
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Heterogeneous information network to support the bug report
resolution process

Jacson Rodrigues Barbosa
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Jacson Rodrigues Barbosa

Heterogeneous information network to support the bug
report resolution process

Thesis submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Doctor in Science. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Márcio Eduardo Delamaro

USP – São Carlos
January 2022

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

B238h
Barbosa, Jacson Rodrigues
 Heterogeneous information network to support the
bug report resolution process / Jacson Rodrigues
Barbosa; orientador Márcio Eduardo Delamaro. -- São
Carlos, 2021.
 112 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2021.

 1. Heterogeneous information network. 2. Bug
report resolution process. 3. Software documents
mining. 4. Data model representation. 5. Machine
learning. I. Delamaro, Márcio Eduardo, orient. II.
Título.

Jacson Rodrigues Barbosa

Rede de informações heterogênea para apoiar o processo
de resolução de relatórios de incidentes

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Márcio Eduardo Delamaro

USP – São Carlos
Janeiro de 2022

This work is dedicated to the God who always

sustained me throughout this arduous journey.

Also to my beautiful family (Cris, Fefo, and Nono) who always supported me.

ACKNOWLEDGEMENTS

Firstly, I thank God for the daily sustenance and wisdom given along this journey. To my
family (Cris, Fefo, and Nono) for their patience and support.

To professor Márcio Eduardo Delamaro for his teachings throughout this journey. To
professors Auri M. R. Vincenzi, Ricardo Marcondes Marcacini, Ricardo Britto and Solange
Rezende for their co-orientation and support.

To the Instituto de Ciências Matemáticas e de Computação for training, especially to the
employees, teachers, and friends of LABES and LABIC. To the Universidade Federal de Goiás
for the support. Finally, this work is the result of joint work; I thank everyone who contributed
to the realization of this work.

“For the LORD gives wisdom;

from his mouth come knowledge and understanding.”

(Proverbs 2:6)

RESUMO

BARBOSA, J. R. Rede de informações heterogênea para apoiar o processo de resolução
de relatórios de incidentes. 2022. 112 p. Tese (Doutorado em Ciências – Ciências de Com-
putação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2022.

Contexto. Ao longo do ciclo de vida de um software, inúmeros documentos (por exemplo,
relatórios de incidentes e código fonte) são produzidos por stakeholders. Os relatórios de
incidentes (RI) são os principais documentos de insumo para apoiar as atividades (predição
da severidade de relatórios de incidentes e recomendação de responsáveis pela correção do
software) do processo de resolução de relatórios de incidentes (RRI). Já o código fonte combinado
com os relatórios de incidentes são insumos para apoiar atividades de localização de defeitos.
A Automação dessas atividades do processo RRI requer uma preocupação em como obter
uma representação semanticamente representativa. Tradicionalmente utiliza-se Bag-of-Word
(BoW) para representar os documentos de software para apoiar a execução automática dessas
atividades por meio de algoritmos de aprendizado de máquina. Lacuna. No entanto, pouca
atenção foi dada para representações baseadas em redes de informações heterogêneas (RIH), que
permitem representar redes complexas respeitando os relacionamentos entre diferentes objetos.
Contribuição. Esta tese de doutorado contribui para o avanço do estado da arte no que se refere
aos modelos de representação de informações para apoiar a execução automática de atividades
do processo RRI. Também avança na investigação de (i) algoritmos semissupervisionados que
utilizam redes heterogêneas bipartidas para apoiar a predição de severidade de RI, (ii) um método
que combina a representação BoW e redes de informações heterogêneas para apoiar a atividade
de localização de defeitos, e (iii) uma abordagem holística que reutilizar uma rede de informações
heterogêneas para apoiar atividades de RRI. Resultados. Os resultados demonstram que redes
de informações heterogêneas podem ser uma alternativa promissora para apoiar a automação do
processo RRI. Conclusões. Um processo RRI automático numa perspectica holística utilizando
rede de informações heterogêneas apresentou resultados promissores ao serem comparados com
representações do estado da arte.

Palavras-chave: Rede de informações heterogêneas, Processo de resolução de relatórios de
incidentes, Mineração de documentos de software, Aprendizado de máquina.

ABSTRACT

BARBOSA, J. R. Heterogeneous information network to support the bug report resolution
process. 2022. 112 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2022.

Context. Throughout a software’s lifecycle, numerous documents (e.g., bug reports and source
code) are produced by stakeholders. Bug reports (BR) are the primary input documents to
support the activities (bug report severity prediction and fixer recommendation) of the bug
report resolution (BRR) process. Source code combined with bug reports are resources to
support troubleshooting activities. Automation of these activities of the BRR process requires
a concern with obtaining a semantically representative representation. Traditionally, Bag-
of-Word (BoW) represents software documents to support the automatic execution of these
activities through machine learning algorithms. Gap. However, little attention has been paid to
representations based on heterogeneous information networks (HEN), which allow representing
complex networks respecting the relationships between different objects. Contribution. This
doctoral thesis contributes to advancing state of the art regarding information representation
models to support the automatic execution of activities in the BRR process. It also advances in
the investigation of (i) semi-supervised algorithms that use bipartite heterogeneous networks to
support the bug report severity prediction, (ii) a method that combines the BoW representation
and heterogeneous information networks to support the bug localization activity, and (iii) a
holistic approach that reuses a heterogeneous information network to support BRR activities.
Results. The results demonstrate that heterogeneous information networks can be a promising
alternative to support the automation of the BRR process. Conclusions. An automatic BRR
process using a heterogeneous information network in a holistic perspective presented promising
results compared with state-of-the-art representations.

Keywords: Heterogeneous information network, Bug report resolution process, Software docu-
ments mining, Machine learning.

LIST OF FIGURES

Figure 1 – Automatic document classification through semi-supervised transductive
learning. 35

Figure 2 – Automatic document classification through semi-supervised inductive learning. 36
Figure 3 – Structured text representations with Bag-of-words. 38
Figure 4 – Heterogeneous information network. 39
Figure 5 – Projection of a sample of network nodes from the embedding network model. 40
Figure 6 – An example of Eclipse bug report 4023. 41
Figure 7 – Bug report life cycle in Bugzilla. 43
Figure 8 – Bug report resolution process. 44
Figure 9 – Mining BTS repository general flow. 50
Figure 10 – Structured text representations. 54
Figure 11 – Results with binary term weighting. 60
Figure 12 – Results with frequency term weighting. 61
Figure 13 – Critical difference diagram to compare statistical significance between multi-

ple classifiers for datasets with binary-based term weighting. 62
Figure 14 – Critical difference diagram to compare statistical significance between multi-

ple classifiers for datasets with frequency-based term weighting. 63
Figure 15 – General comparison of the classification performance for each term weighting

technique. 64
Figure 16 – An overview of the BULNER. 69
Figure 17 – Methods’ performance. ▲ BULNER; ● BoW+Cosine; ◆ Embedding. . . . 75
Figure 18 – Data flow diagram for HENBUR. 79
Figure 19 – Heterogeneous information network for bug report resolution knowledge

representation. 81
Figure 20 – Critical difference diagram to compare statistical significance between multi-

ple classifiers for bug report severity prediction. 89
Figure 21 – Critical difference diagram to compare statistical significance between multi-

ple classifiers for fixer recommendation. 91
Figure 22 – Contributions of each method by the combination factor. 94

LIST OF ALGORITHMS

Algorithm 1 – HENBUR Label Propagation Algorithm 83

LIST OF TABLES

Table 1 – Bug report severity type. 42
Table 2 – Descriptions of collections of texts from Bugzilla repository (Severity Type:

BL = Blocker, CR = Critical, MA = Major, NO = Normal, MI = Minor, TR =
Trivial). 53

Table 3 – Descriptions of collections of texts from Apache Jira repository (Severity
Type: BL = Blocker, CR = Critical, MA = Major, MI = Minor, TR = Trivial). 53

Table 4 – Micro-F1 classification results for each classifier in each dataset with binary-
based term weighting. 59

Table 5 – Macro-F1 classification results for each classifier in each dataset with binary-
based term weighting. 59

Table 6 – Micro-F1 classification results for each classifier in each dataset with frequency-
based term weighting. 59

Table 7 – Macro-F1 classification results for each classifier in each dataset with frequency-
based term weighting. 62

Table 8 – MAP Performance Comparison with the State-of-the-art Methods. 73
Table 9 – MAP Performance Comparison with the approach of Ye, Bunescu and Liu

(2014). 74
Table 10 – Bug report data used in our experiments. 84
Table 11 – Experimental design (Legend: Rep = Representation). 86
Table 12 – Vargha-Delaney effect size for bug report severity prediction. 88
Table 13 – Vargha-Delaney effect size for fixer recommendation. 88
Table 14 – Vargha-Delaney effect size for bug localization. 88
Table 15 – Results of the statistical tests for bug report severity prediction. 90
Table 16 – Results of the statistical tests for fixer recommendation. 92
Table 17 – Results of the statistical tests for bug localization. 93
Table 18 – Software metrics used. 111

LIST OF ABBREVIATIONS AND ACRONYMS

BoW Bag-of-Words

BTS Bug Tracking System

BULNER BUg Localization with word embeddings and NEtwork Regularization

CNN Convolutional Neural Network

DBRNN-A Deep Bidirectional Recurrent Neural Network with Attention

GRU Gated Recurrent Unit

HEN Heterogeneous Information Network

HENBUR HEterogeneous information Network to support the BUg report Resolution

rVSM revised Vector Space Model

SEVERIS SEVERity ISsue assessment

SG Stacked Generalization

SO Stack Overflow

VSM Vector Space Model

WEmb Word Embeddings

CONTENTS

1 INTRODUCTION . 27
1.1 Research Question and Objectives . 28
1.2 Contributions . 29
1.3 Thesis Outline . 30

2 BACKGROUND . 33
2.1 Machine Learning . 33
2.1.1 Supervised Learning . 34
2.1.2 Semi-Supervised Learning . 34
2.1.2.1 Network-based transductive learning . 35
2.1.2.2 Transductive learning based on the Vector Space Model 38
2.2 Data Model Representation . 38
2.2.1 Bag-of-Words Based on Vector Space Model 38
2.2.2 Heterogeneous Information Network 39
2.3 Bug Report . 40
2.4 Bug Report Resolution Process . 42
2.4.1 Bug Report Severity Prediction . 43
2.4.2 Fixer Recommendation . 45
2.4.3 Bug Localization . 46
2.5 Final Remarks . 47

3 IMPROVING PREDICTING THE SEVERITY OF BUG REPORTS
WITH SEMI-SUPERVISED LEARNING AND HETEROGENEOUS
NETWORKS . 49

3.1 Mining Bug Tracking System Repository 50
3.2 Experiment Design . 51
3.2.1 Definition of Research Question . 52
3.2.2 Preparation and Planning . 52
3.2.2.1 Sample Selection . 52
3.2.2.2 Pre-processing . 53
3.2.2.3 Pattern Extraction . 55
3.2.2.4 Post-processing . 55
3.3 Operation of the Experiment . 56

3.4 Analysis and Discussion of the Results 58
3.4.1 Answer to RQ1: effectiveness of classifiers 58
3.4.2 Answer to RQ2: impact of strategies to represent the text 63
3.5 Threats to Validity . 64
3.6 Final Remarks . 64

4 BULNER: BUG LOCALIZATION WITH WORD EMBEDDINGS
AND NETWORK REGULARIZATION 67

4.1 Bug Localization Data Model Representation 68
4.2 Proposed Method . 69
4.3 Experimental Evaluation . 71
4.3.1 Definition of Research Question . 72
4.3.2 Experiment Definition . 72
4.3.3 Dataset . 72
4.3.4 Baselines . 73
4.3.5 Evaluation Metrics . 73
4.4 Results and Discussion . 73
4.4.1 RQ1: How effective is BULNER? . 73
4.4.2 RQ2: What is the contribution of each method? 74
4.4.3 Threats to Validity . 74
4.5 Final Remarks . 74

5 A FRAMEWORK TO SUPPORT THE BUG REPORT RESOLU-
TION PROCESS WITH HETEROGENEOUS INFORMATION NET-
WORK . 77

5.1 Embedding-based Multimodal Framework with a Heterogeneous In-
formation Network to Support Bug Report Resolution 78

5.1.1 Heterogeneous Information Network for Bug Report Resolution . . 80
5.1.2 Train Embedding . 81
5.1.3 Network Regularization . 82
5.2 Experiment Design . 83
5.2.1 Definition of Research Question . 83
5.2.2 Experiment Definition . 84
5.2.3 Preparation and Planning . 84
5.2.3.1 Sample Selection . 84
5.2.3.2 Experimental Package . 84
5.2.3.3 Variables . 85
5.2.3.4 Experimental Design . 86
5.2.4 Operation of the Experiment . 86
5.2.5 Data Analysis . 87

5.3 Results and Analysis . 87
5.3.1 RQ1 - Practical Significance . 88
5.3.2 RQ2 - Bug Report Severity Prediction 89
5.3.3 RQ3 - Fixer Recommendation . 89
5.3.4 RQ4 - Bug Localization . 91
5.4 Threats to Validity . 91
5.4.1 Construct Validity . 93
5.4.2 Internal Validity . 93
5.4.3 External Validity . 93
5.4.4 Conclusion Validity . 93
5.5 Final Remarks . 94

6 CONCLUSION . 97
6.1 Thesis Contributions . 98
6.2 Limitations . 98
6.3 Possible Extensions and Future Work 99
6.4 Data and Codes Availability Statement 100

BIBLIOGRAPHY . 101

APPENDIX A SOFTWARE METRICS 111

27

CHAPTER

1
INTRODUCTION

Many different artifacts (e.g., bug reports, source code files) are created during software
development and maintenance of one software project. Program failures or defects are recorded
on bug reports by different stakeholders (e.g., end-users, developers, or testers) (ZHU et al.,
2021).

The typical steps to handle bugs in software projects are as follow: i) bugs are logged in
a bug report management tool (e.g., Jira); ii) someone with the right competence analyzes the
logged bugs and define their severity levels (bug report severity prediction task) (LAMKANFI et

al., 2010); iii) the bugs are prioritized, and developers are assigned to fix the prioritized bugs
(fixer recommendation task) (ČUBRANIć, 2004); iv) to fix a bug, it is necessary to identify the
source code files that are most likely related to the logged bugs (bug localization task) (LAM et

al., 2017). These tasks belong to the bug report resolution (BRR) process.

According to Xia et al. (2015), the cost of manual fault correction represents the soft-
ware maintenance process’s highest cost. For example, the Eclipse project received more than
547,200 bug reports until May 14th, 2019 (WANG et al., 2020). Moreover, many methodologies,
techniques, and tools have been defined and proposed to minimize fault correction costs.

Combined with the development of tools and definition of automation strategies for BRR
activities (e.g., bug localization), the previous studies investigate the applicability of artificial
intelligence techniques in this context. For example, using machine learning algorithms to define
predictive models to support bug report resolution activities.

Machine learning algorithms learn from data examples (e.g., bug reports) with a specif-
ically structured data representation (e.g., Bag-of-Words). Many previous studies used this
representation to support BRR tasks. However, Bag-of-Words has high dimensionality and high
sparsity because of the high number of words on textual documents. Then, in general, this context
impact negatively machine learning algorithms performance (ROSSI, 2015; YU; LIU, 2004).

The bug report resolution activities are interconnected, but most approaches handle those

28 Chapter 1. Introduction

activities in an isolated and disconnected way. In this perspective, software managers do not
have a global view of BRR activities. Then in an isolated and disconnected way, they could
have difficulty in decision making in planning maintenance activities. Moreover, automatic BRR
activities would be much increase productivity (ZHOU et al., 2016).

Zhang et al. (2016a) proposed a framework of bug report severity prediction and semi-
automatic fixer recommendation. It handles these two tasks in an interconnected way. Also, it
used Bag-of-Words to represent term occurrence from bug reports (ZHANG et al., 2016a). This
doctoral thesis investigates a heterogeneous information network’s impact on representing data
from different sources.

Xiao et al. (2020) defined a novel deep neural network (named HINDBR) that used a het-
erogeneous information network (HEN) to detect similar duplicate bug reports. The experimental
results suggest that the HINDBR method is better than the deep learning-based approach (XIAO
et al., 2020). This thesis investigates unified HEN representation to support three BRR activities
(bug report severity prediction, fixer recommendation, and bug localization) holistically.

Overall, in the context of automation of bug report resolution tasks, there are some
associated challenges to obtaining satisfactory predictive models:

• How to represent bug reports and other software artifacts to obtain an effective predictive
model for specific tasks?

• How to define a unified representation that can be reused to support a set of tasks?

1.1 Research Question and Objectives

Motivated by the above challenges for the automation bug report resolution process, this
doctoral thesis intends to answer the following research question:

How should software engineers represent software information to support the automatic bug

report resolution process from a holistic multimodal perspective?

In this thesis, the holistic multimodal perspective refers to global information representa-
tion to support the automatic bug report resolution process. Also, it is a unified representation
that uses software information from different software data sources (e.g., bug reports and sources
code).

Based on this research question, the main objective of this doctoral thesis is to investigate

methods to support the automatic bug report resolution process in the context of open software.
Therefore, this thesis defined the following specific objectives to answer the research question
and also achieve the main objective:

1.2. Contributions 29

(i) evaluate the performance of semi-supervised network-based algorithms over the supervised
algorithms to bug report severity prediction;

(ii) make a comparison between Bag-of-Words (BoW) representation and Heterogeneous
Information Network (HEN) representation to support bug localization; and

(iii) investigate the use of heterogeneous information networks to support the automatic bug
report resolution process in a holistic multimodal perspective.

1.2 Contributions

From the objectives of this doctoral thesis and the development of the proposals, we have
the following scientific contributions:

• Proposal for a new use of semi-supervised algorithms based on heterogeneous information
network to support the bug report severity prediction.

• Definition of a data representation based on a heterogeneous information network to
support the bug localization activity.

• Extending, standardizing, pre-processing, and making available a set of collections of open
source bug reports with the corresponding software metrics from impacted source code
files after the resolution of the bug reports.

• Definition of a unified data representation based on a heterogeneous information net-
work to support the bug report resolution process (bug report severity prediction, fixer
recommendation, and bug localization).

• Dissemination of scientific results directly related to this doctoral thesis:

– Published Article: BARBOSA, J. R.; MARCACINI, R. M.; BRITTO, R.; SOARES,
F.; REZENDE, S. O.; VINCENZI, A. M. R.; DELAMARO, M. E. . BULNER: BUg
Localization with word embeddings and NEtwork Regularization. In: VII Workshop
on Software Visualization, Evolution and Maintenance (VEM), 2019, Salvador -
BA. Anais do VII Workshop on Software Visualization, Evolution, and Maintenance
(VEM). Porto Alegre - RS: SBC, 2019. p. 21-28.

– Published Article: BARBOSA, J. R.; MATSUNO, I. P. ; GUIMARAES, E. H. R. ;
REZENDE, S. O. ; VINCENZI, A. M. R. ; DELAMARO, M. E. . Mineração de
Textos para Apoiar a Predição de Severidade de Relatórios de Incidentes: um Estudo
de Viabilidade. In: XVI Simpósio Brasileiro de Qualidade de Software, 2017, Rio
de Janeiro. Anais do XVI Simpósio Brasileiro de Qualidade de Software. Porto
Alegre-RS: SBC, 2017. p. 89-103.

30 Chapter 1. Introduction

– Article submitted: BARBOSA, J. R.; MATSUNO, I. P.; MARCACINI, R. M.; BRITTO,
R.; REZENDE, S. O.; VINCENZI, A. M. R.; DELAMARO, M. E. . Improving pre-
dicting the severity of bug reports with semi-supervised learning based on the hetero-
geneous networks. In: Journal of Software Engineering Research and Development,
2021.

– Article submitted: BARBOSA, J. R.; MARCACINI, R. M.; BRITTO, R.; REZENDE,
S. O.; VINCENZI, A. M. R.; DELAMARO, M. E. . A framework to support the bug
report resolution process with heterogeneous information network. In: Journal of
Automated Software Engineering, 2021.

• Dissemination of scientific results related to other research areas:

– Chapter of published book: BARBOSA, J. R.; VINCENZI, A. M. R. . Ferramentas
de Gerenciamento da Qualidade de Software. In: José Carlos Maldonado, Márcio
Eduardo Delamaro, Auri Marcelo Rizzo Vincenzi. (Org.). Automatização de teste de
software com ferramentas de software livre. 1ed. Rio de Janeiro, RJ: Elsevier, 2018,
p. 205-224.

– Chapter of published book: VINCENZI, A. M. R.; BARBOSA, J. R.; FREITAS, E.
N. A. . Ferramentas de Execução Automática de Casos de Teste. In: José Carlos
Maldonado, Márcio Eduardo Delamaro, Auri Marcelo Rizzo Vincenzi. (Org.). Au-
tomatização de teste de software com ferramentas de software livre. 1ed. Rio de
Janeiro, RJ: Elsevier, 2018, p. 21-58.

– Published Article: BARBOSA, J. R.; VALLE, P.; MALDONADO, J. C.; VINCENZI,
A. M. R.; DELAMARO, M. E. . An Experimental Evaluation of Peer Testing in
the Context of the Teaching of Software Testing. In: XIX International Sympo-
sium on Computers in Education (SIIE 2017), 2017, Lisboa- Portugal. International
Symposium on Computers in Education, 2017.

1.3 Thesis Outline
Chapter 2 presents the main concepts related to this doctoral thesis.

Chapter 3 addresses a quasi-experiment to evaluate semi-supervised learning methods to
support bug report severity prediction. The results are reported in Barbosa et al. (2017). Also,
this chapter evaluates how term weighting (binary or frequency) in text representation impacts
performance in bug report severity prediction.

Chapter 4 presents a quasi-experiment to evaluate the impact of model representation
combination (Bag-of-Words and Word Embeddings) to support bug localization, named BUg
Localization with word embeddings and NEtwork Regularization (BULNER). The results are
reported in Barbosa et al. (2019).

1.3. Thesis Outline 31

Chapter 5 describes a quasi-experiment that analyzes HEterogeneous information Net-
work to support the BUg report Resolution (HENBUR) framework. The results have been
submitted to publication in a scientific journal.

Finally, Chapter 6 provides contributions, conclusions, and limitations of the doctoral
thesis. Also, it suggests some future work and provides data and source code availability.

33

CHAPTER

2
BACKGROUND

In this chapter are presented concepts and works related to this doctoral thesis. Sec-
tion 2.1 presents machine learning concepts and methods used in this thesis to automate bug
report resolution (BRR) tasks. Section 2.2 presents some data model representation options
to support automatic BRR tasks. Section 2.3 presents an overview of the bug report and main
bug report attributes. Finally, Section 2.4 presents three tasks (bug report severity prediction,
fixer recommendation, and bug localization) from the BRR process that are researched in the
following chapters of this doctoral thesis.

