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In memory of those lost to disease, poverty and ignorance, when illusions subdue judgment.
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RESUMO

LIMA, D. M. Técnicas de deep learning e data warehousing aplicadas a dados reais do
domínio médico. 2023. 80 p. Tese (Doutorado em Ciências – Ciências de Computação e Mate-
mática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2023.

Este estudo visa ampliar o aproveitamento dos dados médicos e da capacidade de diagnóstico
automatizado através da integração e homogeneização das diversas fontes de dados proveniente
do Sistema de Informações de Saúde SI3 do Instituto do Coração (InCor/HC.FMUSP), e a investi-
gação de modelos do estado-da-arte de aprendizado de máquina conhecidos por Deep Learning,
avaliando o potencial do Deep Learning de auxílio ao diagnóstico computadorizado. Como
resultados, foi preparado uma base de dados para pesquisa clínica em formato OMOP-CDM,
denominado InCor-CDM. No segundo artigo obteve-se até 91% de acurácia na classi�cação
de lesões cutâneas usando uma rede neural convolucional profunda sobre a base de dados de
imagens dermatoscópicas ISIC. E no terceiro artigo melhorou-se, em média, a segmentação
de imagens de ressonância magnética cardíaca em 1,7% na métrica Dice e 2,5x em velocidade
de treinamento de uma rede neural convolucional U-Net usando um algoritmo de localização.
Estes resultados demonstram etapas de preparação de dados; aprendizagem profunda aplicada
a conceitos médicos de alto nível — multi-classi�cação voltada a diagnóstico; e aprendizagem
profunda aplicada em dados de baixo nível — segmentação de imagens de RM Cardíaca.

Palavras-chave: Aprendizagem profunda, Armazém de dados, Pesquisa Clínica, Dermatosco-
pia, RM Cardíaca.





ABSTRACT

LIMA, D. M.Deep learning and datawarehousing techniques applied to real data in the
medical domain. 2023. 80 p. Tese (Doutorado em Ciências – Ciências de Computação e Mate-
mática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2023.

This study aims to increase the use of medical data and the ability to automated diagnosis
through the integration and homogenization of the databases from the SI3 Health Information
System of the Heart Institute (InCor / HC.FMUSP), and investigate the application of state-of-
the-art machine learning models known as Deep Learning, assessing the potential of Deep
Learning to computerized diagnosis. As results, a database was prepared for clinical research in
the OMOP-CDM format, called InCor-CDM. In the second study we obtained up to 91% overall
accuracy in the classi�cation of cutaneous lesions using a deep convolutional neural network
on the ISIC database of dermatoscopic images. In the third paper we improved the segmentation
of heart magnetic resonance images, on average, by 1.7% in the Dice metric and 2.5x in the
training speed of a U-Net convolutional neural network using a localization algorithm. These
results demonstrate steps of data preparation; deep learning applied to high-level medical
concepts — multi-classi�cation for diagnosis; and deep learning applied to low-level image
data – Cardiac MRI image segmentation.

Keywords: Deep learning, Data warehouse, Clinical research, Dermatoscopy, Cardiac MRI.
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CHAPTER

1
INTRODUCTION

1.1 Context and Problem

Deep Learning (DL) is a branch of Arti�cial Intelligence (AI), and studies large neural
network models that learn complex tasks from data. LeCun, Bengio and Hinton (2015) note
that DL’s key feature is discovering features automatically, which was believed to be infeasible
until the end of the 90s — the models would be computationally expensive and have ill-de�ned
objective functions that would get stuck to local minima.

In the last decade however, Deep Neural Networks (DNNs) used in DL have reached
levels of unprecedented performance due to two factors: the explosion in data production and
the popularization of high-density parallel hardware. These phenomena are known as Big Data
as reported in the database community by Agrawal et al. (2008), and General-Purpose computing
on Graphics Processing Units (GPGPU) as in the survey of Wu and Liu (2008).

Big Data is characterized by many Vs of data processing: volume, variety, velocity,
value and veracity which are usually recognized in the database community as Oweis et al.
(2015) also noted. On the other hand, Wu and Liu (2008) showed how GPGPU was a conceptual
paradigm shift in Computer Graphics that allowed any parallel computation on n-dimensional
arrays, replacing the previous generation of shading languages that were designed for graphics
only.

Those achievements turned out to revive DL research, when Krizhevsky, Sutskever and
Hinton (2012) managed to beat the state-of-the-art using a deep Convolutional Neural Network
(CNN) for classi�cation of 1.2 million images in a thousand classes — the ImageNet Large-Scale
Visual Recognition Challenge (LSVRC) 2010. Most editions of ImageNet LSVRC since then had
DNNs as the top performing models, and several other challenges were proposed as well.

A natural consequence of DL’s success was the experimentation of its techniques in
other sciences, such as Biology as shown by Tang et al. (2019), Medicine as in the works of
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Esteva et al. (2017) and Wang, Casalino and Khullar (2019), and Physics as in the paper of Raissi
(2018) — which hints DL applicability to dynamic systems in general. Geyer and Carle (2018)
shows an application of DL to the classic routing problem, using a graph-based DNN model.

Those previous results from literature encouraged DL usage in more areas and databases,
as data production and storage only grows. One interesting area for DL is healthcare, largely
due to the availability of real medical data in Electronic Health Records (EHR) systems, along
the pioneering work in medical imaging and informatics since the 70s. Henry et al. (2016) cites
that 84% of hospitals in the U.S.A. had an EHR by 2015.

EHRs are part of a broad group of Health Information Systems, which also contains
Hospital Information Systems (HIS), Electronic Medical Records (EMR) and Electronic Patient
Records (EPR). Garets and Davis (2005) distinguishes EMRs and EHRs from a semantic stand-
point: EMRs are computerized legal clinical records of the patients, while the EHR is a subset
used for data exchange with other partners, e.g. government and insurance �rms.

HIS are information systems with a broader scope, as Gardner, Pryor and Warner (1999)
shows. It covers not only medical data, but also supports other hospital’s activities such as
accounting, �nance, scheduling and administrative tasks. Furuie et al. (2007) de�nes the EPR as
the integration of a HIS and a Picture Archiving and Communication System (PACS), o�ering
the complete patient clinical history and all medical images in one system.

Using DL with real data requires a preliminary data preparation with tools such as
Data Warehouses (DWs), the second topic of this thesis. Data warehousing is de�ned by Inmon
(2005) as a database architecture for integration of data sources, and that stores granular data
for the On-Line Analytical Processing (OLAP) aggregation layer. With the Big Data explosion,
Agrawal et al. (2008) remarks that it became increasingly di�cult to integrate and curate DWs,
due to the inherent complexity of manipulating several database systems and models.

One approch for DW preparation in the health sciences is the Observational Medical
Outcomes Partnership (OMOP) Common Data Model (CDM), described by Hripcsak et al. (2015).
The OMOP group was later renamed to Observational Health Data Sciences and Informatics
(OHDSI), and the OMOP CDM is their collaborative database model that captures all medical
information around the patient. OMOP CDM also includes controlled medical vocabularies, so
that partners can translate their data and participate in large multi-centric clinical studies.

Given these technologies and methodological advances, it seems possible to apply DL
to medical data with a reasonable e�ort. The main challenges are �rst the consolidation of
the data in the medical records, and second the de�nition of DL models that answer medical
questions in a logical sequence, using the appropriate domain-speci�c language.
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1.1.1 Health Information Systems

Health Information Systems, especially EPR systems, have become a widespread tech-
nology in hospitals, supporting the technical, medical and nursing sta� in capturing data from
health, storage, communication, analysis, diagnosis and in the organization of the �ow of
clinical procedures work. Despite initial resistance to the adoption of this technology, research
by Farias et al. (2011), Goldberg et al. (2012), Henry et al. (2016) on the adoption of EPRs
has demonstrated a perceived improvement in management workload, operational costs and
information control, facilitating the standardization of clinical routines and strategic planning.

In 2017, Abrahão, Nobre and Gutierrez (2017) demonstrated the use of data from the
EPR implemented at the Instituto do Coração (InCor/HC.FMUSP) for clinical studies based on
cohort selection. That study is the reference InCor data source for clinical research, named
Pauá, and it was created by de�ning materialized views over a database previously initialized
in an extract-transform-load (ETL) process and an anonymization strategy that deleted private
identi�ers then scrambled protected health information (PHI).

The main limitation of the Pauá database was the lack of linkage to raw medical data
(such as signals and images), as the database was created to manipulate data in the clinical
information level — that is, focused on categorical diagnostics and one-dimensional quantities.
So, the �rst step to extend Pauá e�ort is to create a data warehouse that supports all Pauá
functions and also support the preparation of raw data for the DL models.

1.1.2 Biomedical Informatics

Biomedical Informatics is traditionally concerned with a wide range of Informatics ap-
plications in the Healthcare domain. Macedo et al. (2021) describe an example of a telemedicine
service that was fully supported by Informatics, providing multidisciplinary training and re-
mote followup of critical patients. From the Informatics side, that line of work involves quite
common work�ows, such as setting up virtual networks, developing systems and dashboards,
training users and creating statistical reports for scienti�c publications.

Another line of Biomedical Informatics work is the development of computer methods
for healthcare applications. The work�ow includes a complete data analysis framework, but
adapted to the medical domain. Lima et al. (2021) describe the analysis of COVID-19 data from
medical reports considering patient conditions and symptoms, resulting in a Machine Learning
(ML) model to predict the probability that a person was infected with the SARS-CoV2 virus.

That study compared the symptoms of the COVID-19 disease to previous reports of
other respiratory diseases, namely the swine and bird �u outbreaks caused by subtypes of
In�uenza virus. The ML model was embedded in a web application that allowed healthcare
workers and managers to observe the infections rates inside a hospital, and it was also adopted
as a �rst line of defense to triage persons before entering the facilities.
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Figure 1 – Arti�cial Intelligence and some of its sub�elds, displaying the relationship between DL, RL,
ML and AI. Adapted from Goodfellow, Bengio and Courville (2016).

However, even though those applications are interesting to the medical community,
they use small datasets and simple statistical models, which makes it di�cult to extrapolate
results to general scenarios such as population health. These two points motivate experiments
in larger databases and with more detailed DL models, testing if DL has the ability to improve
diagnostic results or propose new healthcare applications.

1.1.3 Artificial Intelligence

Goodfellow, Bengio and Courville (2016) de�nes DL as a sub�eld of AI that is concerned
with the study of programs that learn knowledge from experience using computational models
based on large and complex graphs, where concepts are learned in layered subgraphs. Figure 1
illustrates the relationships between DL, AI and intermediate sub�elds.

From that perspective, DL composes more abstract concept representations from less
abstract representations, where representation is a mathematical object that succintly describes
another set of objects (such as images), and whose algorithms are studied in Representation
Learning (RL). As an RL example, one can think of the classic Principal Component Analysis
(PCA), which learns a low-dimensional representation aligned to the axes of highest variance.

Both DL and RL are inside Machine Learning (ML), which studies algorithms that
can learn knowledge from data, in the form of mathematical and statistical models. Linear
regressions are a classic example where the knowledge lies in the model parameters, which
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are discovered by minimizing an error function to the input data. On the other hand, AI
encompasses all forms of representing knowledge and intelligence in the computer, such as
knowledge bases, rule-based systems and logic programming. AI history can be traced back
to the �rst attempts of understand intelligence, for example with the development of neural
networks.

Arti�cial Neural Networks (ANNs) are a set of ML models inspired by the functioning
of the neuron, a type of cell that makes up the nervous system of animals and is responsible for
conducting electrical currents between di�erent parts of the body. Gotch and Horsley (1892)
studied the anatomy and functioning of these cells around the 18th century. After the turn of the
century, Rashevsky (1935) reported growing interest in the mathematical analysis of biophysical
systems. After a few years, McCulloch and Pitts (1943) developed a mathematical network
of neuron functions that is able to compute logical expressions, and thus computationally
equivalent to the Turing (1936) machine. Then, Rosenblatt (1958) proposed another neural
model, the Perceptron, which is widely recognized as seminal work for ANNs.

In the following decades, ANNs gained the ability to be trained from data and received
a wide arrangement of architectures and applications. LeCun et al. (1989) demonstrated both
the back-propagation training and architectural changes that were essential to the next wave
of deep CNNs such as the AlexNet from Krizhevsky, Sutskever and Hinton (2012). Since then,
DL had solid success in learning from large image datasets, which motivates its application to
complex real-world scenarios such as medical images alongside text and raw signals.

1.2 Motivation

The application of DL to digital images of the skin can aid in the diagnosis. Initialization
and prioritization of patient transfers in locations with di�cult access to dermatologists and
thus reduce melanoma mortality. This is a disease readily curable if recognized and treated in
its early stages. Digital images of skin lesions have the potential to educate health professionals
and the public in the identi�cation of melanoma, as well as directly assisting in the diagnosis
of melanoma through teledermatology, clinical decision support and automated diagnosis.

Other medical areas such as cardiology could bene�t as well. In Cardiology, the types
of images and exams are completely di�erent from the dermatology scenario, but they require
the same sort of computer routines for image processing and image analysis. Also, DL methods
are general computing models that allow other forms of data to be processed and integrated
together, such as body temperature signals and diagnostic codes.

The general objective of this work is to expand the analysis of medical data for the
automatic diagnosis. This analysis is carried out in several stages: initial data acquisition, data
storage, pre-processing, data con�rmation (cleaning, normalization, selection, transformation,
etc.), de�nition of diagnostic hypotheses by specialists, and automated reporting. These steps
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are adapted from Fayyad, Piatetsky-Shapiro and Smyth (1996) to a medical framework. In the
medical analysis framework, the initial data acquisition is guided by clinical estimates and
employ physician anamnesis, medical imaging, laboratory tests, and other procedures.

The data is then stored in structured databases (e.g. HIS, EHR, EMR or EPRs), semi-
structured (e.g. diagnostic standards such as the ICD by the World Health Organization (2016))
or unstructured (e.g. free text report written by the clinician during a patient visit, computerized
X-ray slides, and electric signals captured by electrocardiography). The diagnostic hypothesis
is de�ned with patient cohort selection; grouping and visualization of textual, numerical or
complex features; survival curves; prognostic models; among other Biostatistics methods.

The algorithms used by the diagnostic methods are studied in several disciplines in
Computer Science, presenting interdisciplinarity regarding the objects under analysis (medical
databases) and multidisciplinarity due to the common foundation in the theories of Computing
and other exact sciences. This context motivates the study of DL both in Medicine and in
Computer Science, as it can help health professionals to save lives and it also provides real-
world data for algorithmic research in Computer Science, Mathematics and Statistics.

1.3 �estions and Hypotheses

Concerning the complexity of medical databases and the potential applicability of DL
to both medical images and clinical data, this thesis is motivated by the following questions:

Q1. Can a DW in OMOP CDM format support the clinical research at InCor?

Q2. How to apply DL to learn high-level concepts used for diagnosis in clinical data?

Q3. How to apply DL to learn low-level concepts used for diagnosis in medical images?

These questions are addressed in three di�erent but interconnected studies, each han-
dling a particular set of materials and methods that can be combined in di�erent steps of the
general learning pipeline: data collection and preprocessing; feature extraction and engineering;
classi�cation and domain knowledge analysis. The �rst front F1 refers to question Q1 and is
tackled in Chapter 2; the second front F2 refers to question Q2 and is covered in Chapter 3;
while the last front F3 refers to question Q3, whose investigation is reported in Chapter 4. In
the following paragraphs we provide details for each of those fronts and their hypotheses.

F1. We propose a new data warehouse to pull data from InCor’s EPR database (inside
the SI3 HIS), using the OMOP CDM standard, which is an international format aimed at
improving research in computer-aided medical systems. This process uses a method to extract,
transform and load data between the databases such that data linkage is preserved between the
anonymous output and the raw medical data. By comparing cohorts obtained with the software
OHDSI Atlas and the reference Pauá study, the new data warehouse with OMOP standards can
retrieve the same patient cohorts and reproduce clinical studies, and also prepare raw datasets
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for DL models. We departed from the following hypothesis: an appropriate ETL process is able
to produce a new database that is both consistent with the original data and in accordance to the
OMOP standard, so that the new database shall support a wide range of new research initiatives
within InCor.

