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RESUMO

POPOLIN NETO, M. Intepretabilidade de Random Forest - explicando modelos
de classificação e dados multivariados por meio de visualizações de regras lógi-
cas. 2022. 128 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2022.

Modelos de classificação possuem imenso potencial e futuro ubíquo, considerando o vasto
número de tarefas preditivas em diferentes domínios onde estes modelos são aplicáveis. A
interpretabilidade dos modelos pode ser tão importante quanto a performance, fornecendo
explicações globais e locais para interpretar os conhecimentos adquiridos e auditar deci-
sões. Além da capacidade preditiva, modelos de classificação podem ser aplicados como
ferramentas descritivas, onde intepretabilidade envolve explicações de dados. Regras lógi-
cas vêm sendo amplamente utilizadas em soluções para interpretabilidade e Decision Trees
são reconhecidas pela geração de regras lógicas consistentes. A abordagem Random Forest
– conjunto de Decision Trees – tem sido amplamente adotada devido a sua habilidade em
produzir resultados precisos e manipular conjuntos de dados multivariados. Entretanto,
a intepretabilidade de modelos Random Forest enfrenta o desafio de gerir um número
considerável de regras. Baseado na visualização de regras lógicas em uma metáfora visual
em formato de matriz, esta tese de doutorado resulta em métodos de Visual Analytics
para a intepretabilidade de modelos Random Forest, suportando explicações de modelos
e de dados cobrindo propósitos preditivos e descritivos. Para explicações de modelos (pre-
ditivo), ExMatrix dispõe regras lógicas a formar representações visuais globais e locais,
fornecendo visões gerais e análises de decisões. Explicações globais podem revelar o co-
nhecimento aprendido pelo modelo a partir de um conjunto de dados rotulados, enquanto
explicações locais focam na classificação de uma instância de dados em particular. Para
explicações de dados (descritivo), VAX processa regras lógicas resultando na visualização
de regras descritivas para insights automáticos dos dados. Explicações de dados permitem
a identificação e a interpretação visual de padrões em conjuntos de dados multivariados.
Qualquer problema representado por um conjunto de dados rotulados é um potencial caso
de uso para os métodos propostos. O método ExMatrix foi aplicado em química analítica
e o método VAX empregado em conjuntos de dados reais para análises de dados multi-
variados. A principal contribuição desta tese de doutorado reside em métodos de Visual
Analytics suportando a interpretabilidade de Random Forest para propósitos preditivos
e descritivos em explicações de modelo e de dados.

Palavras-chave: Visualização de Regras Lógicas, Random Forest, Intepretailidade de
Modelos de Classificação e Explicações de Modelos e de Dados Multivariados.





ABSTRACT

POPOLIN NETO, M. Random Forest interpretability - explaining classification
models and multivariate data through logic rules visualizations. 2022. 128 p.
Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2022.

Classification models have immense potential and ubiquitous future, considering the vast
number of prediction tasks in different domains where such models are applicable. Mod-
els’ interpretability may be just as important as performance, providing global and local
explanations to interpret the acquired knowledge and audit decisions. In addition to the
predictive ability, classification models can also be employed as descriptive tools, where
interpretability involves data explanations. Logic rules have been widely used in inter-
pretability solutions, and Decision Trees are well recognized for consistent logic rules
generation. The Random Forest approach (Decision Trees ensemble) has been broadly
adopted due to its ability to produce accurate results and deal with multivariate datasets.
However, Random Forest models’ interpretability faces the challenge of handling a sub-
stantial number of logic rules. Based on logic rules visualization into a matrix-like visual
metaphor, this doctoral thesis leads to Visual Analytics methods for Random Forest
models’ interpretability, supporting models and data explanations covering predictive
and descriptive purposes. For models (predictive) explanations, ExMatrix arranges logic
rules towards global and local visual representations, providing overviews and decisions
reasoning. Global explanations can unveil the knowledge learned by the model from
a class-labeled dataset, whereas local explanations focus on a particular data instance
classification. For data (descriptive) explanations, VAX handles logic rules, resulting in
descriptive rules visualization for automated data insights. Data explanations support the
identification and visual interpretation of patterns in multivariate datasets. Any problem
denoted by a class-labeled dataset is a potential use case for the proposed methods. Ex-
Matrix was applied in analytical chemistry, and VAX was used in real-world datasets for
multivariate data analyses. The main contribution of this doctoral thesis lies in Visual An-
alytics methods supporting Random Forest interpretability for predictive and descriptive
purposes in model and data explanations.

Keywords: Logic Rules Visualization, Random Forest, Classification Models Interpreta-
bility, and Models and Multivariate Data Explanations.
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CHAPTER

1
INTRODUCTION

1.1 Context

Many real-world problems can be modeled into prediction tasks in which classifi-
cation models from machine learning are handy. From class-labeled datasets, such models
are capable of learning relationships between variables (a.k.a. attributes, features, or di-
mensions) and classes, so when a new data instance is provided, it is associated with a par-
ticular class. Shifting from the effort to improve models’ quantitative metrics like accuracy,
Explainable Artificial Intelligence (XAI) has been in the spotlight (ADADI; BERRADA,
2018; LIAO; GRUEN; MILLER, 2020). Several XAI solutions aim at classification mod-
els’ interpretability, going beyond quantitative metrics analysis (e.g., confusion matrix)
(TAN; STEINBACH; KUMAR, 2005) towards making the model’s overall logic and its
decisions understandable to humans (RIBEIRO; SINGH; GUESTRIN, 2016; GUIDOTTI
et al., 2018b; LIAO; GRUEN; MILLER, 2020). For example, from a disease diagnostic
model, interpretability may involve understanding the knowledge learned about the dis-
ease and the outcome for a particular patient (RIBEIRO; SINGH; GUESTRIN, 2016;
CLOUGH et al., 2019). Therefore, model interpretability (i.e., explainability) 1 can be

1 The terms “interpretability” and “explainability” can be seen as tied concepts in the machine
learning community (CARVALHO; PEREIRA; CARDOSO, 2019). Indeed, such terms have
been often used interchangeably (GILPIN et al., 2018; CARVALHO; PEREIRA; CARDOSO,
2019; BRONIATOWSKI, 2021; GAUR; FALDU; SHETH, 2021). However, some authors rea-
soned about the distinctions (GILPIN et al., 2018; BRONIATOWSKI, 2021). Interpretability
may be associated with meaningful descriptions for humans to make sense of an algorithm’s
output, appealing for their cognition, knowledge, and biases (GILPIN et al., 2018; BRONIA-
TOWSKI, 2021). For example, suppose a rental application rejected by a classification model,
users could employ their background (domain) knowledge to interpret the data instance (vari-
ables values) representing the applicant (BRONIATOWSKI, 2021). On the other hand, ex-
plainability can be related to unveiling internal data processing or representation, which relies
on the algorithm’s technical structure (GILPIN et al., 2018; BRONIATOWSKI, 2021). Thus
taking the early example, regarding the applicant rejected by the classification model, users
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related to global and local explanations for model overview and classification process rea-
soning (GUIDOTTI et al., 2018b; DU; LIU; HU, 2019). Given the potential of classification
models and the various current applications across human society, models interpretabil-
ity is expected to be the focus of governmental initiatives, e.g., European General Data
Protection Regulation, which demands explanations on automated decisions concerning
individuals (GUIDOTTI et al., 2018b; CARVALHO; PEREIRA; CARDOSO, 2019) 2.

Logic rules (if-then rules) are commonly applied for model interpretability (MING;
QU; BERTINI, 2019; RIBEIRO; SINGH; GUESTRIN, 2018; GUIDOTTI et al., 2018a;
LAKKARAJU; BACH; LESKOVEC, 2016) 3, since logic statements leading to a partic-
ular class are intrinsically understandable by humans (FüRNKRANZ; GAMBERGER;
LAVRAC, 2012; LAKKARAJU; BACH; LESKOVEC, 2016; GUIDOTTI et al., 2018b;
MIRANDA; SARDINHA; CERRI, 2021). They can be extracted from the model, like De-
cision Tree (DT) (GUIDOTTI et al., 2018b), or inferred as surrogates of complex black-box
models such as Artificial Neural Networks (ANN) and Support Vector Machines (SVM)
(MING; QU; BERTINI, 2019; GUIDOTTI et al., 2018a). DT models are well recognized
for generating consistent logic rules (MIRANDA; SARDINHA; CERRI, 2021). Inherent
interpretable models like DTs generally impose a trade-off regarding accuracy, especially
when compared to ANN and SVM (MING; QU; BERTINI, 2019; DU; LIU; HU, 2019).
Random Forest (RF) arranges multiple randomly built DTs (ensemble of DTs) capable of
producing accurate results (BREIMAN, 2001; BIAU; SCORNET, 2016). Moreover, it is
notably useful for data involving many variables (a.k.a. multivariate or multidimensional)
(BREIMAN, 2001; BIAU; SCORNET, 2016). RF is challenging regarding interpretation
for ensembling several DTs, originating hundreds or thousands of logic rules, which may be
considered even a black-box model (GUIDOTTI et al., 2018a; ADADI; BERRADA, 2018).
Logic rules can be represented in visual metaphors (MING; QU; BERTINI, 2019) rather
than the standard text format approach (FREITAS, 2014; GUIDOTTI et al., 2018a). Vi-
sual representations can be instrumental in supporting model interpretability (RIBEIRO;
SINGH; GUESTRIN, 2016; ENDERT et al., 2017), which has been the purpose of Vi-
sual Analytics (VA) tools (MING; QU; BERTINI, 2019; ZHAO et al., 2019; DI CASTRO;
BERTINI, 2019), where model visualization is a key aspect (KEIM et al., 2010; SACHA et
al., 2014). Although VA approaches have been independently proposed for logic rules visu-

would employ explanations to understand how/why the model came to its decision (BRONI-
ATOWSKI, 2021). Nevertheless, in this thesis the term “interpretability” is used
in the broad general sense, encompassing “explainability”, as in many works in
the literature (CARVALHO; PEREIRA; CARDOSO, 2019).

2 The Brazilian General Data Protection Law (LGPD) – Federal Law nº. 13.709/2018 also
requires explanations about automated decisions concerning individuals (BRASIL, 2018;
BRASIL, 2019).

3 Despite being useful, other approaches for model interpretability can be employed rather
than logic rules, such as features’ contribution and used image area (RIBEIRO; SINGH;
GUESTRIN, 2016).



1.1. Context 31

alization (MING; QU; BERTINI, 2019) and RF interpretability (ZHAO et al., 2019), they
may experience scalability issues on models’ global and local explanations. Hence, both
concise and dynamic visual representations may lead to proper RF model explanations.

Apart from predictive capability, classification models can also serve as descrip-
tive tools, distinguishing data instances among different classes (TAN; STEINBACH;
KUMAR, 2005). Once interpretable, such models are suitable for multivariate data ex-
planation, as recently proposed by VA solutions arranging visual representations of SVM
and ANN models (GLEICHER, 2013; KNITTEL et al., 2020). Nevertheless, concepts like
Emerging Patterns arrange descriptive logic rules (NOVAK; LAVRAC; WEBB, 2009),
where a specific type, called Jumping Emerging Pattern (JEP), provides high discrimina-
tive power between classes (KANE; CUISSART; CRÉMILLEUX, 2015; GARCíA-VICO
et al., 2018). DTs can be employed to obtain such patterns (descriptive rules) (NOVAK;
LAVRAC; WEBB, 2009; GARCíA-VICO et al., 2018; LOYOLA-GONZÁLEZ; MEDINA-
PÉREZ; CHOO, 2020), and RF models have proven to produce diversified high-quality
patterns (GARCíA-BORROTO; MARTíNEZ-TRINIDAD; CARRASCO-OCHOA, 2015;
LOYOLA-GONZáLEZ et al., 2019; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO,
2020). The potential of descriptive logic rules lies in understanding the phenomenon repre-
sented by data (NOVAK; LAVRAC; WEBB, 2009; GARCíA-VICO et al., 2018). Data ex-
planation approaches based on classification models visual representations support knowl-
edge generation from complex data (KNITTEL et al., 2020), which is the VA’s primary
goal involving insights and hypotheses (KEIM et al., 2010; SACHA et al., 2014). Although
inspiring, the proposed VA solutions for descriptive purposes make use of black-box mod-
els (SVM and ANN) (GLEICHER, 2013; KNITTEL et al., 2020), requiring constraints
for reaching interpretability. On the other hand, JEPs are naturally interpretable and
descriptive, as well as suitable for visualization methods (NOVAK; LAVRAC; WEBB,
2009).

In summary, since classification models can be used as predictive and descriptive
tools (TAN; STEINBACH; KUMAR, 2005), model interpretability may involve visual
explanations for model (MING; QU; BERTINI, 2019; ZHAO et al., 2019) and data (GLE-
ICHER, 2013; KNITTEL et al., 2020) understanding. Logic rules are helpful in model
interpretability solutions (LAKKARAJU; BACH; LESKOVEC, 2016; GUIDOTTI et al.,
2018b) and can be extracted from DTs (NOVAK; LAVRAC; WEBB, 2009; MIRANDA;
SARDINHA; CERRI, 2021). The RF approach arranges several DTs, producing accurate
results and handling datasets with many variables (BREIMAN, 2001; BIAU; SCORNET,
2016). Therefore, this doctoral thesis proposes visualization methods supporting RF in-
terpretability to leverage its predictive and descriptive capabilities in model and data
explanations.
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1.2 Goals

Within the context set previously, this doctoral project has as goals the following:

Create visualization methods arranging logic rules to support Random Forest clas-
sification models’ interpretability covering predictive and descriptive purposes. The
methods must provide model-centered visual representations for reaching global and
local explanations for model overview and decisions reasoning, and data-centered
visual representations for achieving multivariate data explanation via data insights
and knowledge generation. In other words, the primary goals are model and data (pre-
dictive and descriptive) explanations visualizing logic rules extracted from Random
Forest.

Therefore, the hypothesis is given by:

Logic rules visualizations can support explanations of multivariate data and Random
Forest models’ overall logic and outcomes.

The next section highlights the results accomplished.

1.3 Results

In order to fulfill the defined goals, two VA methods were created where logic
rules extracted from RF models are visualized using a matrix-like visual metaphor. The
ExMatrix (Explainable Matrix) method provides model-centered visual representations,
investigating the knowledge learned by the model and auditing instance classification pro-
cess (predictive purpose) (POPOLIN NETO; PAULOVICH, 2021). The VAX (multiVari-
ate dAta eXplanation) method supports data-centered visual representations, allowing for
multivariate data explanation automated data insights (descriptive purpose). The visual
metaphor employed in ExMatrix and VAX is based on matrix visualization guidelines
(CHEN et al., 2004; WU; TZENG; CHEN, 2008), with rules displayed as rows, features
(variables) as columns, and rules predicates as cells. A flowchart-based summarization
is found in Figure 30 of Appendix C, presenting both methods’ inputs, processes, and
outputs.

The ExMatrix global explanations are able to manage a considerable number of
rules at once, and local explanations can present used rules or smallest changes rules for
a specific data instance classification. Although ExMatrix was conceived focusing on RF
models, it can also interpret a single DT. Moreover, the ExMatrix has been applied in ana-
lytical chemistry, where data are acquired from samples of liquid or gaseous solutions with
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analyte concentrations or distinguishable factors (RIUL JúNIOR et al., 2010). Logic rules
inferred from such data by DT models produce a calibration space employing multiple
features (dimensions) and, more importantly, interpretable by ExMatrix. This calibration
is named Multidimensional Calibration Space (MCS) (POPOLIN NETO et al., 2021).

Additionally to descriptive logic rules visualization, the VAX method integrates
JEPs and Dimensional Reduction (DR) techniques (NONATO; AUPETIT, 2019) originat-
ing maps for similarity in data instances. The visualization and integration of similarity
maps and JEPs lead to automated insights (LAW; ENDERT; STASKO, 2020) used for
multivariate data explanation. Clusters and outliers may be revealed in such maps, and
JEPs visualization can be employed for further investigations. VAX was used in the anal-
ysis of two real-world datasets. One regarding the 2016 US presidential election and the
other the 2019 world happiness report produced by the Sustainable Development Solutions
Network.

The contributions of this doctoral project are distributed across 6 articles and 1
book chapter either published, accepted, or submitted (preprint). Appendix A provides
a more detailed list of publications and submissions, and source code (majority) can
be found at <https://gitlab.com/popolinneto/exmatrix>, being also available as code
package at <https://pypi.org/project/exmatrix/>.

1.4 Organization

This thesis is organized as a collection of the main articles produced (complete list
in Appendix A). Except Chapters 1 for introduction and 5 for conclusion, Chapters 2, 3,
and 4 are full papers either published or submitted to journals. The chapters are:

• Chapter 2: POPOLIN NETO, M.; PAULOVICH, F. V. Explainable matrix - visu-
alization for global and local interpretability of random forest classification ensem-
bles. IEEE Transactions on Visualization and Computer Graphics, v. 27, n. 2, p.
1427–1437, 2021. Available: <https://doi.org/10.1109/TVCG.2020.3030354>.

For models (predictive) explanations, the ExMatrix method is proposed, providing
meaningful global and local visual representations.

• Chapter 3: POPOLIN NETO, M.; SOARES, A. C.; OLIVEIRA, O. N.; PAULOVICH,
F. V. Machine learning used to create a multidimensional calibration space for sens-
ing and biosensing data. Bulletin of the Chemical Society of Japan, v. 94, n. 5, p.
1553–1562, 2021. Available: <https://doi.org/10.1246/bcsj.20200359>.

An ExMatrix application in analytical chemistry. The method is employed in
Impedance Spectroscopy data obtained from sensing units.

https://gitlab.com/popolinneto/exmatrix
https://pypi.org/project/exmatrix/
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• Chapter 4: POPOLIN NETO, M.; PAULOVICH, F. V. Multivariate Data Explana-
tion by Jumping Emerging Patterns Visualization. arXiv preprint arXiv:2106.11112.
2021.

For data (descriptive) explanations, the VAX method is proposed, generating auto-
mated data insights visualizing JEPs and data instances similarity maps.
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CHAPTER

2
EXPLAINABLE MATRIX – EXMATRIX

This chapter (paper Explainable matrix - visualization for global and local inter-
pretability of random forest classification ensembles 1) presents ExMatrix, a VA method
for models (predictive) explanations, allowing RF models’ interpretability via global and
local visual representations. The ExMatrix global explanations provide reasoning about
the knowledge learned by the RF model, while local explanations support the classifi-
cation process reasoning. The ExMatrix method arranges logic rules into a matrix-like
visual metaphor. The latter uses matrix visualization guidelines and is more scalable than
literature methods, handling a substantial number of logic rules at once, an essential issue
for RF models’ interpretability.

Abstract: Over the past decades, classification models have proven to be essen-
tial machine learning tools given their potential and applicability in various domains. In
these years, the north of the majority of the researchers had been to improve quantitative
metrics, notwithstanding the lack of information about models’ decisions such metrics
convey. This paradigm has recently shifted, and strategies beyond tables and numbers to
assist in interpreting models’ decisions are increasing in importance. Part of this trend,
visualization techniques have been extensively used to support classification models’ in-
terpretability, with a significant focus on rule-based models. Despite the advances, the
existing approaches present limitations in terms of visual scalability, and the visualiza-
tion of large and complex models, such as the ones produced by the Random Forest (RF)
technique, remains a challenge. In this paper, we propose Explainable Matrix (ExMatrix),
a novel visualization method for RF interpretability that can handle models with massive
quantities of rules. It employs a simple yet powerful matrix-like visual metaphor, where
rows are rules, columns are features, and cells are rules predicates, enabling the analysis
1 POPOLIN NETO, M.; PAULOVICH, F. V. Explainable matrix - visualization for global

and local interpretability of random forest classification ensembles. IEEE Transactions on
Visualization and Computer Graphics, v. 27, n. 2, p. 1427–1437, 2021. Available: <https://-
doi.org/10.1109/TVCG.2020.3030354>.
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of entire models and auditing classification results. ExMatrix applicability is confirmed
via different examples, showing how it can be used in practice to promote RF models
interpretability.

2.1 Introduction

Imagine a machine learning classification model for cancer prediction with 99%
accuracy, prognosticating positive breast cancer for a specific patient. Even though we
are far from reaching such level of precision, we (researchers, companies, among others)
have been trying to convince the general public to trust classification models, using the
premise that machines are more precise than humans (CRUZ; WISHART, 2006). However,
in most cases, yes or no are not satisfactory answers. A doctor or patient inevitably may
want to know why positive? What are the determinants of the outcome? What are the
changes in patient records that may lead to a different prediction? Although standard
instruments for building classification models, quantitative metrics such as accuracy and
error cannot tell much about the model prediction, failing to provide detailed information
to support understanding (LIU et al., 2018).

