
U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o

SEMU - SErvice Management for UAVs

Mariana Rodrigues
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)





SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Mariana Rodrigues

SEMU - SErvice Management for UAVs

Thesis submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Doctor in Science. EXAMINATION
BOARD PRESENTATION COPY

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dra. Kalinka Regina Lucas Jaquie
Castelo Branco

USP – São Carlos
June 2022



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados inseridos pelo(a) autor(a)

                                       Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2: 
                                       Gláucia Maria Saia Cristianini - CRB - 8/4938 
                                       Juliana de Souza Moraes - CRB - 8/6176

R333s
Rodrigues, Mariana
   SEMU - SErvice Management for UAVs / Mariana
Rodrigues; orientadora Kalinka R. L. J. C. Branco. -
- São Carlos, 2022.
   189 p.

   Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2022.

   1. Veículos Autônomos. 2. Internet das Coisas. 3.
Segurança de Redes. I. Branco, Kalinka R. L. J. C.,
orient. II. Título. 



Mariana Rodrigues

SEMU - SErvice Management for UAVs

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutora em Ciências – Ciências de Computação
e Matemática Computacional. EXEMPLAR DE
DEFESA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientadora: Prof. Dra. Kalinka Regina Lucas Jaquie
Castelo Branco

USP – São Carlos
Junho de 2022





ACKNOWLEDGEMENTS

To my family, for their unconditional love and support.

To Professor Kalinka R. L. J. C. Branco, for all her mentoring and patience in this
journey.

To all my friends, colleagues and collaborating students for all the moments of joy,
learning and frustration together.

To the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), for the
financial support.





RESUMO

RODRIGUES, M. SEMU - SErvice Management for UAVs. 2022. 189 p. Tese (Doutorado em
Ciências – Ciências de Computação e Matemática Computacional) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Veículos Aéreos Não Tripulados (VANTs) tem sido utilizados em várias áreas como agricultura
de precisão, monitoramento ambiental, suporte a desastres naturais, entre outros. Com o avanço
tecnológico atual, esses veículos estão sendo conectados a outros dispositivos e sistemas como
a Internet das Coisas (Internet of Things — IoT), permitindo que VANTs sejam capazes de
fornecer e consumir serviços sendo umas das coisas inseridas no ambiente. Acredita-se que
a Internet das Coisas trará um desenvolvimento sem precedentes à nossa sociedade e criando
e impactando aplicações novas e mais poderosas em diversas áreas. Esta integração entre
VANTs e a Internet das Coisas também possui desafios. A heterogeneidade intrínseca da IoT em
relação a dispositivos, plataformas e protocolos de comunicação faz com que o fornecimento e
gerenciamento de serviços sejam mais difíceis de serem feitos na camada de aplicação. Segurança
é um dos desafios mais críticos em aplicações conectadas à IoT, sendo algumas vezes inserida
após o desenvolvimento “principal”, se for inserida.

Estre trabalho demonstra como fazer VANTs se conectarem na IoT usando a SEMU — SErvice
Management for UAVs. A SEMU inclui (a) segurança de comunicação, incluindo segurança
sensível a contexto; (b) gerenciamento de serviços (registro, descoberta, requisição e consumo)
para tipos e requerimentos de dados diferentes e (c) gerenciamento autônomo de tarefas que
permite que o VANT cumpra sua missão sem intervenção humana. A funcionalidade e viabilidade
da SEMU é demonstrada utilizando-a em aplicações simulando cenários possíveis no mundo real,
como um serviço de entregas utilizando VANT e uma aplicação de coleta de dados de sensores
utilizando VANTs. Pesquisas futuras poderão utilizar a SEMU e seu protótipo para investigar
e avançar o estado da arte em aplicações de VANTs conectadas à IoT e seus mecanismos de
segurança.

Palavras-chave: Internet das Coisas, VANTs, Serviços, SEMU.





ABSTRACT

RODRIGUES, M. SEMU - SErvice Management for UAVs. 2022. 189 p. Tese (Doutorado em
Ciências – Ciências de Computação e Matemática Computacional) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Unmanned Aerial Vehicles (UAVs) are being employed in many fields such as precision agri-
culture, environmental monitoring, disaster response support, and others. Following the tech-
nological development, these vehicles are now being connected to other devices and systems
such as the Internet of Things (IoT), allowing them to provide and consume services as one of
the things in the environment. The IoT is believed to bring new unprecedented development to
our society and will impact and enable new, more powerful applications in many areas. This
integration does not come without challenges. The intrinsic IoT heterogeneity regarding devices,
platforms, and communication protocols makes the task of service provision and management
much harder to be done in the application layer. Security is one of the most critical challenges in
IoT-enabled applications, being sometimes put in after the “main” development is done, if at all.

This work demonstrates how to leverage UAVs to be connected in the IoT using SEMU —
SErvice Management for UAVs. SEMU comprises (a) communication security, including context-
aware security; (b) service management (registration, discovery, request and consumption) for
different types and data requirements and (c) autonomous task management that allows the
UAVs to perform their mission without human intervention. Its functionality and feasibility
is demonstrated by its use in different applications simulating real-life scenarios such as a
UAV-enabled delivery service and a UAV-enabled data collection from IoT sensors. Future
research will be able to leverage on SEMU and its prototype to further investigate and advance
the state-of-art regarding IoT-enabled UAV applications and their security mechanisms.

Keywords: Internet of Things, IoT, UAVs, Services, SEMU.





LIST OF FIGURES

Figure 1 – IoT architecture proposals. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 2 – Comparison between Edge, Fog and Cloud Computing paradigms from
(VARSHNEY; SIMMHAN, 2017). . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3 – HAMSTER layered model. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4 – HAMSTER platforms and other abstractions illustrated in the layered archi-
tecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5 – Cloud–SPHERE and its Units, CSU and SMU. . . . . . . . . . . . . . . . . 80

Figure 6 – Taxonomy of attacks for UAVs. . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 7 – Services in HAMSTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 8 – Navigation Phases (NP) platform. . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 9 – HAMSTER operation scenarios. . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 10 – Generic view of a HAMSTER UNIT. . . . . . . . . . . . . . . . . . . . . 96

Figure 11 – Unit model in HAMSTER. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 12 – HAMSTERID interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 13 – Communication model in HAMSTER. . . . . . . . . . . . . . . . . . . . . 99

Figure 14 – Gate operation modes in HAMSTER Interfaces. . . . . . . . . . . . . . . . 100

Figure 15 – Communication Interface model in HAMSTER. . . . . . . . . . . . . . . . 101

Figure 16 – CommunicationTechnology struct. . . . . . . . . . . . . . . . . . . . . . . 102

Figure 17 – ConnectionEstablishment model in HAMSTER. . . . . . . . . . . . . . 103

Figure 18 – ConnectionManagement model in HAMSTER. . . . . . . . . . . . . . . . 103

Figure 19 – Peer management in HAMSTER. . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 20 – Configuration flags for HAMSTER communication. . . . . . . . . . . . . . 105

Figure 21 – Connection Establishment in HAMSTER GATE. . . . . . . . . . . . . . . 106

Figure 22 – HAMSTER Message Structure. . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 23 – Communication Broker model in HAMSTER. . . . . . . . . . . . . . . . . 109

Figure 24 – Message model in HAMSTER. . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 25 – Cloud–SPHERE model in HAMSTER. . . . . . . . . . . . . . . . . . . . . 111

Figure 26 – Authentication process in HAMSTER. . . . . . . . . . . . . . . . . . . . . 113

Figure 27 – Service model in HAMSTER. . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 28 – Service Registration process. . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 29 – Service request between HAMSTER Units. . . . . . . . . . . . . . . . . . 117

Figure 30 – The Navigation Phases Platform model. . . . . . . . . . . . . . . . . . . . 119

Figure 31 – The Navigation Phases Platform operation. . . . . . . . . . . . . . . . . . . 120



Figure 32 – HAMSTER ENTITY authentication in the HAMSTER SUPER ENTITY. . . 124
Figure 33 – Cloud–SPHERE platform and its modules. . . . . . . . . . . . . . . . . . . 125
Figure 34 – Log for UAV2 in the proposed authentication scenario. . . . . . . . . . . . . 126
Figure 35 – Log for Station in the proposed authentication scenario. . . . . . . . . . . 127
Figure 36 – NP Mission Phases Distribution. . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 37 – NP operation during a mission. . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 38 – NP operation at the end of the mission. . . . . . . . . . . . . . . . . . . . . 128
Figure 39 – Log in the UAV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 40 – Log in the Multispectral Camera. . . . . . . . . . . . . . . . . . . . . . 130
Figure 41 – Log in the SensorUnit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 42 – Test scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 43 – Message Exchange in MQTT Protocol. . . . . . . . . . . . . . . . . . . . . 132
Figure 44 – Log for the Station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 45 – Log for the UAV1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 46 – Log for the MQTT Client. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 47 – Log for the Mosquitto broker. . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 48 – Message HAMSTER_UNIT_ID (code 0x80000001) sent without encryption. 137
Figure 49 – Message USER_MESSAGE (code 0x00000002) with telemetry data sent en-

crypted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 50 – MQTT messages sent without any security. . . . . . . . . . . . . . . . . . . 138
Figure 51 – Messages exchanged between the client and the company. . . . . . . . . . . 146
Figure 52 – Client log messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 53 – GCS log messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 54 – UAV log messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 55 – Units present in the demonstration. . . . . . . . . . . . . . . . . . . . . . . 149
Figure 56 – Classes implementing Windows sockets in the demonstration. . . . . . . . . 150
Figure 57 – Demonstration scenario operation based on registered services. . . . . . . . 152



LIST OF SOURCE CODES

Source code 1 – Communication configuration example. . . . . . . . . . . . . . . . . 105





LIST OF TABLES

Table 1 – IoT communication protocols and technologies. . . . . . . . . . . . . . . . . 49
Table 2 – Security requirements among the UAS – IoT – Cloud Computing ecosystem. 68
Table 3 – Perceived security levels in HAMSTER. . . . . . . . . . . . . . . . . . . . . 84
Table 4 – Valid delivery flows for each service type. . . . . . . . . . . . . . . . . . . . 87
Table 5 – HAMSTER PLATFORMS for each Unit TYPE. . . . . . . . . . . . . . . . . 96
Table 6 – HAMSTER OBJECTS included in the demonstration. . . . . . . . . . . . . 129
Table 7 – Mission Phases for the demonstration. . . . . . . . . . . . . . . . . . . . . . 129
Table 8 – Difficulty criteria proposed by (SINGH; VERMA, 2017). . . . . . . . . . . . 138
Table 9 – Risk classification of threats. . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 10 – External context security index initial assessment. . . . . . . . . . . . . . . . 139
Table 11 – Proposed ground and air risk assessment based on SORA. . . . . . . . . . . 140
Table 12 – NCIm for each module of a UAV. . . . . . . . . . . . . . . . . . . . . . . . 141
Table 13 – Unit Types and services registered for each Component in the demonstration. 145
Table 14 – Services present in the demonstration. . . . . . . . . . . . . . . . . . . . . . 150
Table 15 – Task states in the demonstration. . . . . . . . . . . . . . . . . . . . . . . . . 151





LIST OF ABBREVIATIONS AND ACRONYMS

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

Cloud–SPHERE Security and safety Platform for HEteRogeneous systEms connected to
the Cloud

CSU Central Security Unit

HAMSTER HeAlthy, Mobility and Security based data communication archiTEctuRe

NCI Node Criticality Index

NP Navigation Phases

PSI Perceived Security Index

PoC Proof-of-Concept

SEMU Service Exchange Management Unit

SEO Service Exchange Operator

SMU Safety Management Unit

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

ATM Air Traffic Management

BLE Bluetooth Low Energy

BLoS Beyond Line of Sight

C2 Command and Control

CA Certificate Authority

CC Cloud Computing

CoAP Constrained Application Protocol

DAA Detection And Avoid

DaaS Drone-as-a-Service

DDS Data Distribution Service Protocol

DoS Denial of Service

EASA European Aviation Safety Agency

EC Edge Computing

FAA Federal Aviation Administration

FANET Flying Ad-hoc Network

FC Fog Computing

GCS Ground Control Station



GNSS Global Navigation Satellite System

GPS Global Positioning System

IMU Inertial Measurement Unit

IoT Internet of Things

IPv6 Internet Protocol version 6

JARUS Joint Authorities for Rulemaking of Unmanned Systems

LoS Line of Sight

LWPA Low Power Wide Area

MANET Mobile Ad-hoc Network

MC Mobile Computing

MQTT Message Queuing Telemetry Transport Protocol

NASA National Aeronautics and Space Administration

NB-IoT Narrow-Band IoT

NFC Near Field Communication

OS Operating System

QoS Quality of Service

QR code Quick Response code

REST REpresentational State Transfer

RFID Radio Frequency Identification

RPAS Remotely Piloted Aerial Systems

RPL Routing Protocol for Low Power and Lossy Networks

RSSI Received signal strength indication

SEMU SErvice Management for UAVs

SOA Service-Oriented Architecture

SORA Specific Operations Risk Assessment

UAS Unmanned Aircraft System

UAV Unmanned Aerial Vehicle

UAVaaS UAV-as-a-Service

UTM Unmanned Traffic Management

VANET Vehicular Ad-hoc Network

VLoS Visual Line-of-Sight

WSN Wireless Sensor Network

XMPP Extensible Messaging and Presence Protocol

UUID Universally Unique Identifier



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2 Research question and hypothesis . . . . . . . . . . . . . . . . . . . . 27
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1 Unmanned Aerial Systems . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.1 Airspace Integration, Safety and Privacy . . . . . . . . . . . . . . . . 31
2.1.2 Reliable Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.3 Secure Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.3.1 GPS Jamming or Spoofing . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.3.2 Signal Jamming or Spoofing . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.3.3 Information Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.3.4 Malicious Hardware or Software . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.3.5 Unauthorized Disclosure of Communication . . . . . . . . . . . . . . . . . 38
2.1.3.6 Denial of Service (DoS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.4 Collaborating UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 The Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 IoT Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1.1 Identification and Addressing . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1.2 Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.1.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.1.4 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.1.5 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.1.6 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2 IoT Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2.1 Device identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2.2 Device interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2.4 Energy efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2.5 Device localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2.6 Autonomous operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2.7 Security and Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



2.2.3 IoT Architecture Models . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.4 IoT Communication Technologies and Protocols . . . . . . . . . . . 48
2.2.4.1 Application Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.4.1.1 Constrained Application Protocol (CoAP) . . . . . . . . . . . . . . . . . . 49
2.2.4.1.2 Message Queuing Telemetry Transport (MQTT) Protocol . . . . . . . . . 49
2.2.4.1.3 Extensible Messaging and Presence Protocol (XMPP) . . . . . . . . . . . . 50
2.2.4.1.4 Advanced Message Queuing Protocol (AMQP) . . . . . . . . . . . . . . . 50
2.2.4.1.5 Data Distribution Service (DDS) Protocol . . . . . . . . . . . . . . . . . . 50
2.2.4.2 Service Discovery Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.4.2.1 Multicast DNS (mDNS) Protocol . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.4.2.2 DNS Service Discovery (DNS-SD) Protocol . . . . . . . . . . . . . . . . . 51
2.2.4.3 Network Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.4.3.1 IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) . . . . 51
2.2.4.3.2 Routing Protocol for Low Power and Lossy Networks (RPL) . . . . . . . . 52
2.2.4.4 Connectivity Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.4.4.1 Near-field communication (NFC) . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.4.4.2 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.4.4.3 Zigbee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.4.4.4 LoRaWAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.4.4.5 NB-IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.5 IoT Capability Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.5.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.5.2 Fog Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.5.3 Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.5.4 Edge vs. Fog vs. Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2.6 IoT Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2.6.1 Illegal/non-authorized access . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.6.2 Data breaches/disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.6.3 Device/application/account hijacking . . . . . . . . . . . . . . . . . . . . . 59
2.2.6.4 Network intrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 IOT-ENABLED UAVS . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1 IoT-enabled UAV Challenges . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.1 Public Safety and Privacy Challenges . . . . . . . . . . . . . . . . . . 62
3.1.2 Regulation & Standardization Challenges . . . . . . . . . . . . . . . . 63
3.1.3 Technical challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Service Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



3.4.1 Context-Aware Security . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 SERVICE MANAGEMENT FOR UAVS . . . . . . . . . . . . . . . . 75
4.1 HAMSTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.1 The HAMSTER Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.2 HAMSTER Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Identification in HAMSTER . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Communication Security in HAMSTER . . . . . . . . . . . . . . . . . 79
4.3.1 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2 Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.3 Information Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.4 The Cloud–SPHERE Platform . . . . . . . . . . . . . . . . . . . . . . 80
4.3.4.1 Central Security Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.4.2 Safety Management Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Contex-Aware Security in HAMSTER . . . . . . . . . . . . . . . . . . 81
4.4.1 External Security Context . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.2 Mission Security Context . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.3 Internal Security Context . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.3.1 The Node Criticality Index (NCI) . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.4 Perceived Risk Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Service Management in HAMSTER . . . . . . . . . . . . . . . . . . . 85
4.5.1 Services in HAMSTER . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.2 The SEMU Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3 Considerations on Security . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6 Task Management in HAMSTER . . . . . . . . . . . . . . . . . . . . . 89
4.7 HAMSTER Operation Scenarios . . . . . . . . . . . . . . . . . . . . . 90
4.7.1 Known Formation, Centralized Operation (Figure 9a) . . . . . . . . 91
4.7.2 Unknown Formation, Centralized Operation (Figure 9b) . . . . . . . 91
4.7.3 Known Formation, Decentralized Operation (Figure 9c) . . . . . . . 92
4.7.4 Unknown Formation, Decentralized Operation (Figure 9d) . . . . . 92
4.8 HAMSTER in IoT-connected UAV scenarios . . . . . . . . . . . . . . 92
4.9 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 THE PROTOTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1 The HAMSTER Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.1 Model and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Communication between Units . . . . . . . . . . . . . . . . . . . . . . 99
5.2.1 Model and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 100



5.2.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.3 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.4 The Connection between Units . . . . . . . . . . . . . . . . . . . . . . 106
5.3 Message Exchange in HAMSTER . . . . . . . . . . . . . . . . . . . . 107
5.3.1 HAMSTER Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.2 Model and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.3 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 The Cloud–SPHERE Platform . . . . . . . . . . . . . . . . . . . . . . 111
5.4.1 Model and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 The Service Exchange Management Unit . . . . . . . . . . . . . . . . 113
5.5.1 Model and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.2.1 Service Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.2.2 Service Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.2.2.1 Service client request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.2.2.2 Service provider response . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.2.3 Service Deliver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5.2.4 Service Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6 The Navigation Phases Platform . . . . . . . . . . . . . . . . . . . . . 118
5.6.1 Model and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1 PoC 1: HAMSTER Authentication . . . . . . . . . . . . . . . . . . . . 123
6.1.1 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1.2 Obtained Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 PoC 2: The Navigation Phases (NP) Platform . . . . . . . . . . . . 127
6.2.1 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2.2 Obtained Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3 PoC 3: Securing data exchange . . . . . . . . . . . . . . . . . . . . . . 130
6.3.1 MQTT Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.2 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.3 Obtained Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.4 PoC 4: Context-Aware Security . . . . . . . . . . . . . . . . . . . . . . 135
6.4.1 External Context Initial Evaluation . . . . . . . . . . . . . . . . . . . . 136
6.4.2 Mission Context Initial Evaluation . . . . . . . . . . . . . . . . . . . . 140
6.4.3 Internal Context Initial Evaluation . . . . . . . . . . . . . . . . . . . . 141
6.4.4 PSI Initial Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



6.4.5 Context changes impact on PSI . . . . . . . . . . . . . . . . . . . . . 142
6.5 PoC 5: UAV Delivery Service . . . . . . . . . . . . . . . . . . . . . . . 143
6.5.1 Environmental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.5.2 Obtained Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.6 PoC 6: UAV Data Gathering Service . . . . . . . . . . . . . . . . . . 147
6.6.1 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.6.1.1 HAMSTER Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.6.1.2 Unit Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.6.1.3 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.6.1.4 Authentication & Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 151
6.6.1.5 Task Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.6.2 Demonstration Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.6.3 Obtained Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.6.3.1 Initialization and Service Registration . . . . . . . . . . . . . . . . . . . . . 152
6.6.3.2 Connection and Authentication . . . . . . . . . . . . . . . . . . . . . . . . 153
6.6.3.3 Service requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.6.3.4 Task execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.6.3.5 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.6.3.6 Connection to Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.6.3.7 Task finalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.2 Limitations and Difficulties . . . . . . . . . . . . . . . . . . . . . . . . 157
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.4 Declaration of Original Authorship . . . . . . . . . . . . . . . . . . . . 159
7.5 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.5.1 Published Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.5.2 Submitted Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

APPENDIX A PROOF-OF-CONCEPT LOGS . . . . . . . . . . . . . 185
A.1 PoC 6: UAV Data Gathering Service . . . . . . . . . . . . . . . . . . 185
A.1.0.1 UAV log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.1.0.2 Navigation Unit log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
A.1.0.3 Collection Unit log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.1.0.4 Cloud Server log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.1.0.5 Sensors log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189





25

CHAPTER

1
INTRODUCTION

Unmanned Aerial Vehicles (UAVs), popularly known as drones, are vehicles without a
crew that operate autonomously or remotely. Due to technological advances, UAVs have gained
more computational power and can now be employed in many applications such as precision
agriculture, infrastructure and environmental monitoring, surveillance, disaster control and
response, among others. Usually, UAVs operate together with a Ground Control Station (GCS)
and the communication links, composing an Unmanned Aircraft System (UAS) (VALAVANIS;
VACHTSEVANOS, 2015).

Our world is now witnessing an ascending interest in connecting different cyber-physical
systems in order to achieve better results through collaboration and information sharing. A very
representative example of this trend is the Internet of Things (IoT) paradigm. The IoT has been
gaining attention from the academia, industry and the media due to its potential to improve
our productivity, efficiency and quality of life. Despite the increasing interest, the IoT is yet to
gain a formal definition (WHITMORE; AGARWAL; Da Xu, 2015; MEDDEB, 2016). Most
likely, the IoT will be formed by ubiquitous everyday objects or things able to communicate
with other devices to share information or coordinate actions in order to achieve a common
task or goal or offer services for different types of applications (ATZORI; IERA; MORABITO,
2010; ITU-T Y.2060, 2012; AL-FUQAHA et al., 2015; WHITMORE; AGARWAL; Da Xu,
2015). It is believed that the IoT will have a significant impact in our world, contributing with
the improvement of the quality of life and the economy’s growth (AL-FUQAHA et al., 2015).

As with many technologies, the potential of new or improved applications by integrating
UAVs into the IoT to provide UAV-enabled services is being studied. For this to happen, UAVs
must be seamlessly integrated into the IoT and be able to provide and consume services so
intelligent decisions are made autonomously or according to a client request. Many UAV-enabled
services are envisioned in many areas (PAKROOH; BOHLOOLI, 2021), making this integration
a great opportunity for better technology development.



26 Chapter 1. Introduction

In the IoT, a UAV and all of its modules will be a thing able to connect, exchange data
and collaborate with other things in the system, generating a set of always-available services

which can be discovered and consumed by clients (MIORANDI et al., 2012). The presence of
Cloud/Edge/Fog computing in the IoT also allows the UAVs to promptly distribute their telemetry
and captured data, as well as to use the remote storage and processing capabilities to aggregate,
analyze and distribute data, as well as to control and/or manage systems (AL-FUQAHA et al.,
2015; BOTTA et al., 2016; CAVALCANTE et al., 2016).

The IoT is based on communication and collaboration, so a lot of information will travel
through its numerous connections, making communication security and privacy major challenges
to be tackled. However, given the device heterogeneity intrinsic to the IoT, it is highly unlikely
one single security solution can be broadly utilized. In this case, a flexible and configurable
solution that allows UAVs to provide services to other “things” in the IoT is highly desirable.

1.1 Motivation

As previously discussed, UAVs become a thing when they are integrated in the IoT
infrastructure. UAV resources are available to clients/users through services, whose availabil-
ity will depend on contextual information such as location, battery levels, available payload,
and others (MAHMOUD; MOHAMED; AL-JAROODI, 2015). Since service clients can be
either human or other machines, it is crucial to correctly identify all resources and services
available (MAHMOUD; MOHAMED; AL-JAROODI, 2015). Even though some works such as
(MAHMOUD; MOHAMED, 2015) and (ALWATEER; LOKE; RAHAYU, 2018) bring some
service classification, it would be highly desirable that all services were properly described by
a standardized set of definitions. Also, UAVs need a way to allow operations such as service
advertisement, autonomous discovery, request and provision so the system is self-managed.

Security is a challenge in any communication system, and it is considered crucial for
IoT acceptance from the general public and the widespread adoption of the technology. Regular
network solutions are not suitable for IoT systems, impeding applying a single security solution
on the entire system. Most likely, different security mechanisms will be available for the devices,
and a negotiation on security measures will be necessary before IoT devices exchange data.

Previous studies have proposed connecting UAVs into the IoT or another similar system
in order to provide services. However, very few papers address communication security, even
though it is recognized as an important challenge.

One of the proposed solutions was the HeAlthy, Mobility and Security based data
communication archiTEctuRe (HAMSTER). HAMSTER was envisioned to deal with different
aspects in Unmanned Vehicles such as security, safety and mobility and was made available as a
reference model in (PIGATTO, 2017).



1.2. Research question and hypothesis 27

This thesis presents the SErvice Management for UAVs (SEMU), an evolution of HAM-
STER. The architecture was improved, expanded and gained new functionality in order to enable
IoT-connected UAVs to securely provide services in the network they are in. Besides that, the
first software prototype was developed, making HAMSTER leave the platonic plane and come
to life to enable further research and development in the area.

1.2 Research question and hypothesis

The research question of this theses is: can a UAV be integrated into the Internet of
Things ecosystem and be able to autonomously and exchange services with other devices though
a secure communication?

In order to answer this question, the following hypothesis was defined: a UAV can be
integrated into a communicating system like the Internet of Things and exchange services with
other devices through a communication architecture that provides support for communication
security and service operations.

Based on the hypothesis, there are some other challenges to be addressed: (i) how to deal
with device heterogeneity that translate to different network protocols and hardware capabilities;
(ii) how to exchange services that can be very different in nature; (iii) how to provide security
seamlessly to highly-diverse hardware and applications.

1.3 Thesis Organization

This thesis consists of a research papers collection written during this PhD, as follows:

1. RODRIGUES, M.; PIGATTO, D. F.; FONTES, J. V. C.; PINTO, A. S. R.; DIGUET,
J.-P.; BRANCO, K. R. L. J. C. UAV Integration Into IoIT : Opportunities and Challenges.
International Conference on Autonomic and Autonomous Systems (ICAS), IARIA,
p. 6, 2017.

2. RODRIGUES, M.; PIGATTO, D. F.; BRANCO, K. R. L. J. C. Cloud-SPHERE: A Security
Approach for Connected Unmanned Aerial Vehicles. In: International Conference on
Unmanned Aircraft Systems (ICUAS). Dallas, EUA: IEEE, 2018. p. 769–778. ISBN
978-1-5386-1354-2. Available: <https://doi.org/10.1109/ICUAS.2018.8453302>.

3. . Navigation phases platform: Towards green computing for uavs. In: 2018 IEEE
Symposium on Computers and Communications (ISCC). [s.n.], 2018. p. 01171–01176.
Available: <https://doi.org/10.1109/ISCC.2018.8538713>.

4. RODRIGUES, M.; BRANCO, K. R. L. J. C. Uavs at your service: Towards iot inte-
gration with hamster. In: 2019 International Conference on Unmanned Aircraft Sys-
tems (ICUAS). [s.n.], 2019. p. 856–865. Available: <https://doi.org/10.1109/ICUAS.2019.
8797790>.

https://doi.org/10.1109/ICUAS.2018.8453302
https://doi.org/10.1109/ISCC.2018.8538713
https://doi.org/10.1109/ICUAS.2019.8797790
https://doi.org/10.1109/ICUAS.2019.8797790


28 Chapter 1. Introduction

5. . Cloud–SPHERE: Towards Secure UAV Service Provision. Journal of Intelligent
& Robotic Systems, v. 97, p. 249–268, 2020. ISSN 1573-0409. Available: <https://doi.
org/10.1007/s10846-019-01046-6>.

6. . Context-aware operation for unmanned systems with hamster. In: 2020 IEEE Sym-
posium on Computers and Communications (ISCC). [s.n.], 2020. p. 1–6. Available:
<https://doi.org/10.1109/ISCC50000.2020.9219657>.

7. . Enabling uav services in the iot with hamster. In: 2021 IEEE Symposium on
Computers and Communications (ISCC). [s.n.], 2021. p. 1–6. Available: <https://doi.
org/10.1109/ISCC53001.2021.9631461>.

8. . Providing UAV Secure Services in the Internet of Things with HAMSTER: a Tutorial.
[Manuscript submitted for publication]. 2022.

Since the idea evolved and models changed during the course of this work, it would
not make sense to attach them verbatim. Therefore, their text and references were adapted and
combined to better fit a thesis format, as follows:

• Chapter 2 presents background information on Unmanned Aerial Systems (UASs) and the
Internet of Things based on paper #8.

• Chapter 3 discusses the challenges of integrating UAVs into the Internet of Things and
present some opportunities studied in the field, based on papers #1, #3, #4, #5, #6 and #8;

• Chapter 4 presents the concept of SEMU and its components, including their model in a
high-level approach, based on papers #2, #3, #4, #5, #6, #7 and #8;

• Chapter 5 presents the details of the latest prototype version, including its modeling and
operation, based on paper #8;

• Chapter 6 presents the obtained results of this work, including securing a MQTT applica-
tion and an entire SEMU-enabled application with services, based on papers #2, #3, #5,
#6, #7 and #8;

• The thesis finished in Chapter 7 by presenting the conclusions and research opportunities
derived from this thesis.

https://doi.org/10.1007/s10846-019-01046-6
https://doi.org/10.1007/s10846-019-01046-6
https://doi.org/10.1109/ISCC50000.2020.9219657
https://doi.org/10.1109/ISCC53001.2021.9631461
https://doi.org/10.1109/ISCC53001.2021.9631461


29

CHAPTER

2
LITERATURE REVIEW

Our world is now witnessing an ascending interest in connecting different cyber-physical
systems in order to achieve better results through collaboration and information sharing. A very
representative example of this trend is the Internet of Things (IoT) paradigm. The IoT has been
gaining attention from the academia, industry and the media due to its potential to improve our
productivity, efficiency and quality of life.

Popularly known as drones, Unmanned Aerial Vehicles (UAVs) are gaining popularity in
both military and civilian segments, with the technology being successfully used in applications
such as surveillance, disaster control and response, infrastructure and environmental monitoring,
among others. UAVs are natural candidates to integrate the IoT and with it be able to deploy
more complex and impacting applications.

Both domains have intrinsic characteristics that influence aspects such as autonomy,
connectivity and performance — those in turn determine how applications can be deployed. In
this Chapter, we present background information on both Unmanned Aerial Systems (UASs) and
the IoT, including new paradigms that are commonly associated with boosting IoT performance:
Cloud / Fog / Edge Computing.

2.1 Unmanned Aerial Systems

Unmanned Aerial Vehicles (UAVs) are powered vehicles autonomously or remotely
operated. The classification of those vehicles will depend on the used metrics, which can be based
on weight, size, collision risk, operation altitude, payload, and others (KIM; JO; SHRESTHA,
2014). Authors from (DALAMAGKIDIS, 2015) provide an initial glimpse on UAV classification.

UAVs are usually a part of an Unmanned Aerial System (UAS), a more complex system
composed by other elements such as (VALAVANIS; VACHTSEVANOS, 2015):

• GROUND CONTROL STATION (GCS): The center of man-machine interface, it can be



30 Chapter 2. Literature review

airborne or on the ground. It uses the communication links so that the UAV operator can direct
the vehicle operation and supervise status or payload data. Usually, it is also the interface to
other systems.

• UNMANNED VEHICLE: The type of vehicle used is determined by the application —
each one has different demands in terms of payload, response time, mobility, level of autonomy
and coverage area (HAYAT; YANMAZ; MUZAFFAR, 2016).

• PAYLOAD: What the UAV is transporting is also dependent on the mission and/or
application the UAV is deployed for. It can be for example cameras for surveillance applications,
goods or medicines in delivery applications or weapons in military applications.

• NAVIGATION SYSTEMS: Essential for UAVs to flight autonomously, navigation in-
formation can be acquired by combining Global Positioning System (GPS) sensor and inertial
information acquire by an Inertial Measurement Unit (IMU). For non-autonomous operation,
other methods such as radar tracking, radio tracking or direct reckoning can be deployed.

• LAUNCH, RECOVERY AND RETRIEVAL EQUIPMENT: Will be required for UAVs not
able to flight vertically or without access to a suitable runaway for launching/landing. Retrieval
equipment is necessary if a UAV cannot be carried.

• COMMUNICATION LINKS: Because they do not have an on board operator, UAVs
require a robust and effective communication for them to communicate with other manned and/or
unmanned aircraft or vehicles, with the GCS and with traffic control authorities (VALAVANIS;
VACHTSEVANOS, 2015).

Historically, UAVs were mainly adopted in military operations such as transportation,
intelligence gathering, target attacks and combat support (MOTLAGH; TALEB; AROUK, 2016).
However, in recent years UAVs have also been used in civilian applications such as aerial
photography, environmental, traffic and infrastructure monitoring (KANISTRAS et al., 2015;
ZHOU et al., 2016; YU et al., 2017; BOLLA et al., 2018), agriculture (CHEBROLU; LABE;
STACHNISS, 2018; PERZ; WRONOWSKI, 2018), search and rescue (AL-KAFF et al., 2017;
PEREZ-GRAU et al., 2017) and surveillance. Also, they can be used in hazardous environments
and therefore be helpful in disaster-response scenarios (GOMEZ; PURDIE, 2016; TURNER;
HARLEY; DRUMMOND, 2016).

Due to their numerous applications, UAVs will most likely be a part of our daily lives,
but not without challenges.Among them, we highlight and discuss (a) the UAS insertion into the
shared airspace ensuring the safety and privacy of the general population and (b) the establishment
of reliable communication between mobile, resource-constrained vehicles and (c) securing the
vehicles and their communication.



2.1. Unmanned Aerial Systems 31

2.1.1 Airspace Integration, Safety and Privacy

Integrating UAS into the Airspace must be done in an organized and controlled manner
without affecting the current air traffic (MOTLAGH; TALEB; AROUK, 2016). The lack of
proper regulation can be considered one of the biggest obstacles to UAV development in civilian
areas (SAHINGOZ, 2014) and the increasing number of UAVs will impact how air traffic control
is conducted (ALTAWY; YOUSSEF, 2016), and a reliable Unmanned Traffic Management
(UTM) is necessary for low level airspace (DAVIES et al., 2021). Among others challenges, air
control agencies will need to address:

• RESTRICTED DETECTION AND AVOID (DAA): UAV operators have a restricted aware-
ness of the vehicle surroundings, more so if operating Beyond Line of Sight (BLoS).
(ALTAWY; YOUSSEF, 2016). DAA operating requirements need to be developed so
UAVs maintain a safe distance from other manned or unmanned aircraft and prevent
collisions (FAA, 2018a). Particularly in cases of smaller UAVs not radar-detectable, air
controllers will not be able to provide aircraft separation to manned aircraft. (MARSHALL,
2016).

• C2 LINK LATENCY AND MAINTENANCE: Except for fully autonomous UAVs, the
Command and Control (C2) link is critical. It allows the operator to control the UAV and
provides telemetry (such as altitude, airspeed and position) information. The connection
made by C2 link should be active for as long as possible, and research is required for
emergency actions for when the link is lost (FAA, 2018a). Also, C2 link is vulnerable
to radio or electromagnetic interference, radio or satellite system failure (MARSHALL,
2016), and its latency may retard the UAV response to traffic control requests, which can
compromise systems with real-time requirements (ALTAWY; YOUSSEF, 2016).

• STANDARDIZATION: Standards on efficiency, safety and reliability are required for UAVs
to operate within the Airspace. According to the Federal Aviation Administration (FAA)
in the United States, those standards will vary depending on the operation nature and
environment, the aircraft itself and the pilot qualification (FAA, 2018a).

• SPECTRUM MANAGEMENT: Spectrum regulation is an important issue to be considered
(MOTLAGH; TALEB; AROUK, 2016) for the UAV not to disturb the communication of
current air traffic. Frequency bands for UAS payload communication must be allocated
(FAA, 2018a).

• AIRSPACE MANAGEMENT: The Airspace Management needs adaptation to operate with
UAVs (MARSHALL, 2016). When managing traffic, air traffic controllers must consider
the vehicle characteristics (a smaller UAV will be more affected by turbulence than a
bigger one), a challenging task when the high heterogeneity is taken into account. At
the same time, UAV operators have to be trained to answer to air traffic controllers in a
separate interface while piloting (ALTAWY; YOUSSEF, 2016). In this regard, a traffic
management system could provide services such as congestion management, path planning



32 Chapter 2. Literature review

and rerouting or geofencing, accelerating the use of UAVs in civilian applications (KIM;
JO; SHAW, 2015).

Authorities like the FAA in the United States and the European Aviation Safety Agency
(EASA) are already taking actions regarding UAS regulation. In the USA, 14 CFR part 107
(FAA 14 CFR PART 107, 2016) contains the final regulation for small drones, which flight
in low altitude airspace, i.e., below 400 feet. The vehicle is required to operate within Visual
Line-of-Sight (VLoS) during daylight twilight hours if equipped with anti-collision lights. Since
the existing Air Traffic Management (ATM) system do not provide services in this airspace,
both FAA and National Aeronautics and Space Administration (NASA) are collaborating with
industry to develop an Unmanned Traffic Management (UTM) (FAA, 2018b), which is separate
but complementary to the FAA ATM system (FAA, 2018a). UTM can offer services like flight
planning, communications, command and control, and others. In this system, UAS must be
registered before operating in the airspace (FAA, 2018b). In Europe, EASA has released a
‘Prototype’ for UAS regulation (EASA, 2016). For more details, the work in (STÖCKER et al.,
2017) presents an investigation of UAV regulations on global scale, and authors from (DAVIES
et al., 2021) review UTM framework proposals.

A crucial point for technology acceptance by the general public is to guarantee the
population safety and privacy (MOTLAGH; TALEB; AROUK, 2016). Privacy invasion is a
heavily debated topic yet to be resolved (KIM; JO; SHAW, 2015), aggravated by the low cost
and small size of many available UAVs (STÖCKER et al., 2017). One of the greatest challenges
is the fact that the majority of acquisitions are made by hobbyists or non-certified operators with
no knowledge of the rules, who can create unnecessary risks for other people or manned aircraft.
UAV owners may also have their own privacy violated — in (GABRIELSSON; BUGEJA;
VOGEL, 2021), authors demonstrate a deauthentication attack targeting a commercial drone that
was able to recover personal information (audio, video, and location) stored in the UAV.

However, it would be virtually impossible for any regulating agency to identify and
pursue all malefactors without any market regulation. For this, registration and collaboration
with law enforcement is necessary. The FAA has a registration process since 2015 and it allows
law enforcers and regulators to identify an operator more quickly. Also, the registration process
is viewed by the agency as an opportunity to instruct operator on safety guidelines, emphasizing
the operator accountability (FAA, 2018a).

2.1.2 Reliable Communication

Communication is a cardinal aspect of UAV applications (BEKMEZCI; SAHINGOZ;
TEMEL, 2013), with different types of links — such as command and control, telemetry and
payload — being employed between the UAVs and the infrastructure (HE; CHAN; GUIZANI,
2017). Communication is even more critical when multiple UAVs are used in a mission — a
growing occurrence in civilian applications (GUPTA; JAIN; VASZKUN, 2016) — which can be



2.1. Unmanned Aerial Systems 33

homogeneous or heterogeneous regarding characteristics like storage, processing and sensing
capabilities. Homogeneous-UAV applications are easier to develop, but the use of heterogeneous
UAVs can show itself as a cost-effective way to perform complex missions that require different
capabilities of each vehicle (MOHAMED; AL-JAROODI, 2013).

The use of multiple UAVs in a mission presents some other advantages. First of all,
acquisition and maintenance costs are reduced for small UAVs compared with bigger ones,
and the missions can be completed faster due to task parallelization (SINGH; VERMA, 2018;
ROVIRA-SUGRANES et al., 2021). Multi-UAV systems also scale more easily to wider coverage
and have higher survivability, since there are other vehicles to complete the mission if one of
them fail. Finally, there is a very small radar cross-section, crucial for military operations
(BEKMEZCI; SAHINGOZ; TEMEL, 2013).

In a single-UAV system, the communication is made between the vehicle and the control
station by a direct link or a Line of Sight (LoS) communication. In a multi-UAV system,
the communication can be established in two different forms: centralized or decentralized. In
centralized or infrastructure-based communication, the GCS or a satellite acts as a central node
to which all UAVs are connected and through which all inter-UAV communication is routed. In
this setup, the vehicle must be equipped with an expensive hardware to communicate, and the
operation area is limited to the communication coverage of the infrastructure — a UAV cannot
operate if it is not connected. In decentralized communication, UAVs communicate directly
or using other UAVs as relays, in an ad-hoc network. In this setup, the mission target area is
increased, since the communication among vehicles and the GCS can be performed through
other vehicles in communication hops (BEKMEZCI; SAHINGOZ; TEMEL, 2013; MOTLAGH;
TALEB; AROUK, 2016; CHRIKI et al., 2019).

An ad-hoc network is formed by a collection of nodes also functioning as routers,
allowing the creation of a temporary network with no fixed topology or centralized administration
that can operate stand-alone or connected to the Internet. When those nodes are mobile, the
network is called a Mobile Ad-hoc Network (MANET). For vehicular applications, the nodes
are embedded in vehicles, forming a Vehicular Ad-hoc Network (VANET). If the nodes are
UAVs, they compose a Flying Ad-hoc Network (FANET), a special form of MANET or VANET
(BEKMEZCI; SAHINGOZ; TEMEL, 2013). The work in (CHRIKI et al., 2019) presents the
FANET state of the art at the time of its publication, discussing FANET surveys, communication
issues and requirements, mobility models and security schemes, as well as open challenges.

FANETs allow UAVs to operate in a larger area — if a UAV can no longer connect
to the infrastructure, it can use other UAVs to relay the message to its destination, enhancing
the reliability of multi-UAV systems. Also, FANETs in many cases require lighter communica-
tion hardware, increasing the system endurance (BEKMEZCI; SAHINGOZ; TEMEL, 2013).
However, FANETs have some intrinsic characteristics that make them different from other ad
hoc networks (BEKMEZCI; SAHINGOZ; TEMEL, 2013; GUPTA; JAIN; VASZKUN, 2016;



34 Chapter 2. Literature review

SINGH; VERMA, 2018; CHRIKI et al., 2019):

• NODE MOBILITY: Node mobility in FANETs is much higher compared to MANETs and
VANETs, which could influence the stability of communication links and cause nodes to
leave and re-enter the network. Because of that, the network routes between the nodes
change frequently.

• MOBILITY MODEL: While nodes within a VANET follow a determined path following
streets and highways, FANET nodes have diverse mobility models, since they can be either
static in a hovering mission or moving at a very high speed. Mobility impacts FANET
performance, so the application mobility model should be chosen carefully so the task is
completed efficiently.

• NODE DENSITY: Since FANET nodes are usually spread out, FANETs present lower node
density (average number of nodes in a given unit area) then MANETs or VANETs, which
could lead to network partitioning.

• DYNAMIC TOPOLOGY: Due to high node mobility and the not always predictable mobility
model, FANET topology changes more frequently than in other ad-hoc networks. Any
UAVs entering or leaving the network, as well as disruption and reestablishment of
communication links, trigger a topology update.

• PLATFORM CONSTRAINS: UAVs have many resource constrains that impact on their
design and applications. First of all, UAVs have limited payload capability regarding size
and weight. Heavier payloads mean higher battery consumption and shorter flight time.
Limited battery also influence UAV applications, whose algorithms for communication,
security and control must be energy efficient and fit to meet UAV computational constrains.

These characteristics have a great impact on a FANET operation. A multi-UAV network
need to (a) be robust to tolerate delays, (b) have a high adaptability to deal with frequent topology
changes, which requires changes at the MAC and network layers, (c) provide efficient data
delivery even with link disruption or outages and (d) employ energy saving mechanisms at both
platforms and network layers (GUPTA; JAIN; VASZKUN, 2016; SINGH; VERMA, 2018). In
FANETs, there are many challenges to be studied, such as:

• UAV MOBILITY AND PLACEMENT: Where the UAVs are placed is a major research
concern in FANET (SINGH; VERMA, 2018). Since UAVs have limited payload, different
sensors are likely to be carried by different UAVs. If the positioning of UAVs is not optimized,
repeated data from the same area can be acquired.The use of mobility models designed for
UAVs may be helpful to study this problem and can affect FANET performance significantly.
However, currently mobility models do not reproduce UAV behavior realistically, and a more
precise simulation of UAV motion in a practical situations is needed (CHRIKI et al., 2019). The
work in (BUJARI; PALAZZI; RONZANI, 2017) analyze possible mobility models for typical
UAV applications such as search and rescue, traffic and urban monitoring, reconnaissance and
patrolling, agricultural management, environmental sensing and relaying network in order to



2.1. Unmanned Aerial Systems 35

provide guidelines to FANET research and simulation.

• ROUTING: The frequent topology changes that happen in a FANET present a difficult
challenge for data routing. Routing protocols have to be able to work with high mobile nodes
and to update routing tables dynamically as the network topology changes (SINGH; VERMA,
2018). There are many FANET routing protocols, classified into static, proactive, reactive, hybrid
or position-based. Papers (SAHINGOZ, 2014; FAN; CAI; LIN, 2017; KHAN et al., 2017;
OUBBATI et al., 2017; CHRIKI et al., 2019; ROVIRA-SUGRANES et al., 2021) survey FANET
routing protocols and authors from (BILAL; KHAN, 2017) evaluated combinations of four
mobility models with three different routing protocols for FANETs, analyzing packet delivery
ratio, average end to end delay and routing overhead.

• LINK MAINTENANCE: Given the node mobility and speed in a FANET, it is not always
possible to maintain a stable link, making delays and disconnections a common occurrence in
a FANET and the communication link intermittent (GUPTA; JAIN; VASZKUN, 2016). Link
quality variations influence the MAC layer robustness in a FANET. Using directed antennas
is believed to be a promising technology, although estimating UAV location is a challenge
(BEKMEZCI; SAHINGOZ; TEMEL, 2013). How to keep acceptable send-and-receive signal
strength (Received Signal Strength Indication – RSSI) and how to deal with congestion when
multiple UAVs try to connect with the same GCS are other challenges (MOTLAGH; TALEB;
AROUK, 2016).

• QUALITY OF SERVICE (QOS): reliable communication is necessary to maintain QoS.
FANETs transmit diverse types of data with different real-time requirements. The network need
to satisfy QoS requirements such as delay, packet loss and jitter compromising the already
constrained UAV resources as little as possible (SAHINGOZ, 2014; CHRIKI et al., 2019).

2.1.3 Secure Communication

Communication security is one of the most critical issues related to UAVs. Multi-UAV
systems extends the attack surface, and node mobility also impacts security with frequent network
topology changes and link inconsistency.

UAS design and development must take security issues into account so the system can
answer autonomously and dynamically to attacks or failures, whether accidental or intentional.
Conventional security mechanisms are not efficient for real-time transmission required by UAVs,
making distributed solutions that do not depend on the GCS and do not compromise UAV
resources or network performance necessary (HE; CHAN; GUIZANI, 2017; BEKMEZCI;
ŞENTÜRK; TÜRKER, 2016).

Regarding a UAS, the following security requirements apply (ALTAWY; YOUSSEF,
2016; HE; CHAN; GUIZANI, 2017):

• AVAILABILITY: all elements of a UAV must perform their tasks without any disruption



36 Chapter 2. Literature review

during its operation, even if the aircraft is under attack.
• CONFIDENTIALITY: Communication between UAVs or between the UAV and the infras-

tructure can not leak information to unauthorized parties.
• INTEGRITY: In UASs, integrity can refer to information integrity or system integrity.

Information integrity ensures that exchanged data in communication links, such as mission
data, telemetry and GPS signals have not been altered. System integrity ensures the
authenticity of software and hardware components.

• ACCOUNTABILITY: UASs need accountability mechanisms to ensure non-repudiation. A
digital signature algorithm can bind the action to an entity, and logging procedures allow
action tracking.

• AUTHENTICATION AND ACCESS CONTROL: Identification and authentication of nodes
are necessary for secure communication. When a node is inserted in the network, it must
be identified and authenticated before communicating with other nodes within the network.
Access control policies are necessary to prevent unauthorized personnel from accessing
sensitive data and/or control operations.

According to (YAACOUB et al., 2020), these essential requirements can be met through
the AAA security: Authorization to the personnel controlling the UAV, strong Authentication to
ensure the operator identity and Auditing/Accounting to track and ensure UAV owners are held
accountable in case of malicious activities.

All UAS components present vulnerabilities that can be exploited and result in a security
breach or a system control loss. UAVs rely on different systems (navigation, collision avoidance,
sensing) to operate. If any of them is compromised or tampered with, the UAV can be lost and
accept malicious commands. Also, UAV systems that depend on external plain signals such as
GPS navigation or collision avoidance can receive falsified data and alter the way the aircraft
operates (HARTMANN; STEUP, 2013). The GCS must be protected against software threats
such as malware and hardware tampering. Communication links in a UAS can be employed in
many ways, and each one has its own set of vulnerabilities.

Next, the main threats to a UAS are discussed (ALTAWY; YOUSSEF, 2016; TAN et al.,
2020). For a more complete read on attack taxonomy, the reader can refer to (YAHUZA et al.,
2021).