F2. We propose an extension to a novel CNN architecture that uses Aggregated Trans-
formation and Squeeze-and-Excite mechanisms combined into a residual processing block. This
architecture can learn to classify images based on diagnostic labels derived from microscopy
analysis, and has results comparable to state-of-the-art DL models without transferring the
learning from existing general-purpose architectures. At the same time, it demonstrates an
ensemble with far fewer layers and parameters than previous works. The experimental evalu-
ation with datasets ISIC, PH2, and 7-POINT demonstrates that the use of cutting-edge CNN
techniques can rival previous results using just a fraction of the number of weights. This
architecture works for melanoma detection (a binary problem) and skin-lesion classi�cation
(a multi-class problem) after dataset preparation. We also demonstrate the importance of the
image acquisition protocol by training and testing with unrelated datasets. We departed from
the following hypothesis: by carefully designing the CNN architecture and �ne-tuning speci�cally
for the dermatoscopic images, it is possible to learn high-level diagnostic concepts and achieve
state-of-the-art classi�cation performance with much less parameters, progressively improving it
similarly to what was done for larger general-purpose object recognition models.

F3. We propose a method to detect the region of interest (RoI) in cardiac magnetic
resonance images (CMR), using the raw images. The algorithm is based on convolution opera-
tions and on the use of a radial basis function to model the heart motion in the whole exam,
accumulating on the time dimension. This composes a much simpler model of the heart’s
energy density �eld and is de�ned in a way to allow integration into a CNN architectural
block. This method is added to a pipeline with the U-Net segmentation CNN proposed by
Ronneberger, Fischer and Brox (2015), and tested in three public reference datasets against
the canonical U-Net. The RoI detection method preprocesses the data for CNN segmentation,
and can improve the U-Net segmentation quality and processing speed. We departed from the
following hypothesis: discarding similar-looking structures that lie outside the heart region (such
as blood vessels and other organs) can improve heart segmentation CNNs, and this can be realized
by narrowing the CNN receptive �eld with a heart localization method.

1.4 Summary of motivation, objectives

Motivation: the use of HIS for decades has consolidated signi�cant databases with
potential for clinical research and decision support in health; additionally, new data processing
techniques, such as DL, demonstrated expressive results in image recognition and other com-
plex data domains. These two recent achievements provide material together (large medical
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databases) and methods (large-scale machine learning algorithms) for clinical research using
retrospective data, which will allow the development of more accurate predictive models, mul-
ticentric scienti�c collaboration, validation of clinical trials at international scale, and digital
healthcare inclusion in more locations.

Problems: the data model used by HIS was mainly focused on supporting adminis-
trative and �nancial activities of hospitals, and seldom contains the full history of patient’s
records; real medical data is complex, voluminous, and lack homogeneity. Speci�c programs
are needed to collect and prepare the data before it can be used in DL tools.

General objective: to expand the use of medical data and the ability to automated
diagnosis through the integration and homogenization of the di�erent sources of data in a HIS,
and the analysis of real medical data with state-of-the-art models of machine learning known
as DL, both in clinical data and medical images.

Expected results: a new ETL project from InCor data; a database of anonymized and
standardized data in an internationalized model for clinical research, using data warehousing
techniques; implementation and evaluation of DL in medical imaging data domains; and DL
tools to extend the use of medical data at InCor.

1.5 Summary of Contributions

As our �rst contribution, we migrated a large clinical database, the InCor’s SI3 HIS,
to the OMOP CDM standard, resulting in a data warehouse following international research
standards and with ability to link raw medical data such as CMR images to the patient records.
Using OHDSI Atlas software over this new data warehouse, it was possible to reproduce cohort
selections from the previous Pauá database with high agreement. The new data warehouse
was then used to prepare data materials for several applications and studies over the course
of four years, such as in Clementino et al. (2020), Lima et al. (2021) and Linhares et al. (2022).
Our contribution lies in demonstrating that the adoption of the CDM standard both could
support previous InCor activities and nurture novel studies in di�erent topics such as databases,
information visualization and AI.

The second contribution was the extension of an advanced CNN to multi-class classi�ca-
tion. We observed that a more sophisticated preprocessing based on colorized Contrast-Limited
Adaptive Histogram Equalization (CLAHE) was able to improve the AUC and the Sensitivity by
signi�cant amounts considering the classi�cation metrics. We also veri�ed signi�cant results
in comparison to much larger transfer-learning-based architectures using more advanced ar-
chitectural techniques. The CNN architecture is one order of magnitude smaller than previous
works, indicating that it is possible to train, from scratch, a small network and still achieve a
good overall performance in the multi-class scenario. For reference, the smallest state-of-the-art
networks in the ImageNet dataset, including the architectures engineered by AutoML methods,
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have, at least, 5 million parameters. Overall, this contribution con�rmed that DL can learn
high-level diagnostic concepts from raw images, and also lead to interesting discoveries.

The third contribution was Full Motion Focus (FMF), a novel approach based on con-
volution operations and on the use of a radial basis function that detects the RoI in CMR
images. We validated FMF with a U-Net CNN comparing our results to those of the canonical
U-Net and of the FMF-CNN in three public reference datasets. According to our results, FMF
was able to recall 99.69% of the RoI voxels in all the datasets, being suitable to preprocess the
data for CNN segmentation. FMF accelerated the training process by 150%, and also increased
Sørensen-Dice coe�cient in the majority of our test cases. This contribution con�rms that DL
can learn low-level concepts such as heart walls and motion, but also reveals that some models
bene�t from preprocessing techniques, specially in data with noise and artifacts.

1.6 Document Organization

In order to describe our results in detail, this thesis is organized as a Collection of Articles
divided into �ve chapters, in which, besides the Introduction and Conclusion chapters, the
intermediary ones reproduce selected articles resulting from the thesis project. The document
organization and the articles contained in each chapter is as follows:

• Chapter 1 introduces the problem, context, and motivation underneath the thesis;

• Chapter 2 presents the classical database analysis framework, collecting structured and
semi-structured electronic patient records for transformation to a data warehouse;

It covers the following article:

Lima et al. (2019). Transforming two decades of EPR data to OMOP CDM for clinical research.
Studies in Health Technology and Informatics 264, IOS Press.

• Chapter 3 presents a deep learning application in Dermatology, which detects and
classi�es multiple types of cancerous skin lesions in dermatoscopic images;

It covers the following article:

Lima et al. (2021). DermaDL: Advanced convolutional neural networks for computer-aided
skin-lesion classi�cation. SN Computer Science 2(253), Springer Nature.

• Chapter 4 presents a deep learning module in Cardiology, which helps to analyze images
of the heart by delineating and measuring structures in magnetic resonance imaging;

It covers the following article:

Lima et al. (2022). Full Motion Focus: Convolutional Module for Improved Left Ventricle
Segmentation over 4D MRI. In: Proceedings of Image Analysis and Processing – ICIAP
2022.
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• Chapter 5 presents the conclusions and �nal remarks.



27

CHAPTER

2
CLINICAL DATA WAREHOUSES

In this chapter, we reproduce the following article:

Lima et al. (2019). Transforming Two Decades of EPR Data to OMOP CDM for Clinical
Research. Studies in Health Technology and Informatics, IOS Press. Presented in MEDINFO
2019, Lyon, France.

This article presented the extract-transform-and-load (ETL) process from the Electronic
Patient Records (EPR) at the Heart Institute (InCor) to the Observational Medical Outcomes
Partnership (OMOP) Common Data Model (CDM) format. We described the initial database
characterization, relational source mappings, selection �lters, data transformations and patient
de-identi�cation using the open-source OHDSI tools and SQL scripts. We evaluated the resulting
InCor-CDM database by recreating the same patient cohort from a previous reference study
(over the original data source) and comparing the cohorts’ descriptive statistics and inclusion
reports.

The results exhibited that up to 91% of the reference patients were retrieved by our
method from the EPR through InCor-CDM, with AUC=0.938. The results indicate that the
method that we employed was able to produce a new database that was both consistent with
the original data and in accordance to the OMOP CDM standard. The main result of this study
is a curated clinical data warehouse that serves as a basis for understanding a person’s health,
the possible outcomes and treatments.

Generally, clinical data warehouses are curated according to statistical models of human
anatomy and laboratory specimens. For example, when too much sugar is diabetes? Cobas et al.
(2022) recommend a test for establishing a positive type-2 diabetes mellitus (DM2) diagnostic:
i) Serum glucose on fasting ≥ 126 mg/d`, AND ii) Serum glucose ≥ 200 mg/d` OR Glycated
hemoglobin HbA1c ≥ 6.5%, after 2 hours of 75 g glucose overload. In this example, the real
data would be the glucose and HBA1c concentrations measured from each patient’s blood
samples. The clinical information is de�ned by consolidating all medical examinations and
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laboratory tests in a decisive diagnostic, e.g., if the physician also observed swollen feet or other
circulatory problems during the routine check-up of our hypothetical patient, she could �le an
ICD-10 (World Health Organization, 2016) diagnostic code E11.51–“Type 2 diabetes mellitus
with diabetic peripheral angiopathy without gangrene” in the patient record.

The data warehouse stores both the detailed laboratory tests as raw data and the con-
solidated diagnostic as clinical information. In clinical studies, researchers can select patients
in groups called cohorts with speci�c conditions, diseases or treatments. Then, researchers
associate and correlate each combination of medical data to outcomes and diagnostics, under-
standing which diseases and conditions in�uence each other over time. This is appropriately
ful�lled by an analytic data model, such as the clinical data warehouse described in the article.

Clinical data warehouses can also prepare datasets for other tasks (such as deep learning)
by linking raw data to many sources of information in the data warehouse, then formatting in
a computable format such as dense arrays or knowledge graph trees. Clementino et al. (2020)
demonstrate a derived study that takes advantage of the OMOP CDM format in its cohort
selector, and then transforms the data to a vector space model for clustering.

In the following pages, we reproduce the article from Lima et al. (2019). This article is published
online with Open Access by IOS Press and distributed under the terms of the Creative Commons
Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
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Abstract 

This paper presents the extract-transform-and-load (ETL) 

process from the Electronic Patient Records (ePR) at the 

Heart Institute (InCor) to the OMOP Common Data Model 

(CDM) format. We describe the initial database 

characterization, relational source mappings, selection filters, 

data transformations and patient de-identification using the 

open-source OHDSI tools and SQL scripts. We evaluate the 

resulting InCor-CDM database by recreating the same patient 

cohort from a previous reference study (over the original data 

source) and comparing the cohorts’ descriptive statistics and 

inclusion reports. The results exhibit that up to 91% of the 

reference patients were retrieved by our method from the ePR 

through InCor-CDM, with AUC=0.938. The results indicate 

that the method that we employed was able to produce a new 

database that was both consistent with the original data and 

in accordance to the OMOP CDM standard. 
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Introduction 

In the last decades, the field of Informatics has unveiled the, 

so-called, Big Data phenomenon; an intense increase of data 

gathering, exchanging and storage in several human activities. 

This phenomenon is outlined by the so called five Vs: 

velocity, volume, variety, veracity and value of data; posed as 

the big challenges for data analysis and processing [1]. Such 

characteristics are also common in Medical and Health 

Information Systems, whose databases have grown into huge 

amounts of patient information and health-related activities, in 

diverse formats, always online, and easily accessible from a 

mobile screen. If properly interconnected and treated, these 

systems offer interesting data sources for evidence-based 

research, such as Precision Healthcare, Population Health, 

Clinical Research, and more. [11] 

However, this data exchange is often a significant challenge. 

Most of the Electronic Patient Record (ePR) systems were not 

explicitly designed for research; rather, they are organized by 

standards and structures which are local to the institutions they 

primarily serve, e.g. hospital facilities, clinics, pharmacies, 

health insurance companies, etc. Thus, interchange methods, 

protocols and architectures were designed to cope with this 

challenge, such as the HL7 standards [12] and the OpenEHR 

platform [13]. These approaches mediate the communication 

of near-line and online transaction processing (OLTP) 

systems, specifying standard data elements and 

transformations from their internal data to a common 

messaging format. Furthermore, data analysis follows an 

approach akin to online analytical processing (OLAP), using 

denormalized, coalesced and preprocessed data in a standard 

common database format. 

OHDSI and the Common Data Model 

In this context, the Observational Health Data Sciences and 

Informatics (OHDSI – www.ohdsi.org) initiative grew out of 

the Observational Medical Outcomes Partnership (OMOP) 

developing a mature data standardization model, the OMOP 

Common Data Model (CDM) [6]. Having a ready-to-use 

database in a standard common model such as the OMOP 

CDM simplifies the exchange and integration of standardized 

methods, applications, information and tools between clinical 

researchers; a critical feature for distributed research networks 

using patient-centric clinical databases. [7] 

The CDM is a strong information model; its conceptual 

elements and their relationships are explicitly specified in a 

formal language, and every piece of information is connected 

to a standard term from SNOMED-CT. The CDM’s Standard 

Clinical Tables include Person, Visits, Observations, 

Conditions, Death, Procedure occurrences, Drug exposures, 

Measurements and more detailed information such as Drug 

ingredients, and Condition modifiers. OHDSI also provides 

open-source CDM applications for visualization and statistical 

analysis of patient-exposure-outcome cohorts. [10] 

The InCor data integration challenges 

The Heart Institute (InCor) of São Paulo, Brazil, is one of the 

six institutes of the Clinics Hospital complex, University of 

São Paulo Medical School. In the last two decades, InCor has 

increased its commitment in integrating all the relevant infor-

mation of its patients, successfully developing an ePR named 

SI³. The first version of SI was deployed in year 2000; cur-

rently, it stores the clinical history, examinations, procedures, 

surgeries, notes, laboratory tests, medication, bills, and more 

for 1.3 million patients. Since then, the system has continuous-

ly evolved, overcoming several challenges related to the ex-

change of information among different healthcare institutions 

and remote installations. Furuie et al., describe details of the 

system architecture [8], while a number of studies involved 

cohort selection based on information collected by the SI³ sys-

tem [3-5]. 

However, the workload involved in extracting the relevant 

patient information from SI³ has motivated the adoption of 

new strategies.  Recently, we started the mapping from the SI³ 

data model to a standard data model that can simplify the ob-

servational retrospective studies related to Clinical Research. 

In this paper, we present the steps related to the mapping be-

tween SI³ and the CDM data models to prepare a new stand-

ardized database, named InCor-CDM, that can be used with 
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the OHDSI toolset and a number of visual analytics tools. We 

measure the quality of the resulting InCor-CDM database us-

ing precision and recall statistics, when compared to the co-

hort generated by a previous study (gold standard). 

Methods 

Environment preparation 

We prepared the InCor-CDM database environment by 

installing a PostgreSQL 10 DBMS, Java 10 JDK and Docker-

compose in a Linux workstation. The database setup includes: 

(a) creating the required database users; (b) creating the 

OMOP CDM tables with the CommonDataModel/PostgreSQL 

scripts; and (c) importing the standard OMOP vocabularies 

from athena.ohdsi.org. All the OHDSI sources are available at 

github.org/OHDSI. Next, we installed the Achilles and 

Broadsea repositories required for the OHDSI web 

applications, configured the addresses and JDBC URLs and 

started their respective docker containers. 

Database characterization 

The InCor SI³ database is stored in an Oracle 12c instance, 

accessed with the Oracle JDBC connector and DBeaver SQL 

client. The first step to manage the database was sampling its 

tables and columns with the OHDSI’s WhiteRabbit software. 

This application generates a spreadsheet with the most 

frequent values of each selected column, so we can inspect 

them and make decisions about which columns to ignore, 

especially those with irrelevant or missing values. Then, we 

use RabbitInAHat to parse the output of WhiteRabbit and 

draw relational data-flow diagrams for documentation. 

Some namespaces in SI³ were ported from non-relational or 

older systems; such namespaces had no associated 

documentation, comments, constraints or foreign keys. For 

this reason, the database metadata had to be converted to a 

searchable JSON format with table and column names, types, 

comments, constraints and foreign keys. The column names 

were tokenized according to the naming scheme of the 

institution (e.g. abbreviations separated by underscore) and 

matched to similar columns in other tables; the goal was to 

find implicit relationships where the foreign keys were 

missing. Some attribute domains, such as internal record status 

codes, event sequence and timing diagrams, were documented 

from interviews with the support staff of InCor. 