2.1 Machine Learning

Machine learning (ML) methods can be divided into supervised, unsupervised, and
semi-supervised (LANTZ, 2013). The main difference among them is the set of examples for
training. In supervised learning, the examples of the training set are labeled. That is, they are
classified beforehand. New occurrences will be classified based on what was learned in the
training set. There is no predefined label for the training set examples in unsupervised learning.
The advantage of this type of learning is that it does not depend on labeled information, but the
errors are more significant than the first method. In general, in supervised learning, accuracy
is higher, but there are scenarios where it is challenging to have a sufficient number of labeled
examples to generate a proper classification model (YUGOSHI, 2018).

Semi-supervised learning also considers a set of labeled examples. However, the number
of examples in which the labels are known is much lower, and in this type of learning, specific
methods are necessary to address this scenario. The goal of semi-supervised learning is to make
use of unlabeled examples to improve classification performance. The way unlabeled examples
are treated in semi-supervised learning may result in a better classification than supervised learn-
ing, considering the same number of labeled examples, or equivalent performance, considering a
smaller number of labeled examples (ZHU; GOLDBERG, 2009; CHAPELLE; SCHLKOPF;

34 Chapter 2. Background

ZIEN, 2006).

2.1.1 Supervised Learning

Supervised learning methods can be divided into the following approaches: probabilistic,
statistical learning, decision trees, and distance. Next, a few methods are mentioned.

• Naïve Bayes (NB) (RISH, 2001): this method is a probabilistic classifier. It is based on
Bayes’ theorem (KOCH, 1990) to identify the class in which example x has the highest
probability of being associated, as given by Equation 2.1.

y = argmaxiP(yi∣x) (2.1)

For each term x, the probability of a given category yi is calculated. This probability
P(yi∣x) is calculated from the occurrences of the term x in training documents where
categories are already known. When all these probabilities are calculated, a new document
can be classified according to the sum of the probabilities for each category of each term
occurring within the document. argmaxi returns the class most likely to be associated with
the term x. The presence or absence of a term in a textual document can determine the
prediction of the category.

• Multinomial Naïve Bayes (MNB): this method is a probabilistic classifier. It is based on
the previous method, but the category is determined by the presence or absence of a term
in the document and the number of occurrences of the terms in the document (KIBRIYA
et al., 2005).

• Support Vector Machines (SVM): this method is based on statistical learning developed
by Vapnik (1995) that establishes a series of principles that must be followed in obtaining
classifiers with good generalization capacity. The result of this classifier is hyperplanes
between attribute vectors that divide space into several categories.

• J48: C.45 algorithm (QUINLAN, 1993), this method is based on decision trees that use the
divide-and-conquer strategy to recursively segment the search space into subspaces. Each
subspace is adjusted using different models. Decision trees are simple to understand and
interpret. However, they may create biased trees if some classes dominate other classes.

• k-nearest neighbor (kNN): this method is based on distances among objects. The classifi-
cation of a new object is done considering the examples of the training set closest to it.
The variation in this algorithm is the number of neighbors K to be considered.

2.1.2 Semi-Supervised Learning

Semi-supervised learning algorithms are divided into two types: (i) transductive and
(ii) inductive. Transductive learning algorithms (see Figure 1) examine the entire set of unla-

2.1. Machine Learning 35

beled examples, then classify the examples directly without the need to induce a classification
model (ROSSI, 2015; CHAPELLE; SCHLKOPF; ZIEN, 2006).

Figure 1 – Automatic document classification through semi-supervised transductive learning.

Source: Adapted from Rossi (2015).

On the other hand, semi-supervised inductive learning algorithms use labeled and un-
labeled examples to induce a classification model (see Figure 2) in two phases: (i) definition
of the labels of unlabeled training documents through of transductive learning algorithm and
(ii) extraction of a classification model from combining previously labeled documents with
documents labeled in the first phase (ROSSI, 2015).

This thesis investigates the contribution of semi-supervised transductive learning algo-
rithms based on networks (GNetMine, Label Propagation based on Bipartite Heterogeneous
Network (LPBHN), Tag-based Model (TM), Transductive Classification based on Bipartite
Heterogeneous Network (TCBHN)) and of a semi-supervised transductive learning algorithm
based on the Vector Space Model (Expectation Maximization (EM)) to support the bug report
severity prediction activity.

2.1.2.1 Network-based transductive learning

Considering that for a given problem, a network that represents the dataset (through
relationships between objects) and that few objects are labeled. Regularization is an alternative
to solve this problem. Regularization is a type of strategy used to implement semi-supervised
transductive classification. (ROSSI, 2015).

The semi-supervised learning methods based on graph regularization seek to regularize
the network considering two assumptions: (i) two objects connected in the network tend to
be classified with the same label, and (ii) the object labels should be close to the real class
information (training set). This section presents the algorithms to perform graph regularization

36 Chapter 2. Background

Figure 2 – Automatic document classification through semi-supervised inductive learning.

Source: Adapted from Rossi (2015).

on bipartite networks used in this thesis, with their respective graph regularization functions. In
each regularization function, the first term is related to the first assumption and, analogously, the
second term describes the second assumption (ROSSI, 2015; YUGOSHI, 2018).

A regularization framework can model these two assumptions (ZHU, 2005). The fol-
lowing cost function generically expresses this framework (DELALLEAU; BENGIO; ROUX,
2005):

Q(F) = 1
2 ∑

oi,o j∈𝒪
woi,o j Ω(foi , fo j)+µ ∑

oi∈𝒪L

Ω
′(foi ,yoi) (2.2)

where oi and o j are examples of objects existing in the network that represent the problem
domain. On the other hand, Ω(.) and Ω

′(.) are functions of distances or similarities. For each
pair of related objects in the network, Ω(.) calculates the proximity between the vectors of class
information (foi , fo j). While Ω

′(.) calculates the proximity between the object class information
and the respective real class information (yoi). Finally, woi,o j defines the weight of the relation
between the objects, and µ is the regularization parameter that defines the importance of the
class information during the propagation of the labels (ROSSI, 2015; YUGOSHI, 2018).

Several variations of algorithms are based on regularization, differentiating concerning
the parameter µ and the distance or similarity function. Below are some variations of algorithms:

• GNetMine (JI et al., 2010): this is the extension of the algorithm Learning with Local

and Global Consistency (LLGC) (ZHOU et al., 2003). The regularization function to be

2.1. Machine Learning 37

minimized by GNetMine is:

Q(F) = ∑
𝒪i,𝒪 j∈𝒪

λ𝒪i,𝒪 j ∑
ok∈𝒪i

∑
ol∈𝒪 j

wok,ol

»»»»»»»»»»

»»»»»»»»»»

fok(𝒪i)√
∑om∈𝒪 j

wok,om

−
fol(𝒪 j)√

∑om∈𝒪i
wol ,om

»»»»»»»»»»

»»»»»»»»»»

2

+ ∑
o j∈𝒪L

αo j(fo j −yo j)
(2.3)

in which 0 ≤ αo j ≤ 1 gives the importance of an object initially labeled by o j in Equa-
tion 2.3.

• Label Propagation based on Bipartite Heterogeneous Network (LPBHN) (ROSSI; LOPES;
REZENDE, 2014): this algorithm is an extension of the Gaussian Fields and Harmonic
Function (GFHF) algorithm (ZHU; GHAHRAMANI; LAFFERTY, 2003) to bipartite
heterogeneous networks. This is a parameter-free algorithm to perform semi-supervised
learning on bipartite networks. The regularization function to be minimized by LPBHN is:

Q(F) = ∑
𝒪 j ,𝒪l⊂𝒪

1
2 ∑

oi∈𝒪 j

∑
ok∈𝒪l

woi,ok(foi − fok)
2
+ lim

µ→∞
µ ∑

oi∈𝒪L

(foi −yoi)
2 (2.4)

There is a restriction that foi = yoi , so the second term of Equation 2.4 has a value tending
to infinity.

• Tag-based Model (TM) (YIN et al., 2009): this algorithm was initially proposed to classify
web objects connected to social tags. In our context, the regularization function to be
minimized by TM is:

Q(F) = (β ∑
oi∈𝒪L

∣∣foi −yoi∣∣
2
+ γ ∑

oi∈𝒪U

∣∣foi −yoi∣∣
2)

+(∑
oi∈𝒪i

∑
o j∈𝒪 j

woi,o j ∣∣foi − fo j ∣∣
2)

(2.5)

in which the parameters β and γ control the importance given to the term of Equation 2.5.

• Transductive Classification based on Bipartite Heterogeneous Network (TCBHN) (ROSSI;
LOPES; REZENDE, 2016): this algorithm performs optimization and label propagation to
minimize the following regularization function:

Q(F) = 1
2

⎛
⎜⎜
⎝
∑

ck∈𝒞
(∑

ti∈𝒯 U

fti,ck − ∑
b j∈𝒯

wti,b j ⋅ fb j ,ck)
⎞
⎟⎟
⎠

2

+
1
2

⎛
⎜⎜
⎝
∑

ck∈𝒞
(∑

ti∈𝒯 L

yti,ck − ∑
b j∈ℬ

wti,b j ⋅ fb j ,ck)
⎞
⎟⎟
⎠

2 (2.6)

38 Chapter 2. Background

2.1.2.2 Transductive learning based on the Vector Space Model

Another algorithm considered is Expectation Maximization (EM) for textual data clas-
sification presented in Nigam et al. (2000). In this algorithm, it is necessary to define the
parameter λ (weight of unlabeled examples during semi-supervised learning) and the number of
components for each class.

2.2 Data Model Representation

Machine learning algorithms learn from data examples with a specifically structured
data representation. Consequently, there are different data model representations. This section
presents basic concepts essential for understanding two types of data model representation.
Firstly, it summarizes the characteristics of Bag-of-Words based on the Vector space model.
Finally, it introduces the Heterogeneous Information Network representation. Both data model
representations are used in this doctoral thesis to support three BRR tasks: bug report severity
prediction, fixer recommendation, and bug localization.

2.2.1 Bag-of-Words Based on Vector Space Model

Bag-of-words (BoW) representation uses terms (e.g., keywords) extracted from texts as
features in a vector space model. BoW is a document-term matrix (see Figure 3), where each
row represents a document, each column (predictive attributes) represents a term (word) present
in the document collection. The last column (target attribute) defines the document class when
an document example has a label. The machine learning algorithms use predictive attributes to
predict target attribute (MOREIRA; CARVALHO; HORVATH, 2018).

Each cell contains each term’s weight in documents that could be one of two measures:
(i) zero or one that indicates the presence or absence of the word in the document and (ii)
frequency that contains the number of times of the word in the respective document. An example
is presented in Figure 3.

Figure 3 – Structured text representations with Bag-of-words.

Source: Adapted from Yugoshi (2018).

BoW ignores the order in which the terms appear in the documents, thereby losing
the documents’ semantic features. Furthermore, in BoW, only the weight of each term in the

2.2. Data Model Representation 39

document is registered, i.e., the independence of the terms is lost (MANNING; RAGHAVAN;
SCHüTZE, 2008).

BoW representation has as main characteristics of high dimensionality and sparsity. These
characteristics affect the performance of machine learning algorithms negatively. Furthermore,
machine learning algorithms are not able to infer relations between one term and other (ROSSI;
LOPES; REZENDE, 2016).

2.2.2 Heterogeneous Information Network

Many problems can naturally be represented as a network. For example, a network
can represent a bug report resolution process (see Figure 4). In this figure, the network has
different node sets (e.g., bug reports) that represent distinct objects, and the edges represent
the relationships between the objects. This network with different object types is called a
heterogeneous information network (HEN).

Figure 4 – Heterogeneous information network.

Source: Elaborated by the author.

Depending on the network’s complexity, it is challenging to represent the relationships
between different objects through nodes (Cui et al., 2019). Network embedding is an alternative

40 Chapter 2. Background

to solve this challenge. It creates a low-dimensional feature representation for nodes. It preserves
the network structure and side information from the original network (CHANG et al., 2015; Cui
et al., 2019). Then, network embedding is a way to learn from HEN.

All nodes and edges from the original network are encoded into its embedding vector in
the network embedding space created. From these vectors, it is possible to calculate the similarity
between the network’s different nodes and perform other operations in a simplified way (Cui et

al., 2019).

Figure 5 – Projection of a sample of network nodes from the embedding network model.

Source: Elaborated by the author.

Figure 5 illustrates the projection of some heterogeneous information network of the
Tomcat software project in two-dimensional space using the t-SNE method (MAATEN; HINTON,
2008). Data points indicate different nodes in the network, such as terms, bug reports, and source
code files. As discussed in this section, the distances between objects in vector space can be
explored for different tasks related to mining software repositories. Note that it is possible to
visually identify the proximity of bug reports, terms, and source files. Analogously, it is possible
to identify similar or even duplicate bug reports. Thus, this new dimensional space can even be
used for training other machine learning methods to support the automatic bug report resolution
process.

2.3 Bug Report

According to the IEEE Standard 29119-1-2013, an Incident Report is the “documentation
of the occurrence, nature, and status of an incident” (ISO/IEC/IEEE, 2013). This doctoral thesis

2.3. Bug Report 41

uses the term “bug report” to refer to an “incident report” since it is especially interested in
incidents that correspond to software faults, popularly bugs.

Figure 6 – An example of Eclipse bug report 4023.

Source: Adapted from Eclipse Foundation (2021).

A Bug Tracking System (BTS) is a tool that supports the management of bug reports.
Software faults are registered as bug reports using this type of tool (e.g., Bugzilla1). Figure 6
shows a screenshot of the bug report Bug 4023 from the Bugzilla of the Eclipse 2. The type of
registered information depends on the used BTS. For example, to register a bug report using
Bugzilla, one needs to provide the following information:

• Summary - the title definition (see information 1 in Figure 6).

• Product - the product in which it is originated the bug report (see information 2 in
Figure 6).

1 Bugzilla: <https://www.bugzilla.org/>
2 Eclipse: <https://www.eclipse.org/>

https://www.bugzilla.org/
https://www.eclipse.org/

42 Chapter 2. Background

• Component - the component related to the occurrence (see information 3 in Figure 6).

• Priority - the information defines the priority of correction of a fault concerning the others,
where P1 is considered the highest priority and P5 is the lowest (see information 4 in
Figure 6).

• Severity - the information describes the impact of the fault (see information 5 in Figure 6).
Table 1 shows possible values. The blocker type is the most severe, and the trivial type is
the least severe. Blocker bug reports are interdependent with other bug reports. Because of
this, it is a complex process of solution of other bug reports (XIA et al., 2015).

• Description - the detailed description of the fault (see information 6 in Figure 6).

Table 1 – Bug report severity type.

Severity Description
blocker (BL) Blocks the development and activity of software testing
critical (CR) Causes data loss, crashes, or memory impairment
major (MA) Increased loss of functionality
normal (NO) Causes loss of functionality under specific situations
minor (MI) It results in less loss of functionality
trivial (TR) Elementary problems, such as misspelling

Source: Adapted from Saha et al. (2015).

Figure 7 presents different states of a bug report in Bugzilla projects. In this cycle, the
bug report’s severity level is manually verified by a triager. After registering a new bug report
in the BTS, its state is defined as NEW. Then, the triager assigns the bug report to a developer,
and the bug report’s state is changed to ASSIGNED. When the assignee finishes the bug fixing
task, the bug report’s state is changed to RESOLVED. Finally, if the bug report is fixed entirety,
its state is changed to CLOSED. Otherwise, its state is changed to REOPEN (ZHANG et al.,
2016a).

2.4 Bug Report Resolution Process

Bug reports are important software artifacts used to support various bug report resolution
(BRR) activities (ZHANG et al., 2016b). According to Zhang et al. (2016b), in the BRR
manual process, a new bug report generally needs to go through three phases to be fixed: bug
understanding, bug triage, and bug fixing. Figure 8 shows the interrelationship between these
phases and their respective tasks. First, in the bug understanding phase, the software test manager
needs to understand the new bug report for the classifier by severity level; second, the software
test manager needs to identify an appropriate developer to fix the bug report in the bug triage
phase. Finally, a developer needs to locate the bug in the source code, and for that, it is sometimes
necessary to analyze old bug reports.

2.4. Bug Report Resolution Process 43

Figure 7 – Bug report life cycle in Bugzilla.

Source: Adapted from Zhang et al. (2016a).

This section presents some previous studies related to the three main tasks in the bug
report resolution process: bug report severity prediction, fixer recommendation, and bug local-
ization. This doctoral thesis presents solutions based on machine learning methods to problems
related to these three tasks. The following subsections present previous work related to these
three tasks.

2.4.1 Bug Report Severity Prediction

The automatic classification of a bug report concerning the severity is also known as bug
report severity prediction. There are two types of severity prediction models: binary (e.g., severe
or non-severe) (LAMKANFI et al., 2010) and non-binary (e.g., blocker, critical, major, minor, or
trivial) (TIAN; LO; SUN, 2012).

Considering that there are different types of bug report severity, Tian, Lo and Sun
(2012) proposed a non-binary severity prediction model that considers the five major severity
types. Tian, Lo and Sun (2012) applied BM25 document similarity function (ROBERTSON;
ZARAGOZA; TAYLOR, 2004; ZARAGOZA et al., 2004) and its extension (BM25ext) (SUN et

al., 2011) combined with Vector Space Model (VSM) for bug report representation. They used
k nearest neighbors algorithm to decide the severity type for a new bug report. The proposed
approach presented better results than the SEVERity ISsue assessment (SEVERIS) method
defined by Menzies and Marcus (2008).

Garcia and Shihab (2014) proposed a binary severity prediction model (blocking or
non-blocking). They used 14 factors (e.g., description text, comment text, and reporter name)
related to the textual bug report information to calculate a Bayesian score using a Naïve Bayes
classifier. Then, the Bayesian score was used to classify bug reports in either blocking or
non-blocking (GARCIA; SHIHAB, 2014).

44 Chapter 2. Background

Figure 8 – Bug report resolution process.

Source: Adapted from Zhang et al. (2016b).

Zhou et al. (2016) proposed a non-binary classification approach that predicts three levels
of severity: high, middle, and low. A combination of text mining techniques and data mining is
applied to analyze bug report summaries in the study. The authors used a Multinomial Naïve
Bayes classifier and outperformed another approach (Logistic Regression model) presented
by Antoniol et al. (2008).

Ramay et al. (2019) proposed a binary severity prediction model based on a deep neural
network classifier. First, they used Senti4SD (CALEFATO et al., 2018) to compute an emotion
score for each bug report. Second, they used word embedding to transform each word from the
bug report into a fixed-dimensional vector. Finally, they used these vectors and emotion scores as
input to a deep learning-based classifier (Convolutional Neural Network) (Ramay et al., 2019).
The results suggest that their study outperforms two machine learning algorithms (Multinomial
Naïve Bayes (LAMKANFI et al., 2011; KIBRIYA et al., 2005) and Random Forest (BREIMAN,
2001)) and a deep learning algorithm (Long Short-Term Memory) (HOCHREITER; SCHMID-
HUBER, 1997; GERS; SCHMIDHUBER; CUMMINS, 1999).

Tan et al. (2020) defined a method based on logistic regression to support a non-binary
severity prediction model. They collect question-and-answer pairs from Stack Overflow (SO)

2.4. Bug Report Resolution Process 45

related to bug repositories. After, they use BM25 document similarity function to enhance bug
reports with SO posts. Finally, they train a model using logistic regression classifier to automated
severity prediction. The results suggest that their study outperforms three algorithms: Naïve
Bayes, k-nearest neighbor, and a deep learning algorithm Long Short-Term Memory (TAN et al.,
2020).

2.4.2 Fixer Recommendation

Typically, automatic fixer recommendation is defined as a classification problem. The
objective is to identify developers qualified (bug fixers) to solve a given bug report (MANI;
SANKARAN; ARALIKATTE, 2019).

Mani, Sankaran and Aralikatte (2019) developed a bug fixer recommendation approach
that used Deep Bidirectional Recurrent Neural Network with Attention (DBRNN-A) (PHAM et

al., 2014) for bug report representation. In the study, for each word presented in the bug report
vocabulary, a fixed-dimensional vector is learned using word2vec (MANI; SANKARAN; ARA-
LIKATTE, 2019). The authors compared their approach with a baseline BoW-based approach.
As a result, their approach outperformed the baseline.

Lee et al. (2017) proposed an approach (CNN Triager) that combines word embedding
and a Convolutional Neural Network (CNN) to recommend bug fixers. The authors showed
that their approach outperformed state-of-the-art classifiers (Support Vector Machine, Naive
Bayes, C.48) in open source projects (LEE et al., 2017). They also evaluated their approach in an
industrial case. They used CNN Triager to integrate with the issue tracking system as an assistant
for human triagers. As a result, CNN Triager recommends hints for human triagers to support
bug triage activity.

Xi et al. (2018) defined a framework (SeqTriage) that uses Recurrent Neural Networks
with neurons Gated Recurrent Unit (GRU) to recommender potential fixers. SeqTriage is a
sequence to sequence-based model that explores from the first potential fixer until the last
fixer related to each bug report (XI et al., 2018). They compared SeqTriage with the following
baselines: DBRNN-A (MANI; SANKARAN; ARALIKATTE, 2019), CNN Triager (LEE et al.,
2017), SVM+BoW (ANVIK; HIEW; MURPHY, 2006) and TopicMinerMTM (Xia et al., 2017).
SeqTriage improved the accuracy compared with the baselines chosen.

Jonsson et al. (2016) proposed a bug fixer recommendation approach that combines uses
ensemble learner Stacked Generalization (SG). They used BoW to represent the input data for
their approach. In addition, they combined the following machine learning techniques: Bayes
Net, Naive Bayes, Support Vector Machines, k-nearest neighbor, and Decision Tree (JONSSON
et al., 2016). The authors evaluated their approach and showed that SG outperformed individual
classifiers to recommend bug fixers in industrial applications.

Zaidi and Lee (2021) developed a fixer recommendation approach that used a graph

46 Chapter 2. Background

neural network (GNN) based on Yao, Mao and Luo (2019)’s work. Zaidi and Lee (2021) used
a heterogeneous graph to represent the word-to-word relation and word-to-bug report relation.
They evaluated their approach with Lee et al. (2017)’s and Mani, Sankaran and Aralikatte
(2019)’s methods. Their approach outperformed them.

2.4.3 Bug Localization

To fix a fault reported in a bug report, it is necessary to identify where the bug is located
in a software product. This activity is known as bug localization. A common way to automate
this activity is through information retrieval (IR), where a bug report is treated as a query and the
related sources code files are handled as documents (Saha et al., 2013).

Ye, Bunescu and Liu (2014) proposed an approach that combines the IR model with
the learning-to-rank (LR) technique to localize bugs. They used BoW to represent the words
from bug reports (summary and description) and source files (comment and code). Also, they
defined a ranking model that used features weighted combination from relationships between
source code file and bug report (YE; BUNESCU; LIU, 2014). Finally, they compared the LR
approach against two state-of-the-art systems: BugLocator (ZHOU; ZHANG; LO, 2012) and
BugScout (NGUYEN et al., 2011). Their approach significantly outperformed BugLocator and
BugScout.

