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RESUMO

FURLAN, L. J. S. Teoria de Estabilidade Linear Aplicada a Escoamentos Tridimensionais
de Fluidos Viscoelásticos. 2022. 86 p. Tese (Doutorado em Ciências – Ciências de Computação
e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universi-
dade de São Paulo, São Carlos – SP, 2022.

Vários escoamentos de interesse prático são de fluidos viscoelásticos. Devido à aplicabilidade
industrial desse tipo de escoamento, é desejável saber como esse escoamento se propaga caso
apareçam perturbações no sistema. Supondo que perturbações sejam introduzidas no sistema,
dependendo das características do escoamento e do fluido, este pode sofrer uma transição para
um estado turbulento, que podem gerar danos às estruturas e até o rompimento de tubulações.
A hidrodinâmica dos fluidos viscoelásticos é fortemente afetada pela interação entre as forças
inerciais, viscosas e elásticas. A técnica da Teoria da Estabilidade Linear (LST) investiga a
propagação das perturbações no escoamento. Esta técnica consiste em resolver um problema de
autovalor/autovetor, onde o autovalor mais instável carrega informações quanto a estabilidade do
escoamento estudado (a taxa de amplificação das ondas de Tollmien-Schlichting). Este problema
de autovalor é resolvido através da função EIG no software MATLAB. Ao resolver este problema
de autovalor de forma direta, todo o autoespectro é obtido, entre eles o autovalor que carrega a
informação de estabilidade do escoamento. As autofunções associadas a este autovalor também
são obtidas, possibilitando a análise da energia das perturbações. Existem muitas formas de
se analisar a estabilidade de um escoamento, ao qual as mais comuns são através da taxa de
amplificação das perturbações e através da análise da energia dessas perturbações. Na presente
pesquisa, a transição laminar-turbulenta é estudada investigando a propagação das ondas de
Tollmien-Schlichting. Adotou-se um escoamento de fluido viscoelástico incompressível em um
canal tridimensional. As equações constitutivas adotadas foram os modelos Upper-Convected
Maxwell (UCM), Oldroyd-B, Giesekus e Linear Phan-Thien-Tanner (LPTT). A análise de
estabilidade é realizada verificando a taxa de amplificação das perturbações e construindo um
diagrama de estabilidade. Este diagrama é chamado de curva de estabilidade neutra. Para o
fluido Oldroyd-B foi verificado que o aumento da contribuição do solvente na mistura estabiliza
o escoamento. Para o modelo UCM foi verificado que o aumento da elasticidade desestabiliza o
escoamento, tanto para baixas quanto para frequências mais elevadas. Para o modelo Giesekus
foi verificado que maiores quantidade de polímero na mistura estabiliza o escoamento para
baixos valores do parâmetro desse modelo, e que conforme o valor deste parâmetro aumenta, o
escoamento se torna mais instável.

Palavras-chave: Teoria de Estabilidade Linear, Modelo UCM, Modelo Oldroyd-B, Modelo
Giesekus, Modelo LPTT.





ABSTRACT

FURLAN, L. J. S. Linear Stability Theory Applied to Three-Dimensional Viscoelastic Fluid
Flows. 2022. 86 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2022.

Several flows of practical interest are viscoelastic fluids. Due to the industrial applicability of this
type of flow, it is desirable to know how this flow propagates if disturbances appear in the system.
Assuming that disturbances are introduced into the system, depending on the characteristics of
the flow and the fluid, it may transition to a turbulent state, which can damage structures and
even pipelines to rupture. The interaction between inertial, viscous and elastic forces strongly
affects the hydrodynamics of viscoelastic fluids. The Linear Stability Theory (LST) technique
investigates the propagation of disturbances in the flow. This technique solves an eigenvalue/
eigenvector problem, where the most unstable eigenvalue carries information regarding the
stability of the flow studied (the amplification rate of the Tollmien-Schlichting waves). This
eigenvalue problem is solved using the EIG function in MATLAB software. By directly solving
this eigenvalue problem, the entire eigen spectrum is obtained, among them the eigenvalue that
carries the stability information of the flow. The eigenfunctions associated with this eigenvalue
are also obtained, allowing the analysis of the energy of the disturbances. There are many
ways to analyze the stability of a flow. The most common is through the amplification rate of
disturbances and the analysis of the energy of these disturbances. In the present research, the
laminar-turbulent transition is studied by investigating the propagation of Tollmien-Schlichting
waves. It adopted an incompressible viscoelastic fluid flow in a three-dimensional channel. The
constitutive equations adopted were the UCM (Upper-Convected Maxwell), the Oldroyd-B, the
Giesekus, and the linear Phan-Thien-Tanner (LPTT) models. The stability analysis is performed
by analyzing the amplification rate of the disturbances and building a stability diagram. This
diagram is called the neutral stability curves diagram. In the Oldroyd-B model increasing the
solvent contribution in the mixture stabilizes the flow. For the UCM model, the increase in
elasticity destabilizes the flow both for lower and higher frequencies. For the Giesekus model,
the higher amount of polymer in the mixture stabilizes the flow for lower values of this model’s
parameter and as the value of this parameter increases, the flow becomes more unstable.

Keywords: Linear Stability Theory, UCM Model, Oldroyd-B Model, Giesekus Model, LPTT
Model.
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CHAPTER

1
INTRODUCTION

In many industrial applications, the products are directly related to fluid dynamics.
Among the many problems in this area are the treatments of non-Newtonian fluid flows. Increas-
ingly, polymers are replacing other materials, so the polymer product should have a satisfactory
mechanical performance during its designed lifetime for a given application. In addition to
polymer processing, there are other industrial applications involving viscoelastic fluid flows,
such as plastic injection, extrusion processes, and oil extraction, producing many problems to be
investigated.

In this sense, with the development of computer technology, there is a great interest in
working with the numerical simulations of these industrial applications, developing efficient
numerical methods to simulate viscoelastic fluid flows, due to this requiring a low cost of
financial resources in comparison to experiments in laboratories. It is possible to obtain excellent
results that faithfully represent these fluids’ behaviour in various flows. However, this challenge
is not simple. The constitutive equations that model viscoelastic fluids are complex and difficult
to treat in computational domains.

These materials exhibit both viscous and elastic properties at the same time. They present
complex molecules and high molar mass (long and structured molecules). The classical Navier-
Stokes equations are unable to describe the flow dynamics of this type of material. An additional
constitutive equation is required for the stress field, making the stress components additional
unknowns. The usual procedure in choosing constitutive equations is to search for an adequate
equation to describe the process to be studied and the set of parameters that maximizes the
chosen equation to the type and conditions of the process under study.

In the literature one can find many works dealing with constitutive models of viscoelastic
fluids, such as the differentials of MAXWELL ((BERIS; ARMOSTRONG; BROWN, 1987),
(MOMPEAN; DEVILLE, 1997)), OLDROYD-B ((BRASSEUR et al., 1994), (MOMPEAN;
DEVILLE, 1997), (PHILLIPS; WILLIAMS, 2002), (PINHO; ALVES; OLIVEIRA, 2003)),
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White-Metzner (WHITE; METZNER, 1963), Giesekus ((GIESEKUS, 1962), (GIESEKUS,
1982), (GIESEKUS, 1985)), Leonov (LEONOV, 1976), FENE-type models ((BIRD; DOTSON;
JOHNSON, 1980), (BIRD; DEAGUIAR, 1983), (CHRISTIANSEN; BIRD, 1977), (STEVEN-
SON; BIRD, 1971), (WARNER, 1972), (OLIVEIRA, )), PTT ((PHAN-THIEN; TANNER,
1977), (PINHO; ALVES; OLIVEIRA, 2003)) and derivatives, Pom Pom (LARSON, 1988) and
derivatives; and the integral models: Maxwell (KAYE, 1962) and K-BKZ ((LUO; TANNER,
1986), (LUO; TANNER, 1988)).

Maxwell’s model was one of the first attempts to describe the effect of the viscoelasticity
of a given fluid. This model incorporates the idea of a fluid that exhibits characteristics of
a Hookean elastic solid and Newtonian viscous fluid. The Oldroyd-B model derives from
the kinetic theory for concentrated and molten polymer solutions (BIRD; ARMSTRONG;
HASSAGER, 1987). The polymer chain is represented by a set of two spheres linked by a spring.
In this configuration, the spheres represent the system’s centre of mass. They are related to the
hydrodynamic interaction between the solvent and the macromolecules of the polymeric solution
(the viscous drag force of the solvent on the molecules). The springs represent the elasticity effect
of the macromolecules or the restorative effect of the polymer. This ball/spring configuration
called “dumbbell” is simplified by assuming a linear spring or Hooke spring behaviour. The
Oldroyd-B model can well represent certain fluids with ideal elasticity, also known as “Boger”
fluids.

The rheological model developed by Giesekus (1982) is also based on molecular consid-
erations with ball/spring systems where the spring follows Hooke’s law. Differently from the
Oldroyd-B model, in the Giesekus model, a non-isotropy effect was introduced in the definition
of the drag force on the spheres. This model results in an equation with the form analogous to
the UCM and Oldroyd-B models but containing non-linear terms given by the products between
the stress tensor. Another model widely used in numerical simulations of viscoelastic fluids is
the Phan-Thien-Tanner model (PHAN-THIEN; TANNER, 1977), known as PTT. This model is
derived from the network theory of concentrated solutions and melts and considers the network’s
elastic energy.

Hydrodynamic stability theory is concerned with the response of a laminar flow to a
disturbance of small or moderate amplitude. Every fluid flow is subject to small disturbances due
to various factors, such as structural vibration, surface roughness, noise, and external turbulence.
If these disturbances are not smoothed, the laminar flow can suffer a transition to another, more
complex state, but not necessarily a turbulent flow state (SOUZA; MENDONÇA; MEDEIROS,
2005). The process by which a laminar flow becomes turbulent is known as the laminar-turbulent
transition (SCHMID; HENNINGSON, 2001). This is a highly complex process that, at present,
is still not fully understood. However, after decades of intense research, specific characteristics
have gradually become apparent, primarily for Newtonian fluid flows.

For any fluid flow, the transition to turbulence can be generalized as the result of the
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amplification of disturbances that can arise in the fluid flows. If a field of an unsteady (usually
laminar) flow that is at equilibrium is disturbed slightly at a certain point in space and time,
the result will be an even more substantial variation (amplification of the disturbance) than
an equilibrium farther away in space (spatial instability) or time (temporal instability). This
variation can be measured in terms of the energy or the amplification rate of the disturbances
(MARXEN, 2005).

In general, the arising of instabilities in Newtonian flows is a direct consequence of
the presence of the convective term in the momentum equation, which has the function of
amplifying with increasing Reynolds number (as the value of Re increases, the influence of
the viscous terms, which are dissipative, decreases. In fact, for high values of Re, the viscosity
becomes destabilizing due to the viscous friction effect within the boundary layer). However,
in viscoelastic flows, nonlinearities enter through convection in the momentum equation and
through convection in the tensor equation from the constitutive equation.

Draad, Kuiken and Nieuwstadt (1998) reported transition delay for viscoelastic fluid
flows; that is, the onset was postponed to a higher Reynolds number than Newtonian fluid flows.
In another study, Ram and Tamir (1964) observed that turbulence sets in at a Reynolds number
smaller than in the Newtonian case, a phenomenon called “early turbulence”. It has recently
been demonstrated that at a large Weissenberg number, the anisotropic elastic stresses destabilize
flows with curved streamlines even in the absence of inertia, resulting in so-called “purely elastic
linear instabilities” (SAMANTA et al., 2013). It is clear that the instability for viscoelastic fluid
flows is neither inertial since it exists at a zero Reynolds number (CASTILLO; WILSON, 2017).

In recent years, several purely elastic instabilities have been reported corresponding to
experimental or theoretical work using linear stability analysis (LIM; SCHOWALTER, 1987;
LEE; FINLAYSON, 1986; LARSON; SHAQFEH; MULLER, 1990; SHAQFEH; MULLER;
LARSON, 1992; LARSON, 1992). In most works on this type of analysis in viscoelastic flows,
the UCM and Oldroyd-B constitutive models have been employed, and the choice of model
for the constitutive equation directly affects the stability analysis results. For example, the
Oldroyd-B model shows more stabilization than the UCM model in a parallel flow when the
solvent viscosity is taken into account (SURESHKUMAR; BERIS, 1995). Therefore, there
are several works in the literature that perform stability analysis for other types of viscoelastic
models where parallel flows are generally used as benchmark tests (see (AVGOUSTI; BERIS,
1993; SURESHKUMAR; BERIS, 1995; BLONCE, 1997; MAK, 2009; ZHANG et al., 2013;
GERVAZONI, 2016; SOUZA; BRANDI; MENDONçA, 2016; SILVA, 2018; FURLAN, 2018;
BRANDI; MENDONçA; SOUZA, 2019)).