2.1.3.1 GPS Jamming or Spoofing

UAV navigation depends heavily on Global Navigation Satellite System (GNSS), being
the Global Positioning System (GPS) the most common option. Without this signal, a UAV may
be susceptible to Denial of Service (DoS) and/or errors in measurements that can lead the vehicle
to crash or diverted from its course. GPS signals can be either jammed — when a stronger signal
jams the channel and make the receiver unable to distinguish the original GPS signal — or easily
spoofed — when a faked signal injects false positioning information to the UAV. The lack of



2.1. Unmanned Aerial Systems 37

authentication in civil GPS signals makes it easy for its falsification with low-cost equipment and
the GPS receiver unable to discern if the received signal is authentic or not (KHAN; MOHSIN;
IQBAL, 2021).
COUNTERMEASURES: Authenticated GPS signals could prevent GPS spoofing. Such strategy,
however, would require changes in the entire satellite system. Surveillance of GPS signal for
sudden changes in signal strength and traveling time can give indications of signal spoofing. In
order to counter GPS jamming, alternative navigation methods such as vision and/or inertial
navigation systems can be employed in the absence of GPS signals.

2.1.3.2 Signal Jamming or Spoofing

It is expected UAVs will emit broadcasts with its own position and velocity to be used
by other aircraft in their collision avoidance system. Like GPS, this broadcast would be open
and therefore easily jammed or spoofed, which could lead to UAV collisions or insertion into
unfriendly territory. Spoofing UAV telemetry and video feeds can influence operator commands
and compromise the system operation. Jamming GCS control signals can induce the UAV into
an emergency protocol and impede mission realization. With GCS control signal spoofing, the
adversary can take control of the aircraft.
COUNTERMEASURES: UAV signal authenticity verification is necessary to ensure reliable
information. In the case of jammed GCS control signals, UAV response needs to be carefully
planned so it will not act unpredictably if others signals, such as GPS, are also jammed. In the
case of a fixed GCS location-based authentication can be used to mitigate spoofing.

2.1.3.3 Information Injection

Without proper identification and authentication schemes, a malicious user can pose as
a trusted UAV or UAV module and inject the system with falsified information, destabilizing
UAVs and compromising UAS operation.
COUNTERMEASURES: Authentication of all UAVs modules and of the UAVs within a FANET
is necessary to ensure only reliable information is being received. Also, comparing the expected
behavior/data from actual provided information from modules can identify discrepancies and
identify possible falsified data.

2.1.3.4 Malicious Hardware or Software

Both GCS and UAV systems are exposed to hardware and software trojan. GCS can be
infected by the actions of an unsuspecting operator or through a connection to an external system
or the Internet itself. Hardware trojan can be inserted in chips during fabrication and disable
security mechanisms or provide a back door for adversaries.
COUNTERMEASURES: Intrusion detection systems, antivirus software, firewalls, and other



38 Chapter 2. Literature review

policies can mitigate the threat of software trojan and malware. The use of reliable hardware
suppliers as well as side-channel analysis minimize the risk of hardware trojan.

2.1.3.5 Unauthorized Disclosure of Communication

Exchanged information between UAVs or between the UAV and the infrastructure needs
to be protected against unauthorized disclosure when intercepted.
COUNTERMEASURES: Employing cryptography can ensure data confidentiality and integrity.
Elliptic curve cryptography solutions can be used to provide a good security level with less
resource consumption than other public-key solutions. However, implementing a Certification
Authority functionality in an ad-hoc network is challenging and may fail depending on the
employed approach (BEKMEZCI; ŞENTÜRK; TÜRKER, 2016).

2.1.3.6 Denial of Service (DoS)

Both the infrastructure and UAVs can be at risk of DoS. In a centralized communication
UAS, a DoS in GCS will leave all UAVs in the system without receiving any control commands.
In a decentralized UAS, compromising the GCS availability can impede UAVs to send pertinent
mission information to a remote operator or system. Flooding UAVs with random commands
can force them into an unexpected state and consequently compromise UAS operation.
COUNTERMEASURES: UAVs and GCS need to implement mechanisms that made them resistant
to DoS. Implementing contingency policies for DoS situations can prevent the system from
achieving an unexpected state.

2.1.4 Collaborating UAVs

UAS communication has many future directions that are being tackled by the academic
community. Artificial Intelligence (AI) use is already being made in some UAS problems such as
positioning and detection, autonomous path control, scheduling and resource allocation, security
and sensing, and can be used to other problems such as collective intelligence (ZHOU; RAO;
WANG, 2020) and communication protocols (ROVIRA-SUGRANES et al., 2021).

Multi-UAV systems make communication a very critical challenge. Newer technologies
like 5G and beyond promise to increase connectivity, allowing UAVs to provide information
promptly and make fast collaboration with other connected vehicles or devices. Communication
security is still a key requirement, and many security mechanisms for UAVs are purposed —
from lightweight cryptography to blockchain-enabled confidentiality and integrity solutions.

However, new technologies such AI and blockchain add computation complexity and
increase energy consumption. When considering smaller UAVs with computational and power
constrains, developed strategies and protocols must be energy-efficient in order to prolong the



2.2. The Internet of Things 39

network lifetime and UAV autonomy (GUPTA; JAIN; VASZKUN, 2016; ROVIRA-SUGRANES
et al., 2021).

UAVs can also collaborate in many ways if connected to larger communication infras-
tructure. Some examples are collecting data from other devices and taking them to a central
station, gathering the data itself, and then taking it to a central station and enabling connectivity
to arrive in remote areas. All of this is envisioned to happen with the UAVs connected to the
Internet of Things (IoT), discussed next.

2.2 The Internet of Things
The Internet of Things (IoT) has been vastly explored over the last few years, becoming a

matter of interest for both industry and academia. A formal definition of IoT is yet to be reached
(WHITMORE; AGARWAL; Da Xu, 2015), but there is a consensus that IoT will be formed
by ubiquitous everyday objects or ‘things’ that can communicate with other devices to share
information, coordinate actions to achieve a common task or goal, or offer services for different
applications (ITU-T Y.2060, 2012; AL-FUQAHA et al., 2015; WHITMORE; AGARWAL; Da
Xu, 2015). The IoT is expected to have a notable impact in our everyday lives, with significant
applications in many areas such as healthcare, smart environments (smart homes, factories,
or cities), commercial, industrial, environmental, and infrastructural monitoring (ASGHARI;
RAHMANI; JAVADI, 2019; HASSAN et al., 2020).

Since this is a very complex system, it has many different aspects to be considered. In
this Section, we provide an overall view of the IoT briefly discussing its elements (Section 2.2.1),
requirements (Section 2.2.2), architecture models (Section 2.2.3), communication technologies
and protocols (Section 2.2.4), the use of Cloud/Fog/Edge technologies (Section 2.2.5) and
security (Section 2.2.6). The reader can refer to IoT surveys such as (AL-FUQAHA et al., 2015;
LIN et al., 2017; ČOLAKOVIĆ; HADŽIALIĆ, 2018) and (BANSAL; KUMAR, 2020) for more
information and references for particular IoT aspects.

2.2.1 IoT Elements

In this Section, the six main elements required to provide IoT functionality according to
(AL-FUQAHA et al., 2015) are discussed: Identification and Addressing, Sensing, Communica-
tion, Computation, Services, and Semantics.

2.2.1.1 Identification and Addressing

IoT devices represent the threshold between the digital and the physical world. In the
system, each physical entity has a digital representation. This digital-physical operation is only
possible with proper device identification and addressing. A physical entity is mapped to a digital
entity through an identity, whereas the digital entities reach their physical counterparts through



40 Chapter 2. Literature review

device addressing (NING et al., 2020). Moreover, many security mechanisms on the Internet,
such as authentication and authorization, are ID-based, making identity modeling and addressing
crucial elements within the IoT system (ZHU; BADR, 2018).

Some identification methods are considered feasible to the IoT system. Radio Frequency
Identification (RFID), Quick Response code (QR code) and Near Field Communication (NFC) are
examples commonly found in the literature of identity carriers. In RFID technology, Electronic
Product Codes (EPC) and Ubiquitous Codes (uCode) are often cited as encoding techniques. The
Internet Protocol version 6 (IPv6) is presumed the addressing protocol to ensure unique device
addressing, since its address space is believed large enough to comprise the entire system. There
are also other tools to aid device identification in the IoT. The survey brought by (NING et al.,
2020) compiles different techniques of identity modeling and addressing proposed to the IoT,
discuss some of its challenges and presents an identity framework for IoT systems. The work in
(ZHU; BADR, 2018) brings a survey on Blockchain based identity modeling and management
solution for IoT.

2.2.1.2 Sensing

Sensors are hardware devices that perceive environmental data and transform it into a
digital representation, acting as a bridge between the real and the digital world. Sensors in IoT
can be smart sensors, actuators, or wearable devices (AL-FUQAHA et al., 2015), which gather
data to be analyzed, adding value to IoT services (ČOLAKOVIĆ; HADŽIALIĆ, 2018).

When provided with communication capabilities, those sensors become nodes that can
compose a network and transmit their data. Not by chance, Wireless Sensor Networks (WSNs)
are considered by many in the literature as an important IoT element. In many cases, the IoT
network infrastructure is based on WSNs, which have some benefits such as scalability, dynamic
reconfiguration, reliability, small size, low cost, and low energy consumption (LIN et al., 2017).

Those IoT devices are likely to be considered resource-constrained in their majority due
to CPU, memory, and power resource limitations. These constraints have a direct impact on
code complexity (limited ROM/Flash), size of buffers (limited RAM), computational operations
(limited CPU), and operation time (limited power), which in turn interfere with device support
for functionality such as identity management, communication, and security (ČOLAKOVIĆ;
HADŽIALIĆ, 2018).

2.2.1.3 Communication

The IoT paradigm, constrained devices form a network, becoming constrained nodes in
a Constrained-Node Network, whose characteristics are impacted by its resource-constrained
nodes (BORMANN; ERSUE; KERANEN, 2014). Constrained-node networks require low-power
communication protocols and security, as well as memory-efficient routing protocols (BANSAL;



2.2. The Internet of Things 41

KUMAR, 2020). The IoT network also connects heterogeneous objects, which demands the
employ of cross-technology communication devices at some point.

The IoT is envisioned to have different applications. Some of them can be in a peer-
to-peer manner, or involve a few devices in a personal network; others may involve various
heterogeneous devices in larger networks communicating through different protocols. A com-
munication technology deemed suitable for a particular IoT application might not necessarily
be suited to many others. The ability to connect and coexist various devices deploying several
communication technologies is the vision behind the IoT. Having an ecosystem of coexisted
technologies and devices is what enables the IoT vision of extending communications to anything
and anywhere (ELKHODR; SHAHRESTANI; CHEUNG, 2016).

2.2.1.4 Computation

Nowadays, there are in the market two types of IoT hardware: wearable devices to whom
only applications can be developed, and embedded systems boards, that allow both hardware
and software development. There are various hardware platforms developed for IoT such as
Arduino, RaspberyPi, and ESP8266 module. Authors from (SINGH; KAPOOR, 2017) review
the characteristics of several open-source hardware IoT platforms and discuss a method for
choosing the best possible options for DIYers IoT projects and/or prototyping.

IoT functionality is provided by software platforms and/or middlewares. According
to (BUTTERFIELD; NGONDI; KERR, 2016), a middleware is a product that occupies an
intermediate position in a computer application, such as between hardware and software (as in an
Operating System) or between the Operating System and the application program, particularly in
a distributed system. Authors from (NGU et al., 2017) classify IoT middlewares into three types:
(1) Service-based, which adopts a Service-Oriented Architecture (SOA) and users can integrate
diverse devices as services; (2) Cloud-based, which enable the users to connect devices and
interpret their data and (3) Actor-based, which works in a plug-and-play manner and make devices
reusable in the network. The paper also performs a comparative analysis of various emerging IoT
middleware, as well as points out the research challenges IoT middleware faces. Authors from
(RAZZAQUE et al., 2016) make a more complex classification for IoT middlewares: (1) event-
based, (2) service-oriented, (3) agent-based, (4) tuple-space, (5) VM-based, (6) database-oriented,
and (7) application-specific. The paper relates each category against discussed middleware
requirements such as interoperability, context-awareness, resource management, and discovery.

When considering low-end IoT devices, i.e., those closer to the physical world and
usually very resource-restricted, there is a need for tailored IoT Operating Systems (OSs), since
traditional ones such as Linux are not able to run in such a constrained device. An OS operating
in low-end IoT devices requires a small memory footprint, support for heterogeneous hardware,
network connectivity, energy efficiency, real-time capabilities, and security (HAHM et al., 2016).
There are already some IoT-suited OSs in the market, such as Contiki (Contiki, 2021), RIOT



42 Chapter 2. Literature review

(RIOT, 2021), FreeRTOS (FreeRTOS, 2021) and TinyOS (TinyOS, 2022), among others, which
are compared by some papers. Authors from (SABRI; KRIAA; AZZOUZ, 2017) compares
FreeRTOS, Mbed, Contiki, TinyOS, and RIOT regarding their architecture, scheduling and
real-time capabilities, programming model, memory footprint, hardware support, network con-
nectivity, protocol support, and energy efficiency. Contiki, TinyOS, and FreeRTOS are surveyed
in respect of process, memory, energy, communication, and file management in (MUSADDIQ et

al., 2018), which also provides future research directions and challenges in resource management
of IoT-suited OSs. Finally, the work from (HAHM et al., 2016) discuss IoT OSs requirements
and overviews many OS choices, both open-source and proprietary, and perform a more in-depth
study about Contiki, RIOT, and FreeRTOS.

Cloud/Fog Platforms are other important IoT enablers. Cloud Computing (CC) can offer
IoT devices virtually unlimited processing and data storing capacity and provide fault tolerance
and scalability at low cost, being able not only to aggregate, analyze, distribute and extract
meaningful information from collected IoT data but also to remotely manage and control systems.
Besides, CC is globally accessible and available, allowing IoT devices to be located and accessed
anywhere, anytime. Moreover, CC can concentrate services from different providers and bring
them to users in an easy, intuitive way, acting as an intermediate level between IoT devices
and the application customer and hiding IoT heterogeneity and the complexities of the system
(BOTTA et al., 2016; CAVALCANTE et al., 2016; SINGH et al., 2016).

The Fog Computing (FC) paradigm is an extension of CC to the edge of the network. Its
integration with the IoT paradigm is mainly motivated by lower latency and network throughput
reduction. FC has a very large number of nodes that can provide localized storage, data filtering,
and analysis, support device mobility, and facilitate the Cloud interplay with low-end IoT devices
(BOTTA et al., 2016; UHER et al., 2016).

2.2.1.5 Services

The entire IoT concept is based on the provision of pervasive or ubiquitous services,
i.e., services available anytime, anywhere, to anyone (AL-FUQAHA et al., 2015). Generally,
IoT services are understood as a way to access the functionality of IoT devices through their
virtual representation. IoT services are different from their traditional counterparts due to
IoT characteristics such as resource-constrained devices, dynamic network formation, and
heterogeneity.

An IoT service can be atomic or composite. An atomic service is a self-contained,
fundamental service that cannot be divided, while a composite service is a combination of
atomic or other composite services to provide a more complex functionality (ARELLANES;
LAU, 2020). For example, there could be atomic services provided by IoT sensors like location,
temperature, and humidity that can be combined in a weather-report composite service. Usually,
IoT services can be categorized under four classes (AHMED et al., 2019):



2.2. The Internet of Things 43

• IDENTITY-RELATED SERVICES: provide identification for IoT devices. They can be active
(services that broadcast information, which would require more available power) or passive
(services with no power source dependent on external devices or mechanisms).

• DATA AGGREGATION SERVICES: acquire, process, and transmit data from various sensors.
If done by an IoT gateway, the service is able to aggregate data from different types of
sensors and transmit it in a more friendly manner such as JSON or XML.

• COLLABORATION-AWARE SERVICES: use aggregated data to perform analysis and make
decisions. In many scenarios, these services involve both human and machine interactions
with the help of an IoT Cloud. This type of service requires a reliable and fast IoT
infrastructure, not being provided by low-end devices.

• PERVASIVE SERVICES: These services are the IoT main goal, enabling collaborative-
aware services to be provided anytime, anywhere, for everything and everyone. To enable
them, the IoT would have to overcome its heterogeneity and follow many steps of service
management, such as service modeling, identification, discovery, selection, composition,
and orchestration.

IoT Service Management process is very complex and faces challenges related to inter-
operability, scalability, security, and Big Data usage (AHMED et al., 2019). Interoperability
challenges require cross-domain solutions and include limited connectivity, semantic incompat-
ibility between data and models, and heterogeneous representation of device data. Scalability
challenges include both vertical (IoT device enhancement and updates) and horizontal (addition
of devices and/or services) scalability. Security challenges include identity management, authen-
tication and authorization, and vulnerability detection, while Big Data challenges relate to data
accuracy, analysis, and visualization.

IoT Services are far from being standardized at this time, with many propositions for
service modeling, management, discovery, and Quality of Service (QoS). Some reviews can
help the reader to dive deeper into this topic. The paper (AHMED et al., 2019) provides a
comprehensive taxonomy on IoT Service Management regarding aspects such as architectural
organization, middleware type, run-time service management, security, and applications. It
also reviews available commercial service management platforms for IoT and discusses open
research challenges. (AZIEZ; BENHARZALLAH; BENNOUI, 2017) makes a study comparing
different service discovery techniques in IoT analyzing the service description model, discovery
mechanism, adopted architecture, and context-awareness. The work in (ASGHARI; RAHMANI;
JAVADI, 2018) provides a Systematic Literature Review on service composition approaches in
IoT, providing a taxonomy to classify and discuss them, as well as pointing to future research
challenges. Authors from (HAMZEI; Jafari Navimipour, 2018) also present a systematic mapping
of IoT service composition techniques, comparing them and discussing future challenges. The
work in (ARELLANES; LAU, 2020) investigates service composition mechanisms for IoT
regarding their scalability, reviewing and analyzing the fundamental semantics of the composition
mechanisms. Authors from (ACHIR; ABDELLI; MOKDAD, 2020) and (POURGHEBLEH;



44 Chapter 2. Literature review

HAYYOLALAM; ANVIGH, 2020) classify and survey service discovery strategies in IoT.Finally,
the study presented in (WHITE; NALLUR; CLARKE, 2017) provides a systematic mapping to
investigate QoS strategies in IoT, investigating wherein the network stack are the solutions being
implemented, which factors are being taken into account in IoT QoS, and what types of research
are being conducted.

2.2.1.6 Semantics

Semantics is considered the brain that can make IoT smart, dealing with data hetero-
geneity, integration, and interpretation. Providing accurate semantic description so data from
different sources are understood without ambiguity allows automated communications and
interactions, as well as seamless data integration, being a major requirement for overcoming
IoT data interoperability. Semantic data also improve IoT services, supporting service/resource
search and discovery (SHI et al., 2018). It is common to find the term “Semantic Web of Things”
referring to a semantic-enabled IoT application, in which web data become more meaningful
and readable by humans, computers, and things (SZILAGYI; WIRA, 2016).

Authors from (SHI et al., 2018) present a three-stage general architecture for data

semantization, that is, describing IoT data uniformly with fixed mark-ups that can be processed
and understood by other entities. The first stage, Data Collection, comprises the gathering of
sensor identification and measurement data. The second stage, Data Preprocessing, takes care
of anomalies to provide more reliable data. Finally, the third and last stage is the Semantic

Annotation, which is the actual insertion of semantics in IoT data based on a chosen Semantic

Model used to describe the domain. This survey also describes key techniques for those stages
used in IoT, presenting possible applications and challenges.

One of the main challenges regarding semantics in IoT is semantic interoperability, i.e.,
enforcing that a piece of data is understood and interpreted unambiguously by different parties.
Semantic descriptions, however, are not enough to provide semantic interoperability. There are
other obstacles such as data modeling and exchange (provide a standardized way to represent
data), data management, service discovery and knowledge representation (NAGOWAH; STA;
GOBIN-RAHIMBUX, 2018).

When considering semantic interoperability, there are many studies about the use of
ontologies for semantic description. An ontology is a model that describes concepts and their
relationship concerning a domain (BUTTERFIELD; NGONDI; KERR, 2016), and can be used
to describe IoT devices and services so different players understand and process data in the
same manner. There are some references regarding the use of ontologies in IoT the reader can
refer to for a deeper look. The work in (SZILAGYI; WIRA, 2016) reviews different ontologies
proposed to the IoT and discusses the necessary protocol stack for semantics. Authors from
(NAGOWAH; STA; GOBIN-RAHIMBUX, 2018) briefly describe more than a dozen ontologies
and frameworks for IoT, discussing their limitations and challenges. The paper (SOUZA; FILHO,



2.2. The Internet of Things 45

2019) performed a systematic mapping regarding the use of ontologies for IoT semantics,
analyzing aspects such as representation language, design methodology, and characteristics.
Finally, the work in (GYRARD; DATTA; BONNET, 2018) surveys ontology-based software
tools for IoT.

2.2.2 IoT Requirements

According to the ITU (ITU-T Y.2060, 2012), the IoT is fundamentally characterized by
(a) high interconnectivity (any device can access the Internet); (b) things provisioning services
with high constraints; (c) high heterogeneity due to the variety of hardware platforms and
network technologies; (d) variable number and state of devices; (e) generation of a large amount
of data (that needs to be managed and interpreted). These characteristics translate into high-level
requirements that IoT systems need to support regardless of the application (MIORANDI et al.,
2012; ITU-T Y.2060, 2012):

2.2.2.1 Device identification

Every device should be identifiable, either by a physical tag or self-identification means.
Device connectivity should be based on its identification, and different identification schemes
need to be handled seamlessly.

2.2.2.2 Device interoperability

IEEE defines interoperability as “The ability of two or more systems or components

to exchange information and to use the information that has been exchanged” (IEEE STD
610.12-1990, 1990). IoT systems need to manage and enable the communication of different
types of devices, making interoperability a crucial requirement that has many challenges to be
faced, as exposed by work from (KONDURU; BHARAMAGOUDRA, 2017). In the IoT context,
we can generally refer to two main types of interoperability:

• TECHNICAL INTEROPERABILITY: encompass hardware, network connections/protocols
and shared data formatting. This is most likely solved by adapters, either converters for
hardware and lower-layer communication protocols or frameworks and APIs for upper-
layer communication protocols. The work in (AMJAD et al., 2021) surveys different
interoperability tools for application layer IoT protocols.

• SEMANTIC INTEROPERABILITY: refers to how the devices reason the shared information.
For that, there must be an agreement on how data is structured and tracked (i.e., its origin,
destination, quality of the source) so they can be efficiently discovered and correctly
reasoned by its recipient. The representation of knowledge has been tackled by the use of
Ontologies and, since stakeholders use different representations, there is the need for tools
and techniques to reason between different representations — some of them are discussed
in (NAGOWAH; STA; GOBIN-RAHIMBUX, 2018).



46 Chapter 2. Literature review

2.2.2.3 Scalability

The IoT needs to support device identification, network addressing and communication,
and information and service management at a very large scale so IoT deployment may transpire
as envisioned.

2.2.2.4 Energy efficiency

It is believed that most IoT devices will be very resource-constrained. Even though
energy harvesting techniques are being developed, battery replacement is an obstacle for IoT
dissemination (GIRI et al., 2017), requiring processing and communication strategies to be
energy-aware.

2.2.2.5 Device localization

Being able to locate and track devices automatically enables location-based commu-
nications and services need to be compliant with different laws and regulations. Localization
technologies will also enable customers to search nearby services and interact with them (AL-
FUQAHA et al., 2015). Even though GPS signals are available in outdoor scenarios, their energy
consumption makes way for low-power localization options such as Low Power Wide Area
Networks (LPWANs) discussed in (MORADBEIKIE et al., 2021). Indoor localization must be
done without Global Navigation Satellite Systems (GNSS) and need to be done using wireless
technologies — the work in (KHAN et al., 2021) compares different wireless IoT standards for
indoor localization.

2.2.2.6 Autonomous operation

This is a very important IoT requirement since it would be unfeasible to deploy any
system that demanded regular human intervention. The autonomy relates to (a) networking,
which requires self-management, self-configuration, and self-protecting capabilities; (b) service
discovery and provisioning, which should be done without an external trigger and therefore
enabling device integration and cooperation and plug-and-play capability without affecting the
system; and (c) self-diagnosis, so devices can provide better services by monitoring themselves
and their physical condition (AL-FUQAHA et al., 2015).

2.2.2.7 Security and Privacy

The core IoT functionality is sensing data, which can contain private information and
need to be protected during transmission, aggregation, storage, mining, and processing. There
is also the need to integrate different security policies and mechanisms, which are likely to be
diverse within the IoT ecosystem.



2.2. The Internet of Things 47

2.2.3 IoT Architecture Models

The IoT is expected to bring together billions of devices with different hardware capabil-
ities, providing several services with reasonable quality in different communication protocols
respecting security and privacy. How to manage such heterogeneity is an important challenge in
IoT research that includes how things are going to be organized communication-wise.

When talking about network architecture, it seems possible to connect all IoT devices to
a Cloud server that would manage the services and user interaction. For some IoT applications,
however, full network support is cost-prohibitive, making it more reasonable to have bridging
components to which IoT devices can connect in low-performance communication protocols
such as ZigBee, BLE, and others (WANT; SCHILIT; JENSON, 2015).

Therefore, the IoT requires an architecture capable of supporting a huge number of
both constrained and resource-rich devices, with heterogeneous applications and service models
being delivered in different communication protocols intermittently (MIORANDI et al., 2012;
AL-FUQAHA et al., 2015). IoT architecture should be able to provide device management,
availability, scalability, Quality of Service (QoS), privacy and security of both users and data
(GIRI et al., 2017).

There are many proposed architectures for IoT systems with different layers that do not
always overlap, so there is no standardized reference model. The simplest and more basic model
is a 3-layer architecture (Figure 1a), which includes 1. a Perception Layer responsible for the
interaction with the physical world collecting data and triggering actuators, 2. a Network Layer
responsible for transmitting the data over the integrated network and 3. an Application Layer
responsible to receive the data and provide services to users(AL-FUQAHA et al., 2015). This
model oversimplifies the system and makes it difficult to deal with technology heterogeneity and
communication architectures.

The Standardization Sector of the International Telecommunication Union (ITU-T) has
proposed a 4-layer model (Figure 1b): the Device layer includes both devices and gateway
capabilities; the Network layer includes both networking and transport capabilities; the Service
and Application Support layer includes data processing and storage technologies and whatever
functionality necessary to support different support to different applications. Finally, the Appli-
cation layer includes the IoT application. There are also two complementary capabilities sets
(Management and Security) that permeate all layers (ITU-T Y.2060, 2012).

SOA-based architectures (Figure 1c) have 4 layers: the Perception layer is responsible for
collecting data from physical devices; the Network layer is used for data routing and transmission;
the Service layer is responsible for service management and can sometimes be divided into two
sub-layers, Service Composition and Service Management; finally, the Application layer is used
to support service requests (LIN et al., 2017).

The 5-layer architecture (Figure 1d) is composed of the Objects (or Perception) layer



48 Chapter 2. Literature review

Figure 1 – IoT architecture proposals.

Perception Layer

Network Layer

Application Layer

Perception Layer

Network Layer

Application Layer

(a) 3-layer

Device Layer

Network Layer

Application Layer

Service and Application 

Support layer

M
a
n

a
g

e
m

e
n

t

S
e
cu

ri
ty

Device Layer

Network Layer

Application Layer

Service and Application 

Support layer

M
a
n

a
g

e
m

e
n

t

S
e
cu

ri
ty

(b) ITU-T

Perception Layer

Network Layer

Application Layer

Service Layer

Perception Layer

Network Layer

Application Layer

Service Layer

(c) SOA-based

Object Layer

Middleware Layer

Application Layer

Object Abstraction 

Layer

Business Layer

Object Layer

Middleware Layer

Application Layer

Object Abstraction 

Layer

Business Layer

(d) 5-layer

Source: Elaborated by the author.

representing the physical devices; the Object Abstraction layer responsible for transmitting
and/or processing acquires data; the Middleware or Service Management layer connects service
with their clients, managing service request and delivery; the Application layer provides services
requested by costumers and the Business layer manages the entire system.

2.2.4 IoT Communication Technologies and Protocols

Since its inception, the IoT has been envisioned to be used in different applications with
diverse requirements. It is understandable then that many protocols and technologies are used to
deploy it, each of them more suitable for a specific scenario and/or environment. In fact, the IoT
protocol stack is a point that still has many standardization efforts (MEDDEB, 2016). Table 1
classifies some protocols commonly associated with the IoT into Application, Service Discovery,
Network, and Connectivity. It is beyond the scope of this thesis to enter into protocol details,
but the reader can refer to general surveys such as (TRIANTAFYLLOU; SARIGIANNIDIS;
LAGKAS, 2018; DING et al., 2020) and (SALMAN; JAIN, 2016).

2.2.4.1 Application Protocols

Application protocols are sometimes defined as messaging protocols, since their main
function is to provide message and/or data exchange between entities. The protocols follow
different messaging schemes and each one has different strengths and weaknesses, some of them
discussed here. For a better comparison between application protocols, the reader can refer to



2.2. The Internet of Things 49

Table 1 – IoT communication protocols and technologies.

Application

COAP (IETF RFC 7252, 2014; CoAP, 2022)
MQTT (MQTT 3.1.1, 2014; MQTT, 2022)
XMPP (IETF RFC 6120, 2011)
AMQP (AMQP 1.0, 2012)
DDS (DDS 1.4, 2015)

Service Discovery
mDNS (IETF RFC 6762, 2013)
DNS-SD (IETF RFC 6763, 2013)

Network
6LowPan (MONTENEGRO et al., 2007)
RPL (IETF RFC 6550, 2012),

Connectivity
short-range

NFC (COSKUN; OZDENIZCI; OK, 2013)
BLE (BLUETOOTH SIG, 2019)
Zigbee (IEEE STD 802.15.4-2015, 2016)

long-range
LoRaWAN (LoRa Alliance, 2022)
NB-IoT (POPLI; JHA; JAIN, 2019; RASTOGI et al., 2020)
Source: Elaborated by the author.

the work in (NAIK, 2017), which makes a relative analysis between MQTT, CoAP, AMQP, and
HTTP protocols.

2.2.4.1.1 Constrained Application Protocol (CoAP)

The CoAP is defined by IETF RFC 7252 and provides built-in discovery, multicast
support, and asynchronous message exchange (IETF RFC 7252, 2014). The protocol is based on
REpresentational State Transfer (REST), but is bound to UDP instead of TCP. It has two main
sublayers: the message sublayer, which handles reliable communication in UDP, and the request-

response sublayer, which handles REST communication (AL-FUQAHA et al., 2015). To provide
the aforementioned functionality, CoAP has four different messaging types: reliable (needs an
acknowledgment and are resent after an exponential back-off timeout), non-reliable (does not
need an acknowledgment), piggyback (the response goes together with the acknowledgment), and
separate (an acknowledgment is sent to prevent retransmission, but the response is sent separately
from the acknowledgment). The CoAP website (https://coap.technology) provides an
overview, specifications, and implementations for those intended on using the protocol.

2.2.4.1.2 Message Queuing Telemetry Transport (MQTT) Protocol

The MQTT is a simple, lightweight binary protocol built over TCP for constrained devices
and networks defined by (MQTT 3.1.1, 2014). MQTT implements the publish/subscribe pattern
with three components: (1) Publishers, (2) Subscribers and the (3) Broker. Publishers provide



50 Chapter 2. Literature review

information on specific topics of interest to which subscribers can register themselves. The broker
then acts as a middleman receiving the updates from the publishers and forwarding them to
registered subscribers through three levels of QoS (AL-FUQAHA et al., 2015; LIN et al., 2017;
NAIK, 2017). MQTT-SN (MQTT-SN 1.2, 2014) is an MQTT extension aimed at non-TCP/IP
networks envisioned for constrained applications such as Wireless Sensor Networks (WSNs). It
introduces two new components: a Gateway located between the nodes and the broker that acts
as a protocol converter from MQTT to MQTT-SN, and a Forwarder located between the Gateway
and the clients (publishers/subscribers) that simply forwards the messages unchanged. The MQTT
website http://mqtt.org provides MQTT documentation and software implementations for
users.

2.2.4.1.3 Extensible Messaging and Presence Protocol (XMPP)

the XMPP is defined by (IETF RFC 6120, 2011), enables the near-real-time exchange
of XML-based messages between network entities. It is usually implemented in a distributed
client-server architecture over TCP, is platform-independent and provides security mechanisms
such as authentication, access control, and encryption. However, it is not widely implemented
due to lack of QoS and high communication overhead (AL-FUQAHA et al., 2015).

2.2.4.1.4 Advanced Message Queuing Protocol (AMQP)

The AMQP is defined by (AMQP 1.0, 2012), runs over TCP and supports reliable
communication for message-oriented environments, implementing different ways of message
distribution such as store and forward, publish and subscribe, message distribution, message
queuing, context-based routing, and point-to-point routing (LIN et al., 2017). The communication
is handled by two types of components: exchanges used to route messages and queues, which
receive routes messages and send them to receivers (AL-FUQAHA et al., 2015).

2.2.4.1.5 Data Distribution Service (DDS) Protocol

DDS (DDS 1.4, 2015) is a publish-subscribe broke-less protocol for real-time M2M
communications suitable to constrained devices. DDS has data writers (which interacts with the
Publishers regarding the shared data) and data readers (which read the published data and deliver
it to Subscribers) — the topics are the types of data being published (SALMAN; JAIN, 2016).
The protocol offers 23 QoS policies and achieves high reliability and scalability (AL-FUQAHA
et al., 2015; LIN et al., 2017).

2.2.4.2 Service Discovery Protocols

Service discovery protocols allow devices to be aware of available services and func-
tionality in the network without human intervention. To be used in the IoT environment, the



2.2. The Internet of Things 51

protocols must be able to work with legacy sensor networks and provide secure access to re-
sources energy-efficiently. Besides specific protocols for service discovery such as Multicast
DNS and DNS Service Discovery, there are other service discovery approaches based on Appli-
cation protocols such as MQTT-based and CoAP-based (ACHIR; ABDELLI; MOKDAD, 2020).
Papers (VILLAVERDE et al., 2014) and (CABRERA; PALADE; CLARKE, 2017) evaluate
different service discovery protocols for the IoT.

2.2.4.2.1 Multicast DNS (mDNS) Protocol

The Multicast DNS (mDNS) Protocol (IETF RFC 6762, 2013) is a name-discovery
protocol that requires no configuration and can be run without infrastructure. Node names are
inquired through IP multicast — when a node receives its name, it multicasts a response message
with its IP address, allowing every node in the local network to link name with IP addresses
(AL-FUQAHA et al., 2015).

2.2.4.2.2 DNS Service Discovery (DNS-SD) Protocol

The DNS Service Discovery (DNS-SD) Protocol (IETF RFC 6763, 2013) allows clients
to discover a set of desired services using DNS messages multicasted to specific addresses
through UDP. It can be used together with mDNS, and there are efforts in developing lightweight
versions for the IoT ecosystem (AL-FUQAHA et al., 2015).

2.2.4.3 Network Protocols

Network protocols are responsible for transmitting the data over the data link layer by
providing connections between two different entities and routing the information from source to
destination. Some IoT intrinsic characteristics that influence how those protocols should operate
are: the connection between devices can be intermittent, the network topology may change
frequently, the devices are likely to be heavily constrained regarding power and computation,
and at times the devices operate in a harsh environment (DHUMANE; PRASAD; PRASAD,
2016). Therefore, network protocols need to be adaptable to different possible situations of
disconnection and re-connection, power-efficient so resources are saved and autonomous so they
require minimum human intervention.

2.2.4.3.1 IPv6 over Low power Wireless Personal Area Networks (6LoWPAN)

6LowPan (MONTENEGRO et al., 2007) is one of the most remembered network encap-
sulation protocol for IoT. It acts as an intermediary layer between IPv6 and 15.4 MAC and PHY,
making the IPv6 suitable for low-power wireless networks. Low resource consumption, good con-
nectivity, and ad-hoc self-organization make 6LoWPAN a suitable protocol for IoT applications
(AL-FUQAHA et al., 2015; LIN et al., 2017). The standard is not dependent on the PHY layer



52 Chapter 2. Literature review

— it can be used over other PHY protocols such as Ethernet and WiFi (TRIANTAFYLLOU;
SARIGIANNIDIS; LAGKAS, 2018).

2.2.4.3.2 Routing Protocol for Low Power and Lossy Networks (RPL)

The RPL (IETF RFC 6550, 2012) was designed to take into account constrained de-
vices and provides bidirectional connectivity, reliability, robustness, flexibility, and scalability.
The protocol has a multi-hop hierarchical topology in which the leaf traffic is redirected to a
root node by a single path (TRIANTAFYLLOU; SARIGIANNIDIS; LAGKAS, 2018; KHAR-
RUFA; AL-KASHOASH; KEMP, 2019). RPL has gained much attention in recent years. Some
characteristics, challenges, applications in IoT, and proposed enhancements can be found in
(KHARRUFA; AL-KASHOASH; KEMP, 2019).

2.2.4.4 Connectivity Protocols

Connectivity protocols are the interface between the IoT components and the real world.
There are many connectivity protocols for the IoT and enough diverse applications so a protocol
is more suited to one application than others. They are usually classified according to their
range: short-range or long-range protocols. Regardless of their classification, the protocols
focus on low power consumption given the characteristic resource constraint in IoT devices.
The Low Power Wide Area (LWPA) technologies were developed to attend applications that
required longer-range keeping the costs low — this is obtained with lower data rates and higher
latency (RAZA; KULKARNI; SOORIYABANDARA, 2017). Papers (RAZA; KULKARNI;
SOORIYABANDARA, 2017) and (DING et al., 2020) bring a general view of several IoT
connectivity protocols.

2.2.4.4.1 Near-field communication (NFC)

NFC is a short-range half-duplex communication protocol deployed over an inductive
coupling between devices, wich is mostly used in industrial applications, mobile phones, and
payment systems. The work in (COSKUN; OZDENIZCI; OK, 2013) presents a survey on NFC
technology, discussing its working principle, ecosystem, applications, security issues, and open
research areas.

2.2.4.4.2 Bluetooth

Bluetooth is a communication protocol that uses data packets and a master-slave network
structure. Version 4.0 of Bluetooth has introduced the Bluetooth Low Energy (BLE), a protocol
with lower-power consumption, lower setup time, and capable of operating in a star network
topology with an unlimited number of nodes, making BLE one of the key enabling technologies
for short-range IoT applications. New versions 5.0 and later (BLUETOOTH SIG, 2019) of



2.2. The Internet of Things 53

Bluetooth brought improvements in speed, range, security, energy efficiency, and interoperability
(ČOLAKOVIĆ; HADŽIALIĆ, 2018). The work in (YIN et al., 2019) discusses the Bluetooth
5.0 new features and the use of Mesh topology for it, as well as presenting the impact of these
improvements in IoT applications and future research directions. Authors from (DARROUDI;
GOMEZ, 2017) survey the state of the art in BLE mesh networking specifically, reviewing
different propositions.

2.2.4.4.3 Zigbee

Zigbee is a low-power, low-cost technology based on the IEEE 802.15.4 standard (IEEE
STD 802.15.4-2015, 2016) that is being used in IoT for home automation, industrial monitoring,
and health and aging population care applications. It provides multi-hop routing, maintenance of
routes, identification of add/remove of IoT devices (BANSAL; KUMAR, 2020), the lack of QoS
is a challenge to be overcome (ČOLAKOVIĆ; HADŽIALIĆ, 2018).

2.2.4.4.4 LoRaWAN

LoRaWAN is an open-source technology designed and maintained by the LoRa Alliance
(LoRa Alliance, 2022). It provides end-to-end protection, mobility, localization and two-way
communication. The technology architecture is mainly composed by (a) End Devices that
communicate with the (b) Gateways, which in turn act as a mediator between the devices and the
Internet — device data is then aggregated and processed by (c) Network Servers. LoRaWAN
allows sensing nodes to transmit data through large distances in a single hop, resulting in lower
energy consumption (ALMUHAYA et al., 2022).

2.2.4.4.5 NB-IoT

Narrow-Band IoT (NB-IoT) is a narrowband LPWAN technology based on cellular
infrastructure. Its objective is to support a wider coverage with higher connection density with
lower device cost and longer battery life thanks to available power-efficiency mechanisms. Its
protocol is based on LTE, making the NB-IoT technology able to coexist with existing LTE
networks and therefore reducing its deployment cost (DING et al., 2020).

2.2.5 IoT Capability Boost

One of the main characteristics of IoT devices is their resource constraint, i.e., most
devices are not able to perform high-complex tasks which require a lot of computational power.
To address these challenges, other computing paradigms such as Cloud Computing (CC), Mobile
Computing (MC), Edge Computing (EC), Fog Computing (FG), and Cloudlets have been
considered to work with IoT and provide greater processing and storage capabilities, as well



54 Chapter 2. Literature review

as easy access to data from other sensors. In this section, we review three of them: Cloud
Computing, Edge Computing, and Fog Computing.

2.2.5.1 Cloud Computing

Cloud Computing is a computing paradigm envisioned for enabling ubiquitous and
on-demand network access to a shared pool of configurable physical or virtual resources with
quick provisioning and minimal management effort (ISO/IEC 17788:2014, 2014). It can be
viewed as a distributed system whose resources are aggregated and reassigned among its clients,
who can acquire and release computing capabilities according to the demand without human
interaction and be billed only for which resources have been used (MELL; GRANCE, 2011).

Cloud Computing can provide fault-tolerance and scalability at low cost, being able not
only to aggregate, analyze, distribute and extract meaningful information from collected IoT
data but also to remotely manage and control systems. Besides, CC is globally accessible and
available, allowing IoT devices to be located and accessed anywhere, anytime. Moreover, CC can
concentrate services from different providers and bring them to users in an easy, intuitive way,
acting as an intermediate level between IoT devices and the application customer and hiding IoT
heterogeneity and the complexities of the system (BOTTA et al., 2016; CAVALCANTE et al.,
2016; SINGH et al., 2016).

There are also disadvantages to using CC with the IoT. First, the devices need to be
connected to the Cloud infrastructure to be available, which increases the energy consumption on
already resource-constrained devices — there is no guarantee of a stable network performance
since broadband Internet access has not evolved as storage and computation technologies
(CAVALCANTE et al., 2016; TSCHOFENIG, 2016). Also, contextual information in IoT can
be as important as the data itself and need to be provided to the Cloud, which in turn needs
to be able to store and process these data properly (CAVALCANTE et al., 2016). Moreover,
the centralized nature of the Cloud and the time required to access it may not be practical for
mission-critical scenarios of high data transmission and processing or low-latency requirements
(YOUSEFPOUR et al., 2019). To provide IoT devices with high-bandwidth and low latency
computing capabilities, researchers and industries proposed to bring those capabilities closer to
the edge of the network, in paradigms such as Fog Computing and Edge Computing.

2.2.5.2 Fog Computing

According to the IEEE Standard 1934 (IEEE STD 1934-2018, 2018), Fog Computing is
“A horizontal, system-level architecture that distributes computing, storage, control and network-

ing functions closer to the users along a cloud-to-thing continuum”. It is considered a Cloud
Computing extension that brings computational resources (computing, storage, communication)
closer to the network edge. Fog Computing is associated with moderate computational resources
than Cloud Computing, and lower power consumption (PULIAFITO et al., 2019). Despite being



2.2. The Internet of Things 55

closer to the devices being data, Fog nodes can be located in anywhere in the cloud-to-thing
continuum, i.e., Fog Computing is not restricted to a specific layer of a network’s topology
(PULIAFITO et al., 2019).

The use of Fog computing is very beneficial to IoT systems. Because it is closer to
smart objects, Fog can provide better latency performance for real-time systems. The proximity
also decreases bandwidth consumption (since the amount of data sent to a Cloud datacenter
is reduced) and improves the system’s context awareness. Also, sensitive data can be stored
and processed locally, improving data security (DUSTDAR; AVASALCAI; MURTURI, 2019;
PULIAFITO et al., 2019). Fog Computing also helps on the system scalability and distribution —
as the number of devices increase, it is possible to create more Fog nodes at a lower cost when
comparing to a new Cloud data-center. At the same time, a single Fog node can interact with
more than one Cloud provider, making it easier to provide one service in multiple platforms
(BOTTA et al., 2016; CAVALCANTE et al., 2016; UHER et al., 2016).

It is likely that with a decentralized structure, the Fog nodes interact directly with one
another, making service and resource orchestrate a big challenge. Also, Fog benefits may be
limited with mobile IoT devices, since the topological distance between the device and its
associated Fog Node may increase and with that impact latency. Finally, the distributed nature of
Fog and its resource constrain makes security more challenging, since it is likely those nodes
less robustness in security mechanisms (SINGH et al., 2016; LIN et al., 2017; PULIAFITO et

al., 2019) — the work in (PATWARY et al., 2021) discuss security challenges of Fog Computing
in general, while the work in (NI et al., 2018) discuss security challenges of Fog Computing in
the IoT context.

2.2.5.3 Edge Computing

Edge computing is another paradigm that brings computational resources from the Cloud
to the edge of the Network. Even though Fog Computing and Edge computing are sometimes
seen as the same paradigm and have its terms used interchangeably, some authors and even
the Fog Standard see key differences between them: the Fog is more disperse in the network
topology and are more resourceful, while the Edge is more resource constrained and is located in
the local network of IoT devices, i.e., Edge nodes would be the immediate first hop from IoT
devices (IEEE STD 1934-2018, 2018; YOUSEFPOUR et al., 2019).

Edge Computing presents the same advantages as Fog due to its proximity to the device:
better latency, reduced bandwidth usage and power consumption and increased reliability, secu-
rity, and privacy protection (LAROUI et al., 2021). Likewise, resource estimation, allocation and
optimization, less security robustness due to resource constrains and network management able
to support mobile IoT devices are challenges for Edge Computing (DUSTDAR; AVASALCAI;
MURTURI, 2019).



56 Chapter 2. Literature review

2.2.5.4 Edge vs. Fog vs. Cloud

The work in (VARSHNEY; SIMMHAN, 2017) brings a small comparison between all
three paradigms, which most likely will work together in a IoT-Edge-Fog-Cloud continuum to
support different types of IoT service requirements. In general, as the network become more
centralized (i.e., from Edge to Fog to Cloud) aspects such as computational resources, bandwidth,
reliability and latency increases while mobility, the number of devices, energy-awareness and
cost decreases, as shown by Figure 2.

Cloud

Fog

Edge

Data longevity
Bandwith
Resources

Latency
Reliability

Mobility
Number of devices
Energy-awareness

Cost

Figure 2 – Comparison between Edge, Fog and Cloud Computing paradigms from (VARSHNEY;
SIMMHAN, 2017).

In another words, the Cloud is most likely to be used in more complex and not critical
situations; the Fog can be used in more latency-sensitive tasks that still requires some computa-
tional power, or in tasks that need better physical presence; finally, the Edge can be used in very
critical and lightweight tasks that need high physical availability.

2.2.6 IoT Security

Assuring Security, Privacy and Trust is a crucial requirement for widespread adoption
of the IoT, specially for critical applications. Security solutions for IoT systems must permeate
all of its components (network & communication, devices, services, platforms, etc.), and be
addressed in all stages of development (EOM, 2015; LI; TRYFONAS; LI, 2016).

IoT intrinsic characteristics directly impact security. Firstly, the high heterogeneity of
IoT devices impede a comprehensive security solution. Also, device resource constraints hinder
the adoption of off-the-shelf security mechanisms, demanding lightweight security algorithms
which are able to make a compromise between resource consumption and security. Finally, the
scale and complexity of the IoT system increases the attack surface and the lack of software
security updates and/or device protection such as anti-virus magnifies the threats of conventional
Internet (SICARI et al., 2015; LI; TRYFONAS; LI, 2016; MAKHDOOM et al., 2019).

The following security requirements apply to an IoT security solution:



2.2. The Internet of Things 57

• AUTHENTICATION: In IoT, each thing needs to be properly authenticated. Given the large
number of diverse objects and the fact that many will operate with little or no human
intervention, a proper identification and authentication mechanism is needed (LIN et al.,
2017).

• AVAILABILITY: In IoT, there are both hardware and software availability. Software avail-

ability refers to providing services to users simultaneously, while hardware availability

refers to the presence of devices at all times to provide the services. In cases of critical
applications or with real-time requirements such as emergency response, availability is a
crucial requirement of the system (AL-FUQAHA et al., 2015; LIN et al., 2017).

• INTEGRITY: It is necessary to ensure that received data was not forged, tempered with and
properly stored so that the system do not take wrong decisions and actions which could
cause damage to the system or even to users (LIN et al., 2017).

• CONFIDENTIALITY: IoT has to ensure that collected data will not be accessed by unau-
thorized parties. Due to the enormous amount of data generated by IoT and the resource
limitation of many of its components, customary security solutions may not be applied.
Confidentiality must be simple so not to present high resource consumption and flexible
enough to be modified at run-time (LIN et al., 2017)

• PRIVACY: Sensed data can contain sensitive information regarding their owner or users.
Privacy protection mechanisms are necessary to regulate which data referring to each user
can be accessed, and by whom. This is considered a crucial requirement for technology
acceptance by the public (LIN et al., 2017). Moreover, privacy protection should not
interfere with data source authentication (ITU-T Y.2060, 2012).

• BUILT-IN DEVICE SECURITY: Many IoT end-nodes will operate with little or no human
intervention. Moreover, the sheer number of them will create a vast attack surface if
built-in security mechanisms, such as automatic firmware upgrades, are not deployed.
Therefore, it is highly desirable that devices are be able to detect, diagnose, isolate and
even counterattack security threats (SICARI et al., 2015; UHER et al., 2016).

• TRUST: This is a fundamental security requirement in IoT environment due to its het-
erogeneity and privacy requirements. Trust need to be negotiated and achieved between
each IoT layer, between devices, between devices and applications and between users and
applications. When considering trust negotiation in IoT systems, the issue of accepted cer-
tification authorities and their requirements need to be addressed, as well as the definition
of a trust negotiation language (SICARI et al., 2015; LIN et al., 2017).