We are not advocating against machine learning classification models, since there
is no questioning about their potential and applicability in various domains (ENDERT et
al., 2017; BUTLER et al., 2018). The point is the acute need to go beyond tables and num-
bers to understand models’ decisions, increasing trust in the produced results. Typically,
this is called model interpretability and has become the concern of many researchers in
recent years (YANG; DU; HU, 2019; CARVALHO; PEREIRA; CARDOSO, 2019). Model
interpretability is an open challenge and opportunity for researchers (ENDERT et al.,
2017) and also a government concern, as the European General Data Protection Regula-
tion requires explanations about automated decisions regarding individuals (LIU; WANG;
MATWIN, 2018; CARVALHO; PEREIRA; CARDOSO, 2019; GUIDOTTI et al., 2018b).

Model interpretability strategies are typically classified as global or local approaches.
Global techniques aim at explaining entire models, while the local ones give support
for understanding the reasons for the classification of a single instance (DU; LIU; HU,
2019; CARVALHO; PEREIRA; CARDOSO, 2019). In both cases, interpretability can
be attained using inherent interpretable models such as Decision Trees, Rules Sets, and
Decision Tables (KOHAVI, 1995a), or through surrogates, where black-box models, like
Artificial Neural Networks or Support Vector Machines, are approximated by rule-based
interpretable models (GUIDOTTI et al., 2018b; CARVALHO; PEREIRA; CARDOSO,
2019). The key idea is to transform models into logic rules, using them as a mechanism to
enable the interpretation of a model and its decisions (LEI et al., 2018; GUIDOTTI et al.,
2018a; DI CASTRO; BERTINI, 2019; MING; QU; BERTINI, 2019; RIBEIRO; SINGH;
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GUESTRIN, 2018).

Recently, visualization techniques have been used to empower the process of inter-
preting rule-based classification models, particularly Decision Tree models (DI CASTRO;
BERTINI, 2019; ZHAO et al., 2019; VAN DEN ELZEN; VAN WIJK, 2011; SCHULZ,
2011). In this case, given the inherent nature of these models, the usual adopted visual
metaphors focus on revealing tree structures, such as the node-link diagrams (GRAHAM;
KENNEDY, 2010; ZHAO et al., 2019; MING; QU; BERTINI, 2019). However, node-link
structures are limited when representing logic rules (FREITAS, 2014; HUYSMANS et al.,
2011; LIMA; MUES; BAESENS, 2009), and present scalability issues, supporting only
small models with few rules (GRAHAM; KENNEDY, 2010; SCHULZ; HADLAK; SCHU-
MANN, 2011; ZHAO et al., 2019). Matrix-like visual metaphors have been used (MING;
QU; BERTINI, 2019; DI CASTRO; BERTINI, 2019) as an alternative, but visual scalabil-
ity limitations still exist, and large and complex models cannot be adequately visualized,
such as the Random Forests (BREIMAN, 2001; BIAU; SCORNET, 2016). Among rule-
based models, Random Forests is one of the most popular techniques given their simplicity
of use and competitive results (BIAU; SCORNET, 2016). However, they are very complex
entities for visualization since multiple Decision Trees compose a model, and, although at-
tempts have been made to overcome such a hurdle (ZHAO et al., 2019), the visualization
of entire models is still an open challenge.

In this paper, we propose Explainable Matrix (ExMatrix), a novel method for
Random Forest (RF) interpretability based on the visual representations of logic rules.
ExMatrix supports global and local explanations of RF models enabling tasks that involve
the overview of models and the auditing of classification processes. The key idea is to
explore logic rules by demand using matrix visualizations, where rows are rules, columns
are features, and cells are rules predicates. ExMatrix allows reasoning on a considerable
number of rules at once, helping users to build insights by employing different orderings of
rules/rows and features/columns, not only supporting the analysis of subsets of rules used
on a particular prediction but also the minimum changes at instance level that may change
a prediction. Visual scalability is addressed in our solution using a simple yet powerful
compact representation that allows for overviewing entire RF models while also enables
focusing on specific parts for details on-demand. In summary, the main contributions of
this paper are:

• A new matrix-like visual metaphor that supports the visualization of RF models;

• A strategy for Global interpretation of large and complex RF models supporting
model overview and details on-demand; and

• A strategy to promote Local interpretation of RF models, supporting auditing mod-
els’ decisions.
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2.2 Related Work

Typically, visualization techniques aid in classification tasks in two different ways.
One is on supporting parametrization and labeling processes aiming to improve model
performance (ANKERST et al., 1999; TEOH; MA, 2003; DO, 2007; VAN DEN ELZEN;
VAN WIJK, 2011; TALBOT et al., 2009; HöFERLIN et al., 2012; LEE; JOHNSON;
CHENG, 2016; LIU et al., 2018). The other is on understanding the model as a whole
or the reasons for a particular prediction. In this paper, our focus is on the latter group,
usually named model interpretability.

Interpretability techniques can be divided into pre-model, in-model, or post-model
strategies, regarding support to understand classification results before, during, or af-
ter the model construction (CARVALHO; PEREIRA; CARDOSO, 2019). Pre-model
strategies usually give support to data exploration and understanding before model cre-
ation (PAIVA et al., 2015; CHOO et al., 2010; MIGUT; WORRING, 2010; CARVALHO;
PEREIRA; CARDOSO, 2019). In-model strategies involve the interpretation of intrin-
sically interpretable models, such as Decision Trees, and post-model strategies concerns
interpretability of complete built models, and they can be model-specific (RAUBER et
al., 2017; WU et al., 2018) or model-agnostic (DI CASTRO; BERTINI, 2019; MING; QU;
BERTINI, 2019; RIBEIRO; SINGH; GUESTRIN, 2018; GUIDOTTI et al., 2018a). Both
in-model and post-model approaches aim to provide interpretability by producing global
and/or local explanations (DU; LIU; HU, 2019).

2.2.1 Global Explanation

Global explanation techniques produce overviews of classification models aiming
at improving users’ trust in the model (RIBEIRO; SINGH; GUESTRIN, 2016). For in-
herently interpretable models, the global explanation is attained through visual represen-
tations of the entire model. For more complex non-interpretable black-box models, such
as Artificial Neural Networks or Support Vector Machines, interpretability can be at-
tained through a surrogate process where such models are approximated by interpretable
ones (MING; QU; BERTINI, 2019; DI CASTRO; BERTINI, 2019; HALL, 2018). Deci-
sion Trees (BREIMAN et al., 1984; TAN; STEINBACH; KUMAR, 2005; LOH, 2014) are
commonly used as surrogate models (DI CASTRO; BERTINI, 2019; HALL, 2018), and
whether a surrogate or a classification model per se, the most common visual metaphor
for global explanation is the node-link (MING; QU; BERTINI, 2019; ZHAO et al., 2019),
such as the BaobaView technique (VAN DEN ELZEN; VAN WIJK, 2011). The node-link
metaphor’s problem is scalability (GRAHAM; KENNEDY, 2010; SCHULZ; HADLAK;
SCHUMANN, 2011; ZHAO et al., 2019), mainly when it is used to create visual represen-
tations for Random Forests, limiting the model to be small in number of trees (STIGLIC
et al., 2006). Creating a scalable visual representation for an entire Random Forest model,
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presenting all decision paths (root node to leaf node paths), remains a challenge even with
a considerably small number of trees (LIU et al., 2018).

Although the node-link metaphor is the straightforward representation for De-
cision Trees, logic rules extracted from decision paths have also been used to help on
interpretation (LIMA; MUES; BAESENS, 2009). Indeed, disjoint rules have shown to be
more suitable for user interpretation than hierarchical representations (LAKKARAJU;
BACH; LESKOVEC, 2016), and a user test comparing the node-link metaphor with dif-
ferent logic rule representations, showed that Decision Tables (KOHAVI, 1995a) (rules
organized into tables) offers better comprehensibility properties (FREITAS, 2014; HUYS-
MANS et al., 2011). Nonetheless, this strategy uses text for representing rules having as
drawback model size (FREITAS, 2014). Similarly to Decision Tables, our method does
not lean on the hierarchical property of Decision Trees. However, instead of using text to
represent logic rules, we used a matrix-like visual metaphor, where rows are rules, columns
are features, and cells are rules predicates, capable of displaying a much larger number of
rules than the textual representations.

The idea of using a matrix metaphor to present rules is not new (DI CASTRO;
BERTINI, 2019; MING; QU; BERTINI, 2019), and it has been used before by the RuleMa-
trix technique (MING; QU; BERTINI, 2019). RuleMatrix is a model-agnostic approach
to induce logic rules from black-box models, presenting rules in rows, features in columns,
and predicates in cells using histograms. As data histograms require a certain display space
to support human cognition, the number of rules displayed at once is reduced. Therefore,
not being able to present entire or even parts of Random Forest models (notice that their
focus is the visualization of surrogate rules, not models). Our approach also uses a matrix
metaphor; however, we employ a simpler icon (colored rectangular shape) for the matrix
cells, mapping different rule properties (e.g., predicates, class, and others), considerably
improving the scalability of the visual representation. Besides the recognized scalability of
matrix visualization and custom cells (ALSALLAKH et al., 2014; BEHRISCH et al., 2016;
ALPER et al., 2013), rows and columns order is an important principle (WU; TZENG;
CHEN, 2008; CHEN; SINICA; TAIPEI, 2002; CHEN et al., 2004; BEHRISCH et al.,
2016), and in our approach rules and features can be organized using different criteria,
promoting analytical tasks not supported by the RuleMatrix, such as the holistic analysis
of Random Forest models through complete overviews. Worthy mentioning that different
from usual matrix visual metaphors for trees and graphs that focus on nodes (BEHRISCH
et al., 2016; GRAHAM; KENNEDY, 2010), our approach focus on decision paths, which
is the object of analysis on Decision Trees (LIMA; MUES; BAESENS, 2009; FREITAS,
2014; HUYSMANS et al., 2011), so representing a different concept.
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2.2.2 Local Explanation

Unlike the model overview of global explanations, local explanation techniques fo-
cus on a particular instance classification result (RIBEIRO; SINGH; GUESTRIN, 2018;
ZHAO et al., 2019), aiming to improve users’ trust in the prediction (RIBEIRO; SINGH;
GUESTRIN, 2016). As in global strategies, local explanations can be provided using
inherently interpretable models or using surrogates of black-boxes (RIBEIRO; SINGH;
GUESTRIN, 2018; GUIDOTTI et al., 2018a; STRUMBELJ; KONONENKO, 2010). In
general, local explanations are constructed using the logic rule applied to classify the
instance along with its properties (e.g., coverage, certainty, and fidelity), providing addi-
tional information for prediction reasoning (MING; QU; BERTINI, 2019; LAKKARAJU;
BACH; LESKOVEC, 2016).

One example of a visualization technique that supports local explanation is the
RuleMatrix (MING; QU; BERTINI, 2019). RuleMatrix was applied to support the anal-
ysis of surrogate logic rules of Artificial Neural Networks and Support Vector Machine
models. Local explanations are taken by analyzing the employed rules, observing the in-
stance features values coupled with rules predicates and properties. Another interactive
system closely related to our method is the iForest (ZHAO et al., 2019), combining tech-
niques for Random Forest models local explanations. The iForest system focuses on binary
classification problems, and for each instance, it allows the exploration of decision paths
from Decision Trees using multidimensional projection techniques. A summarized decision
path is built and displayed as a node-link diagram by selecting decision paths of interest
(circles in the projection).

As discussed before, node-link diagrams are prone to present scalability issues. Al-
though iForest reduces the associate issues by summarizing similar decision paths, it fails
to present the overall picture of Random Forest classification models’ voting committees.
Our approach shows the voting committee by displaying all rules (decision paths) used
by a model when classifying a particular instance, allowing insights into the feature space
and class association by ordering rules and features in different ways. Also, our approach
can be applied to multi-class problems, not only binary classifications, and, as iForest, it
supports counterfactual analysis (GOMEZ et al., 2020; LIAO; GRUEN; MILLER, 2020)
by displaying the rules that, with the smallest changes, may cause the instance under
analysis to switch its final classification.

2.3 ExMatrix

In this section, we present Explainable Matrix (ExMatrix), a visualization method
to support Random Forest global and local interpretability.
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2.3.1 Overview

To create a classifier, classification techniques take a labelled dataset
X = {x1, ...,xN} with N instances and their classes Y = {y1, ...,yN}, where
yn ∈C = {c1, ...,cJ ≥ 2} and xn consists of a vector xn = [x1

n, ...,x
M
n ] with M features

F = { f1, ..., fM} values, and build a mathematical model to compute a class yn when new
instances xn /∈ X are given as input. In this process, X is usually split into two different
sets, one Xtrain to build the model and one Xtest to test it. The existing techniques have
adopted many different strategies to build a classifier. The Random Forest (RF) is an
ensemble approach that creates multiple Decision Tree (DT) models DT1, ...,DTK of
randomly selected subsets of features and/or training instances, and combines them
to classify an instance using a voting strategy (TAN; STEINBACH; KUMAR, 2005;
BREIMAN et al., 1984; BREIMAN, 2001; BIAU; SCORNET, 2016). Therefore, a RF
model is a collection of decision paths, belonging to different DTs, combined to classify
an instance.

Aiming at supporting users to examine RF models and enable results audit,
ExMatrix presents the decision paths extracted from DTs as logic rules using a ma-
trix visual metaphor, supporting global and local explanations. ExMatrix arranges logic
rules R = {r1, ...,rZ} as rows, features F = { f1, ..., fM} as columns, and rule predicates
rz = [r1

z , ...,r
M
z ] as cells, inspired by similar user-friendly and powerful matrix-like solu-

tions (WU; TZENG; CHEN, 2008; CHEN; SINICA; TAIPEI, 2002; CHEN et al., 2004).
Figure 1 depicts our method overview, composed mainly of two steps. One involving the
vector rules extraction, where all decision paths of each DTk in the RF model are con-
verted into vectors, and a second one where these vectors are displayed using a matrix
metaphor to support explanations. The next sections detail these steps, starting with the
vector rule extraction process.

Figure 1 – Explainable Matrix (ExMatrix) overview. ExMatrix is composed of two main steps. In
the first, decision paths of the RF model under analysis are converted into logic rules.
Then, in the second, these rules are displayed using a matrix metaphor to support
global and local explanations.
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2.3.2 Vector Rules Extraction

As mentioned, ExMatrix first step involves the transformation of each decision
path, the path from a DT root node to a leaf node, into a vector rule representing the fea-
tures’ intervals for which the decision path is true. The resulting vectors present dimension-
ality equal to the number of features M, with coordinates composed of pairs representing
the features’ minimum and maximum interval values. In more mathematical terms, this
process transforms, for every tree DTk, each decision path p(o,d) (from the root node o to
the leaf node d) into a disjoint logic rule (vector) rz. Let p(o,d) = {( fo

⊗
θo), ...,( fv

⊗
θv)}

denotes a decision path, where each node i contains a logic test
⊗
∈ {“ ≤ ”,“ > ”} bi-

secting the feature fi using a threshold θi ∈ R, and that the node v is the parent of the
leaf node d (ZHAO et al., 2019). To convert p(o,d) into a vector rule rz = [r1

z , ...,r
M
z ], each

element rm
z = {αm

z ,β
m
z } is computed representing the intervals covered by p(o,d) if and

only if f m ∈ p(o,d). Otherwise, rm
z =∅. Considering f m ∈ p(o,d), the lower limit αm

z is the
maximum θi ∈ p(o,d) for the feature f m and logic test

⊗
= “ > ”. If such combination does

not exist in p(o,d), αm
z is set to the minimum value of feature f m in X , that is

α
m
z =

{
max(θi| fi = f m,

⊗
= “ > ”) if ( fi = f m > θi) ∈ p(o,d)

min(xm|xm ∈ X) Otherwise.
(2.1)

Similarly, the upper limit β m
z is the minimum θi ∈ p(o,d) for the feature f m and

logic test
⊗

= “≤ ”. If such combination does not exist in p(o,d), β m
z is set to the maximum

value of feature f m in X , that is

β
m
z =

{
min(θi| fi = f m,

⊗
= “≤ ”) if ( fi = f m ≤ θi) ∈ p(o,d)

max(xm|xm ∈ X) Otherwise.
(2.2)

Beyond predicates, three other properties are extracted for each logic rule rz, being
certainty, class, and coverage. The rule certainty rcert

z is a vector of probabilities for each
class c j ∈C, obtained from the decision path (leaf node value). The rule class rclass

z is the
c j ∈C with the highest probability on the rule certainty rcert

z . The rule coverage rcov
z is 2

the number of instances in Xtrain of class rclass
z for which rz is valid divided by the total

number of instance of rclass
z in Xtrain. The vector rules extraction process results in a set

of disjoint logic rules R = {r1, ...,rZ}, where each rule rz classifies an instance xn belonging
to class rclass

z if its predicates rz = [r1
z , ...,r

M
z ] are all true for the feature values in xn.

As an example of vector rule extraction, consider the zoomed DT in
Figure 1 from a RF for the Iris dataset (FISHER, 1936), with 150 in-
stances in three classes C = {setosa, versicolor, virginica} and 4 features F =

{sepal length , sepal width , petal length , petal width}. From this tree, the decision
2 The rule coverage formulation used here equals rule support definition.
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path p(#0,#5) is transformed into the vector rule r3 = [{6.15,7.9},∅,∅,{0.75,1.75}] with
rclass

3 = versicolor, since rule certainty equals to rcert
3 = [0.0,0.83,0.17] (leaf node #5 value),

indicating that r3 is valid for 83% of the versicolor instances and 17% of virginica instances
in Xtrain. The rule coverage rcov

3 = 0.28 as r3 is valid for 10 out of 35 versicolor instances
in Xtrain.

2.3.3 Visual Explanations

Once the vector rules are extracted, they are used to create the matrix visual
representations for global and local interpretation. To guide our design process we adopted
the iForest design goals (G1 - G3) (ZHAO et al., 2019) and the RuleMatrix target questions
(Q1 - Q4) (MING; QU; BERTINI, 2019) summarized on Table 1. These goals and questions
consider classification model reasoning beyond performance measures (e.g., accuracy and
error), focusing on the model internals. For global explanations, where the focus is an
overview of a model, ExMatrix displays feature space ranges and class associations (G1
and Q1), and how reliable these associations are (Q2). For local explanations, where the
focus is the classification of a particular instance xn, ExMatrix allows the analysis of xn

values and features space ranges that resulted into the assigned class yn (G2 and Q3),
and the inspection of the changes in xn that may lead to a different classification (G3 and
Q4).

Table 1 – ExMatrix design goals.

Global Local

G1 Reveal the relationships between
features and predictions (ZHAO et al.,
2019).

G2 Uncover the underlying working
mechanisms (ZHAO et al., 2019).

Q1 What knowledge has the model
learned? (MING; QU; BERTINI,
2019).

G3 Provide case-based reason-
ing (ZHAO et al., 2019).

Q2 How certain is the model for
each piece of knowledge? (MING; QU;
BERTINI, 2019).

Q3 What knowledge does the model
utilize to make a prediction? (MING;
QU; BERTINI, 2019).
Q4 When and where is the model likely
to fail? (MING; QU; BERTINI, 2019).

ExMatrix implements these goals using a set of four functions:

F1 – Rules of Interest. Function R′ = frules(R, . . .) returns a subset of rules of interest
R′ ⊆ R. For global explanations frules(R, ...) returns the entire vector rules set R′ = R

or a subset R′ ⊂ R defined by the user, while for local explanations frules(R,xn, ...)

returns a subset R′ ⊂ R related to a given instance xn.
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F2 – Features of Interest. Function F ′ = f f eatures(R′, . . .) returns features of inter-
est F ′ ⊆ F considering a set of rules of interest R′. For global explanations
f f eatures(R′, ...) returns all features used by the RF model, whereas for local ex-
planations f f eatures(R′,xn, ...) returns the features used to classify a given instance
xn.

F3 – Ordering. Function L′ = fordering(L,criteria, . . .) returns an ordered version L′ of
a input set L following a given criterion, where L can be rules R′ or features F ′.
This is used for both global and local explanations aiming at revealing patterns,
a key property in matrix-like visualizations (WU; TZENG; CHEN, 2008; CHEN;
SINICA; TAIPEI, 2002; CHEN et al., 2004), where rows and columns can be sorted
in different ways, following, for instance, elements properties (KRAUSE et al., 2017)
or similarity measures (CHOI; CHA, 2010; TZENG; WU; CHEN, 2009; BEHRISCH
et al., 2016; FUJIWARA; KWON; MA, 2019).