Even today, studies in parallel flows have not been widely developed, and some questions
remain unanswered. Zhang et al. (ZHANG et al., 2013) investigated modal and non-modal
stability for channel flow for the FENE-P and Oldroyd-B fluid models. The main conclusion was
that the effect of the polymer could be characterized by the ratio between the relaxation time
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and the time scale during which the instability evolves; this applies to the exponential growth
of two-dimensional Tollmien-Schlichting waves and the non-modal amplification of elongated
streaks in the flow direction and oblique waves in the subcritical regime.

In this work, the interest is in numerical results for stability analysis of three-dimensional
flows of viscoelastic fluids, considering different flow characteristics, such as the amount of
polymer viscosity in the mixture (fully polymeric fluid flow and with solvent viscosity contribu-
tion) and different values of the Weissenberg number. To that end, the Linear Stability Theory
(MENDONÇA; MEDEIROS, 2002) was used to analyze the stability of viscoelastic fluid flows,
particularly in the problem of three-dimensional, incompressible parallel flow for the constitutive
models UCM, Oldroyd-B, Giesekus and LPTT. For this purpose, a different way of solving the
stability problem is presented, using the system of linearized equations, rewriting them into an
eigenvalue problem and solving this problem through the matrix method.

1.1 Outline
This thesis is organized as follows:

Chapter 2 presents the governing equations for three-dimensional, incompressible,
isothermal flow for a non-Newtonian fluid. The equation considered in viscoelastic flow is
the constitutive equation called here as LPOG, and consists of an equation containing four
viscoelastic models where the LPOG equation becomes the desired model from the assignment
of the “zero” value for the dimensionless parameters of the unwanted models.

Chapter 3 presents a theoretical study to verify the validity of Squire’s theorem (SQUIRE,
1933) for viscoelastic fluid flows.

Chapter 4 presents the laminar flows used in this work to obtain the results regarding the
stability of the models’ viscoelastic flows and the solution method for the eigenvalue problem
associated with the stability analysis problem.

Chapter 5 presents the results obtained to analyze the stability of the flows for the
viscoelastic models considered in this work, such as amplification rates and the neutral stability
curves, varying the dimensionless parameters of each model, as well as the amount of viscosity
of the solvent in the mixture and also the Weissenberg number.

The main conclusions of the work are presented in Chapter 6.

Appendix A presents the algebraic manipulations needed to rewrite the system of equa-
tions into an eigenvalue/eigenvector problem. Appendix ?? presents the algorithm used to
calculate the derivatives using Chebyshev polynomials.
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CHAPTER

2
MATHEMATICAL FORMULATION

This chapter presents the governing equations for incompressible, isothermal, three-
dimensional flows for viscoelastic fluids. The equations describing fluctuations for three-
dimensional viscoelastic fluid flows are obtained using Linear Stability Theory.

2.1 Governing Equations
Incompressible and isothermal, three-dimensional flows are governed by the equation of

conservation of mass (the continuity equation)

∇ ·u = 0, (2.1)

and by the equation of conservation of momentum

ρ

(
∂u
∂ t

+∇ · (uu)
)
= ∇ ·σ , (2.2)

where ρ is the specific mass of the fluid (density), u is the velocity vector, t is time. The
variable σ is the total stress tensor, defined by

σ = τ − pI, (2.3)

where p is the pressure, I is the identity tensor and τ is the symmetric extra-stress tensor, defined
by the constitutive equation of the fluid considered in the simulation. In the three-dimensional
case, u = [u v w]T represents the velocity components in the directions x,y and z, respectively.

Non-Newtonian fluids are those fluids that do not exhibit linearity between strain rate and
shear stress. The dynamic viscosity value is not constant, i.e. it varies with the applied strain rate
(TANNER, 1988). In the viscoelastic fluid model, the symmetric extra-stress tensor is defined by
the sum of the Newtonian contribution (viscous) and the non-Newtonian contribution (elastic)
(RAJAGOPALAN; ARMSTRONG; BROWN, 1990), that is,

τ = 2ηsD+T, (2.4)
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where ηs is the viscosity of the Newtonian solvent, D is the strain rate tensor defined by
D = 1

2(∇u + (∇u)T ) and T is the extra-stress tensor (symmetric) that represents the non-

Newtonian contribution, with three-dimensional components of the form T=

 T xx T xy T xz

T xy T yy T yz

T xz T yz T zz

.

Therefore, by calculating the divergence of the total stress tensor (2.3), the modified
momentum equation for a viscoelastic fluid is obtained

ρ

(
∂u
∂ t

+∇ · (uu)
)
=−∇ · pI+ηs∇

2 ·u+∇ ·T. (2.5)

In this work, the LPOG constitutive equation (BERIS; ARMOSTRONG; BROWN, 1987;
BRASSEUR et al., 1994; PHAN-THIEN; TANNER, 1977; GIESEKUS, 1982) was considered
for the viscoelastic fluid model, which is defined as follows(

1+
ελ

ηp
f t(T)

)
T+λ

(
∂T
∂ t

+∇ · (uT)−∇u ·T−T ·∇uT
)
+ξ λ

(
D ·T+T ·DT)+

+
αGλ

ηp
(T ·T) = 2ηpD,

(2.6)

where ηp is the polymeric viscosity coefficient, λ is the fluid relaxation time, the constant
αG represents the mobility parameter that regulates the shear thinning behavior of the fluid
(0 ≤ αG ≤ 0.5), and it is a Giesekus model parameter. The term’s origin involving αG can be
associated with the anisotropic hydrodynamic drag on the constituent polymer molecules (BIRD;
ARMSTRONG; HASSAGER, 1987). ξ is a positive parameter of the PTT model and relates to
the differences in normal stresses. The ε parameter is related to the elongational behaviour of the
fluid, excluding the possibility of an infinite elongational viscosity in a simple stretching flow,
as would occur for a Maxwell model (UCM or Oldroyd-B) when ε = 0 (PINHO; OLIVEIRA,
2000), and is a parameter of the PTT model. This parameter is related to its extensional properties:
when a fluid filament is stretched axially, the higher the stretching opposition is, the smaller ε .
The term f t(T) denotes the trace function of the tensor T, and T ·T denotes the tensor product.

Therefore, in the constitutive equation referred to here as LPOG (2.6), we have “four”
possible viscoelastic models. These are:

∙ UCM e Oldroyd-B → αG = ε = ξ = 0;

∙ Giesekus → ε = ξ = 0;

∙ LPTT → αG = 0.

2.2 Dimensionless Equations
The equations (2.1) - (2.5) model incompressible, isothermal, viscoelastic flows, and

have been presented in dimensional form. However, it is convenient to solve the equations in
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their dimensionless form. It facilitates the visualization of physical effects, the formulation of the
model independent of the system of units, limitation of values for variables and parameters. Most
importantly, it provides conditions for geometrically similar situations to be obtained. Requires
the following variable changes:

x* =
x
L
, u* =

u
U
, t* =

U
L

t,

p* =
p

ρU2 , τ
* =

τ

ρU2 , T* =
T

ρU2 ,

where L is the half-width channel, and U is a velocity scale. Substituting these variables into
the equations (2.1),(2.5), (2.6), the dimensionless governing equations are obtained (to simplify
notation, the “* ” sign has been omitted from the equations)

∇ ·u = 0, (2.7)

∂u
∂ t

+∇ · (uu) =−∇pI+
βnn

Re
∇

2u+∇ ·T, (2.8)

(
1+

εWiRe
(1−βnn)

f t
(
T
))

T+Wi
(

∂T
∂ t

+∇ · (uT)−∇u ·T−T ·∇uT
)
+

+ξWi
(
D ·T+T ·DT)+ αGReWi

(1−βnn)

(
T ·T

)
= 2

(1−βnn)

Re
D.

(2.9)

Considering the changes in the variables system, dimensionless constants appear in
the equations. These constants are known in the literature as the Reynolds number, defined

by Re =
ρUL
η0

(it is the ratio between the inertial forces and the viscous forces of the flow),

the Weissenberg number Wi =
λU
L

(for a viscoelastic fluid, it is the ratio between the elastic

forces and the viscous forces) and the constant βnn =
ηs

η0
, where βnn ∈ [0,1) (it is the constant

that controls the Newtonian solvent contribution. The closer to 0 are the value of βnn, the more
non-Newtonian the fluid flow, to the point that βnn = 0 is a purely polymeric fluid flow). The
constant η0 represents the total viscosity of the flow, and is defined as the sum of the solvent
viscosity and the polymer viscosity η0 = ηs +ηp.

Rewriting the three-dimensional equations is obtained.

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0, (2.10)

∂u
∂ t

+
∂uu
∂x

+
∂uv
∂y

+
∂uw
∂ z

=−∂ p
∂x

+
βnn

Re

[
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

]
+

∂Txx

∂x
+

∂Txy

∂y
+

∂Txz

∂ z
, (2.11)
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∂v
∂ t

+
∂vu
∂x

+
∂vv
∂y

+
∂vw
∂ z

=−∂ p
∂y

+
βnn

Re

[
∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2

]
+

∂Txy

∂x
+

∂Tyy

∂y
+

∂Tyz

∂ z
, (2.12)

∂w
∂ t

+
∂wu
∂x

+
∂wv
∂y

+
∂ww
∂ z

=−∂ p
∂ z

+
βnn

Re

[
∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2

]
+

∂Txz

∂x
+

∂Tyz

∂y
+

∂Tzz

∂ z
, (2.13)

Txx +
εReWi
(1−βnn)

(
Txx +Tyy +Tzz

)
Txx +Wi

(
∂Txx

∂ t
+

∂ (uTxx)

∂x
+

∂ (vTxx)

∂y
+

∂ (wTxx)

∂ z
+

−2Txx
∂u
∂x

−2Txy
∂u
∂y

−2Txz
∂u
∂ z

+ξ

[
2Txx

∂u
∂x

+Txy

(
∂u
∂y

+
∂v
∂x

)
+

+Txz

(
∂u
∂ z

+
∂w
∂x

)])
+

αGReWi
(1−βnn)

(
T 2

xx +T 2
xy +T 2

xz

)
=

2(1−βnn)

Re
∂u
∂x

,

(2.14)

Txy +
εReWi
(1−βnn)

(
Txx +Tyy +Tzz

)
Txy +Wi

(
∂Txy

∂ t
+

∂ (uTxy)

∂x
+

∂ (vTxy)

∂y
+

∂ (wTxy)

∂ z
+

−Txx
∂v
∂x

−Txy
∂v
∂y

−Txz
∂v
∂ z

−Txy
∂u
∂x

−Tyy
∂u
∂y

−Tyz
∂u
∂ z

+ξ

[
Txy

∂u
∂x

+
1
2

Tyy

(
∂u
∂y

+

+
∂v
∂x

)
+

1
2

Tyz

(
∂u
∂ z

+
∂w
∂x

)
+

1
2

Txx

(
∂u
∂y

+
∂v
∂x

)
+Txy

∂v
∂y

+
1
2

Txz

(
∂w
∂y

+

+
∂v
∂ z

)])
+

αGReWi
(1−βnn)

(
TxxTxy +TxyTyy +TxzTyz

)
=

(1−βnn)

Re

(
∂u
∂y

+
∂v
∂x

)
,

(2.15)

Txz +
εReWi
(1−βnn)

(
Txx +Tyy +Tzz

)
Txz +Wi

(
∂Txz

∂ t
+

∂ (uTxz)

∂x
+

∂ (vTxz)

∂y
+

∂ (wTxz)

∂ z
+

−Txx
∂w
∂x

−Txy
∂w
∂y

−Txz
∂w
∂ z

−Txz
∂u
∂x

−Tyz
∂u
∂y

−Tzz
∂u
∂ z

+ξ

[
Txz

∂u
∂x

+
1
2

Tyz

(
∂u
∂y

+

+
∂v
∂x

)
+

1
2

Tzz

(
∂u
∂ z

+
∂w
∂x

)
+

1
2

Txx

(
∂w
∂x

+
∂u
∂ z

)
+

1
2

Txy

(
∂w
∂y

+
∂v
∂ z

)
+

+Txz
∂w
∂ z

])
+

αGReWi
(1−βnn)