Since IoT is a convergence of many types of technologies, it inherits security vulner-
abilities from all of them. Resource-constrained devices are unable to deploy robust security
mechanisms and can compromise availability if it goes out of service (due to malfunction,
spent battery or communication instability) (WHITMORE; AGARWAL; Da Xu, 2015; LI;
TRYFONAS; LI, 2016). Insecure interfaces and protocols between the many IoT components
(e.g., devices and middlewares, middlewares and Fog/Cloud Computing, Fog/Cloud computing



58 Chapter 2. Literature review

and users) may compromise confidentiality, integrity, availability and accountability due to
insufficient validation of data or authorization checks and weak credentials (HASHIZUME et

al., 2013; EOM, 2015). The wireless medium used in many IoT applications is more susceptible
to eavesdropping and replayed or faked messages (WHITMORE; AGARWAL; Da Xu, 2015).
The components themselves are also a vulnerability — from small IoT devices to Cloud serves,
any node may be compromised, tampered with or even hijacked, compromising the system (LI;
TRYFONAS; LI, 2016). Also, compromised IoT nodes or the Cloud may be used to deploy
attacks to other systems (STELLIOS et al., 2018), such as DDoS or brute-force attacks and
malware distribution (Cloud Security Alliance, 2016).

Next, some threats to the IoT environment are discussed. The text focus on broader
threats that goes through all layers, based on (Beecham Research Limited, 2015) and (Cloud
Security Alliance, 2016). There are, however, many surveys on IoT security and specifically on
threats and attacks. Authors from (BUTUN; ÖSTERBERG; SONG, 2020) review and classify
various WSNs/IoT attacks and review possible defense mechanisms against them; the work in
(SAMAILA et al., 2018) reviews security requirements, threat models and protocols in various
IoT application domains; IoT vulnerabilities are surveyed in (NESHENKO et al., 2019).

2.2.6.1 Illegal/non-authorized access

All entities in the IoT-Cloud-User continuum need to be able to confirm each other’s
identity so it is possible to establish a trusted communication. Also, there can be many sensitive
data in the system that most likely needs to be better protected than others, such as private
information in a IoT-based healthcare system. This threat can result in unauthorized disclosure of
information, misuse due to incorrect privilege elevation, falsification and/or corruption of data.
COUNTERMEASURES: proper user authentication is essential to ensure the identity of an entity
and access control strategies are crucial to ensure reliable user authorization. Since IoT devices
are not able to deploy standard security measures, lightweight authentication algorithms such as
reviewed by (EL-HAJJ et al., 2019) and (FERRAG et al., 2017) are necessary. Access control
policies (role-based, geo-based, device-based, etc) ensures that only authorized users/devices
have access to sensitive data. In this context, multi-factor authentication for users and least
privilege policies are highly recommended.

2.2.6.2 Data breaches/disclosure

Data breaches can happen due to many different reasons, such as eavesdropping an
insecure transmission medium, weak security storage (i.e., storing data in plaintext or have a
server vulnerable to attacks such as SQL injection) or wrong system configuration that allows an
unauthorized party to access information that can be use to violate user privacy or even violate
player’s intellectual property to competitors, resulting in great legal and commercial impacts.
COUNTERMEASURES: data security is achieved with both confidentiality and integrity. In



2.2. The Internet of Things 59

this context, encryption techniques can protect the data, but at the same time impacts system
performance. Even though Some IoT protocols have encryption methods, they establish the
security at the lowest level supported by both sides in the communication, i.e., a device with no
encryption capacity may gain access to the system without any protection (UHER et al., 2016).
Therefore, lightweight cryptography algorithms such as those reviewed by (SINGH et al., 2017)
and (KHAN; RAO; CAMTEPE, 2021)) are necessary. Not only that, key management strategies
also need to be tailored for the IoT — the work in (NAOUI; ELHDHILI; SAIDANE, 2016)
review some IoT key management protocols regarding their security capability.

2.2.6.3 Device/application/account hijacking

this is a threat which can have serious consequences depending on the security credentials
of the hijacked object. If a highly privileged asset is hijacked or if the system do not employ
necessary access control of its assets, the entire system — data, services, business logic — is at
risk. However, many IoT devices are supposed to work without any human intervention, making
them more susceptible to hijack or to be tampered with. Also, Cloud users may neglect security
measures and have their account compromised.
COUNTERMEASURES: identity management control can mitigate account hijacking, and more
secure accounts (i.e., accounts with two-factor authentication, few root accounts) are also highly
advisable to protect the system. Strict identity and access controls are necessary to mitigate the
consequences when a device is compromised.

2.2.6.4 Network intrusion

this is a threat present in any communicating system, and is the same principle of the
regular Internet: a malicious actor is able to take control of a trusted entity of the system or
circumvent the security measures in place to gain access to a system. The IoT has a huge
attack surface, so network intrusion can happen in many different ways. Besides illegal access
and hijacks already discussed, devices can be compromised by software injection or physical
tampering. Also, any entity that runs a software can be compromised through malwares (the
work in (VIGNAU et al., 2021) reviews successful IoT malwares from the last decade) or
have ‘original’ vulnerabilities in their software. Finally, communication protocols such as those
discussed in Section 2.2.4 may have gaps in their security measures that allows a malicious entity
to penetrate the network.
COUNTERMEASURES: in order to protect IoT entities, it is important to (1) have malware
protection; (2) be able to provide security updates whenever it becomes vulnerable to a new
exploit; (3) force the user to change default settings such as root/admin password; (4) create a
chain of trust in the various software levels to provide secure booting; (5) implement security by
design for both integrated circuits and software so they are robust against physical tampering
and common software vulnerabilities that can be easily sanitized and (6) use secure protocols
for communication that, together with other security mechanisms such as authentication and



60 Chapter 2. Literature review

encryption, hinders the action of malicious actors. Systems as a hole may also deploy Intrusion
Detect Systems (IDSs) (some IDSs for IoT model are surveyed in (ELRAWY; AWAD; HAMED,
2018)) to impede and/or mitigate the impact of a security breach.

2.2.7 Final Remarks

The Internet of Things is a technology with potential to transform the way we live as a
society, allowing real-time, data-based decisions to be made an enabling solutions in healthcare,
environmental preserving and other important areas of our lives. New technologies and solutions
are still being brought to the table, such as Mist Computing for computation (YOUSEFPOUR et

al., 2019), Blockchain and Artificial Intelligence to help security (TAHSIEN; KARIMIPOUR;
SPACHOS, 2020; LONE; NAAZ, 2021) and 5G and others to communication (CHETTRI;
BERA, 2020).

The future of IoT is still challenging and full of opportunities. One of them, which is the
focus of this work, is the possibility to connect Unmanned Aerial Systems into the IoT, making
it possible for them to provide and consume services to and from other IoT devices. This specific
scenario of IoT-connected UAVs is discussed in the next Chapter.



61

CHAPTER

3
IOT-ENABLED UAVS

Many opportunities arise when Unmanned Aerial Vehicles (UAVs) are connected to other
devices or systems like the Internet of Things (IoT). It is possible for UAVs to perform more
complex and collaborate in new applications, but at the same time there are several challenges in
different domains. In this Chapter, a brief discussion on how IoT-enabled UAVs can be used, and
different challenges of this integration are discussed.

There are two main benefits for UAVs when they integrate the IoT ecosystem: virtu-

alization and computation offloading. Virtualization makes UAVs available to clients through
user-friendly, abstract interfaces, allowing its resources to be pooled among multiple users and
applications depending on their availability. This is being referred to as Drone-as-a-Service
(DaaS) or UAV-as-a-Service (UAVaaS) (KOUBAA et al., 2017). As a result, clients do not need
to own a UAV to make use of its services, which lowers the overall cost and facilitates the imple-
mentation of service systems such as these (MAHMOUD; MOHAMED; AL-JAROODI, 2015).
Computation offloading allows the Cloud/Fog/Edge to be used to process and compute most of
UAV acquired data, reducing UAV power consumption and improving its performance. Reliabil-
ity is increased because of data back-up, and users are able to monitor the UAV throughout the
mission (MAHMOUD; MOHAMED; AL-JAROODI, 2015; MOTLAGH; TALEB; AROUK,
2016).

Besides those main impacts regarding service exchange, there are other interesting
situations in which UAVs can either benefit from IoT nodes to share data with other vehicles
with no line-of-sight (LoS) using those nodes as relay or in the opposite situation, functioning
as relay nodes in a region where the connection infrastructure is not present (remote areas) or
damaged (disaster scenarios).

Authors from (PAKROOH; BOHLOOLI, 2021) surveys different types of services UAVs
can assist and classify them into four types: data-related services (data collection, dissemination),
battery-charging services, and communication services (in remote areas, disaster scenarios and



62 Chapter 3. IoT-enabled UAVs

others) and Mobile Edge Computing (MEC) services. Works from (MOHAMED et al., 2017) and
(ABRAR et al., 2021) fit into the last category, with UAVs taking roles as Fog and Edge nodes
to IoT sensors, respectively. The work on (ALWATEER; LOKE; RAHAYU, 2018) presents a
simulation study on UAV service provision, investigating how the number of UAVs, their relative
distance from control stations and the frequency of client request impact on service attendance
and delivery.

A UAV hub with different vehicles able to provide services and managed by a central
Cloud-base platform is a frequent example of IoT-connected UAVs. Among others, the Dronemap
presented in (KOUBAA et al., 2017) is a cloud-based UAV management system that provides
real-time UAV control and monitoring and dynamic mission scheduling by users; the work in
(YAPP; SEKER; BABICEANU, 2016) proposes a framework to enable a UAV-as-a-Service
application in which UAVs in a hub are allocated by a Cloud coordinator to provide services
to its clients; in (MAHMOUD; MOHAMED; AL-JAROODI, 2015), RESTful communication
architecture (with UAVs as web servers) to provide services to clients and other UAVs; finally,
authors from (ERMACORA et al., 2014) propose a service platform for surveillance managed
by the Cloud and requested through mobile app.

3.1 IoT-enabled UAV Challenges

As seen before, the integration of UAVs into the IoT brings challenges that need to be
overcome — some of them well known by the unmanned vehicle community, others emerging
due to the connection of vehicles to an infrastructure such as the IoT. This work classifies these
challenges in three categories: public safety and privacy, standardization and technical.

3.1.1 Public Safety and Privacy Challenges

Confidentiality issues regarding the data acquired by UAVs is a major concern — partic-
ularly if there is critical information being collected — and will play a starring role in public
acceptance of the technology. There is a tendency to store as much data as possible into the
UAV main memory in order to ensure availability (HARTMANN; STEUP, 2013), which ends
up being a critical security weakness (JING et al., 2014). If the UAV is stolen or has its control
taken, it can be used as a gateway to probe sensitive information from the secured network it is
authenticated in. IoT could improve security by transferring sensitive data to the cloud. However,
providing data distribution in a secure manner on UAVs or other resource-restricted devices is
another challenge.

Another concern for the general population would be snooping — a UAV can take
unauthorized videos or photos and share them online, making them nearly impossible to be
removed and very difficult to identify the perpetrator. The UAV owner privacy can also be
compromised if a stolen UAV contains private data and media. It is likely that governments will



3.1. IoT-enabled UAV Challenges 63

enact legislation to UAV registration and to prevent privacy invasion, as done in some states in
the US (KIM; JO; SHRESTHA, 2014).

3.1.2 Regulation & Standardization Challenges

Certification is a must for insertion of UAVs into the airspace and prevent the technology
of being used for nefarious purposes, such as physical assault, drug smuggling and others
(MOTLAGH; TALEB; AROUK, 2016). UAV safety plays a major role in this regulations, since
a UAV out of control can cause damage to property or harm people. Because of that, many
regulation agencies such as the FAA and the EASA are regulating the UAV market.

For IoT, standardization is also a major challenge, and must involve both the industry and
governments. From a technical point of view, standardization is necessary to ensure all devices
are able to communicate, preventing a “Babel Tower Effect” in which devices become split
into disjoint subsets (for instance, all devices from the same manufacturer) that can only talk
to others from the same subset. From a social and economic point of view, standardization will
favor the entrance of small and medium companies in the market, stimulating entrepreneurship
and competition, benefiting the final customer and spreading the use of the technology.

3.1.3 Technical challenges

There are many technical issues in UAVs being integrated into IoT, with some important
ones presented in this Section.

• Energy efficiency: UAVs are resource-constrained devices. Hardware and software design
must take into account limited memory, storage and processing capabilities, as well as a
limited power source. Thus, algorithms and communication protocols must be as energy-
efficient as possible.

• Heterogeneity: the IoT will be formed with a variety of devices developed for various
platforms and using different communication protocols, which can lead to compatibility
and interoperability issues. This heterogeneity will also extend to the acquired data, that
will most likely be non-structured. How data is gathered, distributed, stored and recovered
has to be planned carefully in order to ensure real-time and security requirements.

• GPS Security: GPS spoofing attacks can cause the aircraft to completely lose control,
which is a very critical issue, or help attackers to hijack UAVs.

• Safety: safety is an important aspect for the devices, which must be able to determine
the “health” and the authenticity of both its internal and external components (PIGATTO,
2017) — something even more challenging if the internal components are also connected
wirelessly.

• Security: a challenge in any communicating system, Security relates to all other aspects
aforementioned. Limited resources demand efficient security algorithms that do not com-



64 Chapter 3. IoT-enabled UAVs

promise performance or resource/power consumption; heterogeneity defies the idea of
implementing a global security policy for all devices and data storage must also be covered
by security in case the communication is interrupted or the physical integrity of the device
compromised. Therefore, security solutions must permeate all layers of the architecture —
reducing the breaches throughout the layers will consequently reduce the overall chances
of attacks to the network.

In the remaining part of this Chapter, a more detailed discussion on different challenges
is presented.

3.2 Energy Efficiency

For battery-powered wireless embedded systems like UAVs, energy efficiency is a key
challenge, with considerable research effort has been devoted to energy optimization of such
systems (RAGHUNATHAN et al., 2005; Sravanthi Chalasani; CONRAD, 2008; HUANG et

al., 2017). Reducing energy consumption in UAVs leads to (1) increased autonomy and longer
missions, encompassing bigger tasks, which results in (2) reduced number of flights to accomplish
a task; (3) reduced battery disposal due to battery lifetime increase and (4) heavier payloads due
to energy consumption reduction(ZENG; ZHANG; LIM, 2016).

In UAV domain, most published papers regarding energy efficiency focus on finding
alternative energy sources (e.g. solar panels, piezoelectric-based approaches). Another solu-
tion would be the optimization of algorithms/communication/protocols to reduce the energy
consumption and increase battery times (RANGANATHAN, 2010).

Several research reports focus on providing additional energy supply to unmanned vehi-
cles. Energy scavenging concepts were reviewed and analyzed by (THOMAS; QIDWAI; KEL-
LOGG, 2006) to determine their potential for supplementing the on-board energy of small electric
unmanned systems. Experiments were performed with photonic (solar), kinetic-flow (wind),
thermal, electromagnetic sources of energy, and autophagous structure-power concepts that allow
for energy generation through self-consumption of system structure. Similarly, (MAGOTEAUX;
SANDERS; SODANO, 2008) analyzed solar and piezoelectric energy harvesting techniques
along with their basic functions, (ERTURK; RENNO; INMAN, 2009) analyzed piezoelectric
energy harvesting with an application to UAVs, and (ANTON; INMAN, 2008) analyzed vi-
bration and solar energy in a mini UAV. Moreover, (THOUNTHONG; RAËL; DAVAT, 2009)
proposed an energy management of fuel cell/battery/supercapacitor hybrid power source for
vehicle applications, which goes on the same direction of aforementioned works. Finally, another
approach has considered acquiring energy from wind on UAVs (LAWRANCE; SUKKARIEH,
2009). Conclusions provided by these investigations were promising, however focused solely on
acquisition of more energy supply during vehicle’s operation.

Although efficient, the acquisition of power during operation may increase the weight



3.3. Service Exchange 65

of an unmanned vehicle and reduce its endurance time. Thus, some approaches focused on
dealing with communication protocols towards the reduction of energy consumption. As pointed
out by (BOLLA et al., 2011), for disruptively boosting network energy efficiency, hardware
enhancements must be integrated with ad-hoc mechanisms that explicitly manage energy saving,
by exploiting network-specific features. Concerning routing protocols that can take into account
energy constraints in embedded systems, (CHABAREK et al., 2008) described the power and as-
sociated heat management challenges in routers, considering making power-awareness a primary
objective in the design and configuration of networks, and in the design and implementation of
network protocols.

Reduction of unnecessary energy consumption is a major concern in wired networking,
due to the potential economical benefits and its expected environmental impact, as discussed
by (BIANZINO et al., 2012). Other works have focused on wired communications, such as
(SHAABANA et al., 2014) who provided energy minimization techniques for high-speed
communication over optical networks. However, wired approaches when designed for UAVs may
increase weight and become limiting too, leading to a natural interest in wireless communications.

Therefore, there is a growing tendency on replacing wired cables on internal communica-
tions in unmanned vehicles, specially UAVs (DANG; MIFDAOUI; GAYRAUD, 2012; Elgezabal
Gomez, 2010) and few researches have been focusing on energy-aware wireless communications
challenges as summarized by (ZENG; ZHANG; LIM, 2016) and also generally addressed in
(KIM; CHANG, 2017; GHAZZAI et al., 2017).

3.3 Service Exchange

As previously discussed, UAVs become a thing when they are integrated in the IoT
infrastructure and all of its resources can be available to clients/users through an Internet
connection. Service availability will depend on contextual information such as location, battery
levels, available payload, and others (MAHMOUD; MOHAMED; AL-JAROODI, 2015).

UAV services should enable users to monitor the UAV state and access and monitor its
resources. Since service clients can be either human or other machines, it is crucial to correctly
identify all resources and services available (MAHMOUD; MOHAMED; AL-JAROODI, 2015).
Even though some works such as (ROYO et al., 2008; MAHMOUD; MOHAMED, 2015) and
(ALWATEER; LOKE; RAHAYU, 2018) bring some service classification, it would be highly
desirable that all services were properly described by a standardized set of definitions.

Also, UAVs need a way to allow service operations such as advertisement and au-
tonomous discovery, request and provision so the system is self-managed. It is also highly
desirable that security mechanisms are employed by the service provision platform. Service
provision by autonomous agents such as robots and UAVs is not a novel study field, and more
recently have been taking the IoT environment into account.



66 Chapter 3. IoT-enabled UAVs

Authors from (ROYO et al., 2008) present a system for UAV mission flexibility. Even
though this work was published before the term “Internet of Things” was coined, the concept of
services were used to implement all required mission functionality, classified as Flight, Mission,
Payload or Awareness services. Each service can be deployed as Variable (short information
with no deliver guarantee), Events (notifications with guaranteed delivery), Remote Invocations
(task requests from one node to another) and File Transmission (for continuous data transmission
such as camera streams). Even though there is no support for providing those services to external
clients, the paper as whole makes very important considerations regarding UAV service provision.

Robotic services are also a topic of interest. The DAvinCi Cloud Computing framework
presented in (ARUMUGAM et al., 2010) fuses the sensor and mapping information of many
robots that operate in the same large environment and create a map, which is then provided
on demand for all robots on the system, discarding the necessity of each robot to perform the
environment mapping. In (FURRER et al., 2012) the authors present an open-source platform for
robot services, in which unitary services can be combined to realize complex tasks in a Ambient-
Assisted Living (AAL) case study. (DORIYA; CHAKRABORTY; NANDI, 2012) proposes a
Cloud-based approach for robotic services, in which users request services such as navigation,
map building and object recognition through a Web interface. A Cloud manager distribute those
tasks to robot handlers, and manages user authorization for service requests. A prototype of
the system was validated with robots inserted in a simulated environment. (VANELLI et al.,
2017) presents an architecture for robots as a service (RaaS) in the cloud, implemented over the
MQTT (Message Queuing Telemetry Transport) protocol. The architecture is implemented in
three layers. The Local layer is composed by robots and a bridging device connected through
low-performance protocol; the gateway acts as a middleware between the Local layer and the
Cloud layer, in which the client can connect themselves and access the robot data and remotely
control it.

Back to UAVs, a Service-Oriented Middleware (SOM) in (MOHAMED; AL-JAROODI,
2013) employs virtualization so that all UAV hardware components are viewed as services. The
middleware handle tasks such as service advertisement, discovery, invocation and exchange.
Each service is described using Web Service Description Language (WSDL), and composite
services provided by a set of UAVs can be configured. Each UAV keeps local and remote service
information and other UAS components data in an internal broker. The subsequent work in
(MAHMOUD; MOHAMED; AL-JAROODI, 2015) presents a UAV service provision to the
Cloud through a REST communication architecture in which the UAV is a web server that
answers to request from clients. The REST architecture is said to be better suited to the real
world, since it is easy to use and to scale.

A REST architecture is also used in (COSTA; GONCALVES, 2016) to provide services
for untrained personnel to operate and control robots through an Internet connection. The
architecture is built in three layers: the application layer provides the interface for users; the



3.4. Security 67

server layer is composed by two units, one for monitoring and another for controlling the robots,
which can be implemented in the same or in separate machines; finally, the robot layer provide
the actual robotic services based on the Robotic Operating System (ROS). The use of REST
architecture to provide services makes them available to the great majority of devices, since the
only system demand of the is an Internet connection. ROS is a wide-employed operating system
for robots, which makes this system very easy to be applied to many situations.

In (MAHMOUD; JAWHAR; MOHAMED, 2016), a software-based architecture for
UAVs and Wireless Sensor Networks (WSNs) is proposed. In this system, a Controller layer
abstracts the physical nodes (UAVs and sensors) and provide APIs for the intermediate Orches-
tration layer, which menages the missions. On the top of the architecture, the Application layer
provides a user-friendly interface for mission requesting and monitoring. The authors sustain
that loosely coupled architectures such as this makes network reconfiguration easier and support
redundancy, increasing the system reliability.

The work from (YAPP; SEKER; BABICEANU, 2016) presents a framework to enable
the UAV as a Service (UAVaaS) paradigm, in which UAVs in a hub are allocated through
an Internet interface to provide services. The framework supports mission scheduling, UAV
assignment and supervision during the mission. All communications and task management is
handled by a centralized Cloud coordinator.

The Dronemap Planner presented in (KOUBAA et al., 2017) is a Cloud-based manage-
ment system that aims in providing UAV access and control through the Internet. It allows user
to schedule missions dynamically, using the MAVLink protocol to establish the communication
between UAVs and the system management.

Finally, (ALWATEER; LOKE; RAHAYU, 2018) presents an approach and a simulation
study on UAV service provision. Each UAV has an embedded server that answers to request
made by users through a smartphone app. The authors analyze through simulations how the
number of UAVs, their relative distance from control stations and the frequency of client request
impact on service attendance and delivery. It is stated that scheduling strategies that distributes
the service load among the vehicles are more efficient than a simple queue.

3.4 Security

Security is always a challenge in any communicating system. In the IoT-enabled UAVs,
each component has its own security vulnerabilities which can compromise the system as a
hole. Even though the ecosystem components have different characteristics, some security
requirements apply to all UAVs, IoT and Cloud Computing domains, as summarized by Table 2.

Moreover, each component’s characteristics have a great impact on security solutions
development. In the UAS domain, the limited computational resources of UAVs hinders the



68 Chapter 3. IoT-enabled UAVs

implementation of conventional security solutions, which are not efficient for real-time trans-
mission required by UAVs (HE; CHAN; GUIZANI, 2017). The safety of UAS components is
also important — the system must be able to determine the safety and the authenticity of both its
internal and external components (PIGATTO et al., 2016). Within the IoT, the high complexity of
the systems will magnify the effect of its intrinsic vulnerabilities such as the resource-constrained
devices and the use of an open transmission medium (AL-FUQAHA et al., 2015; SICARI et al.,
2015). Also, device mobility will play a major role in IoT systems, making security even more
challenging — it will be necessary to identify, recognize and authenticate new devices, as well
as adapting devices and services to different environments and contexts (NAHRSTEDT et al.,
2016). The distributed, heterogeneous and virtualized environment of the Cloud make traditional
network security measures no longer effective (HASHIZUME et al., 2013).

Table 2 – Security requirements among the UAS – IoT – Cloud Computing ecosystem.

Availability

UAS All elements in a UAS must perform without disruption during
operation, even if the system is under attack (ALTAWY; YOUSSEF,
2016).

IoT Must cover software availability, providing services to users simulta-
neously, and hardware availability, ensuring the presence of devices
at all times to provide the services (AL-FUQAHA et al., 2015; LIN
et al., 2017).

CC Cloud products are available on-demand at any time (ZHOU et al.,
2010).

Confidentiality

UAS The communication within the UAS cannot leak information (HE;
CHAN; GUIZANI, 2017).

IoT Collected data should not be accessed by unauthorized parties. Cus-
tomary solutions may not apply due to the enormous amount of
data generated the resource limitation of many of its components
(MIORANDI et al., 2012; LIN et al., 2017)

CC A client’s data and computation tasks must be protected from both
cloud provider and other clients (XIAO; XIAO, 2013).

Integrity

UAS Exchanged data in communication links cannot be altered, intention-
ally or unintentionally (ALTAWY; YOUSSEF, 2016).

IoT Received data must be guaranteed to not be forged or tempered with,
so that the system do not take wrong decisions which could cause
damage to the system or users (LIN et al., 2017)



3.4. Security 69

CC Data integrity ensures that data is not lost, tampered with or com-
promised and computational integrity ensures that applications are
executed without interference of malwares or malicious users (XIAO;
XIAO, 2013).

Accountability

UAS UASs need accountability mechanisms to ensure non-repudiation
(ALTAWY; YOUSSEF, 2016) and make it possible to identify mali-
cious intent in a compromised node or security breaches.

IoT IoT systems should be able to identify responsibility in case of non-
compliance. This is a challenge due to the system heterogeneity
(MAPLE, 2017).

CC The system should be able to track and verify the entity responsible
for actions taken within the environment to handle incidents that
may lead to security breaches (XIAO; XIAO, 2013).

Identification,
Authentication
and Access
Control

UAS The nodes within a UAS must be identified and authenticated before
communicating. Access control policies are necessary to prevent
unauthorized personnel from accessing sensitive data and/or control
operations (HE; CHAN; GUIZANI, 2017; ALTAWY; YOUSSEF,
2016).

IoT In IoT, each thing has to be uniquely identified and properly au-
thenticated. Access control policies are also necessary so that data
collectors only provide information regarding a specific target to
legitimate data consumers (SICARI et al., 2015; LIN et al., 2017).

CC Since the Cloud is distributed among different administrative do-
mains, off-the-shelf identification and authentication strategies can
not be enough for these systems (ALI; KHAN; VASILAKOS, 2015).

Privacy

UAS There are two types of concern in UAS privacy: how to ensure
the privacy of the user and its data (including location) (ALTAWY;
YOUSSEF, 2016) and how to ensure UAVs will not violate other
people’s privacy with its camera (HAYAT; YANMAZ; MUZAFFAR,
2016).

IoT Sensed data can contain sensitive information regarding their owner
or users should not be accessed by other parties (MIORANDI et

al., 2012; LIN et al., 2017). However, privacy protection should not
interfere with data source authentication (ITU-T Y.2060, 2012).



70 Chapter 3. IoT-enabled UAVs

CC Client’s data in a Cloud system is likely to reside among distrusted
servers owned and maintained by the cloud provider, who must
ensure the data privacy (XIAO; XIAO, 2013).

Built-in device
security

UAS The UAS should authenticate all of its software and hardware com-
ponents. Intrusion detection Systems (IDs) can also be employed to
enforce internal security (ALTAWY; YOUSSEF, 2016).

IoT Due to minimal human intervention and the sheer number of them,
it is highly desirable that IoT devices are be able to detect, diagnose,
isolate and even counterattack security threats (SICARI et al., 2015;
UHER et al., 2016).

CC Due to Cloud virtualization, the hypervisor and the internal virtual
networks demand their own set of security measures (HASHIZUME
et al., 2013; ALI; KHAN; VASILAKOS, 2015).

Trust

UAS Many UAV systems are dependent on external signals (HART-
MANN; STEUP, 2013), so the UAS must establish trust with signal
providers for safer operation.

IoT Due to its on-demand connection characteristics, trust need to be
negotiated and achieved between each IoT layer, between devices,
between devices and applications and between users and applications
for a safer operation (MIORANDI et al., 2012; SICARI et al., 2015;
LIN et al., 2017).

CC Trust is important between the Cloud provider and its clients, as well
as between the provider and third-party software used by the Cloud
(XIAO; XIAO, 2013).

Source: Rodrigues and Branco (2020).

Even though security and privacy are almost always pointed out as an important challenge
on the field, many solutions still do not discuss security measures, There are, however, solutions
that take one specific security aspect to implement. The work in (SHARIAT; TIZGHADAM;
LEON-GARCIA, 2016) implements UAV-enabled publish/subscribe Video-as-a-Service (VaaS)
for Intelligent Transportation Systems in which every exchange is signed. A broker is responsible
for the key management system, allowing both access control (only verified publishers can
share the data) and data confidentiality (only authorized users have access to the data). In work
(HANNAN et al., 2021), an authentication framework for Drone-based delivery service in which
the customer is authenticated through a two-factor verification do the package is delivered.

More comprehensive security works include (MOHAMED et al., 2017) and (LAGKAS
et al., 2018). In (MOHAMED et al., 2017), the proposed UAVFog platform provides integration
services, broker services, invocation services, location-based services, and security services.



3.4. Security 71

Authorization and authentication and access control are envisioned among the security services
provided, but at the time of publication, only broker, invocation and location-based services were
included in the platform prototype. Authors from (LAGKAS et al., 2018) propose a framework
to protect IoT objects from “spoofing, signal-jamming, and physical attacks, RF and mobile-
application hacking, protocol abusing, and firmware hacks/sabotage” with a lightweight security
toolbox, vision-based solutions, and privacy prevention and anonymity techniques for mobile
things. Security mechanisms include authentication, key management, firewalls and intrusion
detection systems. Authors claims the framework was not yet validated, and no prototype was
presented.

3.4.1 Context-Aware Security

UAVs can achieve greater flexibility and robustness through the use of contextual knowl-

edge (BLOISI et al., 2016). Context can help UAV operation in many aspects, such as user
interface, path planning, task optimization and to adapt to different threat levels in the network.

Context can be defined as any information that characterizes the situation of an entity
(ABOWD et al., 1999). Context awareness represents the ability of using context information to
adapt behaviors and operations without explicit intervention in order to provide better response
to the users (TEMDEE; PRASAD, 2018).

Context information can be either primary, retrieved without any type of processing
like sensor fusion or secondary, an information inferred or computed from primary context
information. For example, the GPS position of a sensor is a primary context information, while
the distance between two sensors is a secondary context information based on their location. It is
important to point out that the same type of data can be a primary context information in one
application and a secondary context information in another (PERERA et al., 2014).

There are four essential stages in a context-aware application. Sensing stage focus on
gathering relevant environmental data that reflects the current state of the system. In Analysis

stage, the raw collected data need to be modeled into context data and represented in a way that
can be understood by other machines. Reasoning stage focus on how to interpret of context data
and, depending on the context, make a decision following a chosen technique to reach a desired
state. Finally, the Adaptation stage focus on selecting and applying the necessary functions
and/or changes to the system (TEMDEE; PRASAD, 2018).

There are several context modeling techniques such as key-value, markup schemes,
graphical based, object-based, logic based, and ontology-based modeling. Likewise, different
context reasoning techniques are available, involving different strategies like supervised learning,
unsupervised learning, rule-based, fuzzy logic, ontological reasoning and probabilistic reasoning.
For a broader vision on context modeling and reasoning, the reader can refer to (PERERA
et al., 2014). All techniques have advantages and disadvantages, so multiple techniques are



72 Chapter 3. IoT-enabled UAVs

recommended to provide context-aware applications (TEMDEE; PRASAD, 2018).

As systems become dynamic, so need their security, making static solutions no longer
effective (YUAN; ESFAHANI; MALEK, 2014). In this case, context information can be used to
reconfigure or enhance the system security, creating a Context-Aware Security solution (WRONA;
GOMEZ, 2006).

Context-Aware Security enables UAVs to adapt to different kinds of environments,
increasing its safety, overall security and survivability. In a benign environment, security mech-
anisms can be less robust and more efficient, while in malicious environment strong security
solutions are needed (CHIGAN; LI; YE, 2005). It is possible then to keep communication safe
more efficiently, a highly desirable property in UV systems.

Authors from (CHIGAN; LI; YE, 2005) propose a security framework which aims at
providing necessary security services through all network layers while minimizing the potential
security redundancy and resource consumption. For this, the selection is made in two steps: an
offline selection model and an online self-adaptive control module. In order to select the protocol
set, all protocols are classified with two indexes: a security index (higher SI means more resistant
protocols) and a performance index (higher PI means lower performance cost). On deployment,
the MANET nodes can perceive if the threat level increases or decreases, triggering a negotiation
for a new set of protocols. SI and PI values were estimated for 6 different protocol sets.

The work in (KONG et al., 2002) presents an adaptive security framework for bat-
tleground UAV-assisted networks. The authors discuss two different operation modes: in the
infrastructure mode, UAVs act as a central authority for certificate issuing and authorization,
while in the infrastructureless mode the functions are distributed among all network nodes. It
is possible to switch between operation modes seamlessly by means of backup CA keys and
employing e-voting systems in a distributed manner.

The work in (ZERMANI et al., 2017) presents a health management model based
on Bayesian Networks for adapting UAVs to failures during operation, making its firmware
adaptable to context.

A very important point in context-aware applications is that any changed aspect will
impact on the environment the entity is inserted in. Security enhancements are likely to degrade
network performance, since extra measures can impact latency, overhead and traffic load (CHI-
GAN; LI; YE, 2005). Also, specially in critical systems, it is crucial that context information is
trustworthy so the application do not take any measures based on uncertain or false information
(WRONA; GOMEZ, 2006).



3.5. Final Remarks 73

3.5 Final Remarks
In this Chapter, different aspects of UAV insertion in the IoT were presented. It is

considered that UAVs can leverage on IoT in many different applications, and in some cases
work as the IoT infrastructure themselves. There are, however, many challenges in this integration,
some of them explored further in this thesis.

Even though there are research in UAV energy efficiency like energy harvesting and
protocol efficiency, the gap which was not yet properly addressed on energy efficiency techniques
for UAVs is the provision of a mission-aware approach that can potentially reduce energy
consumption.

Enabling UAV telemetry through the Cloud is a common way research papers illustrates
IoT-enabled UAVs: telemetry is either provided through a platform or the UAV is virtualized in a
service-oriented architecture and made accessible through a Cloud/IoT infrastructure. However,
this structure depends on the UAV having a direct connection with the server providing the
telemetry, with no applications in which the UAV make use of relay nodes to deliver its services.

Security is always considered a very important challenge, but very few solutions are
found, addressing specific security aspects. A usable, more encompassing security solution is
yet to be found. This solution needs to be flexible so it can attend a heterogeneous, mostly
resource-constrained environment. Different security measures may be needed depending on the
situation the UAV is inserted in, so context-awareness is also desirable.

In this context, the HAMSTER (HeAlthy, Mobility and Security based data communica-
tion archiTEctuRe) was proposed, aimed at improving mobility, security and safety of Unmanned
Systems. It consists of different platforms with specific functionality for communication security,
device safety, task management and service management and provision. The high level design of
HAMSTER is exposed in the next Chapter.





75

CHAPTER

4
SERVICE MANAGEMENT FOR UAVS

As stated before, SEMU (SErvice Management for UAVs is an extension of HAMSTER.
The HeAlthy, Mobility and Security based data communication archiTEctuRe (HAMSTER) is a
data communication architecture designed to improve mobility, security and safety of unmanned
vehicles and/or systems, presented in the PhD work by Pigatto (2017).

This PhD improved and expanded the architecture design by (a) allowing HAMSTER-
enabled vehicles to exchange services through the Service Management Unit (SEMU) platform
and (b) make use of security mechanisms to provide a more secure environment, including
context-aware security, through the expanded Cloud–SPHERE platform and (c) make use of
automated tasks through the improved NPplatform. This PhD also kick-started the development of
a working prototype to can be used in real applications and future research. This Chapter provides
a high-level description of HAMSTER and its platforms, including the ones developed during
this work — SEMU, Cloud–SPHEREand NP.

4.1 HAMSTER

The HAMSTER is a data communication architecture designed to improve mobility,
security and safety of unmanned vehicles and/or systems (PIGATTO et al., 2016). HAM-
STER provides communication, data security, device safety and service exchange functionality.
In order to attend a highly heterogeneous environment with different processing, storage and
communication capabilities, HAMSTER needs to have a great flexibility degree regarding all of
its features. To achieve this, HAMSTER follows a layered model shown by Figure 3. As with
communication networks, lower layers provide functionality to upper layers.

The Application layer is where the application resides, i.e., the navigation algorithm,
the mission software, etc. The architecture itself has two layers. In the Core Layer lies all the
HAMSTER platforms, besides message passing and logging features. This layer also defines an



76 Chapter 4. SErvice Management for UAVs

Figure 3 – HAMSTER layered model.

Source: Rodrigues and Branco (2022).

Interface by which the user application may access HAMSTER functionality. The User Appli-
cation is able to configure a UAV mission, services, security mechanisms and communication
protocols and addresses. In order to be as flexible as possible and support different types of
identification schemes, security mechanisms and service delivery models, HAMSTER has an
Abstraction Layer in which generic interfaces are defined and invoked by the Core Layer to ac-
cess concrete implementations provided by the Implementation layer. This way, the architecture
allows the system engineer to couple whichever implementation is best for their application (e.g.,
communication technology or authentication/cryptography algorithms) without any modification
on the Core or User Application layers.

4.1.1 The HAMSTER Unit

HAMSTER is based on the concept of a HAMSTER UNIT, which is a uniquely identi-
fied processing and communicating device that deploys HAMSTER. There are different TYPES

of Unit depending on the device role in the system. A HAMSTER ENTITY represents an
Unmanned Vehicle (UV) and is the main Unit in the system. The UV internal modules are
HAMSTER OBJECTS if controlled by a different processing devices; a HAMSTER Object can
either be a HAMSTER MODULE if the component has a single functionality/device or a HAM-
STER CLUSTER if multiple devices are controlled by the same Unit. A HAMSTER SUPER

ENTITY represents a central Entity in the system (such as a “leader UAV” or a GCS) which
has additional management attributions. Finally, two support Unit types are envisioned up to
this point to communicate with the aforementioned HAMSTER Units: a HAMSTER CLOUD,
representing a Cloud/Edge node, and a STANDALONE Unit, representing a sensor/actuator able
to communicate with other HAMSTER UNITS.



4.2. Identification in HAMSTER 77

4.1.2 HAMSTER Functionality

HAMSTER Core Layer provides different functionality for the Application Layer, as
shown by Figure 4: identification, communication security, service management and task man-
agement, discussed in this Chapter, and other auxiliary functionality such as message exchange,
communication configuration and logging. Core Layer functionality makes use of interfaces
available in the Abstraction Layer and made available by the Implementation Layer.

Part of HAMSTER functionality is implemented by specific platforms. The Cloud–
SPHERE (Security and safety Platform for HEteRogeneous systEms connected to the Cloud)
(RODRIGUES; PIGATTO; BRANCO, 2018a; RODRIGUES; BRANCO, 2020) is responsible
for communication security and safety management; the SEMU (Service Exchange Manage-
ment Unit) (RODRIGUES; BRANCO, 2020; RODRIGUES; BRANCO, 2019; RODRIGUES;
BRANCO, 2021) provides service management and exchange functionality; the NCI (Node
Criticality Index) (RODRIGUES; PIGATTO; BRANCO, 2020) is a rich index used to assess the
operation criticality and enable better decision making on Quality of Service (QoS), security
and safety based on data sensitiveness and device health; finally, the NP (Navigation Phases)
Platform (RODRIGUES; PIGATTO; BRANCO, 2018b) manages an ENTITY task and allows
its OBJECTS to be turned on or off according to the task stage, improving safety and energy
efficiency.

4.2 Identification in HAMSTER

Identification strategies will have a major importance in both UAV regulation and their
integration into the IoT. Since public authorities like the FAA (Federal Aviation Administration)
are likely to demand owners to register their UAVs, it would be possible for them to centralize the
identification process. A governmental identification system has the advantages of permanence
(manufacturers can go out of business) and local law compliance (while manufactures would
need to adapt to all countries they sell products to). On the other hand, a global ordinance in what
kind of information constitutes a proper identification (e.g., manufacturer, model, serial number)
would be necessary so that any UAV can be correctly registered and identified in any country.

Digital certificates are another possibility for identifying UAVs, providing at the same
time verifiable identification and public key cryptography support. However, this could be a
costly choice for small UAVs. To embrace all UAV types, different policies could be adopted
such as a multi-level UAV identification and registration process. Small, domestic-use UAVs
would require a simpler identification (such as an ID/password pair stored in registration process),
while commercial or bigger UAVs would require a more strict identification (such as with a
verifiable identification authority), which could even include tracking information while in the
air. Some examples of identification models are:

• SELF-IDENTIFIED – The UAV provides its own identification without any endorsement



78 Chapter 4. SErvice Management for UAVs

Figure 4 – HAMSTER platforms and other abstractions illustrated in the layered architecture.
H

A
M

ST
ER

 A
rc

h
it

ec
tu

re

Logging

Navigation Phases

Mission 
Configuration API

Node Criticality

Communication

Communication 
Configuration

Service 
Management API

HAMSTER Unit

Application Layer

Id
en

tificatio
n

M
essage P

assin
gC

o
re

 L
ay

er
A

b
st

ra
ct

io
n

 
La

ye
r

Security 
Configuration API

Implementation Layer

SMU

Cloud—SPHERE

Cryptography

Authentcation
Integrity 
Checking

Access Control

CSU

SEMU

SEO

Source: Elaborated by the author.

from any authority.
• IDENTIFIED BY PROVIDER – The UAV manufacturer endorses the identification, but with

no information on cryptography.
• CERTIFIED BY PROVIDER – The UAV has a digital certificate provided by its manufacturer.
• IDENTIFIED BY PUBLIC AUTHORITY – The UAV has its identification endorsed by a

public authority, without verification of cartographic information.
• CERTIFIED BY AUTHORITY – The UAV has a digital certificate endorsed by a trusted

Certificate Authority (CA).

Different identification models can also translate to different levels of device trust (for instance,
self-identified devices would have a lower level of trust than certified devices and therefore
could not access sensitive information from other UAVs), increasing the overall security of the
system. The presence of an infrastructure aids in the identification process and facilitates digital
certificates verification by accessing trusted CAs through an Internet connection.

In HAMSTER, all identification (Unit identification, service identification, algorithm
identification) is dealt by a single interface that can be specialized to any identification structure
necessary.



4.3. Communication Security in HAMSTER 79

4.3 Communication Security in HAMSTER

Security is a paramount requirement in any communicating system that translate in
specific requirements. Besides a verifiable identification, the HAMSTER UNIT needs to gain
access to the system (Authentication). The system must control which units have access to each
kind of information (Access Control) and all units must exchange data securely (Information
Security).

4.3.1 Authentication

Authentication is the first step to secure communication and a key requirement for
establishing trust between all actors in the communication (users, UAVs, infrastructure providers).
Without proper authentication, the system can be illegally accessed and suffer false information
injecting. The authentication should preferably be mutual and be done before the exchange of
data between devices, continuing throughout the communication lifespan. HAMSTER adopts
an “Almost Deny All” approach to authentication: all UNITS are considered unreliable until
authenticated.

Similarly to identification, different authentication strategies can be implemented de-
pending on the device computational capacity and the identification scheme employed, with
each strategy being translated to different levels of trust. Other security-related tasks can be done
together with the authentication, such as cryptography key exchange.

4.3.2 Access Control

After a node is authenticated, there might still be data or resources that are too sensitive
to be securely transmitted with the authentication and/or cryptography algorithms used or should
not be accessed by other UNITS at all. Therefore, the nodes need to determine which resources
of the system, including both aircraft and the GCS, can be accessed.

This is done by implementing access control policies, which aims to prevent the illegal
access of the GCS or aircraft by unauthorized personnel. Lack of access control policies can
result in false information injection, unauthorized disclosure of information and other issues.
The implementation can be identity-based, as done in the Cloud, or role-based, with rights being
updated dynamically without changing role assignments.

4.3.3 Information Security

During a communication, security measures must be taken so the information (a) is
not accessible to unauthorized parties (confidentiality), (b) is not modified accidentally or
intentionally during its transmission (integrity) and (c) has a verifiable origin (authenticity).



80 Chapter 4. SErvice Management for UAVs

These requirements are related to authentication and access control, and can be complemented
with other security measures like proper authorization and cryptography.

4.3.4 The Cloud–SPHERE Platform

The Security and safety Platform for HEteRogeneous systEms connected to the Cloud
(Cloud–SPHERE) is the HAMSTER security platform which allows the Application Layer
to configure security strategies and algorithms. It handles communication security and safety
management through two different units, CSU and SMU, as shown by Figure 5.

Figure 5 – Cloud–SPHERE and its Units, CSU and SMU.

Source: Rodrigues and Branco (2022).

4.3.4.1 Central Security Unit

The Central Security Unit (CSU) is responsible for securing both internal (i.e., between a
HAMSTER ENTITY and its internal OBJECTS) and external (e.g, between ENTITIES) commu-
nication. Up to this point, three different tasks are delegated to the CSU: authentication, access
control and information security. HAMSTER do not determine which strategy/policy/algorithm
to use in any of these tasks, but rather let the system engineer to couple in the Implementation
Layer which strategies are best for the application. The proposed flexibility allow the system
to have different strategies available in the same system and using each of them depending on
device trust and perceived risk.

4.3.4.2 Safety Management Unit

The Safety Management Unit (SMU) controls the overall safety of HAMSTER UNITS

by monitoring its health and searching for misbehavior or failures. If any HAMSTER OBJECT

malfunctions or fails, it can be blocked from communicating with others, improving the UNIT

safety.

Health monitoring verifies the HAMSTER UNIT operation searching for errors or
anomalies, and can be deployed locally within HAMSTER MODULES and HAMSTER CLUS-



4.4. Contex-Aware Security in HAMSTER 81

TERS or remotely using the Cloud infrastructure to execute for example computational-costly
Artificial Intelligence (AI) algorithms.

Overall UAV safety is implemented within HAMSTER entities, taking a global look in
the system and taking appropriate action for these vehicles regarding its own safety and nearby
systems or people. The communication between the modules and its entity can also monitored
through a heartbeat signal, which would also function as a continuous authentication during the
device operation.

4.4 Contex-Aware Security in HAMSTER

Given the heterogeneity of the UAS - IoT - Cloud ecosystem, there is no feasible way to
provide a single strategy to ensure all information security requirements — a flexible solution is
needed.

One way to achieve this goal is to establish different levels of information security, with
each level requiring different security measures. For instance, less critical information such
as temperature or altitude sensors would require simpler, if any, security mechanisms, while
more critical information such as the GPS positioning or the camera feed would require a more
sophisticated encryption scheme or authentication level.

There could be a number of ways to determine how sensitive or critical an information is.
One of the possible solutions is to use contextual information that translate specific conditions of
the UAV task in perceived risk.

Context-Aware Security enables a system to adapt itself to different contextual situations,
increasing its safety, overall security and survivability. Security mechanisms can be employed
dynamically depending on the application environment (e.g., a risky environment would apply
stronger security than a benign environment). The functionality brings many challenges. First,
stronger security measures are likely to degrade network performance and can impact latency,
overhead and traffic load (CHIGAN; LI; YE, 2005). Also, context data has to be trusted — false
context information can lead to disastrous consequences (WRONA; GOMEZ, 2006).

To deal with context for UAVs, HAMSTER deals with three different types of contextual
information, based on the work presented in (TURNER, 1998) for an autonomous underwater
vehicle and later in (BLOISI et al., 2016) for an autonomous ground vehicles. In these works,
contextual information is composed by three elements: environmental or external context, task-
related or mission context, and operation-related or internal context information. All context
information is translated to a Perceived Security Index (PSI) that can be used to make decisions
regarding security mechanisms, service provision and consumption and for UAV safety and
self-preservation.



82 Chapter 4. SErvice Management for UAVs

4.4.1 External Security Context

External Security Context relates to threats that are not a direct consequence of UV
operation, but rather caused by external agents. External context allows the UAV to perceive its
surroundings and adapt itself accordingly. This is translated mainly in any cyber-threat the UAV
is vulnerable to and also hijacking.

Figure 6 brings a taxonomy of attacks for autonomous vehicles provided by (THING;
WU, 2016) and later expanded for UAVs by (KRISHNA; MURPHY, 2017). The taxonomy
classifies the attacks according to physical or remote access to the UAV, and in invasive or
non-invasive attacks. Figure 6 also brings possible targets of each attack, as in Electronic Control
Units (ECU), Sensors and GPS and the communication links (Internal Vehicle Communication
— IVC, Vehicle-to-Vehicle — V2V and Vehicle-to-Infrastructure — V2I). Moreover, there is
an indication of which element of the CIA triad (Confidentiality, Integrity, Availability) could
be compromised for each attack, based on UAV attack taxonomy presented in (JAVAID et al.,
2012).

Figure 6 – Taxonomy of attacks for UAVs.

ECU IVCECU

Attack Vector

Side-channel 
attack

Physical
Access

Remote 
Access

Code 
Modification

Code Injection Packet Sniffing Packet Fuzzing
In-Vehicle 
Spoofing

Non-invasive Invasive

External Signal 
Spoofing

Jamming

ECU IVC

C I AC I A C I AC I A C I AC I A

Sensors

GPS

V2I

V2V

GPS

Comm

GPS

Comm

IVC

ECU

IVC

ECU

C I AC I A C I AC I A C I AC I A C I AC I A C I AC I A

V2I

V2V

V2I

V2V

Source: Adapted from Thing and Wu (2016).

HAMSTER has some in-built security mechanisms and policies that help mitigate some
of the attacks presented. First, the use of an “Almost Deny All” authentication approach adopted
by Cloud–SPHERE Platform to authenticate HAMSTER OBJECTS makes the UNIT unable to
operate unless all critical components are properly authenticated. This makes attacks of code
modification and code injection more difficult on those modules. Also, the use of cryptography
in all types of communication (HAMSTER-specific or user-defined messages) greatly decreases
the risk to confidentiality, provided that the key-distribution scheme is successfully executed
with no disclosures.



4.4. Contex-Aware Security in HAMSTER 83

4.4.2 Mission Security Context

Mission Security Context relates to the tasks the UV has to perform in the application it
is being used, and the risks associated with them. There are many aspects that can be considered,
such as the mission target and its path from initial location, sensitiveness of data and component
usage.

