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RESUMO

FARFÁN, A. J. F. Modelagem Baseada em Agentes para Análise de Redes Complexas. 2024.
152 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2024.

A modelagem baseada em agentes é uma abordagem dentro da modelagem computacional que se
concentra na simulação do comportamento e das interações de agentes individuais para entender
os padrões emergentes em sistemas complexos. Esta tese discute uma abordagem desenvolvida
em modelagem baseada em agentes para estudar e analisar redes complexas. As características
inerentes dos modelos baseados em agentes fornecem o contexto apropriado para explorar redes
complexas. Ao identificar, analisar e compreender as propriedades emergentes que surgem da
dinâmica e do comportamento dos agentes, podemos obter e reconhecer padrões dentro de redes
complexas. A caracterização de rede é uma tarefa importante de reconhecimento de padrões. A
modelagem de um processo sobre o espaço fornecido pelas redes gera padrões em diferentes
níveis, individualmente nos agentes, bem como globalmente em todo o modelo. Para atingir o
objetivo, é proposta uma abordagem baseada em agentes da qual são extraídas características que
servem para categorizar as redes. É importante destacar que na literatura modelos baseados em
agentes não têm sido utilizados para categorizar redes. O modelo proposto, denominado modelo
de Crescimento, fornece uma nova consideração para caracterizar redes complexas. A análise
realizada em conjuntos de dados de redes sintéticas e do mundo real indica que os resultados
da classificação são semelhantes aos métodos da literatura. A acurácia da classificação mostra
que em quatro conjuntos de dados, Actinobacteria, Fungi, Kingdom e Plant os resultados são
melhores que os trabalhos anteriores na literatura, demonstrando o potencial desta abordagem.

Palavras-chave: Modelagem Computacional, Reconhecimento de Padrões, Modelagem Baseada
em Agentes, Redes Complexas, Aprendizado de Máquina.





ABSTRACT

FARFÁN, A. J. F. Agent-Based Modeling for the Analysis of Complex Networks. 2024. 152
p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2024.

Agent-based modeling is an approach within computational modeling that focuses on simulating
the behavior and interactions of individual agents to understand emerging patterns in complex
systems. This thesis discusses an approach developed in agent-based models in order to study
and analyze complex networks. The inherent characteristics of agent-based models provide the
appropriate context for exploring complex networks. By identifying, analyzing and understanding
the emergent properties that arise from the dynamics and behavior of the agents we can obtain
and recognize patterns within complex networks. Network characterization is an important task
of pattern recognition. The modeling of a process over the space provided by networks generate
patterns at different levels, individually in the agents, as well as globally in the entire model.
In order to achieve the objective, an agent-based approach is proposed from which features are
extracted that serve to characterize networks. It is important to highlight that in the literature
agent-based models have not been used to categorize networks. The proposed model, called the
Growth model, provides a novel consideration to characterize complex networks. The analysis
performed on synthetic and real-world network datasets indicate that the classification results are
similar with methods of the literature. The classification accuracy shows that in four datasets,
Actinobacteria, Fungi, Kingdom, and Plant the results are better than the previous work in the
literature, demonstrating the potential of this approach.

Keywords: Computational Modeling, Pattern Recognition, Agent-Based Models, Complex
Networks, Machine Learning.
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CHAPTER

1
INTRODUCTION

1.1 Context

Humans seek to explain the world through science. To obtain this scientific knowledge we
make use of data that allows testing and reproducing our understanding of the world. Scientific
knowledge is important both individually and collectively, since it benefits society in general
(FUNK; RAINIE; PAGE, 2015), being paramount for the health, safety and prosperity of a nation
(BUSH, 2020).

An important aspect of scientific knowledge, essential to demonstrate our understanding
of the world, involves the use of theories and models. Modeling holds significant importance
within science. Models, in conjunction with relevant data, help in explaining phenomena. The
representation of natural phenomena through models stands as a key practice in science (NRC,
2012).

In particular, computational modeling is a great tool for analyzing complex systems
(HINSEN, 2023). Complex systems are systems composed of a large number of elements
that interact with each other in not obvious ways. The elements arise and evolve through the
relationships between them. Thus, the important information resides in the relationships that are
formed between the elements.

So it is important to understand and analyze how such interactions form and operate in
order to understand the behavior that emerges at a large-scale level (SAYAMA, 2015). Many
real world systems can be modeled as complex systems, such as political organizations, human
cultures/languages, national and international economies, stock markets, the global climate, food
webs, brains, physiological systems, regulatory networks, etc.

There are many ways to model complex system, including: dynamical systems, cellular
automata, agent-based modeling, network science, and chaos theory (SIEGENFELD; BAR-YAM,
2020).
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Cellular Automata (CA) consists of a set of elements typically arranged on a regular
structure, each element has a state that is updated according to predefined rules, and they are all
updated at the same time in a synchronous way (WOLFRAM, 1984).

Agent-Based Modeling (ABM) consists of autonomous agents interacting with one
another and their environment, each agent has a set of rules and the activation of the agents
happen in various ways, random activation, random activation by type, etc (WILENSKY; RAND,
2015).

Pattern recognition in complex networks has become increasingly relevant in academic
research and real-world applications (MIRANDA; MACHICAO; BRUNO, 2016b). Pattern
recognition seeks to discover meaningful structures and relationships within complex networks.
The applications of pattern recognition in complex networks are vast and diverse, from social
network analysis and disease spread prediction to recommendation systems and network security
(BISHOP, 2006).

In the literature there are several approaches that focus on the categorization of networks,
among them are those that use the measurements extracted from the network (COSTA et al.,
2007) and methods that use processes on the network through the use of some type of element,
such as automata (MIRANDA; MACHICAO; BRUNO, 2016b) or walkers (MERENDA, 2023).
In the case of automata, a simulation is performed on the network and some patterns that are
generated over time are extracted, these patterns serve as feature vector. On the other hand, when
using walkers on a network, they move during the simulation and their movement allows to
extract patterns that serve as feature vector.

The work by Costa et al. (2007) presents several measurements that can be obtained from
a complex network in order to create a feature vector that serves to differentiate each network.
Walkers, and tourists, use the spatial information of the network to update their position, from
the path they generate it is extracted a feature vector (MERENDA, 2023).

Cellular automata use the spatial information of the network to update their state, changes
of state over time generate patterns that are used as a feature vector, one model of cellular
automata in networks is the Life-Like Network Automata (LLNA) that uses the density of
elements to update the state of the cells, this method is based on the Game of Life automata
(MIRANDA; MACHICAO; BRUNO, 2016b), another version uses Local Binary Patterns (LBP)
to complement the patterns generated to obtain the feature vector, the LLNA-LBP (RIBAS;
MACHICAO; BRUNO, 2020), another variation is the Density-Time Evolution Pattern (D-TEP)
method which uses the density of elements of temporal patterns to obtain the feature vector
(ZIELINSKI et al., 2022).

Using methods based on automata implies having a wide search space. The well-known
cellular automata Game of Life works in a regular grid, in which the state of each cell depends
on the quantity of living neighboring cells. A cell can be in either the alive or dead state, and
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it has 8 neighbors. If the cell is currently in the dead state, it can be born by the presence of
the right number of living neighboring cells. Similarly, if the cell is in the alive state, it can
survive if it maintains a specific number of living neighboring cells. These conditions can be
represented as B/S (“Birth” and “Survival”), for example B3/S23 means that a cell requires 3
living neighboring cells to be born, and 2 or 3 living neighboring cells to survive. Extending this
space to all possibilities of birth and survival, it means that a cell can have 9 possible values (0 to
8) of living cells to be born, and similarly 9 possible values (0 to 8) of living cells to survive.
Which means that an automata that follows the rules of the game of life has a search space of
2(9+9) = 262144, which represents the number of configurations to be explored to find the rules
that allow the classification of a network dataset.

Since we have processes generated by one type of element, we can ask if using a
computational model to simulate a process on a network that uses more than one type of element,
the interaction generated by the elements can be used to obtain characteristics and classify the
networks?

By applying processes on a network that use a single type of element, it can be extracted
patterns that characterize the network, then using another type of modeling on networks where
various types of elements interact would have more data sources to generate patterns, these
patterns in turn can contribute to categorize the networks.

In the literature there is no explicit mention of the use of Agent-Based Modeling for
pattern recognition and network categorization. This can be explained because cellular automata
are considered a specific type of ABM, by restricting the number of states, transition rules, and
activation scheme. Therefore, we can make use of Agent-Based Modeling that uses Complex
Networks as an environment in an exploratory way to study the generated patterns and use them
as a feature vector that allow us to classify the underlying environment, that is, classify networks
by means of agents.

This works aims to explore the field of Pattern Recognition in Complex Networks, where
the focus lies on modeling processes and interactions to extract valuable information from the
generated data. By studying real-world network datasets and performing necessary experiments,
we seek to enhance our understanding of the underlying structure of complex networks.

For the above reasons, network characterization is an important task in the field of
Network Science. Despite the notable achievements of learning-based approaches, there remains
a necessity for model-based solutions. This requirement becomes particularly evident in scenarios
where the available training data is insufficient, which is often encountered in various practical
domains. In light of these considerations, we propose a method for network characterization that
takes advantage of the complex interactions that happens in an Agent-Based Model.
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1.2 Objectives
The main objective of this thesis is the study, proposal and analysis of agent-based

models focused on problems related to the characterization of complex networks.

The secondary objectives of this thesis are as follows:

• Investigate and analyze existing methods in the pattern recognition literature that deal with
network characterization.

• Formulate and develop pattern recognition methods utilizing agent-based modeling.

• Design an agent-based model that can work in discrete environments, such as image
textures or complex networks.

• Assess and compare the efficacy of the proposed methods in comparison to existing works
in the literature.

1.3 Document organization
We organize this document as follows.

Chapter 1 INTRODUCTION presented the context, the motivation and the objectives of
this work.

Chapter 2 FOUNDATIONS presents background knowledge important to the under-
standing of this work, including computational models, pattern recognition, complex networks,
cellular automata, and agent-based modeling.

Chapter 3 RELATED WORK shows related works in the area, which have as objective
the use of patterns to categorize complex networks.

Chapter 4 GROWTH MODEL: AN AGENT-BASED MODEL FOR CATEGORIZING

COMPLEX NETWORKS describes the methodology used to model and simulate the processes
that are performed in complex networks using agent-based models.

Chapter 5 EXPERIMENTS IN NETWORKS presents the classification results of the
model into complex networks in synthetic and real-world datasets

Chapter 6 CONCLUSIONS presents the conclusions, and contributions of this work.
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CHAPTER

2
FOUNDATIONS

2.1 Introduction

This chapter describes concepts related to computational modeling, and pattern recogni-
tion, using image textures, complex networks, cellular automata, and agent-based models. The
chapter aims to provide an explanation of each topic, as well as their importance and relevance
for this work.

Computational modeling is a powerful tool used to understand real-world complex
systems across various scientific disciplines. It complements traditional approaches of theory
and experiments. It involves creating mathematical or algorithmic representations of complex
phenomena to simulate their behavior and study their dynamics. A model is designed for specific
purposes, so it contains attributes and variables that help answer particular research questions
(BIELIK et al., 2021).

A pattern is everything that can be perceived containing a structure. Pattern recognition is
the process of recognizing patterns by statistical or algorithmic approaches. The goal of pattern
recognition is to extract meaningful information from the data by identifying structures, relation-
ships, or trends. Pattern recognition can be applied to the task of classification and clustering.
When applied to classification, pattern recognition seeks to categorize data in appropriate classes.
Meanwhile, in clustering, pattern recognition seeks to group the data according to their properties
(BISHOP, 2006).

Image textures refer to the visual patterns and structures found in images, such as the
arrangement of pixels or the variations in color and intensity. In pattern recognition, textures
provide valuable information for distinguishing between different classes or categories of images.
By analyzing the spatial distribution and statistical properties of textures, it is possible to develop
algorithms and techniques to automatically extract texture features from images (FARFÁN;
SCABINI; BRUNO, 2019). These features can be used in tasks like object recognition, image
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classification, and anomaly detection, which have widespread applications in fields such as
automated surveillance, environmental monitoring, and disease diagnosis.

Complex networks are representations of systems which contains elements that are
connected by specific relationships. Networks are prevalent across numerous scientific disciplines,
ranging from social sciences to biology, computer science, and physics. Complex networks
provide a framework to analyze and model the structure and dynamics of complex systems.
By representing objects as nodes and their relationships as edges, it is possible to capture
the underlying structure and connectivity of complex data. This information is useful in real-
life application, such as the spread of diseases in social networks, the flow of information on
the internet, the structure of protein interaction networks, and the resilience of transportation
networks.

Cellular automata are models consisting of elements, called cells, that by following
simple rules can yield complex behaviors. Cellular automata have been applied in various areas,
including physics, biology, computer science, and social sciences. They can be used to generate
synthetic patterns, simulate pattern growth or evolution, and analyze the emergence of complex
behaviors.

Agent-based models are computational simulations used to study the behavior and
interactions of autonomous agents within a system. Each agent can perceive and respond to
other agents and its environment according to a set of rules. Agent-based models are widely
used in various domains, including ecology, economics, social sciences, and computer science.
By employing agent-based models, we can gain a better understanding of emergent properties,
collective behavior, and the impact of individual decisions on system-level dynamics.

2.2 Computational Modeling

Computational modeling is a tool for the simulation and understanding of complex
systems. Complex systems contain interrelated elements that exhibit emergent behavior and
patterns that are not easily predictable from the behavior of the individual elements alone
(COSCIA, 2021). Computational modeling, also known as computer simulation or mathematical
modeling, has been successfully applied to the study and analysis of complex systems in various
scientific disciplines.

Computational models are employed in diverse fields, including physics, biology, eco-
nomics, social sciences, engineering, and many others. They play a crucial role in scientific
research, problem-solving, and decision-making by providing a means to study complex systems
in a controlled and computationally efficient manner (DOWNEY, 2018).

Complex systems comprise a large number of interacting components with non-linear
relationships and emergent behavior. The interaction between the elements of a computational
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model is crucial to understand certain phenomena. In a computational model, multiple variables
are typically employed to characterize the complex system under study. These variables are
adjusted individually or collectively, taking into account the final objective of the system.

This approach allows researchers to explore and analyze complex systems that are often
challenging to comprehend through traditional analytical methods alone (GAO; XU, 2021).

In recent times, an important application of computational models has been in the
modeling and prediction of the COVID-19 epidemic in the world (CURRIE et al., 2020) and in
particular in Brazil (SCABINI et al., 2021). The applications of computational models are diverse
and their capabilities continue to be explored, for example, in Chemistry to model realistic cell
membranes (MARRINK et al., 2019), in drug discovery (ADELUSI et al., 2022), in Medicine
to treat patients with heart-related problems (NIEDERER; LUMENS; TRAYANOVA, 2019),
having big-data to provide personalized care (SOROUSHMEHR; NAJARIAN, 2022). It has also
been applied to analyze soil fertility in Agriculture (HELFER et al., 2020), in the Aerospace
industry to design structural components (D’MELLO et al., 2020), in conjunction with Machine
Learning to address mechanical engineering applications (NGUYEN et al., 2023).

In summary, using computational models in the form of computer programs facilitates
the execution of experiments that simulate the behavior of complex systems. In addition, these
systems can be simulated under different conditions in a controlled way.

2.3 Pattern Recognition

Pattern recognition is defined as the field of research that seeks the automatic discovery
of important parts in data using computational models with a defined purpose (BISHOP, 2006).

Pattern recognition uses machine learning as there are now a variety of data sources,
data processing power, and new approaches to study them. One type of pattern recognition
is classification which seeks to categorize data by assigning it an identifier or label among a
predetermined set of labels. This is a supervised learning approach in which the inputs with their
respective identifications are provided.

The other type of pattern recognition is the grouping or clustering of similar data based
on a measure of similarity. This is an unsupervised approach in which the input data does not
contains labels to group the data.

Pattern recognition has been applied in various areas, in the statistical analysis of im-
balanced data (ZHAI; QI; SHEN, 2022), to identify eye movements using signal process-
ing (AHMED; NASRIN, 2022), in the analysis of textures in images (FARFÁN; SCAB-
INI; BRUNO, 2019), in agriculture for the detection of plant diseases using computer vision
(HARAKANNANAVAR et al., 2022), to determine dominant movements in the behavior of
crowds (MATKOVIC; IVASIC-KOS; RIBARIC, 2022), among others.
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In network science, pattern recognition takes into account the understanding of the
underlying network structure and their dynamic properties. Previous works in the literature
(MERENDA, 2023; MIRANDA; MACHICAO; BRUNO, 2016a; RIBAS; MACHICAO; BRUNO,
2020; ZIELINSKI et al., 2022) have demonstrated that networks can be categorized using com-
putational models by using a dynamic process over the network to extract data that identifies
them.

2.4 Image Textures
We can recognize the texture of an object through touch and vision. In image processing

texture represents a local pattern that is repeated across an image. Texture provides useful
information about regions of interest that share similar characteristics (GONZALEZ, 2016).

Texture analysis seeks to characterize regions in an image based on their structural
content. It provides ways to quantitatively describe certain attributes that serve to describe
the image in a qualitative way. Thus the texture in images comprises a series of descriptors
that quantify the perceived texture of an image. In the image this information is in the spatial
distribution of the pixels.

The study of texture is important in research areas of image processing and computer
vision. It has been applied in task of classification and segmentation. Some approaches to study
textures include the use of gray level co-occurrence matrices (GLCM) (HALL-BEYER, 2017),
Gabor-based filters (OU et al., 2016), the local binary pattern (LBP) (RAHIM et al., 2013), etc.

In fact, applications of texture are present in diverse fields of science and industry, such
as, in medicine to categorize X-rays medical images (NARAYAN et al., 2023), to determining
the severity of COVID-19 patients by computed tomography images (AMINI; SHALBAF,
2022), in agriculture to diagnose the nutritional status in coffee leaves (TUESTA-MONTEZA;
MEJIA-CABRERA; ARCILA-DIAZ, 2023), to measure the habitat heterogeneity on tropical
forest birds using satellite images (SUTTIDATE et al., 2023), to classify different species of
apples (ROPELEWSKA, 2021), to characterize and segment materials (HAN; YANG; CHEN,
2022), among others.

2.5 Complex Networks
Many complex phenomena can be studied and represented using networks. Network

Science is an important and relevant field of research, which seeks to understand complex
systems by analyzing the relationships and interactions between its components (SAYAMA,
2015).

Network science has become a data modeling tool for complex systems. In the industry,
this way of thinking about data in an interconnected way has given rise to the network model
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known as the graph data model (BECHBERGER; PERRYMAN, 2020). Network analysis and
graph theory concepts have profound importance in our world. Networks provide a different
way of thinking about data. Since it is necessary to think about the data in terms of relationships,
these relationships give each network its particular characteristics.

The theory of graphs started with the intuition of Leonhard Euler, in the 18th century,
who studied the famous problem of the Königsberg bridges that crossed the Pregel River, where
there was heavy ship traffic and a prosperous trade (BARABÁSI; WATTS; NEWMAN, 2006).
The problem was to determine whether or not it was possible to cross the seven bridges starting
from the same point and without crossing the same bridge more than once. Euler demonstrated
analytically that this path was not possible using a graphical representation that consisted of a set
of points, corresponding to the land bands, and a set of curves or lines, which connected these
points.

After Euler, this area had important contributions from several mathematicians regarding
the discoveries of graph properties. More recently, in addition to focusing on the study of these
properties, other questions have arisen regarding the formation of graphs and how real networks
are structured.

A network is a collection of points linked together in pairs. Many objects of interest in
the physical, biological, and social sciences can be thought of as networks and thinking of them
in this way can often lead to new and useful insights (NEWMAN, 2010).

Complex networks are an active area of research that uses concepts from graph theory.
It applies methods from statistics and physics to characterize, model, and analyze its static
and dynamic structure (CASANOVA, 2013). The term complex networks appears as a result
of the work by Erdos and Rényi (ERDOS; RÉNYI, 1960) in small-world networks (WATTS;
STROGATZ, 1998), free scale networks (BARABÁSI; ALBERT, 1999), and identification of
communities in networks (GIRVAN; NEWMAN, 2002).

Complex networks have been applied in many research areas, such as to evaluate urban
public transportation systems (WANG; WANG; SHEN, 2020), in physics to analyze a nuclear
reactor (CERVI; CAMMI; ZIO, 2019), and to analyze images as complex networks (BAPTISTA;
BACCO, 2021), in hydrology to assess the importance of stations (DEEPTHI; SIVAKUMAR,
2023), to identify influential nodes to spread information (GUPTA; MISHRA, 2021), tools to
understand biological complex networks (BOGDAN et al., 2021), This diversity of applications
with different perspectives makes the complex network science an area of continuous growth.

2.5.1 Basics of Complex Networks

The study of networks, in the form of mathematical graph theory, is a fundamental pillar
for the study of complex networks (NEWMAN, 2003). It all started with the study of graphs
(DIESTEL, 2017).
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A graph G is defined as a set of pairs (V,E), in which, V is a finite and non-empty set
of vertices and E is a set of edges that represent the connections between these vertices, that is,
E ⊆ {(u,v)|u,v ∈V}. Vertices are usually called nodes, and edges are usually called links, or
connections. Figure 1 shows the common visual representation of a node, and edge and a simple
graph.

Figure 1 – Representation of (a) a node, (b) an edge, and (c) a simple graph.

(a) (b) (c)

Source: Elaborated by the author.

Figure 2 presents basic types of graphs: undirected, directed and weighted. In an undi-
rected graph an edge has no direction, and is represented as a single line. In a directed graph,
the connections are not symmetric, edges have a direction so the relationship is in one way, and
edges are represented with an arrow. In a weighted graph, the relationships have a strength, a
numeric quantity that represents the weight of the edge. Weights can be interpreted as proximity
or distance.

Figure 2 – Types of graphs: (a) undirected, (b) directed and (c) weighted

(a) (b) (c)

Source: Elaborated by the author.

The nature of complex networks to represent complex systems showing different struc-
tures, topologies, and features, makes possible to build a rich source of measures to characterize,
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compare, classify, and model them. There are measures and methods based on real properties of
the system that characterize complex networks (COSTA et al., 2007).

2.5.2 Network measures

For network analysis, several metrics can be used to study the structure and topology of
complex networks. Metrics are quantitative measures that provide insights into various aspects
of the network. The measures help in the understanding of characteristics, comparison and
classification of complex networks. Among the measures based on connectivity, we have:

• Degree is the number of edges connected to a node. The degree only considers immediate
neighbors. The degree kvi of a vertex vi is calculated as the number of edges incident to
other vertices, and expressed as:

kvi =
N

∑
j=1

A(i, j)

in which A(i, j) is the representation of a network as an adjacency matrix. The rows and
columns of the adjacency matrix correspond to nodes in the network, and the entries in the
matrix indicate the presence of an edge between pairs of nodes. In weighted networks, the
weighted degree or strength svi is obtained by the sum of the weights of the edges.

• Average degree is the average value of the degree of all vertices. It is defined as:

⟨k⟩= 1
N

N

∑
i=1

kνi

In directed networks it can be computed the out-degree and the in-degree: the out-degree
is the sum of edges leaving a vertex, and the in-degree is the number of edges entering
a vertex. In directed and weighted networks it can be computed the out-strength and the
in-strength: the out-strength is the sum of the weights of the outgoing connections and the
in-strength is the sum of the weights of the incoming edges.

• Degree distribution describes the probability distribution of node degrees in the network.
It is the probability P(k) of a vertex to have degree k. Many real-world networks follow a
power-law distribution, in which the probability P(k) decreases as a power of k.

• Degree difference or degree correlation, is the difference in degrees between two con-
nected nodes (FARZAM; SAMAL; JOST, 2020). If we have two nodes i and j connected
by an edge, the degree difference δ between them is defined as:

δ = |kvi − kv j |
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Figure 3 – A network where the numbers inside the vertices represent the degree of the node.

Source: Elaborated by the author.

Figure 3 represents a network, in which the vertices contains numbers that represents the
degree. It is worth noting that there is one vertex with a degree value of zero, meaning that this
vertex does not have any relation to another vertex.

Measures of centrality seek to identify the most important nodes in a network. Among
the measures of centrality, we have:

• Degree Centrality: It measures the importance of a node based on the number of its
connections.

• Betweenness Centrality: It quantifies how often a node acts as a bridge along the shortest
paths between other nodes in the network. Its values lie between 0 and 1, where 0 means
that there are no shortest paths and 1 that all shortest paths go through this node.

• Closeness Centrality: It measures how quickly a node can reach other nodes in the
network. It is based on the average shortest path lengths.

• Eigenvector Centrality: This measure takes into account the importance of the neighbors
of a node and is often used to find influential nodes.

2.5.3 Network Models

Networks were first studied in a deterministic way. The mathematicians Paul Erdös and
Alfred Rényi started to consider them as stochastic objects. Subsequently, several studies have
found patterns in many networks that were considered as structural characteristics.
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Based on these structural characteristics and statistical properties, networks can be
classified into different models, the three main models of complex networks in the literature are
random networks, small-world networks, and scale-free networks.

• Random networks are models generated from random connections between vertices. One
way to build a random network is starting with a set V of vertices initially disconnected and
a set E of edges. Then, at each iteration, an edge of E is drawn at random, thus connecting
a pair of vertices. A second way consists of the definition of a probability p of connection
between the vertices of the network. Let N be the total number of vertices of the network,
for each vertex i ∈V , there are N−1 distinct possibilities of connection with other vertices.
(ERDOS; RÉNYI, 1960).

• Small-world networks are models characterized by small paths between vertices. Many
vertices can be reached by others through a small number of edges, for example in
social networks. It presents cycles in more proportion than in random networks (WATTS;
STROGATZ, 1998).