(
TxxTxz +TxyTyz +TxzTzz

)
=

(1−βnn)

Re

(
∂u
∂ z

+
∂w
∂x

)
,

(2.16)

Tyy +
εReWi
(1−βnn)

(
Txx +Tyy +Tzz

)
Tyy +Wi

(
∂Tyy

∂ t
+

∂ (uTyy)

∂x
+

∂ (vTyy)

∂y
+

∂ (wTyy)

∂ z
+

−2Txy
∂v
∂x

−2Tyy
∂v
∂y

−2Tyz
∂v
∂ z

+ξ

[
Txy

(
∂v
∂x

+
∂u
∂y

)
+2Tyy

∂v
∂y

+

+Tyz

(
∂v
∂ z

+
∂w
∂y

)])
+

αGReWi
(1−βnn)

(
T 2

xy +T 2
yy +T 2

yz

)
=

2(1−βnn)

Re
∂v
∂y

,

(2.17)
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Tyz +
εReWi
(1−βnn)

(
Txx +Tyy +Tzz

)
Tyz +Wi

(
∂Tyz

∂ t
+

∂ (uTyz)

∂x
+

∂ (vTyz)

∂y
+

∂ (wTyz)

∂ z
+

−Txy
∂w
∂x

−Tyy
∂w
∂y

−Tyz
∂w
∂ z

−Txz
∂v
∂x

−Tyz
∂v
∂y

−Tzz
∂v
∂ z

+ξ

[
1
2

Txz

(
∂v
∂x

+
∂u
∂y

)
+

+Tyz
∂v
∂y

+
1
2

Tzz

(
∂v
∂ z

+
∂w
∂y

)
+

1
2

Txy

(
∂w
∂x

+
∂u
∂ z

)
+

1
2

Tyy

(
∂w
∂y

+
∂v
∂ z

)
+

+Tyz
∂w
∂ z

])
+

αGReWi
(1−βnn)

(
TxyTxz +TyyTyz +TyzTzz

)
=

(1−βnn)

Re

(
∂v
∂ z

+
∂w
∂y

)
,

(2.18)

Tzz +
εReWi
(1−βnn)

(
Txx +Tyy +Tzz

)
Tzz +Wi

(
∂Tzz

∂ t
+

∂ (uTzz)

∂x
+

∂ (vTzz)

∂y
+

∂ (wTzz)

∂ z
+

−2Txz
∂w
∂x

−2Tyz
∂w
∂y

−2Tzz
∂w
∂ z

+ξ

[
Txz

(
∂w
∂x

+
∂u
∂ z

)
+Tyz

(
∂w
∂y

+
∂v
∂ z

)
+

+2Tzz
∂w
∂ z

])
+

αGReWi
(1−βnn)

(
T 2

xz +T 2
yz +T 2

zz

)
=

2(1−βnn)

Re
∂w
∂ z

.

(2.19)

The set equations (2.10) - (2.19) model the three-dimensional flow of viscoelastic,
incompressible, isothermal fluids, for the UCM (βnn = αG = ε = ξ = 0), Oldroyd-B (αG = ε =

ξ = 0), Giesekus (ε = ξ = 0), and LPTT (αG = 0) models.

2.3 Linear Stability Theory

Through the Linear Stability Theory, the stability analysis of viscoelastic fluid flows is
carried out in this work, considering the LPOG constitutive equation.

The LST technique analyzes the behaviour of a flow if disturbances of infinitesimal
amplitude are introduced. Assuming the instantaneous flow can decompose into a laminar and a
disturbing part. Therefore, the dependent variables can be decomposed as follows:

u(x,y,z, t) =U(y)+ ũ(x,y,z, t),

v(x,y,z, t) = ṽ(x,y,z, t),

w(x,y,z, t) = w̃(x,y,z, t),

p(x,y,z, t) = P(x,y)+ p̃(x,y,z, t).

(2.20)

The non-Newtonian tensors are decomposed in the form

T (x,y,z, t) = T b(y)+ T̃ (x,y,z, t), (2.21)
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where the components of the laminar flow are U(y),P(x,y) and T b(y). The components of
the disturbed flow (perturbations) are represented in the form ũ. The non-Newtonian tensor
components T bxz,T byz and T bzz are zero for the laminar flow.

Laminar flow (baseflow) is assumed invariant in the x-direction. By the continuity
equation, the normal-wall component of the mean velocity is zero (the laminar flow is parallel).
The laminar flow is assumed to be unvarying over time. Substituting this decomposition into the
equations (2.10) - (2.19) and subtracting from the resulting equations the equations satisfied by
the laminar flow, it is obtained the linear equations with coefficients not depending on t,x, and z.
Therefore, a solution in terms of normal modes may be sought for the disturbances ũ, ṽ, w̃, p̃ and
T̃ as follows:

ũ(x,y,z, t) =
1
2

[
u(y)ei(αx+β z−ωt)+ cc.

]
,

ṽ(x,y,z, t) =
1
2

[
v(y)ei(αx+β z−ωt)+ cc.

]
,

w̃(x,y,z, t) =
1
2

[
w(y)ei(αx+β z−ωt)+ cc.

]
,

p̃(x,y,z, t) =
1
2

[
p(y)ei(αx+β z−ωt)+ cc.

]
,

T̃ (x,y,z, t) =
1
2

[
T (y)ei(αx+β z−ωt)+ cc.

]
,

(2.22)

with i=
√
−1. These equations indicate that the disturbances propagate as waves, with frequency

ω , wavelength in streamwise direction λx =
2π

α
, wavelength in spanwise direction λz =

2π

β
, wave

speed c = ω

α
, with α is the wavenumber in x direction and β is the wavenumber in z direction,

and the respective amplitudes u,v,w, p and T . A three-dimensional wave propagates at an angle
φ to the direction of laminar flow, such that:

tanφ =
β

α
. (2.23)

Rewriting the system of equations for the flow disturbances using the solutions obtained
by normal modes, the equations for the three-dimensional disturbances are obtained

iαu+ iβw+
dv
dy

= 0, (2.24)

−iωu+ iUαu+ v
dU
dy

=−iα p+
βnn

Re

(
−(α2 +β

2)u+
d2u
dy2

)
+ iαTxx +

dTxy

dy
+ iβTxz, (2.25)

−iωv+ iUαv =−d p
dy

+
βnn

Re

(
−(α2 +β

2)v+
d2v
dy2

)
+ iαTxy +

dTyy

dy
+ iβTyz, (2.26)
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−iωw+ iUαw =−iβ p+
βnn

Re

(
−(α2 +β

2)w+
d2w
dy2

)
+ iαTxz +

dTyz

dy
+ iβTzz, (2.27)

Txx +
εReWi
(1−βnn)

(
Txx +Tyy +Tzz

)
T bxx +

εReWi
(1−βnn)

(
T bxx +T byy

)
Txx +Wi

(
− iωTxx+

+iαUTxx −2iαT bxxu+
dT bxx

dy
v−2

dU
dy

Txy −2T bxy
du
dy

+ξ

[
2iαT bxxu+

dU
dy

Txy+

+T bxy

(
du
dy

+ iαv
)])

+
2αGWiRe
(1−βnn)

(
T bxxTxx +T bxyTxy

)
=

2iα(1−βnn)

Re
u,

(2.28)

Txy +
εReWi
(1−βnn)

(
Txx +Tyy +Tzz

)
T bxy +

εReWi
(1−βnn)

(
T bxx +T byy

)
Txy +Wi

(
− iωTxy+

+iαUTxy − iαT bxxv+ iβT bxyw+
dT bxy

dy
v− dU

dy
Tyy −T byy

du
dy

+ξ

[
iαT bxyu+

+
1
2

dU
dy

Tyy +
1
2

T byy

(
du
dy

+ iαv
)
+

1
2

dU
dy

Txx +
1
2

T bxx

(
du
dy

+ iαv
)
+T bxy

dv
dy

])
+

+
αGWiRe
(1−βnn)

(
T bxy

(
Txx +Tyy

)
+Txy

(
T bxx +T byy

))
=

(1−βnn)

Re

(
du
dy

+ iαv
)
,

(2.29)

Txz +
εReWi
(1−βnn)

(
T bxx +T byy

)
Txz +Wi

(
− iωTxz + iαUTxz − iαT bxxw−T bxy

dw
dy

+

−dU
dy

Tyz +ξ

[
1
2

Tyz
dU
dy

+
1
2

T bxx (iβu+ iαw)+
1
2

T bxy

(
iβv+

dw
dy

)])
+

+
αGWiRe
(1−βnn)

(
T bxxTxz +T bxyTyz

)
=

(1−βnn)

Re

(
iβu+ iαw

)
,

(2.30)

Tyy +
εReWi
(1−βnn)

(
Txx +Tyy +Tzz

)
T byy +

εReWi
(1−βnn)

(
T bxx +T byy

)
Tyy +Wi

(
− iωTyy+

+iαUTyy +
dT byy

dy
v−2iαT bxyv−2T byy

dv
dy

+ξ

[
dU
dy

Txy +T bxy

(
du
dy

+ iαv
)
+

+2T byy
dv
dy

])
+

2αGWiRe
(1−βnn)

(
T bxyTxy +T byyTyy

)
=

2(1−βnn)

Re
dv
dy

,

(2.31)
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Tyz +
εReWi
(1−βnn)

(
T bxx +T byy

)
Tyz +Wi

(
− iωTyz + iαUTyz − iαT bxyw−T byy

dw
dy

+

+ξ

[
1
2

Txz
dU
dy

+
1
2

T bxy (iβu+ iαw)+
1
2

T byy

(
iβv+

dw
dy

)])
+

+
αGWiRe
(1−βnn)

(
T bxyTxz +T byyTyz

)
=

(1−βnn)

Re

(
dw
dy

+ iβv
)
,

(2.32)

Tzz +
εReWi
(1−βnn)

(
T bxx +T byy

)
Tzz +Wi

(
− iωTzz + iαUTzz

)
=

2iβ (1−βnn)

Re
w. (2.33)

For simplicity, the notation u has been omitted to denote the disturbances.

The stability analysis is performed by obtaining the solution of the system of equations
(2.24) - (2.33). The solution method used in this work is described in chapter 4.
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CHAPTER

3
SQUIRE’S THEOREM FOR VISCOELASTIC

FLUID FLOWS

This chapter presents an extension of Squire’s theorem, first for Newtonian fluid flows.
Then, the study presented by Squire (1933) is extended to non-Newtonian fluid flows, considering
the analysis of the LPOG constitutive equation for the viscoelastic models UCM, Oldroyd-B,
Giesekus, and LPTT.

Squire showed that the stability analysis is sufficient to look only at two-dimensional
disturbances for Newtonian fluid flows between parallel plates. From Squire’s work, it became
clear that three-dimensional disturbances will always be more stable than two-dimensional ones.
In other words, the critical Reynolds number for two-dimensional disturbances is smaller than
any value for which unstable three-dimensional disturbances exist. This conclusion simplifies the
stability analysis considerably, so it is desirable to know which viscoelastic fluid models satisfy
this theorem.

Squire (1933) shows this fact using the Orr-Sommerfeld equation for Newtonian fluid
flows. In this work, the analysis was reproduced using the conservation equations (2.24) – (2.27)
and the constitutive equations (2.28) – (2.33). For this, it is necessary to rewrite the three-
dimensional system of equations for the disturbances into an equivalent two-dimensional system
through a few changes in the variables of the three-dimensional equation system. Therefore,
by mathematical manipulations and changing variables, the three-dimensional (u,v,w) compo-
nents become (u,v), and the three-dimensional tensors component Txx,Txy,Txz,Tyy,Tyz and Tzz

become T xx,T xy and T yy. The superscript notation (–) denotes the equivalent two-dimensional
transformed variable.

From the three-dimensional continuity equation, we have

iαu+ iβw+
dv
dy

= 0
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=⇒ i(αu+βw)+
dv
dy

= 0.

The following change of variables is proposed:

αu+βw = α u, (3.1)

and
v = v, (3.2)

such that a two-dimensional equivalent continuity equation can be obtained, as follows

iα u+
dv
dy

= 0. (3.3)

For the momentum equations, we start with the changes of variables (3.1) and (3.2).
Multiplying α by (2.25) and adding to β multiplied by (2.27), we have

−iω(αu+βw)+ iUα(αu+βw)+αv
dU
dy

=−i(α2 +β
2)p+

+
βnn

Re

[
−(α2 +β

2)(αu+βw)+
d2(αu+βw)

dy2

]
iα2Txx +α

dTxy

dy
+

+iαβTxz + iαβTxz + iβ 2Tzz +β
dTyz

dy
.