F4 – Predicate Icon. Function ficon(rm
z , . . .) returns a cell icon (visual element) for a

predicate rm
z of the rule rz and feature fm. For global and local explanations, a cell

icon is a color-filled rectangular element, allowing our visual metaphor to display a
substantial number of logic rules at once. This is an important aspect since matrix-
like visualizations can display a massive number of rows and columns relying on
such icons not requiring many pixels (CHEN et al., 2004).

Figure 1 shows how these four functions are used in conjunction to build the
visual representations for global and local interpretation. Functions F1 and F2 are used
to select and map rules and features of interest. Function F3 is used to change the rows
and columns order to help in finding interesting patterns, and function F4 is used to derive
the predicate icon that can vary depending on the type of interpretation task (global or
local). In the next section, we detail how these functions are used to build ExMatrix visual
representations.

2.3.3.1 Global Explanation (GE)

Our first visual representation is an overview of RF models called Global Explana-
tion (GE). To build this matrix, R′= frules(R, . . .) returns all logic rules R or a subset R′⊂R

defined by the user, and F ′ = f f eatures(R′, . . .) returns all features used by at least one rule
rz ∈ R′. As previously explained, matrix rows represent logic rules, columns features, and
cells rules predicates (icons). Rows and columns can be ordered using different criteria
(L′ = fordering(L,criteria, . . .)). The rows can be ordered by rules’ coverage, certainty, class
& coverage, and class & certainty, while columns can be ordered by feature importance,
calculated using the Mean Decrease Impurity (MDI) (BREIMAN, 2002).
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For the ExMatrix GE visualization, the matrix cell icon representing the rule
predicate rm

z consists of a rectangle ( ficon(rm
z , . . .)) colored according to the rule class rclass

z ,
positioned and sized inside the matrix cell proportional to the predicate limits {αm

z ,β
m
z },

where the left side of the matrix cell represents the value min(xm|xm ∈ X) and the right side
max(xm|xm ∈ X) (goals G1 and Q1). The cell background not covered by the predicate
limits can be either white or be filled using a less saturated color. If no predicate is present,
the matrix cell is left blank.

Rules and features properties are also exhibited using additional rows and columns
(goal Q2). The rule coverage rcov

z is shown using an extra column on the left side of the
table with cells’ color (grayscale) and fill proportional to the coverage. The rules certainty
rcert

z is shown in an extra column in the right side of the table with cells split into colored
rectangles with sizes proportional to the probability of the different classes. The feature
importance is shown in an extra row on the top of the table with cells’ color (grayscale) and
fill proportional to the importance. Also, labels are added below the matrix, combining
feature name and importance value.

Figure 2 presents a ExMatrix GE visualization of a RF model for the Iris dataset
with 3 trees with maximum depth equals to 3. In this example, the rows (rules) are ordered
by extraction order, and the columns (features) follows the dataset order. The logic rule
r3 = [{6.15,7.9},∅,∅,{0.75,1.75}] extracted from the decision path p(#0,#5) (see Figure 1)
is zoomed in. It is colored in orange since this is the color we assign to the versicolor class
and it classifies 83% of the training instances as belonging to this class (17% belonging
to virginica). Also, its coverage is rcov

3 = 0.28.

2.3.3.2 Local Explanation Showing the Used Rules (LE/UR)

The second visual representation, called Local Explanation Showing the Used Rules
(LE/UR), is a matrix to help in auditing the results of a RF model providing explanations
for the classification of a given instance xn. In this process, R′ = frules(R,xn) returns all
logic rules used by the model to classify xn (goals G2 and Q3). As in the ExMatrix
GE visualization, F ′ = f f eatures(R′) returns all features used by logic rules R′, ficon(rm

z ,X)

returns a cell icon representing predicates limits, and fordering(L,criteria) can order rules
R′ by coverage, certainty, class & coverage, and class & certainty, and features F ′ by
importance.

In addition to the coverage and certainty columns, in the ExMatrix LE/UR visu-
alization, an extra column is added to represent the committee’s cumulative voting. In
this column, the cell at the ith row is split into colored rectangles with sizes proportional
to the different classes’ probability considering only the first i rules. In this way, given a
matrix order (e.g., based on the rule coverage), it is possible to see from what rule the
committee reaches a decision that is not changed even if the remaining rules are used to



46 Chapter 2. Explainable Matrix – ExMatrix

Figure 2 – ExMatrix Global Explanation (GE) of a RF model for the Iris dataset containing 3
trees with maximum depth equal to 3. Rows represent logic rules, columns features,
and matrix cells the predicates. Additional rows and columns are also used to repre-
sent rule coverage and certainty. One matrix row is highlighted to exemplify how the
rules’ information is transformed into icons.

classify xn (indicated by a black line). Notice that this column’s last cell always represents
the committee’s final decision regardless of rule ordering.

Figure 3 presents the ExMatrix LE/UR representation for instance x13 =

[6.9,3.1,4.9,1.5]. We use the same RF model of Figure 2 with 3 trees, so the RF committee
uses 3 rules in the classification. The resulting matrix rows are ordered by rule coverage
and columns by feature importance. The (optional) dashed line in each column indicates
the values of the features of instance x13. According to the committee, the probability
of x13 to be versicolor is 72% and 28% to be virginica. Most of the virginica probability
comes from the rule r7, which holds the lowest coverage.

2.3.3.3 Local Explanation Showing Smallest Changes (LE/SC)

Our final matrix representation, called Local Explanation Showing Smallest
Changes (LE/SC), is also designed to support results audit when classifying a given in-
stance xn. In this visualization, for each DTk in the RF model, we display the rule requiring
the smallest change to make DTk to change the classification of xn. Let rz be the rule ex-
tracted from DTk that is true when classifying xn, in this process we seek for the rule
re from DTk with rclass

e 6= rclass
z that presents the minimum summation of changes to the



2.3. ExMatrix 47

Figure 3 – ExMatrix Local Explanation showing the Used Rules (LE/UR) visualization. Three
rules are used by the RF committee to classify a given instance as belonging to the
versicolor class with 72% of probability. The dashed line in each column indicates
the features’ values of the instance.

values of xn that makes re true and rz false, that is, ∆(re,xn) = ∑
M
m=1(∆

m
(re,xn)

), where

∆
m
(re,xn)

=

{
min(|αm

e −xm
n |,|β m

e −xm
n |)

|max(xm|xm∈Xtrain)−min(xm|xm∈Xtrain)| if xm
n /∈ {αm

e ,β
m
e }

0 Otherwise.
(2.3)

Using this formulation, function R′ = frules(R,xn) returns the list of logic rules that
can potentially change the classification process outcome requiring the lowest changes
(goals G3 and Q4), and function F ′ = f f eatures(R′,xn) returns the features used by the
rules in R′. Beyond the ordering criteria for rules and features previously discussed, func-
tion fordering(L,criteria) also allows ordering using the change summation ∑

M
m=1(∆

m
(re,xn)

).
Finally, function ficon(rm

e ,xn) returns a rectangle positioned and sized proportional to the
change ∆m

(re,xn)
, with positive changes colored in green and negative in purple, with the cell

matrix background filled using a less saturated color. If ∆m
(re,xn)

= 0, the cell matrix is left
blank. To help understand the class swapping, we add another column to the right of the
table indicating the classification returned by the original rule rz, showing the difference
to the similar rule re that cause the DTk to change prediction.

Figure 4 shows the ExMatrix LE/SC visualization for instance x13 =

[6.9,3.1,4.9,1.5] from the same RF model of Figure 2. Features F ′ are ordered by im-
portance and rules by change sum. The dashed lines represent the instance x13 values. As
an illustration, rule r6 presents the smallest change in the feature “petal length” to replace
a rule of majority class virginica for a rule of class versicolor, potentially increasing the
RF original outcome of 72% for class versicolor on instance x13.
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Figure 4 – ExMatrix Local Explanation Showing Smallest Changes (LE/SC) visualization.
Three rules with the smallest change to make the DTs to change class decisions are
displayed. The rule in the first row presents the smallest change. Small perturbations
may change the RF classification decision.

2.4 Results and Evaluation
In this section, we present and evaluate our method through a use-case 3 discussing

the proposed features, two usage-scenarios 4,5 showing ExMatrix being used to explore RF
models, finishing with a formal user test. All datasets employed (see Table 2) in this section
were downloaded from the UCI Machine Learning Repository (DHEERU; TANISKIDOU,
2017), and the ExMatrix implementation is publicly available as a Python package at
<https://pypi.org/project/exmatrix/> to be used in association with the most popular
machine learning packages.

Table 2 – Datasets used for ExMatrix evaluation.

Name Source Preprocessing

Wisconsin Diagnostic Breast
Cancer (WDBC)

Dua and Graff (2017) -

German Credit Data Dua and Graff (2017) Zhao et al. (2019)
Contraceptive Method Choice Dua and Graff (2017) -

2.4.1 Use Case: Breast Cancer Diagnostic

In this use case, we utilize the Wisconsin Breast Cancer Diagnostic (WBCD)
dataset to discuss how to use ExMatrix global and local explanations to analyze RF
models. The WDBC dataset contains samples of breast mass cells of N = 569 patients, 357
classified as benign (B) and 212 as malignant (M), with M = 30 features (cells properties).
3 <https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usecase/>
4 <https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usagescenarioi/>
5 <https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usagescenarioii/>

https://pypi.org/project/exmatrix/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usecase/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usagescenarioi/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usagescenarioii/
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The RF model used as example was created randomly selecting 70% of the instances for
training and 30% for testing and setting the number of DTs to K = 128, not limiting their
depths. The result is a model with 3,278 logic rules, 25.6 rules per DT, and an accuracy
of 99%.

An overview of this model is presented in Figure 5a using the ExMatrix GE repre-
sentation (see subsubsection 2.3.3.1). In this visualization, rules are ordered by coverage
and features by importance. Using this ordering scheme, it is possible to see that “concave
mean”, “area worst”, and “radius worst” are the three most important features, whereas
“smoothness std”, “texture std”, and “fractal dimension mean” are less important, and
that the RF model used all 30 features. Also, taking only the high coverage rules and fea-
tures with more importance (“concave mean’ to “radius mean”), some patterns in terms
of predicate ranges emerge. To help verify these patterns, low-coverage rules can be fil-
tered out, resulting in a new visualization containing only high-coverage rules. Figure 5b
presents the resulting filtered visualization with rules ordered by class & coverage facil-
itating the comparison between the two dataset classes. In this new visualization, it is
apparent that low feature values appear to be related to class B whereas higher values to
class M (goals G1, Q1, and Q2). In this example, filtering aids in focusing on what is
important regarding the overall model behavior, removing unimportant information and
reducing cluttering, relying on the so-called Schneiderman’s visualization mantra (SHNEI-
DERMAN, 1996).

The error rate of 1% in this model is due to the misclassification of only one
instance of the test set. Instance x29 was wrongly classified as class B with a probability
of 55%. Figure 6a shows the ExMatrix LE/UR representation (see subsubsection 2.3.3.2)
using x29 as target instance. In this visualization, the matrix is ordered by class & coverage
to focus on the difference between classes, and some interesting patterns are visible. For
instance, predicate ranges of both classes B and M overlap for most features, except for
“fractal dimension std” and “concave std”. Also, these two features, along with “symmetry
std”, “concave mean”, “compactness std”, and “symmetry mean” are more related to class
B (blue) since rules of such class heavily use them and sparsely used by rules of class M
(orange) showing what is actively used by the model to make the prediction (goals G2
and Q3). Besides, analyzing ExMatrix LE/SC visualization on Figure 6b, one can notice
that positive changes on features “concave mean” and “perimeter worst” may tie or alter
the prediction of x29 to class M since many green cells can be observed in the respective
columns for rules of class M, while negative changes on “area worst” and “concavity
mean” increases its classification as class B since many purple cells can be observed in
the respective columns for rules of class B (goals G3 and Q4).
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(a) ExMatrix GE visualization.

(b) ExMatrix GE representation with filtered rules (only high-coverage rules).

Figure 5 – ExMatrix GE representations of the WDBC RF model. In (a), giving the ordering
scheme by rule coverage and feature importance, some patterns emerge in terms of
predicates ranges. In (b) the low-coverage rules are filtered-out to help focusing the
analysis on what is important. Low feature values appear to be more related to class
B whereas higher values to class M for the most important features.

2.4.2 Usage Scenario I: German Credit Bank

As a first hypothetical usage scenario, we describe a bank manager Sylvia incorpo-
rating ExMatrix in her data analytics pipeline. To speed up the evaluation of loan appli-
cations, she sends her dataset of years of experience to a data science team and asks for
a classification system to aid in the decision-making process. Such dataset contains 1,000
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(a) ExMatrix LE/UR for instance x29, showing the used rules on the classification process.

(b) ExMatrix LE/SC for instance x29, presenting changes in the instance feature values to make
the DTs to change class prediction.

Figure 6 – ExMatrix local explanations of the WDBC RF model. Two different visualizations are
displayed, one showing the rules employed in the classification of a target instance (a),
and one presenting the smallest changes to make the trees of the model to change
the prediction of that instance (b). In both cases, the target instance is the only
misclassified instance.

instances (customers profiles) and 9 features (customers information), with 700 customers
presenting rejected applications and 300 accepted (here we use a pre-processed (ZHAO
et al., 2019) version of German Credit Data from UCI). For the implementation of such
a system, Sylvia has two main requirements: (1) the system must be precise in classify-
ing loan applications, and; (2) the classification results must be interpretable so she can
explain the outcome.
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To fulfill the requirements, the data science team builds an RF model setting the
number of DTs to 32 with a maximum depth of 6. The produced model’s accuracy was
81%, resulting in 1,273 logic rules, 38.7 rules per DT. Using the ExMatrix GE representa-
tion (omitted due to space constraints, see supplemental material) 6, she observes that the
features “Account Balance”, “Credit Amount”, and “Duration of Credit” are the three
most important, whereas “Value Savings/Stocks”, “Duration in Current address”, and
“Instalment percent” are the three less. Also, by inspecting the most generic knowledge
learned by the system (patterns formed by high-coverage rules) using a filtered represen-
tation of the ExMatrix GE visualization on Figure 7, she notices that applications that
request a credit to be paid in more extended periods (third column) tend to be rejected,
matching her expectations. However, unexpectedly, customers without account (“Account
Balance”: 1 - No account, 2 - No balance, 3 - Below $200 , 4 - $200 or above) have less
chance to have their application rejected (first column), something she did not anticipate
(goals G1, Q1, and Q2). Although confronting some of her expectations and bias, she
trusts her data, and the classification accuracy seems convincing, so she decides to put
the system in practice.

Figure 7 – ExMatrix GE representation (rules filtered by coverage and certainty) of the RF
model for the German Credit Data UCI dataset. Based on the most generic knowledge
learned by the RF model (rules with high coverage), it is possible to conclude that
applications requesting credit to be paid in longer periods tend to be rejected.

One day she receives a new customer interest in a loan. After filling the system with
his data, unfortunately, the application got rejected by the classification system. Based
on the new European General Data Protection Regulation (LIU; WANG; MATWIN, 2018;
CARVALHO; PEREIRA; CARDOSO, 2019; GUIDOTTI et al., 2018b) that requires ex-
planations about decisions automatically made, the customer requests clarification. By
inspecting the ExMatrix LE/UR visualization on Figure 8a, she notices, besides the
6 Figure 24 of Appendix B.
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denied probability of 65%, that even if all “approved” rules (blue) are used, very few
high-certainty “denied” rules (orange) define the final decision of the model (see the Cu-
mulative Voting and Rule Certainty columns), indicating that those rules, and the related
logic statements, have a strong influence in the loan rejection. Also, she sees that the fea-
ture “Length of current employment” is the most directly related to the denied outcome
since it is used only by rules that result in rejection (goals G2 and Q3). Using this infor-
mation, she explains to the customer that since he is working for less than one year in the
current job (2 as “Length of current employment” corresponds to less than 1 year), the
bank recommends denying the application. However, analyzing the ExMatrix LE/SC rep-
resentation in Figure 8b, she realizes that negative changes in features “Credit Amount”
and “Duration of Credit” may turn the outcome to approved (goals G3 and Q4).Thereby,
as an alternative, she suggests lowering the requested amount and the number of install-
ments. Based on the observable differences to make the rules change class, she notices that
upon reducing the credit application from $1,207 to $867 and the number of payments
from 24 to 15, the system changes recommendation to “approved”. Figure 8c presents
the ExMatrix LE/UR visualization if such suggested values are used, changing the final
classification.

2.4.3 Usage Scenario II: Contraceptive Method

This last usage scenario presents Christine, a public health policy manager who
wants to create a contraceptive campaign to advertise a new, safer drug for long term
use. To investigate married wives’ preferences, Christine’s data science team creates a
prediction model using a data set with information about contraceptive usage choices her
office collected past year (here we use the Contraceptive Method Choice dataset from
UCI). The dataset contains 1,473 samples (married wives profiles) with 9 features, where
each instance belongs to one of the classes “No-use”, “Long-term”, and “Short-term”,
regarding the contraceptive usage method, with 42.7% of the instances belonging to class
No-use, 22.6% to Long-term, and 34.7% to Short-term.

Since interpretability is mandatory in this scenario, allowing the results to be used
in practice, the data science team creates an RF model and employs ExMatrix to support
analysis. To create the model, the team set the number of DTs to 32 and maximum depth
to 6, resulting in 1,383 logic rules, 43.2 rules per DT. The RF model accuracy is 63%,
and, although not ideal for individual classifications, can be used to understand general
knowledge learned by the model from the dataset.
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(a) ExMatrix LE/UR for instance x154.

(b) ExMatrix LE/SC for instance x154.

(c) ExMatrix LE/UR modifying instance x154, which changes RF’s decision.

Figure 8 – ExMatrix local explanations of a RF model for the German Credit Data UCI dataset.
Analyzing one sample (instance x154) of rejected application (a), it is possible to infer
that it is probably rejected due to the (applicant) short period working in the current
job. However, lowering the requested amount as well as the number of instalments
can change the RF’s decision (b) and (c).
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By inspecting the ExMatrix GE representation of the model (omitted due to space
constraints, see supplemental material) 7, she readily understands that the features “Num-
ber of children ever born”, “Wife age”, and “Wife education” are the three most relevant
for defining the contraceptive method class, while “Media exposure”, “Wife now work-
ing?”, and “Wife religion” are the three less. Also, further exploring a filtered version of
the ExMatrix GE representation on Figure 9, to focus only on high-coverage and high-
certainty rules ordered by class & coverage, she notices some interesting patterns regarding
features space ranges and classes. For instance, lower values for the feature “Number of
children ever born” (first column) are more related to class No-use and rarely related to
class Long-term. For contraceptive method usage, higher values for the feature “Wife age”
(second column) are related to class Long-term, while average and lower values are more
related to class Short-term. Also, higher values for “Wife education” (third column) are
more related to class Long-term (goals G1, Q1, and Q2). Based on these observations,
and given the modest budget she received for the campaign, Christine decides to focus
on the group of older and highly educated wives with at least one child to target the
campaign’s first phase.

Figure 9 – ExMatrix GE representation (rules filtered by coverage and certainty) of the RF
model for the Contraceptive Method Choice UCI dataset. Based on high-coverage
high-certainty rules, some interesting patterns can be observed. For instance, on con-
traceptive method usage, older women tend to use long-term contraceptive methods.

2.4.4 User Study

To evaluate the ExMatrix method, we performed a user study to assess the pro-
posed visual representations for global and local explanations. In this study, we asked
four different questions based on the ExMatrix visualizations created for the use-case
presented in subsection 2.4.1, focusing on evaluating the goals presented in Table 1.
7 Figure 25 of Appendix B.
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The study started with video tutorials about RF basic concepts and how to use
ExMatrix to analyze RF models and classification results through the proposed explana-
tions. A total of 13 users participated, 69.2% male and 30.8% female, aged between 24
to 36, all with a background in machine learning. The participants were asked to analyze
the explanations of Figure 5a, Figure 6a, and Figure 6b, where each analysis was followed
by different question(s) (see Table 3). On the visualizations, features names were replaced
by “Feature 1” to “Feature 30” and classes names by “Class A” and “Class B”, aiming
at removing any influence of knowledge domain in the results, since our focus is to assess
the visual metaphors.