• Scale-free are models in which few vertices have a high degree compared to the rest
of the network. Few vertices tend to have many connections, and most vertices have
few connections. The degree distribution in scale-free networks follows a power law
(BARABÁSI; ALBERT, 1999)

2.6 Cellular Automata
Cellular automata (CA), the plural form of cellular automaton, is a computational model-

ing approach that involves simulating the behavior of a system composed of individual cells or
units, each following a set of predefined rules. These cells are arranged in a grid or lattice, and
their state evolves over discrete time steps based on the rules and the states of their neighboring
cells. Typically, all cells of a cellular automata update their states simultaneously.

Cellular automata can be defined as a discrete, spatially distributed computational model
comprising a grid of cells, each of which can take on a finite set of states. The evolution of the
system occurs in discrete time steps, where the state of each cell at a given time depends on its
own state and the states of its neighboring cells, according to a predefined set of rules (SAYAMA,
2015).

CA is a powerful tool used to study the emergence of complex patterns and behaviors
from simple local interactions, making it relevant across diverse scientific disciplines (WOL-
FRAM, 2002). These emerging patterns can range from simpler structures, such as homogeneous,
stable, or periodic, to chaotic patterns (WOLFRAM, 1984). Even looking simple, CAs often
display interesting behaviors and have been applied to modeling biological phenomena (MORD-
VINTSEV et al., 2020), to recognize handwritten patterns (WALI; SAEED, 2018), to model the
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spatial dynamics of urban growth (CAO et al., 2020), it even has applications in cryptography
(BHARDWAJ; BHAGAT, 2018).

The concept of cellular automata was first introduced by mathematician John von Neu-
mann and his colleague Stanislaw Ulam in the 1940s (MITCHELL, 2009). However, it was John
Conway’s “Game of Life” introduced in 1970, that popularized cellular automata and led to
extensive research in the field. The Game of Life demonstrated how simple rules could lead to
the emergence of complex and fascinating patterns, capturing the attention of researchers from
various domains (MARTÍNEZ; ADAMATZKY; SECK-TUOH-MORA, 2022).

A cellular automata consists of the following components (HOEKSTRA; KROC; SLOOT,
2010):

1. Cells: The fundamental units of a cellular automata are the cells, which are typically
arranged in a regular grid or lattice. Each cell represents an individual entity and can take
on one of a finite number of discrete states.

2. Neighborhood: The neighborhood of a cell refers to a set of cells that are considered
neighbors when determining the next state of a central cell. In two-dimensional CA, the
most common types of neighborhoods include the Moore Neighborhood, in which all
eight cells surrounding the central cell are considered, the von Neumann Neighborhood, in
which only the four cardinal direction cells adjacent to the central cell are considered, and
extended neighborhoods like an hexagonal neighborhood.

3. State Transition Rules: Cellular Automata are governed by a set of rules that determine
how the state of each cell changes over time. These rules are typically specified in the
form of a transition function, which maps the current state of a cell and the states of its
neighbors to its new state at the next time step.

4. Time Steps: Cellular Automata evolve over discrete time steps, where the state of the entire
grid is updated simultaneously according to the transition rules. The states of the cells at
time t +1 depend on their states at time t and the states of their neighbors at time t.

5. Boundary Conditions: The behavior of cells at the edges of the grid needs to be defined to
avoid edge effects. Various boundary conditions, such as periodic boundary conditions or
zero-padding, can be employed.

A CA is a model of the world, in which the world is divided into discrete spaces or cells.
This space or tessellation T can be composed of cells of any shape: triangular, square, hexagonal,
or even irregular. Implicitly, it is assumed that the cells are homogeneous, that is, they have
the same properties and follow the same transition rules of states (SHALIZI, 2006). Figure 4
shows a representation of a cellular automata in a regular and a hexagonal grid. The color of
the cells represent their state, with two states: black as “alive” and white as “dead”. The image
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also represents the boundary conditions, the regular grid is unbounded, and the hexagonal grid is
bounded.

Figure 4 – Representation of a cellular automata in a space: (a) two cells in a regular grid, and (b) two
cells in a hexagonal grid

(a) (b)

Source: Elaborated by the author.

A formal definition of a cellular automata (BAETENS; BAETS, 2012) can be given by
the tuple C = ⟨T, S, f , N, Φ⟩, in which the elements are:

• T is an tessellation of dimension n in the Euclidean space Rn, which consists of cells ci,
i ∈ N

• S, is a set of k states, and S ∈ N

• f , is the transition function, such that f : N→ S. This function determines the state of the
cell ci at time t, that is, s(ci, t)

• N, is a function that defines the neighborhood of each cell: N : T →
⋃

∞
p=1 T p. This function

maps each cell ci to a finite sequence N(ci) = (ci j)
|N(ci)|
j=1 consisting of |N(ci)| distinct cells

• Φ = (φi), i ∈N, is a set of functions such that φi : S|N(ci)| → S. Each φi governs the dynamic
of the cell ci : f (ci, t +1) = φi( f (ci j, t)

|N(ci)|
j=1 ).

Figure 5 shows a cellular automata with its characteristics, the tessellation T is a bi-
dimensional grid, the states that each cell can have is 1 or 0, each cell can have 4 or 8 neighbors,
von Neumann or Moore neighborhood, respectively. The initial configuration and transition rules
are specific for each CA.

With their apparent simplicity, certain CAs possess universal computational capabilities,
enabling them in principle to perform any computation achievable by a computer (COOK, 2004).
Among the types of cellular automata we have elementary cellular automata, two-dimensional
cellular automata, and continuous cellular automata. These will be described in the following
sections.
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Figure 5 – A cellular automata defined over a bidimensional grid, with states 1 or 0, black cells are alive
and white cells are dead, showing possible neighborhoods von Neumann and Moore.

Source: Elaborated by the author.

2.6.1 Elementary Cellular Automata

The elementary cellular automata (ECA) represents the simplest class of CAs. Defined
over a one-dimensional space, each element or cell can be in one of two possible states: 0 or
1. Given an initial random configuration, at each time step, the state of each cell is updated
according to local rules that consider the state of its two closest neighbors and the state of the
cell itself.

An ECA is defined by the quintuple: C = ⟨Z1, S = {0,1}, f , N = (ci−1, ci, ci+1), Φ :
S3 → S⟩, in which r = 1 is the radius of the neighborhood. In this way, combining the three
analyzed cells and the number of states, there is a total of |S|N(ci)

= 23 = 8 possible neighborhood
configurations to be analyzed with each evolution of the CA. Thus, there are a total of 28 = 256
transition rules. The rules can be summarized by a table, it maps the state of the neighborhood to
the next state in one time step, each cell influences the state of one neighbor.

The evolution of the CA is normally visualized in bidimensional space-time diagrams
whose columns represent the cells of the CA and the lines the configuration of each cell state in
each time. Figure 6 shows the transition table for rule 30 of an ECA, and the space-time pattern
generated over time. Rule 30 is a specific rule set for elementary cellular automata, and it is
particularly famous for its complex and seemingly random behavior (WOLFRAM, 2002).

An interesting feature is the pattern that emerge from the dynamics of automata evolu-
tion. Wolfram categorized these patterns into four distinct classes: (1) Stable: when the initial
configurations of CA cells quickly converge to a single state 0 or 1, (2) Periodic: when the states
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Figure 6 – ECA: Rule 30 and space-time pattern evolution.

Source: Elaborated by the author.

of the cells fluctuate with each evolution, (3) Chaotic: in this case, the cells show apparently
random and non-periodic behavior, with a strong dependence on the initial states of each cell,
and, (4) Complex: the emerging patterns of this class of CAs are characterized by presenting
stable structures that can survive for a long period of time, but there are also structures that
interact in a more complex way, and from this interaction, new patterns can be created, destroyed
or propagated.

2.6.2 Two-dimensional Cellular Automata

The two-dimensional cellular automata are defined on tessellations of the Euclidean
space R2. A well-known class of two-dimensional CAs are Life-Like cellular automata, which
are inspired by the rules of the Game of Life. They are defined on the same topology and also in
the same neighborhood.

John Conway developed the Game of Life, it follows simple rules and can produce
interesting patterns. Gardner (1970) popularized the Game of Life. The Game of Life takes place
on a two-dimensional orthogonal grid. A cell in the grid has two states, alive or dead, and eight
neighbors. Each cell interacts with its neighbors and at each time step, the new states are defined
by transition rules related to the density of neighbors. The evolution of these transitions gives
rise to interesting patterns and particular properties.

In Game of Life, the next state of each cell depends on its current state and the number
of living neighbors. If a cell is alive, it remains alive if it has 2 or 3 living neighbors. If a cell
is dead, it remains dead unless there are exactly three living neighbors. Given the Game of
Life transition rules, we can describe them by the following dynamic system (DEMONGEOT;
GOLÈS; TCHUENTE, 1985):
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xi(t +1) =


1, if

xi(t) = 0 and Σ8
j=1x j = 3

xi(t) = 1 and 2 ≤ Σ8
j=1x j ≤ 3

0, otherwise

(2.1)

The following notation is also widely used to represent this system: B3/S23, that is, a
cell is born (B) if it has 3 alive neighbors, and, a cell survives (S) if at least 2 or 3 neighbors
are alive. Figure 7 shows two instants of time Conway’s Game of Life. From the configuration
on the left, the blue square shows that the dead cell is surrounded by 3 living cells, so in the
following time, it will come to life. On the other hand, the red square shows a living cell that
only has one living neighbor, so in the next instant of time the cell will die.

Figure 7 – Conway’s Game of Life. Black cells are alive, and white cells are dead. A dead cell requires 3
living cells to be born, and a living cell requires 2 or 3 living cells to survive.

Source: Elaborated by the author.

2.6.3 Continuous Cellular Automata

Continuous cellular automata (CCA) differ from their discrete counterparts as they allow
cells to assume continuous values instead of discrete states. CCA models are commonly used in
fields like physics and biology to simulate continuous processes. Unlike the discrete case, CCA is
defined by partial differential equations that describe the local interactions between neighboring
cells. CCA is particularly useful for modeling systems with continuous spatial distributions, such
as fluid dynamics or reaction-diffusion processes.

A continuous cellular automata consists of the following components (WOLFRAM,
2002):
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• Space: The system is represented by a continuous spatial domain rather than a discrete
grid. Each cell now corresponds to a location in continuous space.

• Variables: Cells can have continuous values, often representing physical attributes like
temperature, density, concentration, etc. These values can change smoothly over space and
time.

• Dynamics: Instead of discrete time steps, time is treated as continuous. Cell values evolve
gradually and continuously based on differential equations or other mathematical models
that describe how the variables change.

• Neighborhood: Neighboring cells in the continuous space are defined based on proximity,
usually using a kernel function or a distance metric.

2.7 Agent-Based Models
A characteristic of complex systems is the emergent behavior that results from collective

and self-organizing dynamics and the absence of a central controller (BOCCARA, 2010). Among
the mathematical tools for modeling complex systems are methods based on differential equations
and methods based on agents. The former uses population densities, the latter deals with spatially
distributed agents, representing the elements of the system.

Agent-based modeling (ABM) is a computer simulation that consists of agents interacting
with one another, in order to study an overall system. Especially in ecology, ABMs are also called
individual-based models (IBM). In the computational simulation, the agents are autonomous,
they react to their environment and other agents using predefined rules (GRIMM et al., 2006). In
a simulation, the interactions of agents are monitored to see their behavior over time. At each
moment, every agent acts according to its current state, the state of the world around it, and the
rules that govern its behavior. The agents can be as diverse as needed. Agents can be used to
represent living cells, animals, individual humans, even entire organizations, or abstract entities.
Figure 8 shows a representation of an ABM, in which the solid lines represent the interaction
between agents and the dashed lines represent interaction of agents with the environment.

ABMs can handle a wider range of non-linear behaviors than conventional models.
ABMs are a recognized approach to studying complex systems and have been applied in various
areas of research. ABMs are useful modeling tools to study processes involving stochasticity,
nonlinear interactions, and/or heterogeneous spatial structures (BODINE et al., 2020).

The applications of ABMs are diverse, among them we can mention the following: To
simulate the migratory movement of birds to determine critical migration sites and unexpected
movement patterns (AURBACH et al., 2020). To model the complex and seemingly unpredictable
dynamics of a stock market (VANFOSSAN; DAGLI; KWASA, 2020). To model the spread and
impact of diseases, such as the case of malaria transmission (GHARAKHANLOU; MESGARI;
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Figure 8 – The elements of an agent-based model and its interaction between them and with the environ-
ment.

Source: Elaborated by the author.

HOOSHANGI, 2019). To evaluate the effects of the lockdown of the COVID-19 epidemic on
the population (KHALIL; FATMI, 2022). To model and propose solutions for the evacuation of
people in the event of fires in buildings (KASEREKA et al., 2018) or public services like the
metro system (LO et al., 2014). It has applications in fisheries science (HAASE et al., 2023). In
image processing to enhance the contrast of images (LUQUE-CHANG et al., 2023). To model
and simulate airport flights (MA et al., 2023).

In the literature the Schelling model holds significant importance in agent-based modeling
for being one of the first models for understand social dynamics and patterns of segregation. It
was proposed by the economist Thomas C. Schelling in 1971 (SCHELLING, 1971), the model
has been applied in several domains, including urban planning (GONZÁLEZ-MÉNDEZ et al.,
2021), sociology, and economics, even now it continues to be the basis for other models, such
as approaches to fairness and altruism (FLAIG; HOUY, 2019), or intolerance in the face of
resource scarcity (JANI, 2020).

The importance of the Schelling model lies in its ability to illustrate how individual
preferences and behaviors can lead to macro-level patterns of segregation. The model explores
the emergence of segregation based on simple decision-making rules of individuals, without
assuming any inherent bias or explicit discrimination.

There are many interesting ABMs in the literature such as:

• Predator-prey dynamics, the agents are sheep and wolves, sheep eat grass, wolves eat
sheep, and they both reproduce.

• Political dynamics, the agents are the states that are fighting each other in alliances.

• Migration behavior for displaced people
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• Epidemiological simulation, in which an infectious disease spread over a road of networks
and the way people move.

2.7.1 Designing ABMs

The main challenge in using ABM is to define the behavior of the agents and select
the rules they use for making decisions. This is done in many cases using common sense and
guesswork, which is not enough to imitate true behavior. Trying to model all of the details of a
real problem can lead to complicated solutions in which the effect of agents on the environment
is difficult to determine. To effectively use ABM, it is needed to proceed in a systematic way to
check assumptions of the model and implement additional complexity only when appropriate.

There are ways to design and develop an ABM, the steps according to Sayama (2015)
are:

• Define the environment in which the agents will interact. The environment can be modeled
over a discrete or a continuous space, a discrete one can be an image, or a network, a
continuous environment can be an euclidean space, or a street map space (DATSERIS;
VAHDATI; DUBOIS, 2022).

• Define the agent types that will be placed in the environment. The agents contain attributes
that help to identify and locate it in the environment, as well as any other attribute according
to the purpose of the model.

• Define the model properties, like the scheduler, that controls when the agent will be active
(COMER, 2014).

• Define the functionality of agents along the simulation. It can be needed to provide
functions that act on each agent, and a function that acts on the model as a whole.

• Measure and visualize any specific data generated from the model, this, in order to check
the assumptions of the model.

• Collect data generated during the simulation of the model

2.7.2 Impact of the scheduler in ABM

The “activation scheme”, also known as “scheduling” or “updating”, is a very important
decision in the design of agent-based models. The scheduler is the component of ABMs that
controls the order of activation of the agents. The “activation scheme” determines the conditions
and the sequence of interaction of the agents.

There can be many types of activation schemes. The type of activation chosen has
a significant impact on the emergent population patterns and dynamics of the model. The
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activation can be synchronous or asynchronous, and the latter can be uniform (activated by
type and random), or domain specific (COMER, 2014). Therefore, it is important to specify
the activation scheme in the design of agent-based models (COMER; LOERCH, 2013). The
following activation types are usually implemented in specialized software:

• Sequential activation: The agents are activated according to the order they were created
in the model.

• Simultaneous activation: A synchronous activation, the simulation behaves as if all agents
have been activated simultaneously, as in the case of cellular automata.

• Random activation: The agents are activated following a random order, usually there is a
shuffle in the list of agents before they are activated.

• Random activation by type: The agents are activated according to their type, a type of
agent runs first, and then a second type of agent runs.

• Domain specific: The agents can also be activated using rules that are specific to an
application domain.

Different activation schemes can lead to diverse model outcomes. The study by Comer
(2014) analyzed the effects of various activation schemes on the models’ behavior of three agent-
based models, the authors found that in some cases the activation scheme produces notorious
variations in outcomes or overall model behavior. Alizadeh and Cioffi-Revilla (2015) analyzed
an agent-based opinion dynamics model, and Mudigonda et al. (2022) analyzed a variant of
the standard agent-based Susceptible-Infected-Recovered-Deceased (SIRD) contagion model.
Both of these studies demonstrate qualitative and quantitative differences between the activation
regimes. Consequently, the choice of the activation scheme can help to explore and discover
behaviors and patterns in agent-based models, which allows a better understanding of the complex
system under study.

2.7.3 Importance of the ABM framework

A simple ABM can be implemented using the default tools provided by a programming
language; however, when more sophisticated ABM models are required, it is better to use
specialized tools that can handle the intrinsic complexities of ABMs. Generally, tools for
implementing ABMs offer components for modeling, analysis, and visualization (ANTELMI et

al., 2023).

There are various tools that provide building blocks for ABMs. Among the various
general purpose tools we have NetLogo, Mesa, Agents.jl and krABMaga.



2.8. Considerations 51

The well-known NetLogo framework is useful to learn and explore concepts of ABM,
but as the complexity increases it is necessary to look for another solutions. NetLogo provides a
random activation scheme (WILENSKY; RAND, 2015).

Python has various implementations of agent-based models frameworks, the one that
is more consolidated is Mesa (KAZIL; MASAD; CROOKS, 2020). Mesa provides different
activation schemes.

Agents.jl is a framework written entirely in the Julia language, which means that its exe-
cution is usually faster than NetLogo, or Mesa. It has capabilities to simulations in geographical
maps (DATSERIS; VAHDATI; DUBOIS, 2022).

krABMaga is another framework to develop ABMs, it is written in the Rust programming
language. Being written in a modern and low-level programming language, krABMaga becomes
one of the frameworks that best uses the computational resources in addition to its efficient
execution, being the fastest of the frameworks previously mentioned (ANTELMI et al., 2019).

2.8 Considerations

The methods described of walkers, cellular automata, and agent-based models, have
been applied in the analysis of complex networks. Table 1 presents a comparison of the methods
described.

Table 1 – Comparing computational methods used to characterize complex networks.

Method Element
name

Activation
type

Element
type

Elements
in a position

Interaction
between
elements

Walks Tourist Random Unique Multiple No

CA Cell Simultaneous Unique Single No

ABM Agent

Sequential
Simultaneous
Random
Random by type
Domain specific

Multiple Multiple Yes

Source: Elaborated by the author.

The tourist in a walk and the cells in a cellular automata are elements of the same
type, while the agents in agent-based models are elements that can be of different types. The
methods based on walkers and automata have no interaction between them. On the other hand,
agent-based models work with more than one type of agent, which interact with each other and
the environment. In addition, agents have various kinds of activation.
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In a complex network, walkers use the degree measure of a node to find its new position
in the network according to some rules. Cells in cellular automata use node degree information to
update their state without changing their position. Agents in ABMs can use the degree information
as well as the environment information to interact with other agents, thereby updating their status
and position in the network.
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3
RELATED WORK

3.1 Introduction

Pattern recognition is an area of research that includes several tasks in which a machine
learns to identify patterns or regularities within data. Pattern recognition can involve classification,
as well as as clustering, anomaly detection, and regression.

Networks are useful for modeling interconnected data, providing a powerful framework
to represent and analyze complex relationships, dependencies, and interactions among various
entities or components in a system. The data stored in networks is not structured, so it is needed
proper approaches to find, analyze, and get important information from it. Since a method is
designed for a specific task that depends on the type of data under consideration, performing
pattern recognition in networks requires specific and usually novel approaches.

Classification is a task where the goal is to categorize input data into predefined classes
or categories. The classification of networks using pattern recognition techniques can provide
ways to get insights into the inherent patterns associated with the structure of the network.

3.2 Pattern Recognition in Networks

Recognizing patterns in a network involves extracting a set of features to form a feature
vector that, when given as input to a machine learning algorithm, enables the classification of
that network.

There have been various approaches to categorize complex networks. These approaches
can be differentiated between those based on the use of measurements extracted from the
networks and those based on the use of dynamic information generated by executing a process
on the networks.

The nodes and the edges determine the relationships of a network, therefore they influ-
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ence the dynamic processes that are executed on the network. Thus, it is necessary to obtain
measurements of the specific structural characteristics of each network in order to analyze and
classify the networks (COSTA et al., 2007). In this case, the feature vector comes from the
measurements of the network.

We can use a dynamic process on the network to obtain a feature vector of the network.
The process depends on the type of elements that interact on the network. In walks,random and
deterministic, the elements are walkers that move in the space according to rules and certains
conditions (SILVA; ZHAO, 2016). In cellular automata, the elements are cells that change
their state according to the state of neighboring cells. In agent-based models, the elements are
autonomous agents that move in the environment, interacting with other agents and with the state
of the environment.

The processes that use information from the environment to obtain the next state of the
elements are known as spatially explicit models (SEM). Random walkers generally do not use
information from the environment for their movement, they only move according to a certain
probability. In each case, the feature vectors are obtained by studying the dynamics that arise
from the activation of the elements on the network.

Several methods have been proposed in the literature, and the following sections provide
a description of some relevant methods for this work.

3.2.1 Structural Measures
Networks can be analyzed using their own characteristics in a static way. Just as networks

can be analyzed taking advantage of their dynamic properties. There are several measurements
that can be extracted from a network (COSTA et al., 2007). These measures are used as a feature
vector in classification tasks. Appropriately combined, these measures make up the set of feature
vectors in classification tasks.

Structural measures used to analyze networks can refer to the connectivity of the network,
such as average degree, degree distribution, and degree difference. In the context of pattern
recognition, several structural measures can be correlated (COSTA et al., 2010).

It is also possible to use measurements related to distance, in networks distance is
important because reflects the overall network structure. Among the distance measures we have
the number of edges in a path, the geodesic path, and average geodesic path.

3.2.2 Life-Like Network Automata
The work by Miranda, Machicao and Bruno (2016a) presents the Life-Like Network

Automata (LLNA). It is a cellular automata modeled on a network, where the transition rules
are based on the rules of the Game of Life. A regular structure considers a maximum number of
neighbors to apply the transition rules, while, a network has an irregular structure, this means
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that some nodes can have a large number of neighbors, and many nodes can have few neighbors,
so in LLNA they use the density of neighbors when applying the transition rules. The feature
vector was defined from the pattern formed in each node, which corresponds to the changes in its
state over time, which they called Time Evolution Patterns (MIRANDA; MACHICAO; BRUNO,
2016b).

The LLNA works on a network and each node of the network represents a cell or an
automaton. In formal terms, the LLNA is formed by an irregular tessellation T , and each node of
the network is considered a cell with ki neighbors, which a set of initial states s0, only varies in a
certain set of states S and follows a rule of transition Φ that determines the dynamics of the cells,
in the form of a tuple:

C = (T,S,s0,N,Φ)

Let S(ci, t) be the state of cell ci at time t, each cell can be in one of two states, S = 0
for dead and S= 1 for alive. The transition function at time t + 1 is defined by Φ : S(ci, t)→
S(ci, t + 1). Each cell can have 3 transitions, and each transition depends on the density σ of
alive neighbors using the adjacency matrix A. Each cell is influenced by its neighbors, and their
density is the main factor in the transition rules. There are separate rules for birth and survival.
If it has the appropriate neighbor density to be born and is currently dead, it will come to life.
If it has the appropriate neighbor density to survive and is currently alive, it will remain alive.
However, if it lacks the neighbor density to either be born or survive, it will remain dead. In other
words, if it is dead in time t, it will be born in time t +1, if it is alive in time t will survive in
time t +1, in other case the cell dies.:

σ(ci, t) =
1
ki

n

∑
j=1

Ai jS(c j, t)

The work by Ribas, Machicao and Bruno (2020), LLNA-LBP, adapts the work of LLNA
and adds the concepts of the Local Binary Pattern (LBP) descriptor used in texture image
analysis. Another work, related by their use of a Spatially Explicit Model in Cellular Automata is
presented by Florindo and Metze (2021) that uses the LBP descriptor that provides the transition
function for the automata. The work by Zielinski et al. (2022), D-TEP, uses LLNA and provides
different ways to extract the time evolution patterns formed by the simulation

3.2.3 Random Walks

This type of walkers has its origin in the well-known Traveling Salesman Problem (TSP)
(STANLEY; BULDYREV, 2001), in which the salesman must determine the shortest possible
route that allows him to travel a set of cities spread over a space.

A random walk in networks is a stochastic process where a “walker” moves from one
node to another following a set of rules determined by probabilities. At each step, the walker
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chooses a neighboring node to move to based on predefined probabilities associated with the
edges of the network.

Random walks uses walkers that moves over a network. In this case, each automaton
walks over the network going from an initial node to a neighboring node at random according to
a transition probability. As it is a special case of Markov chain, the generated stochastic process
can be reversed. Due to the nature of the process, the random walk can move to already visited
nodes. When this behavior is restricted so as not to repeat nodes, the random walk avoids nodes
already visited, this type of walk is called self-avoiding walk.

3.2.4 Deterministic Walks

Deterministic walks in a network refer to sequences of movements of a walker across
nodes that is determined by specific rules and deterministic processes, as opposed to random
walks that involve probabilistic choices. In deterministic walks, the next node to visit is uniquely
determined based on the current node and the defined rules for movement. Lima, Martinez and
Kinouchi (2001) present a local optimization problem named Traveling Tourist Problem, in this
case, the tourist has the restriction of minimizing the distance to go to the next city, and not
obtaining the shortest possible route from all the cities like in TSP.