Applying the change of variables (3.1) and (3.2) to this equation, results

−iωα u+ iUαα u+αv
dU
dy

=−i(α2 +β
2)p+

+
βnn

Re

[
−(α2 +β

2)α u+
d2(α u)

dy2

]
+ iα2Txx +α

dTxy

dy
+

+iαβTxz + iαβTxz + iβ 2Tzz +β
dTyz

dy
.

(3.4)

Defining, as Squire proposed (SQUIRE, 1933),

α
2 = α

2 +β
2, (3.5)

and applying in equation (3.4), results

−iωα u+ iUαα u+αv
dU
dy

=−iα2 p+
βnn

Re

(
−α

2
α u+α

d2u
dy2

)
+

+iα2Txx +α
dTxy

dy
+ iαβTxz + iαβTxz + iβ 2Tzz +β

dTyz

dy
.

Dividing this equation by α , it is possible to define changes of variables for ω, p and the
Reynolds number Re as follows

ω = ω
α

α
, (3.6)
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p = p
α

α
, (3.7)

and

Re = Re
α

α
. (3.8)

Applying these variable changes in the resulting equation, a two-dimensional equiva-
lent momentum equation in the streamwise direction x is obtained for the three-dimensional
disturbances equation

−iω u+ iUα u+ v
dU
dy

=−iα p+
βnn

Re

(
−α

2 u+
d2u
dy2

)
+

+iαTxx +
dTxy

dy
+2iβTxz + i

β 2

α
Tzz +

β

α

dTyz

dy
,

(3.9)

except for the extra-stress tensor components T , which need special treatment.

For the momentum equation in the y direction, multiplying α/α by (2.26) and ap-
plying the variable changes defined earlier, a two-dimensional equivalent equation for the
three-dimensional equation (2.26) is obtained.

−iω v+ iUα v =−d p
dy

+
βnn

Re

(
−α

2 v+
d2v
dy2

)
+ iαTxy +

α

α

dTyy

dy
+ i

α

α
βTyz. (3.10)

For the component of the extra-stress tensor in the equation (3.10), the following changes
to the variable can be made as follows

T yy =
α

α
Tyy, (3.11)

and

T xy =
1
α
(αTxy +βTyz) , (3.12)

where the equation (3.10) can be rewritten as

−iω v+ iUα v =−d p
dy

+
βnn

Re

(
−α

2 v+
d2v
dy2

)
+ iαT xy +

dT yy

dy
. (3.13)

For equation (3.9), the change of variable (3.12) can be used, resulting in

−iω u+ iUα u+ v
dU
dy

=−iα p+
βnn

Re

(
−α

2 u+
d2u
dy2

)
+

+iαTxx +2iβTxz + i
β 2

α
Tzz +

dT xy

dy
.
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Defining the change of variable,

α T xx =
1
α

(
α

2Txx +2αβTxz +β
2Tzz
)
, (3.14)

the following equation is obtained

−iω u+ iUα u+ v
dU
dy

=−iα p+
βnn

Re

(
−α

2 u+
d2u
dy2

)
+ iα T xx +

dT xy

dy
. (3.15)

Therefore, the equations (3.3), (3.13) and (3.15) are the equivalent system of two-
dimensional conservation equations for the three-dimensional disturbances for viscoelastic fluid
flows.

Given the transformations in Eqs. (3.1), (3.2), (3.5), (3.6), (3.7), (3.8), (3.11), (3.12), and
(3.14) it was possible to derive the equivalent two-dimensional system of equations (3.3), (3.13)
and (3.15) for the three-dimensional disturbances for viscoelastic fluid flows.

In the following sections, the different constitutive equations for non-Newtonian vis-
coelastic fluids will be analyzed to verify if it is possible to arrive at equivalent two-dimensional
equations to the three-dimensional disturbance equations for the extra-stress tensor components,
Eqs. (2.28) to (2.33). The applicability of Squire’s theorem depends on whether these equivalent
equations exist.

3.1 Oldroyd-B model
Bistagnino et al. (2007) show that Squire’s theorem is valid for the Oldroyd-B and UCM

models. Using the LPOG constitutive system of equations (2.28)–(2.33), Bistagnino’s result
may be verified assuming ε = ξ = αG = 0, resulting in the constitutive equation system for the
Oldroyd-B model.

The Tyy tensor component equation (2.31), after the simplifications for the Oldroyd-B
model, results

Tyy +Wi
[
−iωTyy ++iαUTyy +

dT byy

dy
v−2iαT bxyv−2T byy

dv
dy

]
=

=
2(1−βnn)

Re
dv
dy

,

Applying the changes of variable (3.2), (3.6), (3.8) and (3.11) for v, ω , Re and T yy,
respectively, the simplified equation results

α

α
T yy +Wi

[
−i
(

α

α

)2
ω T yy + iUα

α

α
T yy +

dT byy

dy
v−2T bxyiαv−2T byy

dv
dy

]
=

=
2(1−βnn)

Re
α

α

dv
dy

.
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Multiplying both sides of the equation by α/α , we have

T yy +Wi
α

α

[
−i
(

α

α

)2
ω T yy + iUα

α

α
T yy +

dT byy

dy
v−2T bxyiαv−2T byy

dv
dy

]
=

=
2(1−βnn)

Re
dv
dy

,

then,

T yy +Wi
[
−i
(

α

α

)
ω T yy + iUαT yy +

α

α

dT byy

dy
v−2T bxyiα

α

α
v−2

α

α
T byy

dv
dy

]
=

=
2(1−βnn)

Re
dv
dy

.

Or,

T yy +Wi
α

α

[
− iω T yy + iUαT yy +

(
α

α

)2 dT byy

dy
v−2iαT bxy

α

α
v+

−2
(

α

α

)2

T byy
dv
dy

]
=

2(1−βnn)

Re
dv
dy

.

Defining the following changes of variables for the Weissenberg number and the baseflow
stress tensor components,

Wi =
α

α
Wi, (3.16)

T bxy =
α

α
T bxy, (3.17)

and

T byy =

(
α

α

)2

T byy, (3.18)

a two-dimensional equivalent constitutive equation it is obtained for the tensor component T yy,

T yy +Wi

(
−iω T yy + iUαT yy +

dT byy

dy
v−2iαT bxyv−2T byy

dv
dy

)
=

=
2(1−βnn)

Re
dv
dy

.

(3.19)

For the Txy and Tyz tensor components, equations (2.29) and (2.32), the transformation
given by (3.12) will be used. Rearranging the original equations for Txy and Tyz according to
(3.12),

αTxy +αWi
(
−iωTxy + iαUTxy − iαT bxxv+ iβT bxyw+

dT bxy

dy
v− dU

dy
Tyy+

−T byy
du
dy

)
+βTyz +βWi

(
−iωTyz + iαUTyz − iαT bxyw−T byy

dw
dy

+

)
=

= α
(1−βnn)

Re

(
du
dy

+ iαv
)
+β

(1−βnn)

Re

(
dw
dy

+ iβv
)
.
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After additional manipulations,

αTxy +βTyz +αWi
(
−iωTxy + iαUTxy − iαT bxxv+ iβT bxyw+

dT bxy

dy
v+

−dU
dy

Tyy −T byy
du
dy

)
+βWi

(
−iωTyz + iαUTyz − iαT bxyw−T byy

dw
dy

+

)
=

=
(1−βnn)

Re

(
α

du
dy

+β
dw
dy

+ iα2v+ iβ 2v
)
.

Applying the proposed changes of variables for Wi,T bxy and T byy,

αT xy +Wi
(
−iωαT xy + iα2UT xy − iα2T bxxv+α

dT bxy

dy
v+

−α
dU
dy

Tyy −αT byy
du
dy

)
=

(1−βnn)

Re
α

α

(
α

du
dy

+ iα2v
)
,

or,

T xy +Wi
(
−iωT xy + iαUT xy − iαT bxxv+

dT bxy

dy
v+

−dU
dy

Tyy −
α

α
T byy

du
dy

)
=

(1−βnn)

Re

(
du
dy

+ iαv
)
.

Using the transformation proposed for the Weissenberg number and the frequency,

Wi =Wi
α

α
,

and

ω = ω
α

α
,

the resulting equation for the stress tensor becomes

T xy +Wi
[
−iωT xy + iαUT xy − iαT bxxv+

α

α

dT bxy

dy
v+

−α

α

dU
dy

Tyy −
(

α

α

)2

T byy
du
dy

]
=

(1−βnn)

Re

(
du
dy

+ iαv
)
.

Defining the following change of variable for the base flow stress component T bxx

T bxx = T bxx, (3.20)

and using the variable changes already defined, the equation for T xy results

T xy +Wi

(
−iωT xy + iαUT xy − iαT bxxv+

dT bxy

dy
v+

−dU
dy

T yy −T byy
du
dy

)
=

(1−βnn)

Re

(
du
dy

+ iαv
)
,

(3.21)
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which is the equivalent two-dimensional equation for the Txy tensor component.

Finally, to verify that Squire’s theorem is valid for the Oldroyd-B model, it remains to
show that using the transformations defined previously, the transformation proposed in equation
(3.14), an equivalent two-dimensional equation is obtained. Adding equations (2.28), (2.30) and
(2.33), according to (3.14), results

(α2Txx +2αβTxz +β
2Tzz)+Wiα2

(
− iωTxx + iαUTxx −2iαT bxxu+

+
dT bxx

dy
v−2

dU
dy

Txy −2T bxy
du
dy

)
+2Wiαβ

(
− iωTxz + iαUTxz+

−iαT bxxw−T bxy
dw
dy

− dU
dy

Tyz

)
+Wiβ 2 (−iωTzz + iαUTzz) =

= α
2 2iα(1−βnn)

Re
u+2αβ

(1−βnn)

Re
(iβu+ iαw)+β

2 2iβ (1−βnn)

Re
w,

Rewriting,

ααT xx +Wi
(
−iωααT xx + iαα

2UT xx −2iα3T bxxu+α
2 dT bxx

dy
v+

−2α
2 dU

dy
Txy −2α

2T bxy
du
dy

)
+Wi

(
−2iα2

βT bxxw−2αβT bxy
dw
dy

+

−2αβ
dU
dy

Tyz

)
= α

2 2iα(1−βnn)

Re
u+2αβ

(1−βnn)

Re
(iβu+ iαw)+

+β
2 2iβ (1−βnn)

Re
w.

Dividing the resulting equation by αα , we have

T xx +Wi
(
−iωT xx + iαUT xx −2i

α2

α
T bxxu+

α

α

dT bxx

dy
v−2

α

α

dU
dy

Txy +

−2
α

α
T bxy

du
dy

)
+Wi

(
−2i

α

α
βT bxxw−2

1
α

βT bxy
dw
dy

−2
1
α

β
dU
dy

Tyz

)
=

=
α

α

2iα(1−βnn)

Re
u+2

1
α

β
(1−βnn)

Re
(iβu+ iαw)+β

2 1
αα

2iβ (1−βnn)

Re
w.

Replacing Wi and Re and manipulating the terms in the equation, we have

T xx +Wi
α

α

(
−iωT xx + iαUT xx −2i

α2

α
T bxxu+

α

α

dT bxx

dy
v−2

α

α

dU
dy

Txy +

−2
α

α
T bxy

du
dy

)
+Wi

α

α

(
−2i

α

α
βT bxxw−2

1
α

βT bxy
dw
dy

−2
1
α

β
dU
dy

Tyz

)
=

=
2(1−βnn)

Re
α

α
2

(
iα2u+ iβαw+ iβ 2u+ i

β 2

α
w
)
.
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Substituting ω in the resulting equation and using αu+βw, we then have

T xx +Wi
α

α

(
−iω

α

α
T xx + iαUT xx −2i

α2

α
T bxxu+

α

α

dT bxx

dy
v−2

α

α

dU
dy

Txy +

−2
α

α
T bxy

du
dy

)
+Wi

α

α

(
−2i

α

α
βT bxxw−2

1
α

βT bxy
dw
dy

−2
1
α

β
dU
dy

Tyz

)
=

=
2(1−βnn)

Re
α

α
2

[
iα(αu+βw)+ iβ 2 1

α
(αu+αw)

]
.