Table 3 – User study questions.

Question Goals Visualiza-
tion

Qst 1 - About features space ranges and class ASSOCIA-
TIONS. Considering rules with HIGH COVERAGE, and fea-
tures with HIGH IMPORTANCE, select your answer: (three
options of associations)

G1, Q1,
and Q2

Figure 5a

Qst 2 - Instance 29 is classified as Class A with a probabil-
ity of 55%, against 45% for Class B. What feature is more
related to Class A and less related to Class B? (four options
of features)

G2 and
Q3

Figure 6a

Qst 3 - Select the pair of features where DELTA CHANGES
on instance 29 will potentially INCREASE Class A probabil-
ity, and by that may SUPPORT its classification as Class A.
(four options of features pairs)

G3 and
Q4

Figure 6b

Qst 4 - Select the pair of features where DELTA CHANGES
on instance 29 will potentially INCREASE Class B probabil-
ity, and by that may ALTER its classification as Class A. (four
options of features pairs)

G3 and
Q4

Figure 6b

Using the ExMatrix GE representation (Figure 5a), 76.9% of the participants
were able to identify patterns involving feature space ranges and classes, where, for high
coverage rules and high importance features, low features values are more related to
class B, while features with large values are more related to class M (Qst 1). Using the
ExMatrix LE/UR (Figure 6a), also 76.9% of the participants were able to recognize that
feature “concave std” is the most related to class B for instance x29 classification outcome
(Qst 2). Using the ExMatrix LE/SC (Figure 6b), 61.5% of the participants were able to
identify that negative changes on instance x29 features “area worst” and “concavity mean”
values would better support the class B outcome (Qst 3), and 46.2% were able to identify
that positive changes on features “concave mean” and “perimeter worst” values may alter
the outcome from class B to class M (Qst 4).

In general, the results were promising for the first two analyses, but the participants
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present worse results when interpreting the ExMatrix LE/SC visualization. This is not
surprising since this representation requires a much better background about RF theory.
The ExMatrix GE and LE/UR visualizations are more generic and involve much fewer
concepts about how RF models work internally. In contrast, the ExMatrix LE/SC requires
a good level of knowledge about ensembles models and how the voting system work
when making a prediction. Although most of the users self-declared with a background in
machine learning, only 30% are RF experts.

We also have asked subjective, open questions, and, in general, users gave positive
feedbacks about ExMatrix explanations, where the visualizations were classified as visually
pleasing and useful for understanding RF models.

2.5 Discussion and Limitations
Although the natural choice to visualize a tree collection is to use tree structure

metaphors, two main reasons make disjoint rules organized into tables a better option
when analyzing DTs and especially RFs. First, using tree structure metaphors, the visual
comparison of logic rules (decision paths) can be overwhelming since different paths from
the root to the leaves define different orders of attributes, slowing down users when search-
ing within a tree to answer classification questions (FREITAS, 2014; HUYSMANS et al.,
2011). An issue that is amplified in RFs, since multiple DTs are analyzed collectively. In
contrast, in a matrix metaphor, the attributes are considered in the same order easing
this process (FREITAS, 2014; HUYSMANS et al., 2011). Second, given the constraints
of usual DT inference methods (non-overlapping predicates with open intervals), features
can be used multiple times in a single decision path resulting in multiple nodes (one per
test) using the same feature. Consequently, if tree structures are employed, each feature’s
decision intervals need to be mentally composed by the user, and nodes using the same fea-
ture can be far away in the decision path. The decision intervals are explicit in the matrix
representation and can be easily compared across multiples rules and trees. Therefore,
although tree structure visual metaphors are the usual choice when hierarchical struc-
tures are the focus (GRAHAM; KENNEDY, 2010; SCHULZ; HADLAK; SCHUMANN,
2011), on DTs and RFs, the decision paths are the object of analysis (TAN; STEINBACH;
KUMAR, 2005; FREITAS, 2014; HUYSMANS et al., 2011; LIMA; MUES; BAESENS,
2009) and transforming paths into disjoint rules organized into tables emphasize what is
essential (see supplemental material) 8.

Considering the above points, it is clear that scalability for RFs visualization is not
just a choice of getting a visual metaphor that can represent millions of nodes, but getting
a visual representation that is scalable and still properly supports essential analytical tasks
8 Section B.2 “Why logic rules in a matrix-like visual metaphor instead of node-link diagrams?”

of Appendix B.
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(see Table 3). Something much more complex than merely visualizing a forest of trees. In
this scenario, ExMatrix renders a promising solution, supporting the analysis of many
more rules concomitantly than the existing state-of-the-art techniques. However, it is not
a perfect solution. ExMatrix covers two different perspectives of RFs, conveying Global
and Local information. In the Local visualization, scalability is not a problem since one
rule is used per DT, so even for RFs with hundreds or even thousands of trees, ExMatrix
scales well. However, for Global visualization, scalability can be an issue since the number
of rules substantially grows with the number of trees. Although we can represent one rule
per line of pixels, we are limited by the display resolution, and, even when the display
space suffices, ExMatrix layouts can be cluttered and tricky to explore.

The solution we adopt to address scalability was to implement the so-called Schnei-
derman’s visualization mantra (SHNEIDERMAN, 1996), allowing users to start with an
overview of the model, getting details-on-demand by filtering rules to focus on specific sets
of interest. Although users are free to select any subset of rules, considering that the goal
of the Global visualization is to generate insights about the overall models’ behavior, here
we mainly explore filtering low-coverage rules since they are only valid for a few specific
data instances (that is the coverage definition). Although simple, such a solution makes
the analysis of entire models easier by removing unimportant information and reducing
cluttering. Another potential solution is to make the rows’ height proportional to cover-
age or certainty so that the rules with the lowest coverage or certainty are less prominent
(visible) and could even be combined in less than one line of pixels. We have not tested
this approach and left it as future work.

Regarding the user study, although the results were satisfactory and within what
we expect for the ExMatrix GE and LE/UR visualizations, the results for the ExMatrix
LE/SC representation were sub-optimal, and the XAI Question Bank (LIAO; GRUEN;
MILLER, 2020) can help us to shed some light about the reasons. According to this bank,
the GE addresses the leading question “How (global)” as “What are the top rules/features
it uses?”, whereas the LE/UR addresses the leading question “Why”, enabling to answer
inquiries such as “Why/how is this instance given this prediction?”. However, the LE/SC
involves three leading questions, “What If ”, “How to be that”, and “How to still be this”,
where the changes on instance features values are presented supporting hypotheses (not
answers), which shown to be too complex for the users. We believe that designing visual
representations to answer each of these questions individually would be more effective and
may reach better results.

Nevertheless, as discussed in the User Study section, participants’ low performance
not only resulted from the visual metaphor but also the expertise on RF models. Among
the participants, few know the RF technique in detail, indicating that people with less
expertise can use ExMatrix GE and LE/UR visualizations, but the LE/SC representation
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is more suitable for experts. In general, despite the complexity of the questions we ask
participants to solve, they acknowledged the ExMatrix potential, expressing encouraging
remarks, including “... this solution ... allows a deeper understanding of how each par-
ticular rule or feature impacted on the final the decision/classification.” or “I think the
ExMatrix can be used in a variety of domains, from E-commerce to Healthcare...”.

Although we design ExMatrix with RF interpretability in mind, it can be read-
ily applied to DT models, such as the ones used as surrogates for black-box models as
Artificial Neural Networks and Support Vector Machines, or approaches based on logic
rules such as Decision Tables since the core of our method is the visualization of rules.
Another compelling scenario that can be explored is the engineering of models. In this
case, through rule selection and filtering, simplified models could be derived where, for in-
stance, only high coverage rules are employed or any other subset of interest. Also, model
construction and improvement can be supported. The visual metaphors we propose can
be easily applied to the analysis and comparison of RF models resulting from different
parametrizations, such as different numbers of trees and their maximum depth. There-
fore, allowing machine learning engineers to go beyond accuracy and error when building
a model.

2.6 Conclusions and Future Work
In this paper, we present Explainable Matrix (ExMatrix), a novel method for Ran-

dom Forest (RF) model interpretability. ExMatrix uses a matrix-like visual metaphor,
where logic rules are rows, features are columns, and rules predicates are cells, allowing to
obtain overviews of models (Global Explanations) and audit classification results (Local
Explanations). Although simple, ExMatrix visual representations are powerful and sup-
port the execution of tasks that are challenging to perform without proper visualizations.
To attest ExMatrix usefulness, we present one use-case and two hypothetical usage scenar-
ios, showing that RF models can be interpreted beyond what is granted by usual metrics,
like accuracy or error rate. Although our primary goal is to aid in RF models global and
local interpretability, the ExMatrix method can also be applied for the analysis of Deci-
sion Trees, such as the ones used as surrogates models, or any other technique based on
logic rules, opening up new possibilities for future development and use. We plan as fu-
ture work to create new ordering and filtering criteria along with aggregation approaches
to improve the current ExMatrix explanations and, more importantly, to conceive new
ones. Another fascinating forthcoming work is creating optimized rule-based models from
complex RF models, which we also intend to investigate.
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CHAPTER

3
MULTIDIMENSIONAL CALIBRATION SPACE

– MCS

This chapter (paper Machine learning used to create a multidimensional calibration
space for sensing and biosensing data 1) presents an ExMatrix (Chapter 2) application
in analytical chemistry called MCS (Multidimensional Calibration Space). Sensors and
biosensors based on Impedance Spectroscopy generate multidimensional (multivariate)
data from samples with analyte concentrations or distinguishable factors. DT models can
be employed for sensing units calibration, being interpretable by ExMatrix. The latter
can be applied in several domains, being analytical chemistry a significant example. Due
to copyright issues, the published paper 1 introducing the MCS concept is not
fully arranged in this chapter. Nevertheless, the sections omitted do not harm
the context of this Ph.D. thesis.

Abstract: Calibration curves are essential constructs in analytical chemistry to
determine parameters of sensing performance. In the classification of sensing data of com-
plex samples without a clear dependence on a given analyte, however, establishing a
calibration curve is not possible. In this paper we introduce the concept of a multidimen-
sional calibration space which could serve as reference to classify any unknown sample as
in determining an analyte concentration from a calibration curve. This calibration space
is defined from a set of rules generated using a machine learning method based on trees
applied to the dataset. The number of attributes employed in the rules defines the dimen-
sion of the calibration space and is established to warrant full coverage of the dataset. We
demonstrate the calibration space concept with impedance spectroscopy data from sen-
sors, biosensors and an e-tongue, but the concept can be extended to any type of sensing

1 POPOLIN NETO, M.; SOARES, A. C.; OLIVEIRA, O. N.; PAULOVICH, F. V. Machine
learning used to create a multidimensional calibration space for sensing and biosensing data.
Bulletin of the Chemical Society of Japan, v. 94, n. 5, p. 1553–1562, 2021. Available: <https://-
doi.org/10.1246/bcsj.20200359>.
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data and classification task. Using the calibration space should allow for the correct clas-
sification of unknown samples, provided that the data used to generate rules via machine
learning can cover the whole range of sensing measurements. Furthermore, an inspection
in the rules can assist in the design of sensing systems for optimized performance.

3.1 Introduction

Analytical curves are ubiquitous in analytical chemistry, with well-established pro-
cedures to determine analytical parameters recommended by IUPAC (CURRIE, 1995;
CURRIE, 1999). The same can be said of calibration curves and processes for instruments
in general, some of which are utilized not only to determine a given physical quantity
but also to adjust the instruments for correct functioning (MOOSAVI; GHASSABIAN,
2018; CASES; LÓPEZ-LORENTE; LÓPEZ-JIMÉNEZ, 2018). In sensors and biosensors,
in particular, using analytical curves one can “transform” the task of classifying the set
of samples under analysis into a predictive exercise where the concentration of a given
analyte in an unknown sample can be determined precisely. In other types of sensors,
as in the case of electronic tongues (SHIMIZU et al., 2017; BRAUNGER et al., 2017;
SHIMIZU; BRAUNGER; RIUL, 2019; DAIKUZONO et al., 2015; MENDEZ; PREEDY,
2016; TERMEHYOUSEFI, 2018; OLIVEIRA et al., 2013) and electronic noses (MENDEZ;
PREEDY, 2016; FARRAIA et al., 2019; PATEL, 2014; DI NATALE et al., 2000), this
determination may not be possible and no analytical curves can be established. This hap-
pens because these sensors may be used to classify different types of liquids such as wine
(RIUL et al., 2004; RUDNITSKAYA et al., 2017) or coffee (ALESSIO et al., 2016) without
determining the concentration of any specific analyte. Calibration procedures can never-
theless still be employed for e-tongues and e-noses (LEGIN; RUDNITSKAYA; VLASOV,
2003; GRABOSKI et al., 2020), but these are related to the multivariate calibration that
allows for studying quantitative and qualitative aspects of simple and complex solutions
(VLASOV; LEGIN; RUDNITSKAYA, 2002). For the so-called complex samples that con-
tain multiple analytes, use has been made of multivariate analysis (PODRAżKA et al.,
2018) and other statistical and computational methods (DI ROSA et al., 2017), including
information visualization and machine learning techniques. These methods are advanta-
geous for the evaluation of large volumes of data, providing predictions about food and
water contaminants, diagnosis and prognosis. For example, Daikuzono et al. (2017) ap-
plied an information visualization technique referred to as Interactive Document Mapping
(IDMAP) in electrical impedance spectra to detect gliadin in food samples contaminated
by gluten. IDMAP was also used to treat data from a microfluidic electronic tongue to de-
tect petrochemical compounds, heavy metals and basic flavors (SHIMIZU et al., 2017) and
from a biosensor to detect pathogenic bacteria in food samples (WILSON et al., 2019). Ex-
amples of machine learning applied to diagnosis include data processing of very distinct
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natures. In image analysis, for instance, the superiority of computer-assisted diagnosis
(compared to human experts) is well established, which includes the use of deep learn-
ing for analyzing magnetic resonance images (LUNDERVOLD; LUNDERVOLD, 2019).
For cardiac diseases, datasets with varied medical parameters and results from clinical
exams, including from immunosensors, have been used for diagnosis with various machine
learning strategies (VASHISTHA et al., 2018). Optical biosensing data from paper-based
point-of-care (POCs) have been used in conjunction with machine learning to diagnose
cardio-vascular diseases (BALLARD et al., 2020). Cancer biomarkers were detected with
higher specificity in serum samples of patients by applying classification algorithms to
SERS (surface-enhanced Raman scattering) data in a biosensor made with a microfluidic
chip (BANAEI et al., 2019). SERS spectra from other biosensors were treated with ma-
chine learning algorithms for the diagnosis of liver cancer and liver cirrhosis (LI et al.,
2015). Even for glucose detection using amperometry has a genetic algorithm been useful
to improve diagnosis (GONZALEZ-NAVARRO et al., 2016). Calibration curves are not
much useful in these cases, though they are sometimes employed for comparison purposes
and to obtain sensing performance.

The usefulness of the various statistical and computational methods above men-
tioned is irrefutable, but their limitation remains in not being interpretable in the classi-
fication tasks. In this paper, we introduce the concept of a multidimensional calibration
space which we believe addresses this limitation. The definition and exemplification of the
multidimensional calibration space is given in the following section.

3.2 Methodology

The concept of a multidimensional calibration space is introduced by applying De-
cision Tree (DT) models (BREIMAN et al., 1984; TAN; STEINBACH; KUMAR, 2005)
to the impedance spectroscopy data of a sensor made with layer-by-layer films of poly-
electrolytes to detect different concentrations of phytic acid (MORAES et al., 2010). This
problem was chosen because we knew from the latter reference that the sensor was not
selective for phytic acid and a calibration curve could not be established. On the other
hand, there was some distinction between the spectra for different concentrations and
therefore classification should be a simple task with a small number of rules. As it will be
shown, this allows the calibration space to be represented with only three dimensions.

The choice of DT models is justified by the possibility of establishing predictive
rules for calibration, as DTs are today the most prevalent interpretable classification
approach (HALL, 2018; GUIDOTTI et al., 2018b). In classification with machine learning
techniques, a computational model is built to predict the class of a given data instance.
A set of data instances X = {x1,x2, ...,xN} and their associated classes Y = {y1,y2, ...,yN}
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where yi ∈ C = {c1,c2, ...,cM}, usually called the training set, are employed to infer a
function f (.) that maps each training instance xi into its class yi, that is f (xi)→ yi. If
X is comprehensive and represents the phenomena under analysis in their entirety, f (.)

can be used to predict the class of any new instance x j that was not originally in X . The
techniques to infer f (.) may be split into two distinct groups (HALL, 2018; GUIDOTTI et
al., 2018b), viz. the black-boxes such as Artificial Neural Networks (RIUL et al., 2004) and
Support Vector Machines (SONG et al., 2013; KUMAR et al., 2012) and the inherently
interpretable models such as DTs (BREIMAN et al., 1984; TAN; STEINBACH; KUMAR,
2005) and Rule Sets (HALL, 2018; GUIDOTTI et al., 2018b). Although typically less
accurate, the techniques of the latter group allow for the reasoning of a given classification.
In other words, interpretable models support the understanding of how the attributes of
a given instance, that is, the values describing it, contributed to its classification. With
this scheme one may generate interpretable models not only as predictive tools but also
as descriptive strategies where intrinsic relationships among data attributes and classes
can be revealed (TAN; STEINBACH; KUMAR, 2005).

Using DT models as the classification approach for impedance spectroscopy data,
we may select a subset of available attributes (frequencies) without requiring dimensional-
ity reduction as in data pre-processing or manual frequency selection. By using the visual-
ization method ExMatrix (POPOLIN NETO; PAULOVICH, 2021), the Multidimensional
Calibration Space created by DT models can be explored, displaying space ranges and
classes associations. The classification of individual instances/samples can be analyzed
for reasoning about the class assignment. As the name indicates, DT techniques create
a tree-like structure where internal nodes contain test functions (or predicates) based on
the data attribute values to recursively split the training data into non-overlapping sub-
groups so that each final subgroup contains only instances of the same class. Figure 10
displays an example of a DT inferred from a training dataset containing 35 instances of
5 phytic acid concentrations (7 instances per concentration at 10−2, 10−3, 10−4, 10−5,
and 10−6 M). Each instance is described by its capacitance at 3 frequencies (100, 10 and
1 Hz, referred to as F100, F10, and F1, respectively) obtained with a sensor made of a
layer-by-layer (LbL) film with poly(allylamine hydrochloride) (PAH) and poly(vinyl sul-
fonic acid) (PVS) deposited onto an interdigitated gold electrode. The DT in Figure 10
is validated through a testing set containing 15 instances (3 instances per concentration)
not present in the training set, reaching 100% accuracy. In the nomenclature adopted
here, we use FX to refer to the capacitance value in nF at the frequency X in Hz. Using
a DT, IF/THEN logic rules can be extracted to represent the combination of attribute
ranges that best describe a specific class of instances. Each tree path from the root to a
leaf defines one distinct rule, and the entire set of rules can be used as a descriptive model
of the (training) data. For instance, in Figure 10 the path from node #0, node #1, node
#5, and node #6 defines the rule IF C(nF)@F100 ≤ 225.81 AND C(nF)@F1 > 487.22
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AND C(nF)@F1 ≤ 509.96 THEN 10−4. If a node predicate is true, we navigate to the left
branch; right otherwise. Note that different rules can result in the same class, everything
depending on the complexity of the input data.

Figure 10 – Example of DT for a dataset containing the capacitance at 3 frequencies (F100, F10,
and F1), measured with a PAH/PVS sensor (MORAES et al., 2010) on samples of
phytic acid concentrations (10−2, 10−3, 10−4, 10−5, and 10−6 M).