A Deterministic Tourist Walk (DTW) models the movement of a tourist through a
network traversing the nodes in a deterministic manner. The movement of the tourist is affected
by its environment. Over an image a tourist considers the difference among neighboring pixel
values, it can be the minimum or maximum difference (BACKES et al., 2010). In networks the
movement can be based in the difference of the degree of neighboring nodes (GONÇALVES;
MARTINEZ; BRUNO, 2012).

The activation of the tourists is in a random fashion, because a tourist does not interact
with neighboring tourists. For this reason, there can be many tourist in a single position, but their
behavior is independent of every other tourist in the environment. The work by Merenda (2023)
uses deterministic tourist walks to analyze and categorize complex networks.

3.2.5 Spatially explicit Agent-Based Models

Agent-based models are computational models that simulate the behavior and interactions
of autonomous entities, referred to as agents, within a given environment. Each agent has its own
set of rules and behaviors, which collectively produce emergent phenomena at the system level.
Several ABMs have been modeled using networks as the agent communication structure.

An spatially-explicit model, reflects the effect of the environment and the interaction of
the elements, therefore the dynamic is constrained by the environment. The spatially explicit
data of the environment can be incorporated into the model, this could reveal the effects of the
spatial characteristics of the agents (DEANGELIS; GRIMM, 2014).
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Agent-based models naturally use networks as their environment for agent interaction. It
has been seen that ABM have real applications such as the examples presented in the previous
chapter. ABMs are usually modeled to simulate a real phenomenon. Other works uses ABMs
with specific purposes to analyze the network, for example the work by Jin et al. (2009) uses
ABMs to clustering Complex Networks.

3.3 Considerations
Several methods have been proposed in the literature that serve as the basis for the present

work. This work seeks to explore the capabilities of agent-based models to classify networks.
Unlike the methods based on tourists and cellular automata, the methods based on ABMs can
have more than one type of agent interacting on the environment, as well as there can be more
than one agent in the same position, and the activation of agents can occur in various ways.

The works in the literature, walkers and cellular automata, use only one type of element
to explore and analyze a network. ABMs do not have restrictions on the type of elements, number
of states, transition rules and type of activation. Besides that, in the literature, agent-based models
have not been used for pattern recognition and network categorization.
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CHAPTER

4
GROWTH MODEL: AN AGENT-BASED

MODEL FOR CATEGORIZING COMPLEX
NETWORKS

4.1 Introduction
This chapter presents the methodology employed in this work. Figure 9 shows a visual

representation of the outline of this work. The purpose is to model a dynamic process that
progresses within a given environment in order to obtain valuable information that aids in
characterizing the environment. It consists of three stages: Agent-Based Modeling, Pattern
Recognition, and Classification.

Figure 9 – The outline for this work consists of 3 stages: (1) Agent-Based Modeling, (2) Pattern Recogni-
tion, and (3) Classification.

Agent-Based
Modeling

Pattern
RecognitionInput Classfication Output

Source: Elaborated by the author.

In this work, the primary input consists of complex networks datasets. In pattern recogni-
tion works, complex networks are modeled to form the underlying structure for computational
models, like cellular automata and agent-based models. The initial stage of agent-based modeling,
focuses on the design and modeling of the interactive process. The objective of this phase is to
establish a comprehensive understanding of the underlying dynamics within the environment.

The second stage of pattern recognition, includes the execution of simulations and the
generation of patterns based on the proposed model. In this stage, patterns are extracted, and
features are constructed from the generated data. The process involves identifying meaningful
structures within the data.
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Finally, the third stage of classification, involves the evaluation and application of the
generated features in the context of a classification problem. With the aim to assign appropriate
labels to the analyzed patterns, to characterize the underlying environment of complex networks.
The main metric to evaluate the model performance is accuracy. Other useful measures for the
classification process are also presented, such as the confusion matrix, precision, recall, and
AUC-ROC curve. The Validation Strategy is the Repeated Stratified k-fold Cross Validation.

This work is motivated by the lack of scientific work exploring the use of agent-based
models for network classification. ABMs is a promising area to explore and research. An ABM
can capture the inherent properties of the environment under study, i.e. complex networks. By
using agent-based models in the simulation, we can explore the characteristics of the environment
and discover valuable data that contributes to the characterization and understanding of the
underlying environment.

The ABM was initially modeled on texture images, then a transformation was done to
adapt it to work with complex networks. The modeling process was conducted on images due
to their inherent two-dimensional structure and the ability to easily visualize the values of each
pixel. This allowed for intuitive interaction with the image, enabling the addition or removal of
data and providing visual feedback of the ongoing process. However, networks, lacking a fixed
position in space, posed a distinct challenge. Consequently, to model this process in another
environment, the modeling approach was adapted to incorporate the characteristics of complex
networks.

An image can be interpreted as a surface, where the values assigned to each pixel
represent the height of the surface, the height represents the metric in texture images. In the
case of gray scale images, these values range from 0 to 255. From this concept of elevation,
it becomes possible to place objects onto the surface, where their behavior is influenced by
their respective height. This notion gave rise to the idea of simulating water, which naturally
flows towards regions of lower altitude. Building upon this water movement, another object was
modeled: plants. The growth of these plants depend on the presence and quantity of water in
their neighborhood.

Several questions were considered to develop the model in texture images: How to
represent the agents that will interact in this environment? What will be the specific attributes
for the water and plant agents on this environment? How can we capture the dynamics between
plants and the surrounding water? In this way, we explored methods to represent the interaction
of water and plants influenced by the environment.

Then, we proceed to transform this model applied in images into a model applied in
complex networks. In order to make the desired modifications, it is necessary to establish a
correlation between the metric used in texture images to a corresponding altitude value within a
network context. This mapping enables the integration of the same concept of altitude information
across both domains.
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For the model applied in networks, we use the degree information as a measure analogous
to the “height” in relation to pixel levels in images. Among the metrics used to characterize
complex networks, the degree of a node plays a crucial role in the study of complex networks. The
degree of a node refers to the number of connections it has with its neighbors. The information
of the degree of a node has been effectively applied in social networks (ZHANG; LUO, 2017),
psychiatry (ZHOU et al., 2017), and medicine (WANG et al., 2019).

There are other several metrics that are used to characterize complex networks. These
metrics serve as quantitative measures to assess and describe the fundamental properties and
attributes of complex networks (WILLS; MEYER, 2020). The selection of appropriate metrics
depends on the specific research objectives and the nature of the network being analyzed. These
metrics provide valuable insights into the structural, functional, and topological aspects of
the networks, facilitating a comprehensive understanding of their characteristics and behavior
(COSTA et al., 2007).

In our work, we aim to explore the interaction between the agents using the spatially
explicit information of the environment. Through this dynamic process, we aim to discover
patterns that helps us in the understanding of the underlying structural organization of the
environment. The following sections describe the input network datasets, the stage of agent-
based modeling, the pattern recognition stage, and the classification process.

4.2 Network datasets

A network dataset for classification is a collection of labeled networks used to train,
evaluate, and test a classification model. The dataset comprises the network data and the class
labels. The datasets we used in the experiments were synthetic and from the real world. These
datasets were also used in related works of network categorization, therefore they are useful for
establishing comparative performances with the classification results of their methods.

4.2.1 Synthetic network datasets

Synthetic datasets are those specifically created to test the performance of the proposed
models in the literature. Most synthetic datasets are balanced, that is, they have the same number
of samples per class. We use the synthetic datasets presented in the work by Miranda, Machicao
and Bruno (2016a): Synthetic 4-models, Synthetic 4-models plus ⟨k⟩, Scale-free, and a set of
Noisy datasets.

• Synthetic 4-models: This dataset is composed of synthetic networks generated from the
combination of the average degree ⟨k⟩ and the network size N, that is equal to the number
of nodes. It was used 7 values of the average degree, and 4 values of the network size,
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specifically ⟨k⟩ = [4,6,8,10,12,14,16], and N = [500,1000,1500,2000], applied to the
following network models:

– An Erdös-Rényi model (ERDÖS, 1959). The model generates random networks
where the edges have a connection probability of p = ⟨k⟩/N.

– A Watts–Strogatz small-world model (WATTS; STROGATZ, 1998). Each edge in
the networks have a rewiring probability of p = 0.1.

– A Barabási-Albert scale-free model (BARABÁSI; ALBERT, 1999). The networks
exhibit linear and non-linear preferential attachments.

– A Waxman or geographical model (WAXMAN, 1988). These networks are consid-
ered as the spatial generalization of the Erdös-Rényi networks. Nodes are connected
according to a probability that is a function of their spatial distance.

The purpose of the combination of the average degree ⟨k⟩ and the network size N is
to make the synthetic dataset heterogeneous, thus the dataset presents a wide range of
features. For each pair of ⟨k⟩ and N there are 100 networks, which adds up to a total of
2800 networks for each model, resulting in a dataset containing 11200 networks. Overall,
this dataset has 4 classes, and each class has 2800 samples.

• Synthetic 4-models + ⟨k⟩: This synthetic dataset contains networks that come from the
Synthetic 4-models previously described. The networks result from the combination of 7
⟨k⟩−N values with the 4 models. The values of ⟨k⟩ are [4,6,8,10,12,14,16] and keeping
N constant equal to 500. The model −⟨k⟩−N combination represents a class, so we have
28 classes in this dataset, and each class is made up of 100 networks. In total, this dataset
has 2800 networks.

• Scale-free: This dataset comprises scale-free networks based on the models by Albert
and Barabási (2000), and Dorogovtsev and Mendes (2002), with values of average degree
⟨k⟩ = 8 and size network N = 1000. In the Barabási-Albert networks, the parameter
α represents the preferential attachment of the edges (BARABÁSI, 2015). A value of
α equal to 1 means that the edges present linear preferential attachment, while values
other than 1 the preferential attachment is non-linear. Using the Barabási-Albert model,
100 networks were built for each of the 4 values of α = [0.5,1.0,1.5,2.0]. Using the
Dorogovtsev-Mendes model 100 networks were built. Thus, the dataset is composed of
five distinct classes, and each of these classes has 100 networks.

• Noisy datasets: They correspond to 4 datasets whose networks come from the synthetic 4-

models dataset and the Scale-free dataset to create a noise-free dataset, referred as Noise-0.
There are 400 networks from the synthetic 4-models and 400 networks from the Scale-free

dataset, making a total of 800 networks. From this base Noise-0 dataset, a noise rate was
applied to the dataset in order to modify the topological structure of the networks. In this
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way, it was created 3 other datasets. The applied noise rate, ρ , was of 10%, 20% and 30%,
the higher the value of ρ , the more changes the network undergoes. The changes consisted
in the removal of ρ/2 edges and the addition of ρ/2 edges. The alterations introduced
to the networks were made to assess the robustness of the method under consideration.
To summarize, each noise dataset, noise-0, noisy-10%, noisy-20% and noisy-30%, has 8
classes with 100 networks per class.

4.2.2 Real-world network datasets

Real-world datasets are specific to an area of application, for example social networks,
chemical molecules, or coming from bioinformatics. In most of the cases, real-world datasets are
imbalanced, that is, the number of samples per class is not equal. We use the following datasets: A
set of Metabolic datasets comprising seven datasets: Actinobacteria, Animal, Firmicutes-Bacillis,
Fungi, Kingdom, Plant, Protist. A Social dataset, and a Stomata dataset.

• Metabolic: this dataset was constructed using the substrate-product network model (ZHAO
et al., 2006). The vertices corresponds to metabolites, and the relationship between them are
the products per each reaction. Seven datasets were obtained from the Kyoto Encyclopedia
of Genes and Genomes database (KANEHISA et al., 2015):

– Actinobacteria: This dataset contains the classes Mycobacterium, Corynebacterium

and Streptomyces. This is an imbalanced dataset containing 3 classes with 60, 86,
and 53 networks per class respectively, with 199 networks in total.

– Animal: this dataset comprises the classes: mammals, birds, fishes and insects. This
dataset is composed of 4 classes with 14 networks per class, with 56 networks in
total.

– Firmicutes-Bacillis: this dataset contains the classes Bacillus, Staphylococcus, Strep-

tococcus and Lactobacillus. This is an imbalanced dataset containing 4 classes with
122, 76, 133 and 83 networks per class respectively, with 414 networks in total.

– Fungi: this dataset contains the classes: saccharomycetes, sordariomycetes, and
basidiomycetes. This dataset is composed of 4 classes with 15 networks per class,
with 60 networks in total.

– Kingdom: this dataset contains eukaryotes, that is, a diverse domain of organisms
whose cells have a nucleus such as animals, plants, fungi and protist. This dataset is
composed of 4 classes with 40 networks per class, with 160 networks in total.

– Plant: this dataset contains the classes: Monocots, Green algae and Eudicots. This
dataset is composed of 3 classes with 9 networks per class, with 27 networks in total.
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– Protist: this dataset contains the classes Amoebozoa, Alveolates, Stramenopiles and
Euglenozoa. This dataset is composed of 4 classes with 5 networks per class, with 20
networks in total.

• Social: This dataset comes from the Stanford Network Analysis Project (LESKOVEC;
KREVL, 2014). Two networks were used: Google+ and Twitter. Each network corresponds
to an “ego-network”, an ego-network refers to the subnetwork or neighborhood surrounding
a specific node of interest, known as the ego node. In this dataset the ego node is not
included. There was a selection of 50 samples of each network, therefore, this dataset has
2 classes with 50 networks per class with 100 networks in total.

• Stomata: This dataset is presented in the work by Miranda, Machicao and Bruno (2016a),
they come from the transformation of binary images to networks of the distribution
of stomata on plant leaves of Tradescantia zebrina, this plant is commonly known as
wandering dude. To form the network, they used the spatial distribution of the stomata,
thus connecting two stomata according to an established radius. As the radius increases,
the stomata connect with more stomata, thus the density of the network increases. The data
set consists of 3 classes, that represent 3 different lighting conditions, with 96 networks
per class.

4.3 Agent-Based Model

4.3.1 Description of the model

With the objective of finding characteristics that help to categorize networks, we model
a dynamic process using agent-based models, the interaction of the agents on the environment
provides data and patterns, these patterns are used to classify the complex networks.

If we interpret an image as an environment where water and plants interact. The environ-
ment provides a tangible representation of how water naturally flows towards lower altitudes and
how plants dynamically grow in response to their surrounding environment. Thus, providing a
visual feedback that aids in the understanding and validation of the behavior of the agents within
the model.

The proposed model is called Growth Model, it simulates the growing of plant agents
through the interaction with water agents over an environment. Figure 10 represents the main
components of the model. It consists of the Model, the Scheduler, the Environment, the Water
and Plant agents.

The Model is the main component that includes the other components, it serves as the
interface of the parameters and the behavior of the agents. The Scheduler is the component that
used to define the order in which the agents will be activated. The Environment represents the
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space in which the agents interact, the space can be either a texture image or a complex network.
The two types of agents in the model, the plant agent and the water agent are related to the
Scheduler and the Environment. The Scheduler activates the agents by type in random order,
and the Environment provides the spatially explicit information that the agents need to adapt its
behavior.

Figure 10 – The Growth model: an Agent-Based Model for categorizing complex networks
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Water
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Source: Elaborated by the author.

The model consists of the structure, the dynamics, and data collection of the agent based
model:

• Environment: An image or a network.

• Agents: Water agents and Plant agents.

• Behavior of agent Water: the Water moves to lower places of the environment. There can
be more than one Water agent in the same position.

• Behavior of agent Plant: the Plant growth according to the water around its neighborhood.
There is only one Plant agent in a position.

• Neighborhood: In an image the neighborhood are the positions around a pixel. In a network
the neighborhood represents the neighbors around a node.

• Activation scheme: During the simulation, first the water is activated then the plants are
activated.

• Data collection: The data generated is collected after both agents were activated.
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4.3.2 Growth Model

In this agent-based model interacts two types of agents, water and plant. The water moves
over the environment, and the plant grows according to the number of water around its vicinity
region. The concrete environment to explore the interaction between these two agents is an image
or a network.

In the following paragraphs, to describe the agents behavior of the Growth model, we
refer to them as “plant” and “water”, in uppercase or in lowercase, where necessary to help in
the understanding of the model, instead of writing “plant agent” and “water agent”.

4.3.2.1 The environment

The environment provides the spatially explicit information necessary to model the
interaction of the agents, as it establish a position for the agents and helps to identify its
neighbors. Its structure provides a criterion to determine the movement of water and the growth
of plants. The environment defines the metric for the agents, with this metric being represented by
the term “height”. In the context of images, it corresponds to the pixel value, while in networks,
it refers to the degree of the node.

In this work, the environments used for the interaction of agents are complex networks.
In images a pixel is related to its neighbors according to the Moore neighborhood. In networks a
node its related to its closest neighbors, and we work with undirected networks.

A first modeling approach was performed in images because its structure helps us to
visualize the position and height of the agents. To model the environment in images, we use
gray scale images, in this way the image can be represented as a surface, in which the highest
values represent peaks, and lower values represent valleys in the surface. Thus, the criterion for
the movement of water through the environment are the values of the pixels. Figure 11 depicts
an image and its representation as a tridimensional surface. The image is represented with an
orange-color scale to improve visibility and clarity of the surface. The colors represent the pixel
values of the image, lighter values are lower pixel values, conversely darker values correspond to
higher pixel values.

The agents can be placed in specific positions in the environment, for example, the
plants in lower altitude locations, and the water in higher elevate locations, with the objective
to facilitate the movement of water and the growing of plants, or the agents can be placed in
random positions in the environment. During the simulation, the water moves across the surface
exploring lower regions of altitude, and in turn the plant has an allowed region of operation,
which means that its scope is limited in its range of neighbors, and therefore interacts with the
water and neighboring plants that are within a certain height.

Figure 12 shows the scope of a plant. The plant is represented by a green square in the
center of the region and the numbers represent the relative height of the plant agent with respect
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Figure 11 – An image and its representation as a surface: (a) a gray scale image of size
20×20 pixels, and (b) the gray scale image viewed as a tridimensional surface.

(a) (b)

Source: Elaborated by the author.

to its neighborhood. The scope is defined as the height h in which the plant can interact within
the environment, and therefore with other agents. The image represents two regions, on the left
a 3×3 area, and on the right a 3×3×h surface, in the image h = 5 units. If the height is not
considered, the plant agent can reach all neighboring positions, however when considering a
height, the plant agent interacts only with those positions that are above or below the height h,
on the surface they are the gray squares .

Figure 12 – Scope of the plant agent: Comparison of a 3×3 region with a 3×3×h volume region
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4.3.2.2 Water agent

Each water agent represents a drop of water that can move around the environment and
can be consumed by a plant agent. A water can be in one of two states: alive or dead. In the alive
status a water is scheduled to move freely through the environment, however in the dead status it
is removed from the scheduler and the environment.

From its starting position the water moves through the environment towards lower altitude
regions. The rule of motion is by the relative height in the environment, the water agents will
move to positions with lower altitude. As a consequence of the structure of the environment, the
movement of water can result in having more than one water agent in the same position.

A water moves freely over the environment along all the execution of the simulation,
meaning that its status of alive does not change and only it can change its status to dead when it
is consumed by a plant. The water may also exhibit an evaporation phenomenon, meaning that
it has a lifetime, a time during the simulation in which the water can be used and its status is
alive. With a lifetime the water moves a maximum number of steps, and if it is not consumed by
a plant it evaporates, that is, its status change to dead, so it is remove from the simulation. Every
time a water moves, its lifetime decreases, if this value drops to zero, the water changes its status
to dead, and it is removed from the model.

4.3.2.3 Movement of Water

Figure 13 presents the algorithm for the water movement over the environment. The
purpose of the algorithm is to find a new position for the water. The searching for lower positions
resembles the movement of butterflies trying to find higher positions in an environment creating
virtual corridors, the movement is known as hill-topping in butterflies that was described by
Pe’er, Saltz and Frank (2005). From its current position, the water verifies its neighborhood,
looking for the lowest positions in the environment taking into account the existing water of its
neighbors, and will move to another position, one with an equal or lower altitude, or will stay in
its position because it already is in a local minima.

At the start, the water gets the neighbors around its current position, with this information
the water checks the height of the neighbors, for each neighboring position this value is the sum
of the height of the environment and the amount of water in that position. At the decision point
the water checks if there is a lower position to which it can move, if it finds a new position with
lower height the water moves, which means that the scheduler updates its position, otherwise the
water remains in its position.

Figures 14, 15, and 16 illustrate the water movement algorithm in three scenarios: the
movement of one water agent in a surface with different levels of altitude, the movement of one
water agent in a surface with equal lower level of altitude, and the sequence of movements of
two water agents that start in the same position.
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Figure 13 – Algorithm for the movement of water
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Figure 14 illustrate the movement of a water agent. The light blue dot in the center
represents a Water agent. In the first image (a) the water agent is located in the middle of a
3× 3 surface. The numbers inside the squares, in the second image (b), represent the height
of the surface relative to the water agent. A positive value means that the surface altitude is
higher a number of units, similarly, a negative value means that the surface altitude is lower a
number of units. The third image (c) shows that the water agent is located around a surface with
4 places with higher altitude and 4 places with lower altitude than itself, the red arrows point to
lower possible places where the water agent can move. And finally, in the fourth image (d), after
evaluating its surrounding, the water agent moves to the local minima.

In Figure 15 shows the movement of a water agent, in this case the surface has 5 positions
of lower altitude with respect of the agent position, all the 5 positions have equal altitude. In
(a) the Water agent is in the middle of the neighborhood, in (b) the water and the height of the
surface, in (c) the water agent checked that has 5 possible places to move, all of equal altitude, in
(d) the water agent moves to a new position, as the altitude is equal, the selection of the position
is in random form.

In Figure 16 there are two water agents in the same position in the environment. The first
water agent is of light blue color, and the second is of turquoise color. In (a) the two water agents
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Figure 14 – Sequence of the movement of a water agent in a neighborhood with different altitudes.
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Figure 15 – Sequence of movement of one water agent with 5 possibles places to move with equal height
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are at the center of the surface. In (b) the first Water agent and the height relative to its position,
in (c) the first water agents checks that it has 4 possibles places to move, and, in (d) the first
water agent move to the lowest altitude position, in this case there is only one possible place, the
position marked with -9. For the second agent to move, the environment has changed, since the
previous water agent adds the height of the pixel to the quantity of water, in this case, from -9
goes to -8. In (e) appears the second water agent and its height relative to its position. In (f) the
second water agent checks its environment and has two possible places of equal altitude to move,
in (g) the agent moves, this time the selection of the new position is at random. And finally, in
(h) appears the positions of the two water agents after their movements.

4.3.2.4 Plant agent

In the growth model, the plant is an agent that starts in an established position and can
grow and expand creating other plant agents. Its dynamic depends on the surface and the amount
of water agents around it. A plant starts in the alive state and with a time to live, while being
alive it can interact with other agents in the environment. If during the execution of the model
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Figure 16 – Sequence of movement of two drops of water starting at the same position
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the plant does not get water to grow, its time to live decreases, and if its time to live reaches zero,
it changes its state to dead, in that case it is removed from the environment.

The model considers that each plant occupies a unique position in the environment.
Thus in Figure 17, there are three plants located in closely related positions which interact
independently. At the start of the simulation, the Plant agents can be placed randomly or in
specific places of altitude in the environment. In order to allow the interaction between the agents,
the water is placed in the highest positions, while the plants are placed in the lowest positions, so
that the water can find a way to the plants and the plants can grow in the environment.

4.3.2.5 Plant growth

Figure 18 shows the algorithm for the growing of plants. The objective of the algorithm
is the interaction of the plants with the environment and water agents, so that they can grow and
expand towards neighboring positions. In this way, the growth of plants can be viewed both as
vertical and horizontal. In the vertical growth the plant increases its height, in the horizontal
growth, new plants are created. The effect that emerges during the simulation of the model is that
the plants grow uniformly in height from their initial position and expand to occupy a greater
area.

In the algorithm, the altitude considered correspond to the sum of the surface height and
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Figure 17 – The plant agent occupies unique positions in the environment. In this space there are three
plant agents.
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Source: Elaborated by the author.

the plant height. In images the surface height is equal to the pixel value, and in networks the
surface height is equal to the degree of the node.

In Figure 18 the start symbol means that the Scheduler has activated a plant. The letters
next to block processes identify the progression of the algorithm. At first (a), the plant observes
its neighborhood and obtains the water that is within its scope. The plant obtains water from the
surface that is in a specific range of height, and does not consider water in positions higher or
lower than its scope. The model defines a parameter that corresponds to the amount of water
needed to grow. If the amount of water is not enough to grow (b), the lifetime of the plant
decreases and it is checked if the lifetime has dropped to zero. At this point the plant disappears
from the environment, its state is set to dead and it is removed from the Scheduler.

When the plant has enough water in its environment, the algorithm checks the neighbor-
hood (c) to find positions that do not contain plants. If there are one or more positions without
plants, the algorithm chooses the position with the lower altitude and creates a plant at that
position (d). On the contrary, if all the neighboring positions are occupied by plants, the algorithm
checks which of those plants has lower altitude, and choose the one with lower altitude (f) to
increase its height. Finally, if all the surrounding plants have higher altitude, the plant grows (e).

Figures 19, 20, and 21 illustrate the operation of the algorithm in three scenarios: a plant
and 7 water agents in the environment, a plant that does not have enough water in its scope, and
a plant with enough water to grow. The green square represents a Plant agent and the light blue
dots represent Water agents. At the beginning the plant agent is located in the middle of the
surface, and the numbers represent the height relative to its position.

In Figure 19, there is a plant and seven water agents in the environment. The amount of
water that can be used by the plant is restricted to the height of ± 5 pixels, this means that of the
7 water agents, the plant can only consume 4 water agents, 3 from the left column and one in the
upper right corner.

