towards EPS_END. EPS_DECAY controls
the rate of the decay.Line 16 returns exploit (go to CNN) and line 18 returns exploit (choose
ramdon action). The CNN python implementation is showed below.

19: c l a s s DQN(nn . Module) :
20: def _ _ i n i t _ _ (s e l f) :
21: super (DQN, s e l f) . _ _ i n i t _ _ ()
22: s e l f . conv1 = nn . Conv2d (3 , 16 , k e r n e l _ s i z e =5 , s t r i d e =2)
23: s e l f . bn1 = nn . BatchNorm2d (1 6)
24: s e l f . conv2 = nn . Conv2d (1 6 , 32 , k e r n e l _ s i z e =5 , s t r i d e =2)
25: s e l f . bn2 = nn . BatchNorm2d (3 2)
26: s e l f . conv3 = nn . Conv2d (3 2 , 32 , k e r n e l _ s i z e =5 , s t r i d e =2)
27: s e l f . bn3 = nn . BatchNorm2d (3 2)
28: s e l f . head = nn . L i n e a r (4 4 8 , 30)
29:
30: def f o r w a r d (s e l f , x) :
31: x = F . r e l u (s e l f . bn1 (s e l f . conv1 (x)))
32: x = F . r e l u (s e l f . bn2 (s e l f . conv2 (x)))
33: x = F . r e l u (s e l f . bn3 (s e l f . conv3 (x)))

4.3. Implementation 81

34: x = x . view (x . s i z e (0) , −1)
35: re turn s e l f . head (x)
36: T r a n s i t i o n = named tup le (’ T r a n s i t i o n ’ , (’ s t a t e ’ , ’ a c t i o n ’ , ’

n e x t _ s t a t e ’ , ’ r eward ’))
37:
38: c l a s s ReplayMemory (o b j e c t) :
39:
40: def _ _ i n i t _ _ (s e l f , c a p a c i t y) :
41: s e l f . c a p a c i t y = c a p a c i t y
42: s e l f . memory = []
43: s e l f . p o s i t i o n = 0
44:
45: def push (s e l f , * a r g s) :
46: " " " Saves a t r a n s i t i o n . " " "

47: i f l e n (s e l f . memory) < s e l f . c a p a c i t y :
48: s e l f . memory . append (None)
49: s e l f . memory [s e l f . p o s i t i o n] = T r a n s i t i o n (* a r g s)
50: s e l f . p o s i t i o n = (s e l f . p o s i t i o n + 1) % s e l f . c a p a c i t y
51:
52: def sample (s e l f , b a t c h _ s i z e) :
53: re turn random . sample (s e l f . memory , b a t c h _ s i z e)
54:
55: def __ len__ (s e l f) :
56: re turn l e n (s e l f . memory)

CNN takes in the difference between the current and previous screen patches. The
network predicts the expected return of taking each action given the current input. The class
Replay memory stores the agent’s experiences at each step, using a large batch size (256). It
allows us to break the correlation between subsequent steps in the environment.

The optimize model function in DQN (python code below) performs a single step of the
optimization. It first samples a batch, concatenates all the tensors into one, and combines them
into our loss. The target network has its weights kept frozen most of the time but is updated with
the policy network’s weights every so often.

1: l a s t _ s y n c = 0
2: def o p t i m i z e _ m o d e l () :
3: g l o b a l l a s t _ s y n c
4: i f l e n (memory) < BATCH_SIZE :
5: re turn
6: t r a n s i t i o n s = memory . sample (BATCH_SIZE)

82 Chapter 4. Proposal Approach DeepRLGUIMAT

7: b a t c h = T r a n s i t i o n (* z i p (* t r a n s i t i o n s))
8:
9: n o n _ f i n a l _ m a s k = BoolTensor (t u p l e (map (lambda s : s i s not

None , b a t c h . n e x t _ s t a t e)))
10: n o n _ f i n a l _ n e x t _ s t a t e s _ t = t o r c h . c a t (t u p l e (s f o r s in b a t c h .

n e x t _ s t a t e i f s i s not None)) . type (d t y p e)
11:
12:
13: w i th t o r c h . no_grad () :
14:
15: n o n _ f i n a l _ n e x t _ s t a t e s = V a r i a b l e (

n o n _ f i n a l _ n e x t _ s t a t e s _ t)
16: s t a t e _ b a t c h = V a r i a b l e (t o r c h . c a t (b a t c h . s t a t e))
17: a c t i o n _ b a t c h = V a r i a b l e (t o r c h . c a t (b a t c h . a c t i o n))
18: r e w a r d _ b a t c h = V a r i a b l e (t o r c h . c a t (b a t c h . reward))
19:
20: i f USE_CUDA:
21: s t a t e _ b a t c h = s t a t e _ b a t c h . cuda ()
22: a c t i o n _ b a t c h = a c t i o n _ b a t c h . cuda ()
23: # t a r g e t ne twork

24: s t a t e _ a c t i o n _ v a l u e s = model (s t a t e _ b a t c h) . g a t h e r (1 ,
a c t i o n _ b a t c h)

25:
26: n e x t _ s t a t e _ v a l u e s = V a r i a b l e (t o r c h . z e r o s (BATCH_SIZE) . type (

Tensor))
27: n e x t _ s t a t e _ v a l u e s [n o n _ f i n a l _ m a s k] = model (

n o n _ f i n a l _ n e x t _ s t a t e s) . max (1) [0]
28:
29: w i th t o r c h . no_grad () :
30: n e x t _ s t a t e _ v a l u e s
31:
32: # Bel lman a p p r o x i m a t i o n

33: e x p e c t e d _ s t a t e _ a c t i o n _ v a l u e s = (n e x t _ s t a t e _ v a l u e s * GAMMA)
+ r e w a r d _ b a t c h

34:
35: e x p e c t e d _ s t a t e _ l e n = l e n (e x p e c t e d _ s t a t e _ a c t i o n _ v a l u e s)
36: s t a t e _ a c t i o n _ v a l u e s = s t a t e _ a c t i o n _ v a l u e s . view (

e x p e c t e d _ s t a t e _ l e n)
37:

4.4. Modelling 83

38: # Huber l o s s

39: l o s s = F . s m o o t h _ l 1 _ l o s s (s t a t e _ a c t i o n _ v a l u e s ,
e x p e c t e d _ s t a t e _ a c t i o n _ v a l u e s)

40:
41: # O p t i m i z e t h e model

42: o p t i m i z e r . z e r o _ g r a d ()
43: l o s s . backward ()
44: f o r param in model . p a r a m e t e r s () :
45: param . g rad . d a t a . clamp_ (−1 , 1)
46: o p t i m i z e r . s t e p ()

4.4 Modelling

In this section, the modeling of DeepRLGUIMAT is demonstrated. Figure 28 represents
the use case diagram. Next, the defined use cases are detailed.

Figure 28 – Use Case Diagram

• Fill Settings file: The settings file has the information entry to the tool. The tester user
must fill the file with the device’s identifier connected to the computer or the emulator;
insert the name of the apk to be tested and the source code address of the compiled
application. The test time must also be filled in the file.

84 Chapter 4. Proposal Approach DeepRLGUIMAT

• Start Run Test: With the configuration information filled in, the tester must access the
terminal and enter the commands to start running the tests.

• Add or Update Requirements: If the application has the requirements to perform the test
exploration and creation, the user must fill in the fields of the requirements.csv file so that
the application reads it and the requirements can guide the tests.

• Generate Test Events: As the tool runs, test events are generated and observed on the fly
in the "test events" folder and the log file.

• View Results: At the end of execution, the tester user can view the results on files: test
events, states, errors, and crashes.

Figure 29 maps the structure of the DeepRLGUIMAT tool showing the class diagram
with the relationship between classes, attributes, and operations.

Figure 29 – Class Diagram

The agent module receives the configuration information args (device or emulator, app
code address, apk, and execution time). The environment is initialized by agent to create the test
events through execution and actions from this information. As discussed in previous sections,
the environment captures the UI elements from the app to determine the possible actions to be
performed.

4.5. Operational Aspects 85

When the actions are performed, this environment captures the state, code coverage,
crashes, and error to be sent to the agent to calculate the reward. If there are no requirements,
the DQN is trained randomly, and else the training will be carried out with the data-informed
to guide the exploration. For each action executed, the tuple (state,action,nextstate,reward) is
stored in memory (ReplayMemory).

The DQN module receives the states and actions to enter in CNN to return the Q values
Q(st ,at). The operation optimize model computes a mask of non-final states and concatenate the
batch elements in ReplayMemory, the expected Q values, and Huber Loss for model optimization.

4.5 Operational Aspects

To install the tool, it is important, first, to obtain the following applications that are
requirements:

• Python 3.8.X

• TensorFlow 2.2.0

• UI Automator 0.3.6

• Java

• Android SDK

• Add platform tools directory in Android SDK to PATH

• Linux: Ubuntu 18 or higher

The tool DeepRLGUIMAT is bundled into executable files to run in Linux. You don’t
need to install any other python dependency; just downloading all the files will suffice. The
application under test may be in the DeepRLGUIMAT folder; the tool will install the app, and
it can run in a physical phone connected to a computer or in an Android virtual machine. The
download the DeepRLGUIMAT.zip available at:

htt ps : //1drv.ms/u/s!Avu7qFzImegrh7FyBW7g0U4lddA9Qw?e = bOunE j

Extracting the zip file in a folder, the structure of the folder appears as show Figure 30.

In this version of the DeepRLGUIMAT tool, there’s no graphical user interface. The user
should put the information of configuration in the settings.txt as shown in the Figure 31.

In APK NAME, the user should insert the path to the app. The PACKAGE is the name of
the app package. In RESOLUTION is the information of device (or emulator) screen resolution.
COVERAGE indicates that the app is instrumentalized, and the tool can collect the coverage file.

86 Chapter 4. Proposal Approach DeepRLGUIMAT

Figure 30 – Directory Structure

Figure 31 – File Settings

REQUIREMENT specifies if the user filled the requirement CSV file. In Time, the user indicates
how long the test will last in seconds.