For X corresponding to data from sensors or biosensors (or other types of data
as explained later on), a multidimensional calibration space visualization can be created
using the ExMatrix (POPOLIN NETO; PAULOVICH, 2021) technique to display an
overview of the logic rules extracted from a DT model inferred from X . DT models can
be complex to interpret as the number of nodes increases, producing deep trees. With the
ExMatrix visual representations, a DT model is arranged into a matrix-like visualization
where rules are rows, attributes are columns, and the predicates are the matrix cells.
Figure 11 shows a visual representation of the DT in Figure 10. The resulting matrix
has 7 rows, one per rule, and 3 columns for the different attributes. The matrix cell is
colored to reflect the inferred class and filled so that darker colors represent the range
of each attribute used by a rule. In a cell, the left-most side represents the minimum
value for an attribute considering the entire dataset, whereas the right-most side is the
maximum. For instance, in the rule r3 depicted on the third matrix row represents the
rule IF C(nF)@F100 ≤ 225.81 AND C(nF)@F1 > 487.22 AND C(nF)@F1 ≤ 509.96
THEN 10−4. The F100 cell is filled representing the range [167.58,225.81], where 167.58
is the minimum value admitted by the attribute F100. F1 is filled to represent the interval
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[487.22,509.96]. In addition to obtaining the relationships among attributes ranges and
classes conveyed by each rule, the coverage of the rules is also calculated. This coverage
is 2 the percentage of instances in the training set belonging to the same inferred class
for which the rule is true. The rule coverage is mapped to one additional column on the
left side of the matrix. The rule r3 on the third row in Figure 11 extracted from the
path finishing at node #6 in Figure 10 has coverage of 0.71, whereas the rule r5 on the
fourth row from the path finishing at node #10 has coverage of 0.29. This indicates that
the first is more generic, being valid for a higher number of instances. The last rule is
more specific, valid for a small number of instances. The attribute importance is added
as a row on the top of the table and reflects attributes capability to differentiate classes
(BREIMAN, 2002). The attribute name is placed at the bottom, along with the attribute
importance value.

Figure 11 – Multidimensional calibration space visualization using ExMatrix. The seven rules
defined in the DT of Figure 10 are represented as rows, the frequencies are in the
columns and the cells indicate the ranges in each frequency “used” to predict the
different concentrations. The leftmost column represents the rule coverage, with
rules r2, r1, and r7 exhibiting maximum values, while r3 and r4 give intermediate
values and r5 and r6 have small values. This indicates that for the concentrations
10−2, 10−3, 10−6 M, the data is easier to separate (classify) since only one rule can
represent those concentration classes on the three frequencies used. However, for the
concentrations 10−4 and 10−5 M, multiple rules are necessary, i.e., the data is more
complex for these concentrations. By comparing the ranges in different classes, one
may infer the parts of the space that best define a concentration.

Although simple, ExMatrix visual representation allows for an informative analysis.
For example, an instance/sample with a higher value of real capacitance at F100 has a
2 The rule coverage formulation used here equals rule support definition.
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high probability of being 10−6 M (lilac color), given the high coverage of the rule r7 at
the last row (Figure 11). By analyzing rules r2 and r1 at the first two rows, one notes
that the 10−2 and 10−3 M concentrations (blue and orange colors) are similar at F1 and
distinguished at F100, where 10−2 M (blue color) holds a small range of values, but higher
than the values for 10−3 M (orange color). By inspecting rules predicting the 10−4 and
10−5 M concentrations (olive and brown colors), we observe overlaps of attribute ranges
at F100 and F1, which are different in terms of F10. These overlaps and rules coverage
reveal a certain space split complexity to separate the concentrations (instances/samples).
It should be remarked that in simple cases feature selection can be made manually, for
example noting the frequencies at which distinction among samples is higher. With DTs,
on the other hand, this selection is performed in a systematic, non-arbitrary manner
selecting features that present the best separability between classes. This is reflected
on the feature (or attribute) importance values displayed at the top of the ExMatrix
representation.

The calibration space in Figure 11 can also be represented by checking the ranges
at which the different rules apply. As an example, Figure 12 shows dashed lines for an
instance/sample with values 169.23, 336.54, and 532.82 for the frequencies F100, F10, and
F1. This instance is classified as 10−5 M since it falls into the darker colored area of the
rule in the first row (brown color/rule r4). In Figure 12 the rules are ordered according to
the proximity to the instance under analysis, where the used rule to classify the instance
is in the first row (brown/rule r4). Proximity here means the smallest modifications (gaps
between dotted lines and ranges) needed to apply to the instance in order to change
its class. For instance, in the second row (rule r3) one notes that a small decrease in
capacitance at F1 would make the instance to be classified as belonging to the 10−4 M
class (olive). On the other hand, larger modifications are required to make it switch, for
example, to the class 10−2 M (blue/rule r2 on the sixth row), where capacitance values
at frequencies F100 and F1 need positive and negative increments, respectively.

In the example chosen, the number of rules to cover 100% of the dataset is 7, close
to the minimum possible of 5 rules for the five classes. Since only three attributes (F100,
F10, and F1) are used in these rules, one may establish a 3D calibration space as shown
in Figure 13 for the rules in Figure 11 (or Figure 12). The colored boxes represent the
space where each concentration is different from the others. From this plot one infers the
difficulty in distinguishing the 10−4 and 10−5 M concentrations (olive and brown), while
the others occupy more defined parts of the 3D calibration space. Also interesting is to
consider the instance classified as 10−5 M and discussed in connection with Figure 12,
represented as a red circle in Figure 13. This circle needs to “travel” very little in the 3D
space to move to class 10−4 M, whereas to move to class 10−2 M the distance is much
larger (and in two axes).
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Figure 12 – Multidimensional calibration space visualization using ExMatrix for the classifica-
tion of a specific instance/sample. Dashed lines indicate the instance values in each
attribute (frequency). In this matrix, the rules are ordered by proximity to the in-
stance under analysis, where the rule in the first row (brown/rule r4) is used to
classify the instance as class 10−5 M. To change the instance’s classification from
10−5 to 10−4 M requires the smallest modification (olive/rule r3 on the second row),
while the modification required to change the classification to 10−2 M is the largest
(blue/rule r2 on the sixth row).

Figure 13 – Multidimensional calibration space shown as a 3D plot. For most concentrations,
the parts of the space “used” by the different concentrations are simple. Only for
10−4 and 10−5 concentrations (olive and brown) the space splitting is more complex.

The coverage of the logic rules obtained from DT models are related to the dataset
complexity and DT inference approach. In this paper, we use the Classification And
Regression Trees (CART) (BREIMAN et al., 1984) technique to derive DTs. It should be
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noted that different trees are obtained by varying the inference parameters. In a model
selection 3 experiment (JAMES et al., 2013; KOHAVI, 1995b; JAHANGIRI; RAKHA,
2015), we intentionally varied these parameters to generate multiple (and many) trees and
select the one that provides rules with the highest accuracy on KFold Cross Validation
using the training set. Then, the parameters selected are used to create a DT model
considering the whole training set, and the resulting DT is tested using the test set
(unknown samples). In doing so, we selected the best tree in an unbiased manner, its
performance can be evaluated, and through the ExMatrix method the Multidimensional
Calibration Space can be analyzed.

One limitation that may be inferred from inspecting Figure 13 is in the discretiza-
tion inherent in the classification rules defined by the DT algorithm, transforming re-
gression into a classification problem (SALMAN; KECMAN, 2012). The samples corre-
sponding to 10−2, 10−3, 10−4, 10−5, and 10−6 M would be located on the “boxes” of
round concentrations, and any new sample with an intermediate concentration would be
assigned to one of these boxes. This limitation would obviously be circumvented if the
dataset contained a much larger number of concentrations.

3.3 Final Remarks
The concept of a multidimensional calibration space introduced here exploits the

immense potential from the use of machine learning methods to analyze data. It allows for
a predictive power sensors, biosensors and e-tongues. Two features to be highlighted are
the use of Decision Trees (DT) algorithms, which permit the generation of interpretable
rules, and the visualization of such rules with ExMatrix software. In some aspects this cal-
ibration space resembles the multivariate calibration space, and indeed for simple cases
with small dimensions they may coincide. However, the concept of a multidimensional
calibration space is broader, not only because rules are generated with machine learning
but also because different types of data may be treated and visualized. Since the mul-
tidimensional calibration space may be applied to any type of data, including images,
videos, text, in addition to scientific data, applications beyond pure analytical chemistry
can be envisaged. Examples can be surveillance and monitoring systems of various kinds,
computer-assisted clinical diagnostics and natural language processing.

3 Nested KFold Cross-Validation can also be used to assess model performance and choose the
best building parameters (VARMA; SIMON, 2006; TSAMARDINOS; RAKHSHANI; LA-
GANI, 2014).
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CHAPTER

4
MULTIVARIATE DATA EXPLANATION – VAX

This chapter (paper Multivariate Data Explanation by Jumping Emerging Pat-
terns Visualization 1) presents VAX, a VA method for data (descriptive) explanations
by automated data insights, allowing JEPs visualization and data instances similarity
maps. The VAX data explanations involve visualizing descriptive logic rules (JEPs) along
with clusters and outliers investigation in DR layouts (instances similarity maps). The
VAX method uses RF models’ interpretability to explain data extracting, processing, and
visualizing JEPs. The application of visual representations of classification models for
data explanation is incipient, and the existing approaches employ black-box models. In
contrast, JEPs are intrinsically interpretable and yield great descriptive capabilities.

Abstract: Visual Analytics (VA) tools and techniques have been instrumental
in supporting users to build better classification models, interpret models’ overall logic,
and audit results. In a different direction, VA has recently been applied to transform
classification models into descriptive mechanisms instead of predictive. The idea is to use
such models as surrogates for data patterns, visualizing the model to understand the phe-
nomenon represented by the data. Although very useful and inspiring, the few proposed
approaches have opted to use low complex classification models to promote straightfor-
ward interpretation, presenting limitations to capture intricate data patterns. In this
paper, we present VAX (multiVariate dAta eXplanation), a new VA method to support
the identification and visual interpretation of patterns in multivariate datasets. Unlike
the existing similar approaches, VAX uses the concept of Jumping Emerging Patterns to
identify and aggregate several diversified patterns, producing explanations through logic
combinations of data variables. The potential of VAX to interpret complex multivariate
datasets is demonstrated through use-cases employing two real-world datasets covering
different scenarios.

1 POPOLIN NETO, M.; PAULOVICH, F. V. Multivariate Data Explanation by Jumping
Emerging Patterns Visualization. arXiv preprint arXiv:2106.11112. 2021.
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4.1 Introduction

Visualization plays an essential role in multivariate exploratory data analy-
sis (KEIM et al., 2010; SACHA et al., 2014), allowing users to find interesting patterns and
formulate hypotheses. In this process, data mining and machine learning techniques can
be instrumental, supporting patterns discovery in the visualization or in the data to be dis-
played by the visualization (DANG; WILKINSON, 2014). In the last decades, lots of effort
has been in a different direction, focusing on visualizing data mining and machine learn-
ing models, not the data. In general, model visualization focuses on model creation/op-
timization (ANKERST et al., 1999; TEOH; MA, 2003; DO, 2007; VAN DEN ELZEN;
VAN WIJK, 2011; TALBOT et al., 2009; HöFERLIN et al., 2012; LEE; JOHNSON;
CHENG, 2016; LIU et al., 2018) or results’ interpretation (MING; QU; BERTINI, 2019;
DI CASTRO; BERTINI, 2019; ZHAO et al., 2019; RIBEIRO; SINGH; GUESTRIN, 2018;
RIBEIRO; SINGH; GUESTRIN, 2016; POPOLIN NETO; PAULOVICH, 2021; CHAN
et al., 2020), where global and local explanations aim to support model overview and
classification process reasoning (DU; LIU; HU, 2019; LIAO; GRUEN; MILLER, 2020).

The idea of joining these two concepts has been suggested (GLEICHER, 2013;
KNITTEL et al., 2020), using machine learning classification models as surrogates to
explore an underlying phenomenon represented by data. The core concept is based on
the fact that classification models can be used not only for predictive analysis but also
for descriptive purposes (TAN; STEINBACH; KUMAR, 2005). If a model is transparent
and understandable (LIAO; GRUEN; MILLER, 2020), for instance, through explanatory
strategies (CHAN et al., 2020), it can be used as a proxy to understand the patterns in
the data. In other words, the idea is to use classification models for descriptive purposes as
the primary goal, being data-centered instead of a model hub, where prediction capability
is not the target (GLEICHER, 2013; KNITTEL et al., 2020).

In data mining and machine learning fields, this has a long history, with the super-
vised descriptive rule discovery framework (NOVAK; LAVRAC; WEBB, 2009) unifying
concepts such as Emerging Patterns (EP) (DONG; LI, 1999), supporting class differenti-
ation and emerging trends (NOVAK; LAVRAC; WEBB, 2009; LOYOLA-GONZÁLEZ;
MEDINA-PÉREZ; CHOO, 2020; GARCíA-VICO et al., 2018; ANWAR; WARNARS;
SANCHEZ, 2017). Although visualization is recognized as a powerful component when
analyzing a phenomenon through data patterns (NOVAK; LAVRAC; WEBB, 2009;
LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020), the use of classification mod-
els as descriptive tools is still in its infancy in the visualization field. To the best of
our knowledge, one solution based on Support Vector Machines (GLEICHER, 2013) and
another leveraging Artificial Neural Networks (KNITTEL et al., 2020). Although inspir-
ing approaches, both are based on visual representations of so-called black-box mod-
els (MING; QU; BERTINI, 2019; DI CASTRO; BERTINI, 2019; RIBEIRO; SINGH;
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GUESTRIN, 2016), which may not provide the descriptive power (GARCíA-VICO et
al., 2018; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020) of EP.

This paper presents VAX (multiVariate dAta eXplanation), a new visual analytics
method for multivariate data interpretation that employs prediction models to leverages
the descriptive power of Jumping Emerging Patterns (JEPs), a special type of EP (KANE;
CUISSART; CRÉMILLEUX, 2015; GARCíA-VICO et al., 2018; LOYOLA-GONZÁLEZ;
MEDINA-PÉREZ; CHOO, 2020). Using JEPs, class-associated inherent interpretable
logic statements are extracted, focusing on data description, not model precision. These
are then concisely displayed using a compact matrix metaphor and dimensionality re-
duction layouts, supporting different analytical tasks involving pattern analysis and data
content, revealing intricate and complex information that may be otherwise challenging
to discover using usual exploratory approaches.

In summary, the main contributions of this paper are:

• A new method for JEPs visualization, where a matrix metaphor is used to display
patterns as rows, variables as columns, and data information through histograms in
the cells;

• A new strategy for JEPs selection and aggregation from random decision trees that
helps to summarize large sets of patterns while representing the entire data set; and

• An instance map for analyzing data instances from the perspective of the discovered
patterns, composing an analytical cycle that goes from data to patterns and from
patterns to data.

The remainder of the paper is organized as follows. Section 4.2 covers the literature
in classification model visualization for descriptive analysis, discussing the current limi-
tations and positioning our solution. Section 4.3 details our proposed approach, showing
how JEPs are extracted, aggregated, and visualized. Section 4.4 presents two different
use-cases explaining how to use our solution for data explanation. Finally, Section 4.5
lists our limitations and Section 4.6 outlines our conclusions and future work.

4.2 Related Work
In the visualization literature, the idea of using classification models as descrip-

tive tools instead of predictive engines, using them as proxies to understand or describe
multivariate data patterns, is a new concept. Here, we arrange the existing approaches
into two groups, model specific (GLEICHER, 2013; KNITTEL et al., 2020) and Emerg-
ing Patterns (DONG; LI, 1999; NOVAK; LAVRAC; WEBB, 2009; GARCíA-VICO et al.,
2018; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020).
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4.2.1 Model Specific

Different classification models have been used for descriptive purposes, for in-
stance, Support Vector Machines (SVM) (GLEICHER, 2013) and Artificial Neural Net-
works (ANN) (KNITTEL et al., 2020). Since these models are black-boxes (MING; QU;
BERTINI, 2019; DI CASTRO; BERTINI, 2019; RIBEIRO; SINGH; GUESTRIN, 2016),
they require model-specific solutions to reach interpretability and serve for multivariate
data explanation.

In Explainers (GLEICHER, 2013), Dimensionality Reduction (DR) (NONATO;
AUPETIT, 2019) layouts are created using linear functions from SVM models. These
functions combine different variables, and a heuristic is applied to narrow down the po-
tential combinations so the analyst can filter and select the functions of interest. Explain-
ers allows analysts to reason about the projected data points arrangement analyzing the
linear function used to create the layout. It is an inspiring and pioneer approach but is
limited to present patterns resulting from linear combinations of up to three variables,
missing patterns in more complex non-linear associations. In our approach, the patterns
extracted can involve more than three variables and represent non-linear relationships
among instances and their classes. To allow that, we use the concept of Emerging Pat-
terns (DONG; LI, 1999; NOVAK; LAVRAC; WEBB, 2009; GARCíA-VICO et al., 2018;
LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020) to extract patterns with differ-
ent variables combinations. Furthermore, patterns are also used to create instances DR
layouts, enabling analysis involving patterns and data instances.

Visual Neural Decomposition (VND) (KNITTEL et al., 2020) enables multivariate
data explanation by visually presenting ANN decompositions. In VND, neural network
hidden node weights displayed through stacked bars are used to show the relations be-
tween variable ranges and classes (e.g., class A with a threshold probability). The nodes
are organized in cards containing variables ordered by importance to the node. Although
VND can show non-linear relationships among instances and a particular class, supporting
analysis with more than three variables, the captured patterns’ complexity is bounded
by the simple neural network architecture (one hidden layer) employed to allow inter-
pretability. Also, their ordering and class-specific visualizations can make difficult the
analysis of multiple classes at once. In our approach, since we use inherent interpretable
logic statements from Emerging Patterns, complex relations can be captured, and the
patterns for multiple classes can be concisely displayed since they are arranged in a com-
pact way. Another positive aspect of our approach is capturing patterns with maximum
confidence (and statistical significance) so that a specific class’s patterns do not support
instances from another class. Thus different from VND, patterns are not restricted to a
class probability threshold.

Explainers and VND are inspiring approaches but lack the explanatory power of
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Emerging Patterns (DONG; LI, 1999; NOVAK; LAVRAC; WEBB, 2009; GARCíA-VICO
et al., 2018; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020), where one of the
main goals is to obtain patterns for data explanation.

4.2.2 Emerging Patterns

Emerging Patterns (EP) consist of class associated relational statements among
variables, providing classes differentiation and emerging trends (DONG; LI, 1999; NO-
VAK; LAVRAC; WEBB, 2009; GARCíA-VICO et al., 2018; ANWAR; WARNARS;
SANCHEZ, 2017). Decision Trees (BREIMAN et al., 1984; TAN; STEINBACH; KUMAR,
2005) can be employed for extracting these patterns (NOVAK; LAVRAC; WEBB, 2009;
DONG; LI, 1999; GARCíA-VICO et al., 2018; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ;
CHOO, 2020). To obtain many diversified (GARCíA-VICO et al., 2018; LOYOLA-
GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020) and expressive patterns, our approach
extracts Jumping Emerging Patterns (JEPs) (KANE; CUISSART; CRÉMILLEUX,
2015; GARCíA-VICO et al., 2018; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO,
2020) from random Decision Trees based on Random Forest (GARCíA-BORROTO;
MARTíNEZ-TRINIDAD; CARRASCO-OCHOA, 2015; LOYOLA-GONZáLEZ et al.,
2019; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020), post-processing these
patterns by a selection and aggregation strategy. JEPs are a particular case of EP where
the confidence is maximum, that is, when the mined patterns are class-exclusive, not
supporting instances of different classes.

Visualization is a powerful component when analyzing a phenomenon through
data patterns (NOVAK; LAVRAC; WEBB, 2009; LOYOLA-GONZÁLEZ; MEDINA-
PÉREZ; CHOO, 2020). In this context, two crucial aspects should be supported, con-
tent and multi-class investigation, being the ability to show patterns content (e.g., data
distribution) and be used on multi-class problems (more than two classes) (NOVAK;
LAVRAC; WEBB, 2009). Some approaches address the visualization of pattern prop-
erties (e.g., support) through visual markers (NOVAK; LAVRAC; WEBB, 2009), but
lacking patterns’ content representation. Visualizing Subgroup Distribution (VSD) (GAM-
BERGER; LAVRAC; WETTSCHERECK, 2002) presents patterns as line plots for con-
tinuous variables and binary class problems (two classes). Despite being intuitive, VSD
(GAMBERGER; LAVRAC; WETTSCHERECK, 2002) is not suitable for multi-class do-
mains, and multiple variables visualization is an issue (NOVAK; LAVRAC; WEBB, 2009).
Our approach satisfies both content and multi-class requirements, presenting patterns con-
tent using histograms and classes mapped as categorical colors.

