• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.55.2013.tde-03052013-101143
Document
Author
Full name
Tatiane Nogueira Rios
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2013
Supervisor
Committee
Rezende, Solange Oliveira (President)
Camargo, Heloisa de Arruda
Ebecken, Nelson Francisco Favilla
Prudêncio, Ricardo Bastos Cavalcante
Ricarte, Ivan Luiz Marques
Title in Portuguese
Organização flexível de documentos
Keywords in Portuguese
Agrupamento fuzzy
Mineração de Textos
Organização de documentos
Abstract in Portuguese
Diversos métodos têm sido desenvolvidos para a organização da crescente quantidade de documentos textuais. Esses métodos frequentemente fazem uso de algoritmos de agrupamento para organizar documentos que referem-se a um mesmo assunto em um mesmo grupo, supondo que conteúdos de documentos de um mesmo grupo são similares. Porém, existe a possibilidade de que documentos pertencentes a grupos distintos também apresentem características semelhantes. Considerando esta situação, há a necessidade de desenvolver métodos que possibilitem a organização flexível de documentos, ou seja, métodos que possibilitem que documentos sejam organizados em diferentes grupos com diferentes graus de compatibilidade. O agrupamento fuzzy de documentos textuais apresenta-se como uma técnica adequada para este tipo de organização, uma vez que algoritmos de agrupamento fuzzy consideram que um mesmo documento pode ser compatível com mais de um grupo. Embora tem-se desenvolvido algoritmos de agrupamento fuzzy que possibilitam a organização flexível de documentos, tal organização é avaliada em termos do desempenho do agrupamento de documentos. No entanto, considerando que grupos de documentos devem possuir descritores que identifiquem adequadamente os tópicos representados pelos mesmos, de maneira geral os descritores de grupos tem sido extraídos utilizando alguma heurística sobre um conjunto pequeno de documentos, realizando assim, uma avaliação simples sobre o significado dos grupos extraídos. No entanto, uma apropriada extração e avaliação de descritores de grupos é importante porque os mesmos são termos representantes da coleção que identificam os tópicos abordados nos documentos. Portanto, em aplicações em que o agrupamento fuzzy é utilizado para a organização flexível de documentos, uma descrição apropriada dos grupos obtidos é tão importante quanto um bom agrupamento, uma vez que, neste tipo de agrupamento, um mesmo descritor pode indicar o conteúdo de mais de um grupo. Essa necessidade motivou esta tese, cujo objetivo foi investigar e desenvolver métodos para a extração de descritores de grupos fuzzy para a organização flexível de documentos. Para cumprir esse objetivo desenvolveu se: i) o método SoftO-FDCL (Soft Organization - Fuzzy Description Comes Last ), pelo qual descritores de grupos fuzzy at são extraídos após o processo de agrupamento fuzzy, visando identicar tópicos da organização flexível de documentos independentemente do algoritmo de agrupamento fuzzy utilizado; ii) o método SoftO-wFDCL ( Soft Organization - weighted Fuzzy Description Comes Last ), pelo qual descritores de grupos fuzzy at também são extraídos após o processo de agrupamento fuzzy utilizando o grau de pertinência dos documentos em cada grupo, obtidos do agrupamento fuzzy, como fator de ponderação dos termos candidatos a descritores; iii) o método HSoftO-FDCL (Hierarchical Soft Organization - Fuzzy Description Comes Last ), pelo qual descritores de grupos fuzzy hierárquicos são extraídos após o processo de agrupamento hierárquico fuzzy, identificando tópicos da organização hierárquica flexível de documentos. Adicionalmente, apresenta-se nesta tese uma aplicação do método SoftO-FDCL no contexto do programa de educação médica continuada canadense, reforçando a utilidade e aplicabilidade da organização flexível de documentos
Title in English
Flexible organization of documents
Keywords in English
Documents organization
Fuzzy clustering
Text mining
Abstract in English
Several methods have been developed to organize the growing number of textual documents. Such methods frequently use clustering algorithms to organize documents with similar topics into clusters. However, there are situations when documents of dffierent clusters can also have similar characteristics. In order to overcome this drawback, it is necessary to develop methods that permit a soft document organization, i.e., clustering documents into different clusters according to different compatibility degrees. Among the techniques that we can use to develop methods in this sense, we highlight fuzzy clustering algorithms (FCA). By using FCA, one of the most important steps is the evaluation of the yield organization, which is performed considering that all analyzed topics are adequately identified by cluster descriptors. In general, cluster descriptors are extracted using some heuristic over a small number of documents. The adequate extraction and evaluation of cluster descriptors is important because they are terms that represent the collection and identify the topics of the documents. Therefore, an adequate description of the obtained clusters is as important as a good clustering, since the same descriptor might identify one or more clusters. Hence, the development of methods to extract descriptors from fuzzy clusters obtained for soft organization of documents motivated this thesis. Aiming at investigating such methods, we developed: i) the SoftO-FDCL (Soft Organization - Fuzzy Description Comes Last) method, in which descriptors of fuzzy clusters are extracted after clustering documents, identifying topics regardless the adopted fuzzy clustering algorithm; ii) the SoftO-wFDCL (Soft Organization - weighted Fuzzy Description Comes Last) method, in which descriptors of fuzzy clusters are also extracted after the fuzzy clustering process using the membership degrees of the documents as a weighted factor for the candidate descriptors; iii) the HSoftO-FDCL (Hierarchical Soft Organization - Fuzzy Description Comes Last) method, in which descriptors of hierarchical fuzzy clusters are extracted after the hierarchical fuzzy clustering process, identifying topics by means of a soft hierarchical organization of documents. Besides presenting these new methods, this thesis also discusses the application of the SoftO-FDCL method on documents produced by the Canadian continuing medical education program, presenting the utility and applicability of the soft organization of documents in real-world scenario
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Tatianerevisada.pdf (5.24 Mbytes)
Publishing Date
2013-05-03
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.