Regarding information security, data sensitiveness is a very important aspect to be
considered. Depending on the application, stored data need to be encrypted, and self-destruction
policies may be necessary if the environment becomes hostile.

4.4.3 Internal Security Context

Internal Security Context relates to the UV internal state and is strongly connected to its
safety and information reliability. Any component malfunction or failure impacts directly the
internal context perceived risk. In HAMSTER, Cloud–SPHERE manages connection status and
safety supervision of all UAV components through SMU. The component state contributes to
its criticality index, measured by the ode Criticality Index (NCI), whose value depends on data
sensitiveness, module importance and safety state.

4.4.3.1 The Node Criticality Index (NCI)

The Node Criticality Index (NCI) is a rich index to help determining single and global
priorities for nodes within a network (PIGATTO, 2017). Its main goal is to provide a measurable
level of criticality associated with individual nodes, allowing better decision making on Quality
of Service (QoS), security, safety and prioritization approaches for modules, clusters of modules
and entities. NCI is flexible enough to encompass different sets of goals based also on mission
information.

NCI was designed to work in three different situations within an UAS: (i) the network
connecting basic and mission-specific internal modules individually, (ii) the network connecting
internal clusters of modules, and (iii) the external network among unmanned vehicles and
eventual infrastructure entities

4.4.4 Perceived Risk Evaluation

As discussed before, HAMSTER aims at translating contextual information in a Perceived
Security Index. For each HAMSTER UNIT in the scenario, PSI value is given by the combination
of every contextual component:

Ψ =

√
ψ2

ex +ψ2
mi +ψ2

in
3

where Ψ is the Perceived Security Index and ψc is a partial security index related to context c.



84 Chapter 4. SErvice Management for UAVs

Initial PSI values are dependent on the vehicle type and application, assuming subjective
values depending on the specialist doing the security analysis. An initial estimation of PSI for
external context can be obtained by performing a risk evaluation for the attacks shown in Figure 6,
taking into account their likelihood and impact. Available security mechanisms also have to be
considered, as well as any indicator that the UV is suffering an attack. An initial estimation of
PSI for mission context can be obtained by evaluating the localization of the UAV (for instance,
a rural or populated area), risk of collision with other vehicles or people, and mission data
sensitiveness. Finally, initial PSI estimation for internal context can be taken from NCI values
for every UAV module.

Since HAMSTER leans heavily on abstractions, different strategies for security mecha-
nisms like cryptography, identification or authentication can be made available to the application.
Every strategy has an impact on the perceived security and has to be considered in PSI calculation.

PSI values are discretized to five levels (Table 3). Ψ = 0 means that the environment
is hostile and there is none or insufficient security measures for UV operation; Ψ = 5 means a
benign environment with more than sufficient security measures in place.

Table 3 – Perceived security levels in HAMSTER.

5 High security
4 Medium to high security
3 Medium security
2 Medium to low security
1 Low security
0 No security

Source: Rodrigues, Pigatto and Branco (2020).

HAMSTER platforms and user application can refer to these values when making
decisions and assuring UAV security and safety. For instance, HAMSTER UNITS may have
a minimum PSI to operate normally. If the PSI value falls below this security threshold, the
UNIT initiates an emergency protocol — switch the cryptography algorithm for one stronger,
re-authenticate all communicating peers or in the case of a HAMSTER ENTITY, turn off
non-critical modules, abort the current task and return home.

General security decisions can also be leveraged by PSI values. For example, a UAV
performing a mission on a non-populated area (lower PSI for external context) may use a
symmetric cryptography algorithm, which is usually lighter and has a lower security index. If a
threat is identified (PSI for external context increases), the UAV could switch to an asymmetric
algorithm to improve PSI or decide to abort the mission for UAV self-preservation.

Service provision and consumption is also affected. Unauthorized or defective compo-
nents are not eligible for providing reliable services. A malfunction or disconnection results in



4.5. Service Management in HAMSTER 85

services being discontinued. Also, a HAMSTER UNIT can decide on a minimal PSI level for
service exchange with other UNITS.

4.5 Service Management in HAMSTER
Services are one of the most important components in an IoT system; they make devices

available to be accessed any time, anywhere, by anyone.

One of the main challenges for autonomous service exchange is how to sort between
available services the one that fits the device’s necessity the most. Service discovery can be done
by both human and machines users. Human IoT users will not require a service “video feed from
UAV with serial number 123456 at GPS position X”, but “live traffic condition on Main St.”.
Machines, however, would need a natural language interpreter to request services the same way.

Also, different providers may offer the same service with different names and descriptions,
or with incomplete/erroneous descriptions, which could lead to improper service requests by the
mislead device. Even though some UAV service classification such as found in (MAHMOUD;
MOHAMED, 2015) exist, a standardized way of describing services to both human and machine
users is necessary. One way to achieve this is to propose a standard set of definitions for each
type of services that can be provided by UAVs or UASs. Depending on the formality level, it can
be done by a simpler glossary or a formal ontology. There are many attributes that can be used to
categorize a UAV service, such as:

• FANTASY NAME – Human-friendly description of the service. This would be used by
human clients to discover, request an consume a service.

• SERVICE CODE – A machine-readable code correspondent to a service. This would be
used by machine clients to discover, request and consume a service.

• OFFICIAL NAME – Technical description of the service, so that developers know exactly
which service they are providing and/or consuming.

• DATA SENSITIVENESS – Determines the sensitiveness level of delivered data, which could
assume as many levels as necessary, such as low, medium, high and critical.

• MINIMUM AUTHORIZATION LEVEL – Defines which is the minimum security clearance
the client need to have in order to access the service (for example, no authentication
required, or verified digital certificate required).

• BILLING SYSTEM – Describe if and how the service will be billed.
• COMPOSITION – Describe if the service is simple (a single source of data) or composite

(many services aggregated in a new service).

4.5.1 Services in HAMSTER

Figure 7 shows how services work in HAMSTER. Up to this point, there are four service
types: a Command Service enables a client to send commands to a device (e.g., an actuator); a



86 Chapter 4. SErvice Management for UAVs

Data Service is focused on data sharing (e.g., publishing data from a sensor); an Event Service

notify clients about events of interest (e.g., an asynchronous task was completed); finally, a
Stream Service focus on the transmission of continuous data (e.g., camera stream). Besides its
type, each Service has an ID, a coverage and a delivery flow.

Figure 7 – Services in HAMSTER.

Source: Rodrigues and Branco (2022).

Ideally, every service has a unique identification, which can include human-friendly
service description to alphanumerical codes for Machine-to-Machine communication.

The service coverage tells the service availability reach in the system. A local service
is only available to internal Objects of a Unit; a system service is available to other Entities in
the same system and its respective Objects; a cloud service is provided in a Cloud/Edge server
and can be accessed by any authorized user. In situation when a Unit provides a service with
a grater scope (e.g., a HAMSTER MODULE providing a CLOUD service), HAMSTER has
created the concept of service propagation, in which one Unit acts as a proxy to the services
from another Unit located in a lower network hierarchical level. As an example, let’s imagine a
UAV (HAMSTER ENTITY) and its GPS board (HAMSTER MODULE) providing data as a
Cloud Service. It would be unfeasible and even illogical to have all service clients connected
directly to the GPS board. In HAMSTER, the GPS position service is propagated, being offered
by its containing UAV and whichever Unit the UAV is connected to in higher network levels
(e.g., a GCS or a Cloud server). With propagation, only UAV internal Objects connect directly
to the GPS board, allowing the use of more modest devices in Objects and improving network
traffic.

The delivery flow determines how frequently a service is delivered. In the continuous

flow, the service is delivered periodically to the client; in notification flow, the client is notified
of an event occurrence; in on change flow, the service is delivered every time there is a change
in its value; in on request flow, the service is delivered on demand. Not all delivery flows are



4.5. Service Management in HAMSTER 87

available to different service types. Table 4 shows the valid combinations of service types and
delivery flows.

Table 4 – Valid delivery flows for each service type.

Delivery Flow
Service Type

Command Data Event Stream

Continuous 7 3 7 3

Notification 7 7 3 7

On change 7 3 7 7

On request 3 3 7 3

Source: Rodrigues and Branco (2021).

For a service provider, HAMSTER enables service registration, propagation, manage-
ment and delivery.

• Service Registration: is done by the service provider during UNIT initialization by the
Application Layer, which can register services of all envisioned types described in Figure 7.
Different service types require different information during registration.

• Service Propagation: the last step on HAMSTER initialization is to start all services,
analyzing their coverage and making the service propagation if necessary.

• Service Management: the service provider is able to suspend or restore a given service at
any time. If the service is suspended, all clients are notified and all connections are closed.
If the service is restored, the client needs to reconnect with the provider.

• Service Delivery: how the service is delivered depends on its delivery flow. In the continu-
ous flow, a service message is sent periodically to the client; in the notification flow, the
message is sent only when the Application Layer makes a notification; in on change flow,
a message is sent when the service history changes; finally, in on request flow, the message
is delivered once the request is finished.

For a service client, HAMSTER enables service discovery, request and consumption.

• Service Discovery: allows a client to make broadcast requests for a service in a dedicated
communication channel — because of that, services should be identifiable in a way tat
these queries are responded accurately taking into account their coverage.

• Service Request: once there is a desired service provided by another HAMSTER UNIT,
the service client can request it to the service provider. The answer to these requests will
depend upon service provision coverage, data sensitiveness and minimum authorization
level required from the service consumer. Therefore, these information will have to be
embedded upon service request.

• Service Consumption: service delivery can be done either synchronously or asynchronously
depending on the chosen delivery flow. The service client must be ready to receive the



88 Chapter 4. SErvice Management for UAVs

different service messages that can arrive in response to the request made.

4.5.2 The SEMU Platform

HAMSTER allows any UNIT to register, manage, provide, discover, request and consume
services. For these functions, HAMSTER provides the Service Exchange Management Unit
(SEMU) (RODRIGUES; BRANCO, 2019; RODRIGUES; BRANCO, 2020; RODRIGUES;
BRANCO, 2021) platform and the Service Exchange Operator (SEO). The first deals with
service registration and/or propagation and provides an interface between the Application Layer
and the SEO, while the second deals with the service requests, management and delivery. In
the future, security aspects dealt by Cloud–SPHERE and NCI can be integrated to service
management and exchange to make the data exchange security-aware.

4.5.3 Considerations on Security

It is important to point out how the service provision can affect the overall security of
the system. Unmanned Aerial Systems (UASs) have some inherent vulnerabilities, and can be
attacked by its physical elements or the communication links. The wireless channel is intrinsically
vulnerable to many attacks, such as eavesdropping and masking (HE; CHAN; GUIZANI, 2017).
Sensors are vulnerable to spoofing or falsification (ARCHIBALD; SCHWALM; BALL, 2017),
which can compromise the entire UAV operation and safety. The control station can be targeted
by viruses, malwares and other attacks common to software-based units (JAVAID et al., 2012).
UAVs are resource-constrained devices, and therefore are not able to support conventional
security solutions. Besides, the real-time transmission required by UAVs require more efficient,
resource-saving security mechanisms (HE; CHAN; GUIZANI, 2017).

IoT technology also present many vulnerabilities. Since the majority of IoT are resource-
constrained devices, sometimes unable to implement security mechanisms at all. Also, the
system makes use of the wireless medium, intrinsically insecure, to share information between
the nodes (AL-FUQAHA et al., 2015) and insecure web/Cloud/mobile interfaces that can be
easily compromised (LI, 2017).

Even though the Cloud environment has the potential to be a great ally in enabling IoT
and helping UAVs to be integrated into it, it also has many vulnerabilities. The distributed,
heterogeneous and virtualized environment of the Cloud make traditional network security
measures no longer effective. The use of insecure interfaces can also present many problems for
systems relying on this technology (HASHIZUME et al., 2013).

HAMSTER can help improving security by design. First of all, service registration must
be done after HAMSTER unit authentication. This way, any registered or propagated service
comes from a minimally trusted source. Different authentication strengths may result in different
service trust levels. A requesting user will be able to require a service while aware of its security



4.6. Task Management in HAMSTER 89

and trust level.

Also, each service may require from its clients a minimum Security Level to accept their
request, which will depend on data sensitiveness and necessary client security clearance. The
client security level is related with device trust, and it will depend on the client domain, the
identification/authentication techniques used and the security mechanisms available (such as
cryptography). The Security Level of each device can be handled by Cloud–SPHERE, and the
final objective is to translate trust in a quantitative manner that can be ranked, similar in what is
done with PSI.

Given its flexibility with abstractions, a more computational-resourceful UNIT may have
available different strategies / algorithms for authentication, cryptography and integrity checking.
This enable this UNIT to provide and consume services with different security levels for clients
from different origins — an “internal” client (i.e., a client part of the same system) is more likely
to be perceived as more trusted and able to access more sensitive data, while an “external” client
would not be able to access the same type of data.

4.6 Task Management in HAMSTER

HAMSTER allows the Application layer to manage a HAMSTER ENTITY task and
control the state of its OBJECTS for every task stage through the Navigation Phases (NP) platform
(RODRIGUES; PIGATTO; BRANCO, 2018b). NP makes it possible for a vehicle to change the
object states so the overall task execution is more optimized and energy efficient. Together with
services, all actions of a HAMSTER enabled system can be done autonomously.

Figure 8 presents the Navigation Phases platform. This is the only Platform in HAM-
STER that has clear division depending on the UNIT TYPE. The NP is called an NP MANAGER

or an NP AGENT if the Unit is an ENTITY or an OBJECT, respectively.

Figure 8 – Navigation Phases (NP) platform.

Source: Rodrigues and Branco (2022).



90 Chapter 4. SErvice Management for UAVs

The NP MANAGER is responsible for handling the Unit’s TASK. Each Task has different
stages with an associated TASK STATE. In NP MANAGER, each Object is classified as a MAIN

component (an essential Object) or a TASK SPECIFIC component (a non-essential Object).
For each of these groups, the TASK STATE has an OBJECT STATE that describes how each
group should operate. The NP AGENT is present in each Object and can store the instantaneous
OBJECT STATE or the states for all Task stages. Each Object also has an Emergency State that
describes its operation in emergency situations.

When the Task start is triggered, the NP Manager can either distribute the Tasks States
from all Task stages to all Objects or send the current expected state for every Object in the Unit
through the NP Agent. When the Task stage is changed, the NP Manager will either notify the
Agents that a new stage has begun (if the mission was distributed earlier) or notify all Objects of
their new Object State. The NP Manager also notify all NP Agents in a Unit if an Emergency
state has been triggered. The NP Agent then take the appropriate actions to conduct the object to
its configured state in the specific stage.

4.7 HAMSTER Operation Scenarios

Given the situations in which a HAMSTER-enabled UAV can operate, there are two
distinct characteristics that greatly impact the system operation: (1) the presence of a CENTRAL

UNIT in the system and (2) if each Unit knows beforehand who its communicating PEERS are
going to be.

A central Unit enables a centralized operation in which the central ENTITY is responsible
for identification, authentication and cryptographic key distribution. Usually, the system can
be more secure because of the smaller attack surface, but it can be completely compromised
if the central ENTITY is breached or have its availability or performance compromised due to
the communication bottleneck. In contrast, decentralized operation relays much more on each
individual Unit, which needs to identify/authenticate all peers, which can take longer, consume
more power resources and degrade network performance. Decentralized operation have at the
same time better survival and higher risk due to the larger attack surface.

In a known formation operation the Units know its communicating peers in advance,
and both peer identification and service discovery becomes unnecessary. The system can also
establish secure exchanges from the very beginning if authentication and cryptography keys are
known beforehand. On the other hand, a compromised node may easily perform an injection
attack. An unknown formation operation makes it much more challenging to establish trusted
connections between Units.

Given the previous discussion, four operation scenarios for HAMSTER are envisioned,
presented in Figure 9 and discussed next.



4.7. HAMSTER Operation Scenarios 91

Figure 9 – HAMSTER operation scenarios.

(a) Scenario 1

???

(b) Scenario 2

(c) Scenario 3

???

(d) Scenario 4

Source: Rodrigues, Pigatto and Branco (2018a).

4.7.1 Known Formation, Centralized Operation (Figure 9a)

In this scenario, the central Unit is able to store all the system’s identification and security-
related information such as cryptographic keys. Even service information can be centralized and
service discovery becomes unnecessary. The central UNIT may also act as a mediator between
other Units, i.e., if UNIT A needs to communicate with UNIT B, the authentication and key
exchanged can be mediated by their central Unit. Examples of this scenario is a Unmanned
Aerial System (UAS) with different UAVs and a Ground Control Station (GCS) centralizing the
communication or the internal UAV operation, between HAMSTER MODULES or CLUSTERS

and the HAMSTER ENTITY they are part of.

4.7.2 Unknown Formation, Centralized Operation (Figure 9b)

In this scenario, the central Unit may still act as a mediator, but only between Peers which
have already connected and authenticated themselves. Since no prior information is known,
an identification procedure is mandatory before authenticating any Unit. An example of this



92 Chapter 4. SErvice Management for UAVs

scenario is a collaborative Cloud application to which unknown UAVs connect to a Cloud/Edge
server to consume services (like image processing or other resource-demanding tasks).

4.7.3 Known Formation, Decentralized Operation (Figure 9c)

In this scenario, each Unit knows its Peers, but there is no central Unit to mediate any
operation. Therefore, all Units must identify/authenticate themselves and exchange keys with
one another, which can cause an initial network performance degradation. An example of this
scenario is a UAV swarm flying collaboratively to complete a task without Line of Sight (LoS)
with any GCS.

4.7.4 Unknown Formation, Decentralized Operation (Figure 9d)

In this scenario, a Unit may receive requests from unknown Peers, handling identification
and authorization procedures by its own. This is how the IoT scenario most likely will play out,
with services being broadcasted and consumed by unknown Peers on-demand. Mutual trust is
essential to perform service consumption securely, making this scenario the most challenging of
all.

4.8 HAMSTER in IoT-connected UAV scenarios
HAMSTER can provide security to a large number of IoT-connected UAV scenarios. In

scenarios where the Cloud is a manager from which external clients can request UAV services,
the Cloud would be a HAMSTER SUPER ENTITY, any UAV would be a HAMSTER ENTITY

and, if any UAV module such as GPS or camera has a separate processing unit, would be a
HAMSTER OBJECT. Either the Entity or the Object would provide services that can either be
simple services offered directly to the client (i.e, services with cloud coverage that are propagate
through the system) or that are offered to the Cloud (system coverage) and then are combined
in composed services offered directly from the Cloud unit to its clients (not necessarily though
HAMSTER). This scenario is demonstrated in HAMSTER results (Section 6.5) with a UAV-
enabled delivery service. The Cloud/GCS is the HAMSTER SUPER ENTITY, the UAV is the
HAMSTER ENTITY and its Navigation Unit is a HAMSTER OBJECT that provide navigation
services.

In scenarios where UAVs work as part of IoT infrastructure, different possibilities are
possible. In a scenario where the service is persistent, the UAV could be the HAMSTER SUPER

ENTITY providing computation and storage services to an IoT sensor as a HAMSTER ENTITY.
If, however, the idea is to send IoT data to a Cloud service, the Cloud would then be the
HAMSTER SUPER ENTITY, the UAV its HAMSTER ENTITY and all IoT sensors could
operate as STANDALONE Units. This scenario is demonstrated in HAMSTER results (Section 6.6)
with a UAV acts as a data collector (or a data mule) of different sensors. In this scenario, a



4.9. Final Remarks 93

GCS or Cloud server is the HAMSTER SUPER ENTITY, the UAV is a HAMSTER ENTITY

and has two HAMSTER OBJECTS: a Navigation Unit and a Connection Unit — this last one
responsible to connect to IoT sensors acting as STANDALONE Units.

4.9 Final Remarks
In this Chapter, HAMSTERwas presented together with the main points developed during

this PhD so the architecture evolved to SEMU. First, security aspects in this work was presented,
including the Cloud–SPHERE platform and how the system could make use of contextual
information to improve overall vehicle security and safety. Then, service management aspects
were discussed and a description on how they are dealt in SEMU were presented. Also, it was
shown how the applications can use automatic task management in their application through the
NP platform. Finally, different feasible UAV application scenarios were presented and discussed.

This work make it feasible for UAVs to exchange services making use of available
security mechanisms and automated task management to build complex applications. There is
still a gap from theory to real life applications, which this work filled by developing a prototype
presented in the next Chapter.





95

CHAPTER

5
THE PROTOTYPE

As previously said, HAMSTER is designed to be adaptable and flexible so devices with
diverse resources and technologies can implement it. This is a key characteristic for dealing
with heterogeneous systems. The prototype leans heavily on abstraction to provide generic
interfaces (the Abstraction Layer from Figure 3) that are specialized to different algorithms and
technologies (the Implementation Layer from Figure 3).

The prototype implementation is being done in C++, which allows great optimization and
easy conditional compilation. This first version implements the Centralized, known formation

scenario and supports authentication, cryptography, task management and service management
and exchange.

In this Chapter, the operation and design model of every HAMSTER piece presented is
detailed. Section 5.1 presents the HAMSTER UNIT; Section 5.2 presents the communication
interface and describes how Units connect to one other; Section 5.3 explains the message ex-
change in HAMSTER; Section 5.4 presents the design of Cloud–SPHERE Platform; Section 5.5
presents the design of SEMU platform; finally, Section 5.6 presents the design of NP platform.

5.1 The HAMSTER Unit

A HAMSTER UNIT is any device/node that implements HAMSTER, and provides a
HAMSTER Core Layer interface to the User Application. Each Unit is uniquely identified by an
HAMSTER ID and has a specific TYPE depending on its role in the system:

• STANDALONE: represents a standalone component (sensor/actuator).
• HAMSTER MODULE: represents a component with single functionality/device (e.g., a

navigation module).
• HAMSTER CLUSTER: represents a component with multiple devices (e.g., a sensor

board);



96 Chapter 5. The Prototype

• HAMSTER ENTITY: represents a Unmanned Vehicle (UV);
• HAMSTER SUPER ENTITY: represents a Central Unit in the UAS, such as a “leader

UAV” or a GCS — this unit is present only in centralized scenarios (Section 4.7);
• HAMSTER CLOUD: represents a Cloud server that communicate with different Units

or entire Unmanned Systems (USs);

Figure 10 – Generic view of a HAMSTER UNIT.

Source: Rodrigues and Branco (2022).

Each HAMSTER UNIT may contain different HAMSTER PLATFORMS, each of them
deploying a different part of HAMSTER functionality. In Figure 10, a generic view of the
envisioned HAMSTER UNIT is presented. Besides its unique HAMSTER ID, every Unit may
contain the NCI, SEMU, NIMBLE, NP and Cloud–SPHERE platforms. In order to communicate
with other Units, at least one communication INTERFACE must be present.

Not all platforms are present in every Unit TYPE. Table 5 relates which platforms are
present in each Unit type.

Table 5 – HAMSTER PLATFORMS for each Unit TYPE.

UNIT TYPE Cloud–SPHERE NCI NP SEMU

STANDALONE 3 7 7 3

MODULE 3 3 3 3

CLUSTER 3 3 3 3

ENTITY 3 3 3 3

SUPER ENTITY 3 k k 3

CLOUD 3 7 7 3
k The presence of these platforms will depend if the Super Entity is an UV or not.

Source: Rodrigues and Branco (2022).



5.1. The HAMSTER UNIT 97

Figure 11 – Unit model in HAMSTER.

Source: Rodrigues and Branco (2022).

5.1.1 Model and Implementation

Figure 11 presents the HAMSTER UNIT model with all its Platforms. The Unit class is
the representation of a HAMSTER UNIT and has six different templates that allow the system
engineer to configure how the Unit will operate. The Type parameter determines the Unit type
as described in this Section, and its value is one of the included in UNIT_TYPE enumeration.
The scenario parameter determines the operation scenario the Unit is inserted in. The param-
eter value comes from SCENARIO enumeration and corresponds to the HAMSTER operation
scenarios described in Section 4.7. Parameters UnitID_t, AlgorithmID_t and ServiceID_t
are Identification types used to identify Units, Algorithms and Services in the system,
respectively. Finally, interface_configurations is a variadic template containing the classes
used for communication interfaces in the Implementation Layer (Figure 3); the Unit may receive
any number of these structs, each of them corresponding to a different communication interface.

Any device that implements HAMSTER must inherit from the Unit class, composed by
different Platforms. A HAMSTER PLATFORM represented by Platform class is a software
unit that can send and receive messages and has its own thread of execution. There are three
Boolean template parameters that configures the behavior of a Platform: platform_executes_-



98 Chapter 5. The Prototype

loop configures if the Platform performs any looping action besides waiting for new messages;
platform_has_outgoing_queue configures if the platform sends messages (all of them re-
ceive); finally, platform_access_comm_data configures the access of that specific Platform to
the CommData instance in that Unit, which encapsulates all peer-related data and configuration.

In the diagram, all possible platforms of a Unit are illustrated: the MessageBroker
distributes the messages in and out of a Unit (see Section 5.3 for message distribution inside
HAMSTER); the AbstracInterface (Section 5.2) is an abstraction for all communication
interfaces inside the Unit; classes Cloud–SPHERE (Section 5.4), SEMU (Section 5.5), NP (Sec-
tion 5.6), and NodeCriticalIndex represent the different HAMSTER PLATFORMS presented
in the previous Chapter. The presence or not of a Platform in a Unit follows the scheme described
by Table 5.

Unique identification is one of the bases the HAMSTER prototype is based on, and IDs
are frequently passed between Units in communication, meaning they must be serialized and
deserialized from message buffers. Because of that, the classes used for identification in the
system must be a Identification type that can be (a) hashable; (b) ordable; (c) serializable

and deserializable. For that, the used class must either be an integral type (except bool type), a
std::string or a user class that follows the interface provided by class HAMSTERID (Figure 12).

Figure 12 – HAMSTERID interface.

Source: Rodrigues and Branco (2022).

5.1.2 Operation

In a typical application, the system engineer creates a HAMSTER UNIT by inheriting
from Unit class — this will provide access to all configuration available (network addresses,
authentication and cryptographic data, etc). After all necessary configurations are done, the
Unit is initialized by invoking the load() method. The Unit initialization will (a) initialize all
platforms; (b) invoke the Application Layer initialization method (customInitialization()),
so application-specific initial steps can be performed; (c) if an Entity, wait for all of its modules
to be connected and authenticated; (d) if in a Centralized scenario, connect to its Central Unit
and (e) finally, initialize the registered services.



5.2. Communication between Units 99

During the Unit operation, the Application Layer can exchange messages by using the
Application Message (Section 5.3.1) interface (methods sendMessage() and parseMessage()).
HAMSTER Core messages are processed automatically by the platforms.

The Unit termination process follows the initialization steps in inverse order:(a) the
registered services are terminated; (b) if a Unit, all objects are notified to terminate; (c) after mod-
ules are disconnected, disconnect from central Unit; (d) invoke Application Layer termination
(customTermination()); finally, terminate all internal platforms.

5.2 Communication between Units

Communication is a key component in HAMSTER, and a great care was taken to make
its abstractions highly configurable so many technologies can be used in the architecture. This
Section presents and explains the communication Interfaces design and the connection between
Units.

Figure 13 brings the high-level communication model in HAMSTER. Each HAM-
STER UNIT has at least one communication INTERFACE, which can be realized in different
technologies and deploy different protocols depending on the available options.

Figure 13 – Communication model in HAMSTER.

Source: Rodrigues and Branco (2022).

Every Interface is composed by GATES, a means of communication entrance and/or
exit. Obligatorily, every interface has at least two gates for HAMSTER communication: one
for control message exchanges (HAMSTER GATE) and another for HAMSTER broadcast
queries (BROADCAST GATE). There are also two extra types of gates, that can be included and
configured at compile time: (1) an APPLICATION GATE for application message exchange and
(2) SERVICE GATE for service data exchange.

A gate is envisioned to have two modes of operation, illustrated in Figure 14. The
operation mode is defined while configuring the Interface the gate belongs to. A FULL-DUPLEX

Gate (Figure 14a) has two communication paths, with each communicating entity having a



100 Chapter 5. The Prototype

point to accept connections and another to connect to other peers. A HALF-DUPLEX Gate
(Figure 14b) has a single communication path — the entity either starts the communication or
accept it. The Gate operation mode has nothing to do with communication synchronization —
the use of synchronous or asynchronous communication is defined by the designer based on the
communication implementation.

Figure 14 – Gate operation modes in HAMSTER Interfaces.

ACC

ACCCON

CON

(a)

ACCCON

(b)

Source: Rodrigues and Branco (2022).

Based on its operation mode, the Gate may have two types of components: an ACCEPTOR

(an entry point that accept connections from other Units) and/or a CONNECTOR (an exit point
that connects to other Units). For each Gate component, the designer can configure if (a) it
needs a specific address and (b) if a specific execution thread is needed. For instance, in a socket
communication, the Acceptor (the server) would need both an address (with IP and port, so
clients can connect to it) and a specific execution thread (so it can continuously listen its port).
The socket Connector (the client), however, does not need any of them.

The Gate components are associated with connection abstractions and do not deploy
any specific communication protocol. To make the bridge between the HAMSTER Core Layer
and any specific implementation, the HAMSTER Abstraction Layer defines a Communication

Technology abstraction, which links the architecture to any technology implementation provided
by the system designer.

Network addresses are passed along HAMSTER components as a string, allowing the
designer to pass any kind of information from the Application to the Implementation layer. A
CONNECTION ESTABLISHMENT abstraction provides the methods invoked by Connectors and
Acceptors for connecting and receiving connections to and from other Units, respectively. Once a
connection is established, a CONNECTION MANAGEMENT object deals with managing message
exchanging and closing the connection if necessary. These objects are associated with a PEER so
it can be retrieved when communication occurs.

5.2.1 Model and Implementation

Figure 15 presents the communication interface model in HAMSTER. At the top center is
the AbstractInterface, which is a communication-technology-independent interface abstrac-
tion that stores only its number and Unit ID. The Interface itself has two additional template



5.2. Communication between Units 101

Figure 15 – Communication Interface model in HAMSTER.

Source: Rodrigues and Branco (2022).

parameters. InterfaceConfiguration is a 8-bit integer used to configure the Interface; the
TechnologyImplementation template parameter is a struct that aggregates all communication
technology classes in the Implementation Layer.

All possible Gates an Interface can have are implemented by Gate class, which is of a
certain GATE_TYPE and has a specific GATE_OPERATION_MODE that configures if the Gate has an
Acceptor and/or a Connector. As with Interfaces, Gates also have a technology-independent
abstraction (AbstractGate) and holds a list of established connections that can be managed by
ConnectionManagement abstraction.

Depending on the communication technology used, the Acceptor and Connector may ex-
ecute a dedicated thread (encapsulated in classes AcceptorLooping and ConnectorLooping,



102 Chapter 5. The Prototype

respectively) and/or need an address to operate. The addresses are stored in their concrete
implementation of ConnectionEstablishment abstraction.

Figure 16 – CommunicationTechnology struct.

Source: Rodrigues and Branco (2022).

Many classes such as Interface and Gate have a struct template parameter of type
CommunicationTechnology (Figure 16). This utility struct combines abstractions used by
the communication technology and its configuration (Section 5.2.2) so HAMSTER supports
necessary addressing and looping for connection establishment and management. All elements
are template parameters — the struct is a convenient way to pass various types without cre-
ating any object. Abstraction AdressType encapsulates eventual network addresses, while
classes ConnectionEstablishment and ConnectionManagement encapsulates the interface
for establishing and manage connections, respectively.

The ConnectionEstablishment abstraction nests the classes related to establish-
ing new connections, as shown by Figure 17. Abstract class ConnectionInterface con-
tains the methods used by the Acceptor and Connector to establish new connections. If any
of them is configured to have a dedicated thread of execution, the inheritance from classes
AcceptorLoopInterface and ConnectorLoopInterface should also be implemented by
the communication technology classes in the Implementation Layer.

Similarly, ConnectionManagement (Figure 18) nests classes related to exchanging
messages and closing established connections. Abstract class ManagementInterface encap-
sulates the functionality methods used by handlers (created by new connections) to exchange
messages. If an incoming handler — created by an Acceptor — or an outgoing handler —
created by a Connector —- need a dedicated thread of execution, the inheritance from classes
IncomingHandlerLoopInterface and OutgoingHandlerLoopInterface should also be
implemented by the communication technology classes in the Implementation Layer.

Since communication is the central point in HAMSTER, peer-related communication
information has to be accessed in many different point of the architecture. Because of that,
peer-related data is encapsulated by a specific class (CommData, Figure 19), whose reference is
shared among all Platforms configured to access it (platform_access_comm_data = true).

Class CommData has a list with all Peers with whom the Unit is communicating to. Class
Peer concentrate all communication-related data from each peer: identification, addresses for



5.2. Communication between Units 103

Figure 17 – ConnectionEstablishment model in HAMSTER.

Source: Rodrigues and Branco (2022).

Figure 18 – ConnectionManagement model in HAMSTER.

Source: Rodrigues and Branco (2022).



104 Chapter 5. The Prototype

each Gate type, the Interface used to communicate with it, the AUTHENTICATION_STATE and
Communication Handler (connection_handler_id_t) of every connected Gate as well as the
cryptographic handler for the specific connection. At this point, only one handler is available,
i.e., the cryptography algorithm is the same for all gates, but it is envisioned to add support for
different cryptography algorithms for every gate. A new Peer can only be inserted (1) by the Unit
itself in known formations and (2) by the HAMSTER Gate when a new connection is established
(Section 5.2.4).

Figure 19 – Peer management in HAMSTER.

Source: Rodrigues and Branco (2022).

5.2.2 Configuration

HAMSTER communication is highly configurable and allows the system engineer to
deploy the needs of their application in different technologies. There are two configurations to be
done regarding communication: the interface and the technology. INTERFACE CONFIGURATION

is done through INTERFACE_CONFIG_FLAGS enumeration (Figure 20a) and determines if the
interface will have Application and Service Gates and the Operation Mode of each one as
described in Figure 14 (HAMSTER and Broadcast Gates are not configurable). TECHNOLOGY

CONFIGURATION is done through TECHNOLOGY_CONFIG_FLAGS enumeration (Figure 20b) and
tells HAMSTER about the implementation needs regarding network addresses and dedicated
threads for the Acceptor, Connector and Connection Handlers.

As an example, consider an Interface that has a Full-Duplex Service Gate and a Half-
Duplex Application Gate that accepts connections from other Units; the technology being used are
connection-oriented socket-based (i.e., TCP sockets). Considering that for this technology (a) the
server (Acceptor) needs a pre-established network address, but not the client (Connector);(b) that
the server needs a dedicated thread to listen to its port and (c) a server established connection
(Incoming Handler) needs a dedicated thread to wait for new messages, Interface and Technology
Configuration Flags would be as described in Source code 1 (enumeration names were suppressed
for readability).



5.2. Communication between Units 105

Figure 20 – Configuration flags for HAMSTER communication.

(a) (b)

Source: Rodrigues and Branco (2022).

Source code 1 – Communication configuration example.

1: interface_configuration =

2: SERVICE_GATE_FULL_DUPLEX |

3: APPLICATION_GATE_ACCEPTOR ;

4:

5: technology_configuration =

6: ACCEPTOR_ADDRESSING | ACCEPTOR_EXECUTES_LOOP |

7: INCOMING_HANDLER_EXECUTES_LOOP ;

5.2.3 Operation

In an application, the system engineer must provide in the Implementation Layer classes
to realize the three communication abstractions present in HAMSTER: a class to encapsulate net-
work addresses, a class that makes connection and create objects of a third class that will manage
the connection. These classes must inherit from AddressInfo, ConnectionInterface and
ManagementInterface respectively.

The communication is initialized in UNIT’s load() method together with all other
Platforms. In the HAMSTER CORE, the Unit initialize each Interface, which in turn initializes
all existing Gates, which in turn initializes their Acceptor and/or Connector. The classes provided
in the Implementation Layer are also initialized as the last chain link.

The Interface operation is event-driven based on messages sent and received. When the
Unit needs to transmit a message, the Interface routes it to the appropriate Gate and the message
is sent through a Connection Handler. If the Unit receives a message in one Connection Handler,
a chain of notification goes up to the HAMSTER Core and properly routed to any Platform or
the Application Layer (for more information on messaging, see Section 5.3).

When an Interface is terminated, all established connections in all gates are closed, and
the terminate() methods from classes in the Implementation Layer is invoked together with of
the classes in the HAMSTER Core Layer.



106 Chapter 5. The Prototype

5.2.4 The Connection between Units

HAMSTER Core Layer provides two different communication services to the Application
Layer: (1) application message exchange and (2) service exchange, both of them implemented in
dedicated Gates between the Units.

Before establishing a connection in either Application Gate or Service Gate, however,
HAMSTER needs to properly identify and authenticate the Units through the HAMSTER Gate.
In known formation scenarios (Section 4.7), the connection establishment and authentication in
HAMSTER GATE is done automatically while the Unit is being loaded, whereas in unknown

formation scenarios this connection is made on demand when the application requests a mes-
sage or service exchange. Only after the HAMSTER GATE is connected and authenticated
Application and Service Gates may connect and authenticate.

Figure 21 – Connection Establishment in HAMSTER GATE.

Source: Rodrigues and Branco (2022).

The sequence diagram in Figure 21 details how a full-duplex connection is established
between the HAMSTER GATES of two different Units. In this figure, UAV1 is trying to connect
to UAV2.

First, the UAV 1:GATE (a HAMSTER Gate) starts the process by requesting a connec-
tion to its Connector (1). UAV 1:CONNECTOR connects to UAV 2:ACCEPTOR through the
ConnectionInterface (Section 5.2.3) implementation of the specific communication technol-



5.3. Message Exchange in HAMSTER 107

ogy used for this Interface. When receiving the connection request, UAV 2:ACCEPTOR creates a
new Incoming Connection Handler (3) from ManagementInterface system implementation
(Section 5.2.3) which will handle any new messages that arrive to the new connection.

Upon receiving the connection acknowledgment, the Connector creates an Outgoing

Connection Handler (4) and notifies the Gate on the new outgoing connection (7), who in turn
adds the handler to its connection list. The Connection Handler sends an Identification Message

(5) to UAV 2 INCOMING:CONNECTIONHANDLER with the necessary data for the connection
to be completed. When this Identification Message arrives, the Incoming Connection Handler
notifies UAV 2:GATE of a new incoming connection (6). Since this is a Full-Duplex Gate, UAV
2 now has to connect to UAV 1. This triggers the same process, but now with UAV 2 being the
connection “starter” (8-14). When the connection is complete (13 for UAV 1 and 14 for UAV2),
the GATE for both units register the new connection Peer (15 and 16).

When this process is finished, both Units can use the HAMSTER GATE to authenticate
themselves and exchange messages as explained in the next Section.

5.3 Message Exchange in HAMSTER

All data exchange between HAMSTER Units and Platforms is done by HAMSTER MES-
SAGES (Section 5.3.1), which has a fixed structure and a unique code that identify the message
and the Platform it is destined to. Any Platform can send and receive messages; HAMSTER also
enables the exchange of Application Layer messages, which are forwarded encapsulated in a
specific HAMSTER Message.

The MESSAGE BROKER is responsible for distributing messages of a HAMSTER Unit.
It can redirect either (1) Application Layer messages to another Unit; (2) Platform messages
destined to another Platform in the same Unit; (3) Platform messages destined to a Platform
in another Unit and (4) Application Layer and/or Platform messages from other Units to the
Application Layer or correct Platform, respectively.

The Message Broker does not analyze the message destination or code to distribute it, but
its direction. An INTERNAL message is destined to the Application Layer or another Platform of
its own Unit and it is redirected appropriately; and EXTERNAL message is meant for another
Unit and is redirected to the appropriate Interface to be sent through the network.

The messages come in and out from any HAMSTER Platform (including the Message
Broker and Communication Interfaces) thorough Queues. Any time a Platform sends a Message,
it goes to the Message Broker Incoming Queue; the broker then parses the message and puts it in
the Incoming Queue of a Platform (Internal Messages) or of an Interface (External Messages).



108 Chapter 5. The Prototype

5.3.1 HAMSTER Messages

A HAMSTER MESSAGE has a static structure composed by a header and a payload, as
shown by Figure 22. The header includes the Message Code and the Payload Size. The Message
Code is an integer that aggregates two information:(1) which message is being transmitted and
(2) to which platform(s)/application the message is destined to; the Payload Size indicate how
many bytes are in the message payload.

Figure 22 – HAMSTER Message Structure.

Header Payload

Message Code & Direction Payload Size ...

Source: Rodrigues and Branco (2022).

The Payload is composed by MESSAGE FIELDS, which can be anything (i.e., the value
of a specific variable or all data members of a class) that is shared by a message. All fields are
serialized into a buffer, transmitted through the network, and deserialized on its destiny.

Data portability is a crucial feature when designing communicating systems with hetero-
geneous platforms. Some problems may arise such as memory alignment, byte endianness, size
of native types, and floating-point arithmetic (HOOK, 2005). Because of that, HAMSTER has
some guidelines for dealing with message fields:

1. A class must not be serialized as a hole, but having each of its members serialized
individually;

2. Data is to be serialized in little-endian format;
3. All integer types should be of fixed sizes provided by stdint library (such as int8_t,

uint8_t, int16_t and so on);
4. Floating-point variables are always sent formatted as a std::string in order to prevent

standard conflicts.

Evidently, these guidelines can be disregarded and the message payload built as con-
sidered best by the application. In this situation, the application shall be responsible for data
portability.

5.3.2 Model and Implementation

Figure 23 brings the Message Broker modeling in HAMSTER. As any Platform, the
MessageBroker has an incoming_queue in which messages arrive to be redirected to the
proper Platform, which can be a HAMSTER Platform (Cloud–SPHERE, SEMU, etc.) or an
Interface, depending on the Message direction.



5.3. Message Exchange in HAMSTER 109

Figure 23 – Communication Broker model in HAMSTER.

Source: Rodrigues and Branco (2022).

The Broker incoming MessageQueue reference is shared among all other HAMSTER Plat-
forms to be used as their outgoing queue. In practice, when any Platform invokes the method
sendMessage(), it is actually pushing the message into the Broker’s incoming queue, which
has concurrent access protection.

Differently from other Platforms, the Broker does not have an outgoing queue, but rather
a list of Platform’s incoming message queues, each of them identified by the corresponding
Platform Message Mask (Figure 24). When the Broker parses a message it received in the
incoming queue, it is redirected to the appropriate Platform (if an INTERNAL message) or to
the Peer’s corresponding Interface (if an EXTERNAL message) — the Broker has access to
Peer information in CommData class through Platform inheritance.

Figure 24 brings more details on HAMSTER Messages. There are two different classes
used to encapsulate messages in HAMSTER: class Message is used during Unit connection
(Section 5.2.4), since the Units do not know each other’s ID. After the connection is established,
HAMSTER uses the IdentifiedMessage, which contains the Peer from/to which the massage
came/was sent.

Besides following the fixed structure already discussed in this Section, the Message
has three important attributes: the message_code, which has a unique numeric value for each
message; the message_payload, which contains message data, including its header; and the
message_direction, which determines to which Platform the Message will be redirected by
the Broker.

Class HAMSTER_MESSAGE_CODE provide the unique codes that identify each message. It
is a 32-bit number made by two parts: the first 16 bits incorporates the HAMSTER_MESSAGE_MASK
of the Message destination, and the second 16 bits are enumerated sequentially. This provides
unique identification and incorporates the Message destination at the same time.



110 Chapter 5. The Prototype

Figure 24 – Message model in HAMSTER.

Source: Rodrigues and Branco (2022).

The Message class has built-in elements to add and extract fields to and from its payload
— method append() is invoked to write data into message payload, while method extract()
reads data into message payload. These two messages uses serialization utilities already included
in HAMSTER to serialize and deserialize data of primitive types. If the application needs to
transmit an object as a Message Field, this data type D must inherit from MessageField so the
aforementioned methods can invoke the necessary interface.

5.3.3 Operation

Message-related operation in HAMSTER is very straightforward. Every Platform has
a loop that checks for new messages and can either perform specific loop actions (setting the
template flag platform_executes_loop = true) or sleep until a new message arrives (setting
the template flag platform_executes_loop = false).

If there is any new Message, it is popped from the Message Queued and used to invoke
the parseMessage() method. The parsing implementation is particular for every Platform. For



5.4. The Cloud–SPHERE Platform 111

Figure 25 – Cloud–SPHERE model in HAMSTER.

Source: Rodrigues and Branco (2022).

instance, SEMU and NCI make operation based on the received messages; communication
Interfaces redirect those messages to the outside world in the appropriate Gate and the Message
Broker makes the message distribution in this method. In many cases, a received Message requires
a response, which can be sent to the Message Broker by invoking method sendMessage().

5.4 The Cloud–SPHERE Platform

The Security and safety Platform for HEteRogeneous systEms connected to the Cloud
(Cloud–SPHERE) is the central security point in HAMSTER, responsible for supervising the
Unit’s health or safety through the Safety Management Unit (SMU) and handling security
aspects such as authentication, access control and communication security through the Central
Security Unit (CSU). Currently, the HAMSTER Prototype supports the use of authentication and
cryptography algorithms inside the CSU. Other security measures and SMU implementations
are to be added in future projects.



112 Chapter 5. The Prototype

5.4.1 Model and Implementation

Figure 25 shows the model for the Cloud–SPHERE Platform. Cloud–SPHERE class is the
Platform composed by two units: the Safety Management Unit (SMU), not yet implemented, and
the Central Security Unit (CSU), which currently supports both cryptography and authentication
operations.

A different number of authentication and cryptography algorithms can be registered in
the CSU. Whichever concrete implementation is registered needs to follow the specific algorithm
interfaces, i.e., classes used for those operations must inherit from AuthenticationAlgorithm
or CryptographyAlgorithm. Since authentication is used only when the peers are connecting
and cryptography is used in every exchanged message, authentication and cryptography data
are handled differently in HAMSTER. Authentication-related data must be dealt and stored by
the concrete implementation itself and can be initialized from the Application Layer through
method setAuthenticationData(). The authentication begins when the Unit invokes method
authenticate() in the CSU. On the other hand, cryptography operations are deployed through
a cryptographyHandler stored with Peer information (Figure 19) — the handler has access to
the algorithm’s encryption and decryption methods and stores the cryptography data (e.g., the
keys).

5.4.2 Operation

CSU handles the registration of both cryptography and authentication algorithms, which
are uniquely identified and saved in a list. In the future, it is envisioned that Units are to query
which algorithms are available and with that reach an agreement in which authentication or
cryptography will be used for this pair of peers.

Message encryption and decryption are straightforward: when the Interface receives or
has to send a Message, it retrieves the Cryptography Handler of that Peer to decrypt or encrypt
the message, respectively.

Authentication is more complicated, since the strategies can vary greatly. As with other
elements in HAMSTER, the authentication is based in abstractions. A HAMSTER UNIT starts
the authentication by invoking method authenticate() in its CSU, which in turn sends an
AUTHENTICATION_REQUEST message to the Peer (CSU_U2), as shown by Figure 26. The Peers
responds with message AUTHENTICATION_RESPONSE_OK if the authentication can take place
and AUTHENTICATION_RESPONSE_NOK otherwise. At this point, both Units are aware of the
ongoing authentication process.

The implemented authentication algorithm provided by the Implementation Layer must
use a specific AUTHENTICATION_MESSAGE to exchange data and authenticate Units. The Units
can exchange as many messages as necessary, and the authentication process ends when (1) the
Units are able to authenticate each other or (2) if the algorithm timeout specified at registration



5.5. The Service Exchange Management Unit 113

Figure 26 – Authentication process in HAMSTER.

Source: Rodrigues and Branco (2022).

expires.

5.5 The Service Exchange Management Unit

The main objective of the Service Exchange Management Unit (SEMU) is to enable
HAMSTER Units to exchange different services in order to realize more complex tasks and
achieve a higher integration with the IoT. The SEMU Platform and its operational module
SEO (Service Exchange Operator) allow a service provider to register, propagate, manage and
deliver a given service, while service clients are able to discover, request and consume those
services.

5.5.1 Model and Implementation

In HAMSTER, services are abstracted to be as generic as possible and able to handle
commands, events and different types of data. Figure 27 presents how the HAMSTER Prototype
deals with services.

The SEMU Platform provides the Service-related interface with the Application Layer.
Through it, it is possible to register, unregister, suspend and resume service provision, as well
as performing service requests. In order to isolate service exchange from service management
in HAMSTER, SEMU has an internal sandbox that exchange service-specific messages called
Service Exchange Operator (SEO). Except for service propagation which is done exclusively
by SEMU, all other service-related methods are also present at the SEO (the methods were not
duplicated in Figure 27 for better readability).



114 Chapter 5. The Prototype

Figure 27 – Service model in HAMSTER.

Source: Rodrigues and Branco (2022).

In order to provide its functionality, the SEO stores the list of all registered_services
of a service provider and manages their requests and client list. Also, SEO also manages all
service_handlers created from service requests made by service clients (more details on
service registration and requests are presented in the next Section). One thing to note here is
that the HAMSTER Unit assumes the role of both provider and client, being able to provide and
consume services at the same time.

Every Service has a unique ID which follows the same rules as Unit identification: to
be an integral type (except bool type), a std::string or a user class that follows the interface
provided by class HAMSTERID (Figure 12). Besides the already mentioned SERVICE_TYPE and



5.5. The Service Exchange Management Unit 115

SERVICE_COVERAGE, another important characteristic of a service is the SERVICE_ORIGIN: a
LOCAL service is delivered by the Unit who registered it; a REMOTE service means the service is
delivered by a Unit propagating the service.

Currently, the prototype supports Command, Data and Event services. Each has different
characteristics and unique registration processes. Regardless of the type, service exchange is
done through service messages between the SEO Platforms of different Units. Services messages
are sent through the Service Gate, isolating them from HAMSTER control messages (sent
through the HAMSTER Gate) and Application messages (sent through the Application Gate).
This improves security and mitigate a possible network bottleneck, improving availability.

The EventService is the simplest service to register (it only needs its ID and coverage).
This service function as a notification for its client_list formed from client requests. The
Unit is able to notify the clients of Event Services through method notifyEventService(),
which supports an optional payload to provide extra information to the clients.