Wen, Wu and Cheung (2016) developed an approach (LOCUS) based on IR that locates
bugs from software changes. LOCUS combines three different models (the natural language
(NL), code entity names (CE), and Boosting) to compute a final similarity score between a
change and a bug report (Wen; Wu; Cheung, 2016). LOCUS outperforms three state-of-the-art
approaches: BRTracer (Wong et al., 2014), BLUiR (Saha et al., 2013), and AmaLgam (WANG;
LO, 2014).

Lam et al. (2017) proposed an approach named DNNLoc that combines deep learning
(DL) with a revised Vector Space Model (rVSM) to localize bugs automatically (LAM et al.,
2017). DNNLOC outperformed Naive Bayes (NB) (KIM et al., 2013), LR (YE; BUNESCU;
LIU, 2014), and BugLocator (ZHOU; ZHANG; LO, 2012).

Wang et al. (2020) defined a multi-dimension deep learning model, denoted by MD-CNN.
It captures the complex and non-linear correlation of five features (text similarity, structural
information, collaborative filtering, bug fixing history, and class name similarity) from relation-
ships between source code files and bug reports (WANG et al., 2020). MD-CNN outperformed
LR (YE; BUNESCU; LIU, 2016), BugLocator (ZHOU; ZHANG; LO, 2012), Vector Space
Model method (MANNING; RAGHAVAN; SCHüTZE, 2008), and Deep Neural Networks (HIN-
TON; SALAKHUTDINOV, 2006).

Zhu et al. (2021) developed a new framework using a deep multimodal model for bug
localization (DEMOB). Firstly, they mapped individual representation of the bug report and

2.5. Final Remarks 47

source code files after coordinating each representation into a multimodal space. This framework
narrows the gap between natural language (bug reports) and programming language (source
code files). As a result, DEMOB outperformed BugLocator (ZHOU; ZHANG; LO, 2012),
BLUiR (Saha et al., 2013), DNNLoc (LAM et al., 2017), NP-CNN (HUO; LI; ZHOU, 2016),
and LS-CNN (HUO; LI, 2017).

2.5 Final Remarks
Regarding how data is represented to be used as input by prediction models, most related

papers use BoW (YE; BUNESCU; LIU, 2014; LAMKANFI et al., 2010; GARCIA; SHIHAB,
2014; ZHOU et al., 2016). A few studies have used word embedding for data representation (LEE
et al., 2017; MANI; SANKARAN; ARALIKATTE, 2019; Ramay et al., 2019). To the best
of our knowledge, few studies have explored representing software documents by a heteroge-
neous information network in this BRR process context (bug report severity prediction, fixer
recommendation, and bug localization).

In the context of bug report severity prediction and fixer recommendation, a few studies
use different software artifacts to subsidize the prediction model. In general, it used a bug report
history only to support the task automation process. A few studies also explored a holistic way
of predicting these three activities of the BRR process (ZHANG et al., 2016a).

This doctoral thesis fills the existing gaps by proposing: (i) an application of semi-
supervised classifier and data representation based on two-way heterogeneous networks in
severity prediction of bug reports (presented in Chapter 3); (ii) a BUg Localization with word
embeddings and Network Regularization (presented in Chapter 4); and (iii) a general framework
to support tasks (bug report severity prediction, fixer recommendation, and bug localization) in
the bug report resolution process using a unified heterogeneous information network (presented
in Chapter 5).

49

CHAPTER

3
IMPROVING PREDICTING THE SEVERITY

OF BUG REPORTS WITH
SEMI-SUPERVISED LEARNING AND

HETEROGENEOUS NETWORKS

It is common to identify faults at all stages of the software development life cycle; 50-80%
of the total cost of software maintenance is associated with the cost of fault correction (XIA et

al., 2015). Many software projects use Bug Tracking Systems (BTS) to support the management
of these bug reports. Examples of BTS are Bugzilla (Mozilla Foundation, 2021), Jira (Atlassian,
2021), and Mantis (MantisBT Development Team, 2021).

In general, human beings record bug reports after identifying unexpected behavior of
a software system. When registering a bug report, two types of information are essential and
often define how fast the bug report should be fixed: priority and severity. A bug report’s severity
refers to the impact that a bug has on the successful execution of the software (LAMKANFI et

al., 2010). The priority attribute represents the degree of urgency with which a bug report must
be fixed (LAMKANFI et al., 2010).

Different people often conduct the analysis of faults subjectively, and the severity and
priority of bug reports are often under or overestimated. This situation makes it challenging to
prioritize the correction of bugs. Furthermore, due to many bug reports produced daily, there is
an enormous waste of human resources that must be allocated to manually redefine/correct the
priority and severity of bug reports.

To address the aforementioned issue, several automatic techniques have been proposed.
These techniques include the assignment of bug report severity/priority (Ramay et al., 2019),
duplicate bug report detection (NEYSIANI; BABAMIR; ARITSUGI, 2020), and fault correction
time prediction (XIA et al., 2015).

50
Chapter 3. Improving predicting the severity of bug reports with semi-supervised learning and

heterogeneous networks

In the context of bug report severity prediction, most studies use supervised machine
learning (SML) (GOMES; TORRES; CôRTES, 2019). In general, SML has better performance
with many labeled samples (e.g., severity bug reports defined). However, when one software
project (e.g., a new software project) has few labeled instances, SML may perform worst than
semi-supervised machine learning (ZHU; GOLDBERG, 2009; YUGOSHI, 2018).

In the present chapter, an approach is proposed to enable the prediction of bug report
severity from text mining techniques. This approach is based on text classification, which uses
sample bug reports labeled in different types of severity to construct a classification model. As a
result, the severity of new bug reports can automatically be classified (or suggested), dramatically
reducing the human effort related to manual analysis. To evaluate this approach, an experiment
was conducted to evaluate several classification methods and compare the main techniques
to obtain the structured representation of texts. The experimental results are promising and
potentially helpful in guiding the choice of classification methods and their parameters for new
studies involving the prediction of severity in bug reports.

This chapter is organized as follows. Section 3.1 contains relevant concepts associated
with bug report severity prediction. Section 3.2 presents the experimental design, while Section
3.3 presents the results. Section 3.4 discusses the results. Section 3.5 presents the threats to the
validity of this study. Finally, Section 3.6 presents the conclusions and view on future work.

3.1 Mining Bug Tracking System Repository

Figure 9 presents the main activities and objects of the Mining Bug Tracking System
Repository (MBTSR). The activities correspond to the rounded rectangles and objects to the
cylinders.

Figure 9 – Mining BTS repository general flow.

Source: Elaborated by the author.

The pre-processing activity corresponds to the first phase of MBTSR, and one or more
types of BTS repositories can be provided as input to enable data collection (bug reports) (JUNG;
LEE; WU, 2012). After the data collection, pre-processing activities are conducted to transform
the data into a suitable representation for the pattern extraction. For example, when pre-processing

3.2. Experiment Design 51

bug reports, which is natural language data in text format, it is necessary to conduct the following
steps:

• Tokenization - break the text into tokens. Numeric characters and punctuation marks are
removed from the text.

• Removal of stopwords - preposition, adverbs, and other structures (defined as stop-
words) commonly used to support the construction of sentences in the human language (a,
from, to, up), generally do not aggregate information in the context of bug report mining
algorithms (LAMKANFI et al., 2011). Because of this, from a set of defined stop-words,
all stop-words in the text being processed are removed.

• Stemming - reducing each word of the text to its radical correspondent (minimum and
unambiguous denotation of the term). For example, the words “argue”, “arguing” and
“argus” can be reduced to “argu”.

• Definition of data representation - an acceptable format of textual documents needs to
be defined to enable the analysis. In most cases, a bag-of-words (TAN; STEINBACH;
KUMAR, 2005) (representation in the vector space model) is constructed to meet this
objective. Each row of the bag-of-words represents a document (bug report), and each
column represents an attribute.

Machine learning (ML) methods must be used to extract bugs reports’ patterns.. The
process of assigning a predefined label to a data instance is known as automatic document
classification, which is an important data mining sub-area (LAMKANFI et al., 2011).

The representation of the document classification function is defined as follows:

f ∶ Document → {r1,⋯,rq} (3.1)

in the context of this chapter, the document corresponds to an example of a bug report and
{r1, ...,rq} to the predefined labels, that is, the type of severity. This process of classification of a
bug report concerning the kind of severity is also known as bug report severity prediction.

Finally, the acquired knowledge is evaluated according to specific metrics in the post-
processing activity. If the acquired knowledge is not suitable for use, the pre-processing activities
will be resumed to improve the quality of the knowledge.

3.2 Experiment Design
Experiments were conducted to evaluate the application of pre-processing techniques

(text representations) and classification methods on nine large-scale open source bug repositories

52
Chapter 3. Improving predicting the severity of bug reports with semi-supervised learning and

heterogeneous networks

in the context of bug report severity prediction. The goal is to verify whether semi-supervised
methods perform better than supervised ones. In addition, the experiment measures how term
weighting influences performance in bug report severity prediction.

The overview of the experiment is presented in this section.

3.2.1 Definition of Research Question

In particular, this study seeks to answer the following research questions:

• RQ1: Do semi-supervised learning methods perform better to support bug report severity
prediction than supervised learning methods?

• RQ2: Does term weighting (binary or frequency) in text representations impact perfor-
mance in bug report severity prediction?

In addition, the experiment can be defined as follows (WOHLIN et al., 2012):

• analyze classification methods with different text representations,

• for the purpose of evaluating bug report severity prediction,

• with respect to model performance,

• from the point of view of the researcher,

• in the context of open source projects.

3.2.2 Preparation and Planning

This section presents the experiment planning steps executed: sample selection, and
the three activities presented in Figure 9 on Page 50 (pre-processing, pattern extraction, and
post-processing) are instantiated in our experiments as presented in the following subsections.

3.2.2.1 Sample Selection

In this experiment, we crawled bug reports from the Bugzilla repository provided
by Lamkanfi, Pérez and Demeyer (2013) and bug reports from the Apache Jira repository (Apache
Software Foundation, 2021). Only the detailed descriptions of the bug reports were consid-
ered data to be processed. The information from the collections of texts used in the exper-
iments are summarized and presented in Tables 2 and 3. The description of the software
and the total number of documents of the datasets are presented. The number of documents
per class type of each collection is also presented. This information is also important in
assessing whether the number of labeled examples and/or unbalanced classes can impact

3.2. Experiment Design 53

the classification performance. Pre-processed texts and other information are available at
<http://sites.labic.icmc.usp.br/ipm/msr-sbrp>.

Table 2 – Descriptions of collections of texts from Bugzilla repository (Severity Type: BL = Blocker,
CR = Critical, MA = Major, NO = Normal, MI = Minor, TR = Trivial).

Software # Docs Distribution of Classes by Severity Type
BL CR MA NO MI TR

Eclipse-CDT 5640 78 166 490 4547 275 84
Eclipse-JDT 10814 94 274 1000 8306 781 359
Eclipse-PDE 5655 47 117 476 4693 208 114
Eclipse-Platform 24775 415 989 2718 18891 1088 674
Mozilla-Bugzilla 4616 275 176 506 2478 766 415
Mozilla-Thunderbird 19237 65 1894 2982 12429 1415 452

Source: Research data.

Table 3 – Descriptions of collections of texts from Apache Jira repository (Severity Type: BL = Blocker,
CR = Critical, MA = Major, MI = Minor, TR = Trivial).

Software # Docs Distribution of Classes by Severity Type
BL CR MA MI TR

Apache-Abdera 180 7 8 124 34 7
Apache-Ambira 11592 798 2873 7633 245 43
Apache-Open-JPA 2440 72 144 1750 428 46

Source: Research data.

3.2.2.2 Pre-processing

In pre-processing, the following tasks are performed: document preparation, term ex-
traction and attribute selection, and generation of a structured representation of the appropriate
document collection for the pattern extraction methods. For the document preparation, the fol-
lowing tasks were carried out: standardization, removal of stopwords, stemming, and selection of
unigrams as terms. To answer the second research question, two measures were used to evaluate
the weight of the terms: (i) binary which considers only if the term is present or not in each
document (ii) frequency which considers the number of times that the term is present in each
document. Only terms with frequencies greater than two were considered.

Regarding the representation of the text collection, two representations were used:
(i) vector space model, the bag-of-words (BoW) (TAN; STEINBACH; KUMAR, 2005) and
(ii) bipartite heterogeneous network (ROSSI; LOPES; REZENDE, 2016). Bag-of-words is a
document-term matrix, where each row represents a document, each column represents a term
(word) present in the document collection, and each cell contains a measure. In this work, two
measures: (i) zero or one, that indicates presence or absence of the word in the document, and (ii)

http://sites.labic.icmc.usp.br/ipm/msr-sbrp

54
Chapter 3. Improving predicting the severity of bug reports with semi-supervised learning and

heterogeneous networks

frequency that contains the number of times of the word in the respective document. An example
is presented in Figure 10 (a).

Formally, a bipartite heterogeneous network can be defined as N = (𝒪,ℰ ,𝒲), in which
𝒪 represents two sets of network objects (also called vertices or nodes), ℰ represents the set of
connections (also called relations or links) which occurs just from objects of one set to another
set, and 𝒲 represents the weights of the connections. In this study, 𝒪 is composed of the sets of
documents 𝒟 and set of terms 𝒯 . ℰ is composed of eij connections that represent the presence of
the term tj in the di, 0 < i ≤ ∣𝒟∣ and 0 < j ≤ ∣𝒯 ∣, and the weights of the connections are binary
or frequency.

Figure 10 (b) presents an example of the representation using a bipartite heterogeneous
network model. Each description of the bug reports extracted from the BTS repositories is
considered a document in this study. Each word is considered a term. The weight is considered
binary (zero or one) or the frequency of the terms.

Figure 10 – Structured text representations.

(a) Bag-of-words (BoW)

(b) Bipartite heterogeneous network

Source: Adapted from Rossi (2015), Yugoshi (2018).

The text classification algorithms based on BoW ignore the dependence among the
documents or terms (ROSSI; LOPES; REZENDE, 2016). Thus, in general, these algorithms
present worst performance than algorithms based on networks that use label propagation to
disseminate labels from labeled objects to other objects by network connections (ROSSI; LOPES;
REZENDE, 2016; ROSSI; LOPES; REZENDE, 2014; ZHOU et al., 2003).

3.2. Experiment Design 55

3.2.2.3 Pattern Extraction

In this activity, the main supervised and semi-supervised learning methods were used.
Regarding the supervised learning methods, the following approaches were used: probabilistic
(NB and MNB), statistical learning (SVM), decision trees (J48), and distance (kNN). Regarding
the semi-supervised learning methods, the following algorithms were used: GNetMine, LPBHN,
TCBHN, TM, and EM.

3.2.2.4 Post-processing

In this activity, an experimental evaluation is carried out, in which the feasibility and
impact of the use of semi-supervised learning in the severity prediction of bug report and the
impact of the weight of the terms in the text representation are analyzed.

To compare the results of the classification, the measure F1 representing the harmonic
mean of the Precision and Recall measurements were used, where both measures have the same
weight (see Equation 3.2).

F1
= 2∗

Precision∗Recall
Precision+Recall

(3.2)

Precision and Recall were calculated for each class in multi-class assessment. The
formula for computing the Precision and Recall of a class ci are given in Equations 3.3 and 3.4,
respectively:

Precisionci =
T Pci

T Pci +FPci

(3.3)

Recallci =
T Pci

T Pci +FNci

(3.4)

where T P (True Positive) means the number of test documents correctly assigned to class ci, FP

(False Positive) means the number of test documents from class c j (c j ≠ ci) but assigned to class
ci, and FN (False Negative) is the number of test documents from class ci but assigned to class
c j (c j ≠ ci).

The Precision measure returns the percentage of documents correctly classified as
ci considering all documents classified as ci. The Recall measure returns the percentage of
documents correctly classified as ci considering all documents which actually belong to class ci.

Two strategies to summarize the results of precision and recall computed for each class
of a text collection are: (i) micro-averaging and macro-averaging (SOKOLOVA; LAPALME,
2009). The micro-averaging strategy performs a sum of the terms of the evaluation measures.

56
Chapter 3. Improving predicting the severity of bug reports with semi-supervised learning and

heterogeneous networks

Therefore, the precision and recall using the micro-averaging strategy are defined by Equa-
tions 3.5 and 3.6, respectively.

PrecisionMicro
=

∑ci∈𝒞 T Pci

∑ci∈𝒞(T Pci +FPci)
, (3.5)

RecallMicro
=

∑ci∈𝒞 T Pci

∑ci∈𝒞(T Pci +FNci)
. (3.6)

The macro-averaging strategy performs an average over the evaluations measures for
each class. Therefore, the precision and recall using macro-averaging strategy are:

PrecisionMacro
=

∑ci∈𝒞 Precisionci

∣𝒞∣ , (3.7)

RecallMacro
=

∑ci∈𝒞 Recallci

∣𝒞∣ . (3.8)

Micro-averaging scores are dominated by the number of T P. Therefore, large classes
dominate small classes in micro-averaging scores. On the other hand, macro-averaging gives
equal weight to each class. In this case, the number of T P in small classes is emphasized in
macro-averaging scores. These two strategies present different scores and are complementary to
each other. F1 computed through micro-averaging of precision and recall is denoted by Micro-F1,
and through macro-averaging by Macro-F1.

Firstly carried out a 10-fold cross-validation process to obtain Micro-F1 and Macro-

F1. For each training set (9 folds), ten runs were carried out to induce a classification model
considering N randomly selected labeled documents in each run. In this study was considered N =

{1%,10%,20%,30%,40%,50%,60%,70%,80%,90%}. This variation in the number of labeled
documents allowed us to demonstrate better the behavior of the algorithms for different numbers
of labeled documents, a trade-off between the number of labeled documents and classification
performance, and the differences among the inductive supervised learning algorithms and
semi-supervised learning algorithms when increasing the number of labeled documents. The
remaining training examples were considered as unlabeled examples for semi-supervised learning
algorithms. Thus, 100 executions were carried out, and an accuracy value was obtained in each
execution. The final Micro-F1 and Macro-F1 values presented in the next section were an average
of the 100 values obtained in the 10-fold cross-validation.

3.3 Operation of the Experiment
The inductive supervised learning algorithms, quoted in Subsection 3.2.2.3, were per-

formed for analysis and comparison with semi-supervised learning. This comparison also allows

3.3. Operation of the Experiment 57

analyzing whether using unlabeled documents improves classification performance. In this
study was used the implementations available in the Weka tool to evaluate the execution of the
supervised algorithms (FRANK; HALL; WITTEN, 2016). The parameters and considerations of
the inductive algorithms of supervised learning are listed below.

• Naïve Bayes (NB): default setting.

• Multinomial Naïve Bayes (MNB): default setting.

• Support Vector Machine (SVM): three types of kernel were considered: Linear, Polyno-
mial (exponent = 2) and RBF (Radial Basis Function). Since the parameter C is real and
positive, some authors set these values as 10Y . For each type of kernel was considered
Y = {−5,−4,−3,−2,−1,0,1,2,3,4,5}.

• J48: in this decision tree algorithm, the value 0.25 was used for the parameter confidence

factor.

• k-NN: in this algorithm was considered k = {7,17,37,57} (ROSSI et al., 2014). Also, it
was considered k-NN algorithm without and with a weighted vote, which gives for each
of the nearest neighbors a weighted vote equal to (1− s), where s is a similarity measure
among neighbors. Cosine was adopted as a similarity measure.

Semi-supervised learning algorithms based on the bipartite heterogeneous network model
were used. The algorithms and their parameters are in Rossi, Lopes and Rezende (2016). All
the iterative solutions were used for all the iterative solutions algorithms (GNetMine, LPBHN,
TCBHN and TM). The maximum number of iterations was set to 1000. The parameters and
considerations of the semi-supervised algorithms used in these experiments are defined as
follows:

• GNetMine: it used α = {0.1,0.3,0.5,0.7,0.9}.

• Label Propagation using Bipartite Heterogeneous Networks (LPBHN): this is a parameter-
free semi-supervised learning algorithm.

• Tag-based Model (TM): it used β = {0.1,1,10,100,1000}, and γ = {0.1,1,10,100,1000}.

• Transductive Categorization based on Bipartite Heterogeneous Networks (TCBHN):
the iterative solution of TCBHN used is presented in Rossi et al. (2014). This iterative
solution has two parameters η (error correction rate) and ε (minimum squared error). This
algorithm used η = {0.01, 0.05,0.1,0.5}, ε = 0.01, 10 as the maximum number of global
iterations and 100 as maximum number of local iterations, which gives a total of 1000
iterations.

• Expectation Maximization (EM): in this algorithm, it is necessary to define the parameter
λ (weight of unlabeled examples during semi-supervised learning) and the number of

58
Chapter 3. Improving predicting the severity of bug reports with semi-supervised learning and

heterogeneous networks

component for each class. This algorithm used λ = {0.1,0.3,0.5,0.7,0.9} and 1, 2, 5, 10
components for each class.

3.4 Analysis and Discussion of the Results

The analysis of the experimental results considers two aspects: (i) the effectiveness of
semi-supervised classification methods, i.e., the effect of the number of labeled examples for the
classification of severity of bug reports (related to the RQ1), and (ii) the overall impact of the
term weighting strategy (binary or frequency) to represent the texts about the severity of bug
reports (related to the RQ2). These aspects are related to the research questions presented in
Section 3.2.1.

3.4.1 Answer to RQ1: effectiveness of classifiers

Regarding the first aspect, this study uses the best configurations of each method for each
dataset by varying the number of labeled examples. The graphs of Figure 11 present the results
obtained for the classification of severity type using the representation of texts considering the
presence or absence of terms (binary) in the documents. Figure 12 presents the results obtained
using the representation of texts considering the frequency of the terms in the documents. In
Figures 11 and 12, the solid lines indicate the results of the supervised methods, and the dashed
lines indicate the semi-supervised methods.

For most methods, the number of labeled examples has a limited impact, i.e., a slight
improvement in classification performance often does not justify the effort to use a more
significant number of labeled examples. In general, the experimental results suggest the use of
20% of labeled samples was sufficient to stabilize classification performance for most classifiers
(see Figures 11 and 12). Supervised classifiers, especially SVM and J48, were exceptions since
they significantly improved the classification of bug report severity as the number of examples
increased. However, it is important to argue that, in practical scenarios, there is not a large set of
labeled examples due to the (human) effort to validate the training set. Thus, the next steps of the
experimental analysis are based on 20% of labeled examples.

A statistical analysis was performed to compare the significance of the classification
performance (Micro-F1 and Macro-F1) of the best configurations of each classifier. Tables 4,
and 6 present the results of Micro-F1 for each classifier in each dataset. Also, Tables 5, and 7
present the results of Macro-F1 for each classifier in each dataset. In Tables 4, 5, 6, and 7 cells
with bold values indicate the best performance for a given dataset. The non-parametric Friedman
test with Nemenyi post-hoc tests was used to compare multiple classifiers over multiple datasets.
This procedure is considered the most robust strategy to compare several classifiers (DEMsAR,
2006; GARCIA; HERRERA, 2008), and the results were analyzed with 95% confidence level
(α = 0.05).