EPs can also be seen as descriptive logic rules (GARCíA-VICO et al., 2018; NO-
VAK; LAVRAC; WEBB, 2009), and Decision Trees are a well-recognized method for
consistent logic rules generation (MIRANDA; SARDINHA; CERRI, 2021). Disjoint and
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consistent logic rules are very interpretable (MIRANDA; SARDINHA; CERRI, 2021;
LAKKARAJU; BACH; LESKOVEC, 2016; FüRNKRANZ; GAMBERGER; LAVRAC,
2012), therefore popular in visual analytics solutions for model interpretability
(POPOLIN NETO; PAULOVICH, 2021; MING; QU; BERTINI, 2019; RIBEIRO; SINGH;
GUESTRIN, 2018; GUIDOTTI et al., 2018a; LAKKARAJU; BACH; LESKOVEC, 2016).
Such solutions usually support global and local model interpretation aiming to explain the
model itself, and its decisions (DU; LIU; HU, 2019). RuleMatrix (MING; QU; BERTINI,
2019) and ExMatrix (POPOLIN NETO; PAULOVICH, 2021) are two approaches that vi-
sually present rules in a matrix format. Despite great solutions, both are model-centered,
where rules are primarily used in explaining models. Our solution also leverages a ma-
trix metaphor, but our goal is to support explanations of multivariate data, not models.
Although serving as an inspiration to our solution, RuleMatrix only presents global his-
tograms, and more important, variables (columns) order are fixed. ExMatrix and VAX
are based on matrix visualization, in which rows and columns order plays a significant
role (CHEN et al., 2004; WU; TZENG; CHEN, 2008). However, ExMatrix does not con-
vey data distribution. VAX supports global and local histograms visualization, where
patterns and variables can be ordered to produce meaningful visual representations. Fur-
thermore, VAX integrates visualization of descriptive logic rules (JEPs) with DR layouts
using dataset extension (PéREZ et al., 2015). Our solution provides a powerful visual
analytics method focusing on data analysis, instead of model explanations as RuleMatrix
and ExMatrix.

4.3 Methodology

This section presents VAX (multiVariate dAta eXplanation), a new multidimen-
sional data explanation approach that combines JEPs visualization and DR layouts to
support data pattern discovery and interpretation. To reach the general objective – mul-
tivariate data explanation, VAX enables the five automated data insights presented in
Table 4. In this way, VAX can support exploratory tasks (LAW; ENDERT; STASKO,
2020) inside the visual analytics process (KEIM et al., 2010; SACHA et al., 2014). We im-
plement I1 - Visual motifs and I2 - Distribution using a matrix-like visual metaphor
based on matrix visualization guidelines (CHEN et al., 2004; WU; TZENG; CHEN, 2008).
Since the objects of analysis are descriptive patterns (JEPs), we set these as rows (I1)
and place the used variables as columns with matrix cells presenting global and local
histograms (I2). Such arrangement combines the strengths of model explanations ap-
proaches (POPOLIN NETO; PAULOVICH, 2021; MING; QU; BERTINI, 2019), improv-
ing them towards data interpretation. The insights I3 - Cluster and I4 - Outlier are
addressed by instances similarity maps, projecting data instances as viewed through the
JEPs lens using a DR technique, where clusters (I3) and outliers (I4) can be observed.
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Finally, I5 - Compound fact is reached through combining the different proposed
visual representations where clusters and outliers (I3 and I4) can be explained by vi-
sualizing the patterns along with variables distributions (I1 and I2). Figure 14 shows
VAX pipeline, where 1: JEPs are extracted using random Decision Trees (DTs) based on
Random Forest (GARCíA-BORROTO; MARTíNEZ-TRINIDAD; CARRASCO-OCHOA,
2015; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020), and the more relevant
patterns are selected and aggregated following a well-defined strategy; 2: The resulting
aggregated patterns are then visualized using a matrix metaphor (I1 and I2); 3: Data
instances, as viewed by the patterns, are displayed using a DR technique creating an in-
stances similarity map (I3 and I4); By exploring the visualizations, 4: how patterns are
related to instances and 5: how instances are connected with patterns (I5). Hence, VAX
involves two key aspects, JEPs and instances similarity maps, further discussed in the
following subsections.

Table 4 – Automated data insights.

Insight Type (LAW; ENDERT; STASKO, 2020)

I1 Visual motifs. Unique/special/specific patterns, being but not
only custom visual metaphors, representing a particular no-
tion/structure on data.

I2 Distribution. Variables values distribution, such as histograms
plots.

I3 Cluster. Instances group, like a set of points relative closed to each
other on a scatter plot.

I4 Outlier. Particular instance with distinct variables values to the
distribution, such as an instance relative a part from other instances
in a scatter plot.

I5 Compound fact. Meaningful composition of two or more insights
types.

4.3.1 Jumping Emerging Patterns

JEP (Jumping Emerging Pattern) is a particular type of EP (Emerging Pattern)
(GARCíA-VICO et al., 2018; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020).
VAX arranges JEPs extraction, selection, aggregation, and visualization.

4.3.1.1 Definitions

EP (Emerging Pattern) was defined by Dong and Li (1999). In formal terms,
given a class-labeled dataset X and its set of variables V , a pattern p is a conjunction of
selectors p = {i1, i2, ..., i|V |} (logical complex), each one defining a relational statement in
the form of iv = v # S. In the statement defined by a selector iv, S consists one or more
possible values for variable v∈V , whereas the relational operator # can be ∈, /∈,>,<,≥, or
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Figure 14 – Data explanation pipeline based on automated data insights (Table 4). 1: JEPs
(Jumping Emerging Patterns) are extracted from random Decision Trees and then
selected and aggregated following a well-defined strategy. 2: JEPs are visualized into
a matrix-like visual metaphor using global and local histograms (I1 and I2). 3: Two-
dimensional instances maps are built to show the instances’ similarity relationships
from the patterns’ perspective (I3 and I4). 4: From the matrix visualization, JEPs
can be further analyzed by inspecting the supported instances on the map (I5).
5: From the map, instances can be further investigated by inspecting the JEPs in
which they are supported (I5).

≤ (MICHALSKI; STEPP, 1982; GARCíA-VICO et al., 2018). In this paper we work with
patterns arranging selectors in the form v∈ S, being S = [a,b] with a and b ∈R, so defining
a real set bounded by a and b. An instance x ∈ X (a.k.a. transaction, sample, example, or
item) is supported by a pattern p if it satisfies all selectors of p (MICHALSKI; STEPP,
1982; DONG; LI, 1999; GARCíA-VICO et al., 2018). Moreover, pattern p is considered an
EP by having a Growth Rate GR(p) higher than a given threshold (≥ 1) (MICHALSKI;
STEPP, 1982; DONG; LI, 1999; GARCíA-VICO et al., 2018), defined by

GR(p) =


0 If SuppX1(p) = SuppX2(p) = 0

∞ If SuppX2(p) 6= 0∧SuppX1(p) = 0
SuppX2(p)
SuppX1(p) otherwise

(4.1)

where SuppX1(p) is the support of p in the dataset X1 ⊂ X , and SuppX2(p) the
support of p in the dataset X2 ⊂ X , given by

SuppXo(p) =
countXo(p)
|Xo|

(4.2)

with Xo being the subset of instances from class o, countXo(p) the number of in-
stances from Xo supported by p, and |Xo| the cardinality of Xo (DONG; LI, 1999; NOVAK;
LAVRAC; WEBB, 2009; GARCíA-VICO et al., 2018). On binary problems (two classes),
X1 contains instances of one class, while X2 is composed of other class instances. In multi-
class problems (more than two classes), One-vs-All strategy can be used (GARCíA-VICO
et al., 2018), where X2 contains the instances for a particular class, and X1 contains the
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instances of all remaining classes. In summary, EP core idea is to discover patterns whose
support increases (Growth Rate) from a dataset X1 to a dataset X2 (DONG; LI, 1999;
NOVAK; LAVRAC; WEBB, 2009; GARCíA-VICO et al., 2018).

For illustration, we take the synthetic dataset XS presented in Figure 15. This
synthetic dataset XS is composed of 500 instances XS = {x1,x2, ...,x500}, described by 2
real variables (var1,var2), and equally distributed among Class A, B, C, D, and E (100
instances per class). Three clusters can be spotted among data instances. Class A and B
strongly overlap, Class C and D are adjacent, and Class E is completely separated.

Figure 15 – The synthetic dataset XS used to illustrate our approach.

For the synthetic dataset XS = XA ∪ XB ∪ XC ∪ XD ∪ XE , the EP
pex = {var1 ∈ [96,120],var2 ∈ [78,95]} for Class E has GR(pex) = ∞, since
SuppXE (pex) = 1.0 and SuppXA∪B∪C∪D(pex) = 0. In other words, pattern pex is an EP
by increasing the support from dataset XA∪B∪C∪D to dataset XE . The pattern pex supports
all instances from Class E (countXE (pex) = |XE |= 100), but none instances from Class A,
B, C, or D (countXA∪B∪C∪D(pex) = 0 and |XA∪B∪C∪D|= 400).

There are different types of EPs based on the relationships between vari-
ables (GARCíA-VICO et al., 2018; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO,
2020). JEPs (Jumping Emerging Patterns) are EPs with GR = ∞, that is, pat-
terns that support instances of a single class, providing a great discrim-
inative power among classes (GARCíA-VICO et al., 2018; KANE; CUISSART;
CRÉMILLEUX, 2015). The pattern pex = {var1 ∈ [96,120],var2 ∈ [78,95]} is a JEP, since
GR(pex) = ∞. It is worth mentioning that JEPs also present maximum value (1.0) of confi-
dence (pattern precision) once they do not support instances of different classes (GARCíA-
VICO et al., 2018).

From this point forward, we use the notations in Table 5 and the synthetic dataset
XS in Figure 15 to help explain our approach and demonstrate how it performs in overlap,
adjacent, and separated data clusters.
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Table 5 – Summary of notation.

Notation Description

X Class-labeled dataset.
Xo The subset of instances from class o in X , that is Xo ⊂ X .
V Set of variables from X .
v A variable v ∈V .
Xv All values for variabel v in X .
p j An EP (Emerging Pattern) j arranging a conjunction of selectors p j =

{i1, i2, ..., i|V |}.
iv A selector in the form v ∈ S, being S a real set, as v ∈ [a,b] with a and b

∈ R.
Sp j

v The real set from the selector for variable v in pattern p j.
pclass

j The resulting (associated) class of pattern p j.
P Set of EPs (Emerging Patterns).

4.3.1.2 Extraction

Mining EPs is an NP-Hard problem resulting from an exponential number of
candidate patterns if the number of variables grows (WANG et al., 2004; LI et al., 2004;
GARCíA-VICO et al., 2018; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020).
EPs can be mined using different strategies (NOVAK; LAVRAC; WEBB, 2009; GARCíA-
VICO et al., 2018; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020), such as DT
(Decision Tree) models (BREIMAN et al., 1984; TAN; STEINBACH; KUMAR, 2005). The
idea is to build varied DTs using diversity factors and then extract a pattern from each
decision path (root to leaf node) (NOVAK; LAVRAC; WEBB, 2009; DONG; LI, 1999;
GARCíA-VICO et al., 2018; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020).
DT models built upon random aspects have proved to be very useful on classification
tasks (HO, 1995; HO, 1998; WANG; WANG; ZHAO, 2010; JAMES et al., 2013), like in
Random Forest (RF) models (BREIMAN, 2001; BIAU; SCORNET, 2016).

In our approach, to extract EPs from a class-labeled dataset X , we use the Ran-
dom Forest miner (RFm) (GARCíA-BORROTO; MARTíNEZ-TRINIDAD; CARRASCO-
OCHOA, 2015; LOYOLA-GONZáLEZ et al., 2019; LOYOLA-GONZÁLEZ; MEDINA-
PÉREZ; CHOO, 2020) for building random DT models from X . Being V the variables set
of X , the RFm method (GARCíA-BORROTO; MARTíNEZ-TRINIDAD; CARRASCO-
OCHOA, 2015; LOYOLA-GONZáLEZ et al., 2019) builds k unpruned DTs by se-
lecting and analyzing a random subset of variables at each internal node creation,
where variables subset size equals log2 |V |. Unlike the RF proposed in Breiman (2001),
the bagging process (random selection of training instances) (JAMES et al., 2013)
is not used in RFm, to avoid hidden dependencies among patterns and data in-
stances (GARCíA-BORROTO; MARTíNEZ-TRINIDAD; CARRASCO-OCHOA, 2015;
LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020). The RFm has been proved
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to be an excellent strategy for obtaining diversified patterns (GARCíA-BORROTO;
MARTíNEZ-TRINIDAD; CARRASCO-OCHOA, 2015).

The Algorithm 1 presents the extraction process, where a class-labeled dataset X

and the number of trees k are input parameters. Function DecisionTree() creates a DT
model (BREIMAN et al., 1984; BREIMAN, 2001; TAN; STEINBACH; KUMAR, 2005;
JAMES et al., 2013) while ExtractPatterns() extracts a pattern p for each decision
path (root to leaf node) from a DT (LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO,
2020). Since data explanation is the target, the entire X is employed to build the random
DT models. The whole dataset usage is found in data explanations solutions like VND
(KNITTEL et al., 2020) and Explainers (GLEICHER, 2013), rather than splitting into
training and test sets for predictive model evaluation (JAMES et al., 2013).

Algorithm 1: EPs extraction using random DTs.
Input: Class-labeled Dataset - X , Number of Trees - k
Output: Emerging Patterns - P
P ← ∅;
for 1 to k do

DT ← DecisionTree(Dataset = X , Subset Size = log2);
P ← P ∪ ExtractPatterns(DT );

end

Table 6 presents 6 patterns among 13975 extracted by Algorithm 1 execution
taking as inputs the synthetic dataset XS and number of trees k = 128.

Table 6 – EPs (Emerging Patterns) extracted using Algorithm 1 on the synthetic dataset XS.
A total of 13975 were extracted using 128 random DTs (Decision Trees). The EPs
presented here are for Class B, with GR=∞, support of 0.11, and p-value for statistical
significance of 10−9.

Pattern Selectors

p2920 {var1 ∈ {95.91,111.29}, var2 ∈ {108.77,109.75}}
p3134 {var1 ∈ {95.55,111.29}, var2 ∈ {108.77,109.75}}
p6001 {var1 ∈ {97.27,111.29}, var2 ∈ {108.77,109.75}}
p8470 {var1 ∈ {106.57,111.29}, var2 ∈ {108.77,109.75}}
p9100 {var1 ∈ {107.43,111.29}, var2 ∈ {108.77,109.74}}
p12834 {var1 ∈ {98.78,111.29}, var2 ∈ {108.76,109.75}}

One interesting factor is that the Fisher Exact Test (FET) can be applied to
compute statistical significance per pattern (BOULESTEIX; TUTZ; STRIMMER, 2003;
NOVAK; LAVRAC; WEBB, 2009; LOEKITO; BAILEY, 2009). Values above the signif-
icance p-value (usually 0.05) imply on the null-hypothesis acceptation that there is no
association between the pattern and a class (LOEKITO; BAILEY, 2009).
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The 6 patterns of Table 6 are associated to Class B, with GR = ∞ (that is
JEP and confidence of 1.0), support of 0.11 (11 out 100 Class B instances, Equa-
tion 4.2), and p-value for statistical significance of 10−9 (< 0.05 means significant).
Moreover, such patterns support the same instances. Despite the ability to pro-
vide diversified patterns (GARCíA-BORROTO; MARTíNEZ-TRINIDAD; CARRASCO-
OCHOA, 2015; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020), DT models
created over random factors can extract redundant patterns along with finding the var-
ied ones (GARCíA-BORROTO; MARTíNEZ-TRINIDAD; CARRASCO-OCHOA, 2015;
LOYOLA-GONZáLEZ et al., 2019).

4.3.1.3 Selection and Aggregation

Once all patterns are extracted from k random DT models (Algorithm 1), origi-
nating a set of patterns P, these must be selected and aggregated. Based on a selection
method (LOYOLA-GONZáLEZ et al., 2019), we analyze patterns in set P from the highest
to the lowest support value, choosing a subset so each pattern provides 1.0 for confidence
value (GR = ∞) and does not support data instances supported by other patterns. Thus,
we select JEPs (GR = ∞ and confidence value 1.0) that support data instances individu-
ally. The main difference between our strategy and the one presented in Loyola-González
et al. (2019) is that we do not discard supplementary patterns (different patterns that
support the same instances). The supplementary patterns are aggregated, not losing their
information.

The selection and aggregation process is summarized in Algorithm 2. Using an
iterative greedy process on set of patterns P (resulted from Algorithm 1) ordered by
decreasing support, we select as a candidate the first pattern (highest support) pcandidate.
If pcandidate confidence value equals to 1.0 it is selected as ppivot and aggregated with the
subset of patterns P′ ⊂ P that support the same instances.

For aggregation procedure, given a pattern pa ∈ P′ supporting the same instances
of ppivot , all patterns selectors for the same variable are aggregated as the intersection
of the two defined real sets (Sppivot and Spa). So, supposing ppivot and pa having selec-
tors for a variable v ∈ V , the aggregation is Sppivot

v ∩ Spa
v . For the case where the selector

for a variable v ∈ V is found in only one pattern (ppivot or pa), the missing real set is
[min(Xv),max(Xv)], being min(Xv) and max(Xv) the minimum and maximum values for
variabel v in X . After P′ patterns aggregation with ppivot , P′ patterns are removed from
P. In this way, complementary patterns turn into a single pattern.

The next candidate pattern pcandidate ∈ P is then analyzed. If pcandidate confidence
value differs from 1.0, pcandidate is discarded, as result of not being a JEP. However, if con-
fidence value equals to 1.0, the pcandidate supported instances are investigated. If pcandidate

supports at least one instance already supported by the patterns selected and aggregated
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before, pcandidate is discarded, removing a redundant pattern. If pcandidate supports only
instances not supported by the patterns selected and aggregated before, it is selected as
ppivot and aggregated with the set of patterns P′ that support the same instances, remov-
ing from P this set of patterns after aggregation. This process is repeated until the end
of P is reached, selecting and aggregating complementary patterns and discarding the
redundant ones.

Algorithm 2: JEPs selection and aggregation.
Input: P - Emerging Patterns
Output: P - Jumping Emerging Patterns
SI ← ∅;
P ← OrderByDecreasingSupport(P);
while pcandidate ← Next(P) do

if Con f idence(pcandidate) = 1.0 and SupportedInstances(pcandidate) /∈ SI then
ppivot ← pcandidate;
SI ← SI ∪ SupportedInstances(ppivot);
foreach pa ∈ P do

if SupportedInstances(ppivot) = SupportedInstances(pa) then
ppivot ← Aggregate(ppivot , pa);
Remove(pa, P);

end
end

else
Remove(pcandidate, P);

end
end

The selection and aggregation process summarized in Algorithm 2 results on mean-
ingful JEPs supporting all instances from a dataset X , explaining it through high support
patterns, discarding the redundant ones, and using low support patterns to explain outlier
instances.

The 13975 extracted patterns by Algorithm 1 for the synthetic dataset XS (num-
ber of trees k = 128) were processed by Algorithm 2 for selection and aggregation.
67 patterns are taken as pivots, 2073 were aggregated, and 11835 were discarded.
Therefore, Algorithm 2 resulted in 67 JEPs supporting all instances from the syn-
thetic dataset XS. The patterns in Table 6 were aggregated, leading to the pattern
p60 = {var1 ∈ [107.43,111.29],var2 ∈ [108.77,109.74]}. As presented in Figure 16, the 67
JEPs delimit regions in the bidimensional space formed by variables var1 and var2. The
region delimited by pattern p60 has edges colored in black.
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Figure 16 – The regions delimited by the 67 JEPs resulted from the selection and aggregation
process via Algorithm 2, taking as input 13975 patterns extracted by Algorithm 1
with synthetic dataset XS and number of trees k = 128. The region with edges colored
in black is delimited by pattern p60 = {var1 ∈ [107.43,111.29],var2 ∈ [108.77,109.74]}.