If the user has the input entry requirements(REQUIREMENT:yes), the file require-
ments.csv should be filled, as shows the section 4.2.1.1 (Figure 23).

The user should open the terminal and type the commands ./DeepRLGUIMAT to start
the tests. The tool will start the tests, the files log.txt, errors.txt, crash.txt, and the folders states
and test events will be filled on the fly by the tool, like in Figure 30. The folder coverage files
has the capture of code coverage during the test in case of apps instrumented. The folder states
has the screenshots of the application of each action performed.The folder test case has the txt
files with the test performed. The files crash, erros have the information of errors and crashes
happened captured from Logcat, and finally the tmp.log file has the information of tool log
execution.

4.6. Final Considerations 87

4.6 Final Considerations
This section described the DeepRLGUIMAT approach to generate test cases through

application exploration using DQN. In this approach, a deep Q-network agent is used to explore
and model the application in a trial-and-error, reaching the best action to achieve a higher reward
for new activities and test input variations using Systematic Functional Testing. The contribution
of this work is offering a solution for the execution and monitoring of apps under test and
generation of tests to help overcome the bottleneck of manual test design and repetitive test
execution, assuring code coverage, finding failures, reproditibility and functional operations.

It is possible to highlight that this approach differs from other solutions in the literature by
the concern to produce test inputs that really exercise the application’s inputs in search of failures.
It uses input requirements to guide exploration, which is a unique feature of this approach. In
addition, there is also the concern of producing test events that are easy to trace and reproducible
for the tester.

The next chapter will show the experimental study of the approach with the application
of the tool in mobile applications and the analysis of the results obtained.

89

CHAPTER

5
EMPIRICAL STUDY

5.1 Initial Considerations

Empirical research is based on observed and measured phenomena and derives knowl-
edge from experience rather than belief. Research may begin with a research question tested
through verifiable experimentation. An experiment involves deliberately testing a hypothesis and
concluding. The empirical study is useful in establishing the generalizability of results related to
researchers’ new subjects or data sets (WOHLIN; HÖST; HENNINGSSON, 2003).

This chapter presents the empirical experiment carried out with the DeepGUIMAT
approach and the analyzed results. The tool was executed against 30 android applications. The
experiment planning, research questions, hypotheses and environment are described in section
5.2. The results obtained are shown in section 5.3. They demonstrate the approach’s feasibility as
support for the automatic generation of tests in Android mobile apps, the higher code coverage
and the functional coverage. The chapter also brings the case study of running the tool with input
requirements in 5.4 and the Systematic Functional Testing (SFT) contribution analysis in 5.5.
The threats of validity are analysed in section 5.6.

5.2 Empirical Experiment Planning

The evaluation of proposed tool DeepRLGUIMAT followed the Empirical Experiment,
in this method an experiment is performed in order to either prove or disprove the research
questions. The experiment compared the DeepRLGUIMAT to similar recognized approaches
in the literature, they are: random test generation Monkey, the Model-based (with machine
learning module) tool Droidbot, DroidBotX (droidbot with Reinforcement Learning-based) and
Reinforcement Learning-based tool Q-testing in terms of code coverage (instruction, branch,
line, and method), failures found, crashes and functionality coverage.

90 Chapter 5. Empirical Study

It was not possible to compare with the studies based on RL: S1, S2, S3, S5, S7, S8, S10,
, S11, S13, and S30 because their tools are not available for download. The study S4 (Humanoid)
presented issue that the deep learning is not running, the issue is in github but the author did
not return to fix the problem. The study S7 (Aimdroid) also present problems to run, the author
answered that the tool was discontinued. The tool Sapienz (MAO; HARMAN; JIA, 2016) could
not be included because it was discontinued, it is closedsource and the available version is only
compatible with Android 4.4 for Emulator (android version from 9 years ago not compatible
with current apps), as parameter, the studies ((PAN et al., 2020), and (YASIN; HAMID; YUSOF,
2021)) outperformed Sapienz.

This evaluation aims to remark the following research questions:

1. RQ1: Does DeepRLGUIMAT achieve higher code coverage in comparison to state-of-the-
art testing tools?

2. RQ2: Is DeepRLGUIMAT able to find failures and crashes compared to state of art tools?

3. RQ3: Is DeepRLGUIMAT able to cover basic functional operations compared with state
of the art tool?

These questions were defined to consolidate information that can serve as input to analyze
whether DeepRLGUIMAT is a tool that can be used to answer the research question of this thesis,
which asks: How can Deep Reinforcement Learning technique be incorporated into automated
testing of mobile applications to contribute to the greater code coverage, detection of failures,
and improve the test automation environment?

The metrics used in this evaluation are:

• Code coverage: the percentage of code which is covered by automated tests. A program
with high test coverage has more of its source code executed during testing, which suggests
it has a lower chance of containing undetected software failures compared to a program
with low test coverage (GOPINATH; JENSEN; GROCE, 2014).

• Number of distinct failures: number of distinct failures (exceptions) returned by Android
Logcat.

• Number of distinct crashes: number of distinct failures which cause unexpected exit caused
by an unhandled exception or signal.

• Input types: number of distinct input types, such as text, number, symbols and so on.

• Operations coverage: the percentage of functional operations of the apps covered by tests.

5.2. Empirical Experiment Planning 91

5.2.1 Hypotheses

Hypotheses are the basis for conducting an experiment. A hypothesis is formally stated
and the data collected during the course of the experiment is used to, if possible, reject the
hypothesis at certain risks (BASILI; SELBY; HUTCHENS, 1986). There are two types of
hypotheses, null hypotheses and alternative hypotheses. The null hypothesis states that there
are no real trends or differences in the experiment. The alternative hypothesis is when the null
hypothesis is false. The hypotheses for this experiment are

• RQ1: Does DeepRLGUIMAT achieve higher code coverage in comparison to state-of-the-
art testing tools?

– Null Hypothesis (H0): there was no difference between the code coverage values
between DeepRLGUIMAT and the state of the art tools.

– Alternative Hypothesis 1 (H1): code coverage values of the state of the art tools are
higher than DeepRLGUIMAT.

– Alternative Hypothesis 2 (H2): code coverage values of the DeepRLGUIMAT are
higher than the state of the art tool.

• RQ2: Is DeepRLGUIMAT able to find failures and crashes compared to state of art tools?

– Null Hypothesis (H0): there was no difference between the failures and crashes
values between DeepRLGUIMAT and the state of the art tools.

– Alternative Hypothesis 1 (H1): failures and crashes values of the state of the art tools
are higher than DeepRLGUIMAT.

– Alternative Hypothesis 2 (H2): failures and crashes values of the DeepRLGUIMAT
are higher than the state of the art tool.

• RQ3: Is DeepRLGUIMAT able to cover basic functional operations compared with state
of the art tool?

– Null Hypothesis (H0): there was no difference between the functional operations
coverage between DeepRLGUIMAT and the state of the art tools.

– Alternative Hypothesis 1 (H1): functional operations coverage values of the state of
the art tools are higher than DeepRLGUIMAT.

– Alternative Hypothesis 2 (H2): functional operations values of the DeepRLGUIMAT
are higher than the state of the art tool.

5.2.2 Empirical Experiment Design

The experiment design describes how the tests were organized and performed. The
environment setup to run the experiments used the following configuration: Notebook 64-bit with

92 Chapter 5. Empirical Study

Ubuntu 18.04.5, processor Intel Core i7-7600U CPU 2.70GHz GPU Nvidia GeForce 940MX and
memory RAM 15,2 GB. All experiments ran on smartphone dedicated to this experiment, model
Motorola G8 Plus, Operational system Android 9 (API level 28), 4GB memory. The smartphone
was connected by cable using USB port. In order to prevent data from previous sessions, all the
data on the smartphone was removed and the device was restarted before starting a test cycle.

The choice of evaluation in a real device instead of an Android Virtual Machine aims to
provide feedback regarding the performance of the tool since the objective of this tool is also to
be able to run adequately to be used in real devices.

DeepRLGUIMAT and the state of the art tools were evaluated in 30 mobile applications
from the F-droid open source repository (F-DROID, 2021), the apps are described in Table 11.
All these apps were selected for having a diversity of GUI elements and interaction such as Edit
Texts, Buttons, Image Buttons, links, checkboxes, radio buttons, Spinners, date pickers, options
menu, popup menu, and list select, and they are open source. All the apps were instrumented by
the bytecode using the tool JoCoCo (KHAMARU., 2017). For each test cycle the tool ran for
2 hours of test cycle to make sure DQN training to cover the applications. The state of the art
tools also ran during 2 hours. We consider this time necessary to cover that app’s functionalities
according to the apps’ size. We set the device actions commands (Home, Back, Menu, Rotate
and Volume) probability to 5% provides a balance between short and long test cases (ADAMO
et al., 2018).The state of the art tools ran without input requirements, so DeepRLGUIMAT in
this experiment ran in without input requirement mode for a fair comparison.

Monkey, Droidbot, DroidbotX and Q-testing were performed as default configurations
indicated on its website in the experiment. Although, for a fair comparison between test tools,
the apps’ requirements were not considered input for DeepRLGUIMAT. In order to evaluate this
aspect, an experiment considering a set of requirements of an application form was executed and
will be described in the following sections.

The tools were executed 4 times in each application to avoid some possible effect of
randomness during testing and confirm the trend of the results. The test cycle in each app
generates many coverage files because when the action causes an application crash, the coverage
file is copied from the device to a directory. The application is restarted, and the coverage file is
written again; it is necessary to maintain the history of coverage values to calculate the values.

5.3 Results

In this section, the results obtained are discussed. Regarding RQ1, Table 11 shows the
code coverage results for each application. Column DG is DeepRLGUIMAT, column QT is
Q-Testing, column DB is Droidbot, column DBX is DroidbotX, and column M is Monkey.
DeepRLGUIMAT presented higher values of code coverage are highlighted in grey.

