• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
Documento
Autor
Nombre completo
Ludwin Lope Cala
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2019
Director
Tribunal
Romero, Roseli Aparecida Francelin (Presidente)
Bianchi, Reinaldo Augusto da Costa
Grassi Junior, Valdir
Osório, Fernando Santos
Título en inglés
Recognition and Tracking of Vehicles in Highways using Deep Learning
Palabras clave en inglés
Computer vision
Deep learning
Detection and classification
Drone
Recurrent neural network
Tracking
Resumen en inglés
Unmanned aerial vehicles (UAV) have become increasingly popular and their ability to analyze images collected in real time has drawn the attention of researchers regarding their use in several tasks, as surveillance of environments, persecution, collection of images, among others. This dissertation proposes a vehicle tracking system through which UAVs can recognize a vehicle and monitor it in highways. The system is based on a combination of bio-inspired machine learning algorithms VOCUS2, CNN and LSTM and was tested with real images collected by an aerial robot. The results show it is simpler and outperformed other complex algorithms, in terms of precision.
Título en portugués
Reconhecimento e Rastreamento de Veículos em Rodovias usando Deep Learning
Palabras clave en portugués
Aprendizado profundo
Detecção e classificação
Drone
Rastreamento
Rede neural recorrente
Visão computacional
Resumen en portugués
Veículos aéreos não tripulados têm se tornado cada vez mais populares e sua capacidade de analisar imagens coletadas em tempo real tem chamado a atenção de pesquisadores quanto ao seu uso em diversas tarefas, como vigilância de ambientes, perseguição, coleta de imagens, entre outros. Esta dissertação propõe um sistema de rastreamento de veículos através do qual os UAV podem reconhecer um veículo e monitorá-lo em rodovias. O sistema é baseado em uma combinação de algoritmos de aprendizado de máquina bio-inspirados VOCUS2, CNN e LSTM e foi testado com imagens reais coletadas por um robô aéreo. Os resultados mostram que é mais simples e superou outros algoritmos complexos, em termos de precisão.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-08-02
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2023. Todos los derechos reservados.