Patient de-identification 

For de-identification purposes, personal information mapped 

to the CDM was limited to a minimum. Any key with a path to 

a patient primary key (and the PK itself) was pseudonymized 

[14], i.e., direct identification information such as citizenship 

document, phones numbers, addresses and names are not 

ported to the CDM, and the record primary key is exchanged 

to a new id (pseudonym), which is a random number drawn 

from an uniform distribution in the range 1×1010 and 9×1015 

using Oracle’s DBMS_RANDOM functions, addressing 

collisions with repeated sampling. This range was selected not 

to conflict with OMOP’s standard concept ids (0 up to 2×109 

are reserved) and to be within the limits of JSON numbers 

(53-bit precision). InCor holds the mapping from the new ids 

to the original keys in a private table; the mapping is to be 

used for notifying the patient, or her/his physician, in case the 

result of a study can improve a patient’s condition. 

Numerical variables were truncated in order to satisfy a 

baseline level of k-anonymity [15], i.e., guaranteeing that any 

patient variable value have at least k patients with the same 

information, so no patient is uniquely identifiable. For 

example, event dates were truncated to yearly, monthly, daily 

or hourly precision where original precision were not needed. 

Records with spurious attributes (e.g., dates in the future, 

outside any visit, invalid range, null required field, missing 

keys) were discarded. Also, we only loaded data from patients 

born before 2010 (aged 18+), with at least one valid visit. 

si3.pac_paciente  keys 

paci_id tp_sexo ... table src_id new_id

01721 M ... pac_paciente 01721 7369111123

01722 M ... pac_paciente 01722 1257321234

01723 F ... pac_paciente 01723 3038618654

 

gender_map  omop.person 

src id person_id gender_concept_id ...

F 8532 7369111123 8507 ...

M 8507 1257321234 8507 ...

3038618654 8532 ...

Figure 1– Example: gender mapping from SI³ to the CDM. 

Figure 1 shows sample data to illustrate this process. Each 

column from CDM person table (e.g., gender_concept_id) is 

extracted from the source table and column (e.g., 

pac_paciente. tp_sexo), and transformed with the appropriate 

domain map (e.g., value ‘F’ used in SI³ for female gender is 

mapped to CDM concept 8532). The keys and gender_map 

tables are populated beforehand. The standard CDM concept 

ids were searched in OHDSI’s Athena – a web-based CDM 

vocabulary explorer. Then, observe the following query, 

which loads data from the SI3 PAC_PACIENTE table into the 

InCor-CDM omop.person table with remapped keys and 

concepts: 

 
INSERT INTO omop.person 
SELECT K.new_id          AS person_id, 
       EXTRACT(YEAR FROM P.dt_nasc) 
                         AS year_of_birth, 
       COALESCE(G.id, 0) AS gender_concept_id 
FROM si3.pac_paciente P 
JOIN keys K ON  K.table=’pac_paciente’ 
            AND K.src_id=P.paci_id 
LEFT JOIN gender_map G ON P.tp_sexo=G.src; 
 

This query operates on the table samples in Figure 1, where it 

is assumed that the keys table holds the patient’s random 

new_id, and that the gender_map table is a domain map table 

defined as (src char(1); id integer) corresponding to values of 

(tp_sexo, gender_concept_id). Unmapped values receive code 

0, meaning “unknown concept” in the standard CDM 

vocabulary. Related tables were joined to the patient PK as 

usual, with their PK also remapped by keys.new_id. 

Coding translation 

InCor SI³ uses the ICD 10 for diagnosis, a set of Brazilian 

vocabularies for coding clinical conditions, drugs, and 

procedures (TUSS is used by the Brazilian Health Care 

System for general terms and Brasindice for drugs – 

datasus.gov.br) and an internal coding system for generic 

billable items. Internal codes in use at InCor were inserted as 

new Concepts in the CDM (with ids mapped between 3×109 

and 9×109) under the “InCor” vocabulary, with Concept 

Relationships to standard concepts whenever this information 

was available in SI³. Initially, the records are inserted in the 

InCor-CDM with the original source codes, then the Concept 

Relationships from local to international codes are used to 

update the local InCor-CDM references to OMOP 

standardized terminologies, such as the SNOMED-CT, 
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RxNorm, and LOINC [6], while the preserving the original 

source code stored in the patient record. 

Quality assessment 

After loading all the CDM tables, we execute the Achilles 

analysis, which will report data quality issues as errors, 

warnings or notifications. It will also preprocess the 

demographic characterization of the database for the 

visualizations and reports; after that, we start the Atlas 

WebAPI and front-end servers. Atlas offers both a RESTful 

API and a graphical web interface to schedule the execution of 

OHDSI methods, automatically generating the queries on a 

properly built and configured CDM database. 

The most relevant errors initially found were related to: (a) the 

referential integrity, e.g., events without associated visit or 

events without a valid person_id, which were discarded; (b) 

lack of condition_eras, drug_eras and observation_periods, 

which were imputed from the ePR records by collapsing all 

the events of a patient not apart for more than a year into a 

single era – in the CDM standard, an “event” era refers to a 

time period of interest where “events” are recorded in the ePR;  

(c) events with invalid date, e.g. a condition_occurrence with 

start date in a future date; (d) too many patients without a 

diagnostic or prescription; InCor-CDM keeps such records 

because they can be used in the condition or drug_exposure 

dashboards, regardless of previous diagnosis. 

Statistical evaluation 

After initial corrections, we evaluate the quality of InCor-

CDM by using software OHDSI’s Atlas to recreate a previous 

CVD patient cohort observed in a reference study that was 

executed over the InCor SI³ database by Abrahao et al. [9]. 

That reference study prepared a clean de-identified database 

named Pauá, based on a 2016 snapshot of SI³ records of 

patients, admissions, discharges, diagnoses, surgeries, PCI, 

medications, and laboratory tests. Within the Pauá database, 

Abrahao et al., verified the effect of statins on the survival rate 

of patients diagnosed with cardiovascular diseases. Our study 

will evaluate the InCor-CDM quality by defining a cohort 

with the same criteria and by verifying how many patients 

(with the same private InCor identifiers) were retrieved by 

each criteria given that reference study. 

Results 

In this section we evaluate InCor-CDM quality by selecting 

the same DCV cohort of a previous study in the Pauá database 

[9], by using Atlas over the InCor-CDM database. Our 

evaluation computes the Area Under the ROC Curve (AUC) 

based on the results of 12 executions of the DCV cohort at 

various settings. We compute predictive statistics for each 

cohort execution, using Pauá as a gold standard. The resulting 

AUC ranges from 0.5 (no different than random sampling) to 

1.0 (reproduces exactly the same result as the gold standard). 

Table 1– Databases cardinality (thousands of records). 

Domain SI³2016 Pauá SI³2018 CDM 

Person 1,116 323 1,346 946

Visit Occurrence 6,427 5,686 7,499 7,305

Condition Occur. 1,205 1,007 1,361 1,324

Procedure Occur. 45,024 144 53,945 51,479

Drug Exposure 83,283 2,775 100,052 38,962

Measurement 22,025 20,528 31,095 30,177

Death 17 21 18 18
 

In Table 1, we present the cardinality of the InCor-CDM in 

comparison to the SI³ and Pauá database. Note that the 

Procedure and Drug domains in the Pauá database have 

substantially less records; this is because they are restricted to 

surgeries and particular classes of drugs, and because Pauá 

only uses patients with at least one admission and diagnosis. 

Additionally, InCor-CDM is based on a more recent snapshot, 

named SI³2018 in the aforementioned table. 

Cohort definition 

To replicate the Pauá study, we created a cohort over the 

InCor-CDM database with the criteria below. Each list item 

directly corresponds to a HTML input field in the Atlas 

cohort definition form. These criteria are translated to SQL 

queries over our database in the CDM format (InCor-CDM). 

• Initial Event Cohort: People having any of a visit 

occurrence of  Outpatient concept set (with 

concept_id 9202, Outpatient Visit); 

• Additional Qualifying Inclusion Criteria: 

− Condition occurrence criteria: with at least 1 

of any condition; 

− Demographic criteria: age greater than or equal 

23 (in the censor window), matching the 

patients over 18 years old at the Pauá study start 

(1999); 

− Demographic criteria: with a gender of MALE 

(8507) or FEMALE (8532); 

− Condition occurrence criteria: of 

CardioVascular Disease (a concept set of 

concept ids from ICD-10 categories I20 to I25, 

I64 to I70 and G45, including descendants and 

mapped), with occurrence start between 2003-

01-01 and 2013-12-31, where event starts 

between All days before and 30 days after index 

end date (meaning the diagnosis was recorded 

around the time of the initial outpatient visit); 

− Visit occurrence criteria: with at least 1 of 

Outpatient concept set, where event starts 

between 30 after and All days after index end 

date (a subsequent visit recording the outcome); 

− Limit qualifying cohort to the earliest event; 

• Era collapse gap size: 1 day; 

• Cohort censor window: starting 2003-01-01 and 

ending 2013-12-31. 

After verifying the Concept Sets to have the correct concept 

ids, we generated the cohort on the InCor-CDM database and 

verified the cohort attrition report (the number of patients 

remaining in the selection after each filter) in Table 2: 

Table 2– InCor-CDM CVD cohort attrition report in Atlas. 

Criteria n % Visualization 

Initial 778,015 100.00 

a) Dx 351,205 45.14 

b) 18+ 321,827 41.37 

c) M/F 303,847 39.05 

d) CVD 45,710 5.88 

e) 2nd-V 39,910 5.13 

f) People 39,498   
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Table 2 summarizes the cohort definition criteria, where each 

abbreviation mean: (a) Dx: has a valid condition occurrence 

(diagnosis); (b) 18+: over 18 years old; (c) M/F: Male or 

Female gender; (d) CVD: has any occurrence of ICD-10 I20 

to I25, I64 to I70 or G45; (e) 2nd-V: has a second outpatient 

visit occurrence more than 30 days after the index event (the 

initial visit); (f) People: lists how many people actually 

matched the events, because some patients have more than one 

episode. The baseline results achieved by the InCor-CDM 

CVD cohort indicate that 39,498 patients satisfy the criteria. 

Table 3– Pauá reference CVD cohort attrition report. 

Criteria n % Visualization 

Initial 313,894 100.00 

Dx 313,894 100.00 

18+ 282,677 90.00 

M/F 263,339 83.87 

CVD 56,799 18.06 

2nd-V 27,698 8.80 

People 27,698   

 

In comparison, Table 3 displays an attrition report for the 

reference study (Pauá). The visualization was drawn with 

Python and GNU Gimp because Pauá’s schema is not based 

on the CDM standard, and thus could not be used in Atlas. 

The reference cohort selected with the same criteria in the 

Pauá database has 27,698 patients (30% less than our first 

result), indicating the need of further refinement. 

Initial Evaluation 

All subject_ids in the cohort defined in Atlas were compared 

to the set of patient ids in the Pauá cohort. This comparison 

was executed by computing confusion matrices against the 

Pauá cohort result as a gold standard, then the derived scores: 

true and false positive ratios (TPR/FPR), positive and negative 

predictive power (PPV/NPV), accuracy (ACC) and F1-score. 

The confusion matrix the cohort #1 is given in Table 7, and 

derived scores make the first row of Table 8. 

Table 7– Confusion matrix for cohort #1 (in Table 2). 

 Pauá 

InCor-CDM 

P N Total 

P 25,423 12,290 37,713

N 2,651 282,887 285,538

Total 28,074 295,177 323,251

 

Parameter refinement 

Therefore, we noted cohort accuracy variations by creating 

additional cohorts with slightly adjusted parameters for the 

CVD criteria. Table 4 displays the attrition reports with 

increased periods for the qualifying criteria of CVD 

occurrence start date after index end date. Table 5 displays the 

attrition reports with increased periods for the qualifying 

criteria of Cardiopathy occurrence start date. We observe that 

increasing the collapse gap size to 7 and 14 days had no 

substantial effect on the results (Table 4). 

Table 4– Varying condition start after index event (days). 

Criteria \ days 7 14 21 30 

Initial 778,015 

Dx, 18+, M/F 303,847 

CVD 44,967 45,255 45,484 45,710

People 39,055 39,203 39,342 39,498

 Table 5– Varying condition start periods (years). 

Criteria \ days 2003-2013 2000-2013 2000-2016 

Initial 778,015

Dx, 18+, M/F 303,847

CVD 45,710 49,942 63,656

People 39,498 43,293 54,126

Table 6– Varying 2nd visit event start after index (days). 

Criteria \ days All 365 180 90 

Initial 778,015

Dx, 18+, M/F 303,847

CVD 45,710 44,228 43,950 43,667

People 39,498 35,457 32,767 29,414

 

Then we evaluated all the patients selected in each cohort 

(from Tables 4, 5 and 6) by comparing them to the reference 

Pauá study, using the private Keys table to map the CDM 

person_ids to the SI³ patient ids (confidential to the 

institution), whose results are presented in Table 8. It should 

be noted that Pauá had an update in October 2016, after the 

reference study was published, and so we re-executed the 

query for its patient cohort, resulting in P=28,074 patients 

selected in the cohort (1.4% increase) and overall total 

P+N=323,251 patients included (3.0% increase). 

Table 8– Predictive scores for each cohort. 

# TPR FPR PPV NPV ACC F1 

1 .905 .041 .674 .990 .953 .772

2 .901 .040 .678 .990 .954 .774

3 .903 .040 .677 .990 .954 .774

4 .904 .041 .676 .990 .954 .773

5 .905 .041 .674 .990 .953 .772

6 .907 .052 .623 .990 .944 .738

7 .907 .052 .622 .990 .944 .738

8 .907 .052 .620 .990 .943 .736

9 .889 .040 .680 .990 .954 .775

10 .877 .031 .727 .988 .960 .795 

11 .829 .027 .743 .983 .960 .784

12 .754 .023 .752 .976 .957 .753

 

Evaluation of the ROC curve 

We complete the evaluation by plotting the ROC curve from 

the predictive scores in Table 8. Only the patients existing in 

the Pauá database were used, i.e., only 37,713 patients of 

those retrieved in the cohort #1 also existed in the Pauá 

database. The highest scores of each column are highlighted in 

bold, e.g., cohort #10 exhibited the highest F1-score. 

 

Figure 2– Empirical ROC curve for Table 8. 
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In this section we presented the results of the cohorts selected 

with Atlas from the InCor-CDM database. We also presented 

the effect of tweaking cohort parameters in the quality of the 

results (Table 8), which exhibited up to 80% F1-score, 75% 

Precision (PPV) and 91% Recall (TPR) at different settings. 

Figure 2 summarizes our results in an empirical ROC curve, 

exhibiting 0.938 of area under curve (AUC). 

Discussion 

The resulting InCor-CDM exhibits high agreement with the 

previous gold standard study [9]. This means that it is possible 

to estimate the same population-level effects (e.g. different 

medications) in both databases. InCor-CDM additionally 

benefits from the quality analyses implemented in the OHDSI 

Achilles tool, which warns about inconsistencies and errors 

found in the transformed data, and can be used for more 

advanced analysis in comparison with external CDM-based 

databases. For future work, we envision the comparison of 

patient cohorts between InCor-CDM and external CDM-based 

databases from other OHDSI work groups, further studying 

data quality, subpopulation characteristics between different 

institutes and evaluating risk scores for InCor patients. 

Conclusions 

We presented details of the migration process of a huge 

clinical database, the InCor’s SI3, to the OMOP CDM 

standard, an international format aimed at improving research 

in computer-aided medical systems. We presented the method 

used to extract, transform and load data between the databases 

commenting on the challenges regarding models, formats, 

terminology, and tools. We evaluated the quality of the 

resulting database, named InCor-CDM, by comparing cohorts 

obtained with the software OHDSI Atlas. We considered a 

previous cohort selection study used as ground truth; for a 

systematic comparison, we computed several information 

retrieval statistics and a ROC curve. The cohorts defined in 

Atlas exhibited from 62% to 75% precision, 75% to 91% of 

recall, 74% to 80% F1-score, and 0.938 of area under the ROC 

curve (AUC). The results indicate that the method that we 

employed was able to produce a new database that was both 

consistent with the original data and in accordance to the 

OMOP standard. The new database shall support a wide range 

of new research initiatives within the Heart Institute.  
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CHAPTER

3
SKIN LESION IDENTIFICATION

In this chapter, we reproduce the following article:

Lima et al. (2021). DermaDL: Advanced Convolutional Neural Networks for Computer-
Aided Skin-Lesion Classi�cation. SN Computer Science, Springer Nature.

The article contemplates an application for detection and classi�cation of skin lesions
using dermatoscopic images. It extended the article of Rodrigues, Brandoli and Amer-Yahia
(2020) to multi-class classi�cation, including a colorized adaptive histogram equalization, and
using tf.keras API. The neural network could then detect several types of lesions at once.