5.3. Results 93

Table 10 – 30 Apps

Id Apps Version Instructions Branches Lines Methods

App1
Add
Loan 1.0.1 9.376 494 1.974 327

App2
Atime
Track 1.0 8.091 531 1.657 187

App3
Better
Count 1.6 1.335 106 358 48

App4 Biever 1.2.1 31.561 1.642 7.278 1.774
App5 Bmi 1.0 3.106 188 620 92

App6
Budget
Watch 0.21.4 9.573 629 2.138 277

App7 Catima 1.7.1 10.123 692 2.212 338
App8 Cavevin 1.2.1 7.477 408 1.524 248
App9 Dailypill 1.0 2.006 150 655 137
App10 Exceer 0.2.3 4.957 360 1.024 201

App11
Farmer
diary 1.72 8.159 868 2.036 260

App12
Food
scale 1.2 717 34 143 27

App13 Grocy 1.10.1 88.689 8.529 20.831 3.457
App14 Just do 2.1 13.382 198 853 94
App15 Log28 0.6.2 6.104 357 1.367 113
App16 Medclin 0.2.8 2.357 122 622 86

App17
Meditation
Assistant 1.6.3 37.581 3.427 13.121 1.506

App18
Money
track 2.1.3 36.297 907 5.275 1.026

App19 Music 1.3.4 50.362 3.733 18.812 4.107
App20 Openfood 3.2.8 81.890 6.424 31.568 6.227

App21
Open

workout 1.3.1 23.533 1.496 9.475 1.776

App22
Pass

generator 1.4.2 4.227 280 909 204

App23 Periodical 1.64 28.715 667 3.253 362
App24 Silinote 1.0 2.335 60 799 187
App25 Simpledo 1.0 5.295 476 986 118
App26 Textpad 1.0 14.483 210 1.614 286

App27
Time
Table 1.0 19.950 994 7.128 1.072

App28 Todo list 1.1 757 34 275 55
App29 Tricky 1.6.2 35.302 2.414 14.485 2.914

App30
Water
droid 1.0 7.148 78 696 132

In apps, Add Loan (App1), Simpledo (App25), Bettercount (App3), Biever (App4), Ex-

94 Chapter 5. Empirical Study

Table 11 – Code Coverage in 30 Apps

Instruction Coverage Branch Coverage Line Coverage Method Coverage
APPS DG QT DB DBX M DG QT DB DBX M DG QT DB DBX M DG QT DB DBX M
App1 0.57 0.21 0,14 0.21 0,04 0.37 0.15 0,05 0.09 0,01 0.59 0.20 0,14 0.22 0,04 0.71 0.28 0,2 0.31 0,07
App2 0.63 0.55 0,37 0.28 0,23 0.43 0.44 0,21 0.13 0,1 0,62 0.54 0,37 0.25 0,22 0.68 0.56 0,5 0.29 0,28
App3 0.55 0.24 0.41 0.55 0.24 0.35 0.12 0.25 0.37 0,13 0.57 0.22 0.41 0.56 0,22 0.75 0.41 0.60 0.68 0,41
App4 0.50 0.33 0.25 0.32 0.43 0.25 0.12 0.07 0.12 0,21 0.51 0.32 0.23 0.31 0,43 0.50 0.29 0.20 0.27 0,42
App5 0.74 0.74 0.51 0.1 0.59 0.43 0.43 0.23 0.1 0,32 0.73 0.73 0.50 0.1 0,56 0.84 0.84 0.64 0.1 0.63
App6 0.65 0.41 0,43 0.32 0,26 0,42 0.22 0,25 0.18 0,14 0.67 0.42 0,45 0.34 0,28 0.77 0.53 0,56 0.52 0,35
App7 0.67 0.27 0.11 0.66 0,61 0.44 0.15 0.05 0.44 0,45 0.67 0.28 0.12 0.66 0,6 0.72 0.34 0.17 0.72 0,65
App8 0.44 0.30 0.28 0.24 0.40 0.33 0.24 0.23 0.09 0.32 0.44 0.30 0.30 0.24 0.42 0.53 0.39 0.39 0.32 0.51
App9 0.78 0.45 0.75 0.76 0,78 0.54 0.20 0.42 0.45 0,54 0.81 0.41 0.78 0.79 0,81 0.83 0.51 0.82 0.83 0,83

App10 0.66 0.42 0.42 0.54 0,3 0.57 0.29 0.30 0.42 0,21 0.68 0.46 0.46 0.52 0,33 0.75 0.61 0.61 0.71 0,39
App11 0.53 0.53 0.34 0.03 0,54 0.37 0.39 0.23 0.01 0,37 0.53 0,54 0.35 0.03 0,54 0.69 0.64 0.45 0.06 0,69
App12 0.91 0.30 0.26 0.48 0.42 0.79 0.17 0.02 0.32 0.29 0.88 0.30 0.25 0.49 0.38 0.85 0.33 0.22 0.59 0.48
App13 0.28 0.22 0.23 0.26 0,19 0.18 0.13 0.14 0.17 0,12 0.27 0,21 0.22 0.25 0,19 0.31 0.23 0.25 0.28 0,23
App14 0.68 0.69 0.46 0.46 0.42 0.32 0.29 0.39 0.41 0.20 0.60 0.44 0.52 0.52 0.39 0.82 0.37 0.53 0.68 0.39
App15 0.83 0.52 0.56 0.30 0.86 0.57 0.29 0.29 0.08 0.61 0.85 0.52 0.60 0.32 0.88 0.87 0.53 0.66 0.31 0.91
App16 0,81 0.26 0.73 0.84 0.74 0,64 0.22 0.46 0.63 0.56 0,84 0.28 0.77 0.86 0,76 0.86 0.48 0.84 0.88 0,76
App17 0.35 0.34 0.20 0.42 0.33 0.24 0.24 0.11 0.28 0.24 0.35 0.34 0.21 0.42 0.34 0.41 0.39 0.28 0.50 0.41
App18 0.65 0.31 0.33 0.36 0,47 0.48 0.25 0.15 0.20 0,36 0.65 0.30 0.28 0.33 0,46 0.70 0.36 0.33 0.38 0,54
App19 0,35 0.18 0.20 0.19 0,3 0,24 0.10 0.12 0.11 0,23 0,39 0.20 0.22 0.21 0,34 0.46 0.25 0.28 0.27 0,39
App20 0.25 0,25 0.09 0.10 0.11 0.13 0,13 0.03 0.03 0.03 0.26 0,25 0.09 0.11 0.10 0.30 0,26 0.09 0.13 0,1
App21 0.26 0.18 0.25 0.14 0,1 0.15 0.09 0.12 0.06 0,04 0.28 0,19 0.27 0.14 0,11 0.31 0,2 0.33 0.16 0,13
App22 0.75 0.75 0.49 0.65 0,57 0.64 0.63 0.34 0.51 0,43 0.79 0.79 0.54 0.70 0,64 0.82 0.78 0.55 0.74 0,61
App23 0.64 0.61 0.56 0.53 0,59 0.47 0.62 0.49 0.40 0,57 0.62 0.62 0.59 0.51 0,6 0.66 0.69 0.53 0.44 0,56
App24 0.66 0.62 0.56 0.77 0,49 0.36 0.28 0.28 0.48 0,28 0.65 0.62 0.55 0.76 0,48 0.75 0.71 0.61 0.81 0.57
App25 0.48 0,22 0,34 0.30 0,21 0.29 0.06 0,14 0.14 0,07 0.52 0.24 0,36 0.36 0,23 0.61 0.29 0,48 0.48 0,35
App26 0.83 0.15 0.22 0.10 0,83 0.73 0.53 0.12 0.34 0,7 0,83 0.50 0.23 0.33 0,83 0,83 0.54 0.25 0.38 0,83
App27 0.35 0.33 0,22 0.24 0,19 0.22 0.22 0,12 0.15 0,12 0.36 0.32 0,2 0.24 0,19 0.43 0.22 0,22 0.28 0,14
App28 0.62 0.33 0.34 0.45 0,36 0.38 0.11 0.14 0.29 0,17 0.63 0.28 0.30 0.46 0,36 0.69 0.43 0.45 0.59 0,51
App29 0.53 0.15 0.17 0.24 0,19 0.35 0.07 0.08 0.12 0,09 0.53 0.17 0.19 0.25 0,21 0.59 0.20 0.23 0.30 0,25
App30 0.37 0.37 0.35 0.36 0,35 0.56 0.52 0.38 0.51 0,38 0.57 0.57 0.51 0.56 0,51 0.53 0.53 0.49 0.53 0,51

ceer(App10), Foodscale(App12), JustDo (App14), Meditation Assistant(App17) and Waterdroid
(App30) have GUIs that mostly require simple interactions with text input fields and a few
form validation rules. The Apps MoneyTrack (App 18) and BudgetWatch(App6) present form
validation rules for the size and type of inputs. The input variation of DeepRLGUIMAT, even
without requirements, could perform the forms that were not observed in other tools.

DeepRLGUIMAT has the function Control Repetition discourages repeating the same
action in the same state context (e.g., insert small text in an edit text several times) provides
access to most AUT’s functionality. Q-testing can easily access the screen with many GUI
elements (like a calendar) faster than DeepRLGUIMAT, which needed more time to analyze
each UI element to choose the best choice. Figure 32 shows the variance of coverage values: Inst
represents instruction coverage, Branch is the branch coverage, Line is the line coverage, and
Method is the method coverage. In red the proposed tool DeepRLGUIMAT, in green Q-testing,
in blue Monkey, in magenta Droidbot and black DroidbotX.