A CommandService is used for requesting a command execution from a service provider.
Because of that, a CommandExecution callback method (of type HAMSTER_RETURN(Buffer),
it is provided by the Application Layer to execute the service) must be provided in service regis-
tration besides its ID and coverage. This type of service does not have a client list — currently, a
request for this type of service makes the SEO to start the callback method asynchronously and
wait until the specified timeout or the command completion to send a response.

Finally, the DataService is the most complex so far. Besides ID and coverage, its
registration also demands a DataUpdate callback method (of type ServiceData_t()) from
the Application Layer that is used to update the service data cached value. This service type has
two different client lists: one for those which requested the service ON_CHANGE and another for
those which requested the service delivery flow to be CONTINUOUS. In order to update its clients
periodically, DataService also follows the UpdateInterface.

5.5.2 Operation

Once a Service is registered, HAMSTER makes it simple to manage it and for other
Units to request it. The Application Layer uses a HAMSTER Core Layer API to manage and
operate services, while providing callbacks to implement them.

5.5.2.1 Service Registration

Even though each Service Type require different registration elements (Data Services
need a callback to retrieve the data and Command Services need a callback to execute the
service), the registration process is similar for all Services, as illustrated by the diagram shown in
Figure 28. The U1 object request the registration of a service S1; the request is forwarded to its



116 Chapter 5. The Prototype

SEO (SEO_U1) through the SEMU Platform (not present in this diagram). SEO_U1 then creates
the S1 object representing the registered service and add it to its registered_services list.

Figure 28 – Service Registration process.

Source: Rodrigues and Branco (2022).

5.5.2.2 Service Request

In HAMSTER, service requests differ depending on the service type and its delivery
flow. Figure 29 illustrates Unit U2 requesting the Service S1 registered by Unit U1 previously in
Figure 28.

5.5.2.2.1 Service client request

The Application Layer of client U2 requests a service to its SEO (SEO_U2) by calling
requestService(), providing (1) the Unit ID from which the service is being requested; (2) the
Service identification; (3) the desired delivery flow; (4) an optional payload/buffer with data for
the request and (5) a callback to be invoked every time a message related to this request arrives at
SEO_U2. The SEO_U2 prepares the SERVICE_REQUEST message. If the message is successfully
sent, the Platform creates a ServiceHandler with the provided callback and returns a positive
or negative return to the Application Layer.

5.5.2.2.2 Service provider response

Upon receiving the SERVICE_REQUEST message, the SEO Platform will verify if there
is any registered service with the desired ID. If so, SEO_U1 will take different actions depending
on the service delivery flow: for CONTINUOUS, NOTIFICATION and ON_CHANGE requests, the
Client ID is added to S1 client list; for ON_REQUEST flow, SEO_U1 starts the CommandExecution
callback method in a new thread and waits until service timeout or completion. SEO_U1 answers
with SERVICE_REQUEST_OK on operation success or SERVICE_REQUEST_NOK on fail. This



5.5. The Service Exchange Management Unit 117

Figure 29 – Service request between HAMSTER Units.

Source: Rodrigues and Branco (2022).

result is forwarded by SEO_U2 to the ServiceHandler created by the service request to deal
with the result.

5.5.2.3 Service Deliver

This stage is very simple, but very particular for every service type/delivery flow.
As already mentioned, ON_REQUEST services (Data or Command services, as shown by Ta-
ble 4) execute its action upon receiving message SERVICE_REQUEST and can reply with ei-
ther message SERVICE_REQUEST_OK or SERVICE_REQUEST_NOK depending on its result
— response message support a payload to be sent to the service Client. ON_NOTIFICATION
services (Event Services) deliver a SERVICE_NOTIFICATION message to all its clients when
method notifyEventService() is invoked from the Application Layer. Finally, services with
CONTINUOUS and ON_CHANGE delivery (basically Data services not on request) send a SER-
VICE_DATA message to all its clients when necessary: periodically or when the data value
changes.



118 Chapter 5. The Prototype

5.5.2.4 Service Consumption

When the SEO receives any delivery message, it locates the ServiceHandler created
on the service request and invokes its callback with a correspondent SEO_CODE value, allowing
the Application Layer to consume the service. It is important to point out that when requesting
a service the Application Layer must be prepared to handle all possible values in its request
callback implementation.

5.6 The Navigation Phases Platform
As said before, the Navigation Phases (NP) platform is the only HAMSTER Platform

that has significant differences between the implementation of a HAMSTER Entity and a HAM-
STER Object. Therefore, these implementations are referred as NP MANAGER and NP AGENT,
respectively.

The NP Platform is responsible for managing the state of all Objects in an Entity while
executing a Task. Currently, NP manages the ON/OFF state (i.e., if the object is turned on or off)
of object groups (essential/MAIN or TASK SPECIFIC) for simplification and performance.

5.6.1 Model and Implementation

Figure 30 shows the model for the Navigation Phases Platform. Classes NPManager
and NPAgent are implemented differently, with the first managing all task-related functionality,
while the second deals only with the Object State during each Task phase.

As already described, the NPManager manages the Entity’s Task, which is consisted of
different phases. Each phase has an associated TaskState in which both MAIN and TASK
SPECIFIC Objects have an OBJECT_STATE and a transition callback given by the Application
Layer that is invoked periodically to verify if the current phase has finished. Through the
NPManager, the Entity is able to classify its Objects, include the necessary phases into the Task
and distribute the Task, i.e., communicate every object of its state in all Task phases in advance.

The NPAgent is responsible for making the Object to switch states if necessary. For that,
it counts with two different callbacks which are invoked when the Object is supposed to be turned
on (on_state_callback) and off (off_state_callback). The agent is also responsible for
storing the current or all Object states, if the Task was distributed.

5.6.2 Operation

Figure 31 illustrates the basic NP operation. The Application Layer of an Entity repre-
sented in U1 can, in different points in time, add an Object ID and classification in a specific list
in NPManager (addObject()), add different phases to the task (addPhase()) and distribute the
Task to all Objects in the aforementioned list (distributeTask()). Task distribution is done



5.7. Final Remarks 119

Figure 30 – The Navigation Phases Platform model.

Source: Rodrigues and Branco (2022).

through message TASK_CONFIGURATION sent from the Manager to all Agents from Objects
added to the Manager’s list.

Once the task is started (startTask()), the Manager will notify the NPAgent of all
Entity’s Objects of the new phase (CURRENT_PHASE) if the Task was previously distributed or
the new state (CURRENT_STATE) if not. Regardless of the received message, the Agent calls
the appropriate callback if the Object is supposed to be in ON or OFF state. The messages and
subsequent callback invocation happens every time a new Task phase starts, which is determined
by invoking shouldGoToNextPhase() method from Task periodically.

5.7 Final Remarks

This Chapter provided a detailed description of the HAMSTER prototype. The details
on both design an operation were discussed and the abstractions used to make HAMSTER a
flexible security solution to be deployed in complex and diverse systems were shown.



120 Chapter 5. The Prototype

Figure 31 – The Navigation Phases Platform operation.

There are still many opportunities ahead for HAMSTER. The inclusion of other security
measures such as Access Control mechanisms in Cloud–SPHERE and Context-Aware security
with NCI as discussed in Section 4.4.3.1 can increase the overall security of the system. The
SMU Platform is still to be modeled and implemented in the prototype, increasing overall safety
of HAMSTER Units.

Also, only one scenario (centralized architecture with known formation) is currently
implemented in the prototype. Extending HAMSTER to other operating scenarios as described
in Section 4.7 implies in tackling many challenges.

Unknown formation scenarios will demand a negotiation on which algorithms to use for
Cryptography and other security mechanisms. In this case, an adequate model would provide
a good abstraction so different strategies may be deployed (power-aware, security-aware, etc)
depending on the application. Services and available security mechanisms from a Unit can be
discovered through the envisioned Broadcast Gate, but both the Gate and a protocol for this
discovery needs to be implemented. Also, key management and how to certify identities are also
challenges in decentralized scenarios and, as with IoT, demand constraint-aware solutions.

Centralized scenarios, specially in UAV swarms in which there is a ‘leader UAV’, have
to deal with the possibility of a leadership handover. The swarm leader would probably consume
more power due to extra responsibilities, and with the use of smaller UAVs to compose a swarm
a leadership handover would be necessary. In this case, an adequate abstraction is also necessary



5.7. Final Remarks 121

so diverse techniques could be applied depending on the application context.

Finally, modifying the prototype so network configuration parameters (such as net-
work addresses) and task stages can be configured dynamically would allow the application of
HAMSTER in UAV-enabled service hubs, in which the swarm that will provide the service is
dynamically chosen depending on onboard sensors, battery level, etc.

Even though there are still many opportunities for improvement, the current prototype
already enabled a different number of real-life applications, as shown by the proof of concepts
shown by next Chapter.





123

CHAPTER

6
RESULTS

In this Chapter, the results obtained with HAMSTER are exposed and detailed. Each
result covers one different aspect or application of the HAMSTER and function as a Proof-
of-Concept (PoC) scenarios that HAMSTER can aid UAVs and other cyber-physical systems
to be integrated in a communicating system like the IoT and provide services with secure
communication.

Since the prototype handles only one of the four operation scenarios envisioned for
HAMSTER operation, all cases refer to a Known formation, centralized operation. This means
that every HAMSTER UNIT already has the identification and authentication-related information
of all its peers, and there is a Ground Control Station (GCS) that acts as the Central Unit of the
system.

6.1 PoC 1: HAMSTER Authentication

This PoC was published in (RODRIGUES; PIGATTO; BRANCO, 2018a) and demon-
strates the authenticated connection between two HAMSTER ENTITIES mediated by the Central
Unit, which holds the authentication information of all ENTITIES in the system.

Figure 32 shows the protocol for a UAV authentication to the GCS in a centralized
architecture, known formation scenario. After connecting to the station, the UAV sends message
REQ_ENTITY_ACCESS with its own authorization information. The CSU module will then
invoke the proper Authenticator. If the authentication is successful, the station will answer with a
ENTITY_ACC_GRANTED message. Otherwise, the station closes the connection with the UAV.
As already discussed, the authentication process may result in different access levels depending
on the trust between Units.

Figure 33 shows the protocol for an authenticated connection between two HAM-
STER ENTITIES (UAV1 and UAV2) with the HAMSTER SUPER ENTITY (Station) as a media-



124 Chapter 6. Results

Figure 32 – HAMSTER ENTITY authentication in the HAMSTER SUPER ENTITY.

Source: Rodrigues, Pigatto and Branco (2018a).

tor for the connection and authentication. The ENTITY must request the relevant connection data
of the desired peer to the SUPER ENTITY, given the PEER identification.

There are more than one way to obtain the PEER identification. It can be provided along
with mission parameters in a swarm mission, for example, or it can be queried from both the
SUPER ENTITY in a centralized architecture or from the network in a decentralized architecture.

The authenticated connection process begins with message REQ_PEER_CONN_INFO

sent from an ENTITY (UAV2 in Figure 33) to the SUPER ENTITY (Station in Figure 33) with
the HAMSTER ID of the peer (UAV1 in Figure 33). Upon receiving this message, the SUPER

ENTITY’s CSU verifies if the desired peer is connected and authenticated in the system. If the
SUPER ENTITY does not recognize the peer as belonging to the system, it returns the message
RET_PEER_UNKNOWN. If the peer is recognized but it is not connected/authorized, the SUPER

ENTITY returns message RET_PEER_NOT_AUTHORIZED.

If the peer ID is recognized and is authorized, the SUPER ENTITY then notifies the
peer (UAV1) of a new connection request by sending message NOT_NEW_PEER_CONNECTION.
Upon receiving this message, the CSUin the UAV1 will try to add the communication and
security information of the ENTITY which made the request (in this case, UAV2). If the insertion
fails (for instance, UAV2 uses a cryptographic algorithm not available in UAV1), the ENTITY

answers the notification with RET_NEW_PEER_REFUSED, and the SUPER ENTITY answers the
initial connection request with message RET_PEER_NOT_AVAILABLE. If the insertion succeeds,
response RET_NEW_PEER_ADDED is sent, and message RET_PEER_CONN_INFO is sent by
the SUPER ENTITY with all necessary information to establish a connection, including network
parameters such as IP address and security configurations like cryptography keys.

After receiving the desired communication info, the ENTITY follows with the connection



6.1. PoC 1: HAMSTER Authentication 125

Figure 33 – Cloud–SPHERE platform and its modules.

Source: Rodrigues, Pigatto and Branco (2018a).

process. In this step, an optional ENTITY mutual authentication can be performed for additional
security. After the connection is established, both ENTITIES can securely exchange user-specific
messages defined by the application.

6.1.1 Environment Setup

For this PoC, the HAMSTER ID abstraction was resolved in an Universally Unique
Identifier (UUID). The authentication is ID-based and only checks if the ID sent in the message
is one present in the Super Entity known entities. The Communication Interface abstraction was
implemented using network TCP sockets, but there is no other security measure like support for
cryptography. The demonstration is performed in a desktop environment.

The test environment is composed by a HAMSTER SUPER ENTITY (Station) and
three HAMSTER ENTITIES (UAV1, UAV2 and UAV3). Every ENTITY behaves differently in order
to cover different situations of the authentication protocol:

• UAV3 connects to Station but never authenticates itself.



126 Chapter 6. Results

• UAV2 authenticates itself in Station, tries to connect with a random UUID, then tries to
connect to UAV3, connects itself with UAV1 and send the message “Hello, my friend!”.

• UAV1 authenticates itself in Station and waits for any connection request and messages.
Upon receiving message “Hello, my friend!”, it answers with message “Hello back!”.

For better log readability, a predefined order of execution was defined. First, the Station
is loaded, followed by UAV1. After UAV1 is authenticated in station, UAV3 is loaded. Finally, UAV2
is loaded and perform the actions described above.

6.1.2 Obtained Results

Test results shown in logs (Some lines were suppressed for better readability) expose
a successful entity authentication and message exchange between entities. In Station log
(Figure 35), there is a first incoming connection from UAV1 followed by the message pair
characterizing a successful Entity authentication (messages REQ_ENTITY_ACCESS and its
response ENTITY_ACC_GRANTED). A following connection with no authentication messages
states UAV3 connection, whose log is suppressed. A last connection is exposed, followed by UAV2
authentication.

Next, it is possible to discern the messages of the connection attempts made by UAV2
(Figure 34): the first, to an ID unknown by the Station, returns message RET_PEER_UNKNOWN;
the second, to UAV3, returns message RET_PEER_NOT_AUTHORIZED; the last, to UAV1, causes
the exchange of messages between Station and UAV1 to setup the authorized communication,
with response RET_PEER_CONN_INFO being sent next. In UAV2 log, it is possible to see the
record of custom messages “Hello, my friend!” and “Hello back!” between the UAVs.

Figure 34 – Log for UAV2 in the proposed authentication scenario.

0000005 ~ [EVENT] Trying to connect to random UUID.
0000006 ~ [EVENT] Message REQ_PEER_CONN_INFO sent.
0000007 ~ [EVENT] Message RET_PEER_UNKNOWN received.
0000009 ~ [EVENT] Trying to connect to UAV3.
0000010 ~ [EVENT] Message REQ_PEER_CONN_INFO sent.
0000011 ~ [EVENT] Message RET_PEER_NOT_AUTHORIZED received.
0000013 ~ [EVENT] Trying to connect to UAV1.
0000014 ~ [EVENT] Message REQ_PEER_CONN_INFO sent.
0000015 ~ [EVENT] Message RET_PEER_CONN_INFO received.
0000018 ~ [EVENT] New connection, client port = 6383
0000019 ~ [EVENT] User-defined message "Hello, my friend!" sent.
0000022 ~ [EVENT] User-defined message "Hello back!"received.

Source: Rodrigues, Pigatto and Branco (2018a).



6.2. PoC 2: The Navigation Phases (NP) Platform 127

Figure 35 – Log for Station in the proposed authentication scenario.

0000002 ~ [EVENT] New connection, client port = 64750
0000004 ~ [EVENT] Message REQ_ENTITY_ACCESS received.
0000005 ~ [EVENT] Message ENTITY_ACC_GRANTED sent.
0000006 ~ [EVENT] New connection, client port = 239
0000008 ~ [EVENT] New connection, client port = 751
0000010 ~ [EVENT] Message REQ_ENTITY_ACCESS received.
0000011 ~ [EVENT] Message ENTITY_ACC_GRANTED sent.
0000012 ~ [EVENT] Message REQ_PEER_CONN_INFO received.
0000013 ~ [EVENT] Message RET_PEER_UNKNOWN sent.
0000014 ~ [EVENT] Message REQ_PEER_CONN_INFO received.
0000015 ~ [EVENT] Message RET_PEER_NOT_AUTHORIZED sent.
0000016 ~ [EVENT] Message REQ_PEER_CONN_INFO received.
0000017 ~ [EVENT] Message NOT_NEW_PEER_CONNECTION sent.
0000018 ~ [EVENT] Message RET_NEW_PEER_ADDED received.
0000019 ~ [EVENT] Message RET_PEER_CONN_INFO sent.

Source: Rodrigues, Pigatto and Branco (2018a).

6.2 PoC 2: The Navigation Phases (NP) Platform

This PoC was published in (RODRIGUES; PIGATTO; BRANCO, 2018b) and demon-
strates how the NP Platform can be used to manage the ON/OFF state of HAMSTER OBJECTS

during a task (called “Mission” at that time).

The mission information distribution takes place after the connection of all HAM-
STER OBJECTS. The NPManager in the HAMSTER ENTITY relays the mission information
for its OBJECTS which were successfully authenticated, as shown by Figure 36.

Figure 36 – NP Mission Phases Distribution.

Source: Rodrigues, Pigatto and Branco (2018b).

During mission operation (Figure 37), NPManager notifies the authenticated modules
of the current phase through message CURRENT_PHASE, and commands the ON/OFF state of
unauthorized components through message CURRENT_BEHAVIOUR. The prior distribution to
authenticated (and probably more critical) Objects make the process of phase switching very



128 Chapter 6. Results

brief, contributing to time-constrained operation scenarios. After the mission is finished, the
HAMSTER Objects are notified through message MISSION_FINISHED (Figure 38).

Figure 37 – NP operation during a mission.

Source: Rodrigues, Pigatto and Branco (2018b).

Figure 38 – NP operation at the end of the mission.

Source: Rodrigues, Pigatto and Branco (2018b).

6.2.1 Environment Setup

For this PoC, the HAMSTER ID abstraction was resolved in an UUID and the Com-
munication Interface abstraction was implemented using network TCP sockets, but there is no
other security measures like cryptography support. The demonstration is performed in a desktop
environment.

The test environment is composed by a HAMSTER ENTITY (UAV) containing four
HAMSTER OBJECTS (Autopilot, RGBCamera, MultispectralCamera and SensorUnit)
summarized by Table 6. The Sensor Unit is a CLUSTER with three sensors: an Altitude Sensor, a
Dynamic Pressure Sensor and a Temperature sensor. The first two are considered necessary for
UAV operation. Also, MultispectralCamera is the only module that do not authenticate itself.
Since it is not considered crucial for UAV operation, the mission can be executed.

The UAV mission and detailed information on active components for this demonstration
is shown by Table 7. During initialization, all modules are ON. During cruising to mission site
and back to base, mission-specific modules are turned OFF. Once the vehicle arrives at mission
site, all modules are turned ON and the mission performed. Back to base, all modules stay ON
for health checking and mission data acquisition.



6.2. PoC 2: The Navigation Phases (NP) Platform 129

Table 6 – HAMSTER OBJECTS included in the demonstration.

Object Unit Type Classification

Autopilot HAMSTER MODULE MAIN

RGB Camera HAMSTER MODULE MISSION SPECIFIC

Multispectral HAMSTER MODULE MISSION SPECIFIC

Sensor Unit HAMSTER CLUSTER MAIN
Source: Rodrigues, Pigatto and Branco (2018b).

Table 7 – Mission Phases for the demonstration.

Number Phase Active Objects

1 Initialization All

2 Cruising Main only

3 Mission execution All

4 Return to base Main only

5 Finalization All
Source: Rodrigues, Pigatto and Branco (2018b).

6.2.2 Obtained Results

Test results shown in logs (Some lines were suppressed for better readability) shows the
NP messages exchanged between the HAMSTER ENTITY and its HAMSTER OBJECTS.

Figure 39 shows the log for the HAMSTER ENTITY (UAV). It is possible to see the
connection of the four HAMSTER OBJECTS in different ports. Once all of them are connected,
the NPManager distributes the mission to all three authenticated modules through the message
pair MISSION_CONFIGURATION / MISSION_CONFIGURATION_ACK. During the mission, three
messages CURRENT_PHASE are sent to the authenticated HAMSTER OBJECTS, while mes-
sage CURRENT_BEHAVIOUR is sent to the Multispectral camera. When the mission finishes,
NPManager notifies NPAgent through the MISSION_FINISHED / MISSION_FINISHED_ACK

message pair.

Figure 40 shows the messages received by the Multispectral camera, which did not
authorize itself. Instead of receiving mission information, the NPAgent receives message CUR-
RENT_BEHAVIOUR for each mission phase with the necessary behaviour information.

Finally, Figure 41 shows the messages for the Sensor Unit. The mission is received by
NPAgent in message MISSION_CONFIGURATION. During mission execution, both altitude and
dynamic pressure sensors stay turned on during the entire operation, while the temperature sensor
goes off during cruising. The end of the mission is signaled by message MISSION_FINISHED.



130 Chapter 6. Results

Figure 39 – Log in the UAV.

0000001 ~ [EVENT] New connection, client port = 1049
0000003 ~ [EVENT] New connection, client port = 1561
0000005 ~ [EVENT] New connection, client port = 2073
0000008 ~ [EVENT] New connection, client port = 2585
0000019 ~ [EVENT] Message MISSION_CONFIGURATION sent.
0000020 ~ [EVENT] Message MISSION_CONFIGURATION sent.
0000021 ~ [EVENT] Message MISSION_CONFIGURATION sent.
0000022 ~ [EVENT] Message MISSION_CONFIGURATION_ACK received.
0000023 ~ [EVENT] Message MISSION_CONFIGURATION_ACK received.
0000024 ~ [EVENT] Message MISSION_CONFIGURATION_ACK received.
0000025 ~ [EVENT] Current phase number = 1
0000026 ~ [EVENT] Message CURRENT_PHASE sent.
0000027 ~ [EVENT] Message CURRENT_BEHAVIOUR sent.
0000028 ~ [EVENT] Message CURRENT_PHASE sent.
0000029 ~ [EVENT] Message CURRENT_PHASE sent.
0000030 ~ [EVENT] Current phase number = 2

...
0000045 ~ [EVENT] Current phase number = 5
0000046 ~ [EVENT] Message CURRENT_PHASE sent.
0000047 ~ [EVENT] Message CURRENT_BEHAVIOUR sent.
0000048 ~ [EVENT] Message CURRENT_PHASE sent.
0000049 ~ [EVENT] Message CURRENT_PHASE sent.
0000050 ~ [EVENT] Message MISSION_FINISHED sent.
0000051 ~ [EVENT] Message MISSION_FINISHED sent.
0000052 ~ [EVENT] Message MISSION_FINISHED sent.
0000053 ~ [EVENT] Message MISSION_FINISHED_ACK received.
0000054 ~ [EVENT] Message TERMINATE_MISSION sent.
0000055 ~ [EVENT] Message MISSION_FINISHED_ACK received.
0000056 ~ [EVENT] Message MISSION_FINISHED_ACK received.
0000057 ~ [EVENT] Message MISSION_FINISHED_ACK received.

Source: Rodrigues, Pigatto and Branco (2018b).

Figure 40 – Log in the Multispectral Camera.

0000003 ~ [EVENT] Message CURRENT_BEHAVIOUR received.
0000004 ~ [EVENT] Component Multispectral Camera ON.
0000005 ~ [EVENT] Message CURRENT_BEHAVIOUR received.
0000006 ~ [EVENT] Component Multispectral Camera OFF.
0000007 ~ [EVENT] Message CURRENT_BEHAVIOUR received.
0000008 ~ [EVENT] Component Multispectral Camera ON.
0000009 ~ [EVENT] Message CURRENT_BEHAVIOUR received.
0000010 ~ [EVENT] Component Multispectral Camera OFF.
0000011 ~ [EVENT] Message CURRENT_BEHAVIOUR received.
0000012 ~ [EVENT] Component Multispectral Camera ON.
0000013 ~ [EVENT] Message TERMINATE_MISSION received.

Source: Rodrigues, Pigatto and Branco (2018b).

6.3 PoC 3: Securing data exchange

This PoC was published in (RODRIGUES; BRANCO, 2020) and demonstrates the
integration of HAMSTER-enabled vehicles in an IoT-alike scenario. In this demonstration,
shown in Figure 42, two HAMSTER-enabled UAVs send telemetry data to their Ground Control
Station, which in turn publishes the received UAV data in a server which can be accessed by



6.3. PoC 3: Securing data exchange 131

Figure 41 – Log in the SensorUnit.

0000005 ~ [EVENT] Message MISSION_CONFIGURATION received.
0000006 ~ [EVENT] Message MISSION_CONFIGURATION_ACK sent.
0000007 ~ [EVENT] Message CURRENT_PHASE received.
0000008 ~ [EVENT] Current phase number = 1
0000009 ~ [EVENT] Component Altitude Sensor ON.
0000010 ~ [EVENT] Component Dynamic Pressure Sensor ON.
0000011 ~ [EVENT] Component Temperature Sensor ON.
0000012 ~ [EVENT] Message CURRENT_PHASE received.
0000013 ~ [EVENT] Current phase number = 2
0000014 ~ [EVENT] Component Altitude Sensor ON.
0000015 ~ [EVENT] Component Dynamic Pressure Sensor ON.
0000016 ~ [EVENT] Component Temperature Sensor OFF.
0000017 ~ [EVENT] Message CURRENT_PHASE received.
0000018 ~ [EVENT] Current phase number = 3
0000019 ~ [EVENT] Component Altitude Sensor ON.
0000020 ~ [EVENT] Component Dynamic Pressure Sensor ON.
0000021 ~ [EVENT] Component Temperature Sensor ON.
0000022 ~ [EVENT] Message CURRENT_PHASE received.
0000023 ~ [EVENT] Current phase number = 4
0000024 ~ [EVENT] Component Altitude Sensor ON.
0000025 ~ [EVENT] Component Dynamic Pressure Sensor ON.
0000026 ~ [EVENT] Component Temperature Sensor OFF.
0000027 ~ [EVENT] Message CURRENT_PHASE received.
0000028 ~ [EVENT] Current phase number = 5
0000029 ~ [EVENT] Component Altitude Sensor ON.
0000030 ~ [EVENT] Component Dynamic Pressure Sensor ON.
0000031 ~ [EVENT] Component Temperature Sensor ON.
0000032 ~ [EVENT] Message MISSION_FINISHED received.
0000033 ~ [EVENT] Mission finished.
0000034 ~ [EVENT] Message MISSION_FINISHED_ACK sent.

Source: Rodrigues, Pigatto and Branco (2018b).

service clients.

Figure 42 – Test scenario.

Source: Rodrigues and Branco (2020).

The UAV⇔ Station communication links are handled by HAMSTER platform, while the
data exchange represented by a dashed line are done by the Message Queue Telemetry Transport
(MQTT) Protocol, which is considered one of the suitable protocols for IoT operation.



132 Chapter 6. Results

6.3.1 MQTT Protocol

MQTT or Message Queue Telemetry Transport Protocol (MQTT 3.1.1, 2014) is a
lightweight topic–based publish/subscribe protocol with many-to-many communication (AL-
FUQAHA et al., 2015) whose main purpose is telemetry or remote monitoring.

Publish/Subscribe systems have three main components: the publishers which share
information, the subscribers which consume this information, and a broker that forwards the
information from publishers to subscribers. In order to receive data, the subscribers register

their interest in a event. When an event receives data, the broker propagates it to all subscribers
(HUNKELER; TRUONG; STANFORD-CLARK, 2008).

MQTT has a small set of messages to manage device connection and the publish/-
subscriber scheme (MQTT 3.1.1, 2014). Figure 43 illustrates the message exchange between
publisher and subscribers with QoS level 1 (At least once).

Figure 43 – Message Exchange in MQTT Protocol.

Source: Rodrigues and Branco (2020).

Publishers and subscribers connect to the broker through the CONNECT Package (mes-
sages 1-2 in Figure 43), which carries connection configuration parameters. The broker in turn
send the CONNACK Package (messages 1.1-2.1) stating if the connection was accepted or the
reason it was refused. To subscribe to a topic, subscribers send the SUBSCRIBE Package, which
is answered with a SUBACK Package (messages 3-3.1) by the broker. To publish in a topic,
publishers send the PUBLISH Package, whose broker answer will depend on the chosen Qos. For
QoS level 1 (At least once), the broker answers with a PUBACK package (messages 4-4.1) and
forward it to clients subscribed on that topic (messages 5-5.1).



6.3. PoC 3: Securing data exchange 133

6.3.2 Environment Setup

To demonstrate the test scenario, HAMSTER ID was resolved in an Universally Unique
Identifier (UUID). The Authenticator is ID-based and only checks if the ID sent in the message
is one present in the Super Entity known entities. The Communication Interface abstraction was
implemented using network TCP sockets. All HAMSTER Units uses Eliptic Curve Cryptography
Algorithms implemented by RELIC toolkit (RELIC, 2018) version 0.3.3 built with a 160-bit key.
For this demonstration, the abstraction of Heartbeat Handlers was not included.

The test environment is composed by a HAMSTER SUPER ENTITY (Station), two
HAMSTER ENTITIES (UAV1 and UAV2), a MQTT broker and a MQTT client. The HAM-
STER UNITS were implemented as different processes at a desktop on Windows 10, communi-
cating through TCP sockets at localhost. Station also communicated through Ethernet with
a Mosquitto (ECLIPSE, 2018a) MQTT broker instance on a Hardkernel Odroid XU4 (HARD-
KERNEL, 2018) running Ubuntu 16.04, and a MQTT client using PAHO library (ECLIPSE,
2018b) was set up on a notebook on Windows 8, also communicating with the MQTT broker
through an Ethernet connection.

At first, the Station connects with the MQTT broker and waits for both UAV to connect
and authenticate themselves. Once authenticated, both UAVs start sending telemetry data (for this
test, the UAV flight dataset available on (MOKHTARZADEH; COLTEN, 2015) was used) to the
Station.

Upon connecting to the Station, the UAV sends its ID and public cryptographic key
in HAMSTER_UNIT_ID (code 0x80000001). The Station connects to the UAV the same way,
creating a two way connection. After the connection is established, UAV sends message REQ_-
ENTITY_ACCESS (code 0x40000001) with its own authorization information, and the Super
CSU module will then invoke the proper Authenticator. If the authentication is successful, the
station answers with ENTITY_ACC_GRANTED message (code 0x40000003). Otherwise, the
station closes the connection with the UAV. Figure 32 presents this connection/authentication
protocol used at the moment by HAMSTER UNITS.

After receiving UAV telemetry, the Station forwards the latitude, longitude and altitude
data to the broker. On the other side, the MQTT client connects to the MQTT broker and
subscribes to all topics of both UAVs, receiving the data once it is forwarded by the broker. Both
MQTT client and Station have a username and password to access the MQTT broker.

6.3.3 Obtained Results

Test results shown in logs (some lines were suppressed for better readability) show
a successful entity connection and authentication, with subsequent secure message passing
between HAMSTER entities. The data received by the Station is published in the MQTT
broker and forwarded to the subscribed client.



134 Chapter 6. Results

Figure 32 – UAV connection and authentication in Station in Cloud–SPHERE (repeated from page 124).

Source: Rodrigues, Pigatto and Branco (2018a).

It is possible to see all exchanged messages for connection and authentication in Fig-
ure 44 (Station) and Figure 45 (UAV1). First, the Station connects to the MQTT server.
After, it receives two new connections and answers them with HAMSTER_UNIT_ID message.
Authentication protocol for both UAVs is also present with messages REQ_ENTITY_ACCESS

and its success response message ENTITY_ACC_GRANTED. Message USER_MESSAGE (code
0x00000002) is then used by the UAV to send telemetry data.

Figure 44 – Log for the Station.

0000002 [EVENT] Station is initializing.
0000003 [EVENT] Station connected to the server.
0000004 [EVENT] New connection, client port = 21679
0000005 [EVENT] Message HAMSTER_UNIT_ID sent.
0000006 [EVENT] New connection, client port = 22191
0000007 [EVENT] Message HAMSTER_UNIT_ID sent.
0000008 [EVENT] Message REQ_ENTITY_ACCESS received.
0000009 [EVENT] Message ENTITY_ACC_GRANTED sent.
0000010 [EVENT] Message REQ_ENTITY_ACCESS received.
0000011 [EVENT] Message ENTITY_ACC_GRANTED sent.
0000012 [EVENT] Message USER MESSAGE received.
0000013 [EVENT] Message USER MESSAGE received.

Source: Rodrigues and Branco (2020).

In Figure 47 is shown the log for the Mosquitto broker, in which is possible to verify
MQTT client connection and topic subscription, as well as Station connection and topic pub-
lishing, with packages described at Section 6.3.1. Figure 46 shows the log for the MQTT client,
which successfully receives published UAV telemetry data.

HAMSTER messages exchanged in localhost captured with Wireshark show a open



6.4. PoC 4: Context-Aware Security 135

Figure 45 – Log for the UAV1.

0000001 [EVENT] Message HAMSTER_UNIT_ID sent.
0000002 [EVENT] New connection, client port = 21935
0000003 [EVENT] Message REQ_ENTITY_ACCESS sent.
0000004 [EVENT] Message ENTITY_ACC_GRANTED received.
0000005 [EVENT] UAV Initialized.
0000006 [EVENT] UAV is now sending telemetry data.
0000007 [EVENT] Message USER MESSAGE sent.
0000008 [EVENT] UAV is now sending telemetry data.
0000009 [EVENT] Message USER MESSAGE sent.
0000010 [EVENT] UAV is now sending telemetry data.
0000011 [EVENT] Message USER MESSAGE sent.
0000012 [EVENT] UAV is now sending telemetry data.

Source: Rodrigues and Branco (2020).

Figure 46 – Log for the MQTT Client.

0000001 [EVENT] uas/UAV1/latitude = 6445574336d
0000002 [EVENT] uas/UAV1/longitude = 6444612096
0000003 [EVENT] uas/UAV1/altitude = -2145566304
0000004 [EVENT] uas/UAV2/latitude = 6443780769P
0000005 [EVENT] uas/UAV2/longitude = 4294953568M
0000006 [EVENT] uas/UAV2/altitude = 0
0000007 [EVENT] uas/UAV1/latitude = 6445574336
0000008 [EVENT] uas/UAV1/longitude = 6444612096e
0000009 [EVENT] uas/UAV1/altitude = -2145566304

Source: Rodrigues and Branco (2020).

HAMSTER_UNIT_ID message (code 0x80000001), but all subsequent messages (telemetry
messages included) are encrypted and therefore protected (Figure 48 and Figure 49). On the
MQTT side, however, the publish messages do not offer any kind of data protection, making
data accessible to unauthorized parties (Figure 50). Because of that, more security measures are
needed when dealing with MQTT protocol. This security can be a Transport layer SSL certificate
as supported by Mosquitto, an Application layer encryption or both.

6.4 PoC 4: Context-Aware Security

This PoC was published in (RODRIGUES; PIGATTO; BRANCO, 2020) and demon-
strates how contextual information can be translated into the Perceived Security Index (PSI)
discussed in Section 4.4. In this Section, a demonstration on PSI estimation in HAMSTER is
provided for an application with UAVs.

In this scenario, three small (< 1m size) UAVs are used to capture images of a crop. They
communicate in an ad hoc manner and each one has an IMU and a GPS to identify its location,
a camera to capture the images, an autopilot that also activates the camera, a propeller and



136 Chapter 6. Results

Figure 47 – Log for the Mosquitto broker.

1538286850: mosquitto version 1.5.2 starting
1538286850: Using default config.
1538286850: Opening ipv4 listen socket on port 1883.
1538286850: Opening ipv6 listen socket on port 1883.
1538286861: New connection from 10.70.1.236 on port 1883.
1538286861: New client connected from 10.70.1.236 as client (c1, k20, u’client1’).
1538286861: No will message specified.
1538286861: Sending CONNACK to client (0, 0)
1538286861: Received SUBSCRIBE from client
1538286861: uas/UAV1/# (QoS 1)
1538286861: client 1 uas/UAV1/#
1538286861: Sending SUBACK to client
1538286861: Received SUBSCRIBE from client
1538286861: uas/UAV2/# (QoS 1)
1538286861: client 1 uas/UAV2/#
1538286861: Sending SUBACK to client
1538286879: New connection from 10.70.1.20 on port 1883.
1538286879: New client connected from 10.70.1.20 as Station (c1, k60, u’station’).
1538286879: No will message specified.
1538286879: Sending CONNACK to Station (0, 0)
1538286900: Received PUBLISH from Station (d0, q1, r1, m1, ’uas/UAV1/latitude’, ... (10 bytes))
1538286900: Sending PUBACK to Station (Mid: 1)
1538286900: Sending PUBLISH to client (d0, q1, r0, m1, ’uas/UAV1/latitude’, ... (10 bytes))
1538286900: Received PUBLISH from Station (d0, q1, r1, m2, ’uas/UAV1/longitude’, ... (10 bytes))
1538286900: Sending PUBACK to Station (Mid: 2)
1538286900: Sending PUBLISH to client (d0, q1, r0, m2, ’uas/UAV1/longitude’, ... (10 bytes))
1538286900: Received PUBLISH from Station (d0, q1, r1, m3, ’uas/UAV1/altitude’, ... (11 bytes))
1538286900: Sending PUBACK to Station (Mid: 3)
1538286900: Sending PUBLISH to client (d0, q1, r0, m3, ’uas/UAV1/altitude’, ... (11 bytes))
1538286900: Received PUBACK from client (Mid: 1)
1538286900: Received PUBACK from client (Mid: 2)
1538286900: Received PUBACK from client (Mid: 3)
1538286900: Received PUBLISH from Station (d0, q1, r1, m4, ’uas/UAV2/latitude’, ... (10 bytes))
1538286900: Sending PUBACK to Station (Mid: 4)
1538286900: Sending PUBLISH to client (d0, q1, r0, m4, ’uas/UAV2/latitude’, ... (10 bytes))
1538286900: Received PUBLISH from Station (d0, q1, r1, m5, ’uas/UAV2/longitude’, ... (10 bytes))
1538286900: Sending PUBACK to Station (Mid: 5)
1538286900: Received PUBACK from client (Mid: 4)

Source: Rodrigues and Branco (2020).

servomotors. All UAVs know the identity of their communication peers and perform (1) internal
module authentication before (2) mutual UAV authentication so the mission can be started. The
UAVs communicate with each other using asymmetric cryptography and take-off/landing and
mission location is the same controlled area.

6.4.1 External Context Initial Evaluation

In order to evaluate the external context security index (ψex), threats and available security
measures need to be analyzed. The perceived security will be at its maximum when the risk
coming from the external environment is minimum. In this case, the risk is analyzed based on
attack difficulty, impact and

For determining attack difficulty, threats shown in Figure 6 (page 82) are classified based



6.4. PoC 4: Context-Aware Security 137

Figure 48 – Message HAMSTER_UNIT_ID (code 0x80000001) sent without encryption.

Source: Rodrigues and Branco (2020).

Figure 49 – Message USER_MESSAGE (code 0x00000002) with telemetry data sent encrypted.

Source: Rodrigues and Branco (2020).

on a criteria proposed by (SINGH; VERMA, 2017):

D =
H +S+PA

12



138 Chapter 6. Results

Figure 50 – MQTT messages sent without any security.

Source: Rodrigues and Branco (2020).

Table 8 – Difficulty criteria proposed by (SINGH; VERMA, 2017).

Required Hardware (H)
1 No extra hardware required
2 Basic hardware other than PC/Laptop
4 Advance hardware requirement

Required Skills (S)
1 No expert knowledge required
2 Tools are available in the public domain
4 Advanced skills needed

Physical Access (PA)
1 Physical access not required
4 Physical access required

Source: Rodrigues, Pigatto and Branco (2020).

where H represents the type of hardware required for the attack, S the level of skill and PA if
physical access is needed. The difficulty D results in a value from 0.25 (Easy) to 1 (Hard). The
criteria proposed in (SINGH; VERMA, 2017) are reproduced in Table 8. The likelihood of an
attack to happen will be inversely proportional to its difficulty.

The threat impact (T I) on the system is also classified according to the criteria used
by (JAVAID et al., 2012), with values Low (Very limited systems outages), Medium (Limited
systems outages) and High (Long time systems outages).

Finally, the countermeasure impact (CI) for this study case (asymmetric cryptography



6.4. PoC 4: Context-Aware Security 139

and component/UAV mutual authentication) also needs to be assessed. Countermeasure impact
can vary from 0 (none) to 3 (high).

Once those values are made, the threat risk r is calculated by

r =
D∗ (1−T I)

2.25∗CI
,

whose values are classified according to Table 9. The 2.25 value in denominator is used to
normalize the risk values to the interval [0,1].

Table 9 – Risk classification of threats.

r < 0.20 Very low risk
0.2≤ r < 0.4 Low risk
0.4≤ r < 0.6 Medium risk
0.6≤ r < 0.8 High risk

r > 0.8 Very high risk
Source: Rodrigues, Pigatto and Branco (2020).

The results for this assessment are shown in Table 10, from which is noted that the
most dangerous situations for these UAVs will be when a Jamming or External Spoofing attacks
happens. In this case, security countermeasures have very low impact, and the UAVs need to
take drastic measures if a critical sensor is being spoofed or if communication is jammed.

Table 10 – External context security index initial assessment.

Threat Difficulty (D)
Threat Impact Countermeasure

Risk
(T I) Impact (CI)

Side-channel attack Hard (0.83) High (3) None (0) Low (0.22)
Code Modification Hard (0.83) High (3) Low (1) Low (0.22)
Code Injection Hard (1) High (3) Low (1) Very low (0)
Packet Sniffing Easy (0.33) Medium (2) High (3) Very low (0.19)
Packet Fuzzing Medium (0.58) High (3) Medium (2) Low (0.28)
Signal Spoofing Easy (0.25) High (3) Low (1) High (1)
Jamming Easy (0.33) High (3) Low (1) Very High (0.89)

Source: Rodrigues, Pigatto and Branco (2020).

Once the evaluation is made, it is possible to estimate the PSI external component ψex,
which is given by:

ψex = 5∗ (1− r),

which in this case will evaluate to ψex = 2.99.



140 Chapter 6. Results

6.4.2 Mission Context Initial Evaluation

The mission context security index (ψmi) is evaluated analyzing the steps the UAV needs
to perform in order to finish its mission. UAVs are specially critical since they present a risk
of collision to other aircraft, manned or unmanned, called air risk and a risk of failure that can
result in a free fall and bring injury to people of infrastructure, called ground risk. Therefore,
mission location and the path planned for its execution can be quite critical.

There are many ground risk models for UAVs, as surveyed by (WASHINGTON; CLOTH-
IER; SILVA, 2017). Also, the Joint Authorities for Rulemaking of Unmanned Systems (JARUS)1

is a worldwide organization that aims at providing a unique set of technical, safety and op-
erational requirements for Remotely Piloted Aerial Systems (RPAS). They have produced a
guideline for Specific Operations Risk Assessment (SORA) that has been used to assess risk in
some works in the literature.

For this demonstration, the context security index is initially estimated by using a much
simpler approach, which can be considered a simplification of SORA. UAV size, path, mission
target and airspace operation are taken into account, as shown by Table 11.

Table 11 – Proposed ground and air risk assessment based on SORA.

LOCATION GROUND RISK

Operation Scenario
UAV size

< 1m 1−3m 3−8m > 8m

Controlled area Low Low Low Medium

VLOS/underpopulated Low Low Medium Medium

BVLOS/underpopulated Low Medium Medium High

VLOS/populated Medium Medium High High

BVLOS/populated Medium High High High

AIR RISK FOR ATYPICAL AIRSPACE

Operation Scenario Risk

Controlled area Low (1)
VLOS, underpopulated Low (1)
BVLOS, underpopulated Medium (2)
VLOS, populated Medium (2)
BVLOS, populated High (3)

Source: Rodrigues, Pigatto and Branco (2020).

Similarly, the PSI mission component is given by the multiplicative inverse of the

1 www.jarus-rpas.org/



6.4. PoC 4: Context-Aware Security 141

normalized risk, proportionally to the maximum PSI level:

ψmi = 5∗ (1− r̂),

which in this case will evaluate to ψmi = 5∗ (1− (1/3)) = 3.33.

6.4.3 Internal Context Initial Evaluation

As described, Internal Context is dealt by HAMSTER’ NCI platform.

The scenario is analyzed by defining the each module’s NCIm and then the NCIe for the
UAV. According to the formulae and definitions of NCIm (PIGATTO, 2017), for each module in
normal functioning are assumed as shown in Table 12.

Table 12 – NCIm for each module of a UAV.

Module
NCImsec NCImsa f

NCIm
storedData temporaryData total health priority total

GPS 0 0.3 0.3 0 0.5 0.25 0.275
IMU 0 0.3 0.3 0 1 0.5 0.4

Camera 0.5 0 0.5 0 0 0 0.25
Autopilot 0.3 0.3 0.3 0 1 0.5 0.4

Motor 0 0 0 0 0.5 0.25 0.125
Servomotor1 0 0 0 0 1 0.5 0.25
Servomotor2 0 0 0 0 1 0.5 0.25

Radio transmitter/receiver 0 0.3 0.3 0 0.3 0.15 0.225

Source: Rodrigues, Pigatto and Branco (2020).

Considering that sensors (GPS and IMU), actuators (motor and servomotors) and the
radio transmitter/receiver do not store data, storedData is set to 0. The camera stores images of
the overflown region to identify assets and vulnerable areas, which leads to a score of 0.5 for
storedData. The autopilot stores information about the positioning of the aircraft when pictures
are taken. This module’s storedData is set to 0.3 due to the importance of stored information.
Although the GPS log is important for the mission, it is not as important as acquired images,
which justifies the difference in scores between these modules.

GPS, IMU, autopilot and radio transmitter/receiver manipulate data related to the aircraft
positioning, thus temporaryData is set to 0.3. Remaining modules deal with no data that could
be considered risky for the UAV, being set to 0 on temporaryData. Regarding health, in a normal
operation, all modules are properly working, thus health is set to 0.

The most critical modules for a proper functioning are IMU, autopilot and the servomo-
tors. These modules are set to the highest value for priority, 1. GPS and motor’s priority score
are set to 0.5, because it is still possible to land the UAV even if any of these modules fails. The
radio transmitter/receiver is not necessary to the accomplishment of the task. However, if the



142 Chapter 6. Results

UAV is forced to land, it is necessary to establish a communication via radio in order to locate
and rescue the UAV, which justifies its value of 0.3 for priority. Finally, regarding camera’s
priority, it is set to 0 because if it fails, the UAV can safely go back home.

The definition of entities’ worth measure is dependent on its cost. In this case, worth is
considered as 1. The variable f ield is set to 0 due to the fact that the covered area is a crop and
presents no risk to the environment or people in case of an accident. The accomplishment is set
to 0 since the mission can be restarted at any time and a deadline was not specified. Indeed, the
NCIe is 0.345.

Similarly, the PSI internal component is given by the multiplicative inverse of the
normalized risk, proportionally to the maximum PSI level:

ψin = 5∗ (1−NCIe),

which in this case will evaluate to ψin = 5∗ (1−0.345) = 3.27.

6.4.4 PSI Initial Evaluation

Given the three estimations, the initial Perceived Security Index value is given by

Ψ =

√ψ2
ex +ψ2

mi +ψ2
in

3

=

=

⌊√
2.992 +3.332 +3.272

3

⌉
= b3.2e

which is classified as 3 – Medium security risk according to Table 3.

6.4.5 Context changes impact on PSI

In this Section, it is discussed how HAMSTER deals with security context changes. For
that, two situations are discussed: a GPS failure due to malfunction and the same failure caused
by a spoofing attack.

First of all, HAMSTER SMU platform inside Cloud–SPHERE detects a non-expected
change in GPS reading. This detection is informed to NCI, which updates the health component
from GPS’ NCImsa f index from 0 (normal) to 1 (experiencing issues). The GPS NCI then
changes from 0.275 to 0.442. This results in a UAV NCI of 0.426.

As a consequence, the NCI modification impacts the PSI’s internal context component,
which evaluates to

ψ
′
in = 5∗ (1−NCIe) = 2.79,

which in turn will impact global PSI with a new value of Ψ’=3.04, which is still evaluated as
Medium Security.



6.5. PoC 5: UAV Delivery Service 143

The change in NCIm value results in the module being considered unreliable, as are all
SEMU services related to it.If another module inside the UAV or an external client is using those
services, they will have to query new providers.

Besides the GPS malfunction, if the SMU or another IDS-enabled component detects a
spoofing attack, not only will the internal context change, but also the external context. In this
case, the external risk is overruled to the normalized value of threat impact (T I in Table 9), if
this value is higher than the current risk evaluation.

In this case, the T I normalized value for external spoofing attack is 1, and therefore the
new value for PSI external component will be given by:

ψ
′
ex = 5∗ (1−1) = 0

The new PSI value in case of spoofing attack considers the value changes from both
external and internal context, being evaluated to:

Ψ
′ =

√ψ ′ 2
ex +ψ 2

mi +ψ ′ 2
in

3

=

=

⌊√
02 +3.332 +2.792

3

⌉
= b2.5e ,

which is conservatively evaluated to 2 - Low Security.

In HAMSTER applications, as previously discussed on Section 4.4.4, there can be a
minimum PSI level for the UAV to operate. In this case, if the PSI level was set to Medium
Security, the detection of the spoofing attack would trigger the execution of an emergency
protocol defined by the UAV application and not HAMSTER itself. In this situation, the UAV can
be commanded to turn off all non-critical modules, interrupt services which have low security
mechanisms applied to them, or return to base immediately.