3.4. Analysis and Discussion of the Results 59

Table 4 – Micro-F1 classification results for each classifier in each dataset with binary-based term weight-
ing.

Dataset J48 KNN MNB NB SVM EM GNetMine LPBHN TagBased TCBHN
Eclipse-CDT 0.166 0.196 0.194 0.231 0.303 0.756 0.804 0.804 0.804 0.766
Eclipse-JDT 0.177 0.178 0.179 0.203 0.311 0.736 0.767 0.766 0.767 0.740
Eclipse-PDE 0.102 0.202 0.171 0.212 0.335 0.784 0.828 0.828 0.828 0.798
Eclipse-Platform 0.219 0.175 0.180 0.211 0.246 0.735 0.761 0.761 0.761 0.742
Mozilla-Bugzilla 0.254 0.224 0.244 0.267 0.272 0.513 0.558 0.533 0.566 0.501
Mozilla-Thunderbird 0.172 0.222 0.223 0.241 0.250 0.604 0.647 0.643 0.648 0.642
Apache-Abdera 0.736 0.373 0.443 0.453 0.762 0.377 0.662 0.665 0.665 0.562
Apache-Ambira 0.224 0.254 0.239 0.255 0.373 0.619 0.658 0.658 0.658 0.630
Apache-OpenJPA 0.350 0.261 0.260 0.299 0.316 0.687 0.726 0.719 0.738 0.708

Source: Research data.

Table 5 – Macro-F1 classification results for each classifier in each dataset with binary-based term
weighting.

Dataset J48 KNN MNB NB SVM EM GNetMine LPBHN TagBased TCBHN
Eclipse-CDT 0.198 0.210 0.209 0.211 0.262 0.201 0.160 0.159 0.182 0.228
Eclipse-JDT 0.200 0.211 0.212 0.211 0.211 0.197 0.153 0.147 0.171 0.204
Eclipse-PDE 0.191 0.208 0.208 0.210 0.218 0.191 0.159 0.158 0.175 0.192
Eclipse-Platform 0.200 0.217 0.217 0.216 0.224 0.220 0.159 0.151 0.210 0.222
Mozilla-Bugzilla 0.297 0.263 0.282 0.317 0.323 0.313 0.277 0.167 0.340 0.347
Mozilla-Thunderbird 0.229 0.242 0.246 0.249 0.256 0.250 0.210 0.133 0.221 0.257
Apache-Abdera 0.203 0.183 0.193 0.188 0.231 0.196 0.206 0.191 0.204 0.208
Apache-Ambira 0.232 0.254 0.259 0.258 0.255 0.230 0.174 0.162 0.212 0.254
Apache-OpenJPA 0.288 0.316 0.309 0.317 0.411 0.313 0.300 0.250 0.375 0.425

Source: Research data.

Table 6 – Micro-F1 classification results for each classifier in each dataset with frequency-based term
weighting.

Dataset J48 KNN MNB NB SVM EM GNetMine LPBHN TagBased TCBHN
Eclipse-CDT 0.117 0.185 0.193 0.227 0.262 0.753 0.804 0.804 0.804 0.767
Eclipse-JDT 0.177 0.182 0.177 0.214 0.276 0.731 0.767 0.766 0.767 0.739
Eclipse-PDE 0.110 0.194 0.171 0.218 0.280 0.781 0.828 0.828 0.828 0.798
Eclipse-Platform 0.219 0.175 0.186 0.189 0.300 0.732 0.761 0.761 0.761 0.742
Mozilla-Bugzilla 0.253 0.223 0.244 0.257 0.250 0.511 0.558 0.533 0.566 0.501
Mozilla-Thunderbird 0.201 0.211 0.220 0.231 0.289 0.592 0.647 0.643 0.648 0.641
Apache-Abdera 0.736 0.370 0.449 0.436 0.730 0.368 0.662 0.665 0.665 0.557
Apache-Ambira 0.224 0.247 0.241 0.249 0.338 0.609 0.658 0.658 0.659 0.629
Apache-OpenJPA 0.350 0.263 0.264 0.300 0.320 0.685 0.726 0.719 0.737 0.708

Source: Research data.

60
Chapter 3. Improving predicting the severity of bug reports with semi-supervised learning and

heterogeneous networks

Figure 11 – Results with binary term weighting.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Eclipse-CDT (binary)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Eclipse-CDT (binary)

(a) Eclipse-CDT (bin)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Eclipse-JDT (binary)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Eclipse-JDT (binary)

(b) Eclipse-JDT (bin)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Eclipse-PDE (binary)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Eclipse-PDE (binary)

(c) Eclipse-PDE (bin)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Eclipse-Platform (binary)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Eclipse-Platform (binary)

(d) Eclipse-Platform (bin)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Mozilla-Bugzilla (binary)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Mozilla-Bugzilla (binary)

(e) Mozilla-Bugzilla (bin)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Mozilla-Thunderbird (binary)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Mozilla-Thunderbird (binary)

(f) Mozilla-Thunderbird (bin)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Apache-Abdera (binary)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Apache-Abdera (binary)

(g) Apache-Abdera (bin)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Apache-Ambira (binary)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Apache-Ambira (binary)

(h) Apache-Ambira (bin)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Apache-OpenJPA (binary)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Apache-OpenJPA (binary)

(i) Apache-OpenJPA (bin)

Source: Research data.

3.4. Analysis and Discussion of the Results 61

Figure 12 – Results with frequency term weighting.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Eclipse-CDT (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1
% Labeled Examples

Eclipse-CDT (frequency)

(a) Eclipse-CDT (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Eclipse-JDT (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Eclipse-JDT (frequency)

(b) Eclipse-JDT (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Eclipse-PDE (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Eclipse-PDE (frequency)

(c) Eclipse-PDE (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Eclipse-Plataform (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90
M

ic
ro

 F
1

% Labeled Examples

Eclipse-Plataform (frequency)

(d) Eclipse-Platform (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Mozilla-Bugzilla (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Mozilla-Bugzilla (frequency)

(e) Mozilla-Bugzilla (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Mozilla-Thunderbird (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Mozilla-Thunderbird (frequency)

(f) Mozilla-Thunderbird (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Apache-Abdera (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Apache-Abdera (frequency)

(g) Apache-Abdera (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Apache-Ambira (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Apache-Ambira (frequency)

(h) Apache-Ambira (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ic

ro
 F

1

% Labeled Examples

Apache-OpenJPA (frequency)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 20 30 40 50 60 70 80 90

M
ac

ro
F

1

% Labeled Examples

Apache-OpenJPA (frequency)

(frequency)

(i) Apache-OpenJPA (frequency)

Source: Research data.

62
Chapter 3. Improving predicting the severity of bug reports with semi-supervised learning and

heterogeneous networks

Figure 13 – Critical difference diagram to compare statistical significance between multiple classifiers for
datasets with binary-based term weighting.

1 2 3 4 5 6 7 8 9 10

TagBased
GNetMine

LPBHN
TCBHN

EM SVM
NB
J48
MNB
KNN

CD

(a) Critical difference diagram Micro-F1 measure

1 2 3 4 5 6 7 8 9 10

SVM
TCBHN

NB
MNB

EM KNN
TagBased
J48
GNetMine
LPBHN

CD

(b) Critical difference diagram Macro-F1 measure

Source: Elaborated by the author.

Table 7 – Macro-F1 classification results for each classifier in each dataset with frequency-based term
weighting.

Dataset J48 KNN MNB NB SVM EM GNetMine LPBHN TagBased TCBHN
Eclipse-CDT 0.196 0.206 0.208 0.208 0.247 0.204 0.160 0.159 0.182 0.229
Eclipse-JDT 0.201 0.209 0.212 0.210 0.211 0.196 0.154 0.147 0.171 0.203
Eclipse-PDE 0.189 0.208 0.207 0.210 0.213 0.191 0.159 0.158 0.174 0.192
Eclipse-Platform 0.200 0.217 0.217 0.215 0.222 0.219 0.160 0.151 0.212 0.222
Mozilla-Bugzilla 0.295 0.261 0.280 0.303 0.319 0.312 0.279 0.167 0.339 0.346
Mozilla-Thunderbird 0.229 0.237 0.245 0.243 0.264 0.249 0.210 0.133 0.220 0.257
Apache-Abdera 0.203 0.182 0.193 0.188 0.218 0.198 0.207 0.191 0.207 0.207
Apache-Ambira 0.231 0.253 0.260 0.253 0.254 0.238 0.174 0.162 0.216 0.252
Apache-OpenJPA 0.288 0.314 0.310 0.317 0.397 0.311 0.300 0.250 0.374 0.427

Source: Research data.

Figures 13 (a), 13 (b), 14 (a), and 14 (b) present a graphical analysis of the statistical test
called the critical difference diagram (DEMsAR, 2006). In these diagrams, the classifiers are
sorted according to their position in the overall classification performance ranking. If there is no
statistically significant difference between two classifiers, then they are connected by a line.

Considering the Micro-F1 measure, the semi-supervised Tag-based Model (TagBased)
network-based algorithm obtained the first position in the ranking. In addition, the TagBased
algorithm showed better results than all supervised algorithms with statistically significant
differences (see Figures 14 (a)), except SVM (see Figures 13 (a)).

Statistical analysis reveals that the semi-supervised classifiers obtain competitive results
concerning the supervised classifiers for both evaluation measures (Micro-F1 and Macro-F1)
and term-weighting techniques. This result is promising for research involving the prediction
of bug report severity. It indicates that it is appropriate to obtain a small set of expert-labeled
examples to predict a large set of bug reports. The transductive classifiers TCBHN and TagBased
proved to be efficient considering both labeled examples and unlabeled examples during the
classifier learning process.

Thus, in relation to the first research question (Do semi-supervised learning methods

perform better to support Severity Bug Report Prediction than supervised learning methods?),

3.4. Analysis and Discussion of the Results 63

the experimental analysis allows us to conclude that semi-supervised classification is more
recommended for the task classifying the severity of bug reports. Even without achieving a
statistically superior performance in all scenarios, the TCBHN and TagBased classifiers presented
a stable classification performance in several datasets. Therefore, its viability is recommended
for future research in the area. On the other hand, if there is a requirement to use a supervised
classification method, the SVM classifier is recommended, which obtained competing results
even with few labeled examples.

Figure 14 – Critical difference diagram to compare statistical significance between multiple classifiers for
datasets with frequency-based term weighting.

1 2 3 4 5 6 7 8 9 10

TagBased
GNetMine

LPBHN
TCBHN

EM SVM
NB
J48
MNB
KNN

CD

(a) Critical difference diagram Micro-F1 measure

1 2 3 4 5 6 7 8 9 10

SVM
TCBHN

MNB
NB
EM KNN

TagBased
J48
GNetMine
LPBHN

CD

(b) Critical difference diagram Macro-F1 measure

Source: Elaborated by the author.

3.4.2 Answer to RQ2: impact of strategies to represent the text

Regarding the second aspect of the experimental evaluation, this study uses the best
classification results for each dataset according to the term-weighting technique (binary or
frequency). Thus, it is possible to directly evaluate which term-weighting technique is most
effective for learning classifiers in the severity of the bug report domain.

Figure 15 presents a general comparison of each term-weighting technique for all datasets
considering both F1-Micro and F1-Macro measures, respectively. The two techniques were
statistically compared by means of an analysis of variance. For the choice of the most appropriate
statistical test, it was verified that the experimental results are not normally (Gaussian) distributed.
Therefore, the use of a non-parametric test is recommended. The Wilcoxon test was used, which
is distribution free and powerful to compare two techniques over multiple datasets (DEMsAR,
2006; GARCIA; HERRERA, 2008). In this sense, a statistical analysis of these results based on
Wilcoxon’s non-parametric test reveals no statistically significant difference between the two
term weighting techniques (with 95% of confidence).

According to the second research question (Does term weighting (binary or frequency)

in text representations impact on performance in Severity Bug Report Prediction?), the choice of
the term weighting technique can be done based on another requirement, such as interpretability
of the representation or the text pre-processing time, since they do not affect the classification
performance.

64
Chapter 3. Improving predicting the severity of bug reports with semi-supervised learning and

heterogeneous networks

Figure 15 – General comparison of the classification performance for each term weighting technique.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Binary X Frequency Term Weighting - Micro F1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Binary X Frequency Term Weighting - Macro F1

Source: Elaborated by the author.

3.5 Threats to Validity

The threats to validity of the results of this study are classified into four types:

• Construct validity: Construct validity is about obtaining the right measure and whether it
was defined the proper scope about what is considered an empirical study. It is possibility
incorrectly use the data and the treatments in this study but, to minimize this threat, it is
necessary to select a traditional dataset and the comparison strategy of ML methods from
previous work (LAMKANFI; PÉREZ; DEMEYER, 2013).

• Internal validity: As only bug reports with “resolved” status were selected (because they
represent bug reports that span the entire lifecycle), the proposed prediction model did
not consider an immature bug report, such as those newly created by stakeholders. This
restriction may have an impact on the performance of the proposed model.

• External validity: The results of this study can not be generalized to proprietary software
since only Open Source software projects were analyzed. Since all the bug reports used in
this study were extracted from the main repositories (Bugzilla and Jira), the results of the
present study can not be generalized to other software projects.

• Reliability: About the possibility of replication of this study. All datasets and settings of
machine learning algorithms are publicly available.

3.6 Final Remarks

The bug report is an essential source of information to support the process of software
evolution. However, because registration and manipulation of bug reports are done manually, and
those responsible for registration are not experts, it is only natural that misclassification errors

3.6. Final Remarks 65

occur. For example, when the users maintain the severity attribute value with the default value
offered by the BTS during the registration. This misclassification in the repositories increases
the number of unlabelled bug reports.

Because of this problem, this chapter presents a comparative study between the ap-
proaches of supervised and semi-supervised learning in the context of the prediction of bug
report severity.

As a summary, our contributions in this chapter are as follows:

• To the best of our knowledge, this experimental study is the first work on the application
of semi-supervised classifier and data representation based on two-way heterogeneous
networks in severity prediction of bug reports.

• 20% of the labeled samples were sufficient to stabilize the performance of most classifiers.
A large number of labels caused a slight improvement in the performance of the classifiers.

• Semi-supervised classifiers obtained competitive results relative to supervised classifiers
regardless of the number of labeled examples.

• Regarding the term weighting techniques, there is no statistically significant difference
between the two techniques. Therefore, they do not impact on performance classifier.

This chapter considered the impact of semi-supervised methods only on the non-binary
severity bug report prediction. One possibility of future work is evaluating semi-supervised
methods’ performance in the binary severity bug report prediction (severe or non-severe).

Considering this context, as future work, the impact of the following activities on the
performance of binary classification could be investigated:

1. evaluate the use of class balancing techniques;

2. use techniques to enrich text representations; and

3. uses proprietary product data to compare the behavior of prediction models used in another
context.

67

CHAPTER

4
BULNER: BUG LOCALIZATION WITH

WORD EMBEDDINGS AND NETWORK
REGULARIZATION

Bug localization (BL) from bug reports is an expensive step in the software life cycle
because of the manual localization process. For example, the Mozilla project receives almost 300
bug reports per day, and each one needs a manual triage. Also, often, a bug report (84-93% of
bugs) impacts one or a few files (THUNG et al., 2014). A family of bug localization techniques
uses Information Retrieval (IR). IR-based bug localization tool suggests defective parts of a
software system by automatically relating a bug report’s vocabulary and associated source code
files. IR often uses Vector Space Model (VSM) but, due to VSM limitations, recent studies apply
distributional semantics of words (RAHMAN; ROY, 2018).

The high severity levels (i.e., Blocker, Critical or Major) correctly assigned to bug reports
impact major functionalities of an application. In general, when IR-based bug localization tools
are applied on high severity bugs, they tend to find the exact faulty source files. That happens
because such bugs often contain highly relevant words in their description (LE; THUNG; LO,
2017). Also, the severity of a bug report defines how quickly the developers need to identify
where the bug is located in a software product to be fixed (TAN et al., 2020).

In this chapter, BULNER is presented, an IR-based bug localization method, which
stands for BUg Localization with word embeddings and NEtwork Regularization. Barbosa et al.

(2019) reported the content of this chapter.

BULNER considers both word embedding features of bug reports and features extracted
from project source file metrics. These features were combined in an information network
proposed in BULNER. It is presented a network regularization-based machine learning method
that obtains a more appropriate representation model for identifying potential buggy files from
bug report texts. This research answers the following research questions: RQ1 - How effective

68 Chapter 4. BULNER: BUg Localization with word embeddings and NEtwork Regularization

is BULNER? RQ2 - What is the contribution of each model? It was carried out an experi-
mental evaluation using three well-known real-world datasets. BULNER is competitive with
two other state-of-the-art methods. The experimental results indicate that combining different
representation models, such as information networks and the vector-space model, is a promising
method.

This chapter is organized as follows. Section 4.1 contains relevant concepts associated
with bug localization data model representation. Also, this section presents the state of the art
of bug localization. Section 4.2 presents the proposed method (BULNER), while Section 4.3
presents the experimental evaluation. Section 4.4 discusses our results and presents the threats to
the validity of this proposed method. Finally, Section 4.5 presents our conclusions.

4.1 Bug Localization Data Model Representation

Bug localization has been modeled as an information retrieval task, where the bug report
is treated as a query, and sources code files that conform to the system are documents. The
goal is to select the files that better match the query based on a defined similarity measure. The
effectiveness of the similarity measure depends on the text representation model of bug reports,
often based on Bag-of-Words (BoW) and Word Embeddings (WEmb).

In bug localization context, each source code is defined as weights’ vector in BoW, and
they use cosine similarity function to identify closely related vector. Zhou, Zhang and Lo (2012)
define BugLocator, an IR-based bug localization method based on the revised Vector Space
Model. From the initial bug report, BugLocator applies textual similarity using similar bugs’
information that was fixed before. Then, it ranks all suspicious source files (ZHOU; ZHANG;
LO, 2012).

WEmb are a mapping table from words to continuous vectors (e.g., vec(“dog”) = [0.8,
0.3, 0.1], vec(“cat”) = [0.7, 0.5, 0.1] , vec(“pasta”) = [0.2, 0.1, 0.7]). In this example, the
first parameter of each word represents some kind of animal. We could calculate the semantic
similarity between words by cosine similarity and consequently calculate the similarity between
sentences or entire documents. To obtain each above vector, it is used Skip-gram model proposed
in the word2vec method for language modeling (MIKOLOV et al., 2013b). It is an unsupervised
method that defines each word meaning in its context (e.g., context(“dog”) = [“Pet,” “tail,”
“smell,”], context(“cat”) = [“pet,” “tail,” “home”]). Two sets of context words may also have
common concepts. According to the distributional hypothesis, we can estimate how close these
two words are to each other by comparing with other words in the same context (MIKOLOV et

al., 2013b).

Ye et al. (2016) use word embedding to train on software documents (API documents,
reference documents, and tutorials). First, they adapt the Skip-gram model and aggregated
software documents to estimate their semantic similarities. Then, from an initial bug report

4.2. Proposed Method 69

(query document), the bug localization model computes the ranking score for all source code (Ye
et al., 2016).

4.2 Proposed Method
In this section, it is introduced a new method for Bug Localization, called BULNER.

This method innovates by considering the semantic content of bug reports through language
models and source code content through software metrics. Figure 16 shows an overview of
the BULNER method. The method has two stages: (1) language modeling and (2) network
regularization. Given a new bug report, BULNER identifies the most similar bug reports and
the source code files that probably contain the related bug. While the BULNER’s first stage
enables more accurate computation of the similarity between bug reports, the second performs
fine-tuning of the language model by considering relationships between bug reports, source code
files, and code metrics.

Figure 16 – An overview of the BULNER.

Source: Barbosa et al. (2019).

Unlike existing methods that calculate the similarity between bug reports through key-
words or language models, BULNER learns a new vector space model to directly compares
bug reports and source code files. We call this new vector space Bug-Code Vector Space Model.

70 Chapter 4. BULNER: BUg Localization with word embeddings and NEtwork Regularization

Moreover, our method allows the inclusion of domain information, such as code metrics, during
the learning process of this vector space model.

The first stage of the BULNER method uses a neural network. The primary purpose of
this stage is to learn word vector representations from a sizeable textual dataset of the software
engineering domain. For example, the term ‘abort’ has the following correlated terms in the
language model used in BULNER: ‘interrupted,’ ‘terminate,’ ‘halt,’ ‘timed-out,’ and ‘exit.’ The
BULNER method uses the language model based on the skip-gram model trained over 15GB
of textual data from Stack Overflow posts, as proposed in Efstathiou, Chatzilenas and Spinellis
(2018). The output of the skip-gram model is a representation called word embedding, where
each term t contains a representation Y(t) in the d-dimensional vector space, i.e., Y(t) ∈ Rd .

The second stage of the BULNER method uses network regularization to perform the
fine-tuning of the model obtained in the first stage. Given a bug reports dataset, we propose a
heterogeneous network-based representation N = (O,R,W), where O represents a set of objects
oi of the network, R represents a set of relations roi,o j between objects, and W represents a set
of weights wroi,o j

of the relations. We organize the set of network objects into four different
types O = {OB,OT ,OS,OM}, where OB are objects that identify each bug report, OT are terms t

extracted from textual data of the bug reports, OS are source files related to bug reports, and OM

are code metrics (discretized into intervals) computed from the source code files.

The general idea of network regularization is to obtain a new representation F ∈ Rd in
the d-dimensional vector space model, which satisfies two assumptions: (1) two objects oi and o j

that share neighbors in the network must have similar vector representation, i.e., F(oi) ∼ F(o j),
and (2) term-type objects in the network must have vector representation similar to the word
embedding representation, i.e., F(t) ∼ Y(t).

It is inspired by the theoretical regularization framework of Ji et al. (2010). In Equa-
tion 4.1 we propose a regularization function for the BULNER method, where the goal is to
minimize the function according to a representation model F for all objects of the network, given
a word embedding Y. Equation 4.1 uses a regularization function similar to LPBHN (Equa-
tion 2.4 on Page 37) (ROSSI; LOPES; REZENDE, 2014; ZHU; GHAHRAMANI; LAFFERTY,
2003).

Q(F) =
{OB,OT ,OS,OM}

∑
Oi,O j

1
2 ∑

oi∈Oi

∑
o j∈O j

wroi ,o j
∣F(oi)−F(o j)∣2

+ lim
µ→∞

µ ∑
t∈OT

∣F(t)−Y(t)∣2 (4.1)

The first term of the regularization function is responsible for the first assumption, in
which related objects must have similar representations to minimize the distance wroi,o j

∣F(oi)−
F(o j)∣2. Regarding the second assumption, the proposed regularization function ensures that the
d-dimensional representation of a term will remain the same as the word embedding representa-
tion, i.e., limµ→∞ µ ∑t∈OT

∣F(t)−Y(t)∣2.