Table 12 – Coverage (p-value)

DeepRLGUIMAT x
Monkey
(p-value)

DeepRLGUIMAT x
Q-Testing
(p-value)

DeepRLGUIMAT x
DroidBot
(p-value)

DeepRLGUIMAT x
DroidBotX
(p-value)

Instruction 0.0028 0.0001 0.00004 0.00058
Branch 0.0056 0.0005 0.00002 0.0021

Line 0.0028 0.0001 0.00006 0.00059
Method 0.0015 0.0001 0.00009 0.00113

5.3. Results 95

Figure 32 – Coverage boxplot

Table 12 shows the DeepRLGUIMAT performs better than other tools (Monkey and
Q-testing) obtained higher code coverage at a statistically (The Mann-Whitney U-test, (MANN;
WHITNEY, 1947)) significant level (ρ < 0.05) for instruction, branch, line and method coverage.
The difference in coverage between the Monkey, Q-Testing, and DeepRLGUIMAT is significant.
The null hypothesis was rejected and the alternative hypothesis 2 (H2) was confirmed.

Figure 33 represents the trend of coverage values during the two hours of the test.
After 30 minutes, the DQN is most frequently choosing the actions in training steps. This
is the representation of the majority of apps behaviour, but the growth depends on the app
characteristics such as size, rules, and UI elements.

Figure 33 – Coverage trends

96 Chapter 5. Empirical Study

The reward guides the agent DQN for the best selection of actions for app testing. Figure
34 shows the trend of average reward values over two hours of execution. We can observe that
there is a discrete linear trend with higher peaks when the application exercises a new screen.

Figure 34 – Reward values during test execution

An important aspect of test tools is the ability to discover failures and crashes. The
functional failures could not be confirmed because the apps have no requirements, so, in this
evaluation we consider just the Logcat Android exceptions for RQ2. Table 14 shows the number
of distinct failures and crashes found during execution in each application. This table lists the
applications (Apps column), the number of failures found , and the number of crashes for each test
tool. All failures and crashes found were observed in the android logcat exceptions and confirmed
manually. The types of exceptions faults found are: InputDispatcher, java.lang.RuntimeException,
AndroidRuntime Process, Unable to start activity, and Unable to stop activity. DeepRLGUIMAT
found more failures in Time Table, Budget Watch, Dailypill, Foodscale, Grocy, Meditation
Assistant, Openworkout, Passgenerator, Periodical, Waterdroid and Justdo apps. In Cavevin
and Farmerdiary, Q-Testing and Monkey found one more distinct failure caused by request
permission.

Table 13 – Faiures and Crashes (p-value)

DeepRLGUIMAT x
Monkey

DeepRLGUIMAT x
Q-Testing

DeepRLGUIMAT x
DroidBot

DeepRLGUIMAT x
DroidBotX

Failures 0,094 0,11573 0,08068 0,00157
Crashes 0,42238 0,42238 0,47601 0,1431

The tools found the same distinct crashes except in the BMI, Foodscale, Openworkout
app that DeepRLGUIMAT found a crash not discovered by other tools. In Cavevin, Music,
Textpad, and Todo list, Q-Testing and Monkey found one more crash as indicated in Table 14. It

5.3. Results 97

Table 14 – Distinct Failures and Crashes

DG QT M DB DBX
APPS F C F C F C F C F C

AddLoan 0 0 0 0 0 0 0 0 0 0
Atimetrack 2 0 2 0 2 0 0 0 1 0
Bettercount 2 0 2 0 2 0 0 0 0 0

Biever 5 0 5 0 5 0 1 0 2 0
Bmi 2 1 2 0 2 0 2 1 0 0

Budget Watch 2 0 0 0 0 0 0 0 2 0
Catima 3 1 3 1 3 1 2 1 2 0
Cavevin 2 0 3 1 3 1 2 0 2 0
Dailypill 3 1 2 1 2 1 1 1 1 0

Farmerdiary 1 0 2 0 2 0 2 0 1 0
Foodscale 1 1 0 0 0 0 1 1 0 0

Grocy 3 1 1 1 1 1 3 1 2 0
Justdo 1 0 0 0 0 0 1 0 0 0
Log28 0 0 0 0 0 0 1 0 1 0

Medclin 2 0 2 0 2 0 2 0 0 0
Meditation Assistant 2 0 1 0 1 0 2 0 2 0

Money track 0 0 0 0 0 0 1 0 3 0
Music 1 0 1 1 1 1 1 0 0 0

Openfood 1 0 1 0 1 0 1 0 0 0
Openworkout 1 2 0 0 0 0 1 1 0 1
Passgenerator 1 0 0 0 0 0 0 0 0 0

Periodical 1 0 0 0 0 0 1 0 0 0
Silinote 0 0 1 0 1 0 1 0 1 0

Simpledo 2 2 2 2 2 2 2 2 0 0
Textpad 1 0 1 1 1 1 0 0 0 0

TimeTable 2 0 1 0 1 0 1 0 0 0
Todo list 2 0 2 1 2 1 1 0 0 1
Tricky 1 0 1 0 1 0 2 0 1 0

Waterdroid 1 0 0 0 0 0 1 0 0 0
exceer 0 0 0 0 0 0 0 0 0 0

happened because they closed the apps and started without the file write permission, causing
the crash because of the JaCoCo tool’s instrumentation. Table 13 shows that difference in the
number of failures is not statistically relevant for tools Monkey, Q-Testing and Droidbot. For
DroidbotX the p-value indicates DeepRLGUIMAT can find more failures statistically. In the
case of crashes, the difference in the values with all tools is not statistically relevant. So, we
consider confirming the null hypothesis for RQ2.

The ability to create and perform tests to exercise functionalities is observed during the
test cycle. Since the apps have no requirement documentation, to answer RQ3, we performed
an analysis that listed the primary functional operations of the apps according to GUI. We also
searched the F-droid and GitHub repositories for description information to help to list the

98 Chapter 5. Empirical Study

functions. We considered operation coverage not just going in and out of the app screen, but
performing actions, data entry and performing, e.g. saving data, editing data, removing data and
so on. The complete table of functional operations of 30 apps is available in annexe A. Table 15
shows the values of functional coverage obtained by this analysis.

Table 15 – Functional Operations Coverage

APPS DG QT DB DBX M
App1 1 0.7 0.6 0.20 0.5
App2 0.86 0.73 0.33 0.21 0.3
App3 0.83 0.33 0.83 0.83 0.33
App4 1 0.76 0.3 0.38 0.4
App5 1 1 0.5 0.5 0.5
App6 0.62 0.55 0.37 0.25 0.20
App7 1 0.6 0.4 0.6 0.6
App8 0.45 0.27 0.54 0.1 0.2
App9 1 0.40 0.8 0.8 0.6

App10 1 0.75 1 1 1
App11 0.81 0.81 0.72 0.63 0.65
App12 1 0.66 0.33 0 0.33
App13 0.20 0.14 0.1 0.1 0.1
App14 0.85 0.62 0.28 0.42 0.18
App15 1 0.60 0.60 0.4 1
App16 0.83 0.66 0.5 0.33 0.7
App17 0.75 0.75 0.75 0.87 0.75
App18 0.5 0.31 0.11 0.1 0.11
App19 0.71 0.42 0.14 0.28 0.6
App20 0.50 0.50 0.25 0.25 0.15
App21 0.72 0.36 0.27 0.1 0.1
App22 1 1 0.4 0.5 0.4
App23 0.66 0.66 0.66 0.5 0.6
App24 1 0.83 0.33 0.5 0.5
App25 0.8 0.6 0.6 0.6 0.6
App26 1 0.6 0.6 0.6 0.5
App27 0.47 0.43 0,2 0,2 0.2
App28 0.37 0.25 0.12 0.25 0.25
App29 0.62 0.34 0.25 0.37 0.25
App30 1 1 0.66 0.66 0.66

A p-value statistical test was performed based on these values, as shown in table 16. The
results indicated that the difference in operations coverage between DeepRLGUIMAT and the
state of the art tools is statistically relevant. The null hypothesis was rejected, and the alternative
hypothesis 2 (H2) was confirmed for RQ3.

The greatest variation in data entry values was a relevant factor in the coverage of features.
DeepRLGUIMAT generates more input entries as shown in Chapter 4 (Table 9), for example, in
apps with forms where the rule was to accept only numbers (as in Foodscale and MedicLog), or

5.4. DeepRLGUIMAT case study with input Requirements 99

Table 16 – Functional Operations p-value

DeepRLGUIMAT
x

Monkey

DeepRLGUIMAT
x

Q-Testing

DeepRLGUIMAT
x

DroidBot

DeepRLGUIMAT
x

DroidBotX
Functional Operations 0.00003 0.000692 0.00002 0.00002

as in the case where one of the fields only accepted numbers of a certain size (Budget Watch and
Money Track) the tool DeepRLGUIMAT was able to operate, while the Q-testing tool in some
apps could not. In the case of apps without field entry rules, Q-testing achieved similar coverage
(BMI, Silinote, Periodical, Open food and Waterdroid).

Figure 35 demonstrates that the DeepRLGUIMAT tool tries to insert various types of
different inputs in a text field: numbers, letters, and symbols in different sizes. It covers the basic
operation and alternative flow, as in the example, the input error message in red.

Figure 35 – DeepRLGUIMAT inputs example

Another feature that helps to identify and track test events is the file generated by the
tool (Figure 36) with all actions performed, application elements, activity, and errors, in case
they occur.

5.4 DeepRLGUIMAT case study with input Requirements

In this section, the results of the tool analysis in a case study with the requirements input
functionality are shown. Figure 36 shows the table of requirements as input for DeepRLGUIMAT
describer in Chapter 4 (section 4.2.1.1). The tool will read the requirements and the test input
generated will comply with the requirements of type field following the SFT guidelines. For
each input, the possible actions generated are: input value, input greater than start size, input less
than start size, input greater than end size, input less than end size, and input symbols.The app
used in this study is Money Tracker, this app has a form with character size and type restriction.

100 Chapter 5. Empirical Study

Figure 36 – Test Events

The screen analyzed is Add Record, it has 3 fields type edit text, the field price has the
input type number the size minimum 1 and maximum of 13 characters. The field Title is text
type the minimum size is 1 and the maximum is 50. Same for the Category text field.