Early identi�cation of the type of skin lesion is of paramount importance, because some
types are carcinogenic and may become di�cult to treat after a few months. Skin cancer is the
most common of all cancers, and some types can spread to other organs. Instituto Nacional de
Câncer do Brasil (2020) expected around 185 thousand new skin cancer cases per year during
2020-2022 in Brazil (177 thousand non-melanoma cases and 8,450 melanoma cases), while
American Cancer Society (2022) estimated around 109 thousand new melanoma cases by the
end of 2022 in the United States (non-melanoma cases are not required to be reported there).

The main recommendations are UV protection and routine examinations with the
dermatologist, who decides to proceed with a biopsy when there is any signal of tumor devel-
opment. The routine examination involves applying a liquid or gel in each skin abnormality
(moles, spots, scars and others) and taking pictures with a imaging device called dermatoscope,
which embeds special software for automated analysis.

Currently, the use of Convolutional Neural Networks (CNNs) is the mainline of investi-
gation for the automated analysis of such lesions. Most of the existing works, however, were
designed by transfer learning general-purpose CNN architectures, adapting existing methods
trained for ImageNet and other generic photo archives to the domain of dermatology. Despite
its e�ectiveness, this approach poses in�exibility and high processing costs.
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In the article, we employed a novel architecture that bene�ts from cutting-edge CNN
techniques Aggregated Transformations combined to the mechanism of Squeeze-and-Excite
organized in a residual block. Those techniques are general formulations of previous architec-
tures with skip connections and basic attention mechanisms. The architecture was adapted
and trained from scratch to solve both the binary melanoma detection problem, as well as the
multi-class skin lesion classi�cation problem. We also used cross-dataset training/validation
due to concerns about data leakage after the augmentation step.

Our results demonstrated that such an architecture is competitive to major state-of-
the-art architectures adapted to the domain of skin-lesion diagnosis. The architecture is prone
to evolve and to provide low processing cost for real-world in situ applications using a much
smaller number of weights if compared to previous works. The processing cost specially bene�ts
applications that run neural network inference in energy-e�cient portable devices.

In the following pages, we reproduce the article from Lima et al. (2021). According to Springer
Nature Copyright Form, Author retains the right to use his/her Contribution for his/her further
scienti�c career by including the �nal published paper in his/her dissertation or doctoral thesis
provided acknowledgment is given to the original source of publication.
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Abstract
Early identification of the type of skin lesion, some of them carcinogenic, is of paramount importance. Currently, the use 
of Convolutional Neural Networks (CNNs) is the mainline of investigation for the automated analysis of such lesions. Most 
of the existing works, however, were designed by transfer learning general-purpose CNN architectures, adapting existing 
methods to the domain of dermatology. Despite effective, this approach poses inflexibility and high processing costs. In 
this work, we introduce a novel architecture that benefits from cutting-edge CNN techniques Aggregated Transformations 
combined to the mechanism of Squeeze-and-Excite organized in a residual block; our architecture is designed and trained 
from scratch to solve both the binary melanoma detection problem, as well as the multi-class skin-lesion classification 
problem. Our results demonstrate that such an architecture is competitive to major state-of-the-art architectures adapted to 
the domain of skin-lesion diagnosis. Our architecture is prone to evolve and to provide low processing cost for real-world 
in situ applications using a much smaller number of weights if compared to previous works.

Keywords Deep learning · Dermatology · Skin lesion classification · Melanoma detection · Skin cancer

Introduction

During the early stages, it is difficult to tell apart malignant 
skin lesion from certain benign forms of skin cell differentia-
tion; both kinds of lesion look similar and pose challenges 
to visual inspection [1]. According to a study carried out 

by Menzies et al. [2], general practitioners had a sensitivity 
and specificity for detection of melanoma of 62% and 63%; 
dermatologists had a sensitivity and specificity of 80% and 
60%. These facts indicate that, clinically, it is difficult to 
differentiate the early stage of malignant melanoma from 
certain benign skin lesions due to their similarity in appear-
ance. Therefore, it is desirable to have computer-aided sup-
port in analyzing skin lesions; as we will demonstrate, this 
support has the potential to overcome reported human-based 
sensitivity and specificity rates making it a trustworthy sec-
ond opinion.

The most severe type of skin lesion is melanoma, it 
has the potential to evolve and disseminate malign tumors 
over the body, particularly in the lungs and brain. In the 
USA alone, according to the statistics of the American 
Cancer Society [3], in 2019, 96,480 new melanomas are to 
be diagnosed with roughly 7,230 casualties. In the world, 
nearly 50,000 deaths occur annually [4]; it is the fifth most 
common kind of cancer. As for any kind of health problem, 
early detection is key for a high rate of survival. Similarly, 
carcinoma, a more broad type of cancer, can originate 
from differentiated skin cells, posing severe health threats 
[5]. Meanwhile, in the last decade, deep CNNs (Convo-
lutional Neural Networks) have achieved unprecedented 
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levels of performance in computer vision tasks; this is 
due to four factors: the explosion in data production; the 
popularization of high-density parallel hardware in the 
form of general-purpose computing on graphic processor 
units (GPGPU); algorithmic improvements on artificial 
neural networks; and the advent of large-scale linear alge-
bra frameworks.

Many works have addressed the task of automatic screen-
ing of skin lesions via dermatoscopy images, with deep con-
volutional networks being the leading technology. Digital 
images of skin lesions have the potential for educating the 
general public and for supporting health providers in early 
detection, as well as directly supporting remote diagnosis 
through teledermatology, clinical decision support, and 
automated risk assessment. However, the main works on 
automatic screening of skin lesions [6–14] have appealed to 
transfer the neural learning from architectures trained over 
image recognition tasks that, originally, did not include skin 
lesions—this process is known as transfer learning [15]. 
Although the results of this approach have demonstrated 
effective, it has a few drawbacks: (i) the layers of the CNN 
architecture responsible for features extraction cannot be 
altered, reducing the flexibility of the designer in improv-
ing the performance or computational cost of the network; 
and (ii) training the last layer on the new skin image data 
carries restrictions derived from the original data training, 
especially with respect to the data distribution, which must 
be known. Furthermore, learning parameters from real skin 
imaging datasets enables tailored neural architectures to 
potentially achieve higher accuracy. Differently, having the 
entire process of neural network engineered for the specific 
goal of skin-lesion classification shall provide more free-
dom, design opportunities, and control over the underlying 
mechanisms. This work proposes one such process.

As mentioned, the state-of-the-art relies on transfer learning 
from general-purpose image recognition architectures. Differ-
ently, we train on a dataset exclusively made of skin lesions, 
which grants a specialized training cycle; and also, an archi-
tecture that permits skin-lesion classification to advance on its 
own, instead of relying on general-purpose ones pre-trained 
for object recognition. Our contribution demonstrated that it 
is possible to engineer a specialized network prone to evolve 
more specifically, possibly reproducing the advances observed 
in the ImageNet Large Scale Visual Recognition Challenge 
[16]. In fact, there is room for a less computationally costly 
architecture capable of leveraging functionalities specific to 
skin lesions, like tracking asymmetry and border irregularity. 
In this line of work, we reached an architecture with fewer lay-
ers and relying on the architectural mechanism of Aggregated 
Transformations [17] combined to the mechanism of Squeeze-
and-Excite [18], which resulted in an architecture with fewer 
weights, but similar performance. Furthermore, we conducted 
experiments relying on datasets from different sources, which 

permitted us to demonstrate the importance of image acquisi-
tion protocols when performing automated skin-lesion clas-
sification. As we show, our results were encouraging in terms 
of classification performance and architecture complexity.

We contribute by:

• providing a new architecture for the classification of skin 
lesions;

• putting together the concepts of Squeeze-and-Excite and 
Aggregated Transformations;

• comparing popular architectures in a unified setting;
• introducing an inexpensive solution that fits low-perfor-

mance devices.

In the next section, we provide Background to this work. 
Following, in the section of Related Works, we review the 
state of the art, basically based on transfer-learning designs. 
In a section dedicated to Convolutional Neural Networks, we 
review concepts necessary to understand our neural network 
architecture. After that, in section DermaDL Methodology, we 
introduce our architectural design, which is experimented in 
the binary task of melanoma detection, and in the multi-class 
task of skin-lesion classification. Our concluding remarks are 
in the last section.

Background

Histogram Equalization

The goal of technique histogram-based equalization is to 
enhance the contrast of images. As a result, further image-
processing techniques can, potentially, produce sharper results, 
depending on the method.

Let I be a given image, or mr by mc matrix of pixel values in 
the range [0, L − 1] , where L is the number of possible intensi-
ties. Let h correspond to the normalized histogram of I with 
one bin for each possible value as follows:

Then, the histogram-based equalized image E is given by

where 0 ≤ i < mr and 0 ≤ j < mc.
For improved results, we apply an advanced variation 

of histogram equalization named CLAHE, as detailed in 
Sect. 5.1.

(1)hi =
#pixels_with_intensity_i

mr ∗ mc

.

(2)Ei,j = ⌊(L − 1)

Ii,j�
n=0

hi)⌋
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Transfer Learning

Transfer learning is a strategy in which a model developed 
for a task is reused as the initial stage (features extraction) to 
define a new model tailored to a different, but similar, task. 
Common in computer vision and natural language process-
ing, its advantages come from the reuse of successful CNN 
architectures at the cost of higher computational loads when 
used in production.

Dermatological Diagnosis

Dermatoscopy is a procedure carried out by dermatolo-
gists, who visually examine skin lesions to detect anoma-
lous features that might characterize a specific disease. This 
procedure uses an optical apparatus (a dermatoscope with 
lenses and camera) to obtain high-quality images of the skin, 
which are evaluated according to a set of criteria, such as 
the “ABCDE” [19]. This acronym summarizes the most dis-
tinguishing features of the group of diseases called cutane-
ous melanoma, i.e., a cancerous growth of pigmented cells 
(melanocytes) in the skin. Using convolutional neural net-
works, the corresponding feature extraction is able to detect 
asymmetry and border irregularity, traits indicated by the 
ABCDE criteria.

The ImageNet Challenge

The ImageNet Large Scale Visual Recognition Challenge 
[16] is a competition for image recognition algorithms. The 
ImageNet dataset contains more than a million images clas-
sified into one thousand classes; 50 k pictures are randomly 
sampled and released before the competition for valida-
tion, and another sample with 150 k images is used for the 
final scoring of the submissions. One of the challenges is 
to assign the top five classes most similar to each object 
portrayed in a given image. In 2012, the AlexNet CNN [20] 
achieved an error rate of 15.3% in the top-5 challenge, grant-
ing the 2012’s best result and also a breakthrough for image 
recognition with neural networks. Afterward, at least 95% 
of the ImageNet submissions and 100% of the first places 
from 2013 to 2017 derived their algorithms from research on 
neural networks (http:// image- net. org/). By means of transfer 
learning, the networks that won the ImageNet competition 
are massively used in the task of melanoma detection.

Related Works

Since we deal with the problem of computer-aided skin-
lesion screening as a binary classification (melanoma/non-
melanoma), or as a multi-class classification (melanoma, 

carcinoma, keratosis, nevus, and other), we separated the 
related works into two groups. Accordingly, we refer to these 
two groups when analyzing our results, either the binary 
problem in Sect. 6, or the multi-class problem in Sect. 7.

Melanoma Detection

The use of Deep Learning (DL) to aid the diagnosis of skin 
cancer and non-cancerous lesions has been pushed forward 
in the work of Esteva et al. [6], who not only were able 
to diagnose skin cancer but also to create a taxonomy of 
skin lesions that extends the knowledge in the field. Their 
approach was to transfer learn Google’s Inception V3 net-
work [21] over a very large dataset of proprietary images—
to date, their work is among the most advanced results con-
cerning computer-aided diagnosis. However, their work is 
not open, neither with respect to the trained network nor 
to their dataset, which is only partly open access. This fact 
makes their progress inaccessible and considering the spon-
soring entities of the work, possibly, it will be of permanent 
restricted access. In a more recent work, Fujisawa et al. 
[8] demonstrates that results similar to a clinical board are 
achievable with datasets orders of magnitude smaller than 
those used in the work of Esteva et al. Similarly, Fujisawa 
et al. use the Inception network v3.

In 2017, during the IEEE International Symposium on 
Biomedical Imaging, 23 research teams applied for the chal-
lenge “Skin lesion analysis toward melanoma detection” in 
the category of skin cancer detection (disease classifica-
tion) [22]. The winner team [9] comparatively used mod-
els VGG-16 [23], ResNet-101 [24], and Inception V3 [21], 
all of which originally designed for general purposes; they 
achieved the best result for melanoma by using the Inception 
network, although ResNet-101 demonstrated good results 
as well.

In 2018, Seog et al. [10] used the Resnet-152 network 
achieving an accuracy as high as 96%, however, the very 
authors claim that their datasets for testing and training are 
not versatile with respect to age. The work of Zakhem [25] 
draws a discussion on the use of automated skin cancer diag-
nosis, tracing reflections on the role of its clinical use and 
on the adoption of the technology by physicians. The work 
of Ruiz et al. [26] presents a clinical decision system that 
classifies images with suspicious lesions on the skin to assist 
as a second opinion clinical protocol. The authors combined 
the nearest K-neighbors method, a multi-layer Perceptron 
(MLP), and a parametric classifier based on Bayes’ deci-
sion theory to achieve a collaborative classification system. 
They used a set of descriptors that comprises the variation 
of the sharpness, color homogeneity, mean of the R and G 
components, and average of the HSL color luminosity. They 
obtained a precision of 87.76%, inferior to the state-of-the-
art works, which report results above 90%.
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The work of Yu et al. [27] describes an automatic mel-
anoma diagnosis system; the authors use a convolutional 
residual network to segment the images during preprocess-
ing. For training, they use 900 pre-labeled images and 350 
images for testing; this method obtained an accuracy of 
85.5%. The work presented by Souza et al. [28] uses decision 
trees based on descriptors of asymmetry, edge, and color-
ing to distinguish between images that present melanoma 
skin cancer from others that present common spots. The 
highest reported accuracy was of 90%. The work presented 
by Aswin et al. [29] also works over the identification of 
melanoma using CNNs; they use a wide set of descriptors 
including contrast, correlation, homogeneity, and RGB color 
variance. Their accuracy was around 88%.

Nasr-Esfahani et al. [30] described a CNN-based mela-
noma diagnosis system that uses a preprocessing step to cor-
rect the illumination, to segment the images, and to enhance 
the images through a Gaussian filter. This method obtained 
an accuracy of 81%. Majtner et al. [31] proposed a system 
that automatically classifies melanomas; in their system, the 
descriptor vector of each image is obtained using RSurf, 
Local Binary Patterns (LBP), and Convolutional Neural 
Networks. Further, they use the technique Support Vector 
Machines (SVM) for classification. During training, they 
used 900 images; for testing, they used 379 images. The 
highest accuracy reported by the authors was of 82.6%.

Multi‑class Skin‑Lesion Classification

Hameed et al. [11] analyzed a total of 15,546 images from 6 
public datasets (ISIC2016, DermIS, DermNZ, DermQuest, 
PH2 , and 11K), literature review and their own data, organ-
izing the images into five diagnostic classes: healthy, acne, 
eczema, benign and malignant. Their work used the AlexNet 
CNN pre-trained for the ImageNet challenge to extract deep 
convolutional features, which are transformed to error-cor-
recting output codes and then classified by a logistic support 
vector machine.

Kawahara et al. [12] analyzed and also publicized the 
7-point dataset, containing 1,011 images. They developed 
a multi-modal CNN that receives both clinical and dermo-
scopic images and also image metadata. Their architecture 
was based on two pre-trained Inception-v3 CNNs with final 
f × 1 × 1 × l convolutions that produce the level of abnor-
mality for each criterion in the 7-point checklist (thus infer-
ring the melanoma diagnosis by applying the 7-point score). 
They classify the images directly in one of five diagnoses: 
basal cell carcinoma, nevus, melanoma, miscellaneous or 
seborrheic keratosis. For training, they used a multi-task loss 
function.

Harangi et al. [13] analyzed the ISIC2018 (also named 
HAM10000) dataset with 10,015 dermoscopic images. 

They designed a CNN architecture based on two pre-trained 
Inception-v3 CNNs, one for classifying the images in benign 
or malignant, and another CNN for classification consider-
ing seven classes: benign keratosis, dermatofibroma, nevus, 
actinic keratosis, basal cell carcinoma, melanoma or vas-
cular lesion. Both CNN outputs were merged into a single 
output layer.