4.3. Experimental Evaluation 71

In practical terms, we can minimize the regularization function of Equation 4.1 by using
label (information) propagation techniques. In this case, BULNER initializes the representation
of the term type objects according to word embedding Y, whereas the representation of the
remaining objects of the network can be randomly initialized. In each iteration, BULNER
propagates the information of the term objects (i.e., WEmb) to the objects of the bug report
type. The information is then propagated from bug reports to source code files objects and
then to objects representing code metrics. The information is propagated back and each object
oi ∈ O adjusts its F(oi) representation. This process continues until there are no more significant
changes in the F representation or until it reaches a maximum number of iterations, i.e., until
the convergence of the BULNER method in which F is the learned representation for bug-code
vector space model.

After the regularization process, we can directly compute the similarity between a bug
report object ob ∈ OB and a source code type object os ∈ OS as defined in the cosine similarity
of Equation 4.2.

cos(ob,os) =
F(ob) ⋅F(os)

∥F(ob)∥∥F(os)∥
(4.2)

sim(rnew,rtrain) = (1−α)BOW(rnew,rtrain)+αBULNER(rnew,rtrain) (4.3)

A new bug report can be represented in the bug-code space vector through the word
embedding of its terms and thus obtain a representation F(ob). Equation 4.3 defines a new
similarity function for bug localization in BULNER, which is a linear combination of similarity
between bug reports in the BoW model and similarity in the Bug-Code Vector Space model since
new bug reports contain only textual information. While one can define the BoW function as
the cosine similarity between bug report keywords, the BULNER function represents the cosine
similarity between the bug report representation F(ob) and the source code file F(os) (Equation
4.2). The α parameter is a combination factor that allows defining the weight of the bug-code
vector space model in the new similarity function, which can be estimated empirically. We use
this new similarity function to calculate the scores for source files potentially related to the new
bug reports.

4.3 Experimental Evaluation

We conducted this experiment to evaluate the application of word embeddings and
Network Regularization on three open source projects in context of bug localization. The
overview of the experiment is presented in this section.

72 Chapter 4. BULNER: BUg Localization with word embeddings and NEtwork Regularization

4.3.1 Definition of Research Question

This experiment compares BULNER with two different models based on BoW. The
hypothesis is based on the fact that BULNER uses a data representation that values the rela-
tionships between different objects through a HEN. The assumption is that the bug localization
data representation based on HEN enriches the representational model. Consequently, it offers a
performance gain over BoW-based representational models.

In particular, this study seeks to answer the following research questions:

• RQ1: How effective is BULNER?

• RQ2: What is the contribution of each model?

4.3.2 Experiment Definition

We defined our experiment as follows (WOHLIN et al., 2012):

• analyze network regularization-based machine learning method,

• for the purpose of evaluating bug localization,

• with respect to model performance,

• from the point of view of the researcher,

• in the context of open source projects.

4.3.3 Dataset

To evaluate our approach, we obtained data from three open source projects: AspectJ,
Birt, and Tomcat. We extracted bug report data associated with each project from the Bugzilla
repository provided by Ye, Bunescu and Liu (2014), while we mined each project’s repository
(located in GitHub) to obtain software metrics. For each bug report, we checked out a before-fix
version of the source code from Github. Then, we used Understand™1 to calculate different
software metrics (object oriented, volume and complexity metrics). Appendix A presents details
from software metrics used.

1 Understand™: <https://scitools.com/>.

https://scitools.com/

4.4. Results and Discussion 73

4.3.4 Baselines

We consider two methods in the literature for experimental evaluation. The first uses
only the BoW model and cosine similarity to retrieve similar bug reports and related source
files (ZHOU; ZHANG; LO, 2012). The second combines the BoW model and WEmb models (Ye
et al., 2016).

4.3.5 Evaluation Metrics

We use Mean Average Precision (MAP) as an evaluation criterion. Equation 4.4 calculates
the precision in identifying NP buggy files, given a maximum value of k recommendations.
Equation 4.5 calculates the precision average, where NPI is the total number of positive instances.
Equation 4.6 calculates the MAP, where M is the total of bug reports. We use MAP with
k = {1,5,10}, presented as MAP@1, MAP@5 and MAP@10.

P(k) = NP
k

(4.4) AP =
N

∑
i=1

P(i)
NPI (4.5) MAP =

1
M

M

∑
j=1

AP(j) (4.6)

4.4 Results and Discussion

This section presents the results of the proposed method for each research question and
threats to validity.

4.4.1 RQ1: How effective is BULNER?

Table 8 shows the best method’s performance (max MAP performance independent
of combination factor) for the three datasets. The results suggest that BULNER is the best
method for the three datasets. BULNER achieves this result by combining BoW with WEmb
and Network Regularization. It receives as input a heterogeneous network (N), and it treats each
type of object and link separately. Moreover, BULNER minimizes classification error when
preserving consistency for each relation graph (R) by applying graph regularization (JI et al.,
2010). However, a statistical analysis of the results (Student’s t-Tests with 95% confidence) does
not allow us to state that the BULNER method is significantly superior to other methods, mainly
due to the few datasets used in the experimental evaluation.

Table 8 – MAP Performance Comparison with the State-of-the-art Methods.

AspectJ Tomcat Birt
Methods MAP@1 MAP@5 MAP@10 MAP@1 MAP@5 MAP@10 MAP@1 MAP@5 MAP@10
BoW+Cosine 0.1185 0.1738 0.1879 0.2121 0.2908 0.3017 0.0900 0.1372 0.1477
Embedding 0.1185 0.1738 0.1811 0.2134 0.2908 0.3001 0.0928 0.1402 0.1504
Bulner 0.1390 0.1913 0.2059 0.2201 0.2952 0.3078 0.0968 0.1420 0.1525

Source: Barbosa et al. (2019).

74 Chapter 4. BULNER: BUg Localization with word embeddings and NEtwork Regularization

Table 9 presents the comparison between the best Bulner’s performance and the approach
of Ye, Bunescu and Liu (2014). Bulner uses the extended dataset by Ye, Bunescu and Liu (2014)
with software metrics, but it does not outperform the approach of Ye, Bunescu and Liu (2014).
Unlike text tokens appearing in bug reports and software metrics, Ye, Bunescu and Liu (2014)
correlate all text tokens appearing in bug reports and souce code files (YE; BUNESCU; LIU,
2014).

Table 9 – MAP Performance Comparison with the approach of Ye, Bunescu and Liu (2014).

AspectJ Tomcat Birt
Methods MAP MAP MAP
Approach of Ye, Bunescu and Liu (2014) 0.25 0.49 0.15
Bulner 0.20 0.31 0.15

Source: Ye, Bunescu and Liu (2014), Barbosa et al. (2019).

4.4.2 RQ2: What is the contribution of each method?

We evaluate the contributions of each method by the combination factor (α). In Figure 17,
when α=0, all methods have the performance equal to baseline (BoW+Cosine), but when we
increment α , each method has different behavior. In general, BULNER has better performance
for: AspectJ when 0.15 < α < 0.3; Birt when α = 0.1 and Tomcat when 0.05 < α < 0.1. These
variations between software project occur because each one has its context.

4.4.3 Threats to Validity

Regarding Internal validity, as only bug reports with “resolved” status were selected
(because they represent bug reports that span the entire life cycle), the proposed model did not
consider an immature bug report, such as those newly created by stakeholders. This restriction
may have an impact on the performance of the proposed model. Furthermore, regarding External
validity, the results of this study can not be generalized to proprietary software since only Open
Source software projects were analyzed. Finally, concerning Conclusion validity, we choose
the dataset provided by Ye, Bunescu and Liu (2014) that is largely used to maximize the quality
of the data collected.

4.5 Final Remarks
We proposed a method for BUg Localization with word embeddings and NEtwork

Regularization, which locates bugs in terms of source files from bug reports and source code data.
Our method is competitive with two other state-of-the-art methods. BULNER is very promising.
In one case, it can recommend the 30% suspicious file within top 5 for one bug report.

Bug localization is interconnected with severity bug report prediction and other activities
related to the resolution of bug reports (e.g., fixer recommendation). Then, approaches that

4.5. Final Remarks 75

Figure 17 – Methods’ performance. ▲ BULNER; ● BoW+Cosine; ◆ Embedding.

Combination Factor

M
AP

@
1

0,050

0,075

0,100

0,125

0,150

0 0,1 0,2 0,3 0,4 0,5

(a) AspectJ (MAP@1)

Combination Factor

M
AP

@
1

0,05

0,06

0,07

0,08

0,09

0,10

0 0,1 0,2 0,3 0,4 0,5

(b) Birt (MAP@1)

Combination Factor

M
AP

@
1

0,17

0,18

0,19

0,20

0,21

0,22

0,23

0 0,1 0,2 0,3 0,4 0,5

(c) Tomcat (MAP@1)

Combination Factor

M
AP

@
5

0,100

0,125

0,150

0,175

0,200

0 0,1 0,2 0,3 0,4 0,5

(d) AspectJ (MAP@5)

Combination Factor

M
AP

@
5

0,050

0,075

0,100

0,125

0,150

0 0,1 0,2 0,3 0,4 0,5

(e) Birt (MAP@5)

Combination Factor
M

AP
@

5

0,25

0,26

0,27

0,28

0,29

0,30

0 0,1 0,2 0,3 0,4 0,5

(f) Tomcat (MAP@5)

Combination Factor

M
AP

@
10

0,100

0,125

0,150

0,175

0,200

0,225

0 0,1 0,2 0,3 0,4 0,5

(g) AspectJ (MAP@10)

Combination Factor

M
AP

@
10

0,050

0,075

0,100

0,125

0,150

0,175

0 0,1 0,2 0,3 0,4 0,5

(h) Birt (MAP@10)

Combination Factor

M
AP

@
10

0,24

0,26

0,28

0,30

0,32

0 0,1 0,2 0,3 0,4 0,5

(i) Tomcat (MAP@10)

Source: Barbosa et al. (2019).

integrate these activities could help software managers’ decisions making in the maintenance
process.

For future works, we intend to compare our work with different types of network embed-
ding methods, for example, advanced information preserving network embedding. Additionally,
we plan to extend our dataset with source code change genealogy and evaluate the impact on
the performance of the methods. Our BULNER source code, as well as the datasets used, are
publicly available at https://github.com/jacsonrbinf/bulner.

77

CHAPTER

5
A FRAMEWORK TO SUPPORT THE BUG

REPORT RESOLUTION PROCESS WITH
HETEROGENEOUS INFORMATION

NETWORK

The manual execution of bug report resolution (BRR) activities takes much time from
the stakeholders involved in the development process. It can also generate rework, for example,
when the correct severity or bug report fixer does not occur.

To automate BRR activities, software engineers may use machine learning algorithms to
automate the severity analysis (Ramay et al., 2019; LAMKANFI et al., 2010), to recommend bug
fixers (MANI; SANKARAN; ARALIKATTE, 2019; ČUBRANIć, 2004), and to localize bugs in
a code base (LAM et al., 2017). In general, they use textual attributes of software artifacts (e.g.,
bug reports or source code) as input to machine learning models.

The aforementioned three activities related to the resolution of bug reports are intercon-
nected. However, the existing approaches handle those activities in an isolated and disconnected
way. Consequently, software managers and the quality assurance team do not have a global
view of BRR activities in this context. Then in an isolated and disconnected way, they could
have difficulty in decision making in planning maintenance activities. Moreover, automatic BRR
activities increase productivity (ZHOU et al., 2016).

The existing approaches also define machine learning models that use representations
with a data source, called a monomodal perspective (e.g., a representation that uses only bug
reports). Consequently, such approaches ignore the semantic dependency between different data
sources and information related to the domain (Hoang et al., 2019). On the other hand, the
multimodal perspective (e.g., representation that using bug reports and program blocks) employs
the enrichment of the domain representation with data from different sources (Hoang et al.,

78
Chapter 5. A framework to support the bug report resolution process with heterogeneous information

network

2019).

Faced with the gaps mentioned above, this chapter proposes HENBUR (HEterogeneous
information Network to support the BUg report Resolution process). This approach proposes a
holistic solution for the three activities of the BRR process (bug report severity prediction, fixer
recommendation, and bug localization). HENBUR uses a multimodal perspective (representation
using bug reports and software metrics) implemented with a heterogeneous information network
(HEN).

HEN is an alternative that allows multimodal perspective representation. Heterogeneous
information networks represent different objects and their respective relationships in the same
structure. HEN has been applied in other domains and has offered competitive results compared
to traditional data representations (Shi et al., 2017). Recent studies have shown promising
results for text classification through HEN (ROSSI; LOPES; REZENDE, 2016; ROSSI; LOPES;
REZENDE, 2014).

The main contributions of this chapter are summarized as follows:

• a holistic multimodal approach to improve the bug resolution process;

• use of the heterogeneous information network as a generator of features for bug resolution
process;

• availability of implementations of BRR activities (severity bug report prediction, fixer
recommendation, and bug localization) in Python programming language; and

• experimental results of the impact of HEN representation on bug report resolution process.

The remainder of this chapter is organized as follows. The overview about HENBUR
is presented in Section 5.1. Section 5.2 presents the design of the conducted experiment to
validate this approach, while Section 5.3 presents the validation results. Section 5.4 presents a
description of the threats to the validity of this investigation. Finally, conclusions are presented
in Section 5.5.

5.1 Embedding-based Multimodal Framework with a Het-
erogeneous Information Network to Support Bug Re-
port Resolution

This section presents a general framework to support bug report resolution called HEN-
BUR (HEterogeneous information Network to support the BUg report Resolution process). As
shown in Figure 18, HENBUR is capable of: (i) representing different types of information and
relationships between software artifacts from software repositories through nodes and edges in

5.1. Embedding-based Multimodal Framework with a Heterogeneous Information Network to Support
Bug Report Resolution 79

a heterogeneous network; and (ii) learning an embedding model that maps all network nodes
into a unified m-dimensional vector-space representation. We show that HENBUR is useful for
generating rich features to be incorporated into traditional classification and ranking methods,
thereby improving bug severity prediction models, fixer recommendation, and bug localization
models.

Figure 18 – Data flow diagram for HENBUR.

Source: Elaborated by the author.

80
Chapter 5. A framework to support the bug report resolution process with heterogeneous information

network

5.1.1 Heterogeneous Information Network for Bug Report Resolu-
tion

First, we introduce our heterogeneous network as a representation model for the different
information from software repositories (e.g., Bugzilla and GitHub repositories). In particular, we
consider the following objects and relationships:

• Bug reports – nodes that refer to fixed bug reports.

• Source code files – nodes that correspond to each source code file associated with bug
report status changes to the status resolved fixed, verified fixed, or closed fixed.

• Software metrics – nodes that represent different metrics calculated from each source
code file. HENBUR includes the following types of metrics (GÓMEZ et al., 2008): Object
Oriented (e.g., Depth of Inheritance Tree), Structured (e.g., Source Lines of Code), and
Complexity (e.g., Cyclomatic Complexity). We normalized each metric from numeric
measures to label (e.g., lv0, lv1, and lv2).

• Developers – nodes that correspond to the last developer that fixed each bug report. We
obtained this information from source code repository.

• Textual data – nodes that represent terms and expressions extracted from bug reports.
Such nodes play an essential role in HENBUR; word vectors of these textual data are
propagated to other nodes through a network regularization method proposed herein.

The relationships in the heterogeneous information network have different meanings
according to the nodes involved:

• We connect bug reports with textual information to indicate that specific terms and expres-
sions are associated with bug reports.

• Source code files are connected to each bug report to reflect the software maintenance and
evolution.

• Source code files are also connected to nodes representing different metrics of software.

• Nodes representing developers are connected to bug reports to indicate the associated
developers’ engagement during the correction of a bug.

Figure 19 illustrates the conceptual model of the proposed heterogeneous information
network. We divide each type of object into layers (represented by box in Figure 19) and add
edges relating to objects (e.g., A.java, Bug 9 and Fefo) from different layers.

5.1. Embedding-based Multimodal Framework with a Heterogeneous Information Network to Support
Bug Report Resolution 81

Figure 19 – Heterogeneous information network for bug report resolution knowledge representation.

Source: Elaborated by the author.

Formally, our heterogeneous network is represented by N = (O,R,W), where O repre-
sents a set of objects oi of the network, R represents a set of relations roi,o j between objects, and
W represents a set of weights wroi,o j

of the relations.

We organize the set of network objects into five different types O= {OB,OT ,OS,OM,OD},
where OB are objects that identify each bug report, OT are terms t extracted from textual data
of the bug reports, OS are source code files related to bug reports, OM are software metrics
(discretized into intervals) computed from the source code files, and OD represents developers.

5.1.2 Train Embedding

This phase of the HENBUR uses a neural network to learn word vector representations
from a textual dataset of the software engineering domain. As proposed by Efstathiou, Chatzilenas
and Spinellis (2018), HENBUR uses the language model based on the skip-gram model trained
over 15GB of clean textual data from the support forum Stack Overflow (posts’ data).

Efstathiou, Chatzilenas and Spinellis (2018) use skip-gram model to represent each word
(called word embedding) based on the distributional hypothesis (HARRIS, 1954; MIKOLOV et

82
Chapter 5. A framework to support the bug report resolution process with heterogeneous information

network

al., 2013a), where each term t contains a representation Y(t) in the d-dimensional vector space,
i.e., Y(t) ∈ Rd .

5.1.3 Network Regularization

A heterogeneous information network for bug report resolution is challenging: (i) some
data objects could have the label information, and (ii) respect type differences among relation-
ships and objects while mining HEN. Networking regularization is one alternative to address
these challenges (JI et al., 2010).

Ji et al. (2010) defined a network regularization framework that treats each information
(object and relation) separately in a heterogeneous network. Therefore, it preserves different
semantic meanings in heterogeneous networks. This framework uses transductive classification
to find the hidden structure of the information network (JI et al., 2010).

Based on this regularization framework, we propose a network regularization in which
the word vectors obtained from the train embedding phase are defined as vector information
in the regularization process. Then, in each iteration of Algorithm 1, network nodes propagate
their information vectors to neighboring nodes until the process converges (when there is no
significant change in information vectors throughout the network).

The general idea of network regularization is to obtain a new representation F ∈ Rd in
the d-dimensional vector space model, which satisfies two assumptions: (i) two objects oi and o j

that share neighbors in the network must have similar vector representation, i.e., F(oi) ∼ F(o j),
and (ii) term-type objects in the network must have vector representation similar to the word
embedding representation, i.e., F(t) ∼ Y(t). In Equation 5.1 we propose the regularization
function, where the goal is to minimize the function according to a representation model F for
all objects of the network, given a textual word embedding Y.

Q(F) = 1
2 ∑

ot∈OT

∑
ob∈OB

wrot ,ob
∣F(ot)−F(ob)∣2

+
1
2 ∑

os∈OS

∑
ob∈OB

wros,ob
∣F(os)−F(ob)∣2

+
1
2 ∑

os∈OS

∑
om∈OM

wros,om
∣F(os)−F(om)∣2

+
1
2 ∑

od∈OD

∑
ob∈OB

wrod ,ob
∣F(od)−F(ob)∣2

+ lim
µ→∞

µ ∑
ot∈OT

∣F(ot)−Y(ot)∣2

(5.1)

Given Oi,O j ⊂ {OB,OT ,OS,OM,OD} , the first four terms of the regularization function
are responsible for the first assumption, in which related objects must have similar representations

5.2. Experiment Design 83

to minimize the distance wroi,o j
∣F(oi)−F(o j)∣2. Regarding the second assumption, the proposed

regularization function ensures that the d-dimensional representation of a term will remain the
same as the textual embedding model, i.e., as defined in Equation 5.2.

lim
µ→∞

µ ∑
ot∈OT

∣F(ot)−Y(ot)∣2
(5.2)

Algorithm 1 – HENBUR Label Propagation Algorithm
Input: O,Y,W,D
Output: F

1 begin
2 P ← (D−1) ⋅W

3 repeat
4 while Oi,O j ⊂ {OB,OT ,OS,OM,OD} do
5 F(Oi,O j)← P(Oi,O j) ⋅F(Oi,O j)

6 F(OT)← Y(OT)

7 end
8 until convergence or other stop condition;
9 end

10 return F

5.2 Experiment Design
To evaluate the approach presented in this chapter, we conducted a quasi-experiment (a

type of empirical study where the assignment of treatments to subjects is not random) (WOHLIN
et al., 2012). To do so, we followed the guidelines proposed by Wohlin et al. (2012). The
experimental design is detailed in the remainder of this section.

5.2.1 Definition of Research Question

Our work investigates how to integrate and reuse different software artifacts in a mul-
timodal holistic way to support the BRR process. In this paper, we addressed the following
research questions:

• RQ1: What is the practical significance of the HENBUR to the bug report resolution
process?

• RQ2: How can the HEN representation improve bug report severity prediction?

• RQ3: How can the HEN representation improve fixer recommendation?

• RQ4: How can the HEN representation improve bug localization?

84
Chapter 5. A framework to support the bug report resolution process with heterogeneous information

network

5.2.2 Experiment Definition

We defined our experiment as follows (WOHLIN et al., 2012):

• analyze HENBUR framework,

• for the purpose of evaluating bug report severity prediction, fixer recommendation, and

bug localization,

• with respect to model performance,

• from the point of view of the researcher,

• in the context of open source projects.

5.2.3 Preparation and Planning

This section presents the experiment planning steps executed: sample selection, descrip-
tion of the experimental package, the definition of variables, and general design principles.

5.2.3.1 Sample Selection

To validate our approach, we used data from six popular open source projects: AspectJ,
Birt, Eclipse Platform UI (UI), Eclipse JDT (JDT), Eclipse SWT (SWT), and Tomcat. All of them
come from the collected dataset by Ye, Bunescu and Liu (2014). Some previous studies also used
these benchmark datasets (LAM et al., 2015; Ye et al., 2016; LAM et al., 2017; POLISETTY;
MIRANSKYY; BAsAR, 2019).

Table 10 presents the following data for the open source projects included in our ex-
periment: the number of bug reports (Reports), the number of severe bug reports (Severe), the
number of fixer bugs (Assignees), the average fixing time by bug report (Fixing time) and the
date interval (Duration) by software project.

Table 10 – Bug report data used in our experiments.

Project # Reports Severe (# / %) # Assignees Fixing time (days) Duration
AspectJ 593 111 / 18.72 9 53 2002-03-13 ∼2013-12-04
Birt 4178 789 / 18.88 74 30.55 2005-06-14 ∼2013-11-20
UI 6495 1010 / 15.55 152 99.42 2001-10-10 ∼2013-12-17
JDT 6274 630 / 10.04 55 96.96 2001-10-10 ∼2014-01-03
SWT 4151 764 / 18.41 42 87.6 2002-02-19 ∼2014-01-17
Tomcat 1056 113 / 10.70 20 115.7 2002-07-06 ∼2013-08-12

Source: Research data.