Figure 37 – DeepRLGUIMAT Money Tracker Requirements

The tool ran around 2 hours 4 times. The average coverage results are displayed in table
17. The colum DG is the proposed tool without requirements input and the column DG-R is the
tool with requirements. The coverage values have no significant variance.

Table 17 – Coverage Results

APP Instruction
Coverage

Branch
Coverage

Line
Coverage

Method
Coverage

DG DG-R DG DG-R DG DG-R DG DG-R
MoneyTracker 0,65 0,66 0,48 0,48 0,65 0,65 0.70 0,69

We observed that this approach DG-R generated more input types to forms than DG,

5.4. DeepRLGUIMAT case study with input Requirements 101

as shown the Table 18. The requirements allow generating inputs exploring the limit values of
partition and exception cases such as insert symbols in field type number.

Table 18 – Inputs Generated

Distinct Test Inputs
Fields DG DG-R

Price

number size 2 Empty
large number size 20 default value 1500
small number size 1 small number size 2
small letter size 1 small number size 1
large text size 200 large number size 14
symbols large number size 13

symbols
medium letter size 10

Title

symbols Empty
large text size 200 Default text Test
medium text size 10 small letter size 1
large number size 10 large text size 51
medium number size 2 large text size 50
small number size 1 symbols

number medium size 2

Category

large text size 200 Empty
medium text size 10 default text Bill
small number size 1 small letter size 1
small letter size 1 large text size 51
symbols large text size 50
large number size 20 symbols
medium number size 2 number medium size 2

DG generated 28 files of test events for the activity Add Record while the tool with
requirements generated 69 files of test events. Figure 38 shows the screenshot of the actions and
Figure 39 the example of test events performed. In this file exist the lines 7 and 11 the Expected
size of input informed when the tool inputs exception cases. It facilitates knowing when the tool
is input, not valid values.

Regarding the failures found, the DG registered the exceptions returned by Logcat 1
android exception 11 times during tests, DG-R returned 3 distinct android exceptions 20 times in
form Add Record. The failures regarding the interface details such as wrong error message text
cannot be captured by the tool but we observed in screenshots.

We observed that DG-R focused the app exploration on-screen with requirements since
the Agent DQN receives reward higher when select action of requirements, in this study, 42%
of test events were generated for Add Record activity against 15,64% of DG. It provides the
coverage of the requirements but in another side, the tool did not cover well other screens.

102 Chapter 5. Empirical Study

Figure 38 – Test Events Performed with Requirements

Figure 39 – Test Events Performed with Requirements

5.5 Test Input based on Systematic Functional Testing

In this section, we analysed if SFT contributed to this approach comparing the perfor-
mance of the DeepRLGUIMAT in terms of code coverage using for comparison a previous
version of the tool (DG1) without the use of the SFT criterion.

DG1 tool had only a basic set of actions such as Click, LongClick, Type Text, Type
Number, Scroll, and Check. The text inputs were random generated without specified size. This
version of the tool ran in five apps. The table 19 shows the code coverage values in five android
apps. DG2 refers to actual tool with SFT.

With these results obtained, we identified the advantages such as higher code coverage,
useful test cases with input types variation mainly when the requirements are informed. In the

5.6. Threats of Validity 103

Table 19 – Coverage comparison with Inputs based on SFT

Instruction
Coverage

Branch
Coverage

Line
Coverage

Method
Coverage

APPS DG1 DG2 DG1 DG2 DG1 DG2 DG1 DG2
Atime
Track 0,39 0,46 0,28 0,35 0,38 0,43 0,45 0,45

AddLoan 0,29 0,57 0,18 0,37 0,3 0,59 0,38 0,71
Simpledo 0,35 0,48 0,15 0,29 0,39 0,52 0,59 0,61
TimeTable 0,29 0,31 0,18 0,18 0,3 0,33 0,37 0,4

Budget
Watch 0,41 0,46 0,22 0,25 0,42 0,47 0,53 0,59

5 applications observed the improvement of performance in terms of navigation with greater
possibility of data entry.Issues related to execution time of actions in the application, slowness
was not observed.

An important point is this approach is new in this context of test case generation for
mobile applications; we noted that is important add variation of data entries efficiently generated
to be useful to the testers.

5.6 Threats of Validity

The external threat of validity identified is the number of applications used for evaluation;
to mitigate it, the applications chosen have different sizes and UI elements. Lack of functional
requirements documentation of the apps is also an external threat. For this situation, we accessed
the F-Droid store and checked the application description and, the basic functional operations
in the application interface that made sense with the description were listed. Another external
validity is the environment to run the experiments, a notebook with a GPU board, to avoid it, the
tool was also tested in a notebook without a GPU board and the performance was not affected.

As internal threats, we identified the non-deterministic nature of this proposition. The
coverage result can differ in each test cycle. To reduce it, the execution was repeated 3 times
to confirm the resulting trend. This threat also applied to crashes and failures, we did the same
methodology to measure crashes and failures for all testing tools, to make a fair comparison.

As the Construct Validity of our experiments, the confirmation of app failures and crashes,
to certify it, we take the Log of each app executed during testing to verify the is indeed covered.
DeepRLGUIMAT produces test event files. Hence we verify faults and crashes via replaying
these tests manually.

104 Chapter 5. Empirical Study

5.7 Final Considerations
The empirical study carried out on 30 applications showed that the tool shows promising

results for testing mobile applications compared to state-of-the-art tools Monkey, Droidbot,
DroidbotX, and Q-testing. The tool revealed failures and crashes similar to the state of the art
tools during the test execution. In terms of functional operations coverage, DeepRLGUIMAT
achieved higher coverage than the state of the art tools. This approach produces test events with
the SFT approach for input variation that exercises the application creating useful tests since the
tool can insert a text or number too long, revealing flaws. The study case of DeepRLGUIMAT in
MoneyTrack app with requirements showed that test cases that explore the input variation are
generated according to SFT; the bias of the tool focused on the forms was also observed. More
experiments with more apps with requirements are needed to evaluate the impact of the observed
bias.

To evaluate the contribution of SFT to this approach, we compared the old version of
the tool without SFT and the actual tool version with SFT in terms of code coverage; the results
indicate the SFT promotes more exploration covering more paths of the apps. This result supports
our strategy consolidating the importance of the input test data variation in test creation.

It is important to highlight that this tool inserts fewer commands per minute than the
Monkey and Q-Testing tool; however, it was more effective due to the selection of actions for
creating tests that better covered the apps and still with little repetition actions. The experiments
carried out in the applications can also contribute to researchers.

In the next chapter, the conclusions and final considerations are discussed.

105

CHAPTER

6
CONCLUSION

6.1 Initial Considerations

Mobile applications are in our daily lives to execute various tasks such as communication,
work, commerce and so on. The quality of these apps are important, and the public is less tolerant
of failures. Testing mobile applications manually require effort and high cost due to all aspects
of mobile context and models variation. The test automation for mobile app testing has been
increasing due to the challenge of executing many possible interactions, input types, interface
element changes, and fault reproduction. The ML technique Reinforcement Learning (RL)
emerge as an opportunity to improve this area for test case generation through app exploration.
However, the studies in this area showed that current solutions focus on navigation coverage and
finding crashes.

This work offers a contribution in this area with the approach called DeepRLGUIMAT,
which applies DQN to perform automated tests and generate test cases through exploration of
the application under test covering a variety of input test data types using Systematic Functional
Testing to satisfy the objective of covering functional operations, validate input data requirements
and find failures. This chapter is organized as follows: Section 2 shows the main contributions of
this research. Section 3 the limitations and future works, and section 4 the publication and the
expectation of new publications.

6.2 Contributions

Considering the hypothesis that guided this work, the DeepRLGUIMAT was developed
to use the Deep Reinforcement Learning technique to create and carry out black-box tests
for mobile applications, using Systematic Functional Testing for input test data which will be
available for use by the entire community.

106 Chapter 6. Conclusion

This approach contemplates the objectives of providing a method that, through the
DeepRLGUIMAT tool, performs the creation and execution of automatic tests efficiently that
can insert input data variation, identify failures, promoting automatic tests, and cost savings.

As discussed in Chapter 3, Test generation initiatives using Reinforcement Learning and
other machine learning methods do not address the use of test criteria or an oracle to guide the
tests. Thus, the originality of this work is in the use of criteria of systematic functional testing to
generate test input values and in the use of the requirements as previous knowledge in DQN to
create the exploration of the application to cover more functionalities.

Thus, this work produced the following contributions:

• The development of a testing approach with RL and Systematic Functional Testing applied
in mobile app testing and incorporated into the RL environment to vary test data inputs
that allow the agent to generate more efficient tests. This approach helping to overcome
the bottleneck of manual test design. A detail to be highlighted is that interface changes
will not affect the tool’s operation, as it explores the application without dependence on
the id or GUI code. What typically happens in script-based test automation.

• The creation of a Reinforcement Learning Android environment with a variety of input
actions following test criteria to provide functionality coverage. The RL environment
which allows the agent to explore the android application space is important for the
research of this method, in the software testing context, in addition to the environment
enabling touch actions, it is necessary to offer different types of inputs so that the data
entry requirements can be validated.

• The tool developed for the Android platform for proof of concept of the created approach
is available to the research community. (htt ps : //github.com/licollins/deepguit)

• The empirical evaluation using the actual environment of android version 9 in a real device
with performance compared to state-of-the-art tools random test generation Monkey,
DroidBot RL tools DroidBotX and Q-Testing. (the experiments are also available in
htt ps : //github.com/licollins/deepguit)

It is noteworthy that this tool can be instantiated to be used on other platforms as tests in
hybrid applications, and the method can be applied to other mobile operating systems.

6.3 Limitations and Future Works

Due to the time constraints of this work, it was not possible to carry out a large-scale
experiment with the use of the tool in software companies in the market to guarantee evidence of
performance and efficiency. In chapter 5, we report the experiments performed in 30 applications

6.4. Publications 107

compared to the state of the art tools,which uses a similar Reinforcement Learning methodology.
DeepRLGUIMAT outperformed the tools on code coverage metrics and outperformed on feature
coverage. Certainly, more studies will be needed in groups of companies in the market that will
allow the evolution of this tool.