Gessert et al. [14] analyzed the HAM10000 (ISIC2018 
training set), 7-point, and ISIC archive (as of 2018) data-
sets, training with images from HAM only and evaluat-
ing with HAM, 7-point, and ISIC images. They subdi-
vided the images into patches, compared the Inception-v3, 
DenseNet-121, and SE-Resnext50 as baseline deep-feature 
extractors, and experimented with patch-based Attention, 
Multi-Crop, and Recurrent output modules. Their work also 
experimented with four types of dataset balancing, given the 
increased class imbalance when considering the multi-class 
classification problem.

Our work differs from previous ones as it achieves an 
accuracy (Area Under the Curve Receiver-Operating Char-
acteristic (AUC)) at the order of 95% without resorting to 
general architectures on a transfer-learning basis. Further-
more, we use three different datasets for training and test-
ing, providing heterogeneity with respect to the images’ 
characteristics; this trait is important because the protocol 
for image acquisition varies from institution to institution, 
which causes images to be significantly different, despite 
their common purpose. Inspired by the latest achievements 
regarding Convolutional Neural Networks, we introduce 
DermaDL, our own architecture fully trained on skin-lesion 
images.

Convolutional Neural Networks

In this section, we briefly review techniques Aggregated 
Transformations and Squeeze-and-Excite, which we use in 
our design.

Aggregated Transformations

The work of Xie et al. [17] introduced the concept of Aggre-
gated Transformations, according to which the tensor is cast 
for multiple convolutional transformations in the same level 
of the architecture; activated with non-linearities; and then, 
aggregated as a tensor with a number of channels. Differ-
ent from regular convolutional layers, the idea is to slice 
the tensor into low-dimensional embeddings, and then, fire 
multiple transformations in parallel. After two convolutions 
and activations, these slices are concatenated back into an 
aggregated tensor. This mechanism has not been previously 
used in the task of skin-lesion classification.



SN Computer Science (2021) 2:253 Page 5 of 13 253

SN Computer Science

Squeeze‑and‑Excite

Hu et al. [18] introduce the mechanism of Squeeze-and-
Excite, which is capable of improving the expressivity of the 
convolutional channels throughout a CNN. Its principle is to 
achieve a global understanding of each channel by squeezing 
the feature maps into a single numeric value; this is possible 
with global average pooling, for example. The result is a 
vector of size C, the number of convolutional channels. This 
vector passes through a two-layer fully-connected neural net-
work for non-linear activations Relu and Sigmoid, which 
outputs a vector of the same size. These C values are, then, 
used to weight the original features of the channels, scaling 
each channel based on its importance. As we describe next, 
the combined use of mechanisms Aggregated Transforma-
tions with Squeeze-and-Excite rendered a powerful, yet not 
highly-costly architecture, with a small number of layers if 
compared to the works presented in Sect. 3.

DermaDL Methodology

We describe the methods used for data preprocessing, fol-
lowed by the scheme of our neural network design.

Preprocessing

Before training and testing, we proceed with cropping, 
resizing, and color preprocessing. Since the data are highly 
unbalanced, we employ data augmentation.

Resizing and Cropping

Skin-lesion datasets contain images with different resolu-
tions, which causes two problems. The resolution many 
times was prohibitively large, preventing processing in 
reasonable time, and the variation in size did not allow 
for a systematic input into a CNN, which demands a con-
stant well-defined resolution. We experimented with dif-
ferent squared resolutions, 384x384, 192x192, 96x96, and 
48x48—our experiments demonstrated that 96x96 is suffi-
cient for balancing processing and performance, higher than 
this resolution costs more processing time without gains; 
lower than that reduced the performance. Before resizing, we 
cropped off 15% of the images’ periphery, since the lesions 
are mostly central.

Color Preprocessing

To improve contrast and reduce the effect of noise, we used 
technique Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) [32], a sort of histogram equalization that 
considers sections (we used 8x8) of the image to distribute 
the lightness values; the result corresponds to taking into 
account the presence of lighter and darker regions separately. 
The method also uses a contrast limiting scheme—the accu-
mulated histogram value above a certain threshold (we used 
value 2) is redistributed over all the pixels, preventing noise 
amplification. The technique improves the local contrast, 
which favors the detection of edges. Figure 1 illustrates the 
entire preprocessing for three image samples.

Fig. 1  The images before resizing (upper row), and after resizing with Contrast Limited Adaptive Histogram Equalization (bottom row)
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Data Augmentation

All the datasets are highly unbalanced—for example, in the 
International Skin Imaging Collaboration dataset (refer to 
Sect. 6.2), the malign cases correspond to only 20% of the 
images. To cope with that, we augmented the number of 
malign samples by applying random operations of flipping, 
brightness, and saturation. We augmented the number of 
malign images by 5 times, achieving a more even dataset.

Convolutional NN

For the task of skin-lesion classification, we used two tech-
niques that demonstrated to improve the performance of con-
volutional networks in general: Aggregated Transformations 

(AG), and Squeeze-and-Excite (SE)—detailed in Sect. 4. 
After an initial convolution to produce 8 channels, we com-
bine AG and SE into a residual building block—see Fig. 2, 
which works according to the dout hyper-parameter. Param-
eter dout states the number of channels of the convolution 
tensor after the residual block; we used a sequence of three 
blocks with dout = {8, 16, 32} . This ensemble demonstrated 
to achieve highly efficient performances relying on multiple 
parallel transformation branches, instead of one single very 
deep network.

We use 8 initial features channels (the cardinality hyper-
parameter); and 8 splits in the Aggregated Transformations 
block (the split-out hyper-parameter). We end up the pro-
cessing by average pooling each features channel, and then 
using a dense layer for output, either binary or multi-class.

Fig. 2  Our architecture for 
skin-lesion classification, which 
relies on mechanisms Aggre-
gated Transformations (AG), 
and Squeeze-and-Excite (SE) to 
define a residual block. We used 
a sequence of three blocks with 
channel output dimensionalities 
d
out

= {8, 16, 32}
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For binary classification, we compute the final probabili-
ties using normalization softmax(ŷ) = exp(ŷ)∕

∑
i exp(ŷi) . 

We use loss function Hinge(ŷi) =
∑

i≠j max(0, yj − ŷi + 1) , 
which suits to binary classification. For multi-class classi-
fication, we use the softmax output normalization and loss 
function H(y, ŷ) = −

∑
i [yi ⋅ log(ŷi) + (1 − yi) ⋅ log(1 − ŷi)] , 

which is called cross-entropy and suits to multiple classes. 
For regularization and convergence, we employ classic L2 
normalization with ratio of 0.0005 in the two classifications 
above. We use batch normalization and Momentum optimi-
zation with parameter 0.9. The complete code is available 
online at https:// github. com/ jfrju nio/ Derma DL.

Binary Melanoma Detection

Implementation

The code was written over framework TensorFlow 1.15 and 
ran on GPU Nvidia GeForce GTX 1080 Ti; Debian operat-
ing system with 8 GB of memory.

Datasets

We use three datasets, ISIC, PH2 , and 7-POINT, achieving 
an experimental bed with 43,543 images after augmentation. 
The experiments considered 80% of the data for training, 
10% for validation, and 10% for testing.

ISIC

The International Skin Imaging Collaboration (ISIC) 
endeavor (https:// www. isic- archi ve. com); an international 
coordinated effort to foster systematic and comparable meth-
ods for diagnosing malign skin lesions. The dataset contains 
images from Melanoma, Seborrheic keratosis, and Nevus. 
We use ISIC’s complete archive with 23.906 images, as of 
December 2019.

PH2

This dataset [33] was built for research and benchmarking 
purposes to facilitate comparative studies on both segmen-
tation and classification algorithms related to dermoscopic 
images. PH2 is a dermoscopic image database (https:// www. 
fc. up. pt/ addi/ proje ct. html) acquired at the Dermatology Ser-
vice of Hospital Pedro Hispano, Matosinhos, Portugal. It is 
comprised of 200 images, 20% of which referring to mela-
noma cases.

7‑POINT

This dataset [12] (http:// derm. cs. sfu. ca) is a database for 
evaluating computer-aided prediction methods for skin 
lesion malignancy. The dataset includes over 2,045 clinical 
and dermoscopy color images, along with the correspond-
ing structured metadata tailored for training and evaluating 
computer-aided diagnosis systems.

Experiments

We compare to existing works that heavily relied on archi-
tectures tailored for ImageNet and migrated by means of 
transfer learning to work on the ISIC challenge. As dis-
cussed, the ImageNet competition is one of the main experi-
ments to impel the design of architectures to improve the 
performance on general-purpose object recognition. Due to 
the efficacy of the best works that appeared on ImageNet, 
there is a great availability of melanoma detection works 
based on networks conceived and trained for the ImageNet 
challenge. Following, we draw a direct comparison to these 
transfer learned models.

Metrics

Since we deal with a classification problem over a very 
imbalanced dataset, the metric of simple accuracy is not 
sufficient—for example, if all the images were classi-
fied as negative for melanoma, we would still have high 
accuracy. Hence, our main metric is the Area Under the 
Curve Receiver-Operating Characteristic (AUC), which 
is given by varying a threshold probability score to com-
pute the Sensitivity = NTP∕(NTP + NFN) = SE, against 
1 − Specificity = 1 − NTN∕(NTN + NFP) = 1− SP; where N 
is the number of True/False Positive/Negative classified 
instances. Once each predicted probability is defined with 
respect to the answer set, we can draw a confusion matrix 
and the AUC becomes straight to compute. With this set of 
metrics, it becomes possible to compare with several works 
in the literature. Furthermore, due to the strong imbalance 
of the dataset, it is more critical to correctly identify posi-
tive images for melanoma, reducing the False-Negative rate. 
Therefore, we weighted the loss function to more intensely 
(60% against 40%) penalize errors related to the positive 
class.

Results

In Table 1, one can see that, although the previous works 
demonstrate high AUC, AC, SE, and SP, they perform low 
for Sensitivity (ratio of true positives). That means that 
they tend to misclassify a significant number of images that 
correspond to true melanoma cases, yielding high rates of 
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“type II” error, possibly the most critical from a clinical 
perspective.

Contrarily, by observing the confusion matrix depicted 
in Table 2, one can see that we favored the fine detection 
of true positives, which slightly reduced our score for 
specificity (true negatives). Overall, we demonstrated that 
DermaDL rivals every other technique without resorting 
to a general-purpose network at the same time that it 
prioritizes true-positive cases. We emphasize that these 
numbers are not relative to the ISIC 2017 challenge, but 
to the complete ISIC archive, after augmentation, parti-
tioned into train, validation, and testing.

In Table  3, one can see that the size of the Der-
maDL network is pronouncedly smaller than the size 
of the works based on transfer learning. This result is 
not surprising; these previous networks were designed 
to solve a 1,000-classes problem, while DermaDL deals 
with the binary melanoma/non-melanoma problem. 
Not only that, we use cutting-edge techniques Aggre-
gated Transformations combined with the mechanism of 

Squeeze-and-Excite organized in a residual block, which 
confers a superior design in terms of network engineer-
ing. These techniques demonstrated a competitive perfor-
mance with the advantage of using fewer weights (param-
eters). One of the consequences of our design is that the 
real-time processing of DermaDL requires a fraction of 
the computational cost as compared to the other methods; 
this is because the processing cost is proportional to the 
number of weights.

Testing on Disjoint Datasets

We also conducted an experiment to evaluate the generali-
zation of our model. We used the ISIC dataset for learning; 
90% of which was used for training, and 10% for validation. 
For testing, we performed experiments on two completely 
separated datasets, avoiding any kind of biasing—we tested 
over datasets PH2 and 7-POINT. We trained for 100 epochs 
with data shuffling, saving the model with the best valida-
tion performance.

The results presented in Table 4 demonstrate that train-
ing and testing over dataset ISIC presented a performance 
better than training over ISIC and testing over datasets PH2 
and 7-POINT, which are completely non-related to the ISIC 
dataset. By examining a sample of the images of each data-
set, we verified that the protocol according to which the 
images were captured was different for each set of images. 
The protocols differed to the point of introducing visual 
particularities that influenced the learning. The images in 
dataset PH2 are, almost all, surrounded by a black back-
ground originated from some sort of illumination apparatus. 
Meanwhile, the images in dataset 7-POINT present cases of 
hair over the lesion, and many times, they have a referential 
marker close to the lesion, like a grid to allow the inference 
of the size of the lesion. None of these specific traits is cor-
related to the malignity of the lesion; they are just part of the 
image acquisition protocol.

The Need for a Well‑Defined Acquisition Protocol

This experiment allowed us to verify that the protocol that 
guides the image acquisition plays a significant role in 

Table 1  Comparison to related work [34] considering metrics Area 
Under the ROC Curve (AUC), accuracy (AC), sensitivity (SE), and 
specificity (SP) over dataset ISIC

CNN architecture AUC AC SE SP

AlexNet (ImageNet 2012) [20] 0.859 0.823 0.343 0.969
VGG-16 (ImageNet 2014) [23] 0.892 0.847 0.586 0.865
Inception-v3 (ImageNet 2014) [21] 0.800 0.800 0.355 0.933
ResNet-50 (ImageNet 2015) [24] 0.873 0.723 0.845 0.694
ResNet-101 (ImageNet 2015) [24] 0.869 0.840 0.336 0.986
DermaDL 0.865 0.830 0.905 0.738

Table 2  DermaDL confusion matrix obtained over dataset ISIC

n = 535 Conditionpositive Conditionnegative
Predictedpositive 90.51%(sensitivity) 26.25%(Type I error)
Predictednegative 9.49%(Type II error) 73.75%(specificity)

Table 3  Comparison to related 
work regarding the network size

CNN architecture #weights 
(millions)

AlexNet [20] 61
VGG-16 [23] 16
Inception-v3 [21] 24
ResNet-50 [24] 26
ResNet-101 [24] 250
DermaDL 1.7

Table 4  Experiment considering the entire ISIC archive for training 
and datasets PH2 and 7-POINT for testing. For comparison, the first 
row reproduces the results of Table 1. Training and testing over unre-
lated datasets revealed unsuccessful

AUC AC SE SP

ISIC 0.865 0.830 0.905 0.738
PH2 0.880 0.874 0.450 0.981
7-POINT 0.620 0.635 0.408 0.710
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the process of melanoma detection. As one might expect, 
when the images are added with elements other than the 
skin lesion, all the images must present the same pattern, 
be it a marker, a ruler, or an annotation. This is intrinsic to 
the neural network learning, which is limited with respect 
to its generalization power; this limitation became flagrant 
when we trained and tested over three unrelated datasets. It 
is conclusive that any system designed to aid in melanoma 
detection must care for providing specific instructions on 
how to capture the images.

Multi‑class Classification

Extended Problem

Skin lesions span to a set of possibilities beyond melanoma; 
hence, a natural extension of the experimentation over Der-
maDL is to employ it on the detection of further kinds of 
lesions. In this section, we evaluate the DL models in a more 
difficult task by considering multiple diagnoses. We consid-
ered the images found in the three experimental datasets, 
which refer to groups of histological diagnoses: melanoma, 
carcinoma, keratosis, nevus, and other (see Fig. 3). In these 
groups, melanoma and carcinoma are malignant, keratosis is 
either pre-cancerous or benign, nevus and other are benign—
the last one corresponds to a group of less frequent lesions. 
Table 5 illustrates the distribution of each diagnosis in the 
datasets.

For detecting such lesions, we employed the models listed 
in Table 9, with multiple outputs in the last layer obtained 
with normalization softmax and a categorical loss function. 
The softmax normalization requires the output to be mutu-
ally exclusive (multi-class problem), which is intrinsic to our 
label grouping. We also make use of color to add additional 
channels of data, improving the potential for a finer progno-
sis as demanded by the multi-class problem. Accordingly, 
we used colorized variations of CLAHE.

Dataset Preparation

For this set of experiments, we relied on a significantly 
more complex data preparation than that used in the binary 
problem. We employed three variations of the CLAHE 
equalization and a class balancing based on color-aware 
augmentation.