Simplifying the resulting equation, we have

T xx +Wi
(
−iωT xx + iαUT xx −2iαT bxxu+

dT bxx

dy
v−2

dU
dy

Txy +

−2T bxy
du
dy

)
+Wi

(
−2iβT bxxw−2

β

α
T bxy

dw
dy

−2
β

α

dU
dy

Tyz

)
=

=
2(1−βnn)

Re
α

α
2

(
iααu+ iβ 2 1

α
αu
)
.

Applying the transformations defined earlier, after mathematical manipulations to orga-
nize the terms, we have

T xx +Wi
(
−iωT xx + iαUT xx −2iαT bxxu+

dT bxx

dy
v−2

dU
dy

T xy +

−2
α

α
T bxy

du
dy

)
=

2(1−βnn)

Re
1

α
2 iαu

(
α

2 +β
2) .

Finally, applying the last transformations to the resulting equation and simplifying the
terms, results

T xx +Wi
(
−iωT xx + iαUT xx −2iαT bxxu+

dT bxx

dy
v−2

dU
dy

T xy +

−2T bxy
du
dy

)
=

2(1−βnn)

Re
iα u,

(3.22)

which is the equivalent two-dimensional equation for the Txx tensor component. This shows that
Squire’s theorem is valid for the Oldroyd-B model and also for the UCM model, which is a
simplification of the Oldroyd-B when βnn = 0.

3.2 Giesekus model
To verify the validity of Squire’s theorem for other models using the LPOG constitutive

equation, we have to assign the value of 0 to the unwanted model constant and analyze the
resulting equation for the desired model. For the Giesekus model ε = ξ = 0 is considered in the
LPOG system of equations (2.28) to (2.33).

To verify the validity of Squire’s theorem for the Giesekus model, we note that all the
tensor components are identical to the terms in the Oldroyd-B model, except for the terms
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multiplied by αG. This additional term corresponds to an anisotropic correction (CASTILLO;
WILSON, 2017). Therefore, it is necessary to show that these additional terms also result in
equivalent two-dimensional terms.

Making the combination of the extra terms according to the transformation given by
equation (3.14), we have

1
α

[
α

2 2αGWiRe
(1−βnn)

(T bxxTxx +T bxyTxy)+2αβ
αGWiRe
(1−βnn)

(T bxxTxz +T bxyTyz)

]
,

rewriting,

αGWiRe
(1−βnn)

1
α

[
2T bxx

(
α

2Txx +αβTxz
)
+2T bxy

(
α

2Txy +αβTyz
)]
,

or

αGWiRe
(1−βnn)

[
2T bxx

1
α

(
α

2Txx +αβTxz
)
+2T bxy (αTxy +βTyz)

]
.

Applying transformation (3.12) to the last term, we have

αGWiRe
(1−βnn)

[
2T bxx

1
α

(
α

2Txx +αβTxz
)
+2T bxyαT xy

]
,

or, for the base flow tensor terms, using the transformation for T bxy, T bxx, Re and Wi

αGWiRe
(1−βnn)

[
2

α
2

α2 T bxx (αTxx +βTxz)+2αT bxyT xy

]
.

However, for the first term between brackets, it is not possible to apply the transformation
to obtain T xx. The equation (2.33) does not have a component associated with αG such that we
could apply the transformation given by (3.14). It shows that the needed transformation for the
validity of Squire’s theorem considering the Giesekus model is not applicable.

Likewise, it is easy to see that the other transformations fail when considering this model.
For example, considering now the transformation (3.12), we have

1
α

[
α

αGWiRe
(1−βnn)

(T bxy(Txx +Tyy)+Txy(T bxx +T byy)) +

+ β
αGWiRe
(1−βnn)

(T bxyTxz +T byyTyz)

]

=⇒ αGWiRe
(1−βnn)

1
α

{
α [T bxy(Txx +Tyy)+Txy(T bxx +T byy)]+

+β (T bxyTxz +T byyTyz)
}
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=⇒ αGWiRe
(1−βnn)

1
α
[T bxy(αTxx +βTxz +αTyy)+

+αTxy(T bxx +T byy)+βT byyTyz]

=⇒ αGWiRe
(1−βnn)

[
T bxy

1
α
(αTxx +βTxz)+α

1
α

T bxyTyy+

+
1
α

T byy(αTxy +βTyz)+α
1
α

T bxxTxy

]

=⇒ αGWiRe
(1−βnn)

[
α

α2 T bxy(αTxx +βTxz)+T bxyT yy+

+
α

α
T byyT xy +

α
2

α2 T bxxTxy

]
.

As can be observed in the resulting equation, the transformations are not satisfied by the
equations of the Giesekus model. Therefore, it can be stated that Squire’s theorem is not valid
for the Giesekus viscoelastic model, confirming the assertion made by Blonce (1997).

3.3 LPTT model

For the LPTT model, the simplification αG = 0 is assumed in the LPOG system of
equations (2.28) to (2.33). As done for the Giesekus model, the terms common with the Oldroyd-
B model have already been checked for the validity of Squire’s theorem, resting only to show the
validity (or not) of the transformation for the remaining terms. For the LPTT model, there are
two additional dimensionless model constants, ε and ξ .

Starting with the terms associated with ε and applying the transformation (3.14) to obtain
an equation for T xx, we have:

+
1
α

{
α

2
[

εReWi
(1−βnn)

(Txx +Tyy +Tzz)T bxx +
εReWi
(1−βnn)

(T bxx +T byy)Txx

]
+

+2αβ
εReWi
(1−βnn)

(T bxx +T byy)Txz +β
2 εReWi
(1−βnn)

(T bxx +T byy)Tzz

}

=⇒ εReWi
(1−βnn)

1
α

{
α

2 [(Txx +Tyy +Tzz)T bxx +(T bxx +T byy)Txx] +

+2αβ (T bxx +T byy)Txz +β
2 (T bxx +T byy)Tzz

}
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=⇒ εReWi
(1−βnn)

1
α

[(
α

2Txx +α
2Tzz +α

2Txx +2αβTxz +β
2Tzz
)

T bxx+

+
(
α

2Txx +2αβTxz +β
2Tzz
)

T byy +α
2T bxxTyy

]
.

Applying the change variables defined earlier, we have

εReWi
(1−βnn)

[
αT bxxT xx +

1
α

(
α

2Tzz +α
2Txx

)
T bxx+

+αT byyT xy +αT bxxTyy

]

=⇒ εReWi
(1−βnn)

[
αT bxxT xx +αT byyT xy +α (Txx +Tyy +Tzz)T bxx

]

=⇒ εReWi
(1−βnn)

[
α

3

α2 T bxxT xx +αT byyT xx +
α

2

α
(Txx +Tzz)T bxx +αT bxxT yy

]
.

One can observe that this term of the LPTT model does not satisfy the transformations to
obtain the equivalent two-dimensional equation. Therefore, Squire’s theorem is not valid for the
LPTT viscoelastic model.

The common aspect between the Giesekus and LPTT models is the parameters associated
with anisotropy. These terms introduce spanwise dependence on the constitutive equation that
cannot be reduced to a two-dimensional equivalent form. Others anisotropic non-Newtonian
models may fail to allow a transformation of variables leading to Squire’s theorem.

Hence, the need arises to perform stability analysis for three-dimensional flows for these
viscoelastic models, as the two-dimensional analysis does not guarantee that three-dimensional
disturbances are more stable, as stated in Squire’s theorem.

This chapter was published in Furlan et al. (2022).
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CHAPTER

4
SOLUTION METHODS FOR THE STABILITY

PROBLEM

This chapter describes the solution method for the stability analysis problem of three-
dimensional fluid flow for viscoelastic fluids considering the system of equations (2.24) - (2.33).

To solve the stability analysis problem, it is necessary to the previous solution of the
laminar flow. Section 4.1 presents the solution of the baseflow for the viscoelastic fluid flows
considered in this work.

To solve the system (2.24) - (2.33) and therefore to obtain information about the stability
of the fluid flow, it was adopted the matrix method for the eigenvalue problem. This solution
method is described in Section 4.2.

4.1 Laminar Flow
Linear stability theory uses the decomposition hypothesis for the instantaneous flow,

which decomposes into laminar flow and disturbances.

The viscoelastic models used in this work adopted results references that present so-
lutions for laminar flow between parallel plates. It is worth noting that the laminar flow is
two-dimensional due to the assumptions of fluid flow applied.

For the UCM and Oldroyd-B models, the solution for the laminar flow components is
achieved analytically, as presented in Brandi, Mendonça and Souza (2019). For these models,
the analytical components are calculated from the wall-normal coordinate to the flow (y),

U(y) = 1− y2, (4.1)

T bxx(y) = 8Wi
(1−βnn)

Re
y2, (4.2)
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T bxy(y) =−2
(1−βnn)

Re
y, (4.3)

and
T byy(y) = 0. (4.4)

For the Giesekus model, the reference Furlan et al. (2021) was used as a script for
the laminar flow calculation. When the purely polymeric flow is considered, the reference’s
formulation (3.1) was adopted. When it is considered solvent in the viscoelastic fluid mixture,
the formulation (3.2) from the reference was adopted.

For the LPTT model, the reference Alves, Pinho and Oliveira (2001) was used for the
laminar flow, considering the purely polymeric LPTT fluid flow. When a solvent is considered in
the viscoelastic fluid mixture, a semi-analytical solution was developed and published in Araujo
et al. (2022).

4.2 Matrix Method
The matrix method consists of rewriting the system of equations (2.24) - (2.33) and

solving the eigenvalue problem associated with the stability analysis. Therefore, from the system
of equations obtained by applying linear stability theory to stability analysis, one rewrites the
system of equations in the form of an eigenvalue problem for the desired analysis (temporal or
spatial).

In this work, the spatial analysis of the disturbances was performed by analyzing the
spatial amplification rate αi.

Rewriting the system of equations in matrix form, as follows

LV = αFV, (4.5)

for the eigenvector V ,

V = [u, αu, v, αv, w, αw, p, Txx, Txy, Txz, Tyy, Tyz, Tzz] , (4.6)

it is possible to solve the stability analysis problem by finding the eigenvalue α (or ω for the
time analysis), using some method (direct or iterative) for calculating the eigenvalue. In this
work, MATLAB software was used to implement the stability analysis code, the laminar flow
for each desired model, and to obtain the solution of the matrix equation (4.5), the software’s
pre-programmed function EIG was used. The EIG function automatically selects the optimal
algorithm based on the properties of the matrices L and F . For Hermitian L and positive definite
Hermitian F , the eigenvalues are calculated via the Cholesky factorization of F . Otherwise,
Schur’s decomposition is used, which ignores the symmetry of L and F . The derivatives accom-
panying the amplitudes of the fluctuations are approximated using Chebyshev polynomials as
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suggested by Don and Solomonoff (1995) and implemented in Weideman and Reddy (2000),
<http://www.lmm.jussieu.fr/~hoepffner/phdcodes/chebdif.m>accessed in 06/21/2022.

Details about the matrices L and F and their coefficients are given in Appendix A.

The boundary conditions imposed for the velocities of the disturbances u,v and w are of
the no-slip type on the channel walls.

4.3 Spatial and Temporal Analysis of Instabilities
The solution of the 4.5 corresponds to an eigenvalue problem, solution exists for some

values of the parameters α,ω,β ,Re,βnn,Wi,αG,ε and ξ , and depends on the velocity profile
of the flow in question. The disturbances analyzed here are non-stationary and propagate as
Tollmien-Schlichting waves.

When ω is a real number and α is a complex number, the amplitude of the disturbance
can increase, decrease, or be neutral in the direction of laminar flow. Under these conditions,
the formulation is called a spatial formulation. The components ωr, αr and αi represent the
frequency, the wavenumber and the spatial amplification rate, respectively. For the temporal
formulation, α is a real number, and ω is a complex number. The components ωr, ωi and αr

represent the frequency, the temporal amplification rate and the wavenumber, respectively.

Table 1 presents the classification of instabilities using temporal and spatial analyses.

Table 1 – Classification of Instabilities.

Analysis type amplification rate amplitude classification
ωi < 0 decreases stable

temporal analysis ωi = 0 constant neutral
ωi > 0 increases unstable

αi < 0 increases unstable
spatial analysis αi = 0 constant neutral

αi > 0 decreases stable

http://www.lmm.jussieu.fr/~hoepffner/phdcodes/chebdif.m
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CHAPTER

5
RESULTS

This chapter presents the results obtained for stability analysis for three-dimensional
viscoelastic flows by the method presented in this work.