It is important to point out that any component failure will increase the UAV NCI and
therefore decrease ψin, making the UAV perceive a more problematic environment.Likewise,
perceiving an attack indicator will decrease ψex, signaling to the UV that the external environment
is now more hostile.

6.5 PoC 5: UAV Delivery Service

This PoC was published in (RODRIGUES; BRANCO, 2021) and demonstrates how
HAMSTER services managed by SEMU can be used in a hypothetical UAV-enabled delivery
application that follow the steps:

1. The company receives a delivery request from a client;



144 Chapter 6. Results

2. The package is loaded in the UAV by a company employee;
3. The UAV navigates to the client house and hovers;
4. The client is informed the delivery has arrived and authorizes the UAV descent to the

position;
5. The client retrieves the package and confirms the delivery to the company;
6. The company call the UAV back to its base.

Since the goal of this scenario is to demonstrate service exchange in HAMSTER, there
are some limitations and assumptions:

• All elements in the system know the necessary network addresses beforehand;
• There is only one UAV available for delivery;
• The UAV navigates in a xyz space and in straight lines;
• The UAV stays in mid-height (z = 5) for package load and retrieval and navigates at a

fixed height (z = 10);
• There are no checks or verification regarding security.

6.5.1 Environmental Setup

There are four components in this demonstration: (1) the client, (2) the company Ground
Control Station (GCS), (3) the UAV and (4) the UAV navigation module, responsible for
navigation. HAMSTER is deployed in the later three, with Unit Types and registered services
shown by Table 13.

The client and the company have different communication messages through another
connection outside HAMSTER, with the messages illustrated by Figure 51.

When the client requests a product delivery, the message REQUEST_DELIVERY is sent to
the GCS, which in turn requests the UAV to ascend to a mid-height position for handling the
package. Once the package is loaded, the GCS sends the message DELIVERY_STARTED to the
client and commands the UAV to the client’s house. Once the GCS is notified that the UAV has
arrived at its destination, it sends the message PACKAGE_POSITION to the client, signalizing that
the UAV has arrived and need authorization to descent so the package can be retrieved. The client
sends the message AUTHORIZE_DESCENT to the GCS and the UAV descends to the mid-height
position. Once the client retrieves the package, the message PACKAGE_RETRIEVED is sent to the
GCS, which in turns calls the UAV home.

6.5.2 Obtained Results

Here, the logs from the UAV and the GCS are presented, showing the communication
between them and between the GCS with the UAV. For readability reasons, some lines were
suppressed.



6.5. PoC 5: UAV Delivery Service 145

Table 13 – Unit Types and services registered for each Component in the demonstration.

Component Unit Type
Service Service

Description
Name Type

Client Not deploying HAMSTER.

GCS SUPER ENTITY Not providing services.

UAV ENTITY

ProdHandle COMMAND
Request the UAV to go to
Package Handling position
(mid-height).

PkgReady EVENT
Notifies that the UAV is in
Package Handling position.

NavigateTo COMMAND
Request the UAV to navigate
to a specific waypoint.

InPosition EVENT
Notifies the UAV has reached
the navigation point from pre-
vious NavigateTo request.

Land COMMAND Request the UAV to land.
Landed EVENT Notifies the UAV has landed.

Navigation MODULE

NavXPosition DATA Current X position.
NavYPosition DATA Current Y position.
NavZPosition DATA Current Z position.

HoverCmd COMMAND
Request the navigation to
Hover.

NavigateCmd COMMAND
Request the navigation to go
to a specific waypoint.

Position
Achieved EVENT

Notifies the navigation has
reached the waypoint from
previous NavigateCmd re-
quest.

StopCmd COMMAND Tells the navigation to stop.
Source: Elaborated by the author.

In client log (Figure 52), it is possible to see the order in which the client messages
(without tags) and the internal messages (with [App] tag) are exchanged. The communication
illustrates the application client side and demonstrates the protocol described in Figure 51.

The GCS log (Figure 53) illustrates the server side of the application and presents the
SEO-related messages exchanged with the UAV (Peer ID = 1) for service consumption. In the
log, the GCS successfully requests three event services from the UAV (Lines 14-16): PkgReady,
InPosition and Landed.

After receiving the delivery request (Line 17), the GCS commands the UAV to a mid-
height (command service ProdHandle, line 18). When the position is achieved and the package
is loaded (Lines 19-20), the GCS commands the UAV to its destination (command service



146 Chapter 6. Results

Figure 51 – Messages exchanged between the client and the company.

             

                

                

               

                 

Source: Rodrigues and Branco (2021).

Figure 52 – Client log messages

01 Welcome to HAMSTER Delivery!
02 Press any key to request a delivery...
03 [ App ] Message REQUEST_DELIVERY sent
04 Deliver request Successful. Wait for confirmation.
05 [ App ] Received DELIVERY_STARTED message from server.
06 Yay! Your package is on your way!
07 [ App ] Received PACKAGE_POSITION message from server.
08 Your package arrived! Press any key to authorize descent.
09 [ App ] Message AUTHORIZE_DESCENT sent
10 [ App ] Received PICKUP_READY message from server.
11 Your package is in position!
12 Press any key after picking it up.
13 [ App ] Message PACKAGE_RETRIEVED sent
14 Thank you for using our services!

Source: Rodrigues and Branco (2021).

NavigateTo, line 21) and later receives the UAV confirmation that the position was achieved
(Line 22). After the client authorizes the UAV descent (Lines 23-24), the GCS again commands
the UAV to a mid-height so the client can pick up the package (Lines 25-26). Once this happens
(Line 27), the GCS commands the UAV to its home coordinates (Lines 28-29) and then to land
(Lines 30-31), which finalizes the delivery application.

UAV log (Figure 54) illustrates the service requests received by the UAV from its CGS
(Peer ID = 5, lines 38-40). Upon client delivery request, the CGS requests the UAV to receive
the package (lines 41-42). The UAV redirects the command to its navigation unit (Peer ID =
3, line 43) and notifies the GCS when it is ready to receive the package (lines 50-51). At this



6.6. PoC 6: UAV Data Gathering Service 147

Figure 53 – GCS log messages.

(...)
14 [Event ] Message SERVICE_REQUEST_OK for Service ID PkgReady received in SEO from peer 1.
15 [Event ] Message SERVICE_REQUEST_OK for Service ID InPosition received in SEO from peer 1.
16 [Event ] Message SERVICE_REQUEST_OK for Service ID Landed received in SEO from peer 1.
17 [ App ] Received REQUEST_DELIVERY message from client.
18 [Event ] Message SERVICE_REQUEST_OK for Service ID ProdHandle received in SEO from peer 1.
19 [Event ] Message SERVICE_NOTIFICATION for Service ID PkgReady received in SEO from peer 1.
20 [ App ] Drone ready for package. Enter any key when loading is done...
21 [Event ] Message SERVICE_REQUEST_OK for Service ID NavigateTo received in SEO from peer 1.
22 [Event ] Message SERVICE_NOTIFICATION for Service ID InPosition received in SEO from peer 1.
23 [ App ] Drone arrived at client. Wait for consumer authorization for descent.
24 [ App ] Received AUTHORIZE_DESCENT message from client.
25 [Event ] Message SERVICE_REQUEST_OK for Service ID ProdHandle received in SEO from peer 1.
26 [Event ] Message SERVICE_NOTIFICATION for Service ID PkgReady received in SEO from peer 1.
27 [ App ] Received PACKAGE_RETRIEVED message from client.
28 [Event ] Message SERVICE_REQUEST_OK for Service ID NavigateTo received in SEO from peer 1.
29 [Event ] Message SERVICE_NOTIFICATION for Service ID InPosition received in SEO from peer 1.
30 [Event ] Message SERVICE_REQUEST_OK for Service ID Land received in SEO from peer 1.
31 [Event ] Message SERVICE_NOTIFICATION for Service ID Landed received in SEO from peer 1.

Source: Rodrigues and Branco (2021).

point, the UAV receives the NavigateTo service request (lines 52-54) and starts navigating to
the client location. Upon arrival in the client’s house and with their authorization to descent with
the package, the UAV receives another ProdHandle request (lines 63-66). After the product is
picked up, the UAV is commanded to return home (lines 73-77) and land (lines 85-95), finishing
its delivery mission.

6.6 PoC 6: UAV Data Gathering Service

This PoC is present in (RODRIGUES; BRANCO, 2022) and demonstrates a UAV-
enabled data collection service. Here, the UAV mission is to collect data stored in HAMSTER-
enabled, standalone sensors which are located in a remote area. The SEMU Platform is used
to control the UAV and communicate with the Cloud and the Sensors through services; the
NP Platform is used to manage the UAV task and the ON/OFF state of its modules; finally, the
Cloud–SPHERE Platform provides authentication and cryptography.

In this UAV-enabled service, the Cloud Server requests the UAV to start the collection
task; the UAV in turn flights to three different sensors, connects and authenticates with them
through a special internal component and gather the stored sensor data.

It is not the objective of this demonstration to perform any security or performance test
on the demonstration, since both of them are greatly impacted by the application aspects such as
the security algorithms used, service complexity and communication technology latency. The
objective of this scenario is to provide a working example to demonstrate how HAMSTER can
be used to enable secure services to the IoT environment with a UAV-enabled service scenario.



148 Chapter 6. Results

Figure 54 – UAV log messages.

(...)
38 [Event ] Message SERVICE_REQUEST for Service ID PkgReady received in SEO from peer 5.
39 [Event ] Message SERVICE_REQUEST for Service ID InPosition received in SEO from peer 5.
40 [Event ] Message SERVICE_REQUEST for Service ID Landed received in SEO from peer 5.
41 [Event ] Message SERVICE_REQUEST for Service ID ProdHandle received in SEO from peer 5.
42 [ App ] Package Handling requested.
43 [Event ] Message SERVICE_REQUEST sent to Peer ID 3
(...)
50 [Event ] Message SERVICE_NOTIFICATION sent to Peer ID 5
51 [ App ] UAV ready for package.
52 [Event ] Message SERVICE_REQUEST for Service ID NavigateTo received in SEO from peer 5.
53 [Event ] Message SERVICE_REQUEST sent to Peer ID 3
54 [ App ] UAV navigating...
(...)
63 [ App ] UAV hovering.
64 [Event ] Message SERVICE_NOTIFICATION sent to Peer ID 5
65 [Event ] Message SERVICE_REQUEST for Service ID ProdHandle received in SEO from peer 5.
66 [ App ] Package Handling requested.
(...)
73 [Event ] Message SERVICE_NOTIFICATION sent to Peer ID 5
74 [ App ] UAV ready for package.
75 [Event ] Message SERVICE_REQUEST for Service ID NavigateTo received in SEO from peer 5.
76 [Event ] Message SERVICE_REQUEST sent to Peer ID 3
77 [ App ] UAV navigating...
(...)
85 [ App ] UAV hovering.
86 [Event ] Message SERVICE_NOTIFICATION sent to Peer ID 5
87 [Event ] Message SERVICE_REQUEST for Service ID Land received in SEO from peer 5.
88 [Event ] Message SERVICE_REQUEST sent to Peer ID 3
89 [ App ] UAV descending...
(...)
95 [Event ] Message SERVICE_NOTIFICATION sent to Peer ID 5
96 [ App ] UAV has landed.

Source: Rodrigues and Branco (2021).

6.6.1 Environment Setup

In this demonstration, there are different HAMSTER Units: (1) a Cloud Server that
can either manage UAVs autonomously or accept external client requests; (2) a UAV that will
perform the task; (3) a UAV-internal Navigation Unit to control the vehicle’s navigation; (4) a
UAV-internal Collection Unit which connects to external sensors and collect their data; (5) three
standalone Sensor objects that gathers data which is later collected by the UAV.

6.6.1.1 HAMSTER Units

Figure 55 brings the modeling used for the Units present in the demonstration. Based
on the template parameters from Unit class (Figure 11), all Units are in a Known formation,
with class Sensor being the only one in a decentralized scenario and all other Units form a
centralized scenario: the UAV is the central Unit of both Navigation Unit and Collection
Unit, while the CloudServer is the central Unit of the UAV. The Units are identified by class
Unit8ID (an 8-bit integer) and services and algorithms are identified by strings represented



6.6. PoC 6: UAV Data Gathering Service 149

Figure 55 – Units present in the demonstration.

Source: Rodrigues and Branco (2022).

by class StringID. Finally, all Units communicate through the TCP/IP protocol, which is an
Operation System specific implementation. In this demonstration, the Windows implementation
of sockets is used. It is notable that the CollectionUnit class has two different configurations,
meaning the Unit has two different communication interfaces: one for internal communication
and other exclusively for external communication.

6.6.1.2 Unit Communication

In this scenario, all Units communicate through Windows sockets and use only the Service
Gate (no Application messages are exchanged). The communication technology implementation
is done through three different classes, as shown by Figure 56. The technology is configured so
(1) the Acceptor (the server) has an address and (2) the Acceptor executes a loop (so the server is
asynchronous). The Connector (the client) do not need an address or a loop not before or after
the connection is established.



150 Chapter 6. Results

Figure 56 – Classes implementing Windows sockets in the demonstration.

Source: Rodrigues and Branco (2022).

6.6.1.3 Services

The entire scenario is controlled by the requisition and consumption of services between
the Units. In Table 14 the envisioned services for the Units are presented. These services are
created in the Application Layer, i.e., they are specific for this demonstration. All applications
can create the services deemed necessary.

Table 14 – Services present in the demonstration.

Unit Service Service Type

UAV START_MISSION Command

UAV MISSION_FINISHED Event

NavigationUnit X_POSITION Data

NavigationUnit Y_POSITION Data

NavigationUnit Z_POSITION Data

NavigationUnit NAVIGATE Command

NavigationUnit POSITION_ACHIEVED Event

CollectionUnit START_COLLECTION Command

CollectionUnit COLLECTION_RESULT Event

Sensor COLLECT_DATA Command

Sensor COLLECTION_FINISHED Event
Source: Rodrigues and Branco (2022).



6.6. PoC 6: UAV Data Gathering Service 151

6.6.1.4 Authentication & Cryptography

HAMSTER can be used with any authentication and cryptography algorithms that
follow the necessary interface presented in Section 5.4. In this scenario, it was used the same
authentication algorithm used in previous work presented in (RODRIGUES et al., 2019). For
cryptography, a simple Caesar Cipher was used.

6.6.1.5 Task Management

The NP Platform is used to manage the UAV collection task. In this demonstration, the
task states shown in Table 15 are hard-coded in the program, but could be dynamically configured
through application messages or services, for instance.

Table 15 – Task states in the demonstration.

Number Description
NavigationUnit CollectionUnit

state state

1 Flight until Sensor 1 ON OFF

2 Collect from Sensor 1 ON ON

3 Flight until Sensor 2 ON OFF

4 Collect from Sensor 2 ON ON

5 Flight until Sensor 3 ON OFF

6 Collect from Sensor 3 ON ON

7 Return to base ON OFF
Source: Rodrigues and Branco (2022).

6.6.2 Demonstration Details

As said before, this demonstration use HAMSTER-enabled services to perform a UAV-
enabled data collection service. Figure 57 brings a high-level view of the services used (continu-
ous lines are command services and dashed lines are event services) to provide the demonstration,
which can be summarized in the following steps:

1. the UAV waits for its internal components to authenticate;
2. the UAV authenticates itself with the Cloud Server;
3. the Cloud Server requests the UAV to start the mission;
4. the UAV travels to sensor 1 (12,5);
5. the UAV authenticates to sensor 1 and collects its data;
6. the UAV travels to sensor 2 (15,7);
7. the UAV authenticates to sensor 2 and collects its data;
8. the UAV travels to sensor 3 (20,12);
9. the UAV authenticates to sensor 3 and collects its data;



152 Chapter 6. Results

Figure 57 – Demonstration scenario operation based on registered services.

Source: Elaborated by the author.

10. the UAV goes back to base (0,0) and finishes its task.

6.6.3 Obtained Results

This demonstration was executed in a i5-10210U CPU laptop with 8GB RAM running a
64-bit Windows 10, with all nodes communicating through the localhost at different IP addresses.
All logs are presented at the Appendix A.1 and are edited for better readability. Sn log represents
the standalone sensor log, which is equivalent for all sensors.

6.6.3.1 Initialization and Service Registration

All Units must register any cryptography/authentication algorithm and services in their
custom initialization. In the application, all Units register the authentication and cryptography
algorithms and initialize all Peer-related data (authentication secrets and cryptography keys) and
services. (lines 2-3 in UAV Log, Collection Unit Log and Sn log; lines 2-6 in Navigation Unit
Log).



6.6. PoC 6: UAV Data Gathering Service 153

6.6.3.2 Connection and Authentication

In a centralized architecture, the Unit connects and authenticates itself to its central Unit.
UAV Log (lines 4-12) and Cloud Server (lines 3-8) show the authentication process between
those two Units, which is similar to the other Units authenticating themselves.

6.6.3.3 Service requests

Next in the demonstration, the Units request each other’s services. Data and event services
can be requested at the beginning of the execution, but command services must be requested at
the time the application wishes to run the command supported by the service. The UAV requests
the services of its modules at lines 14-18.

6.6.3.4 Task execution

The task initiates by the request of START_MISSION command service from the Cloud
Server (log line 11) to the UAV (log line 19). The UAV starts the new Task State (1) and sends
the CURRENT_STATE for both modules (lines 20-21), which turns on (Navigation Unit, line 13)
and off (Collection Unit, line 8). After that, the UAV requests the Navigation Unit to NAVIGATE

to the next sensor (line 24).

6.6.3.5 Navigation

The Navigation Unit will go from the current UAV position to the next position by
moving in the Z plane until it reaches a flight height (10) and then moving the vehicle in the XY
plane. When the XY position of a sensor is achieved, the UAV receives the POSITION_ACHIEVED

notification and change the Task to the next State, which turns on the Collection Unit (lines 9, 18
and 27). The UAV then requests the Navigation Unit to descend until a Collection Height (z =
5,lines 41, 53 and 60) and, when the position is achieved (lines 42, 54 and 61), request the data
collection to the Collection Unit (lines 43, 55 and 62).

6.6.3.6 Connection to Sensors

For every sensor, the Collection Unit authenticate itself and requests the COLLECT_DATA

service (lines 14, 23 and 32). The answer from sensors comes with COLLECTION_FINISHED

(lines 15, 24 and 33). Once this is received, the Collection Unit notifies the UAV the collection is
complete through COLLECTION_RESULT notification.

6.6.3.7 Task finalization

When data from all services are collected, the UAV goes to the last Task State (7) and
requests the Navigation Unit to go to its base. Once the (0,0,0) position is achieved, the UAV



154 Chapter 6. Results

finished the task by notifying its modules (lines 65-66) and notifies the Cloud Service the task is
done through event MISSION_FINISHED notification (line 13 in Cloud Server log).

6.7 Final Remarks
In this Chapter, different proof of concepts the demonstrate the functioning of HAM-

STER as a whole and specially the platforms expanded in this PhD so Service Management for
UAVs became possible.

As demonstrated, different real-life scenarios can benefit from this work. It is possible
to make an autonomous application with task management in NP, in which services can be
managed and exchanged by SEMUusing security mechanisms provided by Cloud–SPHERE.
Not only that, already established protocols can also use Cloud–SPHERE to have its connection
and message exchange security enhanced. Finally, the use of Standalone nodes increases the
impact of this work, since it can also be applied in low-cost hardware to enable communication
security and service exchange for these devices as well, making it possible to build an IoT-ready
application with all nodes compatible between them and platform/protocol agnostic.



155

CHAPTER

7
CONCLUSION

Following the technological development and recent trends, UAVs are now being con-
nected to other devices and systems such as the Internet of Things. One promising opportunity is
the use of vehicles and sensors as services allowing a better integration of all things, leading to
an environment composed by everything, updated every-time and available everywhere.

There are many challenges to be tackled due to inherent characteristics of the UAV-IoT
ecosystem such as resource constrains, heterogeneity and lack of standardization.

For battery-powered devices such as UAVs and IoT sensors, energy efficiency is a key
challenge. For UAVs, energy efficiency increases the vehicle autonomy, and also potentially
increases the battery lifetime, reducing waste. For IoT sensors, energy efficiency might be the
key requirement when deploying a system in an area with difficult human access — the least you
need human intervention, the better.

How to deploy services is also a challenge. There are many different situations in which
services can be provided. Applications can vary from a closed network with only known, trusted
clients, to a open-for-all, IoT application that offer different services to the general public. The
service exchange will have different types of data, networks and access controls.

Even though Security is a critical problem in all elements of this ecosystem, the develop-
ment of security measures and solutions are being left behind when comparing to other aspects
of the UAV-IoT integration. The high heterogeneity allied with the resource limitation of most of
devices connected to it makes it impossible to achieve a ‘one-size-fits-all’ solution. Any efforts
towards security have to take into account many different aspects and be prepared to provide a
flexible and configurable solution to support many different devices.

HAMSTER was designed to be flexible, protocol-, data- and platform-agnostic to be bet-
ter suited to a broader number of applications. It deals with the system heterogeneity by providing
generic APIs and concrete functionality through abstractions that can be specialized according to
each systems necessities. Also, four operation scenarios for HAMSTER are envisioned, which is



156 Chapter 7. Conclusion

likely to cover a broad number of IoT-enabled UAVs applications.

HAMSTER provides communication security through Cloud–SPHERE, service ex-
change support and management through SEMU and task management with NP platform, in a
functional prototype to be freely available for further development and research support. With
that, HAMSTER has the potential to be a great ally in securely integrating UAVs into the IoT.

Despite the challenges, the integration of UAVs into IoT is a promising research topic
with high chances of applicability. The continuous development of the technology to tackle the
necessary challenges such as the ones presented in this work will make possible to broaden the
use of UAVs and contribute to economic development and quality of life.

7.1 Contributions

The main contribution if this work is the extension of HAMSTER architecture so it can

support service operations with secure communication so UAVs can be integrated into the

Internet of Things. To accomplish this goal, other contributions were derived:

• The Security and safety Platform for HEteRogeneous systEms connected to the
Cloud (RODRIGUES; PIGATTO; BRANCO, 2018a). Cloud–SPHERE is an expan-
sion of the original SPHERE platform that aims to provide security not only for in-system
communication, but also with external system like the Cloud. The platform was expanded
to include security mechanisms abstractions and security configuration APIs to be used by
application designers.

• HAMSTER Operation Scenarios (RODRIGUES; PIGATTO; BRANCO, 2018a; RO-
DRIGUES; BRANCO, 2022). Possible operation scenarios of Unmanned Vehicles in the
IoT ecosystem were proposed and analyzed regarding security and service-provisioning
aspects.

• Task management functionality in HAMSTER (RODRIGUES; PIGATTO; BRANCO,
2018b). The original Navigation Phases (NP) platform was expanded so it is able to not
only manage the state of an Unmanned Vehicle components, but also to support au-
tonomous task management based on different phases and its change triggers.

• Reference Model for Service Management (RODRIGUES; BRANCO, 2019). The ref-
erence model for Unmanned Vehicles services is protocol- and data-agnostic. It envisioned
different types of service with possible distinct distribution.

• Context-aware security (RODRIGUES; PIGATTO; BRANCO, 2020). A context-aware
security evaluation was proposed to encompass different types of contextual evaluation,
effectively expanding the original NCI platform that considered only internal context
information to evaluate risk. Contextual information is translated to a Perceived Security
Index that can be used to take decisions on which security measures to use and to which
clients to provide a service.



7.2. Limitations and Difficulties 157

• HAMSTER layered model (RODRIGUES; BRANCO, 2020). This work modeled and
organized HAMSTER in a model applicable to real applications, evolving the UML
reference model from Pigatto (2017). The model was design to be platform-agnostic and
to allow different types of data and algorithms to be used. Designers are able to build
HAMSTER-enabled applications by using the functionality API from the Core Layer and
the interfaces from the Abstraction Layer.

• Service Management Unit (SEMU) Platform (RODRIGUES; BRANCO, 2021). Mod-
els and supports different services operations such as registration, discovery, request and
exchange so HAMSTER-enable devices can offer those services to clients.

• The HAMSTER Prototype (RODRIGUES; BRANCO, 2022). a functioning prototype
of the entire HAMSTER architecture supporting one of the operation scenarios envisioned.
The prototype is going to be released MIT-licensed, openly available for further research
and development.

7.2 Limitations and Difficulties

The initial project proposed to focus on Cloud–SPHERE and the development of security
mechanisms for Unmanned Vehicles connected to the Cloud. During the initial research, however,
it became evident that the system heterogeneity would make the development of a comprehensive
solution unfeasible. Therefore, a more agnostic, abstraction-based approach was necessary.

Initially, it was envisioned that SEMU would be a part of Cloud–SPHERE to deal with
security aspects of service exchange. However, the lack of a service reference model resulted in
making SEMU a separate platform that deal exclusively with service exchange. Because of that,
the integration of the service management functionality with security perception is not yet made.
The same happened with the envisioned scenarios, with only one of them being implemented.

An important limitation of HAMSTER model is its application to other types of vehicles.
Even though the architecture was envisioned to attend other types of Unmanned Vehicles, the
design was mainly modeled after Aerial Vehicles specifically, so its application on other vehicle
types might not be smooth.

In this same line, the modeled abstractions were made with common UAV technologies
in mind, such as Ethernet, Zigbee and known cryptography and authentication algorithms. There
is no guarantee that the abstractions are going to be enough for other security algorithms or
communicating technologies with different paradigms, like cellular networks (3G/4G/5G).

HAMSTER and its platforms developed in this PhD (Cloud–SPHERE, SEMUand NP)
were validated functionally, but further tests and investigations are needed. The PSI was only
conceived theoretically and had no real-life scenario validation. Communication abstraction
was only implemented for Ethernet sockets, and tests were made only in Desktop environments.
UAV mobility greatly impacts communication, and further studies in conditions/hardware closer



158 Chapter 7. Conclusion

to an actual UAV application are necessary. That being said, no studies on performance were
made. Despite HAMSTER MESSAGES having a small payload, the impact on network/services
availability, performance and QoS needs to be studied.

The prototype presented a great difficulty in the middle of the research. Due to unclear
requirements because of the ongoing research, the prototype became unfeasible for resource-
constrained devices, with the executable application reaching more than 3MB in size. Because
of that, the entire prototype was refactored using C++ optimizations and modern functionality.
Even though now the executable applications are now about 500Kb in size, the refactoring took
a lot of time and work.

7.3 Future Work

Even though HAMSTER is already a very complex architecture, there are still many
opportunities ahead.

When considering high-level opportunities, there are many points to be explored. Cur-
rently, only one scenario (centralized architecture with known formation) is totally implemented
in the prototype. Extending HAMSTER to other operating scenarios as described in Section 4.7
implies in tackling many challenges.

Unknown formation scenarios will demand a negotiation on which algorithms to use for
Cryptography and other security mechanisms. In this case, an adequate model would provide
a good abstraction so different strategies may be deployed (power-aware, security-aware, etc)
depending on the application. Services and available security mechanisms from a Unit can be
discovered through the envisioned Broadcast Gate, but both the Gate and a protocol for this
discovery needs to be implemented. Also, key management and how to certify identities are also
challenges in decentralized scenarios and, as with IoT, demand constraint-aware solutions.

Centralized scenarios, specially in UAV swarms in which there is a ‘leader UAV’, have
to deal with the possibility of a leadership handover. The swarm leader would probably consume
more power due to extra responsibilities, and with the use of smaller UAVs to compose a swarm
a leadership handover would be necessary. In this case, an adequate abstraction is also necessary
so diverse techniques could be applied depending on the application context.

When considering UAV-as-a-Service (UaaS) scenarios, there are many aspects on UAV
selection for a specific service and UAV substitution in case the selected vehicle is unable to
finish the assigned task.

Emergency situations have also not been dealt with and need to be addressed. How
HAMSTER could support a situation in which an attack or malfunction is detected is an open
question.

The prototype future development also present interesting opportunities. First, adding a



7.4. Declaration of Original Authorship 159

system in which network configuration parameters (such as network addresses) and task stages
can be configured dynamically would allow the application of HAMSTER in UAV-enabled
service hubs, in which the swarm that will provide the service is dynamically chosen depending
on onboard sensors, battery level, etc.

Regarding security, the inclusion of other security mechanisms such as Access Control
and integrity checking in Cloud–SPHEREand the integration with context-aware evaluation and
NCI will increase HAMSTER security support.

The use of context-aware information is not yet included in the prototype. This brings
challenges like (1) how is the initial PSI evaluation would be shared with the UAV, (2) develop
policies for decisions to take when the PSI changes, (3) how to take into account the available
security mechanisms in PSI evaluation, (4) how to switch between different security mechanisms
(i.e., change the cryptography algorithm) seamlessly, (5) how to evaluate the impact of security
mechanisms available on the environment, the communication links and UV survivability, among
others.

The SMU Platform is still to be proper modeled and implemented in the prototype and is
a great opportunity to increasing the safety of HAMSTER UNITS. There are many possibilities
that can be used in this context, such as the use of Artificial Intelligence to detect a malfunction.

Al this security evaluation also need to be integrated with service management and
provision. There is still no collaboration between SEMU and the security platforms so services
can be conditionally provided depending on security aspects such as data sensitiveness and how
much the client is trusted. Other support operations such as service discovery mechanisms on
the broadcast gate are not yet modeled and implemented.

The NP platform can be expanded with other control parameters besides the ON/OFF
state, such as bandwidth and radio power, for example. A feedback on the commands would
also improve the system’s safety and point to potential problems or attacks — if, for instance, a
HAMSTER OBJECT is ordered to be turned OFF and stays ON.

Another possibility is the collaboration between the task management functionality in
NP and the SEMU platform so services can be used as triggers for phase changes.

7.4 Declaration of Original Authorship

I confirm that this doctoral thesis has not been submitted in support of an application
for another degree at this or any other teaching or research institution. It is the result of my own
work and the use of all material from other sources has been properly and fully acknowledged.
Research done in collaboration is also clearly indicated. Excerpts of this thesis have been either
published or submitted for the appreciation of editorial boards of journals, conferences and
workshops, according to the list of publications presented below. My contributions to each



160 Chapter 7. Conclusion

publication are listed as well.

7.5 Publication List

7.5.1 Published Papers

• MARCONATO, E. A.; RODRIGUES, M.; PIRES, R. D. M.; PIGATTO, D. F.; PINTO,
A. R.; & BRANCO, K. R. AVENS-A Novel Flying Ad Hoc Network Simulator with
Automatic Code Generation for Unmanned Aircraft System. In: Proceedings of the 50th
Hawaii International Conference on System Sciences. 2017.
CONTRIBUTION LEVEL: Medium — the author contributed with the design and devel-
opment of AVENS plug-in.

• RODRIGUES, M.; PIGATTO, D. F.; FONTES, J. V. C.; PINTO, A. S. R.; DIGUET,
J.-P.; BRANCO, K. R. L. J. C. UAV Integration Into IoIT : Opportunities and Challenges.
International Conference on Autonomic and Autonomous Systems (ICAS), IARIA,
p. 6, 2017.
CONTRIBUTION LEVEL: Medium — the author was responsible for IoT-related research
and integrations challenges.

• VANELLI, B.; RODRIGUES, M.; SILVA, M. P. D.; PINTO, A.; & DANTAS, M. A.
R.. A Proposed Architecture for Robots as a Service. In: Communication in Critical
Embedded Systems. Springer, Cham, 2014. p. 117-130.
CONTRIBUTION LEVEL: Low — the author contributed with MQTT research.

• RODRIGUES, M.; PIGATTO, D. F.; BRANCO, K. R. L. J. C. Cloud-SPHERE: A Secu-
rity Approach for Connected Unmanned Aerial Vehicles. In: International Conference
on Unmanned Aircraft Systems (ICUAS). Dallas, EUA: IEEE, 2018. p. 769–778. ISBN
978-1-5386-1354-2.
CONTRIBUTION LEVEL: High — the author was the main investigator of this paper.

• PIGATTO, D. F.; FONTES, J. V. C.; RODRIGUES, M.; PINTO, A. R. S.; SMITH, J.
BRANCO, K. R. L. J. C. The Internet of Flying Things. (Book Chapter). In: Internet of
Things – Applications and Implementations, CRC Press.
CONTRIBUTION LEVEL: Low — the author contributed with IoT-related research.

• RODRIGUES, M.; PIGATTO, D. F.; BRANCO, K. R. L. J. C. Navigation phases platform:
Towards green computing for UAVs. In: 2018 IEEE Symposium on Computers and
Communications (ISCC). [s.n.], 2018. p. 01171–01176.
CONTRIBUTION LEVEL: High — the author was the main investigator of this paper.

• RODRIGUES, M.; BRANCO, K. R. L. J. C. UAVs at your service: Towards IoT inte-
gration with HAMSTER. In: 2019 International Conference on Unmanned Aircraft
Systems (ICUAS). [s.n.], 2019. p. 856–865.
CONTRIBUTION LEVEL: High — the author was the main investigator of this paper.



7.5. Publication List 161

• RODRIGUES, M.; AMARO, J.; OSÓRIO, F. S.; & RLJC, B. K. Authentication methods
for UAV communication. In: 2019 IEEE Symposium on Computers and Communica-
tions (ISCC). IEEE, 2019. p. 1210-1215.
CONTRIBUTION LEVEL: High — the author was the main investigator of this paper.

• LA SCALEA, R.; RODRIGUES, M.; OSORIO, D. P. M.; LIMA, C. H.; SOUZA, R. D.;
ALVES, H.; & BRANCO, K. C. Opportunities for autonomous UAV in harsh environ-
ments. In: 2019 16th International Symposium on Wireless Communication Systems
(ISWCS). IEEE, 2019. p. 227-232.
CONTRIBUTION LEVEL: Low — the author contributed with theoretical research.

• RODRIGUES, M.; BRANCO, K. R. L. J. C. Cloud–SPHERE: Towards Secure UAV
Service Provision. Journal of Intelligent & Robotic Systems, v. 97, p. 249–268, 2020.
ISSN 1573-0409.
CONTRIBUTION LEVEL: High — the author was the main investigator of this paper.

• RODRIGUES, M.; PIGATTO, D. F.; BRANCO, K. R. L. J. C. Context-aware operation
for unmanned systems with hamster. In: 2020 IEEE Symposium on Computers and
Communications (ISCC). [s.n.], 2020. p. 1–6.
CONTRIBUTION LEVEL: High — the author was the main investigator of this paper.

• RODRIGUES, M.; BRANCO, K. R. L. J. C. Enabling UAV services in the IoT with
HAMSTER. In: 2021 IEEE Symposium on Computers and Communications (ISCC).
[s.n.], 2021. p. 1–6.
CONTRIBUTION LEVEL: High — the author was the main investigator of this paper.

7.5.2 Submitted Papers

• RODRIGUES, M.; BRANCO, K. R. L. J. C. Providing UAV Secure Services in the
Internet of Things with HAMSTER: a Tutorial. 2022.
CONTRIBUTION LEVEL: High — the author was the main investigator of this paper.





163

BIBLIOGRAPHY

ABOWD, G. D.; DEY, A. K.; BROWN, P. J.; DAVIES, N.; SMITH, M.; STEGGLES, P. To-
wards a better understanding of context and context-awareness. In: GELLERSEN, H.-W. (Ed.).
Handheld and Ubiquitous Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
p. 304–307. ISBN 978-3-540-48157-7. Available: <https://doi.org/10.1007/3-540-48157-5_29>.
Citation on page 71.

ABRAR, M.; AJMAL, U.; ALMOHAIMEED, Z. M.; GUI, X.; AKRAM, R.; MASROOR, R.
Energy efficient uav-enabled mobile edge computing for iot devices: A review. IEEE Access,
v. 9, p. 127779–127798, 2021. Available: <https://doi.org/10.1109/ACCESS.2021.3112104>.
Citation on page 62.

ACHIR, M.; ABDELLI, A.; MOKDAD, L. A taxonomy of service discovery approaches in
iot. In: 2020 8th International Conference on Wireless Networks and Mobile Communica-
tions (WINCOM). [s.n.], 2020. p. 6. Available: <https://doi.org/10.1109/WINCOM50532.2020.
9272512>. Citations on pages 43 and 51.

AHMED, A. I. A.; GANI, A.; HAMID, S. H. A.; ABDELMABOUD, A.; SYED, H. J.; Habeeb
Mohamed, R. A. A.; ALI, I. Service Management for IoT: Requirements, Taxonomy, Recent
Advances and Open Research Challenges. IEEE Access, IEEE, v. 7, p. 155472–155488, 2019.
ISSN 2169-3536. Available: <https://doi.org/10.1109/ACCESS.2019.2948027>. Citations on
pages 42 and 43.

AL-FUQAHA, A.; GUIZANI, M.; MOHAMMADI, M.; ALEDHARI, M.; AYYASH, M. Internet
of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Communi-
cations Surveys & Tutorials, v. 17, n. 4, p. 2347–2376, jan 2015. ISSN 1553-877X. Available:
<https://doi.org/10.1109/COMST.2015.2444095>. Citations on pages 25, 26, 39, 40, 42, 46, 47,
49, 50, 51, 57, 68, 88, and 132.

AL-KAFF, A.; MORENO, F. M.; ESCALERA, A. de la; ARMINGOL, J. M. Intelligent vehicle
for search, rescue and transportation purposes. In: IEEE International Symposium on Safety,
Security and Rescue Robotics (SSRR). Shanghai, China: IEEE, 2017. p. 110–115. ISBN 978-
1-5386-3923-8. Available: <https://doi.org/10.1109/SSRR.2017.8088148>. Citation on page
30.

ALI, M.; KHAN, S. U.; VASILAKOS, A. V. Security in cloud computing: Opportunities and
challenges. Information Sciences, Elsevier Inc., v. 305, p. 357–383, 2015. ISSN 00200255.
Available: <https://doi.org/10.1016/j.ins.2015.01.025>. Citations on pages 69 and 70.

ALMUHAYA, M. A. M.; JABBAR, W. A.; SULAIMAN, N.; ABDULMALEK, S. A Survey
on LoRaWAN Technology: Recent Trends, Opportunities, Simulation Tools and Future Di-
rections. Electronics, v. 11, n. 1, 2022. ISSN 2079-9292. Available: <https://doi.org/10.3390/
electronics11010164>. Citation on page 53.

ALTAWY, R.; YOUSSEF, A. M. Security, Privacy, and Safety Aspects of Civilian Drones.
ACM Transactions on Cyber-Physical Systems, ACM, v. 1, n. 2, p. 1–25, nov 2016. ISSN

https://doi.org/10.1007/3-540-48157-5_29
https://doi.org/10.1109/ACCESS.2021.3112104
https://doi.org/10.1109/WINCOM50532.2020.9272512
https://doi.org/10.1109/WINCOM50532.2020.9272512
https://doi.org/10.1109/ACCESS.2019.2948027
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/SSRR.2017.8088148
https://doi.org/10.1016/j.ins.2015.01.025
https://doi.org/10.3390/electronics11010164
https://doi.org/10.3390/electronics11010164


164 Bibliography

2378-962X. Available: <https://doi.org/10.1145/3001836>. Citations on pages 31, 35, 36, 68,
69, and 70.

ALWATEER, M.; LOKE, S. W.; RAHAYU, W. Drone services: An investigation via prototyping
and simulation. In: IEEE 4th World Forum on Internet of Things (WF-IoT). Singapore,
Singapore: IEEE, 2018. p. 367–370. ISBN 978-1-4673-9944-9. Available: <https://doi.org/10.
1109/WF-IoT.2018.8355153>. Citations on pages 26, 62, 65, and 67.

AMJAD, A.; AZAM, F.; ANWAR, M. W.; BUTT, W. H. A Systematic Review on the Data
Interoperability of Application Layer Protocols in Industrial IoT. IEEE Access, v. 9, p. 96528–
96545, 2021. Available: <https://doi.org/10.1109/ACCESS.2021.3094763>. Citation on page
45.

ANTON, S. R.; INMAN, D. J. Vibration energy harvesting for unmanned aerial vehicles. In:
SPIE 6928, Active and Passive Smart Structures and Integrated Systems 2008. SPIE, 2008.
v. 692824. Available: <https://doi.org/10.1117/12.774990>. Citation on page 64.

ARCHIBALD, C.; SCHWALM, L.; BALL, J. E. A Survey of Security in Robotic Systems:
Vulnerabilities, Attacks, and Solutions. International Journal of Robotics and Automation,
v. 32, n. 2, p. 151–157, 2017. ISSN 1925-7090. Available: <https://doi.org/10.2316/Journal.206.
2017.2.206-4705>. Citation on page 88.

ARELLANES, D.; LAU, K.-K. Evaluating IoT service composition mechanisms for the scalabil-
ity of IoT systems. Future Generation Computer Systems, Elsevier B.V., v. 108, p. 827–848,
jul 2020. ISSN 0167-739X. Available: <https://doi.org/10.1016/j.future.2020.02.073>. Citations
on pages 42 and 43.

ARUMUGAM, R.; ENTI, V. R.; Liu Bingbing; Wu Xiaojun; BASKARAN, K.; Foong Foo Kong;
KUMAR, A. S.; Kang Dee Meng; Goh Wai Kit. DAvinCi: A Cloud Computing framework for
service robots. In: IEEE International Conference on Robotics and Automation. Anchorage,
USA: IEEE, 2010. p. 3084–3089. ISBN 978-1-4244-5038-1. ISSN 1050-4729. Available: <https:
//doi.org/10.1109/ROBOT.2010.5509469>. Citation on page 66.

ASGHARI, P.; RAHMANI, A. M.; JAVADI, H. H. S. Service composition approaches in IoT: A
systematic review. Journal of Network and Computer Applications, Elsevier Ltd, v. 120, n.
January, p. 61–77, 2018. ISSN 10958592. Available: <https://doi.org/10.1016/j.jnca.2018.07.
013>. Citation on page 43.

. Internet of things applications: A systematic review. Computer Networks, v. 148, p.
241–261, 2019. ISSN 1389-1286. Available: <https://doi.org/10.1016/j.comnet.2018.12.008>.
Citation on page 39.

ATZORI, L.; IERA, A.; MORABITO, G. The Internet of Things: A survey. Computer Net-
works, Elsevier B.V., v. 54, n. 15, p. 2787–2805, oct 2010. ISSN 1389-1286. Available:
<https://doi.org/10.1016/j.comnet.2010.05.010>. Citation on page 25.

AZIEZ, M.; BENHARZALLAH, S.; BENNOUI, H. Service discovery for the Internet of Things:
Comparison study of the approaches. In: 4th International Conference on Control, Decision
and Information Technologies (CoDIT). Barcelona, Spain: IEEE, 2017. p. 0599–0604. ISBN
978-1-5090-6465-6. Available: <https://doi.org/10.1109/CoDIT.2017.8102660>. Citation on
page 43.

https://doi.org/10.1145/3001836
https://doi.org/10.1109/WF-IoT.2018.8355153
https://doi.org/10.1109/WF-IoT.2018.8355153
https://doi.org/10.1109/ACCESS.2021.3094763
https://doi.org/10.1117/12.774990
https://doi.org/10.2316/Journal.206.2017.2.206-4705
https://doi.org/10.2316/Journal.206.2017.2.206-4705
https://doi.org/10.1016/j.future.2020.02.073
https://doi.org/10.1109/ROBOT.2010.5509469
https://doi.org/10.1109/ROBOT.2010.5509469
https://doi.org/10.1016/j.jnca.2018.07.013
https://doi.org/10.1016/j.jnca.2018.07.013
https://doi.org/10.1016/j.comnet.2018.12.008
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1109/CoDIT.2017.8102660


Bibliography 165

BANSAL, S.; KUMAR, D. IoT Ecosystem: A Survey on Devices, Gateways, Operating
Systems, Middleware and Communication. International Journal of Wireless Information
Networks, Springer US, feb 2020. ISSN 1068-9605. Available: <https://doi.org/10.1007/
s10776-020-00483-7>. Citations on pages 39, 41, and 53.

Beecham Research Limited. IoT Security Threat Map. Beecham Research Lim-
ited, 2015. 4 p. Available: <http://www.beechamresearch.com/downloadFile.aspx?name=
BRLIoTSecurityThreatMap2015explained.pdf>. Citation on page 58.

BEKMEZCI, I.; SAHINGOZ, O. K.; TEMEL, S. Flying Ad-Hoc Networks (FANETs): A
survey. Ad Hoc Networks, Elsevier B.V., v. 11, n. 3, p. 1254–1270, may 2013. ISSN 1570-8705.
Available: <https://doi.org/10.1016/j.adhoc.2012.12.004>. Citations on pages 32, 33, 34, and 35.

BEKMEZCI, I.; ŞENTÜRK, E.; TÜRKER, T. Security issues in flying ad-hoc networks (fanets).
Journal of Aeronautics and Space Technologies, v. 9, n. 2, p. 13–21, Jul. 2016. Available:
<https://193.255.215.140/index.php/JAST/article/view/32>. Citations on pages 35 and 38.

BIANZINO, A. P.; CHAUDET, C.; ROSSI, D.; ROUGIER, J.-L. A Survey of Green Networking
Research. IEEE Communications Surveys & Tutorials, IEEE, v. 14, n. 1, p. 3–20, 2012. ISSN
1553-877X. Available: <https://doi.org/10.1109/SURV.2011.113010.00106>. Citation on page
65.

BILAL, R.; KHAN, B. M. Analysis of Mobility Models and Routing Schemes for Flying Ad-
Hoc Networks (FANETS). International Journal of Applied Engineering Research, Research
India Publications, v. 12, n. 12, p. 3263–3269, 2017. ISSN 0973-4562. Available: <https://www.
ripublication.com/ijaer17/ijaerv12n12_37.pdf>. Citation on page 35.

BLOISI, D. D.; NARDI, D.; RICCIO, F.; TRAPANI, F. Context-Enhanced Information Fu-
sion. Cham: Springer International Publishing, 2016. 675–699 p. (Advances in Computer Vi-
sion and Pattern Recognition). ISBN 978-3-319-28969-4. Available: <https://doi.org/10.1007/
978-3-319-28971-7>. Citations on pages 71 and 81.

BLUETOOTH SPECIAL INTEREST GROUP. Bluetooth Core Specification Version 5.2.
[S.l.], 2019. 3256 p. Available: <https://www.bluetooth.org/docman/handlers/downloaddoc.
ashx?doc_id=478726>. Accessed: 2020-03-14. Citations on pages 49 and 52.

BOLLA, G. M.; CASAGRANDE, M.; COMAZZETTO, A.; Dal Moro, R.; DESTRO, M.;
FANTIN, E.; COLOMBATTI, G.; ABOUDAN, A.; LORENZINI, E. C. ARIA: Air Pollutants
Monitoring Using UAVs. In: IEEE International Workshop on Metrology for AeroSpace
(MetroAeroSpace). Rome, Italy: IEEE, 2018. p. 225–229. ISBN 978-1-5386-2474-6. Available:
<https://doi.org/10.1109/MetroAeroSpace.2018.8453584>. Citation on page 30.

BOLLA, R.; BRUSCHI, R.; DAVOLI, F.; CUCCHIETTI, F. Energy Efficiency in the Future
Internet: A Survey of Existing Approaches and Trends in Energy-Aware Fixed Network Infras-
tructures. IEEE Communications Surveys & Tutorials, IEEE, v. 13, n. 2, p. 223–244, 2011.
ISSN 1553-877X. Available: <https://doi.org/10.1109/SURV.2011.071410.00073>. Citation on
page 65.

BORMANN, C.; ERSUE, M.; KERANEN, A. RFC 7228: Terminology for Constrained-Node
Networks. Fermont, 2014. 17 p. Available: <https://doi.org/10.17487/rfc7228>. Citation on
page 40.

https://doi.org/10.1007/s10776-020-00483-7
https://doi.org/10.1007/s10776-020-00483-7
http://www.beechamresearch.com/downloadFile.aspx?name=BRL IoT Security Threat Map 2015 explained.pdf
http://www.beechamresearch.com/downloadFile.aspx?name=BRL IoT Security Threat Map 2015 explained.pdf
https://doi.org/10.1016/j.adhoc.2012.12.004
https://193.255.215.140/index.php/JAST/article/view/32
https://doi.org/10.1109/SURV.2011.113010.00106
https://www.ripublication.com/ijaer17/ijaerv12n12_37.pdf
https://www.ripublication.com/ijaer17/ijaerv12n12_37.pdf
https://doi.org/10.1007/978-3-319-28971-7
https://doi.org/10.1007/978-3-319-28971-7
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://doi.org/10.1109/MetroAeroSpace.2018.8453584
https://doi.org/10.1109/SURV.2011.071410.00073
https://doi.org/10.17487/rfc7228


166 Bibliography

BOTTA, A.; DONATO, W. de; PERSICO, V.; PESCAPÉ, A. Integration of Cloud computing and
Internet of Things: A survey. Future Generation Computer Systems, Elsevier, v. 56, p. 684–
700, mar 2016. ISSN 0167-739X. Available: <https://doi.org/10.1016/j.future.2015.09.021>.
Citations on pages 26, 42, 54, and 55.

BUJARI, A.; PALAZZI, C. E.; RONZANI, D. FANET Application Scenarios and Mobility
Models. In: Proceedings of the 3rd Workshop on Micro Aerial Vehicle Networks, Systems,
and Applications (DroNet). New York, New York, USA: ACM Press, 2017. p. 43–46. ISBN
9781450349604. Available: <https://doi.org/10.1145/3086439.3086440>. Citation on page 34.

BUTTERFIELD, A.; NGONDI, G.; KERR, A. (Ed.). A Dictionary of Computer Science.
Oxford University Press, 2016. (Oxford Quick Reference). ISBN 9780199688975. Available:
<https://doi.org/10.1093/acref/9780199688975.001.0001>. Citations on pages 41 and 44.

BUTUN, I.; ÖSTERBERG, P.; SONG, H. Security of the internet of things: Vulnerabilities,
attacks, and countermeasures. IEEE Communications Surveys Tutorials, v. 22, n. 1, p. 616–
644, 2020. Available: <https://doi.org/10.1109/COMST.2019.2953364>. Citation on page
58.

CABRERA, C.; PALADE, A.; CLARKE, S. An evaluation of service discovery protocols in
the internet of things. In: Proceedings of the Symposium on Applied Computing. New York,
NY, USA: Association for Computing Machinery, 2017. p. 469–476. ISBN 9781450344869.
Available: <https://doi.org/10.1145/3019612.3019698>. Citation on page 51.