CLAHE Equalization

Similarly to the binary problem, the images in datasets 
ISIC, PH2 and 7-POINT were pre-processed, augmented, 
and split into 80%–10%–10% subsets for training, valida-
tion, and testing respectively. The preprocessing starts by 
erasing the black (or white) borders around the images 
using median filtering, thresholding in the range [0.1, 
0.9], morphological 3x3 opening, finding the bounding 
rectangle, and cropping the source image. The images are 
equalized with CLAHE (with parameters threshold=2 and 
window=8x8) and resized to 144x144. To add color infor-
mation, we apply CLAHE on the color channels, experi-
menting on two possibilities beyond the B&W process-
ing, and selecting the one with the best performance. We 
considered the following three CLAHE approaches, which 
are illustrated in Fig. 4.

– B&W, is the baseline where the image is converted to 
black and white and CLAHE is applied, thus the color 
information is discarded;

Fig. 3  Examples of the five diagnostic classes in the dataset, respectively, ‘melanoma’, ‘carcinoma’, ‘keratosis’, ‘nevus’ and ‘other’ (e.g., angi-
oma)

Table 5  Number of images in each diagnostic class and dataset

Class ISIC 7-POINT PH2 Total

Melanoma 2169 252 33 2454
Carcinoma 812 42 0 854
Keratosis 1551 45 0 1696
Nevus 18579 575 8 19162
Other 709 97 159 965
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– RGB, CLAHE is applied in each color channel sepa-
rately, so different colors are highlighted;

– Lum, the image is converted to the HSL color space, then 
CLAHE is applied only to the Luminance channel; after 
that, the image is converted back to the RGB color space.

We compared the results of the colorized versions 
against the B&W baseline on a sample comprising 1/3 
of the training data—see Table 6. Approach Lum demon-
strated the best performance; we used it for the remaining 
experiments.

Class Balancing via Augmentation

As presented in Table 5, we face a class unbalancing that 
might hinder the learning process of our algorithms. Hence, 
we proceeded with an augmentation procedure: for each 
image, we applied random crops in the range [0.7, 1.0]; 

width and height shifts with “reflection” fill in the range 
[-0.1, +0.1] to simulate a slight camera adjustment; vertical 
or horizontal flip with 50% chance each; brightness in the 
range [0.8, 1.0]; and saturation changes from the range [-0.1, 
+0.1] for illumination and tone variation; and a final resizing 
to 96x96 to fit the network input.

As discussed in Section 6.6, the datasets have quite dif-
ferent acquisition protocols; and are also very unbalanced 
(e.g., PH2 has only 8 nevus images), so we balanced the 
dataset by executing the augmentation procedure to gener-
ate 98,150 images. Then, we selected 78,520, 9,815, and 
9,815 images for training, validation, and testing. For the 
multi-class experiment, we used 2.0 million parameters with 
c1 = c2 = 9 and dout = {58, 116, 232} . We refer to this setting 
as DermaDLmulti.

Multi‑class Metrics

In the multi-class case, the metrics derived from the con-
fusion matrix (Area Under the ROC Curve, accuracy, sen-
sitivity and specificity) are computed separately for each 
class. We also employ the SE + SP − 1 index, which sum-
marizes Sensitivity+Specificity above 50%, i.e., chance. 
The metrics are then averaged considering all the classes. 
For example, with k classes, the multi-class AUC is defined 
as AUCmulti =

1

k

∑k

j=1
AUC(yj, ŷj) . The confusion matrix for 

the multi-class problem considering setting DermaDLmulti is 
presented in Table 7. The corresponding multi-class metrics 
appear in Table 8.

Table 6  Comparison between CLAHE variations considering the 
multi-class metrics Area Under the ROC Curve (AUC), accuracy 
(AC), sensitivity (SE), and specificity (SP). The metrics are averaged 
over all classes

CNN CLAHE AUC AC SE SP

DermaDL B&W 0.747 0.790 0.317 0.908
DermaDL RGB 0.840 0.819 0.442 0.918
DermaDL Lum 0.862 0.850 0.473 0.944

Fig. 4  CLAHE variations on 
carcinoma ISIC-0011757: (a) 
B&W increases contrast but 
erases color information, (b) 
RGB increases the contrast 
between color channels, mak-
ing blue–red differences more 
evident, (c) Lum only equalizes 
the Luminance channel, leaving 
Hue in the original color scale

Table 7  DermaDL
multi

 confusion matrix obtained over the test set

n = 9,815 Conditioncarcinoma Conditionkeratosis Conditionmelanoma Conditionnevus Conditionother

Predictedcarcinoma 90.98% 13.57% 7.74% 2.23% 6.40%
Predictedkeratosis 3.68% 72.86% 9.94% 4.92% 6.25%
Predictedmelanoma 3.16% 9.73% 71.25% 9.73% 10.11%
Predictednevus 0.62% 2.41% 5.74% 79.84% 6.00%
Predictedother 1.56% 1.43% 5.33% 3.33% 71.24%

100.00% 100.00% 100.00% 100.00% 100.00%
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Comparison to Related Models

Here, we compare DermaDL to related works that, similarly, 
deal with the multi-class classification of skin lesions using 
Deep-Learning models derived from transfer learning. The 
goal is to demonstrate that DermaDL has the potential to 
solve the multi-class problem using an architecture designed 
from scratch, avoiding the drawbacks of transfer learning 
discussed in Section 1. We notice that our comparison is 
as precise as possible, but not strictly defined with respect 
to the other works. Those works vary with respect to the 
datasets, network inputs (using multiple images or patient 
metadata), the number of images for training and testing, 
network and optimizer meta-parameters, evaluation metrics, 
and diagnostic categories. The common aspect is that of the 
nature of the images, learning task, and the Deep-Learning 
techniques, which confer a valid, but not absolute, compara-
tive perspective. As future work, we envision the compari-
son of multiple architectures over exactly the same settings.

To simplify our comparison, we report the multi-class 
metrics in Table 9, as made available by the original authors. 

In our experiments with DermaDL, presented in the last two 
rows of the table, we present evidence that our architec-
ture achieves metric results with similar magnitudes. For 
DermaDLmulti , metric AUC achieved the highest reported 
mark, and index SE+SP-1 achieved the third-highest mark. 
But notice that, as detailed in Section 7.7, this performance 
was achieved with an architecture one order of magnitude 
smaller than that of previous works. In other words, Der-
maDL demands a fraction of the processing required by 
former works, with much room for improvement.

Discussion

Broadening the goal to a multi-class classification signifi-
cantly increases the problem complexity, which allowed us 
to draw interesting conclusions. We observed that a more 
sophisticated preprocessing based on colorized CLAHE was 
able to improve the AUC and the Sensitivity by significant 
amounts considering metrics AUC, AC, SE, and SP, as pre-
sented in Table 6. We also verified significant results in com-
parison to much larger transfer-learning-based architectures 

Table 8  Multi-class metrics per 
class and source dataset using 
the confusion matrix of Table 7. 
Note that PH2 does not have 
carcinoma nor keratosis images, 
and no nevus images into the 
testing samples

Dataset Class AUC AC SE SP SE+SP-1

ISIC Carcinoma 0.9780 0.9265 0.9151 0.9295 0.8446
Keratosis 0.9363 0.8951 0.6899 0.9541 0.6440
Melanoma 0.9183 0.8814 0.6607 0.9322 0.5929
Nevus 0.9648 0.9321 0.7922 0.9735 0.7657
Other 0.9626 0.9280 0.6424 0.9795 0.6219

7-POINT Carcinoma 0.9571 0.9225 0.7204 0.9632 0.6836
Keratosis 0.9283 0.8964 0.7416 0.9099 0.6515
Melanoma 0.9121 0.8423 0.6776 0.9234 0.6010
Nevus 0.8624 0.9252 0.4860 0.9721 0.4581
Other 0.9263 0.8423 0.6271 0.9465 0.5736

PH2 Melanoma 0.9843 0.9521 0.8261 0.9608 0.7869
Other 0.9610 0.8761 0.8731 0.9167 0.7898

All Carcinoma 0.9764 0.9285 0.8963 0.9363 0.8327
Keratosis 0.9341 0.8988 0.6923 0.9501 0.6424
Melanoma 0.9198 0.8796 0.6658 0.9326 0.5984
Nevus 0.9581 0.9328 0.7756 0.9733 0.7489
Other 0.9637 0.9165 0.6784 0.9762 0.6545

Table 9  Comparison to related work on the multi-class classification of skin lesions, considering the metrics Area Under the ROC Curve (AUC), 
accuracy (AC), sensitivity (SE), specificity (SP), and index SE+SP-1. The metrics are averaged over all classes

CNN Classes #Images AUC AC SE SP SE+SP-1

AlexNet [11] 5 9,144 N/A 0.945 0.840 0.964 0.804
Inception-v3 [12] 5 1,011 0.896 N/A 0.604 0.910 0.514
Inception-v3 [13] 7 10,015 0.923 0.946 0.639 0.957 0.596
Inception-v3 [14] 7 10,015 N/A N/A 0.757 0.960 0.717
DermaDL

multi
5 98,150 0.950 0.911 0.742 0.954 0.695
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[11–14] using more advanced architectural techniques. As 
one can see in Table 10, DermaDL is one order of magnitude 
smaller than previous works, indicating that it is possible 
to train, from scratch, a small network (2 million param-
eters with 96x96 input size) and still achieve a good overall 
performance in the multi-class scenario (0.950 AUC for 
DermaDLmulti ). For reference, the smallest state-of-the-art 
networks in the ImageNet dataset, including the architec-
tures engineered by AutoML methods, have, at least, 5 mil-
lion parameters [35].

Conclusions

We presented a Convolutional Neural Network that innovates 
using mechanisms Aggregated Transformation and Squeeze-
and-Excite combined into a residual processing block. Our 
architecture achieved results comparable to the state-of-the-
art without transferring the learning from existing general-
purpose architectures, and at the same time, demonstrating an 
ensemble with far fewer layers and parameters than previous 
works. Instead, we designed a processing flow from scratch, 
exclusively training it with skin-lesion images. The complete 
code is available at https:// github. com/ jfrju nio/ Derma DL.

We experimented with datasets ISIC, PH2 , and 7-POINT 
demonstrating that the use of cutting-edge Convolutional 
Neural Network techniques can rival previous results using 
just a fraction of the number of weights. Our architecture 
was experimented for melanoma detection (a binary prob-
lem), and skin-lesion classification (a multi-class problem), 
achieving results comparable to the state-of-the-art. We also 
demonstrated the importance of the image acquisition proto-
col by training and testing with unrelated datasets. Our work 
allows for future works to fine-tune a network specifically 
tailored for skin-lesion classification, progressively improv-
ing it similarly to what was done for general-purpose object 
recognition, year after year, in the ImageNet competition.

Acknowledgements This research was financed by French agency 
Multidisciplinary Institute in Artificial Intelligence (Grenoble Alpes, 
ANR-19-P3IA-0003); and by Brazilian agencies Fundacao de Amparo 
a Pesquisa do Estado de Sao Paulo (2018/17620-5, and 2016/17078-
0); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico 
(406550/2018-2, and 305580/2017-5); and Coordenacao de Aperfei-
coamento de Pessoal de Nivel Superior (CAPES, Finance Code 001). 
We thank NVidia for donating the GPUs that supported this work.

Declarations 

Conflict of interest statement On behalf of all the authors, the corre-
sponding author states that there is no conflict of interest.

References

 1. Cheng YI, Swamisai R, Umbaugh SE, Moss RH, Stoecker WV, 
Teegala S, Srinivasan SK. Skin lesion classification using rela-
tive color features. Skin Res Technol. 2008;14(1):53–64.

 2. Menzies SW, Bischof L, Talbot H, Gutenev A, Avramidis M, 
Wong L, Lo SK, Mackellar G, Skladnev V, McCarthy W, et al. 
The performance of solarscan: an automated dermoscopy image 
analysis instrument for the diagnosis of primary melanoma. 
Arch Dermatol. 2005;141(11):1388–96.

 3. T. A. C. Society, Key statistics for melanoma skin cancer. 
https:// www. cancer. org/ cancer/ melan oma- skin- cancer/ about/ 
key- stati stics. html. Accessed Dec 2020.

 4. Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, 
Gutzmer R, Hauschild A, Stang A, Roesch A, Ugurel S. Mela-
noma. The Lancet. 2018;392(10151):971–84.

 5. Jerant AF, Johnson JT, Sheridan CD, Caffrey TJ. Early detection 
and treatment of skin cancer. Am Fam Phys. 2000;62(2):357–68.

 6. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, 
Thrun S. Dermatologist-level classification of skin cancer with 
deep neural networks. Nature. 2017;542:115–8.

 7. Codella NC, Nguyen Q-B, Pankanti S, Gutman DA, Helba B, 
Halpern AC, Smith JR. Deep learning ensembles for mela-
noma recognition in dermoscopy images. IBM J Res Dev. 
2017;61(4/5):5–1.

 8. Fujisawa Y, Otomo Y, Ogata Y, Nakamura Y, Fujita R, Ishit-
suka Y, Watanabe R, Okiyama N, Ohara K, Fujimoto M. 
Deep-learning-based, computer-aided classifier developed 
with a small dataset of clinical images surpasses board-certi-
fied dermatologists in skin tumour diagnosis. Br J Dermatol. 
2018;180(2):373–81.

 9. Menegola A, Tavares J, Fornaciali M, Li LT, de Avila SEF, Valle 
E. RECOD titans at ISIC challenge 2017. arXiv: 1703. 04819

 10. Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classifi-
cation of the clinical images for benign and malignant cutane-
ous tumors using a deep learning algorithm. J Invest Dermatol. 
2018;138(7):1529–38.

 11. Hameed N, Shabut AM, Hossain MA. Multi-class skin diseases 
classification using deep convolutional neural network and sup-
port vector machine. In 2018 12th International Conference on 
Software, Knowledge, Information Management Applications 
(SKIMA), 2018, pp. 1–7.

 12. Kawahara J, Daneshvar S, Argenziano G, Hamarneh G. Seven-
point checklist and skin lesion classification using multitask 
multimodal neural nets. IEEE J Biomed Health Inf. 2018; 
23(2):538–546.

 13. Harangi B, Baran A, Hajdu A. Assisted deep learning framework 
for multi-class skin lesion classification considering a binary clas-
sification support. Biomed Signal Process Control, 2020; v. 62, p. 
102041.

 14. Gessert N, Sentker T, Madesta F, Schmitz R, Kniep H, Bal-
truschat I, Werner R, Schlaefer A. Skin lesion classification 
using cnns with patch-based attention and diagnosis-guided 
loss weighting. IEEE Trans Biomed Eng., 2019; v. 67, n. 2, p. 
495–503.

Table 10  Size of the network architectures in the multi-class problem

Architecture Input size #Weights ( ×106)

AlexNet [11] 224x224 62.38
Inception-v3 [12–14] 299x299 23.85
DermaDL

multi
96x96 2.00



SN Computer Science (2021) 2:253 Page 13 of 13 253

SN Computer Science

 15. Torrey L, Shavlik J. Transfer learning. In Handbook of research 
on machine learning applications and trends: algorithms, meth-
ods, and techniques. IGI Global. 2010;242–264.

 16. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, 
Huang Z, Karpathy A, Khosla A, Bernstein M, Berg A, Fei-
Fei L. ImageNet large scale visual recognition challenge. Int J 
Comput Vis (IJCV). 2015;115(3):211–52.

 17. Xie S, Girshick R, Dollar P, Tu Z, He K. Aggregated residual 
transformations for deep neural networks. In: IEEE conference 
on computer vision and pattern recognition, 2017;pp. 1492–1500.

 18. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Pro-
ceedings of the IEEE conference on computer vision and pattern 
recognition, 2018;pp. 7132–7141.

 19. Abbasi, Naheed R., et al. Early diagnosis of cutaneous melanoma: 
Revisiting the ABCD criteria. JAMA 2004; 292(22), 2771–2776.

 20. Krizhevsky A, Sutskever I, Hinton G. “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in 
Neural Information Processing Systems. Curran Associates. 
2012;1097–105.

 21. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. “Rethink-
ing the inception architecture for computer vision,” in The IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 
2016; pp. 2818–2826.

 22. Codella NCF, Gutman D, Celebi ME, Helba B, Marchetti MA, 
Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern 
A. Skin lesion analysis toward melanoma detection: A challenge 
at the 2017 international symposium on biomedical imaging. In 
IEEE Biomedical Imaging, 2018; pp. 168–172.