5.2.3.2 Experimental Package

In our quasi-experiment, we have three objects:

5.2. Experiment Design 85

• bug report severity prediction;

• fixer recommendation; and

• bug localization.

The experiment package is publicly available at GitHub1. It has the following documents:

• Description of the benchmark dataset: The experiment package describes all the informa-
tion used by each object.

• Definition of the objects: We used the Python programming language to define each object.
The source code is publicly available on GitHub.

• Description of the hyper-parameters for each Machine learning classification algorithms:
We chose six supervised classification algorithms (k-nearest neighbor (kNN), Support

Vector Machines (SVM), Decision tree (DT), Random forest (RF), Multinomial Naïve

Bayes (MNB) and Multi-layer Perceptron (MLP)), which are used in the state of the art to
support bug report severity prediction and fixer recommendation.

5.2.3.3 Variables

Data representation is the independent variable (factor) controlled in our experiment.
This independent variable assumes two values (HEN and BoW). Treatments are a combination
of each data representation with: (i) six supervised classification algorithms to support bug report
severity prediction and fixer recommendation tasks and (ii) euclidean distance ranking to support
bug localization tasks.

The model performance is the dependent variable that is affected by the treatment. We
use two sets of evaluation metrics to compare the model performance of our approach with other
techniques: (i) Macro-averaged F1-score (Macro-F1) for multi-class classification context to
evaluate bug report severity prediction and fixer recommendation tasks and (ii) Mean Average
Precision (MAP) to evaluate only bug localization tasks.

Macro-F1 representing the harmonic mean of the PrecisionMacro and RecallMacro mea-
surements was used, where both measures have the same weight (see Equation 5.3) (SOKOLOVA;
LAPALME, 2009).

Macro−F1
= 2∗

PrecisionMacro∗RecallMacro

PrecisionMacro+RecallMacro (5.3)

1 https://github.com/jacsonrbinf/henbur

86
Chapter 5. A framework to support the bug report resolution process with heterogeneous information

network

The Macro-F1 metric uses macro-averaging strategy. This strategy performs an average
over the evaluations measures for each class. Then in Equations 5.4 and 5.5, respectively, we
have precision and recall using macro-averaging strategy (ROSSI; LOPES; REZENDE, 2016):

PrecisionMacro
=

∑ci∈𝒞 Precisionci

∣𝒞∣ , (5.4)

RecallMacro
=

∑ci∈𝒞 Recallci

∣𝒞∣ . (5.5)

Precision (see Equation 3.3) and Recall (see Equation 3.4) were calculated for each class
in multi-class assessment.

Macro-averaging gives equal weight to each class. In this case, the number of T P in
small classes is emphasized in macro-averaging scores.

To compare bug localization tasks’ model performance, we use Mean Average Precision
(MAP) as an evaluation criterion. We use MAP (see Equation 4.6) with k = {1,5,10}, presented
as MAP@1, MAP@5 and MAP@10.

5.2.3.4 Experimental Design

In this experiment, we have one factor (data representation) and seven treatments (six
supervised classification algorithms and euclidean distance ranking algorithm) with crossover
(WOHLIN et al., 2012).

Table 11 – Experimental design (Legend: Rep = Representation).

Baselines (Control) Treatments
Bug report resolution tasks Rep Method Rep Method
Bug report severity prediction BoW Supervised machine learning HEN Supervised machine learning
Fixer recommendation BoW Supervised machine learning HEN Supervised machine learning
Bug localization BoW Euclidean Distance Ranking HEN Euclidean Distance Ranking

Source: Elaborated by the author.

Table 11 presents the employed experimental design in our study for each open source
project.

5.2.4 Operation of the Experiment

We extended benchmark datasets from chapter 4 with bug fixers information. Also, we
replicated the same information extraction techniques for three additional projects provided
by Ye, Bunescu and Liu (2014): Eclipse Platform UI, Eclipse JDT, and Eclipse SWT.

We obtained the bug report data related to the aforementioned projects from the Bugzilla
repository provided by Ye, Bunescu and Liu (2014). They collected only bug reports with status

5.3. Results and Analysis 87

marked as resolved fixed, verified fixed, or closed fixed. Furthermore, Ye, Bunescu and Liu
(2014) applied Dallmeier and Zimmermann’s heuristic to connect bug reports and their associated
correction files (DALLMEIER; ZIMMERMANN, 2007).

To obtain software metrics for each correction files, we checked out a before-fix version
of each project’s source code (from Github). Then, we used Understand™ to calculate different
software metrics (object-oriented, structured, and complexity metrics).

5.2.5 Data Analysis

For the analysis, we consider each algorithm’s best-case by fold, i.e., we consider the
highest model performance value obtained by each algorithm. We use the Wilcoxon (Wilcoxon
matched-pairs test) statistical test to compare HENBUR with the baseline’s algorithms according
to the measure (Macro-F1 or MAP) (DEMsAR, 2006). We consider p-values = 0.05 as a threshold,
and we used the Wilcoxon test with Bonferroni-Holm correction method (de Oliveira Neto et al.,
2019).

Also, we use a critical difference diagram to compare model performance. It corresponds
to a graphic illustration of the statistical test result (Friedman’s test with Nemenyi’s post-
test) (DEMsAR, 2006).

de Oliveira Neto et al. (2019) argues that the effect size measure is the first step in
presenting practical significance for a new proposal for industry professionals (de Oliveira Neto
et al., 2019). In the context of software engineering, many studies use the Â12 metric by Arcuri
and Briand (2011).

In our study, Â12(T,B) estimates the probability of the T (treatment) algorithm that uses
representation based on heterogeneous networks to obtain a better result than the B algorithm
(baseline) (VARGHA; DELANEY, 2000). When Â12(T,B) = 0.5, T and B are equivalent. But
when Â12(T,B) > 0.5, for example, Â12(T,B) = 0.6 means that the T algorithm is better than
the B algorithm 60% of the time.

According to Hess and Kromrey (2004), when Â12(T,B) > 0.5, we define the effect
size’s magnitude: negligible (N), small (S), medium (M), large (L).

5.3 Results and Analysis

This section presents the experiment results and analysis concerning the research ques-
tions.

88
Chapter 5. A framework to support the bug report resolution process with heterogeneous information

network

5.3.1 RQ1 - Practical Significance

In Tables 12, 13, and 14 present the values of Â12(T,B) for bug report severity prediction,
fixer recommendation and bug localization, respectively. In each tables effect size’s magnitude
in brackets.

Table 12 – Vargha-Delaney effect size for bug report severity prediction.

Product DT kNN MLP RF SVM-L MNB
AspectJ 0.7654 (L) 0.5432 (N) 0.8518 (L) 0.8024 (L) 0.9135 (L) 0.6666 (M)
Birt 0.7037 (M) 0.6172 (S) 0.7654 (L) 0.8148 (L) 1 (L) 0.9876 (L)
Eclipse Platform UI 0.8148 (L) 0.5555 (N) 0.8518 (L) 0.9629 (L) 1 (L) 1 (L)
JDT 0.9382 (L) 0.8148 (L) 0.8888 (L) 1 (L) 1 (L) 0.3333 (M)
SWT 0.6419 (S) 0.3950 (S) 0.7901 (L) 0.9259 (L) 0.9876 (L) 1 (L)
Tomcat 1 (L) 0.7654 (L) 0.7654 (L) 0.9259 (L) 0.9629 (L) 0.8395 (L)

Source: Research data.

The Vargha–Delaney Â12(T,B) effect size shows large or medium differences in 31
out of 36 comparisons (i.e., 86.11% of the cases) in favour of our heterogeneous networks
representation for bug report severity prediction (see Table 12).

Table 13 – Vargha-Delaney effect size for fixer recommendation.

Product DT kNN MLP RF SVM-L MNB
AspectJ 0.6172 (S) 0.6543 (S) 0.4567 (N) 0.5617 (N) 0.5246 (N) 0.5061 (N)
Birt 0.5308 (N) 0.4691 (N) 0.6296 (S) 0.9382 (L) 1 (L) 0.5185 (N)
Eclipse Platform UI 0.5308 (N) 0.3086 (M) 0.6913 (M) 0.5432 (N) 1 (L) 0.4074 (S)
JDT 0.6666 (M) 0.3950 (S) 0.6543 (S) 0.8271 (L) 1 (L) 0.3209 (M)
SWT 0.6049 (S) 0.5432 (N) 0.5061 (N) 0.9135 (L) 1 (L) 0.3333 (M)
Tomcat 0.5925 (S) 0.5432 (N) 0.6666 (M) 0.5370 (N) 0.5925 (S) 0.5308 (N)

Source: Research data.

The Vargha–Delaney Â12(T,B) effect size shows large or medium differences in 13 out
of 36 comparisons (36.11%) in favor of heterogeneous networks representation for fixer recom-
mendation (see Table 13). Only in 7 out of 36 comparisons (19.44%) the BoW representation
obtains greater values than HEN.

Table 14 – Vargha-Delaney effect size for bug localization.

Product K=1 K=5 K=10
AspectJ 0.6296 (S) 0.6049 (S) 0.5925 (S)
Birt 0.5740 (S) 0.5925 (S) 0.5802 (S)
Eclipse Platform UI 0.5123 (N) 0.5555 (N) 0.5432 (N)
JDT 0.5432 (N) 0.5555 (N) 0.5555 (N)
SWT 0.5308 (N) 0.4938 (N) 0.4938 (N)
Tomcat 0.4938 (N) 0.5555 (N) 0.5061 (N)

Source: Research data.

For bug localization task, we obtained a greater effect size in 15 out of 18 comparisons
in favor of heterogeneous networks representation (see Table 14). On the other hand, only in 3
out of 18 comparisons (16.66%) the BoW representation obtains greater values than HEN.

5.3. Results and Analysis 89

Answer : Our HENBUR framework performs better than traditional monomodal repre-
sentation (BoW) for three bug report resolution activities.

5.3.2 RQ2 - Bug Report Severity Prediction

In Tables 15, 16 and 17, the symbol ▲ indicates that HENBUR has the best result,
with statistical significance; △ indicates that HENBUR has the best result, without statistical
significance; ▼ indicates that HENBUR has the worst result, with statistical significance; ▽
indicates that HENBUR has the worst result, without statistical significance.

The representation based on heterogeneous networks shows higher performance (accord-
ing to the measure Macro-F1) than the BoW representation for bug report severity prediction
(Table 15). For most projects, the classification algorithms showed statistically higher perfor-
mance results in the HEN representation. The HEN representation obtained a lower performance
for the JDT (MNB classifier) and SWT (KNN classifier) projects.

According to Gomes, Torres and Côrtes (2019), in most studies that used machine
learning algorithms to support bug report severity prediction, the MNB classifier with BoW
performed better. However, the MLP classifier based on heterogeneous representation networks
(MLP(HEN)) performed better in our experiment. This can be seen in Figure 20.

Figure 20 illustrates the average ranking of each algorithm, with the MLP (HEN), DT
(HEN), and KNN (HEN) algorithms being in the first, second, and third positions of the ranking,
respectively. The SVM algorithm based on BoW is in the last position. Therefore, the algorithms
connected by the same line do not present statistically significant differences.

Figure 20 – Critical difference diagram to compare statistical significance between multiple classifiers for
bug report severity prediction.

Source: Elaborated by the author.

Answer : HEN representation combined with MLP classifier is the leader ranking for
bug report severity prediction, but without statistical significance in our study.

5.3.3 RQ3 - Fixer Recommendation

The classification algorithms based on heterogeneous networks also obtained higher
performance (according to the measure Macro-F1) with the BoW-based algorithms for the

90
Chapter 5. A framework to support the bug report resolution process with heterogeneous information

network

Table
15

–
R

esults
ofthe

statisticaltests
forbug

reportseverity
prediction.

D
T

kN
N

M
L

P
R

F
SV

M
-L

M
N

B
Project

B
oW

H
E

N
B

oW
H

E
N

B
oW

H
E

N
B

oW
H

E
N

B
oW

H
E

N
B

oW
H

E
N

A
spectJ

0.1959
▲

0.2653
0.2083

△
0.2124

0.1801
▲

0.2326
0.1679

▲
0.2191

0.1196
▲

0.1799
0.1598

△
0.1822

B
irt

0.2383
▲

0.2621
0.2391

△
0.2503

0.2156
▲

0.2727
0.1383

▲
0.1543

0.1386
▲

0.185
0.1388

▲
0.1884

U
I

0.2062
△

0.2318
0.2382

△
0.2464

0.2137
▲

0.2902
0.1476

▲
0.1664

0.1447
▲

0.2132
0.1471

▲
0.2111

JD
T

0.1765
▲

0.2528
0.2129

▲
0.2474

0.2203
▲

0.3181
0.1224

▲
0.1954

0.1101
▲

0.2631
0.1972

▽
0.1496

SW
T

0.2469
▲

0.2649
0.2697

▽
0.2647

0.247
▲

0.3222
0.1456

▲
0.1645

0.1449
▲

0.2753
0.1447

▲
0.2388

Tom
cat

0.1309
▲

0.2155
0.1713

▲
0.2259

0.1814
▲

0.2153
0.1392

▲
0.2101

0.0998
▲

0.1726
0.1241

▲
0.1686

Source:R
esearch

data.

5.4. Threats to Validity 91

fixer recommendation (Table 16). However, the KNN (HEN) had a lower performance than the
baseline for most projects.

Figure 21 illustrates the average ranking of each algorithm using the critical difference
diagram. The MLP (HEN), SVM (HEN), MNB (HEN), and KNN (HEN) algorithms are in
the first, second, third, and fourth positions of the ranking, respectively. However, there are no
statistically significant differences between the machine learning algorithms that use the two
data representations.

Figure 21 – Critical difference diagram to compare statistical significance between multiple classifiers for
fixer recommendation.

Source: Elaborated by the author.

Answer : HEN representation combined with MLP classifier had the best performance
for fixer recommendation, but without statistical significance in our study.

5.3.4 RQ4 - Bug Localization

According to Table 17, bug localization (with K = 1) using HEN representation (HEN@1)
achieves better performance (according to the measure MAP) than BoW representation for all
projects. Also, bug localization (with K = 5) using HEN representation (HEN@5) achieves
significantly better results for most projects.

When evaluating the contribution factor (α) for each method (see Figure 22), the method
using HEN representation obtains a result equal to BoW when α=0. On the other hand, each
method has a different performance when α is incremented. For example, the HEN@1 has better
performance for UI project when 0 < α < 0.06.

Answer : The use of HEN representation (with K=1 and K=5) for bug localization had
the best in our study.

5.4 Threats to Validity

In this section, we present the threats to the validity of our experiment. The threats
identified are discussed concerning four validity types: construct validity, internal validity,
external validity, and conclusion validity (WOHLIN et al., 2012).

92
Chapter 5. A framework to support the bug report resolution process with heterogeneous information

network

Table
16

–
R

esults
ofthe

statisticaltests
forfixerrecom

m
endation.

D
T

kN
N

M
L

P
R

F
SV

M
-L

M
N

B
Project

B
oW

H
E

N
B

oW
H

E
N

B
oW

H
E

N
B

oW
H

E
N

B
oW

H
E

N
B

oW
H

E
N

A
spectJ

0.1268
△

0.1323
0.1127

▲
0.126

0.1255
▽

0.1137
0.1646

▲
0.1811

0.161
△

0.1743
0.1663

△
0.1713

B
irt

0.0329
△

0.0351
0.045

▽
0.0439

0.0406
▲

0.0517
0.0065

▲
0.0174

0.0027
▲

0.0429
0.0321

△
0.0337

U
I

0.0065
△

0.0066
0.0130

▼
0.0104

0.0075
▲

0.0098
0.0012

▲
0.0014

0.0012
▲

0.0075
0.0037

▽
0.0028

JD
T

0.0248
▲

0.0267
0.0343

▽
0.0324

0.0344
△

0.0381
0.0093

▲
0.0128

0.0091
▲

0.0282
0.0174

▽
0.0144

SW
T

0.04065
△

0.0436
0.04074

△
0.0419

0.056
△

0.0584
0.0198

▲
0.0288

0.0167
▲

0.0499
0.1447

△
0.2388

Tom
cat

0.1007
▲

0.106
0.0951

△
0.1013

0.0977
△

0.1044
0.0979

△
0.0987

0.0979
△

0.1027
0.1241

△
0.1686

Source:R
esearch

data.

5.4. Threats to Validity 93

Table 17 – Results of the statistical tests for bug localization.

K=1 K=5 K=10
Project BoW HEN BoW HEN BoW HEN
AspectJ 0.05857 ▲ 0.07015 0.06719 ▲ 0.07675 0.07362 ▲ 0.08207
Birt 0.04426 ▲ 0.04626 0.04793 ▲ 0.05001 0.05175 ▲ 0.05358
UI 0.03373 △ 0.03453 0.04492 △ 0.04536 0.04925 △ 0.04961
JDT 0.07804 ▲ 0.08301 0.08483 ▲ 0.08788 0.09182 ▲ 0.095
SWT 0.08662 △ 0.0872 0.1158 ▽ 0.1157 0.126 ▽ 0.1257
Tomcat 0.08813 △ 0.08894 0.096 ▲ 0.09779 0.1015 △ 0.1024

Source: Research data.

5.4.1 Construct Validity

Construction Validity regards the relationship between theory and observation, i.e., if the
treatment reflects the cause well, the result reflects the effect well (WOHLIN et al., 2012). Our
study aims to evaluate the performance of models that support bug report resolution. We chose
the Macro-F1 metric as an alternative to compare the bug report severity prediction and fixer
recommendation models since the Macro-F1 is recommended for problems that have unbalanced
classes (CHOEIKIWONG; VATEEKUL, 2016). When the model wrongly classifies the most
frequent class or rarest class, the metrics give the same weight to both.

5.4.2 Internal Validity

Inferences about the causal relationship between treatment and outcome are considered
by internal validity (JONSSON et al., 2016; WOHLIN et al., 2012). In our study, all classification
algorithms run with the same data pre-processing. Also, we use the default setting for each
classifier. Then, no classifier benefited from special pre-processing steps or tuning settings.

5.4.3 External Validity

External validity is the capacity to generalization our experimental results (WOHLIN
et al., 2012). We obtained data from six open source projects. These projects also use GIT as a
version control system and Bugzilla as their bug tracking system. However, our study could not
be generalized to large-scale industrial settings because we did not use data from proprietary
software.

5.4.4 Conclusion Validity

Conclusion validity refers to correct inference about the relationship between treatment
and experimental result (WOHLIN et al., 2012). To increase the measure’s reliability in our
study, we chose only objective measures with the independent variable. Furthermore, we also
increase the reliability of treatment implementation because we apply similar treatments (same
HEN structure) to all subjects.

94
Chapter 5. A framework to support the bug report resolution process with heterogeneous information

network

Figure 22 – Contributions of each method by the combination factor.

(a) AspectJ (b) Birt

(c) UI (d) JDT

(e) SWT (f) Tomcat

(g) Legend

Source: Elaborated by the author.

5.5 Final Remarks

This Chapter proposes a new approach based on a heterogeneous information network to
support the bug report resolution, focusing on severity prediction, fixer recommendation, and
bug localization. We combine software metrics with bug report metadata and textual data to
build a heterogeneous information network.

The results of this quasi-experiment using data from six open source projects indicate

5.5. Final Remarks 95

that: (i) HENBUR performs better than traditional monomodal representation (BoW); (ii) HEN
representation combined with MLP classifier is the leader ranking for bug report severity
prediction and fixer recommendation, but without significance in our study; and (iii) the use of
HEN representation (with K=1 and K=5) for bug localization had the best in our study.

The overall conclusion is that HENBUR is a promising alternative for the BRR process’s
automation. Since when combining different software artifacts, HENBUR extracts valuable
knowledge to support software test managers making decisions.

We also plan to extract data from proprietary software repositories to analyze HENBUR
results in the industry in future work. Also, we intended to investigate the impact of HEN on
other BRR activities, for example, identify the bug type (CATOLINO et al., 2019).

97

CHAPTER

6
CONCLUSION

Due to the high cost of manual software fault correction, many methodologies, techniques,
and tools have been defined and proposed to minimize fault correction costs.

The previous studies investigate the applicability of artificial intelligence techniques
to BRR activities’ automation strategies. For example, using machine learning algorithms to
define predictive models to support bug report resolution activities. However, most studies
use software information representations in a monomodal perspective (that is, they use only a
software artifact). Also, they do not consider the interdependence between BRR activities.

The research problem addressed in this thesis involves the lack of studies that support
the combination of different software artifacts to propose a unified representation that enables
the automation of bug report resolution activities.

In the previous chapters are conducted quasi-experiments to investigate the contribution
of HEN in this research problem context. Firstly, chapter 3 was validated the bug report represen-
tation using HEN (only the detailed descriptions of the bug reports) to support automatic severity
bug report prediction. Then, chapter 4 was investigated the impact of HEN representation in a
multimodal perspective (bug reports and software metrics) to support bug localization activity.
Finally, chapter 5 was analyzed the unified heterogeneous information network (bug reports,
software metrics, and bug fixers) to support the automatic bug report resolution activities from a
multimodal perspective.

The quasi-experiments results suggest that a heterogeneous information network is a
promising alternative to represent software data from different sources. Also, HEN is a promising
alternative to support the automatic bug report resolution process from a holistic multimodal
perspective.

The main contributions of this thesis are shown in Section 6.1, the limitations and
difficulties are discussed in Section 6.2, the possible extensions and future work are presented in
Section 6.3, and finally, Section 6.4 presents the data and codes availability statement.

98 Chapter 6. Conclusion

6.1 Thesis Contributions
In this doctoral thesis, we have been the following contributions:

• Proposal for a new use of semi-supervised algorithms based on heterogeneous information
network to support the bug report severity prediction (BARBOSA et al., 2017) (more
details in Chapter 3). Semi-supervised classifiers obtained competitive results relative to
supervised classifiers regardless of the number of labeled examples. Samples with 20% of
the label were sufficient to stabilize the performance of most classifiers. This work can
help software engineers, for example, when one new software project has few labeled
instances, and they use this approach to support decision making.

• Definition of a data representation based on a heterogeneous information network to
support the bug localization activity (BARBOSA et al., 2019) (details in Chapter 4). Chap-
ter 4 examined an approach (BULNER) that evaluates the impact of model representation
combination (Bag-of-Words with Word Embeddings) and networking regularization to
support bug localization. In the quasi-experiment in an open source context, the BULNER
with HEN representation and network regularization-based machine learning method
obtain a more appropriate representation model. This work improves state of the art by
supporting the bug localization from a model representation combination and networking
regularization.

• Extending, standardizing, pre-processing, and making available a set of collections of open
source bug reports with the corresponding software metrics from impacted source code
files after the resolution of the bug reports (details in Chapter 5).

• Definition of a unified data representation based on a heterogeneous information net-
work to support the bug report resolution process (bug report severity prediction, fixer
recommendation, and bug localization) (details in Chapter 5). HENBUR represented
different software elements and their respective relationship in the same structure. This
work improves state of the art by supporting the BRR process from a unified multimodal
representation.