The use of the DeepRLGUIMAT tool in academia should also be considered to assess
the quality of the tests generated and transfer knowledge from tests performed to feedback the
tool.

The DeepRLGUIMAT tool has some limitations that must be worked on to improve the
usability and flexibility of your application. The following limitations are listed below:

• DeepRLGUIMAT does not yet have a graphical user interface for entering configuration
data. The settings.txt file can lead to typos, compromising the user’s experience with the
tool.

• The DeepRLGUIMAT tool needs to generate a complete visualization of the results
arranged in tables and graphs to indicate the features found in the application.

• Requirements data entry can also be enhanced through a graphical interface for the user to
enter requirements in full. Using NLP (Natural Language Processing) concepts it may be
possible to extract the requirements through text, making it easier for the user.

• It is necessary to improve the identification of exceptions or failure conditions of the apps
interface which are not displayed in Android logcat.

As a future work, studies involving the improvement of DQN performance should
be implemented for the feasibility of the tool for standalone execution. Another study to be
conducted is the use of NLP to identify the context of application functionality to generate tests
for business rules.

6.4 Publications
The partial results of this evaluation generate a paper published in Brazilian Symposium

on Software Engineering 2021. The reference is listed below.

• Eliane Collins, Arilo Neto, Auri Vincenzi, and José Maldonado. 2021. Deep Reinforcement
Learning based Android Application GUI Testing. Brazilian Symposium on Software
Engineering. Association for Computing Machinery, New York, NY, USA, 186–194.
DOI:https://doi.org/10.1145/3474624.3474634

This research was also described in articles for submission in the scientific journals,
follow the papers submitted:

108 Chapter 6. Conclusion

• Machine Learning based Mobile Application Testing: Systematic Mapping Study - Jornal
Of Software Engineering Research and Development - submitted in 8 of January of 2022.

• Deep Reinforcement Learning Approach for Mobile Application Testing Guided by Input
Entry Requirements - 2nd International Workshop on Artificial Intelligence in Software
Testing - submitted in 27 of january of 2022.

• A Deep Reinforcement Learning-based GUI Mobile Application Testing Approach - Deep-
RLGUIMAT - Journal Article Template for Software Testing, Verification and Reliability -
to be submitted in 10 of February of 2022

• The Impact of Systematic Functional Testing input for Test Case Generation using Deep
Q-Network Approach - Journal Article Template for Software Testing, Verification and
Reliability - to be submitted in 25 of February of 2022

109

BIBLIOGRAPHY

829-2008 - IEEE Standard for Software and System Test Documentation - Redline | IEEE
Standard | IEEE Xplore. <https://ieeexplore.ieee.org/document/5983353?denied=>. (Accessed
on 06/20/2021). Citation on page 26.

ADAMO, D.; KHAN, M. K.; KOPPULA, S.; BRYCE, R. Reinforcement learning for android
gui testing. In: Proceedings of the 9th ACM SIGSOFT International Workshop on Au-
tomating TEST Case Design, Selection, and Evaluation. New York, NY, USA: Association
for Computing Machinery, 2018. (A-TEST 2018), p. 2–8. ISBN 9781450360531. Available:
<https://doi.org/10.1145/3278186.3278187>. Citations on pages 20 and 92.

ALI, A. Convolutional Neural Network(CNN) with Practical Implementation | by
Amir Ali | Wavy AI Research Foundation | Medium. 2019. <https://medium.com/
machine-learning-researcher/convlutional-neural-network-cnn-2fc4faa7bb63>. (Accessed on
06/25/2021). Citations on pages 11 and 74.

ALPAYDıN, E. Machine learning. WIREs Computational Statistics, v. 3, n. 3, p. 195–203,
2011. Available: <https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.166>. Citation on page
41.

ANACONDA. Anaconda | Individual Edition. 2021. <https://www.anaconda.com/products/
individual>. (Accessed on 07/04/2021). Citation on page 79.

ANAND, S.; BURKE, E. K.; CHEN, T. Y.; CLARK, J.; COHEN, M. B.; GRIESKAMP, W.;
HARMAN, M.; HARROLD, M. J.; MCMINN, P.; BERTOLINO, A.; Jenny Li, J.; ZHU, H. An
orchestrated survey of methodologies for automated software test case generation. Journal of
Systems and Software, v. 86, n. 8, p. 1978–2001, 2013. ISSN 0164-1212. Available: <https:
//www.sciencedirect.com/science/article/pii/S0164121213000563>. Citation on page 59.

ANDROID. Android | The platform pushing what’s possible. 2021. <https://www.android.
com/>. (Accessed on 06/20/2021). Citations on pages 11 and 33.

ARORA, I.; TETARWAL, V.; SAHA, A. Open issues in software defect prediction. Procedia
Computer Science, v. 46, p. 906–912, 2015. ISSN 1877-0509. Proceedings of the International
Conference on Information and Communication Technologies, ICICT 2014, 3-5 December 2014
at Bolgatty Palace Island Resort, Kochi, India. Available: <https://www.sciencedirect.com/
science/article/pii/S1877050915002252>. Citation on page 60.

BADAMPUDI, D.; WOHLIN, C.; PETERSEN, K. Experiences from using snowballing and
database searches in systematic literature studies. In: Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2015. (EASE ’15). ISBN 9781450333504. Available:
<https://doi.org/10.1145/2745802.2745818>. Citation on page 48.

BASILI, V. R.; SELBY, R. W.; HUTCHENS, D. H. Experimentation in software engineering.
IEEE Transactions on Software Engineering, SE-12, n. 7, p. 733–743, 1986. Citation on
page 91.

https://ieeexplore.ieee.org/document/5983353?denied=
https://doi.org/10.1145/3278186.3278187
https://medium.com/machine-learning-researcher/convlutional-neural-network-cnn-2fc4faa7bb63
https://medium.com/machine-learning-researcher/convlutional-neural-network-cnn-2fc4faa7bb63
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.166
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://www.sciencedirect.com/science/article/pii/S0164121213000563
https://www.sciencedirect.com/science/article/pii/S0164121213000563
https://www.android.com/
https://www.android.com/
https://www.sciencedirect.com/science/article/pii/S1877050915002252
https://www.sciencedirect.com/science/article/pii/S1877050915002252
https://doi.org/10.1145/2745802.2745818

110 Bibliography

CARBON, R.; CIOLKOWSKI, M. Evaluating open source software through prototyping. Hand-
book of Research on Open Source Software, p. 269–281, 2007. Citation on page 23.

CERVANTES, A. Exploring the use of a test automation framework. In: 2009 IEEE Aerospace
conference. [S.l.: s.n.], 2009. p. 1–9. Citation on page 31.

CHAPELLE, O.; SCHOLKOPF, B.; ZIEN, A. Semi-supervised learning (chapelle, o. et al., eds.;
2006)[book reviews]. IEEE Transactions on Neural Networks, IEEE, v. 20, n. 3, p. 542–542,
2009. Citation on page 40.

DANA, R.; VAN, C. L. On the bellman equation of the overtaking criterion. Journal of opti-
mization theory and applications, Springer, v. 67, n. 3, p. 587–600, 1990. Citation on page
75.

DELAMARO MARIO JINO, J. M. M. ntrodução ao Teste de Software. 2. ed. [S.l.]: Campus,
2016. ISBN 9788535283525. Citations on pages 20, 27, 28, and 32.

DEVELOPERS, A. Desenvolvedores Android. 2021. <https://developer.android.com/>. (Ac-
cessed on 06/20/2021). Citations on pages 32, 34, and 35.

ELBAUM, S.; ROTHERMEL, G.; KANDURI, S.; MALISHEVSKY, A. G. Selecting a cost-
effective test case prioritization technique. Software Quality Journal, Springer, v. 12, n. 3, p.
185–210, 2004. Citation on page 61.

F-DROID. F-Droid - Free and Open Source Android App Repository. 2021. <https://f-droid.
org/pt_BR/packages/>. (Accessed on 06/25/2021). Citation on page 92.

FACELI, K.; LORENA, A. C.; GAMA, J.; CARVALHO, A. et al. Inteligência artificial: Uma
abordagem de aprendizado de máquina. Rio de Janeiro: LTC, v. 2, p. 192, 2011. Citation on
page 38.

FAN, J.; WANG, Z.; XIE, Y.; YANG, Z. A theoretical analysis of deep q-learning. In: PMLR.
Learning for Dynamics and Control. [S.l.], 2020. p. 486–489. Citation on page 42.

GAO, J.; BAI, X.; TSAI, W.; UEHARA, T. Mobile application testing: A tutorial. ACM SIG-
PLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
IEEE Computer Society, v. 47, n. 2, p. 46–55, 2014. ISSN 0018-9162. Citations on pages 19,
20, 32, 34, and 35.

GONZÁLEZ, M.; BERGMEIR, C.; TRIGUERO, I.; RODRÍGUEZ, Y.; BENÍTEZ, J. M. Self-
labeling techniques for semi-supervised time series classification: an empirical study. Knowledge
and Information Systems, Springer, v. 55, n. 2, p. 493–528, 2018. Citation on page 40.

GOPINATH, R.; JENSEN, C.; GROCE, A. Code coverage for suite evaluation by develop-
ers. In: Proceedings of the 36th International Conference on Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2014. (ICSE 2014), p. 72–82. ISBN
9781450327565. Available: <https://doi.org/10.1145/2568225.2568278>. Citation on page 90.

GYM. 2020. Available: <https://gym.openai.com/>. Citation on page 69.