 23. Simonyan K, Zisserman A. Very deep convolutional networks for 
large-scale image recognition. 2014. arXiv: 1409. 1556

 24. He K, Zhang X, Ren S, Sun J. Deep residual learning for image 
recognition. In Proceedings of the IEEE conference on computer 
vision and pattern recognition, 2016;pp. 770–778

 25. Zakhem GA, Motosko CC, Ho RS. How should artificial intel-
ligence screen for skin cancer and deliver diagnostic predictions 
to patients? JAMA Dermatol. 2018;154(12):1383–4.

 26. Ruiz D, Berenguer V, Soriano A, Sanchez B. A decision support 
system for the diagnosis of melanoma: a comparative approach. 
Expert Syst Appl. 2011;38(12), 15217–15223

 27. Yu L, Chen H, Dou Q, Qin J, Heng PA. Automated melanoma rec-
ognition in dermoscopy images via very deep residual networks. 
IEEE Trans Med Imaging. 2017;36(4):994–1004.

 28. Ganzeli H, Bottesini J, Paz L, Ribeiro M. Skan: Skin scanner - 
system for skin cancer detection using adaptive techniques. IEEE 
Lat Am Trans. 2011;9(2):206–12.

 29. Aswin RB, Jaleel JA, Salim S. Hybrid genetic algorithm - artifi-
cial neural network classifier for skin cancer detection. In Control 
instrumentation: communication and computational technologies, 
2014; 1304–1309.

 30. Nasr-Esfahani E, Samavi S, Karimi N, Soroushmehr SMR, Jafari 
MH, Ward K, Najarian K. Melanoma detection by analysis of 
clinical images using convolutional neural network. In IEEE Engi-
neering in Medicine and Biology Society, 2016;pp. 1373–1376.

 31. Majtner T, Yildirim-Yayilgan S, Hardeberg JY. Combining deep 
learning and hand-crafted features for skin lesion classification. 
In: International Conference on Image Processing Theory, Tools 
and Applications, 2016; pp. 1–6.

 32. Gonzalez R, Woods R, Eddins S. Digital image processing using 
MATLAB. Pearson, 2004.

 33. Barata C, Ruela M, Francisco M, Mendonca T, Marques J. Two 
systems for the detection of melanomas in dermoscopy images 
using texture and color features. IEEE systems Journal, 2013; v. 
8, n. 3, p. 965–979.

 34. Li Y, Shen L. Skin lesion analysis towards melanoma detection 
using deep learning network. Sensors. 2018;18(2):556.

 35. Tan M, Le QV. Efficientnet: Rethinking model scaling for convo-
lutional neural networks. In: Proceedings of the 36th International 
Conference on Machine Learning (ICML), 2019; p. 6105–6114.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.





51

CHAPTER

4
CARDIAC MRI ANALYSIS

In this chapter, we reproduce the following article:

Lima et al. (2022). Full Motion Focus: Convolutional Module for Improved Left Ventricle
Segmentation over 4D MRI. Lecture Notes in Computer Science, Springer. Presented in ICIAP
2022, Leece, Italy.

In this article we described Full-Motion-Focus (FMF), a module that detects the heart
motion in the 4D Magnetic Resonance Imaging (MRI) sequence, and highlights a Region of
Interest (RoI) by focusing a Radial Basis Function (RBF) on the estimated motion �eld. MRI is a
widely known medical imaging technique used to assess the heart function.

MRI applies a strong magnetic �eld (1.5–3 T) to the whole body and detects changes in
the magnetization �eld of the water molecules in the observed region, after applying controlled
radiofrequency pulses. The �eld change is acquired and processed by inverse Fourier Transform,
which returns a tri-dimensional image of soft tissues in common Euclidean coordinates. The
process is repeated several times to collect data in all regions of the heart.

By adding the time dimension, MRI is able to capture a full heartbeat, so called 4D or
cine MRI. The pictures are usually captured in 5-10 mm thick slices spaced by 5-10 mm gaps,
in intervals of 20–100 ms between frames. The acquisition head can be positioned to capture
full resolution in short or long axis. This method can take high-resolution pictures of the heart
without any damage, and is considered the gold standard in medical literature.

Among the many computer methods that process MRI images as reviewed by Peng et
al. (2016), Deep learning (DL) models can also perform several tasks in Cardiac MRI (CMR)
images with good e�cacy, such as segmentation, estimation, and detection of diseases. The
most basic task is tissue segmentation, which is used to measure muscle and cavity dimensions,
estimate muscle mass and dislocation, then assert the heart function in terms of how much
blood is pumped and if the ventricle walls have normal movement.
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For example, heart assessment guidelines, e.g. reported in Montera et al. (2022), use the
Left Ventricle Ejection Fraction (LVEF) as a central measure of the heart function. LVEF below
50% is interpreted as an impairment, and below 35-45% it becomes a risk factor for diseases
such as I50–“Heart Failure” (World Health Organization, 2016).

This measure is estimated from the left ventricle volumes measured on a segmented
heart image—LVEF is the percent ratio of stroke volume (SV) and end-diastolic volume (EDV),
taken in the two extreme instants of the heartbeat (systole and diastole). Foley et al. (2012)
remarks that the segmentation is a critical step, and the �nal LVEF estimation is sensitive to
the imaging technique and precision of the algorithm, motivating DL research.

Many DL models are based on convolutional neural networks (CNN), and were improved
by detecting a RoI either automatically or by hand. The automatic methods either add pre or
post processing, or can be embedded in the network architecture itself. However, the embedded
approaches such as multi-level modules or attention mechanisms—e.g. those employed in
Inception from Szegedy et al. (2015)—require extensive network training and data volumes.

In the paper we proposed FMF, an algorithm that delineates a spherical RoI with a
RBF around the heart motion in 4D MRI, whose boundaries can be adjusted by thresholding
a probability function. The cuto� threshold was de�ned with a heuristic based on the image
statistics. We took care to de�ne the algorithm solely with convolution operations so it is
possible to embed the method inside a convolutional neural network.

We experimented and evaluated FMF for left ventricle segmentation on three CMR
datasets, observing that the proposed RoIs covered 99.7% of data labels (Recall score), improved
the CNN segmentation by 1.7 (mean Dice score, χ2 p<0.001) after the RoI extraction, and
improved the overall training speed by 2.5 times (+150%). This was an incremental result that
demonstrates a Deep learning application in another medical imaging domain.

In the following pages, we reproduce the article from Lima et al. (2022). According to Springer
LNCS Copyright Form, Author retains the right to use his/her Contribution for his/her further
scienti�c career by including the �nal published paper in his/her dissertation or doctoral thesis
provided acknowledgment is given to the original source of publication.



Full Motion Focus: Convolutional Module

for Improved Left Ventricle Segmentation

Over 4D MRI

Daniel M. Lima1,2(B) , Catharine V. Graves2 , Marco A. Gutierrez2 ,
Bruno Brandoli3 , and Jose F. Rodrigues Jr.1

1 Institute of Mathematics and Computer Science, Universidade de Sao Paulo,
Sao Carlos, SP, Brazil

danielm@usp.br
2 Laboratorio de Informatica Biomedica, Instituto do Coracao, Hospital das Clinicas,

Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
3 Dalhousie University, B3H 4R2 Halifax, NS, Canada

Abstract. Magnetic Resonance Imaging (MRI) is a widely known med-
ical imaging technique used to assess the heart function. Over Cardiac
MRI (CMR) images, Deep Learning (DL) models perform several tasks
with good efficacy, such as segmentation, estimation, and detection of
diseases. Such models can produce even better results when their input
is a Region of Interest (RoI), that is, a segment of the image with
more analytical potential for diagnosis. Accordingly, we describe Full

Motion Focus (FMF ), an image processing technique sensitive to the
heart motion in a 4D MRI sequence (video) whose principle is to com-
bine static and dynamic image features with a Radial Basis Function
(RBF) to highlight the RoI found in the motion field. We experimented
FMF with the U-Net convolutional DL architecture over three CMR
datasets in the task of Left Ventricle segmentation; we achieved a rate
of detection (Recall score) of 99.7% concerning the RoIs, improved the
U-Net segmentation (mean Dice score) by 1.7 (p < .001), and improved
the overall training speed by 2.5 times (+150%).

Keywords: Cardiac MRI · Motion · Deep learning · Localization ·
Segmentation

1 Introduction

Magnetic resonance imaging (MRI) is a medical imaging technique used to cap-
ture volumetric image sequences of internal soft tissues, such as cardiac muscles.
In comparison to X-ray imaging (XR) and computed tomography (CT), MRI
provides images with improved structural details via finer spatial resolutions.
Cardiac MRI (CMR) focuses on the heart, allowing trained cardiologists to mea-
sure heart parameters, for example, the mass of the cardiac muscle (myocardium
mass), volumes of blood cavities (atrial and ventricular volumes) and volume of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Sclaroff et al. (Eds.): ICIAP 2022, LNCS 13231, pp. 438–450, 2022.
https://doi.org/10.1007/978-3-031-06427-2_37
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blood pumped per heartbeat (ejection fraction) [9]. Those parameters are used
to assess how healthy is the heart, by recognizing early conditions and signs
before the onset of infarcts and other complications.

Due to the complexity of CMR images, comparably complex techniques are
required to produce detailed analyses. One of these techniques is deep learning
(DL). Many of the tasks related to the cardiac function analysis have bene-
fited from DL methods—for example segmentation of structures [1], estimation
of heart parameters [17], and detection of diseases [7]. For even better results,
research in DL has pointed out that models based on convolutional neural net-
works (CNN) had higher efficacy when provided with regions of interest (RoI)
either explicitly or implicitly [17]. The RoI proposal is a preprocessing step
whose goal is to identify the most prominent regions of an image for discovering
clinically relevant artifacts.

The explicit RoI proposal approaches usually follow a combination of meth-
ods, for example: (a) pipelining a segmentation and a regression network; (b)
preprocessing the input with a region proposal algorithm [5] or with a CNN
[16]; or (c) by using manual cropping [18]. The implicit RoI detectors are added
to the DL network abstracted as additional operators and variables; e.g. multi-
scale Inception [14] and attention [15] modules, which benefit from the RoI to
down-weight less-informative neurons and inputs inside the network. Inception
modules weight convolutions of different sizes, while attention modules assign
a weight to each feature channel. This additional neural information processing
guides which input features or channels shall have more weight.

In this paper, we develop a module that highlights regions in the image
sequence by analyzing the motion field using a radial basis function (RBF) [8].
In our experiments, we analyze our method by using the RBF for cropping the
input before having it processed by a pretrained segmentation U-Net convo-
lutional network [10]. Our methodology is an innovation in the task of region
proposal for CMR analysis; we demonstrate results that justify the use and fur-
ther investigation of the employed principles. We named it after its working
mechanism as Full Motion Focus (FMF ).

2 Theory and Related Work

2.1 Cardiac MRI

MRI is the most precise medical imaging technique for examination of the heart
structures, it records heart images along a complete heartbeat cycle [2,12]. In
practice, the magnetization signal is triggered by a reference pulse, then cap-
tured several times for noise reduction and, finally, reconstructed by inverse
Fast Fourier Transform. The resulting image is usually visualized in slices along
a positional axis: the long axis has a frontal or lateral view of the heart, and the
short axis aligns to a cross-sectional plane.

The short-axis view is split in three regions: the base or basal region near the
top where blood vessels connect to the heart (slice B); the middle or medial in
between (slice M); and the apex or apical region at the bottom tip of the heart
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(slice A)—refer to Fig. 1. The normal human heart has four chambers: right
atrium (RA), right ventricle (RV), left atrium (LA), and left ventricle (LV). The
atria receive blood and the ventricles pump it out of the heart. Even though all
chambers are important, the LV is of special interest because it is the cardiac
muscle that does the “heavy lifting” of pumping oxygenated blood from the
lungs to the whole body. In the short-axis view, the LV appears as a ring shape,
whose thickness and internal volume measurements are essential to estimate the
myocardium mass and ejection fraction, respectively.

Fig. 1. Picture of heart, and examples of CMR cross-sections in the Base (B), Middle
(M) and Apex (A) regions, with LV boundaries. Adapted from Saber et al. [11].

2.2 Computer Methods for CMR Analysis and LV Segmentation

Computer methods for functional analysis of CMR images, as reviewed by Peng
et al. [9], were organized in three ways: image-driven, model-driven, and by
direct estimation. Further subdivisions of the LV segmentation spans five groups:
(1) image processing methods such as thresholding, morphology operators, and
region-growing; (2) pixel/voxel-based classification by Gaussian mixture mod-
els, neural networks, k-means, k-NN, or SVM; (3) active contours (snakes),
deformable models, level sets, and motion tracking; (4) PCA or ICA with strong
priors from anatomic heart models; and (5) direct estimation by, e.g., latent
discriminant analysis combined with SVM. This work refers to category 2 as it
employs a pixel-based classification by a neural network.

Recent approaches for LV segmentation use CNNs (such as U-Net) experi-
mented over many datasets and methodology combinations. U-Net [10] is a gen-
eral segmentation model which combines a tower of downscaled-then-upscaled
deep representations. For CMR images, U-Net displayed good results (89% Dice)
when trained from min-cut priors [4]. A U-Net architecture with residual blocks
and optical flow information achieved 89%, 95% and 85% Dice in the base, mid-
dle, and apex regions of the heart, respectively, in the work of Yan et al. [19]. In
the work of Wu et al. [16], the authors combine a custom CNN for region pro-
posal with a U-Net segmentation to achieve 95% Dice. Overall, the combination
of region proposal to U-Net had good results in particular datasets, but still has
room for improvement when the evaluation generalizes across multiple datasets.
Different from former works, our methodology, FMF , uses RBFs to propose
RoIs that will aid a CNN processing in the task of LV segmentation, which we
demonstrate with experimental U-net improvements in multiple datasets.
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3 Materials and Methods

FMF starts with a 4D image input x = I(t, x, y, z), that is, a sequence of vol-
umes (frames) each one with a time t coordinate. Initially, we normalize x to
produce sequence x∗ with frames in a format more adequate for Neural Network
processing—see Sect. 3.1. From x∗, we extract static visual features to produce
xs, and motion estimation to produce xt, detailed in Sect. 3.2. Next, we apply
two sets of weights: ws are weights related to visual features, and wt are weights
related to the motion (time). After weighting, both features are combined in ten-
sor v. Then, as presented in Sect. 3.3, we compute the center voxel μv defined
by the weighted sum of all the voxels’ coordinates. The segmentation map yS is
produced by applying a threshold to v and extracting the bounds of non-zero
voxels. Afterwards, we compute the scale σv given by the standard deviation of
all the voxels’ distances from center μv. At this point, refer to Sect. 3.4, we can
apply a radial basis function at center μv with radius σv, computing yL, then we
scale the region defined by yL to the CNN input shape. In Sect. 3.6, we explain
the neural network processing, its parameters, and training.

3.1 Intensity Normalization

We normalize the image intensities between 0 and 1 by subtracting the minimum
value and dividing by the range of values, using an small constant ǫ to avoid
division-by-zero:

x∗ =
x − min(x) + ǫ

max(x) − min(x) + ǫ
(1)

3.2 Visual Features and Motion Estimation

For visual features extraction, we consider the statistical mean and standard
deviation obtained with 3 × 3 × 3 kernels. The mean image Iµ is computed
using the convolution operation with mean kernel M , defined as:

M =
1

1 · 3 · 3 · 3
· J1,3,3,3 (2)

where J1,3,3,3 is a 1 × 3 × 3 × 3 matrix-of-ones. That is, M is just the arithmetic
mean of a 33 matrix, in a convolution form. With kernel M , we compute Iµ as:

Iµ = I ∗ M (3)

In turn, the standard deviation image Iσ is computed by taking the dif-
ferences between image I and mean image Iµ, then squaring the differences
element-wise (Hadamard power); after that, we apply a convolution operation
with the mean kernel M , before taking the Hadamard square-root, as follows:

Iσ = [(I − Iµ)(2) ∗ M ](1/2) (4)
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Accordingly, the mean image Iµ and the standard deviation image Iσ define
xs = {Iµ, Iσ}. Notice that we express the Hadamard powers using the definitions
and notations defined in the work of Fallat and Johnson [3].