For each viscoelastic model, the validation/verification of the results was performed using
the results presented in the literature. In general, the literature results are for two-dimensional
flows. For the Oldroyd-B and UCM model, as shown in Chapter 3, it is possible to validate
the three-dimensional results using Squire’s theorem. For the Giesekus and LPTT models,
Squire’s theorem is not valid, and no results for stability analysis of these models considering
three-dimensional flows were found in the literature.

The neutral stability curves of this work were built considering the variation of the
Reynolds number on the x axis by the frequency on the y axis (in the images denoted as ωz).

For all simulations performed, 150 Chebyshev polynomials were considered. This num-
ber was estimated using some convergence tests. For some cases, reasonably good results were
obtained using 80 or 100 polynomials, but 150 was stipulated for all simulations to obtain the
same accuracy in all simulations.

5.1 Oldroyd-B and UCM models

This section presents the results obtained for stability analysis of the Oldroyd-B and
UCM viscoelastic models for three-dimensional flow.

To verify the results obtained, Table 2 presents comparisons between literature results for
stability analysis of two-dimensional Oldroyd-B fluid flow presented in Brandi, Mendonça and
Souza (2019) and the results obtained using the method presented in this work. This comparison
is performed using the amplification rate αi obtained by solving the system (4.5).

From Table 2, it can be seen that the results obtained by the presented method are
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Table 2 – Comparison between the amplification rate present in the literature and the results obtained in
this work.

Case Re βnn Wi ω Ref. DNS αi Ref. LST αi Pres. work αi
A 6500 1.0 0.0 0.250 −2.60×10−3 −2.68×10−3 −2.6828×10−3

B 6500 0.9 10.0 0.400 8.32×10−2 8.32×10−2 8.3054×10−2

C 8000 0.9 5.0 0.240 −9.00×10−3 −9.00×10−3 −9.2293×10−3

D 5200 0.9 1.0 0.200 2.08×10−2 2.02×10−2 2.0635×10−2

E 6500 0.7 10.0 0.276 −3.50×10−3 −3.60×10−3 −3.6947×10−3

The results of the present work were performed using 150 Chebyshev modes.

satisfactory when compared to the results found in the literature.

Figure 1 presents comparisons for the neutral stability curves for the Oldroyd-B fluid
flow by varying the solvent βnn contribution in the fluid mixture and the Weissenberg number Wi

in the simulations.
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Figure 1 – Comparison of neutral curves presented in the literature and the results obtained in this work.

Source: Elaborated by the author.
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It can be seen that the neutral curves are in agreement, showing that the solution method
for the stability problem presented here works for constructing the neutral stability curves.

To verify the stability analysis results for three-dimensional flows, the results presented
in Table 2 were used, considering values for the variable β (for two-dimensional flows, β = 0)
using the relations presented in Chapter 3.

For case B of Table 2, we have the value

α = 1.36979264761636+0.0830546458400634i.

Using the relation (3.5), the expected value for the eigenvalue α considering a three-dimensional
flow is obtained.

Making β = 0.2, the value of α for the expected three-dimensional flow, by Squire’s
relation is

α = 1.35516846947716+0.0839509225491296i.

Making the variable changes in the code for ω , Re and Wi from the two-dimensional
one to find the equivalent three-dimensional value through their respective transformations, and
solving the three-dimensional stability problem for this case, the following value is obtained

α = 1.35516846948083+0.0839509225400766i.

The three-dimensional values for the flow variables are:

ω = 0.395760974060906+0.000518751128458257i,

Re = 6569.61070777306−8.61124060116205i

and

Wi = 10.1070933965739−0.0132480624633262i.

It is possible to see that the values of the amplification rates are very close, with a
difference to the eleventh decimal place.

5.1.1 UCM Results

Here, the results for stability analysis are presented, considering the UCM model as the
constitutive model for the viscoelastic fluid flow. Neutral stability curves are presented, varying
the Weissenberg number (Wi) and the spanwise wavenumber (β ).

Figure 2 shows the neutral stability curves varying the Weissenberg number. The values
considered were: 2,6,8,10,12 and 14.
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Figure 2 – Neutral Curve for the viscoelastic UCM model.
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It can be seen that the region where the amplification rates indicate wave growth (unsteady
flow αi < 0) increases as the Weissenberg number is increased. The neutral curve that contains
the largest unstable region is observed for Wi = 8, and then, with the increase of Wi to 10 and 12,
this unstable region decreases consecutively. With the transition of values for the Weissenberg
number from 6 to 8, it is possible to observe a significant change in the shape of the neutral curve.
For both the values of Wi = 2 and 6, the neutral curve has the characteristic “banana” shape.
However, when Wi is increased to 8, the neutral curve shape changes to a format where it seems
to have two neutral curves with a banana shape, one overlapping the other, forming a “shark-like”
design. This shark-like design is more pronounced when we look at the neutral curve obtained
considering Wi = 14.

To explore this behaviour and look at how the three-dimensional disturbances behave for
these values of the Weissenberg number, a variation of the three-dimensional wavenumber β

was performed, considering: 0 (two-dimensional), 0.1,0.2,0.4,0.6,1.0 and 1.2. Figures 3, 4 and
5 presents the neutral curves for three-dimensional disturbances considering Wi = 8,10 and 12,
respectively.

Increasing the value of the Weissenberg number from 6 to 8, it is evident that the
instability region increases. Increasing the Weissenberg number value to 10, the instability
region also increases, but it is possible to observe that the maximum frequency decreases. This
behaviour becomes more evident when we look at Figure 5, where we can see that the maximum
frequency decreases when the Weissenberg number increases to 12.

For the regions of instabilities considering neutral curves for three-dimensional distur-
bances, one can observe the validity of Squire’s theorem. As the three-dimensional wavenumber
β increases, the region of instability decreases. The three-dimensional wavenumber is a stabilis-
ing factor for models where Squire’s theorem is satisfied.
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Figure 3 – Neutral Curve for the viscoelastic UCM model for Wi = 8.
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Figure 4 – Neutral Curve for the viscoelastic UCM model for Wi = 10.

1000 2000 3000 4000 5000 6000 7000 8000

Re

0.1

0.2

0.3

0.4

0.5

0.6

z

 = 0

 = 0.1

 = 0.2

 = 0.4

 = 0.6

 = 1

 = 1.2

Source: Elaborated by the author.

An interesting behaviour can be observed in Figure 3. The neutral curve for β = 1
presents two separate instability regions. As the Weissenberg number increases, these regions
merge. This behaviour repeats for the instability region for β = 1.2. For neutral curves consider-
ing Weissenberg 12, the regions of instabilities have no discontinuities. All regions for lower
Weissenberg numbers were separated, merged and remains this way as the Weissenberg number
value increased.

5.1.2 Oldroyd-B Results

Here, the results for stability analysis are presented, considering the Oldroyd-B model
as the constitutive model for the viscoelastic fluid flow. Neutral stability curves are presented,
varying the Weissenberg number (Wi) and the constant that controls the contribution of the
solvent to the mixture (βnn). Figures 6, 7 and 8 shows the neutral stability curves varying the
Weissenberg number for different values for βnn. The values considered for the Weissenberg
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Figure 5 – Neutral Curve for the viscoelastic UCM model for Wi = 12.

1000 2000 3000 4000 5000 6000 7000 8000

Re

0.1

0.2

0.3

0.4

0.5

0.6

z  = 0

 = 0.1

 = 0.2

 = 0.4

 = 0.6

 = 1

 = 1.2

Source: Elaborated by the author.

number were: 2,6,8,10,12 and 14 and for the constant βnn were: 0.125,0.5 and 0.875.

Figure 6 – Neutral Curve for the viscoelastic Oldroyd-B model for βnn = 0.125.
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The addition of solvent to the mixture has a stabilising effect on the flow. The instability
region reduces considerably when we look at the difference in the neutral curves for the UCM
and Oldroyd-B model. Moreover, for the graphs of the Oldroyd-B model, it is possible to see that
this stabilising effect of the solvent addition continues to act. The instability region decreases
considerably as the fluid mixture gains more Newtonian contribution in its composition (solvent
addition).

Figure 6 shows the Weissenberg number (elasticity) effect on the instability region. As
the value of this parameter increases from 2 to 6, the instability region increases. When this
parameter reaches the value of 8, the instability region decreases again and continues for the
other increased values. More solvent contribution in the mixture makes this behaviour disappears,
showing that elasticity and polymer viscosity has a more significant effect on stability than
solvent viscosity, whose destabilizing influence exists only for high Reynolds numbers.
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Figure 7 – Neutral Curve for the viscoelastic Oldroyd-B model for βnn = 0.5.
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Figure 8 – Neutral Curve for the viscoelastic Oldroyd-B model for βnn = 0.875.
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As this viscoelastic model satisfies Squire’s theorem and we do not notice any particular
behaviour in the neutral curves considering three-dimensional disturbances, we present only
two-dimensional ones, which are the most important for the stability analysis of this model.

5.2 Giesekus Model
This section presents the results obtained for stability analysis of the Giesekus viscoelastic

model for two- and three-dimensional flows.

5.2.1 Two-Dimensional Disturbances Analysis

For the results’ verification, Table 3 presents comparisons between the results presented
by Blonce (1997) for stability analysis of two-dimensional flows for the Giesekus model with
the results obtained using the method presented in this work.
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This comparison is performed using the null αi amplification rate (i.e., for values on the
boundary of the neutral curve), obtained by solving the system (4.5).

Blonce (1997) uses different variables than the one used in this work, such as the
parameter E, written as E = Wi

Re , and in the equations for the disturbances wave velocity c is used.
To verify the results presented in this work, the value of E = 8.6×10−4 was adopted for the
parameter E.

Table 3 – Comparison between the wavenumber presented in Blonce (1997) and the results obtained in
this work.

βnn αG Re Wi ω Blonce αr Pres. work α

0.2
0.1 5489.34 4.7208324 0.20714960 1.0420 1.04479−0.0001852i
0.3 4064.09 3.4951174 0.22218604 1.0636 1.06330+0.0000652i
0.5 3593.21 3.0901606 0.22995984 1.0776 1.07750+0.0000814i

0.5
0.1 4944.61 4.2523646 0.2368872 0.9970 1.00125−0.0000443i
0.3 4271.79 3.6737394 0.24407986 1.0061 1.00599+0.0000021i
0.5 4070.37 3.5005182 0.25105788 1.0107 1.02064−0.0004362i

0.8
0.1 5350.89 4.6017654 0.2592267 1.013 1.01298+0.0000149i
0.3 5092.37 4.3794382 0.26411704 1.0174 1.02031−0.0000313i
0.5 4980.98 4.2836428 0.26445452 1.0187 1.01853+0.0000114i

The results of the present work were performed using 150 Chebyshev modes.

The parameter αG of the Giesekus model influences two- and three-dimensional distur-
bances. Therefore, it is necessary to analyse the influence of this parameter under both types of
disturbances. For two-dimensional disturbances, a variation of this parameter was performed
considering different values of βnn and of the Weissenberg number to analyse its influence under
many different conditions and flow characteristics.

Figure 9 presents the neutral stability curves for two-dimensional disturbances by varying
the values of the parameter αG, considering Wi = 2.

It is possible to observe that the parameter αG, for these cases analysed, acts as a
stabilising factor in the flow. In the graphs where the curves do not appear, the stabilisation was
so high that the critical Reynolds is upper than 8000. As the percentage of solvent viscosity
contribution increases in the fluid mixture (βnn → 1), this stabilising effect becomes smaller,
to the point that the neutral curves for βnn = 0.75 do not show many differences between the
Oldroyd-B fluid (αG = 0) and the Giesekus fluid.

Another very expressive behaviour in these results is precisely how the neutral curve
decreases in size (increasing the critical Reynolds) and then increases its size again (decreasing
the critical Reynolds) as the values of the parameter αG increase. This behaviour is more
pronounced when we look at the neutral curves considering smaller values for βnn, that is,
the most significant non-Newtonian contribution in the fluid mixture (about 87.5%). As the
Newtonian contribution increases in the fluid mixture, this behaviour reduces, as shown in Figure
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(a) Neutral Curves for βnn = 0.125.
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(b) Neutral Curves for βnn = 0.25.
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(c) Neutral Curves for βnn = 0.5.
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Figure 9 – Neutral curves for two-dimensional disturbances for different values of αG considering Wi = 2.

9(d).

As this parameter is related to the mobility of the fluid, it is interesting to analyse its
influence as the elasticity of the fluid increases. Figure 10 presents the neutral stability curves for
two-dimensional disturbances by varying the values of the parameter αG, considering Wi = 6.