HALLER, K. Mobile testing. SIGSOFT Softw. Eng. Notes, Association for Computing Ma-
chinery, New York, NY, USA, v. 38, n. 6, p. 1–8, Nov. 2013. ISSN 0163-5948. Available:
<https://doi.org/10.1145/2532780.2532813>. Citation on page 20.

https://developer.android.com/
https://f-droid.org/pt_BR/packages/
https://f-droid.org/pt_BR/packages/
https://doi.org/10.1145/2568225.2568278
https://gym.openai.com/
https://doi.org/10.1145/2532780.2532813

Bibliography 111

ISTQB. CTFL Syllabus. 2018. <https://www.istqb.org/downloads/send/
2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html>. (Accessed on
06/20/2021). Citations on pages 29, 57, and 68.

JIMENEZ, W.; MAMMAR, A.; CAVALLI, A. Software vulnerabilities, prevention and detection
methods: A review1. Security in model-driven architecture, Citeseer, v. 215995, p. 215995,
2009. Citation on page 60.

JOORABCHI, M. E.; MESBAH, A.; KRUCHTEN, P. Real challenges in mobile app develop-
ment. In: IEEE. 2013 ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement. [S.l.], 2013. p. 15–24. Citation on page 37.

JUNIT.ORG. JUnit 5. 2021. <https://junit.org/junit5/>. (Accessed on 06/20/2021). Citation on
page 36.

KHAMARU., S. Code Coverage for Android using Jacoco - QA Learning Guide. 2017.
<http://www.qalearningguide.com/2017/10/code-coverage-for-android-using-jacoco.html>. (Ac-
cessed on 06/21/2021). Citation on page 92.

KIRUBAKARAN, B.; KARTHIKEYANI, V. Mobile application testing — challenges and so-
lution approach through automation. 2013 International Conference on Pattern Recognition,
Informatics and Mobile Engineering, p. 79–84, 2013. Citations on pages 21 and 35.

KONG, P.; LI, L.; GAO, J.; LIU, K.; BISSYANDE, T.; KLEIN, J. Automated testing of android
apps: a systematic literature review. IEEE Transactions on Reliability, IEEE, Institute of
Electrical and Electronics Engineers, v. 68, n. 1, p. 45–66, Mar. 2019. ISSN 0018-9529. Citations
on pages 20 and 67.

Kong, P.; Li, L.; Gao, J.; Liu, K.; Bissyandé, T. F.; Klein, J. Automated testing of android apps:
A systematic literature review. IEEE Transactions on Reliability, v. 68, n. 1, p. 45–66, 2019.
Citations on pages 21 and 67.

KOROGLU, Y.; SEN, A. Functional test generation from ui test scenarios using reinforcement
learning for android applications. Software Testing, Verification and Reliability, n/a, n. n/a, p.
e1752. E1752 stvr.1752. Available: <https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1752>.
Citation on page 20.

KROPP, M.; MORALES, P. Automated gui testing on the android platform. Testing Software
and Systems, p. 67, 2010. Citation on page 21.

KUMAR, D.; MISHRA, K. The impacts of test automation on software’s cost, quality and time
to market. Procedia Computer Science, v. 79, p. 8–15, 2016. ISSN 1877-0509. Proceedings
of International Conference on Communication, Computing and Virtualization (ICCCV) 2016.
Available: <https://www.sciencedirect.com/science/article/pii/S1877050916001277>. Citations
on pages 30 and 31.

LINKMAN, S.; VINCENZI, A. M. R.; MALDONADO, J. C. An evaluation of systematic
functional testing using mutation testing. In: 7th International Conference on Empirical
Assessment in Software Engineering –EASE. [S.l.: s.n.], 2003. Citations on pages 22, 29,
and 68.

https://www.istqb.org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html
https://www.istqb.org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html
https://junit.org/junit5/
http://www.qalearningguide.com/2017/10/code-coverage-for-android-using-jacoco.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1752
https://www.sciencedirect.com/science/article/pii/S1877050916001277

112 Bibliography

MANN, H. B.; WHITNEY, D. R. On a Test of Whether one of Two Random Variables is
Stochastically Larger than the Other. The Annals of Mathematical Statistics, Institute of
Mathematical Statistics, v. 18, n. 1, p. 50 – 60, 1947. Available: <https://doi.org/10.1214/aoms/
1177730491>. Citation on page 95.

MAO, K.; HARMAN, M.; JIA, Y. Sapienz: Multi-objective automated testing for android ap-
plications. In: Proceedings of the 25th International Symposium on Software Testing and
Analysis. New York, NY, USA: Association for Computing Machinery, 2016. (ISSTA 2016), p.
94–105. ISBN 9781450343909. Available: <https://doi.org/10.1145/2931037.2931054>. Cita-
tion on page 90.

MARTIN, W.; SARRO, F.; JIA, Y.; ZHANG, Y.; HARMAN, M. A survey of app store analysis
for software engineering. IEEE transactions on software engineering, IEEE, v. 43, n. 9, p.
817–847, 2016. Citation on page 32.

MASI, E.; CANTONE, G.; MASTROFINI, M.; CALAVARO, G.; SUBIACO, P. Mobile apps
development: A framework for technology decision making. In: SPRINGER. International Con-
ference on Mobile Computing, Applications, and Services. [S.l.], 2012. p. 64–79. Citation
on page 32.

MCCABE IQ - Software Metrics Glossary. <http://www.mccabe.com/iq_research_metrics.htm>.
(Accessed on 07/19/2021). Citation on page 58.

MEIRELES, S. R. A. et al. Evolução da ferramenta web guitar para geração automática de casos
de teste de interface para aplicações web. Universidade Federal do Amazonas, 2015. Citation
on page 30.

MELO, F. S. Convergence of q-learning: A simple proof. Institute Of Systems and Robotics,
Tech. Rep, p. 1–4, 2001. Citation on page 41.

MITCHELL, T. M. Machine Learning. New York: McGraw-Hill, 1997. ISBN 978-0-07-042807-
2. Citations on pages 37, 38, and 40.

MYERS, G. The art of software testing. ny john wiley & sons. Inc.–2004.–254 p, 2004. Citation
on page 25.

NAGAPPAN, M.; SHIHAB, E. Future trends in software engineering research for mobile apps.
In: . [S.l.: s.n.], 2016. p. 21–32. Citation on page 35.

NUMPY. What is NumPy? — NumPy v1.21 Manual. 2021. <https://numpy.org/doc/stable/
user/whatisnumpy.html>. (Accessed on 07/04/2021). Citation on page 79.

PAN, M.; HUANG, A.; WANG, G.; ZHANG, T.; LI, X. Reinforcement learning based curiosity-
driven testing of android applications. In: Proceedings of the 29th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. New York, NY, USA: Association for
Computing Machinery, 2020. (ISSTA 2020), p. 153–164. ISBN 9781450380089. Available:
<https://doi.org/10.1145/3395363.3397354>. Citations on pages 20 and 90.

PANDAS. pandas - Python Data Analysis Library. 2021. <https://pandas.pydata.org/>. (Ac-
cessed on 07/04/2021). Citation on page 79.

PARSIFAL. Parcifal. [S.l.], 2020 (accessed June 3, 2020). <https://parsif.al/>. Citation on page
50.

https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1145/2931037.2931054
http://www.mccabe.com/iq_research_metrics.htm
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html
https://doi.org/10.1145/3395363.3397354
https://pandas.pydata.org/
 https://parsif.al/

Bibliography 113

PASZKE, A. Reinforcement Learning (DQN) tutorial — PyTorch Tutorials 0.2.0_4 doc-
umentation. 2017. Available: <http://seba1511.net/tutorials/intermediate/reinforcement_q_
learning.html>. Citations on pages 21, 67, 75, and 79.

. Reinforcement Learning (DQN) tutorial — PyTorch Tutorials 0.2.0_4 documenta-
tion. 2017. <http://seba1511.net/tutorials/intermediate/reinforcement_q_learning.html>. (Ac-
cessed on 07/01/2021). Citation on page 42.

PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic mapping studies in
software engineering. In: Proceedings of the 12th International Conference on Evaluation
and Assessment in Software Engineering. Swindon, GBR: BCS Learning amp; Development
Ltd., 2008. (EASE’08), p. 68–77. Citations on pages 23, 45, and 46.

PUTERMAN, M. L. Chapter 8 markov decision processes. In: Stochastic Models. Elsevier,
1990, (Handbooks in Operations Research and Management Science, v. 2). p. 331 – 434. Avail-
able: <http://www.sciencedirect.com/science/article/pii/S0927050705801720>. Citation on
page 41.

PYTORCH. PyTorch. 2021. <https://pytorch.org/>. (Accessed on 07/04/2021). Citation on
page 78.

ROBOLECTRIC. 2021. <http://robolectric.org/>. (Accessed on 06/20/2021). Citation on page
36.

SAID, K. S.; NIE, L.; AJIBODE, A. A.; ZHOU, X. Gui testing for mobile applications: Ob-
jectives, approaches and challenges. In: 12th Asia-Pacific Symposium on Internetware. New
York, NY, USA: Association for Computing Machinery, 2020. (Internetware’20), p. 51–60. ISBN
9781450388191. Available: <https://doi.org/10.1145/3457913.3457931>. Citation on page 21.

SILVA, D. G. e; JINO, M.; ABREU, B. T. de. Machine learning methods and asymmetric
cost function to estimate execution effort of software testing. In: IEEE. 2010 Third Interna-
tional Conference on Software Testing, Verification and Validation. [S.l.], 2010. p. 275–284.
Citation on page 32.

SMOLA A. J.; VISHWANATHAN, S. Introduction to machine learning. [S.l.], 2020 (accessed
June 3, 2020). <http://alex.smola.org/drafts/thebook.pdf,/bib/smola/smola2008ml/thebook.pdf>.
Citations on pages 11, 38, 39, and 40.

SUTTON, R. S.; BARTO, A. G. Reinforcement learning: An introduction. [S.l.]: MIT press,
2018. Citations on pages 20, 21, and 41.

TAMADA, V. K. T. Estudo de caso de deep q-learning. Citations on pages 74 and 75.

TENSORFLOW. TensorFlow. 2021. <https://www.tensorflow.org/?hl=pt-br>. (Accessed on
07/04/2021). Citation on page 79.