In Figure 20, the plant has a lifetime of 2 and it requires 5 water agents to grow. In (a) is
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Figure 18 – Algorithm for plant growth
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Figure 19 – Effect of the scope of the plant agent in an environment. The plant can only consume 4 water
agents of the 7 that are around it.
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shown the scope of the plant, there are 4 positions from which it can consume water and where it
can grow. In (b) the plant has 4 water agents within its reach, but it does not consume them and
its lifetime decreases. At (c) again the plant does not consume the water around it, its lifetime
decreases to zero and it is removed from the model.

Figure 20 – A plant agent with not enough water to grow
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In Figure 21, the plant requires 4 water agents to grow. In (a) the plant has 4 neighboring
water agents in its scope. In (b), the plant consumed the water agents and it can create another
plant in its scope. In (c), the plant chooses the position with the lowest altitude and creates a new
plant.

Figure 21 – Creating a new plant in the plant scope
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4.3.2.6 Parameters of the model

During the execution of the growth model, various parameters are used to influence the
behavior of the model in simulations. These parameters serve as input values affecting the model,
the environment, and the agents.

• Model parameters:

– Percentage of water: Initial percentage of water placed in the environment

– Percentage of plant: Initial percentage of plants placed in the environment

– Number of iterations: Number of times the model is executed.

– Iterations to add water: Number of iterations that need to pass to add water while
running the simulation.

• Environment parameters:

– Plant position: Initial position of plants in the environment. Plants can be placed at
lower places or at random places in the environment.

– Water position: Initial position of water in the environment. Water can be placed at
upper places or at random places in the environment.

– Metric: The value used to define the height of the environment. In images is the pixel
value, meanwhile in networks is the degree of the node.

• Plant parameters:

– Quantity of water to grow: Define the quantity of water needed by a plant to grow.

– Height to grow: The height variation that a plant checks to obtain water, in this way
defines its scope.

– Time alive of plant: The lifetime of plants. Indicates how many iterations the plant is
alive during the simulation.

• Water parameters:

– Time alive of water: The lifetime of water. Indicates how many iterations the water is
alive during the simulation.

4.3.2.7 The Growth model in complex networks

Table 2 presents the main characteristics and differences of the growth model applied in
images and complex networks. From the model proposed in images, it was needed some adapta-
tions to apply the model in networks. In complex networks, the environment is an undirected
network, the metric used is the degree of the node, unlike images, it can have n neighboring
nodes, and the scope is defined as the degree difference.
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Table 2 – Characteristics and differences of the growth model in images and complex networks.

Texture images Complex networks

Environment: scale-gray image Environment: undirected network
Metric: Pixel values Metric: Node degree
Neighborhood: 8 neighboring pixels Neighborhood: n neighboring nodes
Plant scope: considers pixel difference Plant scope: considers degree difference

4.4 Pattern Recognition

During the simulation of the model, we collect data from the interactions of the agents
and the environment. The data is analyzed in this stage of pattern recognition. The patterns are
extracted and a feature vector is built. Both global features and local features can be used to
construct the feature vector.

4.4.1 Global features

It is possible to use global features to evaluate the performance of the model. A global
feature captures the overall dynamics of the simulation. In each iteration, the Scheduler executes
the behavior of every agent within the model. After each iteration, data is collected from all the
active agents, and we use these data as feature vectors for the classification stage.

Table 3 presents the description of the names of the features that can be collected from the
model, their abbreviations for later reference, and their descriptions. The features are separated
according to the agent that originates it. These features were evaluated in order to choose those
that provided better performance in the classification stage.

Table 3 – Global features obtained during the simulation of our Agent-Based Model

Features abbr. Description

Plant area pa It represents the number of nodes with plant agents in the
environment.

Plant time pt It is the lifetime of the plant agents.
Plant volume pv To obtain the plant volume, we consider the area and the

height of the plants.

Water area wa It represents the number of nodes that contain water agents
in the environment.

Water quantity wq It is the amount of alive water agents in the environment
Water steps ws It represents the number of times that the water agents

changed its position.
Water time wt It is the lifetime of the water agents

Source: Elaborated by the author.

From the plant agents can be extracted the features: plant area pa, plant volume pv, and
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plant time pt. The plant area pa represents the quantity of plant agents during the simulation,
because a plant does not move during the simulation, so its position does not change. The
plant time pt is the sum of the time alive. The plant volume pv represents the number of plants
considering their height.

From the water agent can be extracted the features: water area wa, water steps ws, water
time wt, water quantity wq. The water area wa is the area occupied by the water agents in the
environment, since multiple agents can be in the same position, the water area is smaller than the
number of water agents. The water quantity wq represents the amount of alive water agents in
the environment, and there can be multiple water agents in the same position. The water time wt

is the sum of time alive of water agents. The water steps ws is the number of times the water
agents has moved to another position in the environment.

Figure 22 shows a plot of the data generated with the plant agent. The x-axis represents
the number of iterations of the simulation, and the y-axis the normalized data. Table 4 presents
the correlation data between the characteristics of the plant agent. pa is not correlated with pt,
and pa has a correlation value with pv that indicates that there is a moderate positive correlation
between the two characteristics. pt has a moderate negative correlation with pt.

Figure 22 – Plant features generated in a network of the Actinobacteria dataset: (a) plant area, (b) plant
time, and (c) plant volume

(a) (b) (c)

Source: Elaborated by the author.

Table 4 – Data of correlation among plant features

pa pt pv
pa 1 -0.06 0.672
pt 1 -0.498
pv 1

Source: Elaborated by the author.

Figure 23 shows a plot of the data generated with the agent water. The x-axis represents
the number of iterations, and the y-axis the normalized data. Table 5 presents the correlation
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data between the characteristics of the water agent. wa is correlated with wq and wt, and wa

presents a moderate positive correlation with ws. wq is moderately correlated with ws, and wq is
correlated with wt. ws is not correlated to wt.

Figure 23 – Water features generated in a network of the Actinobacteria dataset: (a) water area, (b) water
quantity, (c) water steps, and (d) water time.
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Source: Elaborated by the author.

Table 5 – Data of correlation among water features

wa wq ws wt
wa 1 0.958 0.527 0.943
wq 1 0.713 0.876
ws 1 0.288
wt 1

Source: Elaborated by the author.

From the global characteristics we choose 2 characteristics of each agent. From the plant
agent we choose plant area pa and plant volume pv. The plant time pt depends on the value of
the parameter time alive of plant. When this value is set to its special value, pt would have a
constant value throughout the simulation, not being a suitable value as a characteristic in the
classification task. From the water agent we choose the water quantity wq and the water steps
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ws. Water area wa and water quantity wq are correlated, so we decide on one. And we do not
choose the water time wt for the reasons described above in the plant agent. Thus, we have the 4
features of plant area, plant volume, water quantity, and water steps {pa, pv,wq,ws} as feature
vector to apply in the stage of classification. These features are measured at each iteration so the
size of the feature vector depends on the number of iterations that the model is simulated.

4.4.2 Local features

The local features used are the metrics of Lempel-Ziv complexity and the Shannon
Entropy. The process to obtain the local features is the same for both metrics. For example,
to use the Shannon Entropy, the approach involves initially calculating the Shannon entropy
for individual nodes within the network, and computing the minimum and maximum entropy
value. Then, the calculated entropy value of each node is assigned to an interval in an histogram,
obtaining the entropy distribution of the entire network. This way, the size of the feature vector,
for each network, will be the number of bins in the histogram. The work by Miranda, Machicao
and Bruno (2016b) defined 20 bins to create the histogram. Therefore, the feature vector does
not depend on the number of nodes in the network.

4.4.2.1 Lempel-Ziv Complexity

The Lempel-Ziv (LZ) complexity is a measure of the complexity or compressibility of
a string of symbols. The basic idea behind Lempel-Ziv complexity is to quantify the amount
of information or redundancy in a sequence of symbols (LEMPEL; ZIV, 1976). The algorithm
works by identifying repeated patterns or substrings in the input string and encoding them
more efficiently. The complexity is then calculated based on the length of the compressed
representation compared to the original string (DOĞANAKSOY; GÖLOĞLU, 2006).

The Lempel-Ziv complexity is expressed as:

CLZ =
length of compressed representation

length of original string

A lower value of CLZ indicates higher complexity or less compressibility, implying more
information and less redundancy in the string.

4.4.2.2 Shannon Entropy

Shannon entropy, named after Claude Shannon, is a measure of the uncertainty or
information content associated with a random variable. It quantifies the average amount of
unpredictability associated with the possible outcomes of a random process (OMAR; PLAP-
PER, 2020). Shannon entropy is a fundamental concept in information theory and has various
applications, including its use in analyzing complex networks.
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The formula for Shannon entropy H(X) for a discrete random variable X with probability
distribution P(X) is given by:

H(X) =−∑
i

P(xi) log2(P(xi))H(X)

Here, xi represents each possible outcome of the random variable, and the sum is taken
over all possible outcomes. The logarithm is base 2, which results in entropy measured in bits.

In network characterization, Shannon entropy provides a quantitative measure of a
network’s heterogeneity. High entropy often suggests scale-free networks with hubs and many
low-degree nodes, while low entropy might indicate regular or random networks.

4.5 Classification process

For the classification process, we define the classifiers used in the experiments, the
validation strategy to assess the performance of the model, and the metrics used.

4.5.1 Classifiers

In this part, we define the classifiers used for the data generated by the agents. The
objective of classifiers is to build models that can predict the category of a given input data point
based on its features. There are many types of classifiers, including decision trees, support vector
machines, logistic regression, and neural networks. As we work with structured data, we employ
machine learning classifiers that provide good results for this type of data type (GRINSZTAJN;
OYALLON; VAROQUAUX, 2022; SHWARTZ-ZIV; ARMON, 2022): k-Nearest Neighbors,
Linear Discriminant Analysis and Linear Support Vector Classifier. These classifiers were used
with the default parameters offered by Scikit-learn (PEDREGOSA et al., 2011).

• k-Nearest Neighbors, kNN: It is an algorithm that makes predictions based on the
similarity of data instances in the feature space. kNN is a method that classifies or predicts
new data points based on the majority vote or average of the k-nearest neighbors in the
training set. It is a simple and effective classification algorithm that uses a distance metric
to classify data. An instance of the testing set is compared against each instance of the
training dataset, then according to the k nearest neighbors, a label is assigned for this
instance (MARSLAND, 2015). In Scikit-learn the number of neighbors by default is set to
5.

• Linear Discriminant Analysis, LDA: It is a dimensionality reduction and classification
technique. It is used for supervised classification tasks and is suited when dealing with
high-dimensional data. It seeks to find a linear transformation of the data that can help to
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discriminate the classes. After the transformation, the classification is made using some
metrics such as Euclidean distance (LI; ZHU; OGIHARA, 2006).

• Linear SVC (Linear Support Vector Classifier) is a linear classifier based on the Support
Vector Machine (SVM) algorithm. It is designed for binary and multiclass classification
tasks and is particularly useful when dealing with large-scale datasets. LinearSVC aims to
find the optimal hyperplane that best separates the different classes in the feature space.
The implementation of LinearSVC in Scikit-learn uses L2 regularization by default, which
helps to prevent overfitting and improve the generalization of the model (FAN et al., 2008).

4.5.2 Validation Strategy

Cross-validation is a statistical method to evaluate the generalization performance of
a machine learning algorithm on a dataset. It involves splitting the available data into multiple
subsets, or folds, to simulate the performance of the model on unseen data by iteratively training
and evaluating the model on different subsets of the available data.

A common approach of cross-validation is k-fold Cross-validation, in which k defines
the number of splits of the data. Using k-fold cross-validation, the data is split into k parts such
that they are of equal or approximate size. Then a classifier uses k− 1 folds of the data for
training and 1 fold for testing, this process is repeated k times, in this way all the data is part of
the testing set exactly once.

Another approach to split the data is by using Stratified k-fold cross-validation, this
means that, in addition to split the data into equal sizes, each fold contains the same proportion
of the classes as the entire data set. Thus, the value of k also depends on the number of samples
per class in the dataset. By setting k equal to 10, the dataset must have at least 10 samples per
class, so each sample will be part of the test set (MÜLLER; GUIDO, 2017).

A third approach that allows to obtain a better evaluation of the model is the Repeated
Stratified k-fold cross-validation. This means repeating the cross-validation procedure n times.
In each repetition, before obtaining a stratified division, the data is shuffled. Thus, the total
number of cross-validation runs is n× k (KUHN; JOHNSON, 2013).

To evaluate the performance and generalization ability of our model, we use the Repeated

Stratified k-fold cross-validation strategy. In order to get comparable result to previous works
(MIRANDA; MACHICAO; BRUNO, 2016a; ZIELINSKI et al., 2022), we set the number of
repetitions n equal to 100.

In the case of datasets with at least 10 samples per class, for example the synthetic
Scale-free dataset, we set k = 10 for cross validation, however, in datasets with less than 10
samples per class, such as the Plant dataset, which has 9 samples per class, we use k = 3 for
cross-validation. In addition, when working with imbalanced datasets, we make use of random
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subsampling of the data (LEMAîTRE; NOGUEIRA; ARIDAS, 2017), before applying the
cross-validation procedure.

4.5.3 Data preparation steps

The representation of the data can impact the performance of a machine learning classifier.
Thus, before applying a classifier, it is necessary to chain a series of processing steps. These
preparation steps are usually implemented with a tool called pipeline. A pipeline allows chaining
multiple steps of the machine learning process. This includes data preprocessing (scaling,
encoding, etc.), feature selection, and the classifier itself (BUITINCK et al., 2013).

The main benefit of pipelines in a cross-validation setting is that it helps to avoid data
leakage issues. This happens when data transformations (e.g., scaling, encoding) are applied to
the entire dataset before cross-validation, thus the test set influence the training set giving a false
impression of the performance of the model and can result in models that fail to generalize.

In this work, for balanced datasets, the pipeline consists of two steps of scaling and
classification. In turn, for imbalanced datasets an initial random subsampling step is added.
Random subsampling takes an equal number of samples in each run of the classification process.
Then, the pipeline is applied to the repeated stratified k-fold cross validation procedure.

4.5.4 Classification metrics

It is important to evaluate the performance of the proposed model. To evaluate the results
of the experiments, we use a set of classification metrics. These metrics serve to quantify the
performance of the classification results. The metrics considered are: accuracy, confusion matrix,
precision, recall, f-measure, true positive rate, false negative rate, and area under the ROC curve.

• Accuracy: It represents the overall performance of the classifier. It is the ratio of correctly
predicted instances to the total number of instances in the dataset. In mathematical terms,
accuracy is defined as:

Accuracy =
True Positives+True Negatives

Total Instances

• Confusion matrix: A confusion matrix is a table that provides a comprehensive breakdown
of the performance classifier. It presents the number of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) predictions made by the model. The
confusion matrix helps to understand the performance of the model on each class. It is
usually represented as follows:

• Precision: It evaluates the proportion of true positive predictions out of all positive predic-
tions made by the classifier. The precision indicates how many of the predicted positive
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Predicted
Positive

Predicted
Negative

Actual
Positive

TP FN

Actual
Negative

FP TN

instances were actually positive. It is calculated as:

Precision =
TP

TP+FP

• Recall: It is also known as Sensitivity or true positive rate (TPR), it measures the proportion
of true positive instances that were correctly identified by the classifier out of all actual
positive instances. The recall shows how well the model captures the positive instances. It
is calculated as:

Recall =
TP

TP+FN

• f-measure: It is also known as the F1-score, is the harmonic mean of precision and recall.
It provides a single metric that balances both precision and recall. It is calculated as:

F1-score = 2∗ Precision∗Recall
Precision+Recall

• False Positive Rate (FPR): It represents the proportion of negative instances that were
incorrectly classified as positive by the classifier. It is calculated as:

FPR =
FP

FP+TN

• Area Under the ROC Curve (AUC-ROC): The Receiver Operating Characteristic (ROC)
curve is a graphical representation of the performance of the classifier across different
discrimination thresholds. The AUC-ROC metric quantifies the overall performance of
the classifier by calculating the area under the ROC curve. AUC-ROC ranges from 0 to 1,
where a value of 1 represents a perfect classifier, and a value of 0.5 indicates a random
classifier.

• Matthews Correlation Coefficient (MCC): It is a metric used to evaluate the performance
of a binary or multiclass classification model. It is particularly useful when dealing with
imbalanced datasets where one class may dominate the other in terms of the number of
instances. MCC takes into account true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) predictions made by the classifier and is defined as follows:

MCC =
TP∗TN−FP∗FN√

(TP+FP)∗ (TP+FN)∗ (TN+FP)∗ (TN+FN)

The MCC ranges from -1 to +1, where:
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– +1 indicates a perfect classifier.

– 0 indicates a classifier that performs no better than random.

– -1 indicates a classifier that performs in exactly the opposite way of the desired
classification.

4.6 Considerations
The model was designed to explore the interaction of more than one type of element

in an environment, starting from simpler models like walkers and CA. The proposed model
have two agents that interact in an environment, the water agent, which moves freely in the
environment, and the plant agent, which grows according to the environment and the amount of
water. The model was designed with the aim of applying it to classification problems, as various
types of data can be generated through the simulation of the model, these patterns allow for the
characterization of complex networks,

By using spatially explicit agent-based models we can explore the characteristics of the
environment that result from the interaction of agents, and thus take advantage of the rich nature
of texture images or the structural complexities inherent in complex networks. The following
chapter presents the application of the growth model in complex networks datasets.
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CHAPTER

5
EXPERIMENTS IN NETWORKS

5.1 Introduction
This chapter presents the experiments performed using the Growth Model to categorize

networks. The Growth Model was applied on real and synthetic network datasets. In each
experiment presents the parameters and the analysis of the results obtained using the Growth
Model.

Figure 24 represents the three processes that constitutes the experimental design: the
ABM Simulation, the Feature Extraction, and the Classification Task.

Figure 24 – Experiment setup to classify networks with the Growth Model

Data generated

ABM
Simulation

Feature
ExtractionInput Classfication

Task Output

...

Feature vector

Source: Elaborated by the author.

In the ABM Simulation process is executed the Growth Model simulation, since we are
dealing with a supervised learning problem, the input of this process are network datasets with
their corresponding labels, as well as, the set of input parameters used in the model. The output of
this process is the data generated by the interaction of the agents. In the feature extraction process
is performed the extraction of the data generated during the simulation. This data is selected
and organized as feature vectors. A feature is a numerical value that quantifies some important
characteristic of the agents. These feature vectors constitutes the input for the third process,
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the classification task, in which it is performed the network classification, which involves the
classifiers and the validation strategy. The output of the experiments are the classification results
comprising the classification accuracy, its standard deviation, the confusion matrix, among other
metrics.

The rest of the chapter is organized as follows: The section 5.2, Input network datasets,
presents a summary of the networks used in the experiments. In section 5.3, Model simulation, are
detailed the parameters and data generated in the experiments. In section 5.4, Pattern recognition
in synthetic datasets, are detailed the classification results and their metrics. In section 5.5,
Pattern recognition in real-world datasets, are detailed the classification results and their metrics.
The section 5.6, Comparison of classification results with previous works, summarizes the
results obtained and presents results of related methods from the literature. The section 5.7,
Considerations, is commented the importance of the model.

5.2 Input network datasets

Table 6 summarizes the synthetic network datasets used in the experiments to assess our
model. It is observed that all the datasets are balanced, the only one that presents the largest
number of samples per class is the Synthetic 4-models with 2800 samples per class, and the
network that has the most classes is the Synthetic 4-models + ⟨k⟩, with 28 classes, the other
datasets have from 4 to 8 classes with 100 samples per class.

Table 6 – Synthetic network datasets used in this work

Name Networks Classes Samples / Class Type

4-models 11200 4 2800 Balanced
4-models + ⟨k⟩ 2800 28 100 Balanced
Scale-free 500 5 100 Balanced
Noise-0 800 8 100 Balanced
Noisy-10% 800 8 100 Balanced
Noisy-20% 800 8 100 Balanced
Noisy-30% 800 8 100 Balanced

Source: Elaborated by the author.

Table 7 summarizes the real-world network datasets used in the experiments to assess our
model. In this case the datasets are balanced and imbalanced, the dataset with more networks is
Firmicutes-Bacillis with 414 elements. The range of classes is small, varying from 2 to 4 classes.
The dataset with the fewest elements is Protist with 20 networks in total. It can be seen, that
in contrast to synthetic datasets, that real-world networks present variation in the quantity of
elements per class and the representatives of some classes appear much more frequently.

In the experiments, each dataset will be utilized individually. This implies that the model
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Table 7 – Real-world network datasets used in this work

Name Networks Classes Samples / Class Type

Actinobacteria 199 3 60, 86, 53 Imbalanced
Animals 56 4 14 Balanced
Firmicutes-Bacillis 414 4 122, 76, 133, 83 Imbalanced
Fungi 60 4 15 Balanced
Kingdom 160 4 40 Balanced
Plant 27 3 9 Balanced
Protist 20 4 5 Balanced
Social 100 2 50 Balanced
Stomata 288 3 96 Balanced

Source: Elaborated by the author.

will be applied independently to each dataset, allowing for a focused examination and evaluation
of its performance on each specific dataset.

5.3 Model simulation

The Growth Model was designed to analyze networks using a dynamic process, in
order to take advantage of the agent interactions on the network structure. As explained in
the methodology chapter, there are several parameters that are used for the simulation of the
model. Therefore, in order to establish the values of the parameters it is necessary to carry out an
exploratory analysis of the data. Each dataset has been analyzed and the properties of average
nodes, average edges, average degree, and range of nodes have been obtained.

Table 8 present data from the synthetic datasets. All the networks in the Scale-free dataset
are connected. The other datasets presents networks that are connected and disconnected, the
proportion of networks connected is greater than those that are disconnected. In datasets with
noise, there is a slightly change in the number of connected networks, in comparison to the
noise-free dataset Noise-0. The average number of nodes is similar in all datasets, except the
4-models + ⟨k⟩ that has 500 nodes. The average edges is close to 4000 in the Scale-free and
Noise datasets, in comparison the 4-models has 50% less edges, and 4-models + ⟨k⟩ has 50%
more edges on average. The average degree is the same in the 4-models datasets with 10.07, the
other datasets have average degrees around 8. And, almost all networks in each dataset have the
same size, with the exception of the 4-models.

The exploratory data of the real-world dataset is shown in Table 9. All the real-world
metabolic datasets are disconnected. The Social and Stomata datasets contains connected and
disconnected networks. The average number of nodes is similar in all datasets, except the Stomata

that has the least number of nodes. The average edges in the real-world metabolic datasets vary
from 200 to 400 edges. The Social dataset has the highest number of edges on average of all the
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Table 8 – Exploratory data of the synthetic complex network datasets

Dataset Connected Avg nodes Avg edges Avg degree Range nodes

4-models Yes: 9102, No: 2098 1250 6292 10.07 500 - 2000
4-models + ⟨k⟩ Yes: 2348, No: 452 500 2516 10.07 500
Scale-free Yes: 500 1000 3980 7.96 1000
Noise-0 Yes: 796, No: 4 999 4000 8.00 997 - 1000
Noise-10% Yes: 798, No: 2 999 3999 8.00 995 - 1000
Noise-20% Yes: 798, No: 2 999 3998 8.00 993 - 1000
Noise-30% Yes: 796, No: 4 996 3997 8.02 991 - 1000

Source: Elaborated by the author.

other datasets, in a ratio close to 50 to 1. The dataset Stomata also has a high number of edges
on average, about half that of Social. This disparity of values is also reflected in the average
degree of the networks, with the real-world metabolic having between 4 and 5 of average degree,
however, Social has 93 and Stomata has 246. The number of nodes indicates that in each dataset
the networks have a similar size, with the exception of the Social dataset because the network
size varies considerably from 15 to 4938 nodes.

Table 9 – Exploratory data of the real-world complex network datasets

Dataset Connected Avg nodes Avg edges Avg degree Range nodes

Actinobacteria No: 199 1127 2862 5.07 803 - 1533
Animals No: 56 1725 4086 4.73 1392 - 1919
Firmicutes No: 414 901 2192 4.82 530 - 1267
Fungi No: 60 1329 3182 4.78 624 - 1540
Kingdom No: 160 1487 3538 4.70 448 - 2095
Plant No: 27 1680 4111 4.89 1241 - 1870
Protist No: 20 921 2024 4.33 598 - 1325
Social Yes: 76, No: 24 1107 127412 93.87 15 - 4938
Stomata Yes: 270, No: 18 406 51203 246.40 292 - 486

Source: Elaborated by the author.

5.3.1 Feature selection for evaluation of classification accuracy

To assess the influence of the features {pa, pv,wq,ws} we evaluate how each feature
individually and in combination contributes to the classification results. The model was run on
the Actinobacteria dataset setting the values of the parameters to wg = 4,hg = 50, pw = 60, tw =

0, pp = 30, t p = 0, it = 200,and iw = 10.

Table 10 shows the classification results of the combination of the features in the Acti-

nobacteria dataset. The lines are used to separate the number of features used in the classification
process. Using the features individually, the kNN classifier got the best result with plant volume.
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The other good results were obtained with a combination of plant area, and plant volume with a
feature of water. In the LDA classifier, the best result was when using the 4 features together,
and the other good results are product of the combination of the features including water steps.
However using only one feature got lower values of accuracy. And in the case of the Linear SVC
classifier, the classification results are similar to the LDA classifier, getting the best classification
result using the combination of plant features with water quantity, the other good results were
product of the combination of three or four features. When using less features the results are
lower. In general, the classification accuracy was better with the LDA classifier, followed by the
Linear SVC and then the kNN classifier.

Table 10 – Classification results for the Actinobacteria dataset using the features of plant area, plant
volume, water quantity, and water steps. The evaluation metric used is accuracy. For each
classifier, the highest accuracy is shown in bold, and the cells with the top 5 values are colored
in light blue.