4.3.1.4 Visualization

The selected and aggregated JEPs (Algorithm 2) are displayed using the matrix
visual metaphor (insight I1) in Figure 17. It arranges patterns as rows (1) and variables as
columns (2). Matrix cells (3) are divided into bins presenting (local) variables’ histograms
(MUNZNER, 2014) (insight I2) considering instances supported by a particular pattern,
where classes are mapped to categorical colors. Cells’ width outlines the minimum and
maximum (left to right) values for a variable. Similarly, global histograms (insight I2)
for each class are laid out on the top of the matrix (4), exhibiting all instances from
a specific class per row. In both global and local histograms, the bins are normalized
between 0 and 1, giving global and local ratios of instances for a specific class. Cells’
height maps the minimum and maximum (bottom to top) ratio value (0 to 1). The number
of bins is determined based on the Freedman-Diaconis rule (FREEDMAN; DIACONIS,
1981; CORRELL et al., 2019), although it can also be freely defined. If a pattern (row)
does not have a selector for a variable (column), the respective cell is left empty (no
histogram) by default (also available if needed). The patterns support is mapped to a
column placed on the matrix left side (5). The cumulative dataset coverage is also mapped
into a column on the matrix left side (6), representing the collective percentage of instances
covered from the dataset considering the matrix order (top to bottom). The variable
importance is outlined above global histograms and in variables name at the bottom
(7). Pattern support, cumulative coverage, and variable importance are mapped to color
(linear grayscale) and size (rectangular shape width). The FET p-value for each pattern is
displayed in a column to the matrix right side (8) using a binary color scheme, green for
values below p-value = 0.05 (statistically significant) and purple otherwise. The employed
matrix-like visual metaphor provides more custom features, such as choosing empty cells
color and frames presenting selectors real set.
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Figure 17 – The matrix-like visual metaphor. 1: JEPs are displayed as rows. 2: Variables are
arranged as columns. 3: Cells are divided into bins showing local normalized his-
tograms. 4: Global histograms (one per class) are placed on the top, also being
normalized. 5: Pattern support. 6: Cumulative coverage taking the matrix order
(top to bottom). 7: Variable importance. Both pattern support, cumulative cov-
erage, and variable importance are mapped to size and color (grayscale). 8: FET
(Fisher Exact Test) significance value colored as green (statistically significant) or
purple (not significant).

There are two key aspects for creating meaningful visual representations of JEPs
displayed as a matrix: filtering and ordering. Filtering is a common strategy when several
patterns are available (GARCíA-VICO et al., 2018; LOYOLA-GONZÁLEZ; MEDINA-
PÉREZ; CHOO, 2020). In our approach, JEPs can be filtered by support value, data
coverage, class, and supported instance(s). The latter requires an instance of interest or a
subset of instances. Rows and columns order plays a significant role in matrix visualization
(CHEN et al., 2004; WU; TZENG; CHEN, 2008). Thus, JEPs (rows) can be ordered by
support, class, and class & support. Furthermore, variables (columns) can be ordered by
importance, which is calculated based on Paja (2018) following

Imp(v,P) =
|P|

∑
j=1

SuppXo(p j) | class o = pclass
j If iv ∈ p j

0 otherwise
(4.3)

where the importance of a variable v given a set of JEPs P is the summation of the
support from each pattern p ∈ P having a selector for v. After calculating the importance
for all v ∈V , these are normalized between 0 and 1.

Figure 18 displays 12 JEPs out the 67 resulted from Algorithm 1 and 2 for the
synthetic dataset XS (number of trees k = 128). The 67 patterns were filtered by data
coverage (p24 to p57) and supported instance (p5). The 12 resulting patterns are ordered
by support. The first row contains the pattern p24 (selectors {var1 ∈ [95.55,120.85],var2 ∈
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[78.72,95.6]}). This pattern support is maximum, indicated by the filled rectangle on the
support column. The cumulative coverage reflects the value of 0.20, as pattern p24 sup-
ports all 100 instances of Class E from the dataset XS out of 500 instances. Once pattern
p24 has selectors on variables var1 and var2, its cells show histograms for these variables
considering only the instances (local) supported by p24. For this case, global and local
histograms are equals since p24 supports all instances from Class E. The second row ar-
ranges the pattern p34, having a support value of 0.87, meaning that this pattern supports
87% of Class C instances (87 instances out 100). The cumulative coverage indicates the
value of 0.37, stating that patterns p24 and p34 together cover 37% of the instances from
dataset XS (187 out 500). The last pattern p5 has low support (0.01 supporting 1 Class
D instance out 100), being not statistically significant (purple for FET p-value). All the
remaining 11 patterns are otherwise significant. From the first pattern p24 to the last p5,
about 69% of the dataset XS is covered (cumulative coverage of 0.69).

Figure 18 – The 12 JEPs filtered out the 67 obtained for the synthetic dataset XS by Algorithm 1
(number of trees k = 128) and Algorithm 2. Variables values combinations and classes
associations are presented, such as the strong pattern (p24) for Class E instances.
The pattern p24 supports all Class E instances, having median values for variable
var1 and low values for variable var2. The 12 JEPs cover about 69% of the dataset
XS (cumulative support), where only the low support pattern p5 is not statistically
significant (purple for FET).
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Analyzing the JEPs in Figure 18 makes it possible to observe variables values
combinations associated with classes (insights I1 and I2). Class E has a strong pattern
(unique with the highest support) on dataset XS. The pattern p24 supports 100% of Class
E instances (support value of 1.0). The instances from this class have median values for
variable var1 and low values for variable var2, as presented on pattern p24 histograms.
The patterns p34 and p32 complete the list of high support patterns. The p34 supports
87% of Class C instances, having low values for variable var1 and high values for variable
var2. The p32 supports 80% of Class D instances, arranging low values for variable var1

and median values for variable var2. These 3 patterns (p24, p34, and p32) cover more than
half (53%, cumulative coverage of 0.53) of the instances from dataset XS. The pattern
p4 refers to a small instances subset from Class D (14%), differing from pattern p32 on
variable var2 (higher values). The patterns providing the highest support for Class A and
B (p60 and p62) attend only 11% of each class. Class A and B strongly overlap in dataset
XS (Figure 15), so high support patterns for these classes are not attainable. The pattern
p41 leads to a narrow instances subset from Class C (8%), differing from pattern p34 on
variable var2 (lower values). For Class D, the pattern p5 supports only one instance (1%),
being an exception against patterns p32 and p4 on variable var2 (higher value).

4.3.2 Instances Similarity Map

In order to support clusters and outliers analyses (insights I3 and I4) from a class-
labeled dataset X , we use DR layouts leveraging the space extension approach proposed
in Pérez et al. (2015) to incorporate JEPs perspectives. Being X ∈Rn×d, where n = |X | is
the number of instances in X , and d = |V | the number of variables of X , the key idea is
to create an extended dataset X ′ ∈ Rn×2d as

X ′ = [X |X̃ ] (4.4)

with X̃ ∈ Rn×d composed by repeatedly class centroids (mean values). Then, for
the instances subset Xh ⊂ X belonging to class h, the extension equals to

x̃ =
1
|Xh| ∑

x ∈ Xh

x (4.5)

Since all instances x ∈ X are supported by only one JEP selected and aggregated
by Algorithm 2, we use JEPs as additional classes to extend X . Hence, X ′ incorporates
a new set of variables Ṽ , arranging the mean of the instances subset supported by each
pattern obtained from Algorithm 2.

A real parameter λ ∈ [0,1] is used to control the gradual transition between the
dataset X and the extended part X̃ (PéREZ et al., 2015), having Xweight = X ′Wλ where
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matrix Wλ ∈ R2d×2d is defined by

Wλ =

(
(1−λ )I 0

0 λ I

)
(4.6)

After data standardization (z-score), dataset Xweight is used along a DR technique
to create an instances similarity map (DR layout). By varying the parameter λ , it is
possible to get maps from the original dataset X with λ = 0 to only the extended X̃

part setting λ = 1. In this paper, we use the DR technique MDS (KRUSKAL, 1964) for
instances maps creation.

For creating the extended version of the synthetic dataset XS, the 67 JEPs resulting
from Algorithm 2 are used as additional classes of instances x ∈ XS. Therefore, 67 classes
are considered in the process (PéREZ et al., 2015). The synthetic dataset extension X ′S has
then four variables V ′S = {var1,var2,vãr1,vãr2}, where vãr1 and vãr2 are the mean values of
var1 and var2 from each instances subset supported by the 67 patterns. The 11 instances
from Class B supported by pattern p60 have values 109.59 and 109.19 for variables vãr1

and vãr2.

Figure 19 presents the instances map applying MDS on Xweight = X ′SWλ with λ =

0.70 and standardization by z-scores. Three clusters can be identified (insight I3), one for
each high support pattern (p24, p34, and p32). Reasoning about them (insight I5), the one
formed (insight I3) by pattern p24 (insight I1) for Class E contains instances with higher
values for variable var1 and lower values (majority) variable var2 (insight I2) compared
to those established by patterns p34 and p32 (insight I3). The difference between these
two latter clusters is found in variable var2 (insight I2), where Class C instances (p34)
have higher values than Class D instances (p32). Furthermore, an outlier for Class D can
also be analyzed (insight I4). It comes from the low support pattern p5 (insight I1), and
it yields a low value for variable var1 and a high value for variable var2 (insight I2) in
contrast (exception) to the Class D cluster settled by pattern p32 (insight I5).

The 11 instances supported by pattern p60 are also highlighted in Figure 19. Al-
though instances from Class A and B are minor grouped in the similarity map, no major
cluster is found for such classes. This behavior is expected since both classes strongly
overlap in the synthetic dataset XS (Figure 15).

The clusters and outliers investigation into instances similarity maps can be used to
filter JEPs visualization, where maps are browsed selecting instances of interest obtaining
the patterns supporting such instances. The instances similarity maps play an essential
role in dealing with many patterns.
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Figure 19 – Instances Similarity Map for the synthetic dataset XS under JEPs perspectives (67
from Algorithm 2): MDS application in the dataset extension X

′
S with JEPs as classes

and λ = 0.70. Clusters can be spotted, formed by high support patterns p24, p34,
and p32. A Class D outlier can also be seen, mapped by pattern p5. The instances
subset supported by pattern p60 is also emphasized.

4.4 Use Cases

This section presents use-cases involving real-world datasets (see Table 7), showing
how to use VAX in different analytical scenarios of multivariate datasets’ exploratory anal-
yses. The two use-cases involve datasets with and without ground truth labels (classes).
The JEPs and instances similarity maps visualizations provide data explanation, revealing
statistically significant patterns considering different variables values combinations along
with clusters and outliers investigation. VAX is implemented using Python programming
language, being also available as a code package 2 for imminent usage. The source code

2 <available after publication acceptance>
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for the two use-cases is accessible as Python notebook pages 3,4.

Table 7 – Datasets used for VAX evaluation.

Name Source Preprocessing

AP VoteCast 2018 Tompson and Benz
(2018)

Knittel et al. (2020)

World Happiness Report 2019 Helliwell, Layard and
Sachs (2019)

-

4.4.1 Use Case I – US Presidential Election

The first use case involves the analysis of the 2016 US presidential election using
the dataset from a survey conducted in 2018 by the independent social research organi-
zation NORC of the University of Chicago (TOMPSON; BENZ, 2018; KNITTEL et al.,
2020). It contains the participants’ answers about different political and societal aspects
of the United States and what candidate they support (Donald Trump or Hillary Clinton).
Following the steps described in Knittel et al. (2020), the nationally representative subset
is used, resulting in 4,913 data instances (registered voters) and 67 variables. After re-
moving missing values keeping only data instances with a revealed vote (Donald Trump or
Hillary Clinton), the number of variables is reduced to 60 and instances to 3,754, 43.3%
pro-Donald Trump (1,625), and 56.7% pro-Hillary Clinton (2,129).

For patterns extraction process (Algorithm 1), considering the voters’ orientation
as classes, the number of trees k must be set. We aim at the minimum number of trees
capable of extracting enough patterns to our selection and aggregation strategy (Algo-
rithm 2) resulting in the coverage of all data instances. Figure 20a presents the obtained
data coverage vs. number of trees from 2 to 16384 (21 to 214). 2048 is the minimum
number of DTs capable of providing enough diversified patterns resulting in 100% of data
instances coverage after selection and aggregation. From 856,900 patterns extracted by
Algorithm 1 (k = 2048), 255 were selected, 3,042 aggregated, and 853,603 discarded by
Algorithm 2.

For instances similarity map creation, the parameter λ must be chosen regarding
dataset extension (PéREZ et al., 2015). We select the λ value by analyzing the Kruskal
Stress (KRUSKAL, 1964) and Silhouette Coefficient (ROUSSEEUW, 1987). Varying λ ,
Figure 20b shows the Kruskal Stress (from 0 for none stress to 1 for maximum stress)
and the transformed Silhouette Coefficient (cluster consistency). The latter is normalized
and inverted into values between 0 and 1 (with 0 being the best value and 1 the worst).
Stress and silhouette values are calculated on the dataset extended (120 variables against
3 <available after publication acceptance>
4 <available after publication acceptance>
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(a) The Dataset coverage vs. Number of trees k (21 to 214). After extracting, selecting, and
aggregating (Algorithm 1 and Algorithm 2) the patterns from 2 trees, 96% of the data
instances are covered. By using 2048 (211) trees 100% of coverage is reached.

(b) The Kruskal Stress and Silhouette Coefficient values on dataset extensions varying the λ

parameter. The 255 patterns resulting from selection and aggregation (Algorithm 1 with
number of trees k = 2048 and Algorithm 2) are taken as classes for the extension (subsec-
tion 4.3.2). Kruskal Stress lies among 0 and 1, whereas Silhouette Coefficient is normalized
and inverted into values between 0 and 1. The minimum stress and silhouette values are
found for λ between 0.60 and 0.70.

Figure 20 – The parameters definition: Number of trees k for Algorithm 1 and λ for dataset
extension.

the original with 60) using as classes the 255 JEPs resulting from the Algorithm 2. It is
possible to spot that the minimum stress and silhouette values are found between 0.60
and 0.70. Hence, we take λ = 0.65.

Figure 21 presents 14 JEPs from the resulting 255, representing 70% of the dataset.
The patterns are ordered by support and variables by importance. Despite the number
of variables and complexity of the dataset, about half of it (48%) is described by only
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two patterns, p184 and p152 (first two rows). These are the highest support patterns for
Hillary and Trump voters, respectively. Interestingly, the difference between them is on
three questions/variables (first three columns): “HEALTHLAW” with majority answers
“Expand the law” for Hillary and “Repeal the law entirely” for Trump, “RUSSIA” with
answers “Yes” for Hillary and “No” for Trump, and “IMMWALL” with answers “Strongly
oppose” for Hillary and “Strongly favor” for Trump. Therefore, half of Hillary voters (50%
from pattern p184) are in favor of expanding the Affordable Care Act (Obamacare), against
the wall with Mexico, and believe that the Trump election campaign was coordinated
with Russia. On the other hand, about half of Trump voters (45% from pattern p152) are
against the Affordable Care Act, supporting the wall, and do not believe Russia had a
role in Trump’s campaign.

Figure 21 – The 14 JEPs filtered out the 255 obtained by Algorithm 1 (k = 2048) and Algo-
rithm 2. JEPs are ordered by support and variables by importance. About half
(48%) of the electorate can be described by only two patterns (p184 and p152), and
these diverge in three points: The support to the Affordable Care Act, the construc-
tion of the wall with Mexico, and the Russian participation in Trump’s campaign.

The support drops considerably for the subsequent patterns. However, revealing a
more heterogeneous scenario for the other half of voters. For instance, pattern p220 (third
row) supporting 9% of Trump voters diverges from the strong pattern p152 on political
ideology (variable “IDEO” fourth column) while considering themselves as moderate and
not conservative. The pattern p116 (fourth row) supporting 6% of Hilary voters differs from
the relevant pattern p184 regarding the Affordable Care Act (variable “HEALTHLAW”
first column), advocating to repeal the law at least in parts. The last pattern p150 supports
only 2% of instances from its associated class. All the remaining 241 patterns (255 in total
and 14 displayed in Figure 21) have equal or less than 2% of support.

The patterns found for half of the voters are readily analyzed and compared to
others. These high support patterns can be seen as clusters in the instances similarity map
in Figure 22b, but not in Figure 22a when the map is created with the original dataset.
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(a) The instances similarity map by λ = 0.0.

(b) The instances similarity map by λ = 0.65.

Figure 22 – The Instances similarity maps visualizations for the 2016 US election dataset. The
4 highest support patterns (p184, p152, p220, and p116 from Figure 21) can be seen as
clusters in the similarity map (b) but not in (a).
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Thus, extending the dataset over JEPs can reveal clusters in DR layouts otherwise
not found using only the original dataset. The data explanations show a fascinating picture
of the US, indicating that the simple division between the two extremes is much more
complex in practice, with several subgroups diverging from the most common behavior
found by JEPs visualization. This is also clear in the instances similarity map. The major
groups are spotted, but mixed subgroups also exist. A valid hypothesis is that “both sides
are more similar than may think”.

4.4.2 Use Case II – World Happiness

The second use case concerns the dataset analysis of the World Happiness Re-
port 2019 by the Sustainable Development Solutions Network (SDSN) (HELLIWELL;
LAYARD; SACHS, 2019). This dataset presents a ranking of 156 countries based on an
index representing how happy their citizens perceive themselves. It also contains six other
variables along with the “Happiness Score” variation across countries. These variables
are “GDP per capita”, “Social support”, “Healthy life expectancy”, “Freedom to make
life choices”, “Generosity”, and “Perceptions of corruption”. Since the world happiness
dataset does not present class labels, a strategy must be followed to produce labels for
data instances (countries). We have chosen variable discretization (SALMAN; KECMAN,
2012), but approaches such as clustering (JAMES et al., 2013) and instances subset selec-
tion (CAO; BROWN, 2020) are also suitable.

For the analysis, we chose the happiness score to be discretized to create the labels.
The idea is to verify the differences between countries, regarding the other six variables,
based on perceived happiness levels. In this process, the happiness score was discretized
in three equally sized bins, where instances class is the instances assigned bin (“high”,
“media”, and “low”). In other words, we are transforming a regression problem into clas-
sification (SALMAN; KECMAN, 2012). The “high happy” class encloses 42 countries
with happiness scores from 6.13 to 7.76, the “median happy” contains 79 countries from
4.49 to 6.13, and the “low happy” class groups 35 countries from 2.85 to 4.49. Since the
variable “Happiness Score” is employed for class derivation (discretization), it is not used
to extract patterns. The parameters number of trees k and λ for map creation are set
following the specified procedures in subsection 4.4.1, that is the minimum number of
trees, and Kruskal Stress and Silhouette Coefficient optimization. From 2,893 patterns
extracted by Algorithm 1 (k = 64), 29 were selected, 252 aggregated, and 2,612 discarded
by Algorithm 2. For instances similarity map creation it was used λ = 0.65.

Figure 23a presents 6 JEPs from the resulting 29, filtered by the highest sup-
port patterns for each class together with instances of interest from the map shown in
Figure 23b.
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(a) The 6 JEPs filtered out the 29 obtained by Algorithm 1 (k = 64) and Algorithm 2. JEPs are
ordered by support and variables by importance.

(b) The instances similarity map by λ = 0.65.

Figure 23 – The JEPs and instances similarity maps visualizations for the World Happiness
Report 2019. The first 3 patterns (p5, p11, and p27) in (a) describe the general
behavior of high, median, and low happy countries, with a clear difference between
them in terms “GDP per capita”, “‘Healthy life expectancy”, and “Social support”.
The instance similarly map (b) allows to reason about clusters and outliers. The
6 countries placed about the map center were selected to analyze their respective
patterns in (a).
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The patterns in Figure 23a represent 47% of the dataset. The patterns are ordered
by support, whereas variables by importance. Pattern p5 (first row) represents 64% of
the “high happy” countries, indicating that those countries have high values in “GDP per
capita”, “Health life expectancy”, and “Social support”. Moreover, p5 supports countries
with varied values for “Freedom to make life choices”. The second pattern with the highest
support (p11 at the second row) describes “low happy” countries, accounting for 43%
of that class. These countries have low values for “GDP per capita” and “Perceptions
of corruption”, and median values for “Health life expectancy”, “Social support”, and
“Generosity”. Compared to “high happy” countries in pattern p5, it is clear that those
“low happy” countries present lower values for “GDP per capita”, “Health life expectancy”,
and “Social support”. The pattern p27 supports 32% of “median happy” countries, having
median values for “GDP per capita”, low values for “Perceptions of corruption”, and
about flat distributed values for “Freedom to make life choices”. These “median happy”
countries are between “high happy” and “low happy” countries from patterns p5 and p11

in “GDP per capita”. The above mentioned patterns bring us to an interesting hypothesis
that “low perceptions of corruption does not necessary make citizens happy”.