Motion is estimated by function E(I)—in Eq. 5, given by the root-mean-
squared differences of intensity along the time coordinate, where T is the time
interval (or number of frames) in image I, and St is the Sobel kernel w.r.t. time,
instead of the default Sx and Sy spatial Sobel kernels. This function is related
to the magnitude of the optical flow vector field [6] in each voxel, as follows:

xt = E(I) =

√

1

T

∫ T

t=0

(

∂I

∂t

)2

dt ≈

√

√

√

√

1

T

T−1
∑

t=0

[I(t) ∗ St](2) (5)

Figure 2 illustrates a sequence of six CMR frames spaced by 1/6 of the car-
diac cycle (upper row in the figure), and the respective absolute derivatives in
each point along the time dimension (lower row) as computed by Eq. 5. Figure 3a
shows the total motion estimate in the sequence, while Fig. 3b presents the cumu-
lative energy histogram. By combining both static and motion features xs and
xt, we obtain:

v = wsxs + wtxt (6)

The weights ws and wt are initialized to 0.1 and 0.9 respectively for xs and
xt, i.e., although we emphasize the motion features, we also include the static
visual features, which will address the problematic cases when the heart has
limited motility, which might be the case for heart complications.

Fig. 2. Images in the medial slice, showing six frames (upper) and absolute time deriva-
tives (lower). This figure only shows medial slices, but FMF is defined for volumes.

3.3 Center and Scale Computation

The center of energy μv, formalized by Eq. 7, is the voxel defined by the energy-
weighted sum of all the voxels’ coordinates r in dimensions x, y, z; that is, every
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E(I)

Fig. 3. a) Motion estimate E(I) in whole cardiac cycle. b) Cumulative histogram’s
shoulder lies near threshold p = 0.9. c) E(I) > 90% of Figure a, convolved with
Gaussian(σ = 5). d) The RBF is fitted to this region with center μv and radius ∝ σv.

voxel i has ri = 〈xi, yi, zi〉 | 0 ≤ xi < width, 0 ≤ yi < height, 0 ≤ zi < slices, 1 ≤
i ≤ N , for N is the number of voxels in the image, as follows:

μv = 〈x̄, ȳ, z̄〉 =

∑N
i=1 vi · ri
∑

v
(7)

The segmentation yS is given by the thresholded image from the previous
step, see Fig. 3c. The scale estimate σv is the cube root of the volume (in voxels)
of the thresholded image considering the values above the 90% percentile:

(yS)i = 1[vi > Q(0.9,v)] (8)

σv =
3

‖rmax‖
3

√

∑N

i=1
(yS)i (9)

where the indicator function 1[c] returns 1 if c is true, or 0 otherwise; and Q(p, v)
is the quantile function, returning the maximum of the lowest p (%) values in v.

3.4 Segmentation and Localization Focus

The segmentation focus yS is derived from thresholded v (Eq. 8), and the local-
ization yL is found by fitting an RBF to yS. The radius di is the distance from
the center μv to each voxel i. The Euclidean distance (L2-norm ‖ · ‖) was used:

di =

∥

∥

∥

∥

ri − μv

rmax

∥

∥

∥

∥

=

√

(

xi − x̄

xmax

)2

+

(

yi − ȳ

ymax

)2

+

(

zi − z̄

zmax

)2

(10)

The chosen RBF is a Gaussian φ of the voxels’ distances:

(yL)i = φ(i) = exp
[

−(di/σv)2
]

(11)

Both outputs yS and yL are illustrated in Fig. 3d. According to the frame-
work explained so far, we can design a focus for many different objects in the
images by changing the functions for image feature extraction, motion estima-
tion, center, scale, and RBF. It is also possible to detect multiple objects or
objects of complex shapes by a mixture of RBF models.
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3.5 Crop and Scaling

This step performs the final preparation of the image so that it will fit the
CNN input shape; this is necessary because the MRI images may have diverse
dimensions. Besides, the RBF estimation is executed in the original resolution,
so the proposed region must be cropped then adjusted, followed by an intensity
normalization. For CNNs with fixed input dimensions, we rescale the images
using bicubic spline interpolation. For CNNs with variable input shape, we only
adjust the image proportions as requested by the model, e.g. the U-Net we use
has five max-pooling layers with a down-scaling factor of 2, which means the
input dimensions should be multiples of 25.

Table 1. Overview of the CMR datasets. n = number of patients; Sxy = spatial reso-
lution (pixel spacing) in the axial plane (mm/pixel); Sz = slice resolution (mm/pixel).

Dataset n width height slices frames Sxy Sz

LVSC 100 138–512 138–512 8–24 18–35 0.68–2.14 6–10

ACDC 100 154–428 154–512 6–18 12–35 0.70–1.92 5–10

M&Ms 320 196–548 192–512 6–20 18–36 0.68–1.82 5–10

3.6 Segmentation CNN

In this section, we employ method FMF in combination with the 2D U-Net
CNN [10], a consolidated technique widely tested for image processing—refer
to Sect. 2.2; the methodology, though, is suitable to any other CNN. The FMF

pipeline executes along the whole cardiac volume and, after cropping, the RoI
pass to the segmentation CNN, which in this case is the 2D U-Net. The CNN
was trained with outputs obtained with method FMF during 30 epochs using
an adaptive momentum optimizer, initial learning rate η = 0.001, Nesterov β1

= 0.9, L∞-decay β2 = 0.999, and loss function binary cross-entropy plus the
Sørensen-Dice coefficient (DSC):

L(y, p) = −[y · log(p) + (1 − y) · log(1 − p)] + DSC(y, p) (12)

where DSC is a performance metric defined in Sect. 4.1, Eq. 14 .

3.7 Datasets

To evaluate method FMF , we used three CMR datasets specified across the
short-axis orientation. The metadata in the datasets include: a) binary masks
for the LV and RV; b) physiological parameters such as myocardium mass, ven-
tricle area, volume, ejection fraction, thickness, and dimensions of structures;
c) image acquisition parameters such as spatial resolution (mm), temporal res-
olution (frames per cardiac cycle) and slice gaps (mm). Not all of the datasets
encompass the same information; following, we provide more details, with a
summary presented in Table 1.
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– LVSC - Cardiac Atlas Project (CAP) 2011 LV Segmentation Challenge [13];
we used the 100 patients in the training set with LV masks on all frames;

– ACDC - MICCAI 2017 Automated Cardiac Diagnosis Challenge [1]; it was
created from clinical data, including sequences of 100 patients with RV and
LV masks in two frames, from the University Hospital of Dijon (France) over
6 years;

– M&Ms - MICCAI 2020 Multi-Centre, Multi-Vendor & Multi-Disease Car-
diac Image Segmentation Challenge [11]; this database was collected from
six hospitals in Spain, Canada, and Germany using several MRI scanners
(Siemens, GE, Philips, and Canon), it includes RV and LV masks in two
frames—we used 320 patients for which the labels are publicly available.

4 Experiments and Results

We evaluated our methodology by analyzing the selected datasets and comparing
the results of two CNNs: one base U-Net CNN on the raw images without the
FMF RoI proposal, and another U-Net CNN on the images processed by FMF .
After running FMF and cropping the RoI, the cropped frames were passed to
the U-Net. The myocardium labels were obtained by subtracting epicardium and
endocardium masks. The datasets were individually split with 75% for training
and 25% for validation of models; for testing, we performed an all-versus-all
scheme, that is, fitting the CNNs to the training set of one dataset and testing
on the validation set of another dataset.

The experiments ran in a computer with Intel i7-7700k CPU and NVIDIA
Titan-Xp GPU. Our software was written in Python, scipy, tensorflow, and mat-
plotlib. The steps were: load an image; compute features; fit RBF; crop and resize
both the input image and the label mask; Base CNN prediction on the origi-
nal image and FMF -CNN prediction on the cropped image; then, evaluate the
predicted masks against the labels using the following metrics.

4.1 Metrics

We compared three indices: (1) Recall, the proportion of the labels that was
preserved in the FMF region proposals; it is also known as Sensitivity or True
Positive Rate—TPR as defined by Eq. 13, which aims to verify if the bounding
boxes cover the labels entirely; (2) the Sørensen-Dice coefficient—DSC as defined
by Eq. 14, which is equivalent to the F1-score (average of Precision and Recall)
that refers to the segmentation output when not-using vs using method FMF ;
(3) speedup, the ratio of time taken by the CNN when not-using vs using method
FMF—it is defined as (tbase/tours).

TPR(y, ŷ) =
|y ∩ ŷ|

|y|
=

TP

TP + FN
(13)

DSC(y, ŷ) =
2|y ∩ ŷ|

|y| + |ŷ|
=

2TP

2TP + FP + FN
(14)
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Recall ranges from 0, when none of the marked voxels are detected; to 1 when
100% of the marked voxels are detected. DSC ranges from 0, for no intersection;
to 1 for a perfect match between y and ŷ. Speedup is a positive ratio with value
=1 when times are equal; >1 when FMF is faster; and <1 when FMF is slower.

4.2 Results

Table 2 presents the results of the FMF RoI proposal as Recall, and the results
of the FMF -CNN segmentation as Dice score. The Recall, that is, the ability to
identify the regions of interest, was nearly perfect for all the datasets. Concern-
ing the Dice score, the U-Net trained on dataset M&Ms (the largest dataset)
was significantly improved when using the FMF RoI proposal, with a mean
performance increase of +7.2 (percent points) considering all the datasets.

Table 2. Performance results. In the first (left-most) column, the name of the dataset
and the Recall metric. In the remaining columns, the DSC (Dice score) for the Base
CNN segmentation and for the segmentation obtained after the FMF RoI proposal.

Train Test Base FMF ∆DSC Train Test Base FMF ∆DSC

M&Ms 99.75% recall LVSC 62.4% 70.9% +8.5 LVSC 50.1% 44.8% −5.7

ACDC 60.8% 67.0% +6.2 ACDC ACDC 74.6% 69.9% −4.7

M&Ms 81.3% 82.2% +0.9 98.84% recall M&Ms 67.6% 47.4% −20.2

all 65.4% 72.6% +7.2 all 56.6% 48.3% −8.3

LVSC 99.75% recall LVSC 74.3% 70.8% −3.5 LVSC 76.5% 77.5% +1.0

ACDC 75.7% 79.7% +4.0 all ACDC 85.9% 86.8% +0.9

M&Ms 67.0% 69.5% +2.5 99.69% recall M&Ms 77.2% 83.0% +5.8

all 74.5% 72.7% −1.8 all 77.7% 79.4% +1.7

Table 3. Contingency matrix considering all voxels in subsets all-train and all-test,
refer to Table 2. A corrected McNemar’s chi-squared test comparing CNN without FMF

(Base) versus with FMF asserted significantly different predictions, with p < .001.

FMF (T) FMF (F)

Base (T) 6,041,403 2,543,222 χ2 = 885305.1

Base (F) 818,157 709,767,778 p < 10−302

Table 4. Mean training time for CNN without FMF (Base) and with FMF , concerning
30 epochs. In all the cases, FMF accelerated the training speed, as the CNN processes
less data.

Dataset ACDC M&Ms LVSC all

Base 21.0s 93.2s 254.7s 427.2s

FMF 11.6s 37.6s 95.1s 170.3s

Speed-up 1.81x 2.48x 2.68x 2.51x
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With dataset LVSC used for training, we observed a lower performance when
validating over itself (-3.5), but an improvement when validating with ACDC
and M&Ms (+4.0 and +2.5, respectively), which corresponds to the overall mean
performance of +0.3. With ACDC used for training, we did not observe perfor-
mance improvements, with a mean decrease of 8.3% when considering all the
datasets—it is noticeable that the Recall of RoIs had the smallest performance
for this particular dataset. Finally, when using all the datasets for training, we
observed a mean performance increase of +2.35 concerning all the datasets.

We applied the corrected McNemar’s chi-squared test from package statsmod-
els 0.12.2, whose results asserted that the Base predictions and predictions after
FMF were significantly different, with p < .001 (see Table 3). From a practical
perspective, we also compared the training speed, which is paramount to larger
experiments such as hyper-parameter search. Table 4 shows the training time
of the networks without and with method FMF ; in all the cases our method
improved the training speed by 150%.

Fig. 4. Slices with DSC<0.2 from patients P27, 32 and 91. Columns are labels, pre-
dictions by base CNN, and predictions by FMF (rectangles) plus CNN (contours).

5 Discussion

Based on our results, the main achievement of method FMF is the ability to iden-
tify and crop the RoIs with a very small error (Recall = 99.69%). Furthermore,
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by cropping the RoIs before the CNN training, we observed that the training pro-
cess was remarkably accelerated, increasing the training speed by 150%. When
considering metric DSC, we observed significant improvements when considering
the entire bundle of experiments, as presented in Table 2.

For the majority of the datasets, all but ACDC used for training, we observed
significant improvements. This inefficacy with ACDC is possibly related to imag-
ing artifacts and standard operating procedures used to label the ACDC images
(refer to Fig. 4). In general, FMF is able to automatically focus on the correct
region and guide the segmentation CNN (Fig. 4, P27). However, in some cases,
the CNN lost track of the LV when fed with a cropped RoI (P32). In a few
cases, the CNN is unable to detect anything, even when fed with a centered
RoI (P91). This is a known problem when segmenting the cardiac apex. These
findings should be investigated in future works.

Overall, method FMF demonstrated significant improvements in the task
of RoI detection; from the results, it became evident that the performance
depends on the training dataset and on the network model. The main character-
istic is image quality; format and intensities should be similar across datasets,
and labeling standard operating procedures should be compatible. An extended
preprocessing has the potential to overcome such issues across heterogeneous
datasets; possibly, a dynamically adjusted module would be insensitive to data
noise/variation.

6 Conclusions

In this paper, we proposed method FMF , a novel approach based on convolution
operations and on the use of a radial basis function to detect the RoI in cardiac
magnetic resonance images. We validated FMF with a U-Net CNN comparing
our results to those of the canonical U-Net and of the FMF -CNN in three pub-
lic reference datasets. According to our results, FMF was able to crop 99.69%
(Recall metric) of the RoI voxels in all the datasets, being suitable to prepro-
cess the data for CNN segmentation. FMF accelerated the training process by
150%, and also increased Sørensen-Dice coefficient in the majority of our test
cases (p < .001). Further improvement is possible by extended preprocessing of
the training datasets, and by the use of more advanced CNNs that support a
fine-tuning to deal with the specificities of more challenging datasets.

As future work, we intend to expand the FMF methodology considering more
possibilities: (1) use other networks in the segmentation step, such as 3D U-Net
or Feature Pyramid Networks, validating versus other state-of-the-art networks;
(2) embed this method as the first layer of a CNN, so that the parameters
are adjusted automatically; (3) experiment with more datasets, preprocessing,
and augmentation methods; (4) test different feature extractors for the static
visual features, such as gray-level co-occurrence matrices and Gabor filters; other
motion estimation methods, and radial basis functions.
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CHAPTER

5
CONCLUSION

This thesis contributes to a thorough process for analyzing real data in the medical
domain from the perspective of computer science applied to (A) Clinical Data Warehouses,
(B) Skin Lesion Identi�cation, and (C) Cardiac MRI Analysis. In this project we prepared a
data warehouse from real clinical data, then explored deep learning analysis in two medical
specialties: dermatology and cardiology, considering both high-level diagnostic concepts and
low-level morphology concepts. The topics are essential to assert the following:

General Hypothesis.
Deep Learning is able to analyze real medical data, adding to the clinical information about
a patient’s condition and possible outcomes. That ability works both for learning high-level
concepts such as diagnostics from curated clinical data warehouses and low-level concepts such
as motion patterns in medical images.

The data warehouse application comprises a specialized database for structured medical
data. It stores coalesced patient records with clinical meaning, that is, using standard terms
acknowledged by medical literature. This information is often curated in statistical models of
human anatomy and laboratory specimens. The data warehouse thus serves as a support tool
for understanding persons’ health, the possible outcomes and treatments.

The skin lesion and cardiac MRI applications access unstructured data in the form of
images from skin and heart, which are analyzed to detect patterns related to dimensions, shape,
texture and color. Those patterns are important characteristics for determination of diseases
and structured information about the organs and tissues in evaluation. They serve as basis for
clinical measurements such as lesion diameter or heart cavity volumes. Measurements such as
diameter and volumes are input variables used for clinical risk models, for example, in cancer
screening and heart failure diagnosis.
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5.1 Further discussion

5.1.1 Clinical Data Warehouses

Chapter 2 described the ETL process that built a data warehouse based on InCor’s
clinical database in accordance to the OMOP CDM standard. InCor CDM was able to reproduce
cohort selections from previous studies, and also included additional medical data that opened
doors for future projects. The main point observed when de�ning cohorts using Atlas instead
of Pauá was that their queries are slightly o� due to unde�ned constraints, such as window
gap size and number rounding. This required manual adjustment of some parameters to �nd
the most agreeable result. Another point is that the source database is ever changing, that is,