Classifiers

Features kNN LDA SVC

pa a 94.64 ± 4.73 87.84 ± 7.08 94.57 ± 4.84
pv b 95.65 ± 4.26 88.40 ± 7.30 95.40 ± 4.38
wq c 91.05 ± 6.31 87.30 ± 7.50 95.39 ± 4.61
ws d 90.78 ± 6.73 89.66 ± 6.97 94.92 ± 4.53

pa, pv 94.54 ± 4.59 94.82 ± 4.97 96.45 ± 4.18
wq, ws 90.83 ± 6.61 98.23 ± 3.06 96.05 ± 4.26
pa, wq 92.76 ± 5.72 95.90 ± 4.28 95.52 ± 4.52
pa, ws 92.53 ± 5.70 96.85 ± 4.07 95.19 ± 4.54
pv, wq 93.16 ± 5.13 96.03 ± 4.36 96.05 ± 4.24
pv, ws 92.96 ± 5.39 98.06 ± 3.17 95.75 ± 4.39

pa, pv, ws 93.41 ± 5.18 98.24 ± 2.80 96.27 ± 4.22
pa, pv, wq 93.39 ± 5.16 96.17 ± 4.20 97.16 ± 4.11
pa, wq, ws 92.16 ± 6.01 98.82 ± 2.35 96.55 ± 4.01
pv, wq, ws 92.41 ± 5.83 98.51 ± 2.75 96.25 ± 3.80

pa, pv, wq, ws 93.01 ± 5.43 99.32 ± 2.00 96.73 ± 3.82
a pa: plant area
b pv: plant volume
c wq: water quantity
d ws: water steps

Source: Research data.

5.3.2 Study of model parameters

In order to appreciate the impact of the parameters on the classification results, we ran
a series of experiments on the Actinobacteria dataset with different parameter values, using
the kNN, LDA and Linear SVC classifiers with repeated stratified cross-validation scheme. We
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select the Actinobacteria dataset because it is the second dataset in terms of number of networks
and has 3 classes. The other metabolic datasets have between 3 to 4 classes.

According to the best accuracy result shown in Table 10 we select the combination of
the 4 features of plant area, plant volume, water quantity, and water steps, {pa, pv,wq,ws}, to
present the results for the following experiments in the exploration of the parameters.

To set the initial parameters of the model, we look into the properties of the networks
shown in Table 8 and Table 9 to establish the initial set of values for the parameters. A grid
search strategy to test every possible combination of the values of the parameters is not feasible,
another approach is to set values related to the properties of the network, then gradually vary one
parameter, with the objective to maximize the accuracy result.

The following texts present the plots with the classification results by varying one
parameter and fixing the others. The parameters of the model that were studied are: water to
grow wg, height to grow hg, percent of water pw, time alive water tw, percent of plant pp, time
alive plant t p, iterations to add water iw, and number of iterations it for the model simulation.

In Figure 25 the parameter water to grow wg is varied from 1 to 10 in steps of 1. This
parameter defines how many water agents a plant needs to consume to grow.

The LDA classifier presents their best accuracies with 98.54% and 98.49%, these with
wg around 3 to 5 , with wg less than 3 and greater than 5 the accuracy decreases. The Linear
SVC classifier got its best result with 97.94% and wg = 5, its second best result was when wg is
8. In the case of the kNN classifier presents a different behavior, since the results it shows that as
wg increases, the accuracy got better, having their best results of 95.43% and 95.46% with wg

equal to 8 and 9 respectively.

In Figure 26 the parameter height to grow hg is varied from 2 to 200 in steps of 20. This
parameter determines the scope of a plant agent, and it is based on the degree difference between
a node and its neighbors.

The LDA classifier obtains its best accuracies values with 99.17% and 99.02% around
hg of 20 to 60, using higher values than 60 the accuracy decreases. Similarly, the Linear SVC
classifier obtains its best accuracy values with hg of 20 and 60, higher values tend to decrease
the accuracy. An opposite effect occurs with the kNN classifier in which, as hg increases the
precision also increases, reaching 96.44% and 96.40% with hg of 160 and 200 respectively.

In Figure 27 the parameter percent of water pw is varied from 10 to 100 in steps of 10.
This parameter determines the quantity of water with which the simulation starts, according to
table 9 on average the Actinobacteria dataset has 1127 nodes and if we set pw to 50, the quantity
of water in each network on average is 1127×50% ≈ 564 water. As in the case of percent plant,
greater values of pw indicate that the water occupies more nodes in the network.

The LDA classifier presents the best results with 99.02% and 99% in pw equal to 60%
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Figure 25 – Classification accuracy in the Actinobacteria dataset varying the parameter water to grow
wg = [1,10] in steps of 1. The values of the rest of the parameters are: hg = 100, pw = 60,
tw = 0, pp = 30, t p = 0, iw = 10, it = 200. The feature vector used is {pa, pv,wq,ws}
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Figure 26 – Classification accuracy in the Actinobacteria dataset varying the parameter height to grow
hg = [20,200] in steps of 20. The values of the rest of the parameters are: wg = 4, pw = 60,
tw = 0, pp = 30, t p = 0, iw = 10, it = 200. The feature vector used is {pa, pv,wq,ws}
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Source: Elaborated by the author.

and 90% respectively. With values less than 60% the accuracy decreases. The Linear SVC
classifier visually presents a similar behavior to the LDA, its best value 98% is also with pw = 60.
The kNN classifier presents its best results 94.19% and 93.90% with pw equal to 40 and 50
respectively, adding more water to the model negatively influences its performance. In general,
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increasing the value of pw influences the processing time of the model, since a greater number
of agents need to be processed.

Figure 27 – Classification accuracy in the Actinobacteria dataset varying the percent of water pw =
[10,100] in steps of 10. The values of the rest of the parameters are: wg = 4, hg = 60,
tw = 30, pp = 30, t p = 0, iw = 10, it = 200. The feature vector used is {pa, pv,wq,ws}
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Source: Elaborated by the author.

In Figure 28 the parameter time alive of water tw is varied from 0 to 90 in steps of 10.
This parameter defines how long a water agent remains in the simulation, as in the case of the
parameter time alive of plant t p, the special value tw = 0 indicates that the water does not have a
limit on its time alive, it is present during all the simulation.

The LDA classifier presents the best accuracy with 99.34% and tw = 30, less than 30 the
accuracy decreases, and with values greater than 50 the accuracy increases, getting its second
best value with 99.19% and tw = 80. Considering that water is being added every iw = 10
iterations, these results indicate that a proportional value of time alive water tw influences the
classification results, and that it is better for the model to have water present longer during
simulations. The Linear SVC classifier got its best result of 98.24% and 98.09% with tw equal to
50 and 60 respectively. The KNN classifier obtain its best results with 95.23% and tw = 20, and
increasing the time alive of water does not improve the performance of the kNN classifier. It is
worth mentioning that when tw is 0 (present throughout the simulation) the classification values
in LDA and Linear SVC are close to their best values.

In Figure 29 the parameter percent of plant pp is varied from 10 to 100 in steps of 10.
This parameter determines the number of plants with which the simulation starts, according to
table 9 on average the Actinobacteria dataset has 1127 nodes and if we set pp to 30, the number
of plants in each network on average is 1127×30% ≈ 338 plants. Greater values of pp indicate
that it occupies more nodes in the network.
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Figure 28 – Classification accuracy in the Actinobacteria dataset varying the time alive of water tw =
[0,90] in steps of 10. The special value tw = 0 indicates that the water agent is present during
all the simulation. The values of the rest of the parameters are: wg = 4, hg = 60, pw = 60,
t p = 0, pp = 30, iw = 10, it = 200. The feature vector used is {pa, pv,wq,ws}
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The LDA classifier presents the best accuracy results around 10% to 40% with 99.34%
with pp = 30, and when increasing pp the accuracy results decrease. The Linear SVC classifier
presents a different behavior, with their two best results with pp in 20% and 70%, and adding
more plants does not improve the accuracy. The KNN classifier obtain its best results around
50% to 70% getting 95.27% with pp = 50, other values do not improve the accuracy.

In Figure 30 the parameter time alive of plant t p is varied from 0 to 180 in steps of 20.
This parameter defines how long a plant remains in the simulation, it is important to note that in
this case t p = 0 is a special value that indicates that the plant does not have a limit on its time
alive, it is present during all the simulation.

The LDA classifier presents the best accuracy with 99.34% and t p = 0, and its second
best value with 99.09% and t p = 120, this indicates that as the time alive of the plant increases
the accuracy results are better. The Linear SVC classifier got its best result with 98.14% and
t p = 140, when t p is less than 60 the accuracy results decrease. The KNN classifier obtain its
best results with 94.41% and t p = 100, and in general its accuracy results vary little, so this
parameter does not affect the performance of the kNN classifier.

In Figure 31 the parameter number of iterations to add water iw is varied from 2 to 38 in
steps of 2. When the number of iterations for adding water is greater than the time alive water,
this parameter affects the amount of water present during the simulation.

The LDA classifier presents accuracy results above 95% when iw is less than 30, pro-
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Figure 29 – Classification accuracy in the Actinobacteria dataset varying the percent of plant pp =
[10,100] in steps of 10. The values of the rest of the parameters are: wg = 4, hg = 60,
pw = 60, tw = 30, t p = 0, iw = 10, it = 200. The feature vector used is {pa, pv,wq,ws}
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Figure 30 – Classification accuracy in the Actinobacteria dataset varying the time alive of plant t p =
[0,180] in steps of 20. The special value t p = 0 indicates that the plant is present during
all the simulation. The values of the rest of the parameters are: wg = 4, hg = 60, pw = 60,
tw = 30, pp = 30, iw = 10, it = 200. The feature vector used is {pa, pv,wq,ws}
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viding the best result of 99.34% with 10 iterations. The Linear SVC classifier presents the best
result with iw = 14 with 98.52%, from which its results decrease. On the other hand, the kNN
classifier improves as the value of iw increases, obtaining a maximum of 95.75% at iw = 22. The



5.4. Pattern recognition in synthetic datasets 95

3 classifiers begin to present lower results when the number of iterations to add water is greater
than or equal to the lifetime of the water tw = 30. When iw is greater than 30, LDA provides the
lowest accuracy results of the 3 classifiers.

Figure 31 – Classification accuracy in the Actinobacteria dataset varying the number of iterations to add
water iw = [2,38] in steps of 4. The values of the rest of the parameters are: wg = 4, hg = 60,
pw = 60, tw = 30, pp = 30, t p = 0, it = 200. The feature vector used is {pa, pv,wq,ws}
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In Figure 32 the parameter number of iterations it determines the number of times the
simulation is run. It is varied from 40 to 400 in steps of 40. With 40 iterations the LDA classifier
has less than 85% of accuracy, and does not appear in the plot, then its accuracy improve with
more iterations, giving the best value of 99.34% with 200 iterations. The Linear SVC classifier
improves consistently with the number of iterations. But, in the case of the kNN classifier, its
classification results decrease with more iterations.

Table 11 presents a summary of the values employed to study the parameters of the
model in the Actinobacteria dataset. The table shows the parameters and the range of values used.
In each row is highlighted in light blue two values that provided the best classification results
using the LDA classifier. According to the classification results of the plots shown previously, the
values colored in light blue indicate the range of values in which the model has good performance,
with accuracy between 98.49% to 99.34%.

5.4 Pattern recognition in synthetic datasets

The following values of parameters were chosen because provided the best accuracy
values with the LDA classifier using the 4 four features {pa, pv,wq,ws}.
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Figure 32 – Classification accuracy in the Actinobacteria dataset varying the parameter number of itera-
tions it = [40,200] in steps of 40. The values of the rest of the parameters are: wg= 4, hg= 60,
pw = 60, tw = 30, pp = 30, t p = 0, iw = 10. The feature vector used is {pa, pv,wq,ws}
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Table 11 – Range of values used to study the parameters of the Growth Model in the Actinobacteria
dataset. The values that provided the two best accuracies are colored in light blue

Parameter Values

wg 1 2 3 4 5 6 7 8 9 10
hg 20 40 60 80 100 120 140 160 180 200
pw 10 20 30 40 50 60 70 80 90 100
tw 0 10 20 30 40 50 60 70 80 90
pp 10 20 30 40 50 60 70 80 90 100
tp 0 20 40 60 80 100 120 140 160 180
iw 2 6 10 14 18 22 26 30 34 38
it 40 80 120 160 200 240 280 320 360 400

Source: Elaborated by the author.

According to the exploration made, we can vary the parameters water to grow wg and
height to grow hg, and we can fix the rest of parameters. In the exploration these values allowed
the model to perform consistently. The water to grow wg varies between 2, 4 and 6. The height
to grow hg varies between 40, 60, and 100. The parameters rest of the parameters are fixed. The
percent of water pw = 60. The time alive water tw = 30. The percent of plant pp = 30. The
time alive plant t p = 0, the special value, that indicates that the plant is present during all the
simulation. The sum of the values of percent water pw and percent plant pp is 90%, it means that
they occupy 90% of the size of the network, giving to all the nodes the probability of containing
agents at a moment of the simulation The number of iterations to add water iw = 10. The number
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of iterations of the simulation it = 200.

The parameters use for the pattern recognition experiments in the synthetic datasets are
in Table 12. Each column shows a set of values used, with these parameters we have 5 different
executions of the model in each dataset.

Table 12 – Parameters selected to execute the Growth Model in the synthetic network datasets

Set of values

Parameter First Second Third Fourth Fifth

wg 2 2 2 4 6
hg 40 60 100 100 100
pw 60 60 60 60 60
tw 30 30 30 30 30
pp 30 30 30 30 30
tp 0 0 0 0 0
iw 10 10 10 10 10
it 200 200 200 200 200

Source: Research data.

5.4.1 4-models dataset

Table 13 presents the classification results in the 4-models dataset using the values of
the parameters selected. It is presented the results of the four features plant area, plant volume,
water quantity, water steps {pa, pv,wq,ws}. In this dataset, the extracted features enable the
categorization of the 4 network classes, achieving an accuracy score of 99.13%. This result
indicates that out of the 11200 networks, only 98 are misclassified.

Table 14 presents the classification metrics for the best result obtained in the 4-models

dataset. The values of precision and recall close to 1 for each of the 4 classes indicates that the
classifier is accurately identifying positive instances and effectively capturing the majority of
them. The other metrics also verify these results.

Figure 33 presents the confusion matrix for the best result obtained in the 4-models

dataset. Computing the accuracy value from the confusion matrix, the values shown vary slightly
from the previous results, this is due to the fact that the implementation of the confusion matrix
in Scikit-Learn uses the standard k-fold Cross-validation, unlike the results shown in Table 13
where Scikit-learn uses Repeated Stratified k-fold cross-validation.

Figure 34 shows the area under the curve for each class for the best result obtained in the
4-models dataset.
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Table 13 – Classification results using the LDA classifier for the 4-models dataset. The highest accuracy
is shown in bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=6
Features hg=40 hg=60 hg=100 hg=100 hg=100

pa 84.89 ± 1.03 84.79 ± 1.08 84.63 ± 1.14 89.51 ± 0.87 84.71 ± 0.87
pv 91.25 ± 0.79 91.35 ± 0.81 91.40 ± 0.87 92.16 ± 0.83 87.89 ± 0.94
wq 87.79 ± 0.92 87.91 ± 0.97 88.02 ± 0.82 82.56 ± 1.02 81.81 ± 0.97
ws 92.20 ± 0.85 92.31 ± 0.74 92.11 ± 0.85 83.95 ± 0.98 82.69 ± 1.05

pa, pv 98.54 ± 0.36 98.57 ± 0.34 98.57 ± 0.35 95.95 ± 0.61 91.85 ± 0.70
wq, ws 95.75 ± 0.62 95.62 ± 0.59 95.56 ± 0.58 94.78 ± 0.66 95.78 ± 0.52
pa, wq 96.27 ± 0.61 96.28 ± 0.54 96.18 ± 0.52 94.59 ± 0.63 90.08 ± 0.84
pa, ws 98.01 ± 0.41 98.02 ± 0.41 97.97 ± 0.44 93.32 ± 0.72 93.30 ± 0.62
pv, wq 96.93 ± 0.51 96.93 ± 0.48 96.95 ± 0.50 94.99 ± 0.65 90.03 ± 0.81
pv, ws 97.78 ± 0.43 97.81 ± 0.37 97.80 ± 0.42 95.87 ± 0.58 92.56 ± 0.69

pa, pv, ws 99.03 ± 0.29 99.06 ± 0.26 98.97 ± 0.27 97.24 ± 0.45 95.47 ± 0.53
pa, pv, wq 98.99 ± 0.31 99.00 ± 0.27 98.96 ± 0.26 97.39 ± 0.45 94.49 ± 0.62
pa, wq, ws 98.55 ± 0.37 98.55 ± 0.33 98.51 ± 0.34 97.36 ± 0.45 96.83 ± 0.49
pv, wq, ws 98.55 ± 0.34 98.53 ± 0.32 98.54 ± 0.32 97.72 ± 0.43 96.58 ± 0.52

pa, pv, wq, ws 99.12 ± 0.28 99.13 ± 0.26 99.07 ± 0.27 98.28 ± 0.39 97.62 ± 0.44

Source: Research data.

Table 14 – Classification metrics for the best result of classification in the 4-models dataset in Table 13

Class precision recall FPR f1-score MCC AUC support

barabasi 0.999 0.985 0.000 0.992 0.990 1.000 2800
erdos 0.978 0.994 0.008 0.986 0.981 1.000 2800
geo 0.987 0.987 0.004 0.987 0.983 1.000 2800
watts 1.000 0.997 0.000 0.998 0.998 0.999 2800

Source: Research data.

5.4.2 4-models + 〈k〉 dataset

Table 15 presents the classification results in the 4-models + 〈k〉 dataset using the values
of the parameters selected. It is presented the results of the four features plant area, plant volume,
water quantity, water steps {pa, pv,wq,ws}. In this dataset, the extracted features were not able
to effectively categorize the 28 network classes, achieving an accuracy score of 84.97%. This
result indicates that out of the 2800 networks, 420 networks were misclassified.

Table 16 presents the classification metrics for the best result obtained in the 4-models +

〈k〉 dataset. The low precision scores for the barabasi networks indicate that the model failed to
identify the positive instances.

Figure 35 presents the confusion matrix for the best result obtained in the 4-models
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Figure 33 – Confusion matrix obtained for the best results of classification in the 4-models dataset in
Table 13
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Figure 34 – AUC-ROC obtained for the best results of classification in the 4-models dataset in Table 13
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+ 〈k〉 dataset. The confusion matrix shows us which are the classes that presented a higher
misclassification rate, which in this case corresponds to the networks of the barabasi model, the
extracted characteristics were not able to differentiate their intra-class variations.
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Table 15 – Classification results using the LDA classifier for the 4-models + 〈k〉 dataset. The highest
accuracy is shown in bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=6
Features hg=40 hg=60 hg=100 hg=100 hg=100

pa 73.10 ± 2.58 74.37 ± 2.23 73.90 ± 2.19 73.08 ± 2.21 72.24 ± 1.96
pv 79.00 ± 1.92 78.56 ± 2.00 79.03 ± 1.90 79.09 ± 1.84 76.38 ± 2.22
wq 64.50 ± 2.44 64.42 ± 2.37 63.98 ± 2.49 60.83 ± 2.57 64.59 ± 2.79
ws 66.72 ± 2.34 66.66 ± 2.23 65.80 ± 1.98 60.47 ± 2.51 65.30 ± 2.38

pa, pv 84.24 ± 1.78 84.84 ± 1.67 84.86 ± 1.68 82.43 ± 1.84 80.96 ± 2.30
wq, ws 71.73 ± 2.26 71.01 ± 2.10 69.55 ± 2.13 70.93 ± 2.57 76.80 ± 2.05
pa, wq 79.42 ± 2.01 79.80 ± 1.95 79.55 ± 2.05 76.26 ± 2.22 75.81 ± 2.51
pa, ws 79.72 ± 2.10 81.15 ± 1.93 80.48 ± 2.15 75.91 ± 2.28 76.47 ± 2.09
pv, wq 81.56 ± 1.68 81.04 ± 1.86 81.15 ± 1.66 81.09 ± 1.90 81.18 ± 2.01
pv, ws 80.52 ± 1.76 80.81 ± 1.82 80.68 ± 1.67 80.22 ± 1.82 82.70 ± 1.80

pa, pv, ws 83.66 ± 1.77 84.50 ± 1.80 84.67 ± 1.58 81.78 ± 1.96 82.39 ± 1.79
pa, pv, wq 84.94 ± 1.57 84.97 ± 1.68 84.74 ± 1.64 82.75 ± 1.88 82.36 ± 2.01
pa, wq, ws 80.04 ± 2.11 80.08 ± 2.11 78.90 ± 2.02 78.32 ± 2.21 80.46 ± 1.91
pv, wq, ws 81.48 ± 1.75 80.83 ± 1.91 80.71 ± 1.84 81.49 ± 1.90 83.81 ± 1.83

pa, pv, wq, ws 83.69 ± 1.66 83.86 ± 1.84 83.52 ± 1.74 81.75 ± 1.90 82.44 ± 1.86

Source: Research data.

5.4.3 Scale-free dataset

Table 17 presents the classification results in the Scale-free dataset using the values of
the parameters selected. It is presented the results of the four features plant area, plant volume,
water quantity, water steps {pa, pv,wq,ws}. In this dataset, the extracted features enable the
categorization of the 5 network classes, achieving an accuracy score of 99.82%. This result
indicates that only 1 network was misclassified out of the 500 networks.

Table 18 presents the classification metrics for the best result obtained in the Scale-free

dataset. The different metrics and its values close to 1 indicate that the model is effectively
distinguishing the networks in each class.

Figure 36 presents the confusion matrix for the best result obtained in the Scale-free

dataset. In this case, the confusion matriz shows that there are 3 incorrectly misclassified
instances, 1 of mendes and 2 of nonlinear15.

Figure 37 shows the area under the curve for each class for the best result obtained in the
Scale-free dataset. The AUC-ROC of the 5 classes are 1 or values close to 1, this indicates that
the model effectively discriminate the 5 classes.
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Table 16 – Classification metrics for the best result of classification in the 4-models + 〈k〉 dataset in
Table 15

Class precision recall FPR f1-score MCC AUC support

barabasi_k=10 0.452 0.420 0.019 0.435 0.415 0.962 100
barabasi_k=12 0.342 0.400 0.029 0.369 0.345 0.955 100
barabasi_k=14 0.340 0.330 0.024 0.335 0.311 0.955 100
barabasi_k=16 0.562 0.590 0.017 0.576 0.560 0.978 100
barabasi_k=4 1.000 0.840 0.000 0.913 0.914 0.983 100
barabasi_k=6 0.780 0.780 0.008 0.780 0.772 0.990 100
barabasi_k=8 0.644 0.670 0.014 0.657 0.644 0.974 100
erdos_k=10 0.961 0.990 0.001 0.975 0.975 1.000 100
erdos_k=12 0.943 1.000 0.002 0.971 0.970 1.000 100
erdos_k=14 0.906 0.960 0.004 0.932 0.930 0.999 100
erdos_k=16 0.969 0.930 0.001 0.949 0.947 1.000 100
erdos_k=4 0.915 0.970 0.003 0.942 0.940 1.000 100
erdos_k=6 0.952 0.990 0.002 0.971 0.970 1.000 100
erdos_k=8 0.943 1.000 0.002 0.971 0.970 1.000 100
geo_k=10 0.948 0.910 0.002 0.929 0.926 0.999 100
geo_k=12 0.928 0.900 0.003 0.914 0.911 0.999 100
geo_k=14 0.794 0.810 0.008 0.802 0.795 0.995 100
geo_k=16 0.871 0.810 0.004 0.839 0.834 0.997 100
geo_k=4 0.968 0.900 0.001 0.933 0.931 1.000 100
geo_k=6 0.989 0.930 0.000 0.959 0.958 1.000 100
geo_k=8 0.979 0.940 0.001 0.959 0.958 1.000 100
watts_k=10 0.980 1.000 0.001 0.990 0.990 1.000 100
watts_k=12 0.961 0.990 0.001 0.975 0.975 1.000 100
watts_k=14 0.894 0.930 0.004 0.912 0.909 0.999 100
watts_k=16 0.957 0.890 0.001 0.922 0.920 0.999 100
watts_k=4 1.000 1.000 0.000 1.000 1.000 1.000 100
watts_k=6 0.990 1.000 0.000 0.995 0.995 1.000 100
watts_k=8 1.000 0.990 0.000 0.995 0.995 0.999 100

Source: Research data.

5.4.4 Noise-0 dataset

Table 19 presents the classification results in the Noise-0 dataset using the values of
the parameters selected. It is presented the results of the four features plant area, plant volume,
water quantity, water steps {pa, pv,wq,ws}. In this dataset, the extracted features enable the
categorization of the 8 network classes, achieving an accuracy score of 99.56%. This result
indicates that out of the 800 networks, only 8 are misclassified.

Table 20 presents the classification metrics for the best result obtained in the Noise-0

dataset. The recall value of 0.95 in GEO indicates that the classifier is performing well overall
but may be having some difficulty in correctly identifying instances in this specific class.

Figure 38 presents the confusion matrix for the best result obtained in the Noise-0 dataset.
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Figure 35 – Confusion matrix obtained for the best results of classification in the 4-models + 〈k〉 dataset
in Table 15
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The confusion matrix indicates that the GEO class has 5 instances that are incorrectly assigned
as ER class.

Figure 39 shows the area under the curve for each class for the best result obtained in the
Noise-0 dataset. In addition to showing the AUC-ROC curve with its normal limits in the x-y
axes from 0 to 1, a plot with the x-axis from 0 to 0.2 and the y-axis from 0.8 to 1 is shown to
appreciate the details of very close AUC-ROC values. In general the AUC-ROC is 1 or close to 1
for each class, this indicates a good performance.