UIAUTOMATOR. GitHub - xiaocong/uiautomator: Python wrapper of Android uiautoma-
tor test tool. 2021. <https://github.com/xiaocong/uiautomator>. (Accessed on 07/04/2021).
Citation on page 79.

VEENENDAAL, E. V.; GRAHAM, D.; BLACK, R. “foundations of software testing: Istqb
certification. Cengage Learning EMEA, p. 30, 2008. Citations on pages 11, 26, 27, 28, and 58.

http://seba1511.net/tutorials/intermediate/reinforcement_q_learning.html
http://seba1511.net/tutorials/intermediate/reinforcement_q_learning.html
http://seba1511.net/tutorials/intermediate/reinforcement_q_learning.html
http://www.sciencedirect.com/science/article/pii/S0927050705801720
https://pytorch.org/
http://robolectric.org/
https://doi.org/10.1145/3457913.3457931
http://alex.smola.org/drafts/thebook.pdf,/bib/smola/ smola2008ml/thebook.pdf
https://www.tensorflow.org/?hl=pt-br
https://github.com/xiaocong/uiautomator

114 Bibliography

VIDAL, A. R. Biblioteca Digital de Teses e Dissertações: Teste funcional sistemático es-
tendido: uma contribuição na aplicação de critérios de teste caixa-preta. 2011. <https:
//repositorio.bc.ufg.br/tede/handle/tde/2887>. (Accessed on 01/04/2022). Citation on page
29.

VILKOMIR, S. A.; KAPOOR, K.; BOWEN, J. P. Tolerance of control-flow testing criteria.
In: IEEE. Proceedings 27th Annual International Computer Software and Applications
Conference. COMPAC 2003. [S.l.], 2003. p. 182–187. Citation on page 27.

WANG, W.; LI, D.; YANG, W.; CAO, Y.; ZHANG, Z.; DENG, Y.; XIE, T. An empirical study of
android test generation tools in industrial cases. In: IEEE. 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). [S.l.], 2018. p. 738–748. Citation
on page 21.

WATKINS, C. J.; DAYAN, P. Q-learning. Machine learning, Springer, v. 8, n. 3-4, p. 279–292,
1992. Citation on page 41.

WOHLIN, C.; HÖST, M.; HENNINGSSON, K. Empirical research methods in software engi-
neering. In: Empirical methods and studies in software engineering. [S.l.]: Springer, 2003. p.
7–23. Citation on page 89.

WYSOPAL, C.; NELSON, L.; DUSTIN, E.; ZOVI, D. D. The art of software security testing:
identifying software security flaws. [S.l.]: Pearson Education, 2006. Citation on page 57.

YASIN, H. N.; HAMID, S. H. A.; YUSOF, R. J. R. Droidbotx: Test case generation tool for
android applications using q-learning. Symmetry, v. 13, n. 2, 2021. ISSN 2073-8994. Available:
<https://www.mdpi.com/2073-8994/13/2/310>. Citation on page 90.

YOON, C. Vanilla Deep Q Networks. Deep Q Learning Explained | by
Chris Yoon | Towards Data Science. 2019. <https://towardsdatascience.com/
dqn-part-1-vanilla-deep-q-networks-6eb4a00febfb>. (Accessed on 06/25/2021). Cita-
tions on pages 11 and 75.

https://repositorio.bc.ufg.br/tede/handle/tde/2887
https://repositorio.bc.ufg.br/tede/handle/tde/2887
https://www.mdpi.com/2073-8994/13/2/310
https://towardsdatascience.com/dqn-part-1-vanilla-deep-q-networks-6eb4a00febfb
https://towardsdatascience.com/dqn-part-1-vanilla-deep-q-networks-6eb4a00febfb

115

ANNEX

A
FUNCTIONAL OPERATION COVERAGE

Table 20 below represents the basic functional operations of 30 apps explained on Chapter
5 to evaluate the Functional coverage.

Table 20 – Functional Operations

APPS Main Operations
Add Loan
Add loan ->Add a person from contacts
Add loan ->Add a person by name
Add loan ->person added ->Add item
Loan History ->change name
Loan History ->delete from loaned
Loan History ->link to contact
Loan History ->history
Loaned debug ->show by person,
show by item, stats, settings

AddLoan

Settings - date format, notifications
Add task
Enter in Report
More - change date range
More - export view
More - Backup up to sd card
More - Restore from backup
More - Settings
More - Help
Edit Task
Delete Task
Show Task Times
Task time - add new time range
Task time - edit
Task time - delete

Atimetrack

Task time - move time
Add counter ok
counter added ->+1
counter added ->undoing
conter added - calendar
counter added ->graph

Bettercount

Add counter cancel

116 ANNEX A. Functional Operation Coverage

APPS Main Functional Operations
Add Biever
Edit Biever
Import Biever
Add Tastings
Import tastings
Add beer
import beer
export beer
add beer style
edit beer style
delete beer style
add breweries

Biever

export/import
calculate
load
save

Bmi

clear
Add budget
Edit budget
Add Expense
Edit Expense
Add Revenue
intro
settings

Budget Watch

import/export
import/export
settings
add card
edit card

Catima

Add groups
new entry
export database
import database
export to csv
delete
stats
edit entry
new cellar
edit cellar
choose cellar

Cavevin

rename cellar
settings - time remember
settings- theme
about
forgot

Dailypill

remembered

117

APPS Main Operations
Training now
Press Start
Abort

Exceer

Press Pause/Continue
Write a note
Choose date in calendar
Search
Add time to note
Add events to note
Add midia to note
Edit style
Edit script
Backup
Sharing

Farmerdiary

Settings
Add
Remove LastFoodscale
Clean
Add shopping list
Add product
Add product not found
Shop all items
Edit notes
Edit shop list
Delete shop list
Consume
Edit product
Delete product
Edit places
Delete places
Edit stores
Delete stores
Edit unity
Delete unity
Edit group products
Remove group products
Settings

Grocy

Feedback
Write a note
Edit notes
Delete a note
Export note
Import note
Settings

Justdo

Help

118 ANNEX A. Functional Operation Coverage

APPS Main Operations
Add info
Set date on Calendar
Access History
Welcome

Log28

Settings
Privacy
Save log
Send log
Delete log
Set Preferences

Medclin

Access history
Medit
Pause medit
Continue medit
Verify Progress
Set settings
Access About
Mindfullness bell

Meditation Assistant

See Tutorial
Add recipe
Edit recipe
delete recipe
add expense
edit expense
delete expense
Add account
edit account
delete account
transfer
add taxes
edit taxes
delete taxes
summary results
results - graph
Backup
Import/Export

Money Track

Settings
library
scan media
equalizer
settings
search
music

music

new list

119

APPS Main Operations
Scan bar code
Compare
Start
Access history
Add a list
Remove a list
Write a bar code
Category
Complete products
Set settings
Edit Offline

Openfood

Search
Start training
Add trainings
Import trainings
Edit training
Delete training
Set settings
Add new section
Edit section
Delete section
Access about

Openworkout

Access help
Generate pass
Copy pass
Reset fields
Set app theme
Access tips

Passgenerator

Set pass strengh
Edit details
Mark day
Detail list
Set backup
Restore backup

Periodical

Set preferences
Add new note
Edit note
Delete note
Copy note
Set settings

Silinote

Search
Create item
Create item date time
Delete item
Edit item

Simpledo

Quick reschedule

120 ANNEX A. Functional Operation Coverage

APPS Main Operations
Add new text
Open a text
Save text / Save as
Search text

Textpad

Set settings
Add subject
Edit subject
Delete subject
Access Summary
Add exam
Edit exam
Delete exam
Add teacher
Delete teacher
Add homework
Edit homework
Delete homework
Add a note
Edit note
Delete note
Set setings
Backup
Add profile
Edit profile
Delete profile

TimeTable

Restore backup
Add new list
Add task
Mark task
Unmark task
Mark all
Unmark all
Rename list

Todo list

Clear list
Add traveler to trip
Edit traveler trip
Transfer money
Create payment
Deactivate (for costs)
Show report
Export tricky

Tricky

Set settings
Add a message
Edit messageWaterdroid
Set notifications

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of algorithms
	List of Tables
	Contents
	Introduction
	Context
	Motivation
	Objective
	Specific Objectives

	Methodology
	Investigation of the Literature
	Proposal Elaboration
	Empirical Evaluation

	Organization

	Basic Concepts and Terminology
	 Initial Considerations
	Software Testing
	Testing Design Techniques
	 Structural Testing
	 Black Box Testing
	Systematic Functional Testing (SFT)

	 Experience-based Testing

	Software Testing Automation

	Mobile Applications
	Android

	 Mobile Application Testing
	 Supporting Tools for Mobile Application Testing

	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning
	Reinforcement Learning

	Final Considerations

	Machine Learning-based Mobile Application Testing Mapping
	Initial Considerations
	Systematic Mapping
	Research Questions
	Search Process
	Primary Study Selection Process
	 Study quality assessment
	Data Extraction

	Results and Data Synthesis
	RQ1 - What type of ML techniques have been used to cope with mobile application testing?
	RQ2: Which mobile application testing levels are automated by ML algorithms?
	Which Mobile application Type and Operational System?
	RQ3: Which mobile application testing challenges are treated by ML?
	What advantages and limitations are found on ML based mobile application testing?
	Threats to Validity

	Final Considerations

	Proposal Approach DeepRLGUIMAT
	Initial Considerations
	DeepRLGUIMAT
	Environment Module
	Actions

	 Deep Q-Network Module
	Agent Manager Module
	Studies Comparison

	Implementation
	Modelling
	Operational Aspects
	Final Considerations

	Empirical Study
	Initial Considerations
	Empirical Experiment Planning
	Hypotheses
	Empirical Experiment Design

	Results
	DeepRLGUIMAT case study with input Requirements
	Test Input based on Systematic Functional Testing
	Threats of Validity
	Final Considerations

	Conclusion
	Initial Considerations
	Contributions
	Limitations and Future Works
	Publications

	Bibliography
	Functional Operation Coverage