CAVALCANTE, E.; PEREIRA, J.; ALVES, M. P.; MAIA, P.; MOURA, R.; BATISTA, T.;
DELICATO, F. C.; PIRES, P. F. On the Interplay of Internet of Things and Cloud Computing: A
Systematic Mapping Study. Computer Communications, Elsevier, v. 89-90, p. 17–33, 2016.
ISSN 0140-3664. Available: <https://doi.org/10.1016/j.comcom.2016.03.012>. Citations on
pages 26, 42, 54, and 55.

CHABAREK, J.; SOMMERS, J.; BARFORD, P.; ESTAN, C.; TSIANG, D.; WRIGHT, S. Power
Awareness in Network Design and Routing. In: IEEE Conference on Computer Communica-
tions (INFOCOM). Phoenix, USA: IEEE, 2008. p. 457–465. ISBN 978-1-4244-2026-1. ISSN
0743-166X. Available: <https://doi.org/10.1109/INFOCOM.2008.93>. Citation on page 65.

CHEBROLU, N.; LABE, T.; STACHNISS, C. Robust Long-Term Registration of UAV Images
of Crop Fields for Precision Agriculture. IEEE Robotics and Automation Letters, IEEE, v. 3,
n. 4, p. 3097–3104, oct 2018. ISSN 2377-3766. Available: <https://doi.org/10.1109/LRA.2018.
2849603>. Citation on page 30.

CHETTRI, L.; BERA, R. A comprehensive survey on internet of things (iot) toward 5g wireless
systems. IEEE Internet of Things Journal, v. 7, n. 1, p. 16–32, 2020. Available: <https:
//doi.org/10.1109/JIOT.2019.2948888>. Citation on page 60.

CHIGAN, C.; LI, L.; YE, Y. Resource-aware Self-Adaptive Security Provisioning in Mobile Ad
Hoc Networks. In: IEEE Wireless Communications and Networking Conference. New Or-
leans, USA: IEEE, 2005. v. 4, p. 2118–2124. ISBN 0-7803-8966-2. ISSN 1525-3511. Available:
<https://doi.org/10.1109/WCNC.2005.1424845>. Citations on pages 72 and 81.

CHRIKI, A.; TOUATI, H.; SNOUSSI, H.; KAMOUN, F. FANET: Communication, mobility
models and security issues. Computer Networks, Elsevier B.V., v. 163, nov 2019. ISSN 1389-
1286. Available: <https://doi.org/10.1016/j.comnet.2019.106877>. Citations on pages 33, 34,
and 35.

https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.1145/3086439.3086440
https://doi.org/10.1093/acref/9780199688975.001.0001
https://doi.org/10.1109/COMST.2019.2953364
https://doi.org/10.1145/3019612.3019698
https://doi.org/10.1016/j.comcom.2016.03.012
https://doi.org/10.1109/INFOCOM.2008.93
https://doi.org/10.1109/LRA.2018.2849603
https://doi.org/10.1109/LRA.2018.2849603
https://doi.org/10.1109/JIOT.2019.2948888
https://doi.org/10.1109/JIOT.2019.2948888
https://doi.org/10.1109/WCNC.2005.1424845
https://doi.org/10.1016/j.comnet.2019.106877


Bibliography 167

Cloud Security Alliance. The Egregious 11: Cloud Computing Top Threats
in 2019. [S.l.], 2016. 43 p. Available: <https://cloudsecurityalliance.org/artifacts/
top-threats-to-cloud-computing-egregious-eleven/>. Citation on page 58.

CoAP — Constrained Application Protocol | Overview. 2022. Https://coap.technology. Accessed
in 2022-04-20. Citation on page 49.

ČOLAKOVIĆ, A.; HADŽIALIĆ, M. Internet of Things (IoT): A review of enabling technologies,
challenges, and open research issues. Computer Networks, Elsevier B.V., v. 144, p. 17–39, oct
2018. ISSN 1389-1286. Available: <https://doi.org/10.1016/j.comnet.2018.07.017>. Citations
on pages 39, 40, and 53.

CONTIKI: The Open Source Operating System for the Internet of Things. 2021.
Http://www.contiki-os.org. Accessed in 2021-12-20. Citation on page 41.

COSKUN, V.; OZDENIZCI, B.; OK, K. A Survey on Near Field Communication (NFC) Tech-
nology. Wireless Personal Communications, Springer, v. 71, n. 3, p. 2259–2294, aug 2013.
ISSN 2259–2294. Available: <https://doi.org/10.1007/s11277-012-0935-5>. Citations on pages
49 and 52.

COSTA, L. F.; GONCALVES, L. M. RoboServ: A ROS Based Approach towards Providing
Heterogeneous Robots as a Service. In: 2016 XIII Latin American Robotics Symposium and
IV Brazilian Robotics Symposium (LARS/SBR). Recife, Brazil: IEEE, 2016. p. 169–174.
ISBN 978-1-5090-3656-1. Available: <https://doi.org/10.1109/LARS-SBR.2016.35>. Citation
on page 66.

DALAMAGKIDIS, K. Classification of UAVs. In: VALAVANIS, K. P.; VACHTSEVANOS,
G. J. (Ed.). Handbook of Unmanned Aerial Vehicles. Dordrecht: Springer Netherlands,
2015. chap. 5, p. 83–91. ISBN 978-90-481-9707-1. Available: <https://dix.doi.org/10.1007/
978-90-481-9707-1{_}94>. Citation on page 29.

DANG, D.-K.; MIFDAOUI, A.; GAYRAUD, T. Fly-By-Wireless for next generation aircraft:
Challenges and potential solutions. In: IFIP Wireless Days. Dublin, Ireland: IEEE, 2012. p. 1–
8. ISBN 978-1-4673-4404-3. ISSN 2156-9711. Available: <https://doi.org/10.1109/WD.2012.
6402820>. Citation on page 65.

DARROUDI, S. M.; GOMEZ, C. Bluetooth Low Energy Mesh Networks: A Survey. Sensors,
v. 17, n. 7, p. 1467, jun 2017. ISSN 1424-8220. Available: <https://doi.org/10.3390/s17071467>.
Citation on page 53.

DAVIES, L.; VAGAPOV, Y.; GROUT, V.; CUNNINGHAM, S.; ANUCHIN, A. Review of air
traffic management systems for uav integration into urban airspace. In: 2021 28th International
Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED). [S.l.: s.n.],
2021. p. 1–6. Citations on pages 31 and 32.

DHUMANE, A.; PRASAD, R.; PRASAD, J. Routing Issues in Internet of Things : A Survey.
In: AO, S. I.; CASTILLO, O.; DOUGLAS, C.; FENG, D. D.; KORSUNSKY, A. M. (Ed.). In-
ternational MultiConference of Engineers and Computer Scientists (IMECS). Hong Kong,
China: Newswood Limited, 2016. I, p. 404–412. ISBN 978-988-19253-8-1. ISSN 2078-0966.
Available: <http://www.iaeng.org/publication/IMECS2016/IMECS2016_pp404-412.pdf>. Cita-
tion on page 51.

https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-egregious-eleven/
https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-egregious-eleven/
https://doi.org/10.1016/j.comnet.2018.07.017
https://doi.org/10.1007/s11277-012-0935-5
https://doi.org/10.1109/LARS-SBR.2016.35
https://dix.doi.org/10.1007/978-90-481-9707-1{_}94
https://dix.doi.org/10.1007/978-90-481-9707-1{_}94
https://doi.org/10.1109/WD.2012.6402820
https://doi.org/10.1109/WD.2012.6402820
https://doi.org/10.3390/s17071467
http://www.iaeng.org/publication/IMECS2016/IMECS2016_pp404-412.pdf


168 Bibliography

DING, J.; NEMATI, M.; RANAWEERA, C.; CHOI, J. Iot connectivity technologies and applica-
tions: A survey. IEEE Access, v. 8, p. 67646–67673, 2020. Available: <https://doi.org/10.1109/
ACCESS.2020.2985932>. Citations on pages 48, 52, and 53.

DORIYA, R.; CHAKRABORTY, P.; NANDI, G. Robotic Services in Cloud Computing Paradigm.
In: International Symposium on Cloud and Services Computing. Mangalore, India: IEEE,
2012. p. 80–83. ISBN 978-1-4673-4854-6. Available: <https://doi.org/10.1109/ISCOS.2012.24>.
Citation on page 66.

DUSTDAR, S.; AVASALCAI, C.; MURTURI, I. Invited Paper: Edge and Fog Computing: Vision
and Research Challenges. In: 2019 IEEE International Conference on Service-Oriented
System Engineering (SOSE). IEEE, 2019. p. 96–9609. ISBN 978-1-7281-1442-2. Available:
<https://doi.org/10.1109/SOSE.2019.00023>. Citation on page 55.

ECLIPSE. Eclipse Mosquitto®- An open source MQTT broker. 2018. Available: <https:
//mosquitto.org>. Citation on page 133.

. Eclipse Paho. 2018. Available: <https://www.eclipse.org/paho/>. Citation on page 133.

EL-HAJJ, M.; FADLALLAH, A.; CHAMOUN, M.; SERHROUCHNI, A. A Survey of Internet of
Things (IoT) Authentication Schemes. Sensors, v. 19, n. 5, p. 1141, mar 2019. ISSN 1424-8220.
Available: <https://doi.org/10.3390/s19051141>. Citation on page 58.

Elgezabal Gomez, O. Fly-by-wireless: Benefits, risks and technical challenges. In: CANEUS
Fly by Wireless Workshop. Orono, USA: IEEE, 2010. p. 14–15. ISBN 978-1-4244-9255-8.
Available: <https://doi.org/10.1109/FBW.2010.5613788>. Citation on page 65.

ELKHODR, M.; SHAHRESTANI, S.; CHEUNG, H. Emerging Wireless Technologies in
the Internet of Things : A Comparative Study. International Journal of Wireless & Mo-
bile Networks, AIRCC, v. 8, n. 5, p. 67–82, oct 2016. ISSN 0975-4679. Available: <https:
//doi.org/10.5121/ijwmn.2016.8505>. Citation on page 41.

ELRAWY, M. F.; AWAD, A. I.; HAMED, H. F. A. Intrusion detection systems for IoT-based
smart environments: a survey. Journal of Cloud Computing, v. 7, 2018. ISSN 2192-113X.
Available: <https://doi.org/10.1186/s13677-018-0123-6>. Citation on page 60.

EOM, J. ho. Security Threats Recognition and Countermeasures on Smart Battlefield Envi-
ronment based on IoT. International Journal of Security and Its Applications, v. 9, n. 7, p.
347–356, jul 2015. ISSN 1738-9976. Available: <https://doi.org/10.14257/ijsia.2015.9.7.32>.
Citations on pages 56 and 58.

ERMACORA, G.; TOMA, A.; ROSA, S.; BONA, B.; CHIABERGE, M.; SILVAGNI, M.;
GASPARDONE, M.; ANTONINI, R. A Cloud Based Service for Management and Planning
of Autonomous UAV Missions in Smart City Scenarios. In: Jan Hodicky (Ed.). Modelling
and Simulation for Autonomous Systems. Springer International Publishing, 2014, (Lecture
Notes in Computer Science, v. 8906). chap. 3, p. 20–26. ISBN 978-3-319-13823-7. Available:
<https://doi.org/10.1007/978-3-319-13823-7_3>. Citation on page 62.

ERTURK, A.; RENNO, J. M.; INMAN, D. J. Modeling of Piezoelectric Energy Harvesting
from an L-shaped Beam-mass Structure with an Application to UAVs. Journal of Intelligent
Material Systems and Structures, SAGE, v. 20, n. 5, p. 529–544, mar 2009. ISSN 1045-389X.
Available: <https://doi.org/10.1177/1045389X08098096>. Citation on page 64.

https://doi.org/10.1109/ACCESS.2020.2985932
https://doi.org/10.1109/ACCESS.2020.2985932
https://doi.org/10.1109/ISCOS.2012.24
https://doi.org/10.1109/SOSE.2019.00023
https://mosquitto.org
https://mosquitto.org
https://www.eclipse.org/paho/
https://doi.org/10.3390/s19051141
https://doi.org/10.1109/FBW.2010.5613788
https://doi.org/10.5121/ijwmn.2016.8505
https://doi.org/10.5121/ijwmn.2016.8505
https://doi.org/10.1186/s13677-018-0123-6
https://doi.org/10.14257/ijsia.2015.9.7.32
https://doi.org/10.1007/978-3-319-13823-7_3
https://doi.org/10.1177/1045389X08098096


Bibliography 169

EUROPEAN AVIATION SAFETY AGENCY. ‘Prototype’ Commission Regulation on Un-
manned Aircraft Operations. [S.l.], 2016. 72 p. Available: <https://www.easa.europa.eu/
system/files/dfu/UASPrototypeRegulationfinal.pdf>. Citation on page 32.

FAN, X.; CAI, W.; LIN, J. A survey of routing protocols for highly dynamic mobile ad hoc
networks. In: IEEE 17th International Conference on Communication Technology (ICCT).
[s.n.], 2017. p. 1412–1417. ISSN 2576-7828. Available: <https://doi.org/10.1109/ICCT.2017.
8359865>. Citation on page 35.

FEDERAL AVIATION ADMINISTRATION. 14 CFR part 107. 2016. Available: <https://www.
ecfr.gov/cgi-bin/text-idx?&node=pt14.2.107>. Citation on page 32.

. Integration of Civil Unmanned Aircraft Systems (UAS) in the National
Airspace System (NAS) Roadmap. [S.l.], 2018. 74 p. 2nd. Edition. Available:
<https://www.faa.gov/uas/resources/policy_library/media/Second_Edition_Integration_
of_Civil_UAS_NAS_Roadmap_July%202018.pdf>. Citations on pages 31 and 32.

. Unmanned Aircraft System (UAS) Traffic Management (UTM) Concept of Opera-
tions. 2018. Available: <https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf>. Citation
on page 32.

FERRAG, M. A.; MAGLARAS, L. A.; JANICKE, H.; JIANG, J.; SHU, L. Authentication
Protocols for Internet of Things: A Comprehensive Survey. Security and Communication
Networks, v. 2017, p. 1–41, 2017. ISSN 1939-0114. Available: <https://doi.org/10.1155/2017/
6562953>. Citation on page 58.

FreeRTOS — Market leading RTOS (Real Time Operating System) for embedded systems with
Internet of Things extensions. 2021. Https://www.freertos.org. Accessed in 2021-12-20. Citation
on page 42.

FURRER, J.; KAMEI, K.; SHARMA, C.; MIYASHITA, T.; HAGITA, N. UNR-PF: An open-
source platform for cloud networked robotic services. In: IEEE/SICE International Sympo-
sium on System Integration (SII). Fukuoka, Japan: IEEE, 2012. p. 945–950. ISBN 978-1-
4673-1497-8. Available: <https://doi.org/10.1109/SII.2012.6427281>. Citation on page 66.

GABRIELSSON, J.; BUGEJA, J.; VOGEL, B. Hacking a Commercial Drone with Open-
Source Software: Exploring Data Privacy Violations. In: 10th Mediterranean Conference on
Embedded Computing (MECO). IEEE, 2021. p. 1–5. ISBN 978-1-6654-3912-1. Available:
<https://doi.org/10.1109/MECO52532.2021.9460295>. Citation on page 32.

GHAZZAI, H.; Ben Ghorbel, M.; KADRI, A.; HOSSAIN, M. J.; MENOUAR, H. Energy-
Efficient Management of Unmanned Aerial Vehicles for Underlay Cognitive Radio Systems.
IEEE Transactions on Green Communications and Networking, IEEE, v. 1, n. 4, p. 434–
443, dec 2017. ISSN 2473-2400. Available: <https://doi.org/10.1109/TGCN.2017.2750721>.
Citation on page 65.

GIRI, A.; DUTTA, S.; NEOGY, S.; DAHAL, K.; PERVEZ, Z. Internet of things (IoT): a
survey on architecture, enabling technologies, applications and challenges. In: Proceedings of
the 1st International Conference on Internet of Things and Machine Learning - IML ’17.
Liverpool, UK: ACM Press, 2017. ISBN 9781450352437. Available: <https://doi.org/10.1145/
3109761.3109768>. Citations on pages 46 and 47.

https://www.easa.europa.eu/system/files/dfu/UAS Prototype Regulation final.pdf
https://www.easa.europa.eu/system/files/dfu/UAS Prototype Regulation final.pdf
https://doi.org/10.1109/ICCT.2017.8359865
https://doi.org/10.1109/ICCT.2017.8359865
https://www.ecfr.gov/cgi-bin/text-idx?&node=pt14.2.107
https://www.ecfr.gov/cgi-bin/text-idx?&node=pt14.2.107
https://www.faa.gov/uas/resources/policy_library/media/Second_Edition_Integration_of_Civil_UAS_NAS_Roadmap_July%202018.pdf
https://www.faa.gov/uas/resources/policy_library/media/Second_Edition_Integration_of_Civil_UAS_NAS_Roadmap_July%202018.pdf
https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf
https://doi.org/10.1155/2017/6562953
https://doi.org/10.1155/2017/6562953
https://doi.org/10.1109/SII.2012.6427281
https://doi.org/10.1109/MECO52532.2021.9460295
https://doi.org/10.1109/TGCN.2017.2750721
https://doi.org/10.1145/3109761.3109768
https://doi.org/10.1145/3109761.3109768


170 Bibliography

GOMEZ, C.; PURDIE, H. UAV- based Photogrammetry and Geocomputing for Hazards and
Disaster Risk Monitoring – A Review. Geoenvironmental Disasters, v. 3, n. 1, p. 23, nov 2016.
ISSN 2197-8670. Available: <https://doi.org/10.1186/s40677-016-0060-y>. Citation on page
30.

GUPTA, L.; JAIN, R.; VASZKUN, G. Survey of Important Issues in UAV Communication
Networks. IEEE Communications Surveys & Tutorials, v. 18, n. 2, p. 1123–1152, 2016.
ISSN 1553-877X. Available: <https://doi.org/10.1109/COMST.2015.2495297>. Citations on
pages 32, 33, 34, 35, and 39.

GYRARD, A.; DATTA, S. K.; BONNET, C. A survey and analysis of ontology-based software
tools for semantic interoperability in iot and wot landscapes. In: IEEE 4th World Forum on
Internet of Things (WF-IoT). IEEE, 2018. p. 86–91. ISBN 978-1-4673-9944-9. Available:
<https://doi.org/10.1109/WF-IoT.2018.8355091>. Citation on page 45.

HAHM, O.; BACCELLI, E.; PETERSEN, H.; TSIFTES, N. Operating systems for low-end
devices in the internet of things: A survey. IEEE Internet of Things Journal, v. 3, n. 5, p.
720–734, Oct 2016. ISSN 2372-2541. Available: <https://doi.org/10.1109/JIOT.2015.2505901>.
Citations on pages 41 and 42.

HAMZEI, M.; Jafari Navimipour, N. Toward Efficient Service Composition Techniques in the
Internet of Things. IEEE Internet of Things Journal, IEEE, v. 5, n. 5, p. 3774–3787, oct 2018.
ISSN 2327-4662. Available: <https://doi.org/10.1109/JIOT.2018.2861742>. Citation on page
43.

HANNAN, A.; HUSSAIN, F.; ALI, N.; EHATISHAM-UL-HAQ, M.; ASHRAF, M. U.; AL-
GHAMDI, A. M.; ALFAKEEH, A. S. A decentralized hybrid computing consumer authentication
framework for a reliable drone delivery as a service. PLoS One, v. 16, n. 4, 2021. Available:
<https://doi.org/10.1371/journal.pone.0250737>. Citation on page 70.

HARDKERNEL. ODROID-XU4. 2018. Available: <https://www.hardkernel.com/main/
products/prdt_info.php>. Citation on page 133.

HARTMANN, K.; STEUP, C. The vulnerability of UAVs to cyber attacks - An approach
to the risk assessment. In: International Conference on Cyber Conflict (CyCon). Tallinn,
Estonia: IEEE, 2013. p. 1–23. ISBN 978-1-4799-0450-1. ISSN 2325-5366. Available: <https:
//ieeexplore.ieee.org/document/6568373>. Citations on pages 36, 62, and 70.

HASHIZUME, K.; ROSADO, D. G.; FERNÁNDEZ-MEDINA, E.; FERNANDEZ, E. B. An
analysis of security issues for cloud computing. Journal of Internet Services and Applications,
v. 4, n. 1, p. 5, 2013. ISSN 1869-0238. Available: <https://doi.org/10.1186/1869-0238-4-5>.
Citations on pages 58, 68, 70, and 88.

HASSAN, R.; QAMAR, F.; HASAN, M. K.; AMAN, A. H. M.; AHMED, A. S. Internet of things
and its applications: A comprehensive survey. Symmetry, v. 12, n. 10, 2020. ISSN 2073-8994.
Available: <https://doi.org/10.3390/sym12101674>. Citation on page 39.

HAYAT, S.; YANMAZ, E.; MUZAFFAR, R. Survey on Unmanned Aerial Vehicle Networks
for Civil Applications: A Communications Viewpoint. IEEE Communications Surveys &
Tutorials, IEEE, v. 18, n. 4, p. 2624–2661, 2016. ISSN 1553-877X. Available: <https://doi.org/
10.1109/COMST.2016.2560343>. Citations on pages 30 and 69.

https://doi.org/10.1186/s40677-016-0060-y
https://doi.org/10.1109/COMST.2015.2495297
https://doi.org/10.1109/WF-IoT.2018.8355091
https://doi.org/10.1109/JIOT.2015.2505901
https://doi.org/10.1109/JIOT.2018.2861742
https://doi.org/10.1371/journal.pone.0250737
https://www.hardkernel.com/main/products/prdt_info.php
https://www.hardkernel.com/main/products/prdt_info.php
https://ieeexplore.ieee.org/document/6568373
https://ieeexplore.ieee.org/document/6568373
https://doi.org/10.1186/1869-0238-4-5
https://doi.org/10.3390/sym12101674
https://doi.org/10.1109/COMST.2016.2560343
https://doi.org/10.1109/COMST.2016.2560343


Bibliography 171

HE, D.; CHAN, S.; GUIZANI, M. Communication Security of Unmanned Aerial Vehicles. IEEE
Wireless Communications, IEEE, v. 24, n. 4, p. 134–139, 2017. ISSN 1536-1284. Available:
<https://doi.org/10.1109/MWC.2016.1600073WC>. Citations on pages 32, 35, 68, 69, and 88.

HOOK, B. Write portable code: an introduction to developing software for multiple plat-
forms. 1. ed. San Francisco, CA, USA: No Starch Press, 2005. 272 p. ISBN 9781593270568.
Citation on page 108.

HUANG, J.; LI, R.; AN, J.; NTALASHA, D.; YANG, F.; LI, K. Energy-Efficient Resource
Utilization for Heterogeneous Embedded Computing Systems. IEEE Transactions on Com-
puters, IEEE, v. 66, n. 9, p. 1518–1531, sep 2017. ISSN 0018-9340. Available: <https:
//doi.org/10.1109/TC.2017.2693186>. Citation on page 64.

HUNKELER, U.; TRUONG, H. L.; STANFORD-CLARK, A. MQTT-S — A publish/subscribe
protocol for Wireless Sensor Networks. 2008 3rd International Conference on Communica-
tion Systems Software and Middleware and Workshops (COMSWARE ’08), p. 791–798,
2008. Available: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4554519>.
Citation on page 132.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Ieee standard glossary of
software engineering terminology. p. 84, 1990. Available: <https://doi.org/10.1109/IEEESTD.
1990.101064>. Citation on page 45.

. IEEE Standard for Low-Rate Wireless Networks. [S.l.], 2016. 709 p. Available: <https:
//doi.org/10.1109/IEEESTD.2016.7460875>. Citations on pages 49 and 53.

Institute of Electrical and Electronics Engineers. IEEE Std 1934-2018: IEEE Standard for
Adoption of OpenFog Reference Architecture for Fog Computing. [S.l.], 2018. 1-176 p.
Available: <https://doi.org/10.1109/IEEESTD.2018.8423800>. Citations on pages 54 and 55.

INTERNATIONAL BUSINESS MACHINES CORPORATION (IBM). MQTT For Sensor
Networks (MQTT-SN) Protocol Specification Version 1.2. [S.l.], 2014. 81 p. Available: <http:
//mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf>. Citation on page 50.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO/IEC 17788:2014:
Information technology – Cloud computing – Overview and vocabulary. Geneva, 2014. 16 p.
Available: <https://www.iso.org/standard/60544.html>. Citation on page 54.

INTERNATIONAL TELECOMMUNICATION UNION. Overview of the Internet of things.
Geneva, 2012. 22 p. Available: <https://handle.itu.int/11.1002/1000/11559>. Citations on pages
25, 39, 45, 47, 57, and 69.

INTERNET ENGINEERING TASK FORCE. RPL: IPv6 Routing Protocol for Low-Power
and Lossy Networks. Fermont, 2012. 157 p. Available: <https://doi.org/10.17487/RFC6550>.
Citations on pages 49 and 52.

INTERNET ENGINEERING TASK FORCE (IETF). Extensible Messaging and Presence Pro-
tocol (XMPP): Core. Fremont, 2011. 211 p. Available: <https://doi.org/10.17487/RFC6120>.
Citations on pages 49 and 50.

. DNS-Based Service Discovery. Fermont, 2013. 1–49 p. Available: <https://doi.org/10.
17487/rfc6763>. Citations on pages 49 and 51.

https://doi.org/10.1109/MWC.2016.1600073WC
https://doi.org/10.1109/TC.2017.2693186
https://doi.org/10.1109/TC.2017.2693186
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4554519
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2018.8423800
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
https://www.iso.org/standard/60544.html
https://handle.itu.int/11.1002/1000/11559
https://doi.org/10.17487/RFC6550
https://doi.org/10.17487/RFC6120
https://doi.org/10.17487/rfc6763
https://doi.org/10.17487/rfc6763


172 Bibliography

. Multicast DNS. Fermont, 2013. 70 p. Available: <https://doi.org/10.17487/rfc6762>.
Citations on pages 49 and 51.

. The Constrained Application Protocol (CoAP). Fermont, 2014. 112 p. Available: <https:
//doi.org/10.17487/rfc7252>. Citation on page 49.

JAVAID, A. Y.; SUN, W.; DEVABHAKTUNI, V. K.; ALAM, M. Cyber Security Threat Analysis
and Modeling of an Unmanned Aerial Vehicle System. In: IEEE Conference on Technologies
for Homeland Security (HST). Waltham, USA: IEEE, 2012. p. 585–590. ISBN 978-1-4673-
2709-1. Citations on pages 82, 88, and 138.

JING, Q.; VASILAKOS, A. V.; WAN, J.; LU, J.; QIU, D. Security of the Internet of Things:
perspectives and challenges. Wireless Networks, v. 20, n. 8, p. 2481–2501, 2014. ISSN: 1022-
0038. Citation on page 62.

KANISTRAS, K.; MARTINS, G.; RUTHERFORD, M. J.; VALAVANIS, K. P. Survey of
Unmanned Aerial Vehicles (UAVs) for Traffic Monitoring. In: VALAVANIS, K. P.; VACHT-
SEVANOS, G. J. (Ed.). Handbook of Unmanned Aerial Vehicles. 1. ed. Dordrecht: Springer
Netherlands, 2015. chap. 122, p. 2643–2666. Available: <https://link.springer.com/10.1007/
978-90-481-9707-1{_}122>. Citation on page 30.

KHAN, F. U.; AWAIS, M.; RASHEED, M. B.; MASOOD, B.; GHADI, Y. A Comparison of
Wireless Standards in IoT for Indoor Localization Using LoPy. IEEE Access, v. 9, p. 65925–
65933, 2021. Available: <https://doi.org/10.1109/ACCESS.2021.3076371>. Citation on page
46.

KHAN, M. A.; SAFI, A.; QURESHI, I. M.; KHAN, I. U. Flying ad-hoc networks (FANETs):
A review of communication architectures, and routing protocols. In: First International Con-
ference on Latest trends in Electrical Engineering and Computing Technologies (INTEL-
LECT). Karachi, Pakistan: IEEE, 2017. p. 9. ISBN 978-1-5386-2969-7. Available: <https:
//doi.org/10.1109/INTELLECT.2017.8277614>. Citation on page 35.

KHAN, M. N.; RAO, A.; CAMTEPE, S. Lightweight cryptographic protocols for iot-constrained
devices: A survey. IEEE Internet of Things Journal, v. 8, n. 6, p. 4132–4156, 2021. Available:
<https://doi.org/10.1109/JIOT.2020.3026493>. Citation on page 59.

KHAN, S. Z.; MOHSIN, M.; IQBAL, W. On GPS spoofing of aerial platforms: a review of
threats, challenges, methodologies, and future research directions. PeerJ Computer Science,
v. 7, may 2021. ISSN 2376-5992. Available: <https://doi.org/10.7717/peerj-cs.507>. Citation
on page 37.

KHARRUFA, H.; AL-KASHOASH, H. A. A.; KEMP, A. H. RPL-Based Routing Protocols in
IoT Applications: A Review. IEEE Sensors Journal, IEEE, v. 19, n. 15, p. 5952–5967, 2019.
ISSN 1558-1748. Available: <https://doi.org/10.1109/JSEN.2019.2910881>. Citation on page
52.

KIM, T.; CHANG, J. M. Enhanced Power Saving Mechanism for Large-Scale 802.11ah Wireless
Sensor Networks. IEEE Transactions on Green Communications and Networking, IEEE,
v. 1, n. 4, p. 516–527, dec 2017. ISSN 2473-2400. Available: <https://doi.org/10.1109/TGCN.
2017.2727056>. Citation on page 65.

https://doi.org/10.17487/rfc6762
https://doi.org/10.17487/rfc7252
https://doi.org/10.17487/rfc7252
https://link.springer.com/10.1007/978-90-481-9707-1{_}122
https://link.springer.com/10.1007/978-90-481-9707-1{_}122
https://doi.org/10.1109/ACCESS.2021.3076371
https://doi.org/10.1109/INTELLECT.2017.8277614
https://doi.org/10.1109/INTELLECT.2017.8277614
https://doi.org/10.1109/JIOT.2020.3026493
https://doi.org/10.7717/peerj-cs.507
https://doi.org/10.1109/JSEN.2019.2910881
https://doi.org/10.1109/TGCN.2017.2727056
https://doi.org/10.1109/TGCN.2017.2727056


Bibliography 173

KIM, Y.; JO, J.; SHAW, M. A lightweight communication architecture for small UAS Traffic
Management (sUTM). In: Integrated Communication, Navigation and Surveillance Con-
ference (ICNS). Herndon, USA: IEEE, 2015. ISBN 978-1-4799-8952-2. Available: <https:
//doi.org/10.1109/ICNSURV.2015.7121263>. Citation on page 32.

KIM, Y.; JO, J.; SHRESTHA, S. A Server-Based Real-Time Privacy Protection Scheme against
Video Surveillance by Unmanned Aerial Systems. In: International Conference on Unmanned
Aircraft Systems (ICUAS). Orlando, USA: IEEE, 2014. p. 684–691. ISBN 978-1-4799-2376-2.
Available: <https://doi.org/10.1109/ICUAS.2014.6842313>. Citations on pages 29 and 63.

KONDURU, V. R.; BHARAMAGOUDRA, M. R. Challenges and solutions of interoperability on
IoT: How far have we come in resolving the IoT interoperability issues. In: 2017 International
Conference On Smart Technologies For Smart Nation (SmartTechCon). [s.n.], 2017. p.
572–576. Available: <https://doi.org/10.1109/SmartTechCon.2017.8358436>. Citation on page
45.

KONG, J.; LUO, H.; XU, K.; GU, D. L.; GERLA, M.; LU, S. Adaptive security for multilevel ad
hoc networks. Wireless Communications and Mobile Computing, John Wiley & Sons, Ltd.,
v. 2, n. 5, p. 533–547, aug 2002. ISSN 1530-8669. Citation on page 72.

KOUBAA, A.; QURESHI, B.; SRITI, M.-F.; JAVED, Y.; TOVAR, E. A service-oriented Cloud-
based management system for the Internet-of-Drones. In: IEEE International Conference
on Autonomous Robot Systems and Competitions (ICARSC). Coimbra, Portugal: IEEE,
2017. p. 329–335. ISBN 978-1-5090-6234-8. Available: <https://doi.org/10.1109/ICARSC.2017.
7964096>. Citations on pages 61, 62, and 67.

KRISHNA, C. G. L.; MURPHY, R. R. A review on cybersecurity vulnerabilities for unmanned
aerial vehicles. In: IEEE International Symposium on Safety, Security and Rescue Robotics
(SSRR). Shanghai, China: IEEE, 2017. p. 194–199. Citation on page 82.

LAGKAS, T.; ARGYRIOU, V.; BIBI, S.; SARIGIANNIDIS, P. UAV IoT Framework Views
and Challenges: Towards Protecting Drones as “Things”. Sensors, v. 18, n. 11, 2018. ISSN
1424-8220. Available: <https://doi.org/10.3390/s18114015>. Citations on pages 70 and 71.

LAROUI, M.; NOUR, B.; MOUNGLA, H.; CHERIF, M. A.; AFIFI, H.; GUIZANI, M. Edge and
fog computing for IoT: A survey on current research activities & future directions. Computer
Communications, Elsevier B.V., v. 180, n. July 2020, p. 210–231, 2021. ISSN 1873-703X.
Available: <https://doi.org/10.1016/j.comcom.2021.09.003>. Citation on page 55.

LAWRANCE, N.; SUKKARIEH, S. Wind Energy Based Path Planning for a Small Gliding Un-
manned Aerial Vehicle. In: AIAA Guidance, Navigation, and Control Conference. Chicago,
USA: American Institute of Aeronautics and Astronautics, 2009. ISBN 978-1-60086-978-5.
ISSN 2009-6112. Available: <https://doi.org/10.2514/6.2009-6112>. Citation on page 64.

LI, S. Introduction. In: Securing the Internet of Things. 1. ed. Cambridge, MA: Syn-
gress, 2017. chap. 1, p. 1–25. ISBN 9780128044582. Available: <https://doi.org/10.1016/
B978-0-12-804458-2.00001-9>. Citation on page 88.

LI, S.; TRYFONAS, T.; LI, H. The Internet of Things: a security point of view. Internet
Research, Emerald Group Publishing Limited, v. 26, n. 2, p. 337–359, 2016. ISSN 1066-2243.
Available: <https://doi.org/10.1108/IntR-07-2014-0173>. Citations on pages 56, 57, and 58.

https://doi.org/10.1109/ICNSURV.2015.7121263
https://doi.org/10.1109/ICNSURV.2015.7121263
https://doi.org/10.1109/ICUAS.2014.6842313
https://doi.org/10.1109/SmartTechCon.2017.8358436
https://doi.org/10.1109/ICARSC.2017.7964096
https://doi.org/10.1109/ICARSC.2017.7964096
https://doi.org/10.3390/s18114015
https://doi.org/10.1016/j.comcom.2021.09.003
https://doi.org/10.2514/6.2009-6112
https://doi.org/10.1016/B978-0-12-804458-2.00001-9
https://doi.org/10.1016/B978-0-12-804458-2.00001-9
https://doi.org/10.1108/IntR-07-2014-0173


174 Bibliography

LIN, J.; YU, W.; ZHANG, N.; YANG, X.; ZHANG, H.; ZHAO, W. A survey on internet
of things: Architecture, enabling , security and privacy, and applications. IEEE Internet of
Things Journal, v. 4, n. 5, p. 1125–1142, 2017. Available: <https://doi.org/10.1109/JIOT.2017.
2683200>. Citations on pages 39, 40, 47, 50, 51, 55, 57, 68, 69, and 70.

LONE, A. H.; NAAZ, R. Applicability of blockchain smart contracts in securing internet and
iot: A systematic literature review. Computer Science Review, v. 39, 2021. ISSN 1574-0137.
Available: <https://doi.org/10.1016/j.cosrev.2020.100360>. Citation on page 60.

LoRa Alliance. 2022. Https://lora-alliance.org. Accessed in 2022-04-20. Citations on pages 49
and 53.

MAGOTEAUX, K. C.; SANDERS, B.; SODANO, H. A. Investigation of an energy harvesting
small unmanned air vehicle. In: Proc. SPIE 6928, Active and Passive Smart Structures and
Integrated Systems 2008. San Diego, USA: [s.n.], 2008. v. 6928. ISBN 978-0-8194-7114-7.
ISSN 0277-786X. Available: <https://doi.org/10.1117/12.775851>. Citation on page 64.

MAHMOUD, S.; JAWHAR, I.; MOHAMED, N. A Softwarization Architecture for UAVs and
WSNs as Part of the Cloud Environment. In: International Conference on Cloud Engineer-
ing Workshop (IC2EW). Berlin, Germany: IEEE, 2016. p. 13–18. ISBN 978-1-5090-3684-4.
Available: <https://doi.org/10.1109/IC2EW.2016.17>. Citation on page 67.

MAHMOUD, S.; MOHAMED, N. Toward a Cloud Platform for UAV Resources and Services.
In: IEEE Symposium on Network Cloud Computing and Applications (NCCA). Munich,
Germany: IEEE, 2015. p. 23–30. ISBN 978-1-4673-7741-6. Available: <https://doi.org/10.1109/
NCCA.2015.14>. Citations on pages 26, 65, and 85.

MAHMOUD, S.; MOHAMED, N.; AL-JAROODI, J. Integrating UAVs into the Cloud Using the
Concept of the Web of Things. Journal of Robotics, p. 1–10, 2015. ISSN 1687-9600. Available:
<https://doi.org/10.1155/2015/631420>. Citations on pages 26, 61, 62, 65, and 66.

MAKHDOOM, I.; ABOLHASAN, M.; LIPMAN, J.; LIU, R. P.; NI, W. Anatomy of threats to
the internet of things. IEEE Communications Surveys & Tutorials, v. 21, n. 2, p. 1636–1675,
2019. Available: <https://doi.org/10.1109/COMST.2018.2874978>. Citation on page 56.

MAPLE, C. Security and privacy in the internet of things. Journal of Cyber Policy, Taylor &
Francis, v. 2, n. 2, p. 155–184, may 2017. ISSN 2373-8871. Available: <https://doi.org/10.1080/
23738871.2017.1366536>. Citation on page 69.

MARSHALL, D. M. Coordination with Manned Aircraft and Air Traffic Control. In: En-
cyclopedia of Aerospace Engineering. Chichester: John Wiley & Sons, Ltd, 2016. ISBN
9780470686652. Available: <https://doi.org/10.1002/9780470686652.eae1129>. Citation on
page 31.

MEDDEB, A. Internet of Things Standards: Who Stands Out from the Crowd? IEEE Com-
munications Magazine, IEEE, v. 54, n. 7, p. 40–47, jul 2016. ISSN 0163-6804. Available:
<https://doi.org/10.1109/MCOM.2016.7514162>. Citations on pages 25 and 48.

MELL, P.; GRANCE, T. The NIST Definition of Cloud Computing. [S.l.], 2011. 7 p. Available:
<https://doi.org/10.6028/NIST.SP.800-145>. Citation on page 54.

https://doi.org/10.1109/JIOT.2017.2683200
https://doi.org/10.1109/JIOT.2017.2683200
https://doi.org/10.1016/j.cosrev.2020.100360
https://doi.org/10.1117/12.775851
https://doi.org/10.1109/IC2EW.2016.17
https://doi.org/10.1109/NCCA.2015.14
https://doi.org/10.1109/NCCA.2015.14
https://doi.org/10.1155/2015/631420
https://doi.org/10.1109/COMST.2018.2874978
https://doi.org/10.1080/23738871.2017.1366536
https://doi.org/10.1080/23738871.2017.1366536
https://doi.org/10.1002/9780470686652.eae1129
https://doi.org/10.1109/MCOM.2016.7514162
https://doi.org/10.6028/NIST.SP.800-145


Bibliography 175

MIORANDI, D.; SICARI, S.; De Pellegrini, F.; CHLAMTAC, I. Internet of things: Vision,
applications and research challenges. Ad Hoc Networks, Elsevier, v. 10, n. 7, p. 1497–1516,
2012. ISSN 1570-8705. Available: <https://doi.org/10.1016/j.adhoc.2012.02.016>. Citations on
pages 26, 45, 47, 68, 69, and 70.

MOHAMED, N.; AL-JAROODI, J. Service-Oriented Middleware for Collaborative UAVs. In:
IEEE International Conference on Information Reuse and Integration (IRI). San Francisco,
USA: IEEE, 2013. p. 185–192. ISBN 9781479910502. Available: <https://doi.org/10.1109/IRI.
2013.6642471>. Citations on pages 33 and 66.

MOHAMED, N.; AL-JAROODI, J.; JAWHAR, I.; NOURA, H.; MAHMOUD, S. Uavfog: A
uav-based fog computing for internet of things. In: 2017 IEEE SmartWorld, Ubiquitous Intel-
ligence Computing, Advanced Trusted Computed, Scalable Computing Communications,
Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/S-
CALCOM/UIC/ATC/CBDCom/IOP/SCI). [S.l.: s.n.], 2017. p. 1–8. Citations on pages 62
and 70.

MOKHTARZADEH, H.; COLTEN, T. Small UAV Position and Attitude, Raw Sensor, and
Aerial Imagery Data Collected over Farm Field with Surveyed Markers. 2015. Available:
<https://doi.org/10.13020/D6BC7Z>. Citation on page 133.

MONTENEGRO, G.; KUSHALNAGAR, N.; HUI, J.; CULLER, D. Transmission of IPv6
Packets over IEEE 802.15.4 Networks. RFC Editor, 2007. RFC 4944. (Request for Comments,
4944). Available: <https://doi.org/10.17487/rfc4944>. Citations on pages 49 and 51.

MORADBEIKIE, A.; KESHAVARZ, A.; ROSTAMI, H.; PAIVA, S.; LOPES, S. I. GNSS-Free
Outdoor Localization Techniques for Resource-Constrained IoT Architectures: A Literature
Review. Applied Sciences, v. 11, n. 22, 2021. ISSN 2076-3417. Available: <https://doi.org/10.
3390/app112210793>. Citation on page 46.

MOTLAGH, N. H.; TALEB, T.; AROUK, O. Low-Altitude Unmanned Aerial Vehicles-Based
Internet of Things Services: Comprehensive Survey and Future Perspectives. IEEE Internet of
Things Journal, v. 3, n. 6, p. 899–922, 2016. ISSN 2327-4662. Available: <https://doi.org/10.
1109/JIOT.2016.2612119>. Citations on pages 30, 31, 32, 33, 35, 61, and 63.

MQTT: The Standard for IoT Messaging. 2022. Https://mqtt.org. Accessed in 2022-04-20.
Citation on page 49.

MUSADDIQ, A.; ZIKRIA, Y. B.; HAHM, O.; YU, H.; BASHIR, A. K.; KIM, S. W. A Survey
on Resource Management in IoT Operating Systems. IEEE Access, v. 6, p. 8459–8482, feb
2018. ISSN 2169-3536. Available: <https://doi.org/10.1109/ACCESS.2018.2808324>. Citation
on page 42.

NAGOWAH, S. D.; STA, H. B.; GOBIN-RAHIMBUX, B. A. An Overview of Semantic Interoper-
ability Ontologies and Frameworks for IoT. In: 2018 Sixth International Conference on Enter-
prise Systems (ES). [s.n.], 2018. p. 82–89. Available: <https://doi.org/10.1109/ES.2018.00020>.
Citations on pages 44 and 45.

NAHRSTEDT, K.; LI, H.; NGUYEN, P.; CHANG, S.; VU, L. Internet of Mobile Things:
Mobility-Driven Challenges, Designs and Implementations. In: IEEE International Confer-
ence on Internet-of-Things Design and Implementation (IoTDI). Berlin, Germany: IEEE,
2016. p. 25–36. ISBN 978-1-4673-9948-7. Available: <https://doi.org/10.1109/IoTDI.2015.41>.
Citation on page 68.

https://doi.org/10.1016/j.adhoc.2012.02.016
https://doi.org/10.1109/IRI.2013.6642471
https://doi.org/10.1109/IRI.2013.6642471
https://doi.org/10.13020/D6BC7Z
https://doi.org/10.17487/rfc4944
https://doi.org/10.3390/app112210793
https://doi.org/10.3390/app112210793
https://doi.org/10.1109/JIOT.2016.2612119
https://doi.org/10.1109/JIOT.2016.2612119
https://doi.org/10.1109/ACCESS.2018.2808324
https://doi.org/10.1109/ES.2018.00020
https://doi.org/10.1109/IoTDI.2015.41


176 Bibliography

NAIK, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP
and HTTP. In: IEEE International Systems Engineering Symposium (ISSE). Vienna, Aus-
tria: IEEE, 2017. ISBN 978-1-5386-3403-5. Available: <https://doi.org/10.1109/SysEng.2017.
8088251>. Citations on pages 49 and 50.

NAOUI, S.; ELHDHILI, M. E.; SAIDANE, L. A. Security analysis of existing iot key manage-
ment protocols. In: 2016 IEEE/ACS 13th International Conference of Computer Systems
and Applications (AICCSA). [s.n.], 2016. p. 7. Available: <https://doi.org/10.1109/AICCSA.
2016.7945806>. Citation on page 59.

NESHENKO, N.; BOU-HARB, E.; CRICHIGNO, J.; KADDOUM, G.; GHANI, N. Demys-
tifying iot security: An exhaustive survey on iot vulnerabilities and a first empirical look on
internet-scale iot exploitations. IEEE Communications Surveys Tutorials, v. 21, n. 3, p. 2702–
2733, 2019. Available: <https://doi.org/10.1109/COMST.2019.2910750>. Citation on page
58.

NGU, A. H.; GUTIERREZ, M.; METSIS, V.; NEPAL, S.; SHENG, Q. Z. IoT Middleware: A
Survey on Issues and Enabling Technologies. IEEE Internet of Things Journal, v. 4, n. 1, p.
1–20, Feb 2017. ISSN 2372-2541. Available: <https://doi.org/10.1109/JIOT.2016.2615180>.
Citation on page 41.

NI, J.; ZHANG, K.; LIN, X.; SHEN, X. Securing fog computing for internet of things appli-
cations: Challenges and solutions. IEEE Communications Surveys Tutorials, v. 20, n. 1, p.
601–628, 2018. Available: <https://doi.org/10.1109/COMST.2017.2762345>. Citation on page
55.

NING, H.; ZHEN, Z.; SHI, F.; DANESHMAND, M. A survey of identity modeling and identity
addressing in internet of things. IEEE Internet of Things Journal, v. 7, n. 6, p. 4697–4710,
2020. Available: <https://doi.org/10.1109/JIOT.2020.2971773>. Citation on page 40.

Object Management Group. Data Distribution Service (DDS) Version 1.4. Needham, 2015.
1–20 p. Available: <http://www.omg.org/spec/DDS/1.4>. Citations on pages 49 and 50.

ORGANIZATION FOR THE ADVANCEMENT OF STRUCTURED INFORMATION STAN-
DARDS. OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0. Boston, 2012.
124 p. Available: <http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.
html>. Citations on pages 49 and 50.

. MQTT Version 3.1.1. Boston, 2014. 81 p. Available: <http://docs.oasis-open.org/mqtt/
mqtt/v3.1.1/os/mqtt-v3.1.1-os.html>. Citations on pages 49 and 132.

OUBBATI, O. S.; LAKAS, A.; ZHOU, F.; GüNEş, M.; YAGOUBI, M. B. A survey on position-
based routing protocols for Flying Ad hoc Networks (FANETs). Vehicular Communications,
v. 10, p. 29 – 56, 2017. ISSN 2214-2096. Available: <https://doi.org/10.1016/j.vehcom.2017.10.
003>. Citation on page 35.

PAKROOH, R.; BOHLOOLI, A. A Survey on Unmanned Aerial Vehicles-Assisted Internet
of Things: A Service-Oriented Classification. Wirel. Pers. Commun., Springer Science and
Business Media LLC, v. 119, p. 1541–1575, 2021. ISSN 1572-834X. Available: <https://doi.org/
10.1016/j.comcom.2020.10.023>. Citations on pages 25 and 61.

https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.1109/AICCSA.2016.7945806
https://doi.org/10.1109/AICCSA.2016.7945806
https://doi.org/10.1109/COMST.2019.2910750
https://doi.org/10.1109/JIOT.2016.2615180
https://doi.org/10.1109/COMST.2017.2762345
https://doi.org/10.1109/JIOT.2020.2971773
http://www.omg.org/spec/DDS/1.4
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://doi.org/10.1016/j.vehcom.2017.10.003
https://doi.org/10.1016/j.vehcom.2017.10.003
https://doi.org/10.1016/j.comcom.2020.10.023
https://doi.org/10.1016/j.comcom.2020.10.023


Bibliography 177

PATWARY, A. A. N.; NAHA, R. K.; GARG, S.; BATTULA, S. K.; PATWARY, M. A. K.;
AGHASIAN, E.; AMIN, M. B.; MAHANTI, A.; GONG, M. Towards secure fog computing:
A survey on trust management, privacy, authentication, threats and access control. Electronics
(Switzerland), v. 10, n. 10, p. 1–52, 2021. ISSN 2079-9292. Available: <https://doi.org/10.3390/
electronics10101171>. Citation on page 55.

PERERA, C.; ZASLAVSKY, A.; CHRISTEN, P.; GEORGAKOPOULOS, D. Context Aware
Computing for The Internet of Things: A Survey. IEEE Communications Surveys & Tutorials,
IEEE, v. 16, n. 1, p. 414–454, 2014. ISSN 1553-877X. Available: <https://doi.org/10.1109/SURV.
2013.042313.00197>. Citation on page 71.

PEREZ-GRAU, F.; RAGEL, R.; CABALLERO, F.; VIGURIA, A.; OLLERO, A. Semi-
autonomous teleoperation of UAVs in search and rescue scenarios. In: International Conference
on Unmanned Aircraft Systems (ICUAS). Miami, USA: IEEE, 2017. p. 1066–1074. ISBN
978-1-5090-4495-5. Available: <https://doi.org/10.1109/ICUAS.2017.7991349>. Citation on
page 30.