5.4. Pattern recognition in synthetic datasets 103

Table 17 – Classification results using the LDA classifier for the Scale-free dataset. The highest accuracy
is shown in bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=6
Features hg=40 hg=60 hg=100 hg=100 hg=100

pa 99.56 ± 0.98 99.18 ± 1.17 98.78 ± 1.55 98.13 ± 1.83 99.26 ± 1.15
pv 98.38 ± 1.76 98.63 ± 1.56 98.58 ± 1.61 98.78 ± 1.48 99.58 ± 0.81
wq 98.84 ± 1.46 98.15 ± 1.86 98.12 ± 1.89 98.63 ± 1.42 99.82 ± 0.57
ws 96.58 ± 2.47 95.52 ± 2.75 97.04 ± 2.34 98.19 ± 1.96 99.56 ± 1.00

pa, pv 97.69 ± 2.15 96.79 ± 2.38 96.94 ± 2.07 97.78 ± 2.06 98.78 ± 1.74
wq, ws 93.88 ± 3.58 92.16 ± 3.86 96.78 ± 2.23 91.68 ± 3.86 97.32 ± 2.53
pa, wq 97.74 ± 2.21 96.46 ± 2.76 95.28 ± 2.84 97.31 ± 2.25 97.96 ± 1.88
pa, ws 98.04 ± 1.99 97.67 ± 2.18 99.02 ± 1.54 98.02 ± 1.97 99.42 ± 1.14
pv, wq 96.31 ± 2.56 95.36 ± 2.51 95.84 ± 2.59 97.54 ± 2.13 98.32 ± 1.64
pv, ws 96.35 ± 2.51 95.08 ± 3.10 98.70 ± 1.45 94.95 ± 2.92 97.90 ± 2.09

pa, pv, ws 96.79 ± 2.60 95.17 ± 2.96 97.66 ± 2.10 91.72 ± 3.82 95.56 ± 3.11
pa, pv, wq 93.47 ± 3.20 92.47 ± 3.40 93.78 ± 3.04 92.54 ± 3.76 92.44 ± 3.83
pa, wq, ws 93.20 ± 3.37 92.14 ± 3.53 95.48 ± 2.62 88.95 ± 4.62 94.48 ± 3.19
pv, wq, ws 90.12 ± 4.26 90.77 ± 3.75 96.22 ± 2.48 88.81 ± 4.45 95.20 ± 3.15

pa, pv, wq, ws 91.19 ± 3.97 91.68 ± 4.06 94.10 ± 3.28 88.06 ± 4.69 92.58 ± 3.67

Source: Research data.

Table 18 – Classification metrics for the best result of classification in the Scale-free dataset in Table 17

Class precision recall FPR f1-score MCC AUC support

barabasi 1.000 1.000 0.000 1.000 1.000 1.000 100
mendes 1.000 0.990 0.000 0.995 0.994 1.000 100
nonlinear05 0.990 1.000 0.003 0.995 0.994 0.999 100
nonlinear15 1.000 0.980 0.000 0.990 0.987 1.000 100
nonlinear2 0.980 1.000 0.005 0.990 0.988 1.000 100

Source: Research data.

5.4.5 Noise-10% dataset
Table 21 presents the classification results in the Noise-10% dataset using the values of

the parameters selected. It is presented the results of the four features plant area, plant volume,
water quantity, water steps {pa, pv,wq,ws}. In this dataset, the extracted features enable the
categorization of the 8 network classes, achieving an accuracy score of 98.26%. This result
indicates that out of the 800 networks, only 14 are misclassified.

Table 22 presents the classification metrics for the best result obtained in the Noise 10%

dataset. In this cases, the recall values of BANL15 of 0.95 and GEO of 0.91 indicates that the
classifier have some difficulty in identifying instances of these two classes.

Figure 40 presents the confusion matrix for the best result obtained in the Noise 10%
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Figure 36 – Confusion matrix obtained for the best results of classification in the Scale-free dataset in
Table 17
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Figure 37 – AUC-ROC obtained for the best results of classification in the Scale-free dataset in Table 17

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

barabasi (AUC = 1.000)
mendes (AUC = 1.000)
nonlinear05 (AUC = 0.999)
nonlinear15 (AUC = 1.000)
nonlinear2 (AUC = 1.000)
Random

Source: Elaborated by the author.

dataset. The confusion matrix also show that the model has some difficulty in the identification
of 5 networks of the BANL15 class and 9 networks of the ER class.

Figure 41 shows the area under the curve for each class for the best result obtained in the
Noise 10% dataset. The zoomed plot of the AUC-ROC indicate that the BANL2 class has the
most difficulty to be classified.
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Table 19 – Classification results using the LDA classifier for the Noise-0 dataset. The highest accuracy is
shown in bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=6
Features hg=40 hg=60 hg=100 hg=100 hg=100

pa 98.87 ± 1.04 98.43 ± 1.33 98.29 ± 1.18 96.96 ± 1.79 96.66 ± 1.88
pv 98.47 ± 1.23 98.49 ± 1.31 98.45 ± 1.30 98.36 ± 1.39 98.96 ± 1.08
wq 97.50 ± 1.60 97.24 ± 1.77 96.90 ± 1.75 97.81 ± 1.70 96.93 ± 1.74
ws 97.06 ± 1.84 96.83 ± 1.96 97.27 ± 1.73 95.76 ± 2.14 95.30 ± 2.13

pa, pv 98.84 ± 1.17 98.25 ± 1.55 98.41 ± 1.29 98.66 ± 1.22 98.64 ± 1.30
wq, ws 96.71 ± 2.00 95.92 ± 2.27 98.41 ± 1.29 98.28 ± 1.38 97.39 ± 1.61
pa, wq 98.59 ± 1.35 97.71 ± 1.71 97.15 ± 1.70 98.34 ± 1.52 97.56 ± 1.61
pa, ws 98.49 ± 1.29 98.21 ± 1.51 98.52 ± 1.28 97.66 ± 1.63 97.77 ± 1.59
pv, wq 97.95 ± 1.56 97.25 ± 1.69 98.29 ± 1.34 99.06 ± 1.06 99.56 ± 0.72
pv, ws 97.82 ± 1.56 97.69 ± 1.57 98.65 ± 1.14 98.21 ± 1.50 98.81 ± 1.14

pa, pv, ws 97.59 ± 1.66 97.02 ± 1.88 98.79 ± 1.23 97.75 ± 1.72 97.56 ± 1.50
pa, pv, wq 97.28 ± 1.70 96.44 ± 2.08 97.17 ± 1.89 98.53 ± 1.49 97.90 ± 1.50
pa, wq, ws 96.39 ± 2.11 93.94 ± 2.49 97.31 ± 1.50 96.88 ± 1.85 96.79 ± 1.74
pv, wq, ws 95.61 ± 2.36 95.74 ± 2.01 98.05 ± 1.55 97.35 ± 1.68 98.15 ± 1.54

pa, pv, wq, ws 95.75 ± 2.30 93.54 ± 2.83 97.15 ± 1.74 95.69 ± 2.22 95.81 ± 1.89

Source: Research data.

Table 20 – Classification metrics for the best result of classification in the Noise-0 dataset in Table 19

Class precision recall FPR f1-score MCC AUC support

BA 1.000 1.000 0.000 1.000 1.000 1.000 100
BANL15 1.000 0.990 0.000 0.995 0.994 1.000 100
BANL2 0.990 1.000 0.001 0.995 0.994 1.000 100
BANL5 0.990 1.000 0.001 0.995 0.994 1.000 100
ER 0.952 1.000 0.007 0.976 0.972 0.999 100
GEO 1.000 0.950 0.000 0.974 0.971 0.999 100
MEN 1.000 0.990 0.000 0.995 0.994 1.000 100
WS 1.000 1.000 0.000 1.000 1.000 1.000 100

Source: Research data.

5.4.6 Noise-20% dataset

Table 23 presents the classification results in the 4-models dataset using the values of
the parameters selected. It is presented the results of the four features plant area, plant volume,
water quantity, water steps {pa, pv,wq,ws}. In this dataset, the extracted features enable the
categorization of the 8 network classes, achieving an accuracy score of 97.89%. This result
indicates that out of the 800 networks, only 17 are misclassified.

Table 24 presents the classification metrics for the best result obtained in the Noise 20%
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Figure 38 – Confusion matrix obtained for the best results of classification in the Noise-0 dataset in
Table 19
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Figure 39 – AUC-ROC obtained for the best results of classification in the Noise-0 dataset in Table 19
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Source: Elaborated by the author.

dataset. Comparing the values obtained in the previous tables of the datasets with less noise, we
can see that there is an influence on the results, which translates into slightly lower values for
each metric.

Figure 42 presents the confusion matrix for the best result obtained in the Noise 20%

dataset. In this case the GEO class has 10 networks that were misclassified, and confused as the
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Table 21 – Classification results using the LDA classifier for the Noise-10% dataset. The highest accuracy
is shown in bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=6
Features hg=40 hg=60 hg=100 hg=100 hg=100

pa 97.34 ± 1.61 96.84 ± 1.81 95.86 ± 2.12 94.34 ± 2.44 94.65 ± 2.14
pv 95.11 ± 2.48 94.97 ± 2.22 94.61 ± 2.38 96.74 ± 1.99 97.59 ± 1.73
wq 93.27 ± 2.72 91.21 ± 3.09 92.77 ± 2.76 95.53 ± 2.03 95.38 ± 2.08
ws 94.05 ± 2.64 91.78 ± 2.46 92.65 ± 2.96 92.60 ± 2.75 93.17 ± 2.27

pa, pv 96.88 ± 1.82 97.17 ± 1.72 95.70 ± 2.22 95.94 ± 2.17 97.36 ± 1.69
wq, ws 96.16 ± 2.01 95.27 ± 2.07 97.67 ± 1.66 97.36 ± 1.74 97.44 ± 1.58
pa, wq 96.58 ± 1.89 95.39 ± 2.34 94.99 ± 2.03 93.88 ± 2.45 95.05 ± 2.21
pa, ws 97.99 ± 1.55 96.89 ± 1.94 98.05 ± 1.45 95.56 ± 2.18 97.24 ± 1.54
pv, wq 95.28 ± 2.13 94.49 ± 2.13 95.31 ± 2.31 98.05 ± 1.49 98.26 ± 1.31
pv, ws 96.32 ± 2.10 95.93 ± 2.07 97.16 ± 1.69 97.67 ± 1.60 97.92 ± 1.35

pa, pv, ws 96.89 ± 1.82 96.36 ± 1.87 97.30 ± 1.72 96.44 ± 2.08 97.31 ± 1.54
pa, pv, wq 95.91 ± 2.09 94.86 ± 2.33 94.85 ± 2.24 93.82 ± 2.43 96.29 ± 1.91
pa, wq, ws 96.09 ± 2.04 95.54 ± 2.37 97.41 ± 1.54 94.46 ± 2.52 96.02 ± 2.03
pv, wq, ws 95.35 ± 2.17 94.91 ± 2.27 97.36 ± 1.71 96.42 ± 2.12 97.76 ± 1.46

pa, pv, wq, ws 95.97 ± 2.19 95.38 ± 2.39 97.20 ± 1.79 94.81 ± 2.15 95.92 ± 1.90

Source: Research data.

Table 22 – Classification metrics for the best result of classification in the Noise 10% dataset in Table 21

Class precision recall FPR f1-score MCC AUC support

BA 1.000 1.000 0.000 1.000 1.000 1.000 100
BANL15 1.000 0.950 0.000 0.974 0.971 1.000 100
BANL2 0.952 1.000 0.007 0.976 0.972 0.999 100
BANL5 1.000 1.000 0.000 1.000 1.000 1.000 100
ER 0.917 1.000 0.013 0.957 0.952 1.000 100
GEO 1.000 0.910 0.000 0.953 0.948 1.000 100
MEN 1.000 1.000 0.000 1.000 1.000 1.000 100
WS 1.000 1.000 0.000 1.000 1.000 1.000 100

Source: Research data.

ER class.

Figure 43a shows the area under the curve for each class for the best result obtained
in the Noise 20% dataset. It can be appreciated that adding noise to the dataset influences the
classification values. In this case, the curves begin to move away from their maximum value of 1.
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Figure 40 – Confusion matrix obtained for the best results of classification in the Noise 10% dataset in
Table 21
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Figure 41 – AUC-ROC obtained for the best results of classification in the Noise 10% dataset in Table 21
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Source: Elaborated by the author.

5.4.7 Noise-30% dataset

Table 25 presents the classification results in the Noise 30% dataset using the values of
the parameters selected. It is presented the results of the four features plant area, plant volume,
water quantity, water steps {pa, pv,wq,ws}. In this dataset, the extracted features enable the
categorization of the 8 network classes, achieving an accuracy score of 96.84%. This result
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Table 23 – Classification results using the LDA classifier for the Noise 20% dataset. The highest accuracy
is shown in bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=6
Features hg=40 hg=60 hg=100 hg=100 hg=100

pa 96.96 ± 1.76 95.88 ± 2.04 94.54 ± 2.35 92.02 ± 2.92 93.26 ± 2.45
pv 93.07 ± 2.26 94.96 ± 2.15 94.49 ± 2.34 96.06 ± 2.07 96.84 ± 1.87
wq 91.92 ± 2.65 91.72 ± 2.58 92.81 ± 2.58 93.17 ± 2.38 94.58 ± 2.24
ws 93.91 ± 2.48 92.59 ± 2.72 93.18 ± 2.45 90.38 ± 3.07 91.61 ± 2.20

pa, pv 96.84 ± 1.82 96.11 ± 1.92 95.00 ± 2.08 95.06 ± 2.21 95.29 ± 2.28
wq, ws 94.64 ± 2.32 93.92 ± 2.47 96.71 ± 1.91 96.16 ± 2.01 96.64 ± 1.77
pa, wq 96.93 ± 1.75 94.32 ± 2.30 94.75 ± 2.19 91.70 ± 2.95 94.86 ± 2.40
pa, ws 97.43 ± 1.68 95.60 ± 2.31 97.10 ± 1.55 94.41 ± 2.38 95.20 ± 2.40
pv, wq 93.59 ± 2.30 93.69 ± 2.26 94.76 ± 2.21 96.11 ± 2.08 97.89 ± 1.44
pv, ws 95.24 ± 2.17 94.71 ± 2.47 97.25 ± 1.62 97.13 ± 1.78 97.60 ± 1.58

pa, pv, ws 96.46 ± 1.87 95.12 ± 2.47 97.01 ± 1.64 95.29 ± 2.20 95.94 ± 2.11
pa, pv, wq 95.61 ± 2.07 94.69 ± 2.19 94.84 ± 1.91 92.99 ± 2.46 95.45 ± 1.93
pa, wq, ws 96.06 ± 1.94 95.65 ± 2.16 96.24 ± 1.91 93.37 ± 2.58 94.94 ± 2.75
pv, wq, ws 93.32 ± 2.57 93.99 ± 2.46 96.44 ± 2.22 95.14 ± 2.28 97.56 ± 1.56

pa, pv, wq, ws 95.06 ± 2.25 95.23 ± 2.12 96.79 ± 1.81 92.41 ± 2.62 95.51 ± 2.15

Source: Elaborated by the author.

Table 24 – Classification metrics for the best result of classification in the Noise 20% dataset in Table 23

Class precision recall FPR f1-score MCC AUC support

BA 1.000 1.000 0.000 1.000 1.000 1.000 100
BANL15 0.990 1.000 0.001 0.995 0.994 0.999 100
BANL5 0.990 0.990 0.001 0.990 0.989 1.000 100
BAnl2 1.000 0.990 0.000 0.995 0.994 1.000 100
ER 0.908 0.990 0.014 0.947 0.941 0.998 100
GEO 0.989 0.900 0.001 0.942 0.936 0.998 100
MEN 0.990 0.990 0.001 0.990 0.989 1.000 100
WS 1.000 1.000 0.000 1.000 1.000 1.000 100

Source: Elaborated by the author.

indicates that out of the 800 networks, only 25 are misclassified.

Table 26 presents the classification metrics for the best result obtained in the Noise 30%

dataset. The values of MCC ranges from 0.876 to 1, this means that in general the classifier has a
good level of overall performance.

Figure 44 presents the confusion matrix for the best result obtained in the Noise 30%

dataset. In this case the GEO and ER classes have the most instances misclassified with 15 and 6
respectively.
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Figure 42 – Confusion matrix obtained for the best results of classification in the Noise 20% dataset in
Table 23
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Figure 43 – AUC-ROC obtained for the best results of classification in the Noise 20% dataset in Table 23
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Source: Elaborated by the author.

Figure 45a shows the area under the curve for each class for the best result obtained in
the Noise 30% dataset. As stated previously, the addition of noise has influence in the model, the
plot shows 2 classes that in which their AUC-ROC curves are moving away from the maximum
value.
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Table 25 – Classification results using the LDA classifier for the Noise 30% dataset. The highest accuracy
is shown in bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=6

Features hg=40 hg=60 hg=100 hg=100 hg=100
pa 94.20 ± 2.35 93.94 ± 2.44 92.84 ± 2.58 92.24 ± 2.91 92.88 ± 2.47
pv 91.88 ± 2.68 93.36 ± 2.51 92.57 ± 2.63 94.69 ± 2.47 96.58 ± 1.93
wq 88.68 ± 2.93 90.31 ± 3.37 90.15 ± 2.80 93.31 ± 2.52 94.71 ± 2.19
ws 91.37 ± 3.11 91.64 ± 2.89 90.62 ± 3.40 89.15 ± 3.13 90.69 ± 2.68
pa, pv 96.54 ± 1.82 95.36 ± 2.36 95.19 ± 2.08 94.99 ± 2.32 95.59 ± 2.18
wq, ws 90.92 ± 3.10 91.81 ± 2.95 93.68 ± 2.44 95.25 ± 2.24 95.41 ± 2.29
pa, wq 94.84 ± 2.41 93.69 ± 2.57 94.39 ± 2.50 91.92 ± 2.96 94.39 ± 2.31
pa, ws 94.62 ± 2.38 93.97 ± 2.56 95.95 ± 2.08 93.10 ± 2.46 93.90 ± 2.50
pv, wq 93.58 ± 2.57 94.29 ± 2.56 93.42 ± 2.10 95.08 ± 2.32 96.84 ± 1.87
pv, ws 94.10 ± 2.41 94.53 ± 2.54 95.23 ± 2.03 94.96 ± 2.28 96.45 ± 1.99
pa, pv, ws 95.88 ± 2.14 94.74 ± 2.51 95.91 ± 2.07 94.72 ± 2.26 94.01 ± 2.62
pa, pv, wq 95.76 ± 2.21 94.11 ± 2.57 94.29 ± 2.43 93.66 ± 2.75 95.30 ± 2.22
pa, wq, ws 93.26 ± 2.81 92.56 ± 2.48 94.56 ± 2.64 92.74 ± 2.72 93.41 ± 2.74
pv, wq, ws 92.12 ± 2.95 93.75 ± 2.49 95.08 ± 2.11 94.47 ± 2.60 96.25 ± 1.90
pa, pv, wq, ws 94.56 ± 2.40 93.26 ± 2.51 94.89 ± 2.62 93.52 ± 2.73 92.90 ± 2.57

Source: Research data.

Table 26 – Classification metrics for the best result of classification in the Noise 30% dataset in Table 25

Class precision recall FPR f1-score MCC AUC support

BA 1.000 1.000 0.000 1.000 1.000 1.000 100
BANL15 0.990 1.000 0.001 0.995 0.994 0.999 100
BANL2 1.000 0.990 0.000 0.995 0.994 1.000 100
BANL5 0.990 0.990 0.001 0.990 0.989 1.000 100
ER 0.862 0.940 0.021 0.900 0.886 0.995 100
GEO 0.934 0.850 0.009 0.890 0.876 0.995 100
MEN 0.990 0.990 0.001 0.990 0.989 1.000 100
WS 1.000 1.000 0.000 1.000 1.000 1.000 100

Source: Research data.

5.5 Pattern recognition in real-world datasets

According to the exploration of the model by varying the values of the parameters, we
perform the pattern recognition task in the real world datasets.

For each dataset we performed a series of experiments varying the parameters wg, and hg

fixing the rest of the parameters pw, pp, t p, iw, and it as discussed previously in subsection 5.3.2
in order to search for good classification results. For each dataset we present 5 variations of the
parameters.

The following values of parameters were chosen because provided the best accuracy
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Figure 44 – Confusion matrix obtained for the best results of classification in the Noise 30% dataset in
Table 23
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Figure 45 – AUC-ROC obtained for the best results of classification in the Noise 30% dataset in Table 25
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Source: Elaborated by the author.

values with the LDA classifier using the 4 four features {pa, pv,wq,ws}.

The water to grow wg varies between to 2 and 4, these were values that allow the model
to perform well, so it will permit the model to search a better accuracy. The height to grow hg

is set to 40, 60, and 100 to allow a plant to have a bigger scope to explore its neighborhood.
The percent of water pw is set to 60. The time alive water tw is set to 30. The percent of plant
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pp is set to 30. The values of percent water and percent plant allow the entire environment to
participate in the simulation, so each node in the network has an agent at a given moment. The
time alive plant t p is set to 0, the special value, so the plant agents remain in the network during
the entire simulation. The number of iterations to add water iw is set to 10, this means that water
is added 20 times during the simulation. The number of iterations of the simulation it is fixed at
200.

The parameters use for the pattern recognition experiments in the real-world datasets are
in Table 27. Each column shows a set of values used, with these parameters we have 5 different
executions of the model in each dataset.

Table 27 – Parameters selected to execute the Growth Model in the real-world network datasets

Set of values

Parameter First Second Third Fourth Fifth

wg 2 2 2 4 4
hg 40 60 100 40 60
pw 60 60 60 60 60
tw 30 30 30 30 30
pp 30 30 30 30 30
tp 0 0 0 0 0
iw 10 10 10 10 10
it 200 200 200 200 200

Source: Research data.

5.5.1 Actinobacteria dataset
Table 28 presents the classification results in the Actinobacteria dataset using the values

of the parameters selected. It is presented the results of the four features plant area, plant volume,
water quantity, water steps {pa, pv,wq,ws}. The best accuracy value is 99.34% using the 4
features with wg = 4, and hg = 60. This result indicates that out of the 199 networks, only 2
instances were misclassified.

Table 29 presents the classification metrics for the best result obtained in the Actinobac-

teria dataset. The recall and MCC values for the Mycobacterium class indicate that it is the most
difficult to be classified correctly.

Figure 46 presents the confusion matrix, it is observed that the Corynebacterium class,
all the samples are classified as TP, in the Mycobacterium class of 60 samples, 58 are correctly
classified, and the Streptomyces class 53 samples are correctly correctly.

Figure 47 shows the area under the curve for each class. Two of the classes have values
close to 1, it indicates that the model is effective in distinguishing those classes, with a low false
positive rate and a high true positive rate.
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Table 28 – Classification results using the LDA classifier for the Actinobacteria dataset using the values
of the parameters selected. For each combination of parameters the highest accuracy is shown
in bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=4
Features hg=40 hg=60 hg=100 hg=40 hg=60

pa 93.91 ± 4.93 96.18 ± 4.02 96.78 ± 3.70 75.10 ± 9.51 83.12 ± 8.31
pv 88.67 ± 6.90 90.10 ± 6.61 86.25 ± 7.25 88.36 ± 7.21 87.62 ± 7.19
wq 79.69 ± 8.96 67.99 ± 11.36 82.42 ± 8.36 92.46 ± 5.79 90.82 ± 6.62
ws 84.57 ± 8.00 89.85 ± 6.43 90.03 ± 6.28 94.22 ± 5.01 92.36 ± 5.79

pa, pv 81.40 ± 8.33 88.32 ± 7.64 94.22 ± 4.95 97.19 ± 3.75 95.85 ± 4.46
wq, ws 95.12 ± 4.93 98.29 ± 3.01 94.96 ± 4.71 97.29 ± 3.68 98.59 ± 2.95
pa, wq 88.93 ± 6.84 93.42 ± 5.20 94.17 ± 4.80 97.38 ± 3.77 96.73 ± 3.88
pa, ws 93.29 ± 5.94 96.01 ± 4.24 93.71 ± 5.55 97.97 ± 2.97 98.09 ± 3.40
pv, wq 87.80 ± 7.27 92.11 ± 5.90 89.79 ± 6.33 96.11 ± 4.56 96.39 ± 4.15
pv, ws 96.13 ± 4.44 97.58 ± 3.59 95.31 ± 4.73 97.11 ± 3.50 97.59 ± 3.33

pa, pv, ws 97.19 ± 3.87 98.01 ± 3.09 96.57 ± 3.96 98.54 ± 2.73 98.57 ± 2.78
pa, pv, wq 94.67 ± 4.64 96.26 ± 4.08 95.46 ± 4.36 97.81 ± 3.09 98.13 ± 3.01
pa, wq, ws 96.81 ± 4.28 98.67 ± 2.73 95.91 ± 4.20 98.06 ± 3.22 99.05 ± 2.47
pv, wq, ws 97.06 ± 3.90 98.77 ± 2.73 95.48 ± 4.46 97.63 ± 3.64 99.07 ± 2.36

pa, pv, wq, ws 97.11 ± 3.82 98.97 ± 2.32 96.81 ± 3.80 98.49 ± 2.65 99.34 ± 2.28

Source: Research data.

Table 29 – Classification metrics for the best result of classification in the Actinobacteria dataset in
Table 28

Class precision recall FPR f1-score MCC AUC support

Corynebacterium 0.977 1.000 0.018 0.989 0.980 0.995 86
Mycobacterium 1.000 0.967 0.000 0.983 0.976 0.997 60
Streptomyces 1.000 1.000 0.000 1.000 1.000 1.000 53

Source: Research data.

5.5.2 Animals dataset

Table 30 presents the classification results in the Animals dataset using the values of
the parameters selected. It is presented the results of the four features plant area, plant volume,
water quantity, water steps {pa, pv,wq,ws}. The best accuracy value is 98.50% using 3 features
with wg = 2, and hg = 40. This result indicates that out of the 56 networks, only 1 instance was
misclassified.