Overall, this doctoral thesis demonstrates that heterogeneous information networking
can be a promising alternative for the BRR process’ automation. Bug reports are essential in
the BRR process. As well as other software documents (e.g., source code, software metric) to
specific BRR tasks (e.g., bug localization). Then, HEN representation is one alternative to define
unified representation to support the BRR process’ automation holistically.

6.2 Limitations
In this doctoral thesis, some limitations should be considered.

6.3. Possible Extensions and Future Work 99

• Quasi-experiment
Quasi-experiments were conducted restricted to open source projects. Therefore, quasi-
experiments’ results are not generalized to another context (e.g., closed source project).
Then, case studies applied in the software industry might be different findings.

• Data collection process
In quasi-experiments (present in chapters 4 and 5) were reused the connection between
bug reports and their associated correction files after the application of Dallmeier and
Zimmermann’s heuristic by Ye, Bunescu and Liu (2014). Unfortunately, this dataset does
not have program spectra (failing and successful execution traces) necessary to evaluate
spectrum-based bug localization techniques.

• Applications to bug report resolution process with heterogeneous information net-
work
The findings from quasi-experiments are only proof of concepts that use real software
information. There are some issues, for example, that should be investigated the impact of
multi-grained (e.g., code token, code statement, code function) nature of programming
language and noise in a bug report on the BRR process. Also, these quasi-experiments
combine heterogeneous information network representation only with machine learning
algorithms from state of the art.

6.3 Possible Extensions and Future Work
Based on the contributions and limitations of this doctoral thesis, we have the following

suggestions for future work:

• Using the dataset closed source project
We use only open source projects in all quasi-experiment from this doctoral thesis, then
proprietary software product is a future opportunity to investigate the impact on model
performance. Some work presents the best model performance when running with a closed
source project dataset (CHATURVEDI; SINGH, 2012).

• Apply other language models
The combination of HEN with Long Short Term Memory (LSTM), Convolutional Neural
Network (CNN), or Bidirectional Encoder Representations from Transformers (BERT)
algorithms should be investigated to support the BRR process. Also, HENBUR should
be updated with source code representation (e.g., code2vec (ALON et al., 2019), com-
mit2vec (LOZOYA et al., 2021)), and bug localization activity implemented by HENBUR
could be compared with the proposed Deep Multimodal model for Bug Localization
(DEMOB) (ZHU et al., 2021).

100 Chapter 6. Conclusion

• Integrate other BRR tasks
Other tasks are related to the three investigated in the BRR process. For example, identify-
ing the bug type (CATOLINO et al., 2019) is a task that could be investigated by reusing
the unified data representation of the data based on a heterogeneous information network.

6.4 Data and Codes Availability Statement
Data and source code files that support the findings and contributions of this doctoral

thesis are available at:

• <http://sites.labic.icmc.usp.br/ipm/msr-sbrp> (about Chapter 3).

• <https://github.com/jacsonrbinf/bulner> (about Chapter 4).

• <https://github.com/jacsonrbinf/henbur> (about Chapter 5).

http://sites.labic.icmc.usp.br/ipm/msr-sbrp
https://github.com/jacsonrbinf/bulner
https://github.com/jacsonrbinf/henbur

101

BIBLIOGRAPHY

ALON, U.; ZILBERSTEIN, M.; LEVY, O.; YAHAV, E. Code2vec: Learning distributed repre-
sentations of code. Proc. ACM Program. Lang., ACM, New York, NY, USA, v. 3, n. POPL,
p. 40:1–40:29, Jan. 2019. ISSN 2475-1421. Available: <http://doi.acm.org/10.1145/3290353>.
Citation on page 99.

ANTONIOL, G.; AYARI, K.; PENTA, M. D.; KHOMH, F.; GUéHéNEUC, Y.-G. Is it a bug
or an enhancement? a text-based approach to classify change requests. In: Proceedings of the
2008 Conference of the Center for Advanced Studies on Collaborative Research: Meeting
of Minds. New York, NY, USA: Association for Computing Machinery, 2008. (CASCON ’08).
ISBN 9781450378826. Available: <https://doi.org/10.1145/1463788.1463819>. Citation on
page 44.

ANVIK, J.; HIEW, L.; MURPHY, G. C. Who should fix this bug? In: Proceedings of the
28th International Conference on Software Engineering. New York, NY, USA: ACM, 2006.
(ICSE ’06), p. 361–370. ISBN 1-59593-375-1. Available: <http://doi.acm.org.ez49.periodicos.
capes.gov.br/10.1145/1134285.1134336>. Citation on page 45.

Apache Software Foundation. Apache Jira Repository. [S.l.]: Apache Jira Web Page, 2021.
<https://issues.apache.org/jira/>. Citation on page 52.

Arcuri, A.; Briand, L. A practical guide for using statistical tests to assess randomized algorithms
in software engineering. In: 2011 33rd International Conference on Software Engineering
(ICSE). [S.l.: s.n.], 2011. p. 1–10. ISSN 1558-1225. Citation on page 87.

Atlassian. Jira Software. [S.l.]: Project Web Page, 2021. <https://www.atlassian.com/software/
jira>. Citation on page 49.

BARBOSA, J. R.; MARCACINI, R. M.; BRITTO, R.; SOARES, F.; REZENDE, S.; VINCENZI,
A. M.; DELAMARO, M. E. Bulner: Bug localization with word embeddings and network
regularization. In: Proceedings of the VII Workshop on Software Visualization, Evolution
and Maintenance (VEM ’19). [S.l.: s.n.], 2019. Citations on pages 30, 67, 69, 73, 74, 75,
and 98.

BARBOSA, J. R.; MATSUNO, I. P.; GUIMARÃES, E. R.; REZENDE, S. O.; VINCENZI, A. M.;
DELAMARO, M. E. Mineração de textos para apoiar a predição de severidade de relatórios de
incidentes: um estudo de viabilidade. In: XVI Simpósio Brasileiro de Qualidade de Software
(SBQS ’17). [S.l.: s.n.], 2017. Citations on pages 30 and 98.

BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, p. 5–32, Oct. 2001. ISSN
1573-0565. Available: <https://doi.org/10.1023/A:1010933404324>. Citation on page 44.

CALEFATO, F.; LANUBILE, F.; MAIORANO, F.; NOVIELLI, N. Sentiment polarity detection
for software development. Empirical Software Engineering, v. 23, n. 3, p. 1352–1382, Jun.
2018. ISSN 1573-7616. Available: <https://doi.org/10.1007/s10664-017-9546-9>. Citation on
page 44.

http://doi.acm.org/10.1145/3290353
https://doi.org/10.1145/1463788.1463819
http://doi.acm.org.ez49.periodicos.capes.gov.br/10.1145/1134285.1134336
http://doi.acm.org.ez49.periodicos.capes.gov.br/10.1145/1134285.1134336
https://issues.apache.org/jira/
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10664-017-9546-9

102 Bibliography

CATOLINO, G.; PALOMBA, F.; ZAIDMAN, A.; FERRUCCI, F. Not all bugs are the same:
Understanding, characterizing, and classifying bug types. Journal of Systems and Software,
v. 152, p. 165 – 181, 2019. ISSN 0164-1212. Available: <http://www.sciencedirect.com/science/
article/pii/S0164121219300536>. Citations on pages 95 and 100.

CHANG, S.; HAN, W.; TANG, J.; QI, G.-J.; AGGARWAL, C. C.; HUANG, T. S. Heteroge-
neous network embedding via deep architectures. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:
Association for Computing Machinery, 2015. (KDD ’15), p. 119–128. ISBN 9781450336642.
Available: <https://doi.org/10.1145/2783258.2783296>. Citation on page 40.

CHAPELLE, O.; SCHLKOPF, B.; ZIEN, A. Semi-Supervised Learning. 1st. ed. [S.l.]: The
MIT Press, 2006. ISBN 0262514125, 9780262514125. Citations on pages 33, 34, and 35.

CHATURVEDI, K.; SINGH, V. An empirical comparison of machine learning techniques
in predicting the bug severity of open and closed source projects. International Journal of
Open Source Software and Processes, v. 4, n. 2, p. 32 – 59, 2012. ISSN 19423926. Available:
<http://dx.doi.org/10.4018/jossp.2013040103>. Citation on page 99.

CHOEIKIWONG, T.; VATEEKUL, P. Improve accuracy of defect severity categorization using
semi-supervised approach on imbalanced data sets. In: Proceedings of the International Mul-
tiConference of Engineers and Computer Scientists. [S.l.: s.n.], 2016. v. 1. Citation on page
93.

Cui, P.; Wang, X.; Pei, J.; Zhu, W. A survey on network embedding. IEEE Transactions
on Knowledge and Data Engineering, v. 31, n. 5, p. 833–852, May 2019. ISSN 1041-4347.
Citations on pages 39 and 40.

DALLMEIER, V.; ZIMMERMANN, T. Extraction of bug localization benchmarks from his-
tory. In: Proceedings of the Twenty-Second IEEE/ACM International Conference on Au-
tomated Software Engineering. New York, NY, USA: Association for Computing Machin-
ery, 2007. (ASE ’07), p. 433–436. ISBN 9781595938824. Available: <https://doi.org/10.1145/
1321631.1321702>. Citation on page 87.

de Oliveira Neto, F. G.; TORKAR, R.; FELDT, R.; GREN, L.; FURIA, C. A.; HUANG, Z.
Evolution of statistical analysis in empirical software engineering research: Current state and
steps forward. Journal of Systems and Software, v. 156, p. 246 – 267, 2019. ISSN 0164-1212.
Available: <http://www.sciencedirect.com/science/article/pii/S0164121219301451>. Citation
on page 87.

DELALLEAU, O.; BENGIO, Y.; ROUX, N. L. Efficient non-parametric function induc-
tion in semi-supervised learning. In: Proceedings of the Tenth International Workshop
on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statis-
tics, 2005. p. 96–103. Available: <https://www.microsoft.com/en-us/research/publication/
efficient-non-parametric-function-induction-in-semi-supervised-learning/>. Citation on page
36.

DEMsAR, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn.
Res., JMLR.org, v. 7, p. 1–30, Dec. 2006. ISSN 1532-4435. Available: <http://dl-acm-org.ez49.
periodicos.capes.gov.br/citation.cfm?id=1248547.1248548>. Citations on pages 58, 62, 63,
and 87.

http://www.sciencedirect.com/science/article/pii/S0164121219300536
http://www.sciencedirect.com/science/article/pii/S0164121219300536
https://doi.org/10.1145/2783258.2783296
http://dx.doi.org/10.4018/jossp.2013040103
https://doi.org/10.1145/1321631.1321702
https://doi.org/10.1145/1321631.1321702
http://www.sciencedirect.com/science/article/pii/S0164121219301451
https://www.microsoft.com/en-us/research/publication/efficient-non-parametric-function-induction-in-semi-supervised-learning/
https://www.microsoft.com/en-us/research/publication/efficient-non-parametric-function-induction-in-semi-supervised-learning/
http://dl-acm-org.ez49.periodicos.capes.gov.br/citation.cfm?id=1248547.1248548
http://dl-acm-org.ez49.periodicos.capes.gov.br/citation.cfm?id=1248547.1248548

Bibliography 103

Eclipse Foundation. Bugzilla – Bug 4023. [S.l.]: Eclipse Web Page, 2021. <https://bugs.eclipse.
org/bugs/show_bug.cgi?id=4023>. Citation on page 41.

EFSTATHIOU, V.; CHATZILENAS, C.; SPINELLIS, D. Word embeddings for the software engi-
neering domain. In: Proceedings of the 15th International Conference on Mining Software
Repositories. New York, NY, USA: ACM, 2018. (MSR ’18), p. 38–41. ISBN 978-1-4503-5716-6.
Available: <http://doi-acm-org.ez67.periodicos.capes.gov.br/10.1145/3196398.3196448>. Cita-
tions on pages 70 and 81.

FRANK, E.; HALL, M. A.; WITTEN, I. H. The WEKA Workbench. Online Appendix for
“Data Mining: Practical Machine Learning Tools and Techniques”. 4. ed. [S.l.]: Morgan
Kaufmann, 2016. Citation on page 57.

GARCIA, H. V.; SHIHAB, E. Characterizing and predicting blocking bugs in open source
projects. In: Proceedings of the 11th Working Conference on Mining Software Repositories.
New York, NY, USA: Association for Computing Machinery, 2014. (MSR 2014), p. 72–81.
ISBN 9781450328630. Available: <https://doi.org/10.1145/2597073.2597099>. Citations on
pages 43 and 47.

GARCIA, S.; HERRERA, F. An extension on “statistical comparisons of classifiers over multiple
data sets” for all pairwise comparisons. Journal of Machine Learning Research, v. 9, n. 12, p.
2677–2694, 2008. Citations on pages 58 and 63.

GERS, F.; SCHMIDHUBER, J.; CUMMINS, F. Learning to forget: continual prediction with
lstm. In: 1999 Ninth International Conference on Artificial Neural Networks ICANN 99.
(Conf. Publ. No. 470). [S.l.: s.n.], 1999. v. 2, p. 850–855 vol.2. ISSN 0537-9989. Citation on
page 44.

GOMES, L. A. F.; TORRES, R. da S.; CôRTES, M. L. Bug report severity level prediction
in open source software: A survey and research opportunities. Information and Software
Technology, 2019. ISSN 0950-5849. Available: <http://www.sciencedirect.com/science/article/
pii/S0950584919301648>. Citations on pages 50 and 89.

GÓMEZ, O.; OKTABA, H.; PIATTINI, M.; GARCÍA, F. A systematic review measurement in
software engineering: State-of-the-art in measures. In: FILIPE, J.; SHISHKOV, B.; HELFERT,
M. (Ed.). Software and Data Technologies. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008. p. 165–176. ISBN 978-3-540-70621-2. Citation on page 80.

HARRIS, Z. S. Distributional structure. Word, Routledge, v. 10, n. 2-3, p. 146–162, 1954.
Available: <https://doi.org/10.1080/00437956.1954.11659520>. Citations on pages 81 and 82.

HESS, M.; KROMREY, J. D. Robust confidence intervals for effect sizes: A comparative study
of cohen’s d and cliff’s delta under non-normality and heterogeneous variances. In: . [S.l.: s.n.],
2004. Citation on page 87.

HINTON, G. E.; SALAKHUTDINOV, R. R. Reducing the dimensionality of data with neural
networks. Science, American Association for the Advancement of Science, v. 313, n. 5786, p.
504–507, 2006. ISSN 0036-8075. Available: <https://science.sciencemag.org/content/313/5786/
504>. Citation on page 46.

Hoang, T.; Oentaryo, R. J.; Le, T. B.; Lo, D. Network-clustered multi-modal bug localization.
IEEE Transactions on Software Engineering, v. 45, n. 10, p. 1002–1023, Oct 2019. ISSN
1939-3520. Citations on pages 77 and 78.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=4023
https://bugs.eclipse.org/bugs/show_bug.cgi?id=4023
http://doi-acm-org.ez67.periodicos.capes.gov.br/10.1145/3196398.3196448
https://doi.org/10.1145/2597073.2597099
http://www.sciencedirect.com/science/article/pii/S0950584919301648
http://www.sciencedirect.com/science/article/pii/S0950584919301648
https://doi.org/10.1080/00437956.1954.11659520
https://science.sciencemag.org/content/313/5786/504
https://science.sciencemag.org/content/313/5786/504

104 Bibliography

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural Comput., MIT
Press, Cambridge, MA, USA, v. 9, n. 8, p. 1735–1780, Nov. 1997. ISSN 0899-7667. Available:
<https://doi.org/10.1162/neco.1997.9.8.1735>. Citation on page 44.

HUO, X.; LI, M. Enhancing the unified features to locate buggy files by exploiting the sequential
nature of source code. In: Proceedings of the 26th International Joint Conference on Artifi-
cial Intelligence. [S.l.]: AAAI Press, 2017. (IJCAI’17), p. 1909–1915. ISBN 9780999241103.
Citation on page 47.

HUO, X.; LI, M.; ZHOU, Z.-H. Learning unified features from natural and programming
languages for locating buggy source code. In: Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2016. (IJCAI’16), p.
1606–1612. ISBN 9781577357704. Citation on page 47.

ISO/IEC/IEEE. ISO/IEC/IEEE 29119-1:2013 – Software and systems engineering – Soft-
ware testing – Part 1: Concepts and definitions. 2013. Citation on page 40.

JI, M.; SUN, Y.; DANILEVSKY, M.; HAN, J.; GAO, J. Graph regularized transductive classifi-
cation on heterogeneous information networks. In: BALCÁZAR, J. L.; BONCHI, F.; GIONIS,
A.; SEBAG, M. (Ed.). Machine Learning and Knowledge Discovery in Databases. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010. p. 570–586. ISBN 978-3-642-15880-3. Citations
on pages 36, 70, 73, and 82.

JONSSON, L.; BORG, M.; BROMAN, D.; SANDAHL, K.; ELDH, S.; RUNESON, P. Au-
tomated bug assignment: Ensemble-based machine learning in large scale industrial contexts.
Empirical Software Engineering, v. 21, n. 4, p. 1533–1578, Aug. 2016. ISSN 1573-7616.
Available: <https://doi.org/10.1007/s10664-015-9401-9>. Citations on pages 45 and 93.

JUNG, W.; LEE, E.; WU, C. A survey on mining software repositories. IEICE Transactions
on Information and Systems, E95.D, n. 5, p. 1384–1406, 2012. Citation on page 50.

KIBRIYA, A. M.; FRANK, E.; PFAHRINGER, B.; HOLMES, G. Multinomial naive bayes for
text categorization revisited. In: WEBB, G. I.; YU, X. (Ed.). AI 2004: Advances in Artificial
Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. p. 488–499. ISBN 978-3-
540-30549-1. Citations on pages 34 and 44.

KIM, D.; TAO, Y.; KIM, S.; ZELLER, A. Where should we fix this bug? a two-phase recom-
mendation model. IEEE Transactions on Software Engineering, v. 39, n. 11, p. 1597–1610,
Nov 2013. ISSN 0098-5589. Citation on page 46.

KOCH, K.-R. Bayes’ theorem. In: Bayesian Inference with Geodetic Applications. [S.l.]:
Springer, 1990. p. 4–8. Citation on page 34.

LAM, A. N.; NGUYEN, A. T.; NGUYEN, H. A.; NGUYEN, T. N. Combining deep learning
with information retrieval to localize buggy files for bug reports. In: 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). [S.l.: s.n.], 2015. p.
476–481. Citation on page 84.

. Bug localization with combination of deep learning and information retrieval. In: 2017
IEEE/ACM 25th International Conference on Program Comprehension (ICPC). [S.l.: s.n.],
2017. p. 218–229. Citations on pages 27, 46, 47, 77, and 84.

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s10664-015-9401-9

Bibliography 105

LAMKANFI, A.; DEMEYER, S.; GIGER, E.; GOETHALS, B. Predicting the severity of a
reported bug. In: 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010). [S.l.: s.n.], 2010. p. 1–10. ISSN 2160-1852. Citations on pages 27, 43, 47, 49,
and 77.

LAMKANFI, A.; DEMEYER, S.; SOETENS, Q. D.; VERDONCK, T. Comparing mining
algorithms for predicting the severity of a reported bug. In: 2011 15th European Conference
on Software Maintenance and Reengineering. [S.l.: s.n.], 2011. p. 249–258. ISSN 1534-5351.
Citations on pages 44 and 51.

LAMKANFI, A.; PÉREZ, J.; DEMEYER, S. The eclipse and mozilla defect tracking dataset:
a genuine dataset for mining bug information. In: IEEE PRESS. Proceedings of the 10th
Working Conference on Mining Software Repositories. [S.l.], 2013. p. 203–206. Citations
on pages 52 and 64.

LANTZ, B. Machine Learning with R. [S.l.]: Packt Publishing, 2013. ISBN 978-1782162148.
Citation on page 33.

LE, T.-D. B.; THUNG, F.; LO, D. Will this localization tool be effective for this bug? mitigating
the impact of unreliability of information retrieval based bug localization tools. Empirical
Software Engineering, v. 22, n. 4, p. 2237–2279, Aug 2017. ISSN 1573-7616. Available:
<https://doi.org/10.1007/s10664-016-9484-y>. Citation on page 67.

LEE, S.-R.; HEO, M.-J.; LEE, C.-G.; KIM, M.; JEONG, G. Applying deep learning based
automatic bug triager to industrial projects. In: Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2017. (ESEC/FSE 2017), p. 926–931. ISBN 9781450351058. Available: <https:
//doi.org/10.1145/3106237.3117776>. Citations on pages 45, 46, and 47.

LOZOYA, R. C.; BAUMANN, A.; SABETTA, A.; BEZZI, M. Commit2vec: Learning distributed
representations of code changes. SN Computer Science, v. 2, n. 3, p. 150, Mar. 2021. ISSN
2661-8907. Available: <https://doi.org/10.1007/s42979-021-00566-z>. Citation on page 99.

MAATEN, L. Van der; HINTON, G. Visualizing data using t-sne. Journal of machine learning
research, v. 9, n. 11, 2008. Citation on page 40.

MANI, S.; SANKARAN, A.; ARALIKATTE, R. Deeptriage: Exploring the effectiveness of deep
learning for bug triaging. In: Proceedings of the ACM India Joint International Conference
on Data Science and Management of Data. New York, NY, USA: Association for Computing
Machinery, 2019. (CoDS-COMAD ’19), p. 171–179. ISBN 9781450362078. Available: <https:
//doi.org/10.1145/3297001.3297023>. Citations on pages 45, 46, 47, and 77.

MANNING, C. D.; RAGHAVAN, P.; SCHüTZE, H. Introduction to Information Retrieval.
[S.l.]: Cambridge University Press, 2008. Citations on pages 39 and 46.

MantisBT Development Team. MantisBT 2.0 – Admin Guide. [S.l.]: Project Web page, 2021.
<https://www.mantisbt.org/docs/master/en-US/Admin_Guide/Admin_Guide.pdf>. Citation on
page 49.

Menzies, T.; Marcus, A. Automated severity assessment of software defect reports. In: 2008
IEEE International Conference on Software Maintenance. [S.l.: s.n.], 2008. p. 346–355.
Citation on page 43.

https://doi.org/10.1007/s10664-016-9484-y
https://doi.org/10.1145/3106237.3117776
https://doi.org/10.1145/3106237.3117776
https://doi.org/10.1007/s42979-021-00566-z
https://doi.org/10.1145/3297001.3297023
https://doi.org/10.1145/3297001.3297023
https://www.mantisbt.org/docs/master/en-US/Admin_Guide/Admin_Guide.pdf

106 Bibliography

MIKOLOV, T.; CHEN, K.; CORRADO, G.; DEAN, J. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013. Citations on pages 81
and 82.