PERZ, R.; WRONOWSKI, K. UAV application for precision agriculture. Aircraft Engineering
and Aerospace Technology, Emerald Group Publishing Limited, p. AEAT–01–2018–0056, oct
2018. ISSN 0002-2667. Available: <https://doi.org/10.1108/AEAT-01-2018-0056>. Citation on
page 30.

PIGATTO, D. F. HAMSTER - Healthy, mobility and security-based data communication
architecture for Unmanned Aircraft Systems. 201 p. Phd Thesis (PhD Thesis) — USP – Uni-
versidade de São Paulo, São Carlos, 2017. Available: <http://www.teses.usp.br/teses/disponiveis/
55/55134/tde-11072017-085511/>. Citations on pages 26, 63, 75, 83, 141, and 157.

PIGATTO, D. F.; GONÇALVES, L.; ROBERTO, G. F.; Rodrigues Filho, J. F.; Floro da Silva,
N. B.; PINTO, A. R.; Lucas Jaquie Castelo Branco, K. R. The HAMSTER Data Communication
Architecture for Unmanned Aerial, Ground and Aquatic Systems. Journal of Intelligent &
Robotic Systems, IEEE, v. 84, n. 1-4, p. 705–723, dec 2016. ISSN 0921-0296. Available:
<https://doi.org/10.1007/s10846-016-0356-x>. Citations on pages 68 and 75.

POPLI, S.; JHA, R. K.; JAIN, S. A Survey on Energy Efficient Narrowband Internet of Things
(NBIoT): Architecture, Application and Challenges. IEEE Access, IEEE, v. 7, p. 16739–16776,
2019. ISSN 21693536. Citation on page 49.

POURGHEBLEH, B.; HAYYOLALAM, V.; ANVIGH, A. A. Service discovery in the Internet
of Things: review of current trends and research challenges. Wireless Networks, v. 26, p.
5371–5391, 2020. ISSN 1572-8196. Available: <https://doi.org/10.1007/s11276-020-02405-0>.
Citation on page 44.

PULIAFITO, C.; MINGOZZI, E.; LONGO, F.; PULIAFITO, A.; RANA, O. Fog computing
for the Internet of Things: A survey. ACM Transactions on Internet Technology, v. 19, n. 2,
p. 41, 2019. ISSN 1557-6051. Citations on pages 54 and 55.

RAGHUNATHAN, V.; KANSAL, A.; HSU, J.; FRIEDMAN, J.; SRIVASTAVA, M. Design
considerations for solar energy harvesting wireless embedded systems. In: International Sym-
posium on Information Processing in Sensor Networks (IPSN). Boise, USA: IEEE, 2005.
p. 457–462. ISBN 0-7803-9201-9. Available: <https://doi.org/10.1109/IPSN.2005.1440973>.
Citation on page 64.

https://doi.org/10.3390/electronics10101171
https://doi.org/10.3390/electronics10101171
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1109/ICUAS.2017.7991349
https://doi.org/10.1108/AEAT-01-2018-0056
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11072017-085511/
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11072017-085511/
https://doi.org/10.1007/s10846-016-0356-x
https://doi.org/10.1007/s11276-020-02405-0
https://doi.org/10.1109/IPSN.2005.1440973


178 Bibliography

RANGANATHAN, P. Recipe for efficiency. Communications of the ACM, ACM, New York,
USA, v. 53, n. 4, p. 60–67, apr 2010. ISSN 0001-0782. Available: <https://doi.org/10.1145/
1721654.1721673>. Citation on page 64.

RASTOGI, E.; SAXENA, N.; ROY, A.; SHIN, D. R. Narrowband internet of things: A com-
prehensive study. Computer Networks, v. 173, 2020. ISSN 1389-1286. Citation on page
49.

RAZA, U.; KULKARNI, P.; SOORIYABANDARA, M. Low power wide area networks: An
overview. IEEE Communications Surveys Tutorials, v. 19, n. 2, p. 855–873, 2017. Citation
on page 52.

RAZZAQUE, M. A.; MILOJEVIC-JEVRIC, M.; PALADE, A.; CLARKE, S. Middleware for
internet of things: A survey. IEEE Internet of Things Journal, v. 3, n. 1, p. 70–95, 2016.
Available: <https://doi.org/10.1109/JIOT.2015.2498900>. Citation on page 41.

RELIC. RELIC Toolkit. 2018. Available: <https://github.com/relic-toolkit>. Citation on page
133.

RIOT — The friendly Operating System for the Internet of Things. 2021. Https://www.riot-os.org.
Accessed in 2021-12-20. Citation on page 42.

RODRIGUES, M.; AMARO, J.; OSORIO, F. S.; KALINKA, B. R. Authentication Methods for
UAV Communication. Proceedings - International Symposium on Computers and Commu-
nications, 2019. ISSN 1530-1346. Citation on page 151.

RODRIGUES, M.; BRANCO, K. R. L. J. C. Uavs at your service: Towards iot integration with
hamster. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS). [s.n.],
2019. p. 856–865. Available: <https://doi.org/10.1109/ICUAS.2019.8797790>. Citations on
pages 27, 77, 88, and 156.

. Cloud–SPHERE: Towards Secure UAV Service Provision. Journal of Intelligent &
Robotic Systems, v. 97, p. 249–268, 2020. ISSN 1573-0409. Available: <https://doi.org/10.
1007/s10846-019-01046-6>. Citations on pages 28, 70, 77, 88, 130, 131, 132, 134, 135, 136,
137, 138, and 157.

. Enabling uav services in the iot with hamster. In: 2021 IEEE Symposium on Comput-
ers and Communications (ISCC). [s.n.], 2021. p. 1–6. Available: <https://doi.org/10.1109/
ISCC53001.2021.9631461>. Citations on pages 28, 77, 87, 88, 143, 146, 147, 148, and 157.

. Providing UAV Secure Services in the Internet of Things with HAMSTER: a Tutorial.
[Manuscript submitted for publication]. 2022. Citations on pages 28, 76, 80, 86, 89, 96, 97, 98,
99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 113, 114, 116, 117, 119, 147, 149,
150, 151, 156, and 157.

RODRIGUES, M.; PIGATTO, D. F.; BRANCO, K. R. L. J. C. Cloud-SPHERE: A Security Ap-
proach for Connected Unmanned Aerial Vehicles. In: International Conference on Unmanned
Aircraft Systems (ICUAS). Dallas, EUA: IEEE, 2018. p. 769–778. ISBN 978-1-5386-1354-2.
Available: <https://doi.org/10.1109/ICUAS.2018.8453302>. Citations on pages 27, 77, 91, 123,
124, 125, 126, 127, 134, and 156.

https://doi.org/10.1145/1721654.1721673
https://doi.org/10.1145/1721654.1721673
https://doi.org/10.1109/JIOT.2015.2498900
https://github.com/relic-toolkit
https://doi.org/10.1109/ICUAS.2019.8797790
https://doi.org/10.1007/s10846-019-01046-6
https://doi.org/10.1007/s10846-019-01046-6
https://doi.org/10.1109/ISCC53001.2021.9631461
https://doi.org/10.1109/ISCC53001.2021.9631461
https://doi.org/10.1109/ICUAS.2018.8453302


Bibliography 179

. Navigation phases platform: Towards green computing for uavs. In: 2018 IEEE Sympo-
sium on Computers and Communications (ISCC). [s.n.], 2018. p. 01171–01176. Available:
<https://doi.org/10.1109/ISCC.2018.8538713>. Citations on pages 27, 77, 89, 127, 128, 129,
130, 131, and 156.

. Context-aware operation for unmanned systems with hamster. In: 2020 IEEE Symposium
on Computers and Communications (ISCC). [s.n.], 2020. p. 1–6. Available: <https://doi.org/
10.1109/ISCC50000.2020.9219657>. Citations on pages 28, 77, 84, 135, 138, 139, 140, 141,
and 156.

RODRIGUES, M.; PIGATTO, D. F.; FONTES, J. V. C.; PINTO, A. S. R.; DIGUET, J.-P.;
BRANCO, K. R. L. J. C. UAV Integration Into IoIT : Opportunities and Challenges. Inter-
national Conference on Autonomic and Autonomous Systems (ICAS), IARIA, p. 6, 2017.
Citation on page 27.

ROVIRA-SUGRANES, A.; RAZI, A.; AFGHAH, F.; CHAKARESKI, J. A Review of AI-
enabled Routing Protocols for UAV Networks: Trends, Challenges, and Future Outlook.
2021. 30 p. Available: <https://arxiv.org/abs/2104.01283>. Citations on pages 33, 35, 38,
and 39.

ROYO, P.; LOPEZ, J.; BARRADO, C.; PASTOR, E. Service Abstraction Layer for UAV Flexible
Application Development. In: AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA:
American Institute of Aeronautics and Astronautics, 2008. p. 1–19. ISBN 978-1-62410-128-1.
Available: <https://doi.org/10.2514/6.2008-484>. Citations on pages 65 and 66.

SABRI, C.; KRIAA, L.; AZZOUZ, S. L. Comparison of iot constrained devices operating
systems: A survey. In: IEEE/ACS 14th International Conference on Computer Systems
and Applications (AICCSA). Hammamet, Tunisia: [s.n.], 2017. p. 369–375. ISSN 2161-5330.
Available: <https://doi.org/10.1109/AICCSA.2017.187>. Citation on page 42.

SAHINGOZ, O. K. Networking Models in Flying Ad-Hoc Networks (FANETs): Concepts and
Challenges. Journal of Intelligent & Robotic Systems, v. 74, n. 1-2, p. 513–527, apr 2014.
Available: <https://doi.org/10.1007/s10846-013-9959-7>. Citations on pages 31 and 35.

SALMAN, T.; JAIN, R. A Survey of Protocols and Standards for Internet of Things. 2016.
Available: <https://arxiv.org/abs/1903.11549>. Citations on pages 48 and 50.

SAMAILA, M. G.; NETO, M.; FERNANDES, D. A. B.; FREIRE, M. M.; INÁCIO, P. R. M.
Challenges of securing Internet of Things devices: A survey. Security and Privacy, v. 1, n. 2,
p. 32, mar 2018. ISSN 2475-6725. Available: <https://doi.org/10.1002/spy2.20>. Citation on
page 58.

SHAABANA, A.; Fangyun Luo; Ying Chen; JAEKEL, A. Green networking strategies for
distributed computing. In: IEEE Consumer Communications and Networking Conference
(CCNC). Las Vegas, USA: IEEE, 2014. p. 29–34. ISBN 978-1-4799-2355-7. Available: <https:
//doi.org/10.1109/CCNC.2014.6940503>. Citation on page 65.

SHARIAT, A.; TIZGHADAM, A.; LEON-GARCIA, A. An ICN-based publish-subscribe plat-
form to deliver UAV service in smart cities. In: IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS). San Francisco, USA: IEEE, 2016. p. 698–703.
ISBN 978-1-4673-9955-5. ISSN 0743166X. Available: <https://doi.org/10.1109/INFCOMW.
2016.7562167>. Citation on page 70.

https://doi.org/10.1109/ISCC.2018.8538713
https://doi.org/10.1109/ISCC50000.2020.9219657
https://doi.org/10.1109/ISCC50000.2020.9219657
https://arxiv.org/abs/2104.01283
https://doi.org/10.2514/6.2008-484
https://doi.org/10.1109/AICCSA.2017.187
https://doi.org/10.1007/s10846-013-9959-7
https://arxiv.org/abs/1903.11549
https://doi.org/10.1002/spy2.20
https://doi.org/10.1109/CCNC.2014.6940503
https://doi.org/10.1109/CCNC.2014.6940503
https://doi.org/10.1109/INFCOMW.2016.7562167
https://doi.org/10.1109/INFCOMW.2016.7562167


180 Bibliography

SHI, F.; LI, Q.; ZHU, T.; NING, H. A Survey of Data Semantization in Internet of Things.
Sensors, MDPI, v. 18, n. 2, p. 313, jan 2018. ISSN 1424-8220. Available: <https://doi.org/10.
3390/s18010313>. Citation on page 44.

SICARI, S.; RIZZARDI, A.; GRIECO, L.; COEN-PORISINI, A. Security, Privacy and Trust
in Internet of Things: The Road Ahead. Computer Networks, Elsevier, v. 76, p. 146–164, jan
2015. ISSN 1389-1286. Available: <https://doi.org/10.1016/j.comnet.2014.11.008>. Citations
on pages 56, 57, 68, 69, and 70.

SINGH, J.; PASQUIER, T.; BACON, J.; KO, H.; EYERS, D. Twenty Security Considerations
for Cloud-Supported Internet of Things. IEEE Internet of Things Journal, IEEE, v. 3, n. 3, p.
269–284, jun 2016. ISSN 2327-4662. Available: <https://doi.org/10.1109/JIOT.2015.2460333>.
Citations on pages 42, 54, and 55.

SINGH, K.; VERMA, A. K. Threat modeling for multi-UAV Adhoc networks. In: IEEE Region
10 Conference (TENCON). Penang, Malaysia: IEEE, 2017. p. 1544–1549. ISBN 978-1-5090-
1134-6. ISSN 2159-3450. Citations on pages 15, 137, and 138.

. Flying Adhoc Networks Concept and Challenges. In: Mehdi Khosrow-Pour, D.
(Ed.). Encyclopedia of Information Science and Technology, Fourth Edition. IGI Global,
2018. chap. 530, p. 6106–6113. ISBN 9781522575986. Available: <https://doi.org/10.4018/
978-1-5225-2255-3.ch530>. Citations on pages 33, 34, and 35.

SINGH, K. J.; KAPOOR, D. S. Create your own internet of things: A survey of iot platforms.
IEEE Consumer Electronics Magazine, v. 6, n. 2, p. 57–68, April 2017. ISSN 2162-2256.
Available: <https://doi.org/10.1109/MCE.2016.2640718>. Citation on page 41.

SINGH, S.; SHARMA, P. K.; MOON, S. Y.; PARK, J. H. Advanced lightweight encryption
algorithms for IoT devices: survey, challenges and solutions. Journal of Ambient Intelligence
and Humanized Computing, 2017. ISSN 1868-5145. In press. Available: <https://doi.org/10.
1007/s12652-017-0494-4>. Citation on page 59.

SOUZA, S. Castro de; FILHO, J. G. P. Semantic Interoperability in IoT: A Systematic Mapping.
In: GALININA, O.; ANDREEV, S.; BALANDIN, S.; KOUCHERYAVY, Y. (Ed.). Internet of
Things, Smart Spaces, and Next Generation Networks and Systems. St. Petersburg, Russia:
Springer, Cham, 2019. (Lecture Notes in Computer Science, v. 11660), p. 53–64. Available:
<https://doi.org/10.1007/978-3-030-30859-9_5>. Citation on page 45.

Sravanthi Chalasani; CONRAD, J. M. A survey of energy harvesting sources for embedded
systems. In: SoutheastCon. Huntsville, USA: IEEE, 2008. p. 442–447. ISBN 978-1-4244-1883-
1. Available: <https://doi.org/10.1109/SECON.2008.4494336>. Citation on page 64.

STELLIOS, I.; KOTZANIKOLAOU, P.; PSARAKIS, M.; ALCARAZ, C.; LOPEZ, J. A Survey
of IoT-Enabled Cyberattacks: Assessing Attack Paths to Critical Infrastructures and Services.
IEEE Communications Surveys Tutorials, v. 20, n. 4, p. 3453–3495, 2018. Available: <https:
//doi.org/10.1109/COMST.2018.2855563>. Citation on page 58.

STÖCKER, C.; BENNETT, R.; NEX, F.; GERKE, M.; ZEVENBERGEN, J. Review of the
Current State of UAV Regulations. Remote Sensing, MDPI AG, Basel, v. 9, n. 5, p. 459, may
2017. ISSN 2072-4292. Available: <https://doi.org/10.3390/rs9050459>. Citation on page 32.

https://doi.org/10.3390/s18010313
https://doi.org/10.3390/s18010313
https://doi.org/10.1016/j.comnet.2014.11.008
https://doi.org/10.1109/JIOT.2015.2460333
https://doi.org/10.4018/978-1-5225-2255-3.ch530
https://doi.org/10.4018/978-1-5225-2255-3.ch530
https://doi.org/10.1109/MCE.2016.2640718
https://doi.org/10.1007/s12652-017-0494-4
https://doi.org/10.1007/s12652-017-0494-4
https://doi.org/10.1007/978-3-030-30859-9_5
https://doi.org/10.1109/SECON.2008.4494336
https://doi.org/10.1109/COMST.2018.2855563
https://doi.org/10.1109/COMST.2018.2855563
https://doi.org/10.3390/rs9050459


Bibliography 181

SZILAGYI, I.; WIRA, P. Ontologies and Semantic Web for the Internet of Things - A Survey. In:
42nd Annual Conference of the IEEE Industrial Electronics Society (IECON). Florence,
Italy: IEEE, 2016. p. 6949–6954. ISBN 978-1-5090-3474-1. Available: <https://doi.org/10.1109/
IECON.2016.7793744>. Citation on page 44.

TAHSIEN, S. M.; KARIMIPOUR, H.; SPACHOS, P. Machine learning based solutions for
security of Internet of Things (IoT): A survey. Journal of Network and Computer Applica-
tions, v. 161, 2020. ISSN 1084-8045. Available: <https://doi.org/10.1016/j.jnca.2020.102630>.
Citation on page 60.

TAN, Y.; WANG, J.; LIU, J.; ZHANG, Y. Unmanned Systems Security: Models, Challenges, and
Future Directions. IEEE Network, IEEE, v. 34, n. 4, p. 291–297, jul 2020. ISSN 0890-8044.
Available: <https://doi.org/10.1109/MNET.001.1900546>. Citation on page 36.

TEMDEE, P.; PRASAD, R. Context-Aware Communication and Computing: Applica-
tions for Smart Environment. Cham: Springer International Publishing, 2018. (Springer Se-
ries in Wireless Technology). ISBN 978-3-319-59034-9. Available: <https://doi.org/10.1007/
978-3-319-59035-6>. Citations on pages 71 and 72.

THING, V. L.; WU, J. Autonomous Vehicle Security: A Taxonomy of Attacks and Defences. In:
IEEE International Conference on Internet of Things (iThings) and IEEE Green Comput-
ing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData). Chengdu, China: IEEE, 2016. p. 164–170.
ISBN 978-1-5090-5880-8. Citation on page 82.

THOMAS, J. P.; QIDWAI, M. A.; KELLOGG, J. C. Energy scavenging for small-scale unmanned
systems. Journal of Power Sources, Elsevier B.V., v. 159, n. 2, p. 1494–1509, sep 2006. ISSN
0378-7753. Available: <https://doi.org/10.1016/j.jpowsour.2005.12.084>. Citation on page 64.

THOUNTHONG, P.; RAËL, S.; DAVAT, B. Energy management of fuel cell/battery/super-
capacitor hybrid power source for vehicle applications. Journal of Power Sources, Elsevier
B.V., v. 193, n. 1, p. 376–385, aug 2009. ISSN 03787753. Available: <https://doi.org/10.1016/j.
jpowsour.2008.12.120>. Citation on page 64.

TinyOS. 2022. Https://github.com/tinyos/tinyos-main. Accessed in 2022-04-20. Citation on
page 42.

TRIANTAFYLLOU, A.; SARIGIANNIDIS, P.; LAGKAS, T. D. Network Protocols, Schemes,
and Mechanisms for Internet of Things (IoT): Features, Open Challenges, and Trends. Wireless
Communications and Mobile Computing, v. 2018, p. 24, 2018. ISSN 1530-8669. Available:
<https://doi.org/10.1155/2018/5349894>. Citations on pages 48 and 52.

TSCHOFENIG, H. Fixing User Authentication for the Internet of Things (IoT). Datenschutz
und Datensicherheit, Springer Fachmedien Wiesbaden, v. 40, n. 4, p. 222–224, apr 2016. ISSN
1614-0702. Available: <https://doi.org/10.1007/s11623-016-0582-1>. Citation on page 54.

TURNER, I. L.; HARLEY, M. D.; DRUMMOND, C. D. UAVs for coastal surveying. Coastal
Engineering, Elsevier B.V., v. 114, p. 19–24, aug 2016. ISSN 03783839. Available: <https:
//doi.org/10.1016/j.coastaleng.2016.03.011>. Citation on page 30.

TURNER, R. M. Context-mediated behavior for intelligent agents. Int. J. of Human-Computer
Studies, Elsevier Ltd., v. 48, n. 3, p. 307–330, mar 1998. ISSN 1071-5819. Citation on page 81.

https://doi.org/10.1109/IECON.2016.7793744
https://doi.org/10.1109/IECON.2016.7793744
https://doi.org/10.1016/j.jnca.2020.102630
https://doi.org/10.1109/MNET.001.1900546
https://doi.org/10.1007/978-3-319-59035-6
https://doi.org/10.1007/978-3-319-59035-6
https://doi.org/10.1016/j.jpowsour.2005.12.084
https://doi.org/10.1016/j.jpowsour.2008.12.120
https://doi.org/10.1016/j.jpowsour.2008.12.120
https://doi.org/10.1155/2018/5349894
https://doi.org/10.1007/s11623-016-0582-1
https://doi.org/10.1016/j.coastaleng.2016.03.011
https://doi.org/10.1016/j.coastaleng.2016.03.011


182 Bibliography

UHER, J.; HARPER, J.; III, R. G. M.; PATTON, P.; FARROHA, B. Investigating end-to-end
security in the fifth generation wireless capabilities and IoT extensions. In: TERNOVSKIY,
I. V.; CHIN, P. (Ed.). Cyber Sensing 2016. SPIE, 2016. v. 9826, p. 51 – 66. Available: <https:
//doi.org/10.1117/12.2229608>. Citations on pages 42, 55, 57, 59, and 70.

VALAVANIS, K. P.; VACHTSEVANOS, G. J. Handbook of Unmanned Aerial Vehicles. Dor-
drecht: Springer Netherlands, 2015. ISBN: 9789048197064. Citations on pages 25, 29, and 30.

VANELLI, B.; RODRIGUES, M.; SILVA, M. P. da; PINTO, A.; DANTAS, M. A. R. A Proposed
Architecture for Robots as a Service. In: BRANCO, K.; PINTO, A.; PIGATTO, D. (Ed.).
Communication in Critical Embedded Systems. WoCCES 2014, WoCCES 2015, WoCCES
2013, WoCCES 2016. Cham: Springer, 2017, (Communications in Computer and Information
Science, v. 702). chap. 7, p. 117–130. ISBN 978-3-319-61403-8. Available: <https://doi.org/10.
1007/978-3-319-61403-8_7>. Citation on page 66.

VARSHNEY, P.; SIMMHAN, Y. Demystifying Fog Computing: Characterizing Architectures,
Applications and Abstractions. Proceedings - 2017 IEEE 1st International Conference on
Fog and Edge Computing, ICFEC 2017, n. 100, p. 115–124, 2017. Available: <https://doi.org/
10.1109/ICFEC.2017.20>. Citations on pages 11 and 56.

VIGNAU, B.; KHOURY, R.; HALLé, S.; HAMOU-LHADJ, A. The evolution of IoT Malwares,
from 2008 to 2019: Survey, taxonomy, process simulator and perspectives. Journal of Systems
Architecture, v. 116, p. 102143, 2021. ISSN 1383-7621. Available: <https://doi.org/10.1016/j.
sysarc.2021.102143>. Citation on page 59.

VILLAVERDE, B. C.; De Paz Alberola, R.; JARA, A. J.; FEDOR, S.; DAS, S. K.; PESCH,
D. Service Discovery Protocols for Constrained Machine-to-Machine Communications. IEEE
Communications Surveys & Tutorials, IEEE, v. 16, n. 1, p. 41–60, 2014. ISSN 1553-877X.
Available: <https://doi.org/10.1109/SURV.2013.102213.00229>. Citation on page 51.

WANT, R.; SCHILIT, B. N.; JENSON, S. Enabling the Internet of Things. Computer, IEEE,
v. 48, n. 1, p. 28–35, jan 2015. ISSN 0018-9162. Available: <https://doi.org/10.1109/MC.2015.
12>. Citation on page 47.

WASHINGTON, A.; CLOTHIER, R. A.; SILVA, J. A review of unmanned aircraft system
ground risk models. Progress in Aerospace Sciences, v. 95, p. 24 – 44, 2017. ISSN 0376-0421.
Citation on page 140.

WHITE, G.; NALLUR, V.; CLARKE, S. Quality of service approaches in IoT: A systematic
mapping. Journal of Systems and Software, Elsevier Inc., v. 132, p. 186–203, oct 2017. ISSN
0164-1212. Available: <https://doi.org/10.1016/j.jss.2017.05.125>. Citation on page 44.

WHITMORE, A.; AGARWAL, A.; Da Xu, L. The Internet of Things — A Survey of Topics and
Trends. Information Systems Frontiers, v. 17, n. 2, p. 261–274, apr 2015. ISSN 1387-3326.
Available: <https://doi.org/10.1007/s10796-014-9489-2>. Citations on pages 25, 39, 57, and 58.

WRONA, K.; GOMEZ, L. Context-aware security and secure context-awareness in ubiquitous
computing environments. Annales Universitatis Mariae Curie-Skłodowska, sectio AI – In-
formatica, Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, v. 4, n. 1, p. 332–348, 2006.
Citations on pages 72 and 81.

https://doi.org/10.1117/12.2229608
https://doi.org/10.1117/12.2229608
https://doi.org/10.1007/978-3-319-61403-8_7
https://doi.org/10.1007/978-3-319-61403-8_7
https://doi.org/10.1109/ICFEC.2017.20
https://doi.org/10.1109/ICFEC.2017.20
https://doi.org/10.1016/j.sysarc.2021.102143
https://doi.org/10.1016/j.sysarc.2021.102143
https://doi.org/10.1109/SURV.2013.102213.00229
https://doi.org/10.1109/MC.2015.12
https://doi.org/10.1109/MC.2015.12
https://doi.org/10.1016/j.jss.2017.05.125
https://doi.org/10.1007/s10796-014-9489-2


Bibliography 183

XIAO, Z.; XIAO, Y. Security and Privacy in Cloud Computing. IEEE Communications
Surveys & Tutorials, v. 15, n. 2, p. 843–859, 2013. ISSN 1553-877X. Available: <https:
//doi.org/10.1109/SURV.2012.060912.00182>. Citations on pages 68, 69, and 70.

YAACOUB, J.-P.; NOURA, H.; SALMAN, O.; CHEHAB, A. Security analysis of drones
systems: Attacks, limitations, and recommendations. Internet of Things, v. 11, 2020. ISSN
2542-6605. Available: <https://doi.org/10.1016/j.iot.2020.100218>. Citation on page 36.

YAHUZA, M.; IDRIS, M. Y. I.; AHMEDY, I. B.; WAHAB, A. W. A.; NANDY, T.; NOOR, N. M.;
BALA, A. Internet of Drones Security and Privacy Issues: Taxonomy and Open Challenges.
IEEE Access, IEEE, v. 9, p. 57243–57270, 2021. ISSN 2169-3536. Available: <https://doi.org/
10.1109/ACCESS.2021.3072030>. Citation on page 36.

YAPP, J.; SEKER, R.; BABICEANU, R. UAV as a service: Enabling on-demand access and
on-the-fly re-tasking of multi-tenant UAVs using cloud services. In: 2016 IEEE/AIAA 35th
Digital Avionics Systems Conference (DASC). Sacramento, CA, USA: IEEE, 2016. p. 1–8.
ISBN 978-1-5090-2523-7. Available: <https://doi.org/10.1109/DASC.2016.7778007>. Citations
on pages 62 and 67.

YIN, J.; YANG, Z.; CAO, H.; LIU, T.; ZHOU, Z.; WU, C. A Survey on Bluetooth 5.0 and Mesh.
ACM Transactions on Sensor Networks, v. 15, n. 3, p. 1–29, may 2019. ISSN 15504859.
Available: <https://doi.org/10.1145/3317687>. Citation on page 53.

YOUSEFPOUR, A.; FUNG, C.; NGUYEN, T.; KADIYALA, K.; JALALI, F.; NIAKANLAHIJI,
A.; KONG, J.; JUE, J. P. All one needs to know about fog computing and related edge computing
paradigms: A complete survey. Journal of Systems Architecture, Elsevier B.V., v. 98, n.
December 2018, p. 289–330, sep 2019. ISSN 1383-7621. Available: <https://doi.org/10.1016/j.
sysarc.2019.02.009>. Citations on pages 54, 55, and 60.

YU, H.; YANG, W.; ZHANG, H.; HE, W. A UAV-based crack inspection system for con-
crete bridge monitoring. In: EEE International Geoscience and Remote Sensing Symposium
(IGARSS). Fort Worth, USA: IEEE, 2017. p. 3305–3308. ISBN 978-1-5090-4951-6. Available:
<https://doi.org/10.1109/IGARSS.2017.8127704>. Citation on page 30.

YUAN, E.; ESFAHANI, N.; MALEK, S. A Systematic Survey of Self-Protecting Software
Systems. ACM Transactions on Autonomous and Adaptive Systems, v. 8, n. 4, p. 41, jan
2014. ISSN 1556-4665. Citation on page 72.

ZENG, Y.; ZHANG, R.; LIM, T. J. Wireless communications with unmanned aerial vehicles:
opportunities and challenges. IEEE Communications Magazine, IEEE, v. 54, n. 5, p. 36–
42, may 2016. ISSN 0163-6804. Available: <https://doi.org/10.1109/MCOM.2016.7470933>.
Citations on pages 64 and 65.

ZERMANI, S.; DEZAN, C.; HIRECHE, C.; EULER, R.; DIGUET, J.-P. Embedded context
aware diagnosis for a UAV SoC platform. Microprocessors and Microsystems, Elsevier B.V.,
v. 51, p. 185–197, jun 2017. ISSN 0141-9331. Citation on page 72.

ZHOU, G.; YUAN, J.; YEN, I.-L.; BASTANI, F. Robust real-time UAV based power line
detection and tracking. In: IEEE International Conference on Image Processing (ICIP).
Phoenix, USA: IEEE, 2016. p. 744–748. ISBN 978-1-4673-9961-6. Available: <https://doi.org/
10.1109/ICIP.2016.7532456>. Citation on page 30.

https://doi.org/10.1109/SURV.2012.060912.00182
https://doi.org/10.1109/SURV.2012.060912.00182
https://doi.org/10.1016/j.iot.2020.100218
https://doi.org/10.1109/ACCESS.2021.3072030
https://doi.org/10.1109/ACCESS.2021.3072030
https://doi.org/10.1109/DASC.2016.7778007
https://doi.org/10.1145/3317687
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1109/IGARSS.2017.8127704
https://doi.org/10.1109/MCOM.2016.7470933
https://doi.org/10.1109/ICIP.2016.7532456
https://doi.org/10.1109/ICIP.2016.7532456


184 Bibliography

ZHOU, M.; ZHANG, R.; XIE, W.; QIAN, W.; ZHOU, A. Security and Privacy in Cloud
Computing: A Survey. In: International Conference on Semantics, Knowledge and Grids.
Beijing, China: IEEE, 2010. v. 2, p. 105–112. ISBN 978-1-4244-8125-5. ISSN 21945357.
Available: <https://doi.org/10.1109/SKG.2010.19>. Citation on page 68.

ZHOU, Y.; RAO, B.; WANG, W. Uav swarm intelligence: Recent advances and future trends.
IEEE Access, v. 8, p. 183856–183878, 2020. Available: <https://doi.org/10.1109/ACCESS.2020.
3028865>. Citation on page 38.

ZHU, X.; BADR, Y. Identity Management Systems for the Internet of Things: A Survey To-
wards Blockchain Solutions. Sensors, MDPI, v. 18, n. 12, p. 4215, dec 2018. ISSN 1424-8220.
Available: <https://doi.org/10.3390/s18124215>. Citation on page 40.

https://doi.org/10.1109/SKG.2010.19
https://doi.org/10.1109/ACCESS.2020.3028865
https://doi.org/10.1109/ACCESS.2020.3028865
https://doi.org/10.3390/s18124215


185

APPENDIX

A
PROOF-OF-CONCEPT LOGS

A.1 PoC 6: UAV Data Gathering Service

A.1.0.1 UAV log

1 Unit started loading.
2 Service START_MISSION registered successfully.
3 Service MISSION_FINISHED registered successfully.
4 Authentication .successful(): for Peer 4.
5 Message AUTHENTICATION_REQUEST sent to Peer ID 5
6 Message AUTHENTICATION_RESPONSE_OK received in CSU.
7 Message AUTHENTICATION_MESSAGE sent to Peer ID 5
8 Message AUTHENTICATION_MESSAGE received in CSU.
9 Authentication .successful(): for Peer 3.

10 Message AUTHENTICATION_MESSAGE received in CSU.
11 Message AUTHENTICATION_MESSAGE sent to Peer ID 5
12 Authentication .successful(): for Peer 5.
13 Unit finished loading.
14 Message SERVICE_REQUEST_OK for Service ID POSITION_ACHIEVED received in SEO from peer 3.
15 Message SERVICE_REQUEST_OK for Service ID COLLECTION_RESULT received in SEO from peer 4.
16 Message SERVICE_REQUEST_OK for Service ID X_POSITION received in SEO from peer 3.
17 Message SERVICE_REQUEST_OK for Service ID Y_POSITION received in SEO from peer 3.
18 Message SERVICE_REQUEST_OK for Service ID Z_POSITION received in SEO from peer 3.
19 Message SERVICE_REQUEST for Service ID START_MISSION received in SEO from peer 5.
20 NP: New State Number: 1.
21 Message CURRENT_STATE sent to Peer ID 3
22 Message CURRENT_STATE sent to Peer ID 4
23 Message SERVICE_REQUEST for Service ID MISSION_FINISHED received in SEO from peer 5.
24 Message SERVICE_REQUEST_OK for Service ID NAVIGATE received in SEO from peer 3.
25 Message SERVICE_NOTIFICATION for Service ID POSITION_ACHIEVED received in SEO from peer 3.
26 NP: New State Number: 2.
27 Message CURRENT_STATE sent to Peer ID 3
28 Message CURRENT_STATE sent to Peer ID 4
29 Message SERVICE_REQUEST_OK for Service ID NAVIGATE received in SEO from peer 3.
30 Message SERVICE_NOTIFICATION for Service ID POSITION_ACHIEVED received in SEO from peer 3.
31 Message SERVICE_REQUEST_OK for Service ID START_COLLECTION received in SEO from peer 4.
32 Message SERVICE_NOTIFICATION for Service ID COLLECTION_RESULT received in SEO from peer 4.
33 NP: New State Number: 4.



186 APPENDIX A. Proof-of-Concept Logs

34 Message CURRENT_STATE sent to Peer ID 3
35 Message CURRENT_STATE sent to Peer ID 4
36 Message SERVICE_REQUEST_OK for Service ID NAVIGATE received in SEO from peer 3.
37 Message SERVICE_NOTIFICATION for Service ID POSITION_ACHIEVED received in SEO from peer 3.
38 Message SERVICE_REQUEST_OK for Service ID START_COLLECTION received in SEO from peer 4.
39 Message SERVICE_NOTIFICATION for Service ID COLLECTION_RESULT received in SEO from peer 4.
40 NP: New State Number: 6.
41 Message CURRENT_STATE sent to Peer ID 3
42 Message CURRENT_STATE sent to Peer ID 4
43 Message SERVICE_REQUEST_OK for Service ID NAVIGATE received in SEO from peer 3.
44 Message SERVICE_NOTIFICATION for Service ID POSITION_ACHIEVED received in SEO from peer 3.
45 Message SERVICE_REQUEST_OK for Service ID START_COLLECTION received in SEO from peer 4.
46 Message SERVICE_NOTIFICATION for Service ID COLLECTION_RESULT received in SEO from peer 4.
47 NP: New State Number: 7.
48 Message CURRENT_STATE sent to Peer ID 3
49 Message CURRENT_STATE sent to Peer ID 4
50 Message SERVICE_REQUEST_OK for Service ID NAVIGATE received in SEO from peer 3.
51 Message SERVICE_NOTIFICATION for Service ID POSITION_ACHIEVED received in SEO from peer 3.
52 Message SERVICE_REQUEST_OK for Service ID NAVIGATE received in SEO from peer 3.
53 Message SERVICE_NOTIFICATION for Service ID POSITION_ACHIEVED received in SEO from peer 3.
54 NP.finishTask(): Task Finished.
55 Message TASK_FINISHED sent to Peer ID 3
56 Message TASK_FINISHED sent to Peer ID 4
57 Unit destroyed

A.1.0.2 Navigation Unit log

1 Unit started loading.
2 Service X_POSITION registered successfully.
3 Service Y_POSITION registered successfully.
4 Service Z_POSITION registered successfully.
5 Service NAVIGATE registered successfully.
6 Service POSITION_ACHIEVED registered successfully.
7 Authentication .successful(): for Peer 1.
8 Unit finished loading.
9 Message SERVICE_REQUEST for Service ID POSITION_ACHIEVED received in SEO from peer 1.

10 Message SERVICE_REQUEST for Service ID X_POSITION received in SEO from peer 1.
11 Message SERVICE_REQUEST for Service ID Y_POSITION received in SEO from peer 1.
12 Message SERVICE_REQUEST for Service ID Z_POSITION received in SEO from peer 1.
13 NavUnitState ON.
14 Message SERVICE_REQUEST for Service ID NAVIGATE received in SEO from peer 1.
15 Message SERVICE_REQUEST_OK sent to Peer ID 1
16 New Position: x = 0, y = 0, z = 2
17 New Position: x = 0, y = 0, z = 6
18 New Position: x = 0, y = 0, z = 10
19 New Position: x = 2.4, y = 1, z = 10
20 New Position: x = 7.2, y = 3, z = 10
21 New Position: x = 12, y = 5, z = 10
22 NavUnitState ON.
23 Message SERVICE_REQUEST for Service ID NAVIGATE received in SEO from peer 1.
24 Message SERVICE_REQUEST_OK sent to Peer ID 1
25 New Position: x = 12, y = 5, z = 9
26 New Position: x = 12, y = 5, z = 5
27 Message SERVICE_NOTIFICATION sent to Peer ID 1
28 NavUnitState ON.
29 Message SERVICE_REQUEST for Service ID NAVIGATE received in SEO from peer 1.



A.1. PoC 6: UAV Data Gathering Service 187

30 Message SERVICE_REQUEST_OK sent to Peer ID 1
31 New Position: x = 12, y = 5, z = 6
32 New Position: x = 12, y = 5, z = 7
33 New Position: x = 12, y = 5, z = 8
34 New Position: x = 12, y = 5, z = 10
35 New Position: x = 13.2, y = 5.8, z = 10
36 New Position: x = 14.1, y = 6.4, z = 10
37 New Position: x = 15, y = 7, z = 10
38 Message SERVICE_NOTIFICATION sent to Peer ID 1
39 NavUnitState ON.
40 Message SERVICE_REQUEST for Service ID NAVIGATE received in SEO from peer 1.
41 Message SERVICE_REQUEST_OK sent to Peer ID 1
42 New Position: x = 15, y = 7, z = 9
43 New Position: x = 15, y = 7, z = 7
44 New Position: x = 15, y = 7, z = 5
45 Message SERVICE_NOTIFICATION sent to Peer ID 1
46 NavUnitState ON.
47 Message SERVICE_REQUEST for Service ID NAVIGATE received in SEO from peer 1.
48 Message SERVICE_REQUEST_OK sent to Peer ID 1
49 New Position: x = 15, y = 7, z = 6
50 New Position: x = 15, y = 7, z = 8
51 New Position: x = 15, y = 7, z = 10
52 New Position: x = 16, y = 8, z = 10
53 New Position: x = 18, y = 10, z = 10
54 New Position: x = 20, y = 12, z = 10
55 Message SERVICE_NOTIFICATION sent to Peer ID 1
56 NavUnitState ON.
57 Message SERVICE_REQUEST for Service ID NAVIGATE received in SEO from peer 1.
58 Message SERVICE_REQUEST_OK sent to Peer ID 1
59 New Position: x = 20, y = 12, z = 9
60 New Position: x = 20, y = 12, z = 7
61 New Position: x = 20, y = 12, z = 5
62 Message SERVICE_NOTIFICATION sent to Peer ID 1
63 NavUnitState ON.
64 Message SERVICE_REQUEST for Service ID NAVIGATE received in SEO from peer 1.
65 Message SERVICE_REQUEST_OK sent to Peer ID 1
66 New Position: x = 20, y = 12, z = 6
67 New Position: x = 20, y = 12, z = 8
68 New Position: x = 20, y = 12, z = 10
69 New Position: x = 14, y = 8.4, z = 10
70 New Position: x = 8, y = 4.8, z = 10
71 New Position: x = 3.55271e-15, y = 8.88178e-16, z = 10
72 New Position: x = 3.55271e-15, y = 8.88178e-16, z = 6
73 New Position: x = 3.55271e-15, y = 8.88178e-16, z = 2
74 New Position: x = 3.55271e-15, y = 8.88178e-16, z = 0
75 Message SERVICE_NOTIFICATION sent to Peer ID 1
76 Message TASK_FINISHED_ACK sent to Peer ID 1



188 APPENDIX A. Proof-of-Concept Logs

A.1.0.3 Collection Unit log

1 Unit started loading.
2 Service START_COLLECTION registered successfully.
3 Service COLLECTION_RESULT registered successfully.
4 Authentication .successful(): for Peer 1.
5 Unit finished loading.
6 Message SERVICE_REQUEST for Service ID COLLECTION_RESULT received in SEO from peer 1.
7 Message SERVICE_REQUEST_OK sent to Peer ID 1
8 CollectionUnitState OFF.
9 CollectionUnitState ON.

10 Message SERVICE_REQUEST for Service ID START_COLLECTION received in SEO from peer 1.
11 Authentication .successful(): for Peer 20.
12 Message SERVICE_REQUEST_OK sent to Peer ID 1
13 Message SERVICE_REQUEST_OK for Service ID COLLECTION_FINISHED received in SEO from peer 20.
14 Message SERVICE_REQUEST_OK for Service ID COLLECT_DATA received in SEO from peer 20.
15 Message SERVICE_NOTIFICATION for Service ID COLLECTION_FINISHED received in SEO from peer 20.
16 Message SERVICE_NOTIFICATION sent to Peer ID 1
17 CollectionUnitState OFF.
18 CollectionUnitState ON.
19 Message SERVICE_REQUEST for Service ID START_COLLECTION received in SEO from peer 1.
20 Authentication .successful(): for Peer 30.
21 Message SERVICE_REQUEST_OK sent to Peer ID 1
22 Message SERVICE_REQUEST_OK for Service ID COLLECTION_FINISHED received in SEO from peer 30.
23 Message SERVICE_REQUEST_OK for Service ID COLLECT_DATA received in SEO from peer 30.
24 Message SERVICE_NOTIFICATION for Service ID COLLECTION_FINISHED received in SEO from peer 30.
25 Message SERVICE_NOTIFICATION sent to Peer ID 1
26 CollectionUnitState OFF.
27 CollectionUnitState ON.
28 Message SERVICE_REQUEST for Service ID START_COLLECTION received in SEO from peer 1.
29 Authentication .successful(): for Peer 40.
30 Message SERVICE_REQUEST_OK sent to Peer ID 1
31 Message SERVICE_REQUEST_OK for Service ID COLLECTION_FINISHED received in SEO from peer 40.
32 Message SERVICE_REQUEST_OK for Service ID COLLECT_DATA received in SEO from peer 40.
33 Message SERVICE_NOTIFICATION for Service ID COLLECTION_FINISHED received in SEO from peer 40.
34 Message SERVICE_NOTIFICATION sent to Peer ID 1
35 CollectionUnitState OFF.

A.1.0.4 Cloud Server log

1 Unit started loading.
2 Unit finished loading.
3 Message AUTHENTICATION_REQUEST received in CSU.
4 Message AUTHENTICATION_RESPONSE_OK sent to Peer ID 1
5 Message AUTHENTICATION_MESSAGE received in CSU.
6 Message AUTHENTICATION_MESSAGE sent to Peer ID 1
7 Message AUTHENTICATION_MESSAGE received in CSU.
8 Authentication.successful(): for Peer 1.
9 Message SERVICE_REQUEST sent to Peer ID 1

10 Message SERVICE_REQUEST sent to Peer ID 1
11 Message SERVICE_REQUEST_OK for Service ID START_MISSION received in SEO from peer 1.
12 Message SERVICE_REQUEST_OK for Service ID MISSION_FINISHED received in SEO from peer 1.
13 Message SERVICE_NOTIFICATION for Service ID MISSION_FINISHED received in SEO from peer 1.
14 Mission Finished



A.1. PoC 6: UAV Data Gathering Service 189

A.1.0.5 Sensors log

1 Unit started loading.
2 Service COLLECT_DATA registered successfully.
3 Service COLLECTION_FINISHED registered successfully.
4 Unit finished loading.
5 Authentication .successful(): for Peer 4.
6 Message SERVICE_REQUEST for Service ID COLLECTION_FINISHED received in SEO from peer 4.
7 Message SERVICE_REQUEST_OK sent to Peer ID 4
8 Message SERVICE_REQUEST for Service ID COLLECT_DATA received in SEO from peer 4.
9 Message SERVICE_REQUEST_OK sent to Peer ID 4

10 Message SERVICE_NOTIFICATION sent to Peer ID 4
11 Unit destroyed



U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o


	Title page
	Title page
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of source codes
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Motivation
	Research question and hypothesis
	Thesis Organization

	Literature review
	Unmanned Aerial Systems
	Airspace Integration, Safety and Privacy
	Reliable Communication
	Secure Communication
	GPS Jamming or Spoofing
	Signal Jamming or Spoofing
	Information Injection
	Malicious Hardware or Software
	Unauthorized Disclosure of Communication
	Denial of Service (DoS)

	Collaborating UAVs

	The Internet of Things
	IoT Elements
	Identification and Addressing
	Sensing
	Communication
	Computation
	Services
	Semantics

	IoT Requirements
	Device identification
	Device interoperability
	Scalability
	Energy efficiency
	Device localization
	Autonomous operation
	Security and Privacy

	IoT Architecture Models
	IoT Communication Technologies and Protocols
	Application Protocols
	Constrained Application Protocol (CoAP)
	Message Queuing Telemetry Transport (MQTT) Protocol
	Extensible Messaging and Presence Protocol (XMPP)
	Advanced Message Queuing Protocol (AMQP)
	Data Distribution Service (DDS) Protocol

	Service Discovery Protocols
	Multicast DNS (mDNS) Protocol
	DNS Service Discovery (DNS-SD) Protocol

	Network Protocols
	IPv6 over Low power Wireless Personal Area Networks (6LoWPAN)
	Routing Protocol for Low Power and Lossy Networks (RPL)

	Connectivity Protocols
	Near-field communication (NFC)
	Bluetooth
	Zigbee
	LoRaWAN
	NB-IoT


	IoT Capability Boost
	Cloud Computing
	Fog Computing
	Edge Computing
	Edge vs. Fog vs. Cloud

	IoT Security
	Illegal/non-authorized access
	Data breaches/disclosure
	Device/application/account hijacking
	Network intrusion

	Final Remarks


	IoT-enabled UAVs
	IoT-enabled UAV Challenges
	Public Safety and Privacy Challenges
	Regulation & Standardization Challenges
	Technical challenges

	Energy Efficiency
	Service Exchange
	Security
	Context-Aware Security

	Final Remarks

	SErvice Management for UAVs
	HAMSTER
	The HAMSTER Unit
	HAMSTER Functionality

	Identification in HAMSTER
	Communication Security in HAMSTER
	Authentication
	Access Control
	Information Security
	The Cloud–SPHERE Platform
	Central Security Unit
	Safety Management Unit


	Contex-Aware Security in HAMSTER
	External Security Context
	Mission Security Context
	Internal Security Context
	The Node Criticality Index (NCI)

	Perceived Risk Evaluation

	Service Management in HAMSTER
	Services in HAMSTER
	The SEMU Platform
	Considerations on Security

	Task Management in HAMSTER
	HAMSTER Operation Scenarios
	Known Formation, Centralized Operation (Figure 9a)
	Unknown Formation, Centralized Operation (Figure 9b)
	Known Formation, Decentralized Operation (Figure 9c)
	Unknown Formation, Decentralized Operation (Figure 9d)

	HAMSTER in IoT-connected UAV scenarios
	Final Remarks

	The Prototype
	The HAMSTER Unit
	Model and Implementation
	Operation

	Communication between Units
	Model and Implementation
	Configuration
	Operation
	The Connection between Units

	Message Exchange in HAMSTER
	HAMSTER Messages
	Model and Implementation
	Operation

	The Cloud–SPHERE Platform
	Model and Implementation
	Operation

	The Service Exchange Management Unit
	Model and Implementation
	Operation
	Service Registration
	Service Request
	Service client request
	Service provider response

	Service Deliver
	Service Consumption


	The Navigation Phases Platform
	Model and Implementation
	Operation

	Final Remarks

	Results
	PoC 1: HAMSTER Authentication
	Environment Setup
	Obtained Results

	PoC 2: The Navigation Phases (NP) Platform
	Environment Setup
	Obtained Results

	PoC 3: Securing data exchange
	MQTT Protocol
	Environment Setup
	Obtained Results

	PoC 4: Context-Aware Security
	External Context Initial Evaluation
	Mission Context Initial Evaluation
	Internal Context Initial Evaluation
	PSI Initial Evaluation
	Context changes impact on PSI

	PoC 5: UAV Delivery Service
	Environmental Setup
	Obtained Results

	PoC 6: UAV Data Gathering Service
	Environment Setup
	HAMSTER Units
	Unit Communication
	Services
	Authentication & Cryptography
	Task Management

	Demonstration Details
	Obtained Results
	Initialization and Service Registration
	Connection and Authentication
	Service requests
	Task execution
	Navigation
	Connection to Sensors
	Task finalization


	Final Remarks

	Conclusion
	Contributions
	Limitations and Difficulties
	Future Work
	Declaration of Original Authorship
	Publication List
	Published Papers
	Submitted Papers


	Bibliography
	Proof-of-Concept Logs
	PoC 6: UAV Data Gathering Service
	UAV log
	Navigation Unit log
	Collection Unit log
	Cloud Server log
	Sensors log