The parameter αG stabilising effect held for small values even with increasing Weis-
senberg. It can be observed that this effect was stronger, as a small increase in its value 0→ 0.001,
caused the critical Reynolds to increase from ≈ 2500 to more than 8000 (considering the cases
βnn = 0.125 and 0.25). It is also possible to observe that, as the value of the parameter αG in-
creases (values greater than 0.05), the critical Reynolds decreases to the point that for αG = 0.4,
the critical Reynolds is smaller than for the Oldroyd-B model.

When the value of the Weissenberg number increases to 8, we can observe the behaviour
of the neutral stability curves in Figure 11.

The critical Reynolds value decreases as the Weissenberg number increases for higher
amounts of polymer viscosity in the mixture. When the amount of solvent viscosity in the
mixture increases, this behaviour is not as noticeable as the amount of polymer viscosity is high.
However, the increase in the parameter αG continues to cause the instability regions to increase
after a particular value. The results show the influence of the parameter αG, which for low values
stabilises, even considering higher values for the Weissenberg number. However, for higher



62 Chapter 5. Results

1000 2000 3000 4000 5000 6000 7000 8000

Re

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

z

G
 = 0

G
 = 0.001

G
 = 0.005

G
 = 0.01

G
 = 0.05

G
 = 0.1

G
 = 0.15

G
 = 0.2

G
 = 0.3

G
 = 0.4

(a) Neutral Curves for βnn = 0.125.
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(b) Neutral Curves for βnn = 0.25.
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(c) Neutral Curves for βnn = 0.5.
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Figure 10 – Neutral curves for two-dimensional disturbances for different values of αG considering
Wi = 6.

values of this parameter, it is possible to observe that the destabilising effect also increases.
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(b) Neutral Curves for βnn = 0.25.
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(c) Neutral Curves for βnn = 0.5.
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Figure 11 – Neutral curves for two-dimensional disturbances for different values of αG considering
Wi = 8.
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The viscosity of the polymer has the effect of increasing the potential of the parameter
αG. For high amounts of polymer in the mixture, both the stabilising and destabilising effects
have their potential increased, and as the amount of polymer decreases, both effects decrease
their power.

Figure 12 presents the neutral curves for the same values of αG considering Wi = 10.
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(c) Neutral Curves for βnn = 0.5.
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(d) Neutral Curves for βnn = 0.75.

Figure 12 – Neutral curves for two-dimensional disturbances for different values of αG considering
Wi = 10.

Figure 12 shows that the behaviour exhibited by the influence of the parameter αG holds
for this value of the Weissenberg number.

5.2.2 Three-Dimensional Disturbances Analysis

Table 4 presents the comparison with the results obtained by Araujo (2021) with the
results obtained by the LST technique considering three-dimensional disturbances in the flow of
the viscoelastic fluid for the Giesekus model. Araujo (2021) solved the stability problem for this
same viscoelastic model using the Direct Numerical Simulation (DNS) technique.

Table 4 shows a good agreement between the results obtained by the two computational
techniques for stability analysis. This agreement assures the quality of the results obtained in
this work considering three-dimensional disturbances.

As presented in Chapter 3, it is impossible to predict the behaviour of three-dimensional
disturbances by considering Squire’s theorem for the Giesekus model. Therefore, it is necessary
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Table 4 – Comparison between the amplification rate obtained with the LST and DNS techniques.

βnn αG Re Wi ω β αr αi - LST αi - DNS
0.25 0.005 12000 8 0.13 0 0.7855341 0.00418969 0.00426669
0.25 0.005 12000 8 0.13 0.8 0.6020718 −0.01026497 −0.01055978
0.50 0.1 3400 6 0.29 0.1 1.0996964 0.01029414 0.01042072
0.50 0.1 3400 6 0.29 0.8 0.9874944 0.02556869 0.02554535
0.50 0.15 7300 8 0.20 0.2 0.92538702 −0.01351977 −0.01349773
0.75 0.4 4700 8 0.27 1.2 0.82048732 0.06034785 0.06012240
The results of the present work were performed using 150 Chebyshev modes.

to perform an analysis solely for these disturbances.

An immediate consequence of this non-validity of Squire’s theorem for a viscoelastic
fluid is that for a given Reynolds value and frequency, the three-dimensional disturbances could
be more unstable than the two-dimensional ones. This behaviour is illustrated in Figure 13. This
Figure shows neutral stability curves for different values for the spanwise wavenumber β . These
are: 0 (two-dimensional), 0.1,0.2,0.4,0.6,0.8,1 and 1.2.
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(d) Neutral Curves for Wi = 10.

Figure 13 – Neutral curves for three-dimensional disturbances for different values of β considering
βnn = 0.125 and αG = 0.005.

Fig. 13 shows that, as verified in the graphs of the previous section, increasing the
Weissenberg number stabilises two-dimensional disturbances. This effect is so strong that, from
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Wi = 6, the critical Reynolds for these disturbances is above 12000. However, for Wi = 2, it
is possible to observe the non-validity of Squire’s theorem for this fluid. The increase of the
spanwise wavenumber causes a reduction in the critical Reynolds value for the neutral curves of
the three-dimensional disturbances. The increase of the spanwise wavenumber causes possible
anticipation of the transition, characterising a destabilising factor for these flows. This behaviour
is more pronounced as the Weissenberg number increases. The critical Reynolds for the two-
dimensional disturbances of these flows are above 12000, but the smallest critical Reynolds for
the three-dimensional disturbances of these flows are: ≈ 9285.937 for Wi = 6, ≈ 9320.41 for
Wi = 8, and ≈ 8585.16 for Wi = 10.

Therefore, for fluid flows of this viscoelastic model, three-dimensional disturbances
can be much more unstable than two-dimensional ones. For a better analysis of the effect of
the spanwise wavenumber under the stability of the flows of this viscoelastic model, the two-
dimensional cases presented in the section will be analysed by considering variations for β .
These results are present in the form of the critical Reynolds numbers. To standardise and make
it easier to understand the graphs, for the different values of the Giesekus model parameter αG,
the colours used for these two-dimensional curves in the previous section were kept.

Figure 14 presents the variation of the critical Reynolds values for different values of the
Giesekus model parameter αG, considering Wi = 2.
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(a) Critical Reynolds variation for βnn = 0.125.
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(b) Critical Reynolds variation for βnn = 0.25.
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(c) Critical Reynolds variation for βnn = 0.5.
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(d) Critical Reynolds variation for βnn = 0.75.

Figure 14 – Critical Reynolds number for three-dimensional disturbances for different values of β and
αG.
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It is worth noting some flows do not have points for spanwise wavenumbers. It is because,
for these wavenumbers, stabilisation has caused the critical Reynolds above 12000.

Fig. 14 shows that as the Newtonian contribution in the fluid mixture increases, the range
of values for critical Reynolds decreases, pronouncing the influence of the polymer viscosity on
the stability of the flows.

The anisotropic effect that is inserted in this model through the term accompanying
the parameter αG in the constitutive equation suffers influence both on the polymer viscosity
(this term is divided by (1−βnn)) and on the elasticity (as this term is multiplied by Wi) as
observed in Figure 14, the polymer viscosity exhibit a significant influence on the behaviour that
characterises the non-validity of Squire’s theorem.

To analyze the influence of elasticity under the three-dimensional disturbances and its
stabilizing/destabilizing factor, Figures 15, 16 and 17 present the variation of Reynolds number
values considering Weissenberg number 6,8 and 10 respectively.
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(a) Critical Reynolds variation for βnn = 0.125.
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(b) Critical Reynolds variation for βnn = 0.25.
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(c) Critical Reynolds variation for βnn = 0.5.
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Figure 15 – Critical Reynolds number for three-dimensional disturbances for different values of β and
αG for Wi = 6.
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(a) Critical Reynolds variation for βnn = 0.125.
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(b) Critical Reynolds variation for βnn = 0.25.
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(c) Critical Reynolds variation for βnn = 0.5.
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(d) Critical Reynolds variation for βnn = 0.75.

Figure 16 – Critical Reynolds number for three-dimensional disturbances for different values of β and
αG Wi = 8.
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(a) Critical Reynolds variation for βnn = 0.125.
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(b) Critical Reynolds variation for βnn = 0.25.
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(c) Critical Reynolds variation for βnn = 0.5.
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Figure 17 – Critical Reynolds number for three-dimensional disturbances for different values of β and
αG Wi = 10.
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It becomes evident that for the Giesekus model, low values of parameter αG increase the
anisotropic effect under the three-dimensional disturbances. This statement is evident because
this term is responsible for the non-validity of Squire’s theorem. As the value for this parameter
increases, the spanwise wavenumber becomes a stabilising factor or at least reduces its destabil-
ising effect. Increasing the value of the parameter αG makes two-dimensional disturbances the
most dangerous for the flow transition. As the Newtonian contribution increases, a reduction in
the effect of the non-validity of Squire’s theorem is observed. In the constitutive equation, the
increase in the value of βnn implies a larger contribution of the term accompanying the parameter
αG (since (1−βnn)→ 0).

As the Weissenberg number increases, three-dimensional disturbances become more
predominant in the flow’s destabilization. Even with the solvent contribution increase, which has
the characteristic of stabilization, it is possible to observe a reduction of the critical Reynolds
value for βnn = 0.5, showing that the three-dimensional disturbances remain more unstable
than the two-dimensional ones. This shows the influence of the effect of elasticity on flow
stability. Higher elasticity in the viscoelastic fluid means a major influence of three-dimensional
disturbances on flow stability. If combined with low values for the parameter αG and with high
polymer viscosity in the mixture, one can have a reduction in the critical Reynolds value from
≈ 11000 for two-dimensional disturbances to ≈ 7000 considering β = 1 (Fig. 17(a)) for the
same flow.

5.3 LPTT model

This section presents a few results obtained for stability analysis of the LPTT viscoelastic
model for two- and three-dimensional flows.

For the analysis of the two-dimensional disturbances, the neutral curves were performed,
considering variations for the parameter ξ and the Weissenberg number. The values consid-
ered for the results were βnn = 0.25 and 0.50. The parameter ε = 0.75, the values of ξ were
0.01,0.05,0.1,0.15 and 0.2. The values for the Weissenberg number were 2,6 and 8.

Figure 18 presents the neutral stability curves for two-dimensional disturbances.

It can be seen that as the Weissenberg number increases, the increase in the parameter ξ

causes an increase in the instability region (reduction of the critical Reynolds). To understand
how the polymer viscosity influences the flow stability of the LPTT model, Figure 19 presents
the neutral stability curves considering βnn = 0.25.

For a higher amount of polymer viscosity in the fluid mixture, the parameter ξ exhibit a
stabilizing effect when considering Wi = 2.

The same analysis done for the Giesekus fluid flows was performed for the LPTT model
flows for the three-dimensional disturbances. The flows for two-dimensional disturbances were
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(a) Neutral Curves for Wi = 2.
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(b) Neutral Curves for Wi = 6.
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Figure 18 – Neutral curves for two-dimensional disturbances for different values of ξ considering βnn =
0.50 and ε = 0.75.
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Figure 19 – Neutral curves for two-dimensional disturbances for different values of ξ considering βnn =
0.25,ε = 0.75 and Wi = 2.

performed considering different values for the spanwise wavenumber β . For this, the values of β

were varied in the form 0(two−dimensional),0.1,0.2,0.4,0.6,0.8,1 and 1.2.

For the cases performed considering the viscoelastic LPTT model, it was impossible
to verify the non-validity of Squire’s theorem as in the Giesekus model. A more thorough
investigation needs to be performed, varying the values for the parameter ε , which is responsible
for the non-validity of the theorem for this model.

Figure 21 presents the variation of the values for the critical Reynolds number considering
the flows presented in Fig. 19.
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(a) Critical Reynolds variation for Wi = 2.
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(b) Critical Reynolds variation for Wi = 6.
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(c) Critical Reynolds variation for Wi = 8.

Figure 20 – Critical Reynolds number for three-dimensional disturbances for different values of β and ξ .
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Figure 21 – Critical Reynolds number for three-dimensional disturbances for different values of β and ξ .

As in the previous Figure, verifying the non-validity of Squire’s theorem is impossible
considering three-dimensional disturbances.
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CHAPTER

6
CONCLUSIONS AND FUTURE WORK

This work presents the stability analysis for viscoelastic fluid flows, governed by the
constitutive equation called here LPOG (2.9), which contains four viscoelastic models, Upper-
Convected Maxwell (UCM), Oldroyd-B, Giesekus and LPTT.