Table 31 presents the classification metrics for the best result obtained in the Animals

dataset. The values for the recall metric from 0.929 to 1 for this dataset means that the classifier
is able to identify the positive instances across all classes. The values for the f1-score metric
from 0.963 to 1 means that the classifier is achieving a high balance between precision and recall
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Figure 46 – Confusion matrix obtained for the best results of classification in the Actinobacteria dataset
in Table 28
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Figure 47 – AUC-ROC obtained for the best results of classification in the Actinobacteria dataset in
Table 28

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

Corynebacterium (AUC = 0.995)
Mycobacterium (AUC = 0.997)
Streptomyces (AUC = 1.000)
Random

(a) AUC ROC

0.00 0.05 0.10 0.15 0.20

False Positive Rate (FPR)

0.80

0.85

0.90

0.95

1.00

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

Corynebacterium (AUC = 0.995)
Mycobacterium (AUC = 0.997)
Streptomyces (AUC = 1.000)
Random

(b) Zoom of AUC ROC

Source: Elaborated by the author.

across all classes.

Figure 48 presents the confusion matrix for the best result obtained in the Animals dataset.
The confusion matrix shows that the instance misclassified correspond to the fishes class.

Figure 49 shows the area under the curve for each class for the best result obtained in the



116 Chapter 5. Experiments in networks

Table 30 – Classification results using the LDA classifier for the Animals dataset using the values of the
parameters selected. For each combination of parameters the highest accuracy is shown in
bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=4
Features hg=40 hg=60 hg=100 hg=40 hg=60

pa 76.32 ± 17.35 90.97 ± 11.66 94.45 ± 9.41 90.38 ± 11.68 88.33 ± 13.21
pv 81.82 ± 13.03 94.78 ± 9.30 96.33 ± 7.53 88.88 ± 12.95 86.62 ± 12.53
wq 96.62 ± 7.85 93.40 ± 9.99 91.55 ± 10.24 87.27 ± 12.48 87.25 ± 12.58
ws 95.17 ± 8.33 89.33 ± 12.40 90.08 ± 12.37 88.50 ± 13.09 92.30 ± 11.05

pa, pv 94.53 ± 9.17 94.45 ± 8.89 97.43 ± 6.39 89.78 ± 11.80 92.32 ± 10.59
wq, ws 97.68 ± 6.25 95.88 ± 8.42 91.18 ± 10.59 90.75 ± 12.14 92.75 ± 10.60
pa, wq 95.62 ± 8.42 93.43 ± 9.40 93.38 ± 9.67 90.15 ± 11.04 88.82 ± 12.05
pa, ws 93.52 ± 10.10 92.02 ± 10.84 92.67 ± 10.15 91.93 ± 11.16 92.02 ± 9.79
pv, wq 98.03 ± 5.86 96.00 ± 8.65 91.53 ± 10.77 87.47 ± 12.63 88.25 ± 11.72
pv, ws 97.57 ± 6.80 94.47 ± 9.89 92.12 ± 10.31 90.88 ± 11.13 96.33 ± 7.45

pa, pv, ws 98.50 ± 4.94 92.62 ± 10.35 94.48 ± 9.07 92.17 ± 10.86 92.72 ± 9.62
pa, pv, wq 97.77 ± 6.17 93.90 ± 9.32 92.88 ± 10.15 89.87 ± 11.51 88.30 ± 12.00
pa, wq, ws 97.50 ± 6.44 95.15 ± 8.46 91.30 ± 10.51 90.88 ± 11.71 91.07 ± 11.05
pv, wq, ws 98.13 ± 5.96 96.47 ± 8.10 91.85 ± 11.02 90.13 ± 11.94 91.05 ± 10.55

pa, pv, wq, ws 97.50 ± 6.66 94.72 ± 8.48 92.52 ± 9.82 90.55 ± 11.80 90.45 ± 10.98

Source: Research data.

Table 31 – Classification metrics for the best result of classification in the Animals dataset in Table 30

Class precision recall FPR f1-score MCC AUC support

birds 1.000 1.000 0.000 1.000 1.000 1.000 14
fishes 1.000 0.929 0.000 0.963 0.952 0.998 14
insects 1.000 1.000 0.000 1.000 1.000 1.000 14
mammals 0.933 1.000 0.024 0.966 0.955 1.000 14

Source: Research data.

Animals dataset. The AUC-ROC curve shows how the fishes is moving away from the maximum
value.

5.5.3 Firmicutes-Bacillis dataset

Table 32 presents the classification results in the Firmicutes-Bacillis dataset using the
values of the parameters selected. It is presented the results of the four features plant area, plant
volume, water quantity, water steps {pa, pv,wq,ws}. In this dataset, all the best accuracy values
were using the 4 features, and the best accuracy of 95.84% happens with wg = 4 and hg = 40.
From the 414 networks 17 instances were incorrectly classified.

Table 33 presents the classification metrics for the best result obtained in the Firmicutes-
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Figure 48 – Confusion matrix obtained for the best results of classification in the Animals dataset in
Table 30
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Figure 49 – AUC-ROC obtained for the best results of classification in the Animals dataset in Table 30
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Bacillis dataset. The precision value of 0.831 in the Lactobacillus class indicates that the classifier
is not able to identify correctly the positive instances.

Figure 50 presents the confusion matrix for the best result obtained in the Firmicutes-

Bacillis dataset. The confusion matrix also shows that there are 15 networks of class Lactobacillus

classified as Streptococcus.
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Table 32 – Classification results using the LDA classifier for the Firmicutes-Bacillis dataset using the
values of the parameters selected. For each combination of parameters the highest accuracy is
shown in bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=4
Features hg=40 hg=60 hg=100 hg=40 hg=60

pa 91.37 ± 4.15 91.42 ± 4.44 91.43 ± 4.30 89.07 ± 4.71 88.94 ± 4.89
pv 90.67 ± 4.51 88.53 ± 4.70 87.53 ± 5.42 85.60 ± 5.97 86.63 ± 5.36
wq 90.01 ± 4.42 87.68 ± 4.99 85.74 ± 5.63 85.59 ± 5.48 85.90 ± 5.13
ws 91.80 ± 4.42 90.03 ± 4.64 87.71 ± 5.35 90.05 ± 4.78 90.56 ± 4.45

pa, pv 90.92 ± 4.20 88.61 ± 4.96 88.38 ± 4.89 79.02 ± 6.29 77.08 ± 6.80
wq, ws 78.72 ± 6.85 78.99 ± 6.68 86.95 ± 5.07 91.12 ± 3.86 91.76 ± 4.60
pa, wq 89.40 ± 4.66 81.17 ± 6.58 79.59 ± 5.99 79.99 ± 6.05 75.81 ± 6.57
pa, ws 89.39 ± 5.51 84.19 ± 5.52 82.46 ± 5.62 85.65 ± 6.30 84.66 ± 5.96
pv, wq 87.89 ± 5.11 82.25 ± 6.59 73.79 ± 7.71 71.26 ± 6.91 67.88 ± 7.35
pv, ws 88.05 ± 4.76 84.43 ± 5.76 83.20 ± 5.79 87.94 ± 5.55 85.19 ± 5.73

pa, pv, ws 88.02 ± 5.01 87.69 ± 5.27 89.42 ± 5.03 94.74 ± 3.47 92.74 ± 4.03
pa, pv, wq 81.99 ± 5.60 78.26 ± 7.00 82.49 ± 5.99 89.14 ± 4.75 85.37 ± 5.63
pa, wq, ws 88.61 ± 5.11 88.94 ± 4.99 93.06 ± 4.09 94.53 ± 3.69 93.37 ± 3.75
pv, wq, ws 91.37 ± 4.67 89.47 ± 4.53 92.31 ± 3.78 94.34 ± 3.46 92.98 ± 3.67

pa, pv, wq, ws 93.60 ± 3.53 93.57 ± 4.16 94.73 ± 3.69 95.84 ± 3.08 94.54 ± 3.44

Source: Research data.

Table 33 – Classification metrics for the best result of classification in the Firmicutes-Bacillis dataset in
Table 32

Class precision recall FPR f1-score MCC AUC support

Bacillus 0.992 0.959 0.003 0.975 0.965 1.000 122
Lactobacillus 0.831 0.892 0.045 0.860 0.825 0.990 83
Staphylococcus 0.937 0.974 0.015 0.955 0.945 0.993 76
Streptococcus 0.922 0.887 0.036 0.904 0.860 0.992 133

Source: Research data.

Figure 51a shows the area under the curve for each class for the best result obtained in
the Firmicutes-Bacillis dataset. In this case, only the Bacillus class has the best AUC-ROC value,
the other classes have lower values indicated by the curves moving away from the maximum
value.

5.5.4 Fungi dataset

Table 34 presents the classification results in the Fungi dataset using the values of the
parameters selected. It is presented the results of the four features plant area, plant volume,
water quantity, water steps {pa, pv,wq,ws}. In this dataset the classifier achieved an accuracy of
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Figure 50 – Confusion matrix obtained for the best results of classification in the Firmicutes-Bacillis
dataset in Table 32
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Figure 51 – AUC-ROC obtained for the best results of classification in the Firmicutes-Bacillis dataset in
Table 32
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83.17%, what indicates that out of 60 networks, 10 networks were misclassified.

Table 35 presents the classification metrics for the best result obtained in the Fungi

dataset. The lower values of the metrics indicate that the classifier is not able to correctly identify
the instances in each class. Only the saccharomycetes class has the best values across all metrics.
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Table 34 – Classification results using the LDA classifier for the Fungi dataset using the values of the
parameters selected. For each combination of parameters the highest accuracy is shown in
bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=4
Features hg=40 hg=60 hg=100 hg=40 hg=60

pa 65.42 ± 17.40 67.58 ± 18.27 59.25 ± 19.27 58.50 ± 20.61 59.33 ± 18.98
pv 59.42 ± 20.25 54.25 ± 17.87 59.67 ± 18.44 54.33 ± 20.29 71.17 ± 17.05
wq 64.67 ± 19.55 49.25 ± 19.81 65.33 ± 17.82 58.92 ± 18.99 58.75 ± 18.02
ws 65.00 ± 19.29 67.67 ± 18.15 63.58 ± 18.86 63.42 ± 19.91 69.83 ± 17.19

pa, pv 73.50 ± 16.35 80.25 ± 15.10 70.25 ± 17.63 60.67 ± 17.08 70.17 ± 17.84
wq, ws 83.08 ± 13.79 77.00 ± 15.51 75.92 ± 17.22 55.83 ± 18.84 62.08 ± 18.25
pa, wq 72.83 ± 17.50 61.08 ± 18.05 73.83 ± 17.20 60.17 ± 18.47 62.92 ± 17.59
pa, ws 80.92 ± 16.28 75.83 ± 17.54 77.42 ± 17.07 68.17 ± 17.57 68.92 ± 18.23
pv, wq 72.42 ± 16.80 60.17 ± 19.42 71.08 ± 16.95 57.75 ± 18.17 59.75 ± 17.74
pv, ws 75.67 ± 17.47 76.25 ± 16.95 72.83 ± 17.82 59.33 ± 19.19 71.67 ± 17.72

pa, pv, ws 82.75 ± 15.93 76.67 ± 15.18 83.17 ± 15.63 61.08 ± 18.28 73.00 ± 17.99
pa, pv, wq 74.00 ± 16.47 65.75 ± 17.89 74.25 ± 16.57 60.67 ± 18.79 64.00 ± 16.45
pa, wq, ws 82.42 ± 15.38 80.17 ± 14.76 80.33 ± 15.43 58.08 ± 18.85 62.83 ± 16.05
pv, wq, ws 80.33 ± 15.88 77.25 ± 16.17 73.83 ± 17.36 53.08 ± 17.72 62.92 ± 17.67

pa, pv, wq, ws 80.33 ± 15.70 80.92 ± 15.85 82.17 ± 15.50 56.67 ± 18.86 64.25 ± 17.27

Source: Research data.

Table 35 – Classification metrics for the best result of classification in the Fungi dataset in Table 34

Class precision recall FPR f1-score MCC AUC support

basidiomycetes 0.786 0.733 0.067 0.759 0.683 0.935 15
eurotiomycetes 0.800 0.800 0.067 0.800 0.733 0.941 15
saccharomycetes 0.933 0.933 0.022 0.933 0.911 0.985 15
sordariomycetes 0.812 0.867 0.067 0.839 0.783 0.941 15

Source: Research data.

Figure 52 presents the confusion matrix for the best result obtained in the Fungi dataset.
The confusion matrix shows that at least one instance of each class was misclassified.

Figure 53 shows the area under the curve for each class for the best result obtained in the
Fungi dataset. The AUC-ROC values are greater than 0.93 for each class, which means that the
classifier is generally able to identify the positive and negative instances of each class, which
was also seen in the confusion matrix.

5.5.5 Kingdom dataset

Table 36 presents the classification results in the Kingdom dataset using the values of
the parameters selected. It is presented the results of the four features plant area, plant volume,
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Figure 52 – Confusion matrix obtained for the best results of classification in the Fungi dataset in Table 34
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Figure 53 – AUC-ROC obtained for the best results of classification in the Fungi dataset in Table 34
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water quantity, water steps {pa, pv,wq,ws}. In this dataset the classifier achieved an accuracy of
99.75% using the 4 features with wg = 2 and hg = 60, what indicates that out of 160 networks,
only 1 network was misclassified.

Table 37 presents the classification metrics for the best result obtained in the Kingdom

dataset. The values for each metric indicate that in general the classifier is correctly identifying
the positive instances, and the negative instances.
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Table 36 – Classification results using the LDA classifier for the Kingdom dataset using the values of the
parameters selected. For each combination of parameters the highest accuracy is shown in
bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=4
Features hg=40 hg=60 hg=100 hg=40 hg=60

pa 97.44 ± 3.65 95.31 ± 4.71 96.28 ± 4.33 83.62 ± 8.65 88.25 ± 7.06
pv 95.84 ± 4.69 96.69 ± 4.28 95.91 ± 4.82 94.41 ± 5.78 96.44 ± 4.66
wq 75.53 ± 9.58 67.28 ± 11.51 89.25 ± 6.71 96.16 ± 4.58 92.94 ± 6.32
ws 95.56 ± 5.10 93.53 ± 6.14 95.06 ± 5.29 95.59 ± 4.83 97.38 ± 3.56

pa, pv 94.88 ± 5.11 94.38 ± 5.69 96.19 ± 4.28 98.28 ± 3.36 97.38 ± 3.72
wq, ws 98.81 ± 2.53 99.03 ± 2.58 98.97 ± 2.40 97.69 ± 3.38 98.72 ± 2.60
pa, wq 94.59 ± 5.47 92.75 ± 6.36 96.91 ± 4.28 98.06 ± 3.50 95.75 ± 4.71
pa, ws 97.44 ± 3.86 97.44 ± 3.65 98.78 ± 2.77 97.88 ± 3.56 99.34 ± 2.20
pv, wq 96.00 ± 4.29 93.25 ± 5.77 94.59 ± 5.22 98.44 ± 3.17 97.25 ± 3.98
pv, ws 99.03 ± 2.35 98.25 ± 2.88 99.06 ± 2.40 98.06 ± 3.45 98.12 ± 3.19

pa, pv, ws 98.97 ± 2.40 98.94 ± 2.51 98.97 ± 2.48 97.94 ± 3.49 99.12 ± 2.42
pa, pv, wq 98.00 ± 3.47 96.00 ± 4.84 98.25 ± 3.13 99.00 ± 2.53 96.84 ± 4.24
pa, wq, ws 98.78 ± 2.98 99.53 ± 1.76 99.25 ± 2.12 98.16 ± 2.98 99.03 ± 2.35
pv, wq, ws 99.06 ± 2.32 99.38 ± 1.98 99.31 ± 1.96 97.38 ± 3.50 99.47 ± 1.74

pa, pv, wq, ws 98.91 ± 2.46 99.75 ± 1.22 99.34 ± 1.92 98.00 ± 3.41 99.47 ± 1.85

Source: Research data.

Table 37 – Classification metrics for the best result of classification in the Kingdom dataset in Table 36

Class precision recall FPR f1-score MCC AUC support

animals 1.000 1.000 0.000 1.000 1.000 1.000 40
fungi 0.976 1.000 0.008 0.988 0.984 1.000 40
plants 1.000 1.000 0.000 1.000 1.000 1.000 40
protist 1.000 0.975 0.000 0.987 0.983 1.000 40

Source: Research data.

Figure 54 presents the confusion matrix for the best result obtained in the Kingdom

dataset. The confusion matrix shows that one instance of the protist class is misclassified as fungi

class.

Figure 55 shows the area under the curve for each class for the best result obtained in the
Kingdom dataset. In this particular case, the AUC-ROC shows a value of 1 for each class.

5.5.6 Plant dataset

Table 38 presents the classification results in the Plant dataset using the values of the
parameters selected. It is presented the results of the four features plant area, plant volume, water
quantity, water steps {pa, pv,wq,ws}. The Plant dataset only has 27 samples and an accuracy



5.5. Pattern recognition in real-world datasets 123

Figure 54 – Confusion matrix obtained for the best results of classification in the Kingdom dataset in
Table 36
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Figure 55 – AUC-ROC obtained for the best results of classification in the Kingdom dataset in Table 36
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value of 88.52% means that 3 instances were misclassified.

Table 39 presents the classification metrics for the best result obtained in the Plant

dataset. The precision values indicate that the classifier is able to identify the positive instances
in each class. The f1-score values indicate that there is a balance between the precision and recall
values.

Figure 56 presents the confusion matrix for the best result obtained in the Plant dataset.
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Table 38 – Classification results using the LDA classifier for the Plant dataset using the values of the
parameters selected. For each combination of parameters the highest accuracy is shown in
bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=4

Features hg=40 hg=60 hg=100 hg=40 hg=60

pa 68.52 ± 12.86 75.93 ± 13.17 83.70 ± 12.42 71.48 ± 12.73 63.33 ± 11.88
pv 83.70 ± 10.63 85.00 ± 10.89 76.11 ± 11.08 72.41 ± 13.22 75.56 ± 11.44
wq 85.00 ± 11.08 78.33 ± 11.19 74.63 ± 14.50 77.59 ± 15.11 77.22 ± 12.74
ws 74.81 ± 12.97 82.78 ± 9.17 74.44 ± 12.88 70.93 ± 14.07 74.44 ± 13.65

pa, pv 86.30 ± 12.06 86.85 ± 12.91 84.07 ± 11.54 76.67 ± 9.45 77.59 ± 12.59
wq, ws 83.89 ± 11.90 77.96 ± 11.20 74.63 ± 14.07 72.22 ± 13.38 75.19 ± 12.23
pa, wq 84.26 ± 11.53 76.67 ± 10.87 75.93 ± 13.02 77.41 ± 12.66 75.56 ± 12.14
pa, ws 82.41 ± 10.98 80.74 ± 9.91 77.22 ± 11.19 75.37 ± 13.62 75.56 ± 13.58
pv, wq 85.74 ± 10.36 82.96 ± 10.44 81.48 ± 11.59 83.52 ± 9.83 81.67 ± 9.48
pv, ws 77.78 ± 12.00 85.00 ± 9.48 83.33 ± 10.44 80.56 ± 13.09 84.63 ± 14.21

pa, pv, ws 85.00 ± 12.48 87.22 ± 8.80 83.33 ± 11.56 79.26 ± 12.58 81.67 ± 15.16
pa, pv, wq 85.93 ± 11.27 83.33 ± 9.41 80.74 ± 12.81 81.48 ± 10.86 79.26 ± 10.63
pa, wq, ws 85.93 ± 11.45 77.22 ± 10.43 73.33 ± 12.54 74.07 ± 12.78 78.15 ± 13.30
pv, wq, ws 84.81 ± 10.53 80.19 ± 11.84 79.07 ± 13.00 79.63 ± 12.53 82.41 ± 11.53

pa, pv, wq, ws 88.52 ± 10.34 79.44 ± 11.97 78.52 ± 13.89 78.33 ± 13.06 80.74 ± 11.45

Source: Research data.

Table 39 – Classification metrics for the best result of classification in the Plant dataset in Table 38

Class precision recall FPR f1-score MCC AUC support

eudicots 0.900 1.000 0.056 0.947 0.922 0.969 9
greenalgae 1.000 1.000 0.000 1.000 1.000 1.000 9
monocots 1.000 0.889 0.000 0.941 0.918 0.969 9

Source: Research data.

As previously stated, the results shown in the confusion matrix differ to those of the classification
results because of implementation details of the cross-validation strategy in Scikit-learn. For this
specific case, only 1 instance is misclassified, which means an accuracy value of 96%.

Figure 57 shows the area under the curve for each class for the best result obtained in the
Plant dataset. The values of AUC-ROC for each class indicate values close to an optimal model.

5.5.7 Protist dataset

Table 40 presents the classification results in the Protist dataset using the values of the
parameters selected. It is presented the results of the four features plant area, plant volume, water
quantity, water steps {pa, pv,wq,ws}. The best accuracy obtained in Protist was 83.13% using 2
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Figure 56 – Confusion matrix obtained for the best results of classification in the Plant dataset in Table 38
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Figure 57 – AUC-ROC obtained for the best results of classification in the Plant dataset in Table 38
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features {pv,wq} with parameter values wg = 4 and hg = 60. This dataset has the least number
of instances among all the datasets studied. Out of 20 networks, 3 networks were incorrectly
classified.

Table 41 presents the classification metrics for the best result obtained in the Protist

dataset. The precision values for Amoebozoa and Euglenozoa of 1 indicates that the classifier cor-
rectly identified the positive instances of these classes. Instead, for Alveolates and Stramenopiles

classes have a greater number of false positives.
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Table 40 – Classification results using the LDA classifier for the Protist dataset using the values of the
parameters selected. For each combination of parameters the highest accuracy is shown in
bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=4
Features hg=40 hg=60 hg=100 hg=40 hg=60

pa 65.87 ± 13.51 72.26 ± 13.83 67.58 ± 15.00 65.04 ± 15.56 69.25 ± 15.41
pv 52.70 ± 11.90 65.16 ± 13.73 60.56 ± 17.23 63.21 ± 17.54 72.38 ± 14.09
wq 56.19 ± 12.65 73.25 ± 13.59 64.56 ± 16.38 51.75 ± 12.63 82.82 ± 12.36
ws 47.70 ± 13.56 75.24 ± 10.10 68.85 ± 14.84 56.59 ± 13.77 73.25 ± 13.27

pa, pv 66.43 ± 14.82 65.95 ± 17.58 71.15 ± 13.78 70.60 ± 13.30 76.51 ± 13.04
wq, ws 52.54 ± 14.17 77.14 ± 11.79 67.30 ± 15.37 61.79 ± 13.52 80.67 ± 11.37
pa, wq 56.47 ± 14.47 73.25 ± 12.55 66.27 ± 15.87 56.27 ± 14.00 81.07 ± 11.86
pa, ws 50.63 ± 11.88 76.79 ± 10.87 69.21 ± 15.48 65.40 ± 13.74 76.71 ± 12.40
pv, wq 58.61 ± 11.16 74.96 ± 13.89 66.67 ± 15.37 58.25 ± 13.29 83.13 ± 10.55
pv, ws 51.87 ± 13.13 77.94 ± 11.09 71.63 ± 13.78 66.90 ± 11.73 79.25 ± 9.93

pa, pv, ws 52.22 ± 14.32 77.46 ± 10.74 70.60 ± 14.83 65.00 ± 14.97 78.97 ± 10.05
pa, pv, wq 54.37 ± 13.64 73.81 ± 14.21 66.43 ± 14.96 54.05 ± 14.40 79.76 ± 13.36
pa, wq, ws 50.75 ± 14.68 77.90 ± 12.33 67.38 ± 15.87 61.83 ± 13.50 81.51 ± 11.63
pv, wq, ws 53.33 ± 15.69 78.41 ± 11.99 65.67 ± 14.85 63.85 ± 12.92 81.15 ± 10.97

pa, pv, wq, ws 52.18 ± 15.24 77.50 ± 11.57 65.83 ± 13.52 61.94 ± 12.40 78.49 ± 11.54

Source: Research data.

Table 41 – Classification metrics for the best result of classification in the Protist dataset in Table 40

Class precision recall FPR f1-score MCC AUC support

Alveolates 0.833 1.000 0.067 0.909 0.882 0.973 5
Amoebozoa 1.000 0.800 0.000 0.889 0.866 0.827 5
Euglenozoa 1.000 1.000 0.000 1.000 1.000 1.000 5
Stramenopiles 0.800 0.800 0.067 0.800 0.733 0.920 5

Source: Research data.

Figure 58 presents the confusion matrix for the best result obtained in the Protist dataset.
The confusion matrix shows that 1 instance of Amoebozoa and 1 instance of Stramenopiles are
misclassified.

Figure 59 shows the area under the curve for each class for the best result obtained in
the Protist dataset. The plot shows that the Amoebozoa has the lowest value of AUC-ROC, this
corresponds with the plot that in one point has a value lower than 0.5.

5.5.8 Social dataset

Table 42 presents the classification results in the Social dataset using the values of the
parameters selected. It is presented the results of the four features plant area, plant volume, water
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Figure 58 – Confusion matrix obtained for the best results of classification in the Protist dataset in Table 40
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Figure 59 – AUC-ROC obtained for the best results of classification in the Protist dataset in Table 40
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quantity, water steps {pa, pv,wq,ws}. The classification results using the LDA classifier shows
that when the same parameters of the real-world metabolic datasets are applied to the Social

dataset the classification results reach 77.25%.

For this dataset we also show the classification results usign the Linear SVC and kNN
classifiers, as they provided similar accuracy results in Table 43 and Table 44. The best accuracy
value with the Linear SVC classifier is 91.95% using the parameter values wg = 4,hg = 40, and
the feature vector {wq,ws}, and coincidentally is the kNN classifier provided the same result
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Table 42 – Classification results using the LDA classifier for the Social dataset using the values of the
parameters selected. For each combination of parameters the highest accuracy is shown in
bold, and the cells with the top 3 values are colored in light blue.

LDA wg=2 wg=2 wg=2 wg=4 wg=4
Features hg=40 hg=60 hg=100 hg=40 hg=60

pa 72.95 ± 11.57 72.30 ± 10.76 75.15 ± 12.08 71.90 ± 12.02 70.15 ± 12.67
pv 69.25 ± 13.00 72.00 ± 13.15 77.25 ± 12.16 72.15 ± 14.10 76.20 ± 12.63
wq 66.30 ± 12.82 65.05 ± 13.30 67.05 ± 12.60 68.10 ± 14.91 64.50 ± 14.41
ws 61.85 ± 14.39 58.10 ± 15.57 64.40 ± 14.41 63.35 ± 15.14 62.65 ± 14.75

pa, pv 66.35 ± 14.25 69.75 ± 12.55 72.65 ± 12.63 71.75 ± 12.71 73.40 ± 13.51
wq, ws 55.30 ± 16.28 63.90 ± 15.16 64.40 ± 14.02 64.45 ± 13.74 65.50 ± 14.17
pa, wq 63.45 ± 16.11 64.30 ± 15.80 65.30 ± 14.73 69.50 ± 14.79 64.40 ± 14.89
pa, ws 60.40 ± 13.41 61.40 ± 13.46 66.10 ± 13.85 65.30 ± 14.93 65.35 ± 14.69
pv, wq 60.20 ± 15.56 66.10 ± 14.52 66.65 ± 13.65 63.45 ± 15.99 60.70 ± 14.88
pv, ws 60.00 ± 16.25 61.35 ± 17.05 66.45 ± 14.21 62.15 ± 15.36 64.30 ± 13.87

pa, pv, ws 57.80 ± 15.69 64.35 ± 15.35 62.50 ± 15.64 65.25 ± 13.41 67.00 ± 13.08
pa, pv, wq 59.05 ± 16.05 63.25 ± 14.83 65.75 ± 14.61 68.50 ± 15.32 58.00 ± 15.94
pa, wq, ws 57.70 ± 15.71 60.10 ± 15.46 60.10 ± 15.33 70.10 ± 13.53 67.15 ± 15.05
pv, wq, ws 59.80 ± 15.43 64.85 ± 13.96 66.25 ± 14.85 65.45 ± 14.79 67.85 ± 14.79

pa, pv, wq, ws 57.85 ± 14.28 63.55 ± 14.52 67.05 ± 12.92 71.40 ± 13.79 69.15 ± 14.66

Source: Research data.

using the same values. The best accuracy value with the kNN classifier is 92.90% using the
parameter values wg = 2,hg = 60, and the feature vector {pa}. We have two classifiers, Linear
SVC and kNN, that have similar good results of accuracy, 91.95% and 92.90% respectively, but
the LDA classifier has a lower accuracy of 77.25%, it suggests that the Linear SVC and kNN
classifiers perform consistently well on the Social dataset, while the LDA classifier might not be
suitable for this specific dataset.

Table 45 presents the classification metrics for the best result obtained in the Social

dataset. The MCC is 0.761 and the AUC-ROC is 0.880. The values of precision of 0.896 for the
gplus class indicates that the classifier is relatively accurate in its positive predictions, with a
low rate of false positives. And its recall value of 0.860 indicates that the classifier is sensitive to
positive instances but is also missing some instances.

Figure 60 presents the confusion matrix for the best result obtained in the Social dataset
using the kNN classifier. The confusion matrix incorrectly classified 5 networks of the twitter

class and incorrectly classified 7 networks of gplus class.

Figure 61 shows the area under the curve for the best result obtained in the Social dataset.
A value of 0.880 of AUC-ROC suggests that on average the classifier correctly identify positive
instances more times than negative instances.
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Table 43 – Classification results using the Linear SVC classifier for the Social dataset using the values of
the parameters selected. For each combination of parameters the highest accuracy is shown in
bold, and the cells with the top 3 values are colored in light blue.

Linear SVC wg=2 wg=2 wg=2 wg=4 wg=4
Features hg=40 hg=60 hg=100 hg=40 hg=60

pa 91.15 ± 8.79 91.30 ± 7.89 91.65 ± 8.29 90.25 ± 9.19 91.45 ± 8.27
pv 88.00 ± 10.44 88.80 ± 9.67 90.00 ± 8.94 87.55 ± 10.07 88.00 ± 10.39
wq 89.00 ± 9.59 89.00 ± 9.11 89.00 ± 8.66 90.60 ± 9.68 90.05 ± 9.62
ws 88.40 ± 9.82 88.75 ± 9.32 87.95 ± 9.07 90.25 ± 9.30 87.80 ± 10.01

pa, pv 90.05 ± 9.03 90.90 ± 8.14 90.95 ± 8.34 89.80 ± 9.27 90.75 ± 8.83
wq, ws 89.55 ± 9.66 89.40 ± 9.09 89.05 ± 8.64 91.95 ± 8.76 90.40 ± 9.43
pa, wq 89.40 ± 9.62 89.85 ± 8.63 90.20 ± 8.48 91.30 ± 9.02 91.30 ± 8.85
pa, ws 90.65 ± 9.17 90.65 ± 8.19 90.85 ± 8.59 91.00 ± 9.06 90.30 ± 9.05
pv, wq 89.00 ± 9.59 89.65 ± 8.80 91.60 ± 8.03 90.90 ± 9.50 90.60 ± 9.41
pv, ws 88.60 ± 9.85 89.80 ± 8.36 91.00 ± 8.25 90.20 ± 9.54 87.85 ± 9.74

pa, pv, ws 90.55 ± 9.01 90.65 ± 8.31 91.35 ± 8.47 91.35 ± 8.98 90.30 ± 9.16
pa, pv, wq 89.45 ± 9.60 89.80 ± 8.66 91.25 ± 8.24 91.35 ± 8.98 91.25 ± 8.83
pa, wq, ws 90.30 ± 9.27 90.00 ± 8.54 90.20 ± 8.48 91.90 ± 8.74 90.50 ± 9.42
pv, wq, ws 89.65 ± 9.61 89.75 ± 8.74 91.65 ± 7.92 91.90 ± 8.74 90.00 ± 9.43

pa, pv, wq, ws 90.45 ± 9.13 90.05 ± 8.57 91.25 ± 8.30 91.85 ± 8.78 90.45 ± 9.61

Source: Research data.

Figure 60 – Confusion matrix obtained for the best results of classification in the Social dataset in Table 44
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5.5.9 Stomata dataset

Table 46 presents the classification results in the Stomata dataset using the values of the
parameters selected. It is presented the results of the four features plant area, plant volume, water
quantity, water steps {pa, pv,wq,ws}. We present the results using the kNN classifier, because
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Table 44 – Classification results using the kNN classifier for the Social dataset using the values of the
parameters selected. For each combination of parameters the highest accuracy is shown in
bold, and the cells with the top 3 values are colored in light blue.

kNN wg=2 wg=2 wg=2 wg=4 wg=4
Features hg=40 hg=60 hg=100 hg=40 hg=60

pa 91.95 ± 8.47 92.90 ± 7.52 92.90 ± 7.59 91.80 ± 8.70 92.80 ± 8.01
pv 87.10 ± 10.70 87.55 ± 10.02 88.75 ± 8.94 87.90 ± 10.03 86.35 ± 10.73
wq 92.75 ± 8.42 92.55 ± 7.75 92.70 ± 7.92 90.90 ± 9.18 90.55 ± 8.90
ws 91.00 ± 8.89 91.05 ± 8.21 90.10 ± 8.94 90.10 ± 9.38 88.05 ± 9.88

pa, pv 90.65 ± 9.00 90.60 ± 8.22 91.25 ± 8.18 90.00 ± 9.64 91.80 ± 8.23
wq, ws 91.85 ± 8.72 92.40 ± 7.76 92.60 ± 7.89 91.95 ± 8.76 91.10 ± 8.47
pa, wq 91.95 ± 8.47 92.90 ± 7.52 92.90 ± 7.72 92.05 ± 8.56 91.75 ± 8.45
pa, ws 92.00 ± 8.49 92.90 ± 7.52 92.90 ± 7.72 90.50 ± 9.53 89.10 ± 9.71
pv, wq 89.95 ± 9.41 90.30 ± 8.83 90.75 ± 8.60 91.00 ± 9.33 91.90 ± 9.29
pv, ws 87.40 ± 9.71 87.95 ± 9.71 90.75 ± 8.48 89.75 ± 9.51 88.90 ± 9.48

pa, pv, ws 90.05 ± 9.19 90.30 ± 8.48 91.15 ± 8.32 89.80 ± 9.16 90.10 ± 8.60
pa, pv, wq 90.95 ± 9.09 91.60 ± 7.90 91.80 ± 7.79 91.40 ± 9.06 92.50 ± 8.35
pa, wq, ws 92.60 ± 8.38 92.90 ± 7.52 92.90 ± 7.72 90.65 ± 9.49 89.25 ± 9.79
pv, wq, ws 88.55 ± 9.46 91.05 ± 8.57 91.75 ± 7.96 90.95 ± 9.14 90.10 ± 9.11

pa, pv, wq, ws 90.50 ± 9.47 91.30 ± 8.14 92.45 ± 7.84 91.15 ± 9.12 90.95 ± 8.58

Source: Research data.

Table 45 – Classification metrics for the best result of classification in the Social dataset in Table 44

Class precision recall FPR f1-score support

gplus 0.896 0.860 0.100 0.878 50
twitter 0.865 0.900 0.140 0.882 50

Source: Research data.

in this dataset presented better classification results. For this dataset, the best accuracy is 94.65%
using only the feature {pa}. Unlike the Social dataset, when using more than one feature the
accuracy value decreases.

Table 47 presents the classification metrics for the best result obtained in the Stomata

dataset. In all the metrics the values are similar for each class, this indicates that in general the
classifier is correctly distinguishing positive from negative instances.

Figure 62 presents the confusion matrix for the best result obtained in the Stomata

dataset. Each of the 3 classes got confused with the other classes, the natural class has the least
misclassified.

Figure 63 shows the area under the curve for each class for the best result obtained in the
Stomata dataset. The AUC-ROC also shows that the 3 classes have similar values, which means



5.5. Pattern recognition in real-world datasets 131

Figure 61 – AUC-ROC obtained for the best results of classification in the Social dataset in Table 44
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Table 46 – Classification results using the kNN classifier for the Stomata dataset using the values of the
parameters selected. For each combination of parameters the highest accuracy is shown in
bold, and the cells with the top 3 values are colored in light blue.

kNN wg=2 wg=2 wg=2 wg=4 wg=4
Features hg=40 hg=60 hg=100 hg=40 hg=60

pa 81.01 ± 6.90 88.28 ± 5.86 94.65 ± 4.24 77.32 ± 7.62 85.88 ± 5.88
pv 57.82 ± 8.17 62.63 ± 9.01 70.33 ± 7.70 54.26 ± 8.12 57.61 ± 8.63
wq 55.40 ± 9.13 57.59 ± 8.71 56.80 ± 7.85 58.02 ± 7.75 61.14 ± 7.88
ws 51.06 ± 8.87 51.81 ± 8.43 53.30 ± 8.55 50.65 ± 8.29 51.42 ± 7.85

pa, pv 66.81 ± 8.36 72.74 ± 9.14 77.53 ± 7.07 65.09 ± 7.81 72.06 ± 8.27
wq, ws 55.37 ± 8.25 56.43 ± 9.17 55.65 ± 7.73 56.64 ± 8.00 58.35 ± 7.99
pa, wq 64.36 ± 8.07 68.76 ± 7.87 69.07 ± 7.49 63.68 ± 8.05 65.95 ± 7.81
pa, ws 63.72 ± 8.22 66.88 ± 7.77 70.46 ± 7.02 64.24 ± 7.91 69.16 ± 7.74
pv, wq 52.24 ± 8.36 54.05 ± 8.10 55.23 ± 8.42 50.78 ± 8.02 52.82 ± 8.46
pv, ws 48.32 ± 7.75 51.01 ± 8.46 52.64 ± 7.95 47.90 ± 7.93 51.01 ± 8.00

pa, pv, ws 60.57 ± 8.16 61.15 ± 7.90 65.33 ± 6.95 57.56 ± 7.77 63.35 ± 7.83
pa, pv, wq 61.15 ± 8.56 63.70 ± 7.78 66.08 ± 7.28 58.63 ± 8.09 62.80 ± 7.83
pa, wq, ws 63.09 ± 7.86 65.14 ± 7.80 67.26 ± 7.04 63.27 ± 7.55 64.82 ± 8.00
pv, wq, ws 50.87 ± 8.30 51.85 ± 8.81 53.75 ± 8.03 50.02 ± 7.93 51.93 ± 8.36

pa, pv, wq, ws 60.35 ± 8.27 60.63 ± 7.77 64.43 ± 7.12 58.10 ± 7.77 62.70 ± 7.71

Source: Research data.

that in general the classifier discriminates the positive from the negative instances.
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Table 47 – Classification metrics for the best result of classification in the Stomata dataset in Table 44

Class precision recall FPR f1-score MCC AUC support

24h 0.947 0.938 0.026 0.942 0.914 0.956 96
4h 0.957 0.938 0.021 0.947 0.922 0.958 96
natural 0.939 0.969 0.031 0.954 0.930 0.969 96

Source: Research data.

Figure 62 – Confusion matrix obtained for the best results of classification in the Stomata dataset in
Table 46
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5.6 Comparison of classification results with previous
works

In this section we show the classification results of our method in comparison with
previous results in the literature such as, Density Time-Evolution Pattern (D-TEP) (ZIELINSKI
et al., 2022), Life-Like Network Automata - Binary patterns (LLNA-BP) (RIBAS; MACHI-
CAO; BRUNO, 2020), LLNA and classical network measurements (MIRANDA; MACHICAO;
BRUNO, 2016a).

D-TEP uses as features the measures of three histograms of global values, degrees and
one temporal. LLNA-BP uses as features the measures of global histograms and degrees of
binary patterns obtained from time evolution patterns. LLNA uses as features the measures of
Shannon entropy, word length and Lempel-ziv complexity from time evolution patterns. And,
the network measures used as features were the mean degree, degree distributions, correlations,
distances, path lengths, hierarchical and spectral measures, transitivity, and clustering coefficient.

Table 48 presents the best classification results of the Growth Model as detailed in sec-
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Figure 63 – AUC-ROC obtained for the best results of classification in the Stomata dataset in Table 46
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Source: Elaborated by the author.

tion 5.4 using the LDA classifier. For synthetic datasets, our approach obtains values comparable
to the methods in the literature, except in the 4-models + ⟨k⟩ dataset, in which obtains the lowest
accuracy value.

Table 48 – Comparison of the Growth Model with previous approaches in synthetic network datasets
using global features

Dataset Growth D-TEP LLNA-BP LLNA Structural

4-models 99.13 ± 0.26 100.00 ± 0.00 100.00 ± 0.00 99.99 ± 0.00 100.0 ± 0.00
4-models + k 84.97 ± 1.68 98.31 ± 0.02 90.76 ± 0.07 65.20 ± 0.20
Scale-free 99.82 ± 0.57 100.00 ± 0.00 99.52 ± 0.19 98.30 ± 0.07 96.20 ± 0.20
Noise-0 99.56 ± 0.72 100.00 ± 0.00 100.00 ± 0.00 -
Noise-10% 98.26 ± 1.31 100.00 ± 0.00 100.00 ± 0.00 99.98 ± 0.00 100.00 ± 0.00
Noise-20% 97.89 ± 1.44 100.00 ± 0.00 99.98 ± 0.00 99.97 ± 0.01 100.00 ± 0.00
Noise-30% 96.84 ± 1.87 99.75 ± 0.00 99.99 ± 0.00 99.95 ± 0.01 100.00 ± 0.00

Source: Elaborated by the author.

Table 49 presents the best classification results of the Growth Model as detailed in
section 5.5 using the LDA classifier. For the real-world datasets our approach obtains values
comparable to the methods in the literature. Even, for the metabolic network datasets obtain
better results in Actinobacteria, Fungi, Kingdom, and Plant datasets. In the Stomata dataset
obtained a better result with the kNN classifier.

Table 50 presents a comparison of the best classification results of the Growth Model in
real-world datasets using node information of degree, eigenvector, and closeness. The accuracy
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Table 49 – Comparison of the Growth Model with previous approaches in real network datasets using
global measures

Dataset Growth D-TEP LLNA-BP LLNA Structural

Actinobacteria 99.34 ± 2.28 97.68 ± 5.00 95.13 ± 1.22 91.48 ± 1.60 93.16 ± 0.70
Animals 98.50 ± 4.94 100.00 ± 0.00 84.87 ± 15.25 77.25 ± 16.29 83.71 ± 15.29
Firmicutes 95.84 ± 3.08 96.06 ± 0.35 98.30 ± 1.17 84.63 ± 2.00 95.67 ± 0.59
Fungi 83.17 ± 15.63 81.00 ± 4.38 76.17 ± 17.45 54.58 ± 19.38 54.90 ± 15.39
Kingdom 99.75 ± 1.22 96.24 ± 0.35 97.44 ± 3.98 93.10 ± 5.38 96.61 ± 4.33
Plant 88.52 ± 10.34 81.33 ± 6.00 74.81 ± 5.64 69.70 ± 4.67 54.19 ± 9.17
Protist 83.13 ± 10.55 - 87.00 ± 5.29 68.55 ± 6.30 45.10 ± 10.02
Social 92.90 ± 7.52 92.50 ± 0.50 93.40 ± 0.92 92.00 ± 1.00 88.00 ± 2.00
Stomata 94.65 ± 4.24 - 90.00 ± 6.00 83.00 ± 4.00

Source: Elaborated by the author.

is better when using node degree information.

Table 50 – Comparison of the best classification results in real-world network datasets using node infor-
mation of degree, eigenvector, and closeness

Dataset Degree Eigenvector Closeness

Actinobacteria 99.34 ± 2.28 96.13 ± 4.08 94.47 ± 5.01
Animals 98.50 ± 4.94 91.13 ± 11.61 96.33 ± 7.14
Firmicutes 95.84 ± 3.08 88.05 ± 4.35 87.75 ± 4.34
Fungi 83.17 ± 15.63 55.17 ± 18.36 60.83 ± 15.7
Kingdom 99.75 ± 1.22 91.88 ± 6.76 91.81 ± 6.29
Plant 88.52 ± 10.34 82.96 ± 11.74 86.3 ± 10.22
Protist 83.13 ± 10.55 62.86 ± 13.55 62.38 ± 13.98

Source: Elaborated by the author.

Table 51 presents a comparison of the best classification results of the Growth Model
using global and local measures in real-world datasets. The local measures used are the Shannon
entropy and Lempel-Ziv complexity. The classification scheme is the same as the previous
experiments.

In Firmicutes, and Kingdom datasets, using local features yields better results compared
to global features. For the remaining datasets, the results are approximately the same using local
or global features. The Fungi dataset shows a greater difference, being better the use of global
features.

5.6.1 Implementation details

The source code was developed in a Windows environment using the Python program-
ming language (version 3.11). A useful feature of Python is that it integrates modules (packages,
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Table 51 – Comparison of the best classification results in real-world network datasets using local mea-
sures and global features

Dataset Local Global

Actinobacteria 99.13 ± 2.15 99.34 ± 2.28
Animals 97.40 ± 7.04 98.50 ± 4.94
Firmicutes 96.62 ± 2.57 95.84 ± 3.08
Fungi 69.67 ± 17.22 83.17 ± 15.63
Kingdom 99.81 ± 1.06 99.75 ± 1.22
Plant 83.33 ± 13.07 88.52 ± 10.34
Protist 79.76 ± 11.30 83.13 ± 10.55

Source: Elaborated by the author.

libraries or frameworks) from any scientific domain.

For the modeling stage and generation of patterns created in the environment we utilized
Mesa (version 1.2.0), Mesa is a package designed to create Agent-Based Models in Python. To
model and study the structure of complex networks we used NetworkX (version 3.1). For the
classification part we used machine learning classifiers provided by Scikit-learn (version 1.3.0),
and Imbalanced-learn (version 0.11.0) to deal with the imbalanced datasets. To track and store
the classification results we used MLflow (version 2.4.2).

5.7 Considerations
In the synthetic network datasets studied in this work, we got similar results in most of

the cases, what indicates, the potential to deal with real-world networks.

In most of the real-world network datasets studied in this work, we got comparable
results and even better results than those previously presented in the literature.

This means that the model has the potential to continue to be explored and extended for
applications involving pattern recognition in networks.

By analyzing the networks using global measures, obtained from all the agents after each
iteration, the model is able to differentiate the classes within the bases.
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6
CONCLUSIONS

This work explored agent-based models, network science, and pattern recognition, which
are active fields of research with real-world applications. Upon reviewing the literature on
complex network categorization, a noticeable gap was identified: the lack of studies employing
agent-based models for the analysis of complex networks, so the main focus of this thesis was to
explore the use of Agent-Based Modeling (ABM) to develop methods for pattern recognition
in complex networks. While agent-based models (ABMs) are frequently used in the literature
to simulate real-world systems, This work demonstrates the potential to be employed with an
exploratory approach in the context of categorizing complex networks.

The proposed model is called the Growth Model, it utilizes two types of agents, water,
and plant, which interact with each other and the environment. Water agents move based on
the environment’s height, while plant agents grow according to the amount of water in their
neighborhood. The Growth Model can work either with texture images or complex networks.

Methods from the state of the art for categorizing complex networks were studied,
including deterministic walks and cellular automata. These methods only work with a single type
of element, lacking interaction between them, and the activation of their elements is restricted to
random and simultaneous forms. In contrast, agent-based models allow for multiple elements in
their environment, which can interact with each other, and offer various activation methods for
agents, including sequential, simultaneous, random, random by type of element, and domain-
specific activation.

Initially, agent-based models in images were explored, as their spatial structure allows
representation as a surface in three dimensions. This surface served as the environment for the
agents that required the concept of “height” as a metric for their behavior in the simulation. This
approach facilitated the visualization of interactions among agents and with the environment,
contributing to a more comprehensive understanding of their dynamics. To extend the application
of the model to complex networks, known for their irregular structure, a transformation from the
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image-based model was required. The natural relationship between nodes and edges was em-
ployed for this purpose. Consequently, the model takes advantage on the intrinsic characteristics
of the underlying network space, serving as the environment for the agents.

During the simulation of the model, global and local characteristics can be collected
and utilized as a feature vector for the classification stage. Global characteristics include the
plant area, plant volume, water quantity, and water steps. These features were obtained in each
iteration of the simulation, and the vector size depends on the number of model iterations. The
local characteristics employed were the Lempel-Ziv complexity and the Shannon Entropy, these
values were computed at each node and the size of the feature vector does not depend on the
number of iterations.

The Growth Model was applied to synthetic and real datasets. The classification results
for real networks are similar to those found in literature methods. It is worth noting that the
accuracy improved in four datasets — Actinobacteria, Fungi, Kingdom, and Plant — when
utilizing global features. Better results were obtained using local features for Firmicutes and
Kingdom compared to the use of global features.

The results demonstrate the promising potential of this approach. The method opens
numerous avenues for exploration and presents significant opportunities for the development
of simulations using agent-based modeling. The proposed method indicates that agent-based
models serve as tools for analyzing complex networks, providing valuable insights into their
structure and behavior.

6.1 Production
The work “Social interaction layers in complex networks for the dynamical epidemic

modeling of COVID-19 in Brazil”, uses a computational model with Agent-Based Modeling
in which a discrete process is simulated on a network, for the analysis of the contemporary
COVID-19 epidemic.

Leonardo F.S. Scabini, Lucas C. Ribas, Mariane B. Neiva, Altamir G.B. Junior, Alex
J.F. Farfán, Odemir M. Bruno (2021). Social interaction layers in complex networks for the
dynamical epidemic modeling of COVID-19 in Brazil. Physica A: Statistical Mechanics and its

Applications.

The work “Analyzing Patterns in Agent Based Models for Network Classification”,
submitted to the International Conference of Pattern Recognition and Applications that shows
the applicability of the model for Pattern Recognition in Complex Networks.
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GLOSSARY

Agent-Based Model: An agent-based model is a computational simulation approach that repre-
sents systems by modeling individual entities (agents) and their interactions, allowing for
the exploration of emergent behaviors and patterns arising from decentralized decision-
making at the level of individual agents.

Celullar Automata: Cellular automata are discrete, computational models characterized by a
grid of cells, each with a state that evolves over discrete time steps based on predefined
rules determined by the states of neighboring cells.

Class: Target variable, in machine learning is the variable which we want to predict.

Classification: Classification is a specific subtask within pattern recognition. It involves catego-
rizing or labeling data points into predefined classes or categories based on their attributes
or features.

Classifier: A classifier is an algorithm that categorizes data into a predefined set of classes.

Dataset: A dataset is typically a collection of structured or unstructured data that is used to train
a machine learning model, whereas a database is a structured collection of data that is
designed for efficient storage, retrieval, and management. While a dataset can be stored in
a database, the term dataset specifically refers to the data that is used for machine learning
purposes.

Imbalanced data: A dataset that contains different number of samples in its categories.

Pattern Recognition: Pattern recognition is a field that encompasses the process of identifying
patterns or regularities in data. These patterns can take various forms, including shapes,
structures, features, or statistical distributions.

Structured data: Data that is organized in a well-defined format and has a predetermined
schema, like relational databases, CSV files, etc.

Tabular data: Structured data represented in tabular form, in which each column represents a
specific attribute or feature, and each row represents an individual data instance.

Unstructured data: Data that does not have a predefined format or organization, like images,
videos, networks, etc.
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