MIKOLOV, T.; SUTSKEVER, I.; CHEN, K.; CORRADO, G. S.; DEAN,
J. Distributed representations of words and phrases and their composition-
ality. In: Advances in Neural Information Processing Systems 26. Curran
Associates, Inc., 2013. p. 3111–3119. Available: <http://papers.nips.cc/paper/
5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf>.
Citation on page 68.

MOREIRA, J.; CARVALHO, A.; HORVATH, T. A General Introduction to Data Analytics.
John Wiley Sons, Ltd, 2018. ISBN 978-1-119-29626-3. Available: <https://onlinelibrary.wiley.
com/doi/abs/10.1002/9781119296294.fmatter>. Citation on page 38.

Mozilla Foundation. Bugzilla – Bug tracking system. [S.l.]: Project Web Page, 2021. <https:
//www.bugzilla.org/>. Citation on page 49.

NEYSIANI, B. S.; BABAMIR, S. M.; ARITSUGI, M. Efficient feature extraction model for
validation performance improvement of duplicate bug report detection in software bug triage
systems. Information and Software Technology, p. 106344, 2020. ISSN 0950-5849. Available:
<http://www.sciencedirect.com/science/article/pii/S0950584920301117>. Citation on page 49.

NGUYEN, A. T.; NGUYEN, T. T.; AL-KOFAHI, J.; NGUYEN, H. V.; NGUYEN, T. N. A topic-
based approach for narrowing the search space of buggy files from a bug report. In: 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2011).
[S.l.: s.n.], 2011. p. 263–272. ISSN 1938-4300. Citation on page 46.

NIGAM, K.; MCCALLUM, A. K.; THRUN, S.; MITCHELL, T. Text classification from labeled
and unlabeled documents using EM. Machine Learning, Kluwer Academic Publishers, v. 39,
n. 2-3, p. 103–134, 2000. ISSN 0885-6125. Citation on page 38.

PHAM, V.; BLUCHE, T.; KERMORVANT, C.; LOURADOUR, J. Dropout improves recurrent
neural networks for handwriting recognition. In: 2014 14th International Conference on Fron-
tiers in Handwriting Recognition. [S.l.: s.n.], 2014. p. 285–290. ISSN 2167-6445. Citation
on page 45.

POLISETTY, S.; MIRANSKYY, A.; BAsAR, A. On usefulness of the deep-learning-based bug lo-
calization models to practitioners. In: Proceedings of the Fifteenth International Conference
on Predictive Models and Data Analytics in Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2019. (PROMISE’19), p. 16–25. ISBN 9781450372336.
Available: <https://doi.org/10.1145/3345629.3345632>. Citation on page 84.

QUINLAN, J. R. C4.5:Programs for Machine Learning. [S.l.]: M.Kaufmann, 1993. Citation
on page 34.

RAHMAN, M. M.; ROY, C. K. Improving ir-based bug localization with context-aware query
reformulation. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
New York, NY, USA: ACM, 2018. (ESEC/FSE 2018), p. 621–632. ISBN 978-1-4503-5573-5.
Available: <http://doi-acm-org.ez49.periodicos.capes.gov.br/10.1145/3236024.3236065>. Cita-
tion on page 67.

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119296294.fmatter
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119296294.fmatter
https://www.bugzilla.org/
https://www.bugzilla.org/
http://www.sciencedirect.com/science/article/pii/S0950584920301117
https://doi.org/10.1145/3345629.3345632
http://doi-acm-org.ez49.periodicos.capes.gov.br/10.1145/3236024.3236065

Bibliography 107

Ramay, W. Y.; Umer, Q.; Yin, X. C.; Zhu, C.; Illahi, I. Deep neural network-based severity
prediction of bug reports. IEEE Access, v. 7, p. 46846–46857, 2019. ISSN 2169-3536. Citations
on pages 44, 47, 49, and 77.

RISH, I. An empirical study of the naive bayes classifier. In: IBM NEW YORK. IJCAI-
Workshop Empirical Methods in Artificial Intelligence. [S.l.], 2001. v. 3, n. 22, p. 41–46.
Citation on page 34.

ROBERTSON, S.; ZARAGOZA, H.; TAYLOR, M. Simple bm25 extension to multiple weighted
fields. In: Proceedings of the Thirteenth ACM International Conference on Information
and Knowledge Management. New York, NY, USA: Association for Computing Machinery,
2004. (CIKM ’04), p. 42–49. ISBN 1581138741. Available: <https://doi.org/10.1145/1031171.
1031181>. Citation on page 43.

ROSSI, R. G. Classificação automática de textos por meio de aprendizado de máquina
baseado em redes. Phd Thesis (PhD Thesis) — Universidade de São Paulo, 2015. Citations on
pages 27, 35, 36, and 54.

ROSSI, R. G.; LOPES, A. A.; FALEIROS, T. de P.; REZENDE, S. O. Inductive model generation
for text classification using a bipartite heterogeneous network. Journal of Computer Science
and Technology, Springer, v. 3, n. 29, p. 361–375, 2014. Citation on page 57.

ROSSI, R. G.; LOPES, A. A.; REZENDE, S. O. A parameter-free label propagation algorithm
using bipartite heterogeneous networks for text classification. In: Proceedings of the 29th
Annual ACM Symposium on Applied Computing. New York, NY, USA: Association for
Computing Machinery, 2014. (SAC ’14), p. 79–84. ISBN 9781450324694. Available: <https:
//doi.org/10.1145/2554850.2554901>. Citations on pages 37, 54, 70, and 78.

ROSSI, R. G.; LOPES, A. de A.; REZENDE, S. O. Optimization and label propagation in
bipartite heterogeneous networks to improve transductive classification of texts. Information
Processing & Management, v. 52, n. 2, p. 217 – 257, 2016. ISSN 0306-4573. Available:
<http://www.sciencedirect.com/science/article/pii/S0306457315000990>. Citations on pages
37, 39, 53, 54, 57, 78, and 86.

SAHA, R. K.; LAWALL, J.; KHURSHID, S.; PERRY, D. E. Are these bugs really normal? In:
2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. [S.l.: s.n.],
2015. p. 258–268. ISSN 2160-1852. Citation on page 42.

Saha, R. K.; Lease, M.; Khurshid, S.; Perry, D. E. Improving bug localization using structured
information retrieval. In: 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). [S.l.: s.n.], 2013. p. 345–355. Citations on pages 46 and 47.

Shi, C.; Li, Y.; Zhang, J.; Sun, Y.; Yu, P. S. A survey of heterogeneous information network
analysis. IEEE Transactions on Knowledge and Data Engineering, v. 29, n. 1, p. 17–37, Jan
2017. Citation on page 78.

SOKOLOVA, M.; LAPALME, G. A systematic analysis of performance measures for classi-
fication tasks. Information Processing Management, v. 45, n. 4, p. 427 – 437, 2009. ISSN
0306-4573. Available: <http://www.sciencedirect.com/science/article/pii/S0306457309000259>.
Citations on pages 55 and 85.

https://doi.org/10.1145/1031171.1031181
https://doi.org/10.1145/1031171.1031181
https://doi.org/10.1145/2554850.2554901
https://doi.org/10.1145/2554850.2554901
http://www.sciencedirect.com/science/article/pii/S0306457315000990
http://www.sciencedirect.com/science/article/pii/S0306457309000259

108 Bibliography

SUN, C.; LO, D.; KHOO, S.-C.; JIANG, J. Towards more accurate retrieval of duplicate
bug reports. In: 2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). [S.l.: s.n.], 2011. p. 253–262. ISSN 1938-4300. Citation on page 43.

TAN, P.-N.; STEINBACH, M.; KUMAR, V. Introduction to Data Mining. [S.l.]: Addison-
Wesley, 2005. ISBN 0-321-32136-7. Citations on pages 51 and 53.

TAN, Y.; XU, S.; WANG, Z.; ZHANG, T.; XU, Z.; LUO, X. Bug severity prediction using
question-and-answer pairs from stack overflow. Journal of Systems and Software, v. 165, p.
110567, 2020. ISSN 0164-1212. Available: <http://www.sciencedirect.com/science/article/pii/
S0164121220300480>. Citations on pages 44, 45, and 67.

THUNG, F.; LE, T.-D. B.; KOCHHAR, P. S.; LO, D. Buglocalizer: Integrated tool support
for bug localization. In: Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. New York, NY, USA: ACM, 2014. (FSE 2014), p.
767–770. ISBN 978-1-4503-3056-5. Available: <http://doi-acm-org.ez49.periodicos.capes.gov.
br/10.1145/2635868.2661678>. Citation on page 67.

TIAN, Y.; LO, D.; SUN, C. Information retrieval based nearest neighbor classification for fine-
grained bug severity prediction. In: 19th Working Conference on Reverse Engineering. [S.l.:
s.n.], 2012. p. 215–224. ISSN 1095-1350. Citation on page 43.

VAPNIK, V. N. The Nature of Statistical Learning Theory. [S.l.]: Springer-Verlag New York,
Inc., 1995. Citation on page 34.

VARGHA, A.; DELANEY, H. D. A critique and improvement of the cl common language effect
size statistics of mcgraw and wong. Journal of Educational and Behavioral Statistics, v. 25,
n. 2, p. 101–132, 2000. Available: <https://doi.org/10.3102/10769986025002101>. Citation on
page 87.

WANG, B.; XU, L.; YAN, M.; LIU, C.; LIU, L. Multi-dimension convolutional neural network
for bug localization. IEEE Transactions on Services Computing, p. 1–1, 2020. ISSN 1939-
1374. Citations on pages 27 and 46.

WANG, S.; LO, D. Version history, similar report, and structure: Putting them together for im-
proved bug localization. In: Proceedings of the 22Nd International Conference on Program
Comprehension. New York, NY, USA: ACM, 2014. (ICPC 2014), p. 53–63. ISBN 978-1-
4503-2879-1. Available: <http://doi.acm.org/10.1145/2597008.2597148>. Citation on page
46.

Wen, M.; Wu, R.; Cheung, S. Locus: Locating bugs from software changes. In: 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE). [S.l.:
s.n.], 2016. p. 262–273. Citation on page 46.

WOHLIN, C.; RUNESON, P.; HöST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLÉN, A.
Experimentation in Software Engineering. Norwell, MA, USA: Springer Berlin Heidelberg,
2012. ISBN 978-3-642-29043-5. Citations on pages 52, 72, 83, 84, 86, 91, and 93.

Wong, C.; Xiong, Y.; Zhang, H.; Hao, D.; Zhang, L.; Mei, H. Boosting bug-report-oriented
fault localization with segmentation and stack-trace analysis. In: 2014 IEEE International
Conference on Software Maintenance and Evolution. [S.l.: s.n.], 2014. p. 181–190. ISSN
1063-6773. Citation on page 46.

http://www.sciencedirect.com/science/article/pii/S0164121220300480
http://www.sciencedirect.com/science/article/pii/S0164121220300480
http://doi-acm-org.ez49.periodicos.capes.gov.br/10.1145/2635868.2661678
http://doi-acm-org.ez49.periodicos.capes.gov.br/10.1145/2635868.2661678
https://doi.org/10.3102/10769986025002101
http://doi.acm.org/10.1145/2597008.2597148

Bibliography 109

XI, S.; YAO, Y.; XIAO, X.; XU, F.; LU, J. An effective approach for routing the bug reports
to the right fixers. In: Proceedings of the Tenth Asia-Pacific Symposium on Internetware.
New York, NY, USA: Association for Computing Machinery, 2018. (Internetware ’18). ISBN
9781450365901. Available: <https://doi.org/10.1145/3275219.3275228>. Citation on page 45.

Xia, X.; Lo, D.; Ding, Y.; Al-Kofahi, J. M.; Nguyen, T. N.; Wang, X. Improving automated bug
triaging with specialized topic model. IEEE Transactions on Software Engineering, v. 43,
n. 3, p. 272–297, March 2017. ISSN 1939-3520. Citation on page 45.

XIA, X.; LO, D.; SHIHAB, E.; WANG, X.; YANG, X. Elblocker: Predicting blocking bugs
with ensemble imbalance learning. Information and Software Technology, v. 61, p. 93
– 106, 2015. ISSN 0950-5849. Available: <http://www.sciencedirect.com/science/article/pii/
S0950584914002602>. Citations on pages 27, 42, and 49.

XIAO, G.; DU, X.; SUI, Y.; YUE, T. Hindbr: Heterogeneous information network based duplicate
bug report prediction. In: 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE). [S.l.: s.n.], 2020. p. 195–206. ISSN 2332-6549. Citation on page 28.

YAO, L.; MAO, C.; LUO, Y. Graph convolutional networks for text classification. Proceedings
of the AAAI Conference on Artificial Intelligence, v. 33, n. 01, p. 7370–7377, Jul. 2019.
Available: <https://ojs.aaai.org/index.php/AAAI/article/view/4725>. Citation on page 46.

YE, X.; BUNESCU, R.; LIU, C. Learning to rank relevant files for bug reports using do-
main knowledge. In: Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. New York, NY, USA: ACM, 2014. (FSE 2014), p.
689–699. ISBN 978-1-4503-3056-5. Available: <http://doi.acm.org/10.1145/2635868.2635874>.
Citations on pages 19, 46, 47, 72, 74, 84, 86, 87, and 99.

. Mapping bug reports to relevant files: A ranking model, a fine-grained benchmark, and
feature evaluation. IEEE Transactions on Software Engineering, v. 42, n. 4, p. 379–402, April
2016. ISSN 0098-5589. Citation on page 46.

Ye, X.; Shen, H.; Ma, X.; Bunescu, R.; Liu, C. From word embeddings to document similarities
for improved information retrieval in software engineering. In: 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE). [S.l.: s.n.], 2016. p. 404–415. ISSN
1558-1225. Citations on pages 68, 69, 73, and 84.

YIN, Z.; LI, R.; MEI, Q.; HAN, J. Exploring social tagging graph for web object classification. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. New York, NY, USA: ACM, 2009. (KDD ’09), p. 957–966. ISBN 978-1-
60558-495-9. Citation on page 37.

YU, L.; LIU, H. Efficient feature selection via analysis of relevance and redundancy. The
Journal of Machine Learning Research, JMLR. org, v. 5, p. 1205–1224, 2004. Citation on
page 27.

YUGOSHI, I. P. M. Mineração de opiniões baseada em aspectos para revisões de produtos
e serviços. Phd Thesis (PhD Thesis) — Universidade de São Paulo, 2018. Citations on pages
33, 36, 38, 50, and 54.

ZAIDI, S. F. A.; LEE, C.-G. Learning graph representation of bug reports to triage bugs using
graph convolution network. In: 2021 International Conference on Information Networking
(ICOIN). [S.l.: s.n.], 2021. p. 504–507. ISSN 1976-7684. Citations on pages 45 and 46.

https://doi.org/10.1145/3275219.3275228
http://www.sciencedirect.com/science/article/pii/S0950584914002602
http://www.sciencedirect.com/science/article/pii/S0950584914002602
https://ojs.aaai.org/index.php/AAAI/article/view/4725
http://doi.acm.org/10.1145/2635868.2635874

110 Bibliography

ZARAGOZA, H.; CRASWELL, N.; TAYLOR, M.; SARIA, S.; ROBERTSON, S. Microsoft
cambridge at trec-13: Web and hard tracks. In: IN PROCEEDINGS OF TREC 2004. [S.l.:
s.n.], 2004. Citation on page 43.

ZHANG, T.; CHEN, J.; YANG, G.; LEE, B.; LUO, X. Towards more accurate severity prediction
and fixer recommendation of software bugs. Journal of Systems and Software, v. 117, p. 166
– 184, 2016. ISSN 0164-1212. Available: <http://www.sciencedirect.com/science/article/pii/
S0164121216000765>. Citations on pages 28, 42, 43, and 47.

ZHANG, T.; JIANG, H.; LUO, X.; CHAN, A. T. A literature review of research in bug resolution:
Tasks, challenges and future directions. The Computer Journal, Oxford University Press, v. 59,
n. 5, p. 741–773, 2016. Citations on pages 42 and 44.

ZHOU, D.; BOUSQUET, O.; LAL, T. N.; WESTON, J.; SCHöLKOPF, B. Learning with local
and global consistency. In: Proceedings of the 16th International Conference on Neural
Information Processing Systems. Cambridge, MA, USA: MIT Press, 2003. (NIPS’03), p.
321–328. Citations on pages 36 and 54.

ZHOU, J.; ZHANG, H.; LO, D. Where should the bugs be fixed? more accurate information
retrieval-based bug localization based on bug reports. In: 2012 34th International Conference
on Software Engineering (ICSE). [S.l.: s.n.], 2012. p. 14–24. ISSN 0270-5257. Citations on
pages 46, 47, 68, and 73.

ZHOU, Y.; TONG, Y.; GU, R.; GALL, H. Combining text mining and data mining for bug
report classification. Journal of Software: Evolution and Process, v. 28, n. 3, p. 150–176,
2016. Available: <https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1770>. Citations on
pages 28, 44, 47, and 77.

ZHU, X.; GHAHRAMANI, Z.; LAFFERTY, J. Semi-supervised learning using gaussian fields
and harmonic functions. In: Proc. of the Int. Conf. on Machine Learning. [S.l.]: AAAI, 2003.
p. 912–919. Citations on pages 37 and 70.

ZHU, X.; GOLDBERG, A. B. Introduction to semi-supervised learning. [S.l.]: Morgan and
Claypool Publishers, 2009. ISBN 1598295470, 9781598295474. Citations on pages 33, 34,
and 50.

ZHU, X. J. Semi-supervised learning literature survey. [S.l.], 2005. Citation on page 36.

ZHU, Z.; LI, Y.; WANG, Y.; WANG, Y.; TONG, H. A deep multimodal model for bug localization.
Data Mining and Knowledge Discovery, Apr. 2021. ISSN 1573-756X. Available: <https:
//doi.org/10.1007/s10618-021-00755-7>. Citations on pages 27, 46, and 99.

ČUBRANIć, D. Automatic bug triage using text categorization. In: In SEKE 2004: Proceed-
ings of the Sixteenth International Conference on Software Engineering & Knowledge
Engineering. [S.l.]: KSI Press, 2004. p. 92–97. Citations on pages 27 and 77.

http://www.sciencedirect.com/science/article/pii/S0164121216000765
http://www.sciencedirect.com/science/article/pii/S0164121216000765
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1770
https://doi.org/10.1007/s10618-021-00755-7
https://doi.org/10.1007/s10618-021-00755-7

111

APPENDIX

A
SOFTWARE METRICS

Table 18 presents software metrics used in two quasi-experiment (chapter 4 and chapter
5). We extracted these metrics from Understand™ tools.

Table 18 – Software metrics used.

Name Software Metric Metric Type
AvgCyclomatic Average Cyclomatic Complexity Complexity

AvgCyclomaticModified Average Modified Cyclomatic Complexity Complexity

AvgCyclomaticStrict Average Strict Cyclomatic Complexity Complexity

AvgEssential Average Essential Cyclomatic Complexity Complexity

AvgLine Average Number of Lines Volume

AvgLineBlank Average Number of Blank Lines Volume

AvgLineCode Average Number of Lines of Code Volume

AvgLineComment Average Number of Lines with Comments Volume

CountDeclClass Number of Classes Object Oriented

CountDeclClassMethod Number of Class Methods Object Oriented

CountDeclClassVariable Number of class variables Object Oriented

CountDeclExecutableUnit Number of Executable Unit Volume

CountDeclFunction Number of functions Volume

CountDeclInstanceMethod Number of instance methods Object Oriented

CountDeclInstanceVariable Number of instance methods Object Oriented

CountDeclMethod Number of local methods Object Oriented

CountDeclMethodDefault Number of local default methods Object Oriented

CountDeclMethodPrivate Number of local private methods Object Oriented

CountDeclMethodProtected Number of protected methods Object Oriented

CountDeclMethodPublic Number of public methods Object Oriented

CountLine Physical Lines Volume

112 APPENDIX A. Software metrics

CountLineBlank Blank Lines of Code Volume

CountLineCode Source Lines of Code Volume

CountLineCodeDecl Declarative Lines of Code Volume

CountLineCodeExe Executable Lines of Code Volume

CountLineComment Lines with Comments Volume

CountSemicolon Semicolons Volume

CountStmt Statements Volume

CountStmtDecl Declarative Statements Volume

CountStmtExe Executable Statements Volume

MaxCyclomatic Max Cyclomatic Complexity Complexity

MaxCyclomaticModified Max Modified Cyclomatic Complexity Complexity

MaxCyclomaticStrict Max Strict Cyclomatic Complexity Complexity

MaxEssential Max Essential Complexity Complexity

MaxNesting Nesting Complexity

RatioCommentToCode Comment to Code Ratio Volume

SumCyclomatic Sum Cyclomatic Complexity Complexity

SumCyclomaticModified Sum Modified Cyclomatic Complexity Complexity

SumCyclomaticStrict Sum Strict Cyclomatic Complexity Complexity

SumEssential Sum Essential Complexity Complexity

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of algorithms
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Research Question and Objectives
	Contributions
	Thesis Outline

	Background
	Machine Learning
	Supervised Learning
	Semi-Supervised Learning
	Network-based transductive learning
	Transductive learning based on the Vector Space Model

	Data Model Representation
	Bag-of-Words Based on Vector Space Model
	Heterogeneous Information Network

	Bug Report
	Bug Report Resolution Process
	Bug Report Severity Prediction
	Fixer Recommendation
	Bug Localization

	Final Remarks

	Improving predicting the severity of bug reports with semi-supervised learning and heterogeneous networks
	Mining Bug Tracking System Repository
	Experiment Design
	Definition of Research Question
	Preparation and Planning
	Sample Selection
	Pre-processing
	Pattern Extraction
	Post-processing

	Operation of the Experiment
	Analysis and Discussion of the Results
	Answer to RQ1: effectiveness of classifiers
	Answer to RQ2: impact of strategies to represent the text

	Threats to Validity
	Final Remarks

	BULNER: BUg Localization with word embeddings and NEtwork Regularization
	Bug Localization Data Model Representation
	Proposed Method
	Experimental Evaluation
	Definition of Research Question
	Experiment Definition
	Dataset
	Baselines
	Evaluation Metrics

	Results and Discussion
	RQ1: How effective is BULNER?
	RQ2: What is the contribution of each method?
	Threats to Validity

	Final Remarks

	A framework to support the bug report resolution process with heterogeneous information network
	Embedding-based Multimodal Framework with a Heterogeneous Information Network to Support Bug Report Resolution
	Heterogeneous Information Network for Bug Report Resolution
	Train Embedding
	Network Regularization

	Experiment Design
	Definition of Research Question
	Experiment Definition
	Preparation and Planning
	Sample Selection
	Experimental Package
	Variables
	Experimental Design

	Operation of the Experiment
	Data Analysis

	Results and Analysis
	RQ1 - Practical Significance
	RQ2 - Bug Report Severity Prediction
	RQ3 - Fixer Recommendation
	RQ4 - Bug Localization

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Final Remarks

	Conclusion
	Thesis Contributions
	Limitations
	Possible Extensions and Future Work
	Data and Codes Availability Statement

	Bibliography
	Software metrics