Linear Stability Theory was adopted to investigate the stability of viscoelastic fluid flows
to non-stationary disturbances, particularly the three-dimensional, incompressible, isothermal
viscoelastic flow between parallel plates. It is worth noting that, in the present work, only the
spatial analysis of the propagation of disturbances was performed by constructing the neutral
stability curves.

A study was carried out on the validity of Squire’s theorem for viscoelastic fluid models.
This study shows the relationship of the validity of Squire’s theorem with the isotropy of the
model considered. Viscoelastic models that present anisotropy in their rheological properties
cause the failure of the validity of Squire’s theorem. This theorem is based on the projection
of the fluid properties onto the wave propagation directions. Anisotropy does not allow these
projections to be made, indicating that the rheological properties of these fluids vary differently
depending on the direction considered.

The results of the UCM and Oldroyd-B models confirmed what was already known in the
literature. The validity of Squire’s theorem for these models helped verify the results considering
three-dimensional disturbances. An unusual behaviour was verified for the UCM model when
considering higher values for the Weissenberg number. This model presents a change in the shape
of the stability regions, commonly known as banana-shape, these regions increase considerably
in size, and their shape becomes similar to a shark shape.

The results for the Giesekus model considering two-dimensional disturbances were
validated using results presented in the literature by Blonce (1997). The results presented by this
author consider only values on top of the neutral stability curve (i.e., αi = 0), and the results
obtained using the formulation presented in this work showed an excellent agreement, presenting
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a difference of 10−4 in the values. The results for this model considering three-dimensional
disturbances were verified using the results presented by Araujo (2021). The results obtained
for the Giesekus model show the influence of the parameter of this model αG under the stability
of the flows. For two-dimensional disturbances, it could be verified that small values for this
parameter bring stability to the flow, increasing the value of the critical Reynolds. However, as
this parameter increases, the opposite effect is verified, becoming a destabilizing factor in the
flow. These characteristics are intensified with the increase of the Weissenberg number and when
considering higher polymer viscosity in the fluid mixture. For three-dimensional disturbances,
it could be verified that the effect of the non-validity of Squire’s theorem (three-dimensional
disturbances presenting lower critical Reynolds than the two-dimensional ones) is more intense
when considering lower values for the parameter αG, as well as high contribution of the polymer
viscosity in the mixture and also higher values for the Weissenberg number.

The stability analysis results for the LPTT model were not verified as exciting and
expressive behaviours as for the Giesekus model. Therefore a continuation of the investigations
regarding the stability of this fluid is necessary.

As a continuation of this research, the proposal is to analyze more cases where the char-
acteristic behaviours and the stability of each viscoelastic model are remarkable, including the
more significant variation of the parameters to understand better their effects on the stabilization
and destabilization of these flows. Also, the energy analysis of the perturbations is a work for the
future, being able to say which terms contribute to amplifying or smoothing the disturbances
analyzed.
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APPENDIX

A
ALGEBRAIC MANIPULATIONS IN THE

SYSTEM OF EQUATIONS FOR THE MATRIX
METHOD

The matrix method consists of rewriting the system of equations (2.24) - (2.33) in the
form

LV = αFV, (A.1)

with the eigenvector, V is defined as

V = [u, αu, v, αv, w, αw, p, Txx, Txy, Txz, Tyy, Tyz, Tzz]
T . (A.2)

Here, the details of the mathematical manipulation required for this rewrite are presented.

The matrix system is therefore rewritten in such a way that each row of the matrix
corresponds to an equation of the system (2.24) - (2.33), and the addition of 3 rows are required
to make the system closed and the matrices square. The matrices L and F have the coefficients
for the disturbances in the eigenvector V .

Defining the matrix L (left-hand side of the matrix equation (A.1)) and the matrix F

(right-hand side of the matrix equation Eq. (A.1)) in the form with the subindexes (i, j) of Li, j

and Fi, j denote row and column, respectively.

For consistency and familiarity with the subindex notation, we rewrite the eigenvector
(A.2) as follows:

V = [V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13]
T . (A.3)

For the first line i = 1, rewrite the continuity equation (2.24), in the form:

L1,3 *V3 +L1,5 *V5 = αF1,1 *V1, (A.4)
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with

L1,3 = Dy,

L1,5 = iβ I

and

F1,1 =−iI.

It is worth noting that each element of the matrices L and F are square matrices with
dimension n, with n being the number of Chebyshev modes used to approximate the derivatives
by polynomials; Dy is the Chebyshev matrix for the first derivative, and Dy2 is the Chebyshev
matrix for the second derivative. All other elements for both matrices in this row are null.

The second line, i = 2, is one of the lines included in the system so that the matrices L

and F are square, so in that line, we have:

L2,2 *V2 = αF2,1 *V1, (A.5)

with L2,2 = F2,1 = I.

For i = 3, rewrite the quantity equation of motion in the x direction (2.25), in the form

L3,1 *V1 +L3,3 *V3 +L3,9 *V9 +L3,10 *V10 = α (F3,1 *V1 +F3,2 *V2+

+F3,7 *V7 +F3,8 *V8) ,
(A.6)

with

L3,1 =−iωI− βnn

Re
(Dy2−β

2I),

L3,3 =
dU
dy

,

L3,9 =−Dy,

L3,10 =−iβ I,

F3,1 =−iU,

F3,2 =−βnn

Re
I,

F3,7 =−iI,

and

F3,8 = iI.

For i = 4, the procedure is the same as for the row i = 2,

L4,4 *V4 = αF4,3 *V3, (A.7)

with L4,4 = F4,3 = I.
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For i = 5, rewrite the quantity equation of motion in the y direction (2.26), of the form:

L5,3 *V3 +L5,7 *V7 +L5,11 *V11 +L5,12 *V12 = α
(
F5,3 *V3 +F5,4 *V4 +F5,9 *V9

)
, (A.8)

with
L5,3 =−iωI− βnn

Re
(Dy2−β

2I),

L5,7 = Dy,

L5,11 =−Dy,

L5,12 =−iβ I,

F5,3 =−iU,

F5,4 =−βnn

Re
I,

F5,9 = iI.

For i = 6, the procedure is the same as for the rows i = 2 and i = 4,

L6,6 *V6 = αF6,5 *V5, (A.9)

with L6,6 = F6,5 = I.

For the line i = 7, rewrite the quantity equation of motion in the z direction (2.27), of the
form

L7,5 *V5 +L7,7 *V7 +L7,12 *V12 +L7,13 *V13 = α
(
F7,5 *V5 +F7,6 *V6 +F7,10 *V10

)
, (A.10)

with
L7,5 =−iωI− βnn

Re
(Dy2−β

2I),

L7,7 = iβ I,

L7,12 =−Dy,

L7,13 =−iβ I,

F7,5 =−iU,

F7,6 =−βnn

Re
I,

F7,10 = iI.

For i = 8, rewrite the constitutive equation for the tensor Txx (2.28), of the form

L8,1 *V1 +L8,3 *V3 +L8,8 *V8 +L8,9 *V9 +L8,11 *V11 +L8,13 *V13 =

= α (F8,1 *V1 +F8,3 *V3 +F8,8 *V8) ,
(A.11)

with
L8,1 =−2WiT bxyDy+ξWiT bxyDy,
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L8,3 =Wi
dT bxx

dy
,

L8,8 = I+
εReWi
(1−βnn)

(2T bxx +T byy)− iωWiI+2
ReWiαG

(1−βnn)
T bxx,

L8,9 =−2Wi
dU
dy

+ξWi
dU
dy

+2
ReWiαG

(1−βnn)
T bxy,

L8,11 =
εReWi
(1−βnn)

T bxx,

L8,13 =
εReWi
(1−βnn)

T bxx,

F8,1 = 2iWiT bxx −2iξWiT bxx +2i
(1−βnn)

Re
I,

F8,3 =−iξWiT bxy,

F8,8 =−iWiU.

For i = 9, rewrite the constitutive equation for the tensor Txy (2.29), of the form

L9,1 *V1 +L9,3 *V3 +L9,5 *V5 +L9,8 *V8 +L9,9 *V9 +L9,11 *V11 +L9,13 *V13 =

= α (F9,1 *V1 +F9,3 *V3 +F9,9 *V9) ,
(A.12)

with
L9,1 =−WiT byyDy+

1
2

ξWi(T bxx +T byy)Dy− (1−βnn)

Re
Dy,

L9,3 =Wi
dT bxy

dy
+ξWiT bxyDy,

L9,5 = iβWiT bxy,

L9,8 =
εReWi
(1−βnn)

T bxy +
1
2

ξWi
dU
dy

+
ReWiαG

(1−βnn)
T bxy,

L9,9 = I+
εReWi
(1−βnn)

(T bxx +T byy)− iωWiI+
ReWiαG

(1−βnn)
(T bxx +T byy) ,

L9,11 =
εReWi
(1−βnn)

T bxy −Wi
dU
dy

+
1
2

ξWi
dU
dy

+
ReWiαG

(1−βnn)
T bxy,

L9,13 =
εReWi
(1−βnn)

T bxy,

F9,1 =−iξWiT bxy,

F9,3 = iWiT bxx −
1
2

iξWi(T bxx +T byy)+ i
(1−βnn)

Re
I,

F9,9 =−iWiU.

For i = 10, rewrite the constitutive equation for the tensor Txz (2.30), of the form

L10,1 *V1 +L10,3 *V3 +L10,5 *V5 +L10,10 *V10 +L10,12 *V12 =

= α
(
F10,5 *V5 +F10,10 *V10

)
,

(A.13)
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with

L10,1 =
1
2

iβξWiT bxx − iβ
(1−βnn)

Re
I,

L10,3 =
1
2

iβξWiT bxy,

L10,5 =−WiT bxyDy+
1
2

ξWiT bxyDy,

L10,10 = I+
εReWi
(1−βnn)

(T bxx +T byy)− iωWiI+
ReWiαG

(1−βnn)
T bxx,

L10,12 =−Wi
dU
dy

+
1
2

ξWi
dU
dy

+
ReWiαG

(1−βnn)
T bxy,

F10,5 = iWiT bxx −
1
2

iξWiT bxx + i
(1−βnn)

Re
I,

F10,10 =−iWiU.

For i = 11, rewrite the constitutive equation for the tensor Tyy (2.31), of the form

L11,1 *V1 +L11,3 *V3 +L11,8 *V8 +L11,9 *V9 +L11,11 *V11 +L11,13 *V13 =

= α (F11,3 *V3 +F11,11 *V11) ,
(A.14)

with

L11,1 = ξWiT bxyDy,

L11,3 =Wi
dT byy

dy
−2WiT byyDy+2ξWiT byyDy−2

(1−βnn)

Re
Dy,

L11,8 =
εReWi
(1−βnn)

T byy,

L11,9 = ξWi
dU
dy

+2
ReWiαG

(1−βnn)
T bxy,

L11,11 = I+
εReWi
(1−βnn)

(T bxx +2T byy)− iωWiI+2
ReWiαG

(1−βnn)
T byy,

L11,13 =
εReWi
(1−βnn)

T byy,

F11,3 = 2iWiT bxy − iξWiT bxy,

F11,11 =−iWiU.

For i = 12, rewrite the constitutive equation for the tensor Tyz (2.32), of the form

L12,1 *V1 +L12,3 *V3 +L12,5 *V5 +L12,10 *V10 +L12,12 *V12 =

= α
(
F12,5 *V5 +F12,12 *V12

)
,

(A.15)

with

L12,1 =
1
2

iβξWiT bxy,
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L12,3 =
1
2

iβξWiT byy − iβ
(1−βnn)

Re
I,

L12,5 =−WiT byyDy+
1
2

ξWiT byyDy− (1−βnn)

Re
Dy,

L12,10 =
1
2

ξWi
dU
dy

+
ReWiαG

(1−βnn)
T bxy,

L12,12 = I+
εReWi
(1−βnn)

(T bxx +T byy)− iωWiI+
ReWiαG

(1−βnn)
T byy,

F12,5 = iWiT bxy −
1
2

iξWiT bxy,

F12,12 =−iWiU.

And finally, for the line i = 13, we rewrite the constitutive equation for the tensor Tzz

(2.33), of the form

L13,5 *V5 +L13,13 *V13 = αF13,13 *V13, (A.16)

with
L13,5 =−2iβ

(1−βnn)

Re
I,

L13,13 = I+
εReWi
(1−βnn)

(T bxx +T byy)− iωWiI,

F13,13 =−iWiU.
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