The first three patterns p5, p11, and p27 in Figure 23a encode countries’ general
behavior (43% of the dataset). The patterns p5 and p11 led to two clusters in the instances
similarity map in Figure 23b. However, instances from pattern p27 are spread between
such clusters. The map allows reason about clusters and outliers by selecting instances of
interest and visualizing their respective patterns. From Figure 23b, the 6 countries placed
about the map center have been selected, presenting their patterns in Figure 23a. The 3
“high happy” countries supported by pattern p12 differ from pattern p5 by having median
values for “GDP per capita”. The single “low happy” country supported by pattern p2

diverges from pattern p11 by holding high values in “GDP per capita”, “Healthy life ex-
pectancy”, and “Social support”. The 2 “median happy” countries supported by pattern
p19 contrast pattern p27 by yielding high values for “Perceptions of corruption”. Further-
more, these 6 close countries with different levels of happiness are similar in “Healthy life
expectancy”. Thus, browsing the instances similarity map and visualizing patterns from
selected instances makes it possible to reason about countries’ differences and similarities
under the optics of happiness levels.

4.5 Discussion and Limitations

VAX provides a powerful VA method that focuses on data analysis via automated
insights (LAW; ENDERT; STASKO, 2020) instead of pure classification model explana-
tion. For multivariate data explanation, VAX presents JEPs (Jumping Emerging Pat-
terns) using a matrix-like visual metaphor. The employed metaphor arranges patterns
as rows and variables as columns, meeting content and multi-class requirements (NO-
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VAK; LAVRAC; WEBB, 2009) by showing global and local histograms (matrix cells)
along classes coded as categorical colors. Since VAX follows matrix visualization guide-
lines (CHEN et al., 2004; WU; TZENG; CHEN, 2008), meaningful visual representations
can be reached by filtering and ordering patterns (rows) and variables (columns).

VAX involves extracting, selecting, aggregating, and visualizing JEPs. Many
diversified patterns are usually extracted from random DTs, defining multiple vari-
ables combinations. The RFm method (GARCíA-BORROTO; MARTíNEZ-TRINIDAD;
CARRASCO-OCHOA, 2015; LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020)
is used for building DT models (Algorithm 1). Based on RF (Random Forest)
(BREIMAN, 2001; BIAU; SCORNET, 2016), RFm builds k DT models from a class-
labeled dataset using a random subset of variables (with size log2 |V |) on each internal
node creation. However, instances bagging (BREIMAN, 2001; JAMES et al., 2013) is
not used (GARCíA-BORROTO; MARTíNEZ-TRINIDAD; CARRASCO-OCHOA, 2015;
LOYOLA-GONZÁLEZ; MEDINA-PÉREZ; CHOO, 2020).

The RFm has been proved to be a valuable approach to mine diversified pat-
terns (GARCíA-BORROTO; MARTíNEZ-TRINIDAD; CARRASCO-OCHOA, 2015).
The JEPs selection and aggregation process (Algorithm 2) is inspired by an existent ap-
proach (LOYOLA-GONZáLEZ et al., 2019), reducing the initial set of patterns extracted.
These are selected by their confidence and support and aggregated with other compelling
patterns. Those not fulfilling the specifications of being representative (high support) or
an exception (for particular instances) are discarded. In this way, complementary patterns
are aggregated, not losing their information, whereas redundant patterns are discarded.
There is no consensus about the total number of DT models k (GARCíA-BORROTO;
MARTíNEZ-TRINIDAD; CARRASCO-OCHOA, 2015; LOYOLA-GONZáLEZ et al.,
2019; GARCíA-VICO et al., 2018). We aim at the minimum number of trees capable
of extracting enough patterns to our selection and aggregation strategy resulting in the
coverage of all data instances. Furthermore, a threshold of data coverage can also be used
for setting the number of DTs k. The quality of extracted JEPs is related to DTs’ ability
to obtain variables and class relations from a particular dataset. Low-quality patterns
are associated with the acquisition of only low support relations. This issue derives from
the DT limitation of learning generic patterns or their nonexistence in the dataset in
question, which is desirable since it is better not to create artifacts. By focusing on JEPs,
ambiguous instances (equally variables values but different classes) are not supported by
the available patterns.

As a limitation on JEPs visualization, since histograms require a certain vertical
(height) display space, it is impossible to visualize a significant number of patterns at once.
Nevertheless, displaying many patterns may hamper the analysis. Potential solutions are
selecting groups of interest, like the patterns that combined attain minimum dataset sup-
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port (e.g., 70%) or focusing on particular instances (e.g., outliers). Regarding horizontal
space for displaying variables, the visual metaphor is still limited by the number of vari-
ables used by a single pattern. For this matter, filtering variables by importance may be
an option.

DR (Dimensional Reduction) layouts are great for identifying and analyzing pat-
terns in multidimensional (multivariate) data (NONATO; AUPETIT, 2019; LIU et al.,
2017; PéREZ et al., 2015). Still, the ability to produce such patterns is directly related to
the DR technique’s efficiency in revealing clusters and outliers into a lower-dimensional
space from a much bigger and complex original space. Clusters and outliers may not be
identified on poor visual quality projections, with points and groups overlaps (PéREZ et
al., 2015), which is a problem related to the curse of dimensionality (DONOHO, 2000).
Extending the original space (PéREZ et al., 2015) over JEPs perspectives enables iden-
tifying and analyzing patterns in two-dimensional projections into DR layouts. Clusters
and outliers not found in the original space projection can be investigated in projections
from data extended using JEPs. We select the λ parameter for dataset extension based
on Kruskal Stress (KRUSKAL, 1964) and Silhouette Coefficient (ROUSSEEUW, 1987),
maximizing the coefficient along minimizing the stress. Although not a constrain, we used
the statistical mean for variable creation, as in the space extension original proposition
(PéREZ et al., 2015), and the classic MDS technique (KRUSKAL, 1964) for generating
DR layouts. The studies of multiple layouts from different DR techniques along with vary-
ing statistic measures for creating variables are fascinating but out of the scope of this
work. We included these investigations as future work.

VAX integrates descriptive logic rules (JEPs) visualization with instances similar-
ity maps (DR layouts). High support patterns tend to produce clusters into DR layouts.
Global histograms are references for the local ones from patterns cells, which can be used
to explain such clusters. In the other direction, the DR layout can be browsed for clusters
and outliers, presenting the patterns supporting these data instances. With JEPs ma-
trix visualization and the instances maps, compound facts (LAW; ENDERT; STASKO,
2020) can be generated, enabling linked data insights involving descriptive patterns, clus-
ters, and outliers. Compound facts are highly desirable, providing more nuanced insights
about multivariate data (LAW; ENDERT; STASKO, 2020).

4.6 Conclusions

In this paper, we present VAX (multiVariate dAta eXplanation), a new method
for analyzing multivariate datasets. VAX employs aggregated Jumping Emerging Pat-
terns (JEPs) to capture intricate patterns in a class-labeled dataset. A matrix-like visual
metaphor is used for JEPs visualization, where patterns are rows, variables are columns,
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and data distribution conveyed using histograms are matrix cells. Based on matrix vi-
sualization, meaningful visual representations can be reached by filtering and ordering
patterns (rows) and variables (columns). Furthermore, instances similarity maps via (Di-
mensional Reduction) DR layouts aim better understanding of dataset’s overall image
(e.g., clusters and outliers) using JEPs lens. VAX allows JEPs and instances maps visual-
ization that can be applied to different domains, addressing phenomenon comprehension
through knowledge acquisition, showing a valuable tool for creating hypotheses based on
data insights. We plan as future work new approaches for filtering and ordering JEPs and
variables to enhance VAX visual representations. Moreover, we intend to pursue new meth-
ods for diversified patterns extraction, and comparisons involving different DR techniques
and various statistic measures for instances maps creation.
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CHAPTER

5
CONCLUSION

5.1 Contributions

This doctoral thesis presented two VA methods displaying logic rules extracted
from RF models into a matrix-like visual metaphor. The methods are ExMatrix and VAX
for RF models interpretability, covering predictive and descriptive purposes, respectively.
Based on matrix visualization guidelines, both methods arrange rules as rows, features
(variables) as columns, and rules predicates as cells (ranges or histograms). Rules (rows)
and features (columns) filtering and ordering are crucial to create meaningful visual repre-
sentations. ExMatrix aims at global and local explanations for overviewing the model and
auditing the classification process for a particular data instance. VAX aims at multivari-
ate data explanation, extracting and processing logic rules from an RF model to obtain
JEPs (Jumping Emerging Patterns). Such expressive data patterns are also employed
for generating data instances similarity maps. The visual representations obtained from
ExMatrix are model-centered, and those achieved by VAX are data-centered. A flowchart-
based summarization is found in Figure 30 of Appendix C, exhibiting inputs, processes,
and outputs for ExMatrix and VAX.

Besides enabling filtering and ordering, the matrix-like visual metaphor used in Ex-
Matrix is more concise and scalable for logic rules visualization than node-link diagrams
(common DT representation) and state-of-the-art techniques. Features order (columns)
overcomes the effort of mentally composing features ranges on node-link diagrams. The
rules predicates (features ranges) mapped as rectangular shapes provide scalability requir-
ing fewer display pixels. Scalability is especially necessary when dealing with RF models.
Once arranging several DTs, many logic rules can be generated. In addition to RF models,
ExMatrix can interpret a single DT taken as a classification model. For sensing units cal-
ibration in analytical chemistry, the ExMatrix application to interpret DT models built
over sensing data creates MCS (Multidimensional Calibration Space). Such interpretable
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calibration is based on logic rules extracted from DT models, and it may arrange several
features (dimensions) and data from heterogeneous sources.

The RF-based approach for mining descriptive logic rules (JEPs) used in VAX has
been noted in the literature for extracting diversified patterns. The selection and aggre-
gation process results in compelling JEPs, aggregating complementary patterns (keeping
their information), and discarding the redundant ones. Therefore, JEPs can be expressive
by providing high support or an exception supporting distinct instances. DR layouts are
handy for exploratory analyses of multivariate data, but limited to the DR technique’s
efficiency in unfolding the data structure. The data instances similarity maps provided
by VAX allow investigations on clusters and outliers from a DR layout built over data
extended (new variables) using JEPs. VAX enables compound facts (linked data insights)
integrating JEPs visualization and instances similarity maps. Two real-world datasets
were analyzed by VAX, leading to hypothesis-making and knowledge acquisition.

The proposed methods fulfilled the goals defined in Chapter 1, confirming the hy-
pothesis of logic rules visualizations being able to support explanations of multivariate
data and RF models’ overall logic and outcomes. Appendix A contains a list of publica-
tions and submissions, and source code (majority) is available at <https://gitlab.com/
popolinneto/exmatrix> and as code package at <https://pypi.org/project/exmatrix/>.
Although achieving the goals and validating the hypothesis, some limitations are found
in ExMatrix and VAX.

5.2 Limitations

Although scalable, display size (resolution) imposes a limitation for ExMatrix vi-
sual representations, impacting global and local explanations differently. Global explana-
tions handle all logic rules, whereas local explanations deal with one per DT model. A
possible solution is rules filtering. The explanations for global and local showing used rules
are readily useful visual representations, whereas those showing smallest changes rules may
be more appropriate for RF experts. Local explanations with the smallest changes rules
lead to hypotheses, rather than straightforward answers. These latter explanations may
reflect the classification process stability for a particular instance. Scalability is also an
issue in VAX visual representations of JEPs, where histograms are used in matrix cells
requiring a vertical display space. The matrix-like visual metaphor is also limited by the
number of variables (columns) employed in a single pattern, needing horizontal space.
Thus, patterns filtering is crucial for JEPs visualization, and variables may also need
filtration.

The DT models employed in ExMatrix and VAX were created by the CART algo-
rithm (BREIMAN et al., 1984). Other DT algorithms can generate different logic rules.

https://gitlab.com/popolinneto/exmatrix
https://gitlab.com/popolinneto/exmatrix
https://pypi.org/project/exmatrix/
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Both ExMatrix and VAX are bounded by DT models limitations in obtaining variables
and class relations from a class-labeled dataset. For ExMatrix, these limitations can lead
to poor accuracy models interpretation, whereas for VAX, no expressive JEPs extraction.
For the cases where complex black-box models such ANN or SVM are needed, overcom-
ing RF models performance, ExMatrix may be used to create explanations of surrogate
logic rules. Besides DTs deficiencies, the dataset under analysis may contain no variables
and class associations. For the latter scenario, it is beneficial VAX failure in extracting
expressive JEPs and producing clusters into instances maps, considering the creation of
patterns where there are none.

5.3 Future work
There are many possibilities for ExMatrix and VAX applications since any prob-

lem represented by a class-labeled dataset is a potential use case. Therefore, both methods
can be employed in several domains as well as in complete VA systems. Regarding Ex-
Matrix, it is worth investigating RF model optimization (e.g., editing) assisted by model
explanations. About VAX, it is interesting experiments with different DR techniques along
with various statistic measures for dataset extension. Moreover, new filtering and ordering
criteria may produce better explanations, improving both ExMatrix and VAX.

The main challenge for ExMatrix is the ensemble factor. Global and especially
local explanations must be analyzed under ensemble optics. The user needs to have in
mind that knowledge is acquired from several unique models (DTs) and a voting process
is taken for data instance classification. A complete user test with RF experts is required
for ExMatrix’s further improvements and evaluation. Visual explanations focusing on the
voting committee (e.g., features impact) may be the next step. On the other hand, VAX’s
principal challenge is the descriptive concept. Visual explanations from JEPs visualiza-
tion and data instances similarity maps must be seen as phenomenon descriptions. The
user must analyze VAX representations for knowledge acquisition. The efforts for signif-
icant advances are required in approaches for patterns extraction and combined visual
representations of data instances and patterns.
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B
EXMATRIX – SUPPLEMENTAL MATERIAL

This appendix presents the paper’s 1 supplemental material for Chapter 2.

B.1 Additional Figures and Code Reference Table

Figure 24 – ExMatrix GE representation of the RF model for the German Credit Data UCI
dataset (subsection 2.4.2).

1 POPOLIN NETO, M.; PAULOVICH, F. V. Explainable matrix - visualization for global
and local interpretability of random forest classification ensembles. IEEE Transactions on
Visualization and Computer Graphics, v. 27, n. 2, p. 1427–1437, 2021. Available: <https://-
doi.org/10.1109/TVCG.2020.3030354>.
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Figure 25 – ExMatrix GE representation of the RF model for the Contraceptive Method Choice
UCI dataset (subsection 2.4.3).

Table 8 – Source code references for paper’s sections.

Paper Section Code

ExMatrix: Iris Dataset (section 2.3) <https://popolinneto.gitlab.io/exmatrix/
papers/2020/ieeevast/methodology/>

Use Case: Breast Cancer Diagnostic
(subsection 2.4.1)

<https://popolinneto.gitlab.io/exmatrix/
papers/2020/ieeevast/usecase/>

Usage Scenario I: German Credit Bank
(subsection 2.4.2)

<https://popolinneto.gitlab.io/exmatrix/
papers/2020/ieeevast/usagescenarioi/>

Usage Scenario II: Contraceptive
Method (subsection 2.4.3)

<https://popolinneto.gitlab.io/exmatrix/
papers/2020/ieeevast/usagescenarioii/>

Discussion and Limitations (sec-
tion 2.5)

<https://popolinneto.gitlab.io/exmatrix/
papers/2020/ieeevast/discussion/>

B.2 Why logic rules in a matrix-like visual metaphor in-
stead of node-link diagrams?

In summary, our choice was based on the counterintuitive idea that disjoint rules
are better than tree structures when analyzing DTs (LAKKARAJU; BACH; LESKOVEC,
2016). User tests have shown that transforming DTs into rules organized into tables (so-
called Decision Tables) offers better comprehensive properties if compared to node-link
diagrams (FREITAS, 2014; HUYSMANS et al., 2011). Given the constraints of usual DT
inference methods (non-overlapping predicates with open intervals), features can be used
multiple times in a single decision path resulting in multiple nodes (one per test) using
the same feature. Consequently, if tree structures are employed, the decision (predicate)

https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/methodology/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/methodology/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usecase/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usecase/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usagescenarioi/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usagescenarioi/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usagescenarioii/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/usagescenarioii/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/discussion/
https://popolinneto.gitlab.io/exmatrix/papers/2020/ieeevast/discussion/
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intervals for each feature need to be mentally composed by the user, and nodes using the
same feature can be far away in the decision path, a hard and prone to error task. In
the matrix representation, the decision intervals are explicit and can be easily compared
across multiple rules and trees. Node-link diagrams are well recognized for representing
tree structures (e.g., nodes hierarchy and connections) (GRAHAM; KENNEDY, 2010;
SCHULZ; HADLAK; SCHUMANN, 2011), however, on DTs, the decision paths are the
object of analysis (TAN; STEINBACH; KUMAR, 2005; FREITAS, 2014; HUYSMANS
et al., 2011; LIMA; MUES; BAESENS, 2009) and transforming paths into disjoint rules
focuses on what is essential.

A single DT model can be quite complex regarding the number of nodes and
depth. DTs can grow larger and deeper than the number of employed features, presenting
redundancies in the tree structure. Moreover, DTs are usually unbalanced, so the number
of nodes and tree depth can hamper visual scalability (GRAHAM; KENNEDY, 2010;
SCHULZ; HADLAK; SCHUMANN, 2011). Just for illustration, Figure 26 shows only
one DT from the RF with 128 trees of the paper use-case (subsection 2.4.1) using a
simple node-link metaphor (that focuses on nodes relationships). This DT is unbalanced,
and some decision paths are very long with repetitions of features. Figure 27 shows the
resulting ExMatrix GE representation for this particular DT. Even with the redundancies
of normalization, visual space is efficiently used since matrices are very compact metaphors.
The most crucial point here is that by using a matrix representation, as discussed, the
features are consistently ordered, and the decision intervals are explicit, as can be observed
in Figure 28. Using common tree metaphors as in Figure 29, such information is very
laborious to be extracted.

The problem with visual scalability is two-fold when dealing with RFs, as to com-
pose a node-link representation from the RF with 128 trees of the paper use-case (subsec-
tion 2.4.1), 128 trees of similar complexity to Figure 26 need to be displayed concomitantly.
Our matrix metaphor is a way to represent multiple trees in a single compact visual rep-
resentation which can be (re)ordered to reveal different patterns - a feature difficult to be
supported through usual tree visual metaphors given their focus on nodes (hierarchical)
relationships (GRAHAM; KENNEDY, 2010; SCHULZ; HADLAK; SCHUMANN, 2011).
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Figure 26 – Node-link diagram of DT49 from the RF with 128 trees of the paper use-case (sub-
section 2.4.1).

Figure 27 – ExMatrix GE representation of DT49 (Figure 26).
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Figure 28 – ExMatrix representation of rule r1268 (sixteenth row in Figure 27) extracted from
the decision path originating at root node #0 to leaf node #18 of DT49 (Figure 26).

Figure 29 – Decision path originating at root node #0 to leaf node #18 of DT49 (Figure 26).
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APPENDIX

C
FLOWCHART-BASED SUMMARIZATION

This appendix shows in Figure 30 a flowchart-based summarization arranging in-
puts, processes, and outputs for ExMatrix and VAX. Both methods employ a matrix-like
visual metaphor for logic rules visualization, where rules are rows, features (variables) are
columns, and rules predicates are cells.

For model (predictive) explanations with ExMatrix (left goal in Figure 30), an RF
model is built from a class-labeled dataset for predicting the class of new data instances
(not seen during model training). An evaluation protocol must be chosen, providing model
performance. Once all logic rules are extracted from the RF model, global and local expla-
nations can be created. Global explanations provide model overview, where all logic rules
may be presented or filtered. Local explanations allow reasoning about the classification
process of a specific data instance through used rules and smallest changes rules. A crucial
step on global and local explanations is rules (rows) and features (columns) ordering. On
rules visual representations for model explanations, the predicates (cells) delimit ranges
on features values represented by rectangular shapes.

For data (descriptive) explanations with VAX (right goal in Figure 30), an RF
model is built from a class-labeled dataset to explain the data itself. The model must be
created using all data instances and without bagging procedure (instances resample during
model training) to avoid hidden dependencies. The logic rules extracted from the RF
model are selected and aggregated, resulting in JEPs (descriptive logic rules). Histograms
represent rules predicates (cells) for data explanations, thus requiring JEPs filtering for
display. Ordering is also vital to produce meaningful visual presentations. Moreover, the
original dataset is extended, creating new data variables under JEPs perspective. The
extended dataset is then applied to DR techniques, enabling multidimensional projection
visualization, originating a map for data instances similarity. The map can be browsed to
filter JEPs for clusters and outliers investigations.
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Figure 30 – A flowchart-based summarization of inputs, processes, and outputs for ExMatrix
and VAX methods. From a class-labeled dataset, ExMatrix addresses models global
and local (predictive) explanations, whereas VAX multivariate data (descriptive)
explanations.
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Source: Elaborated by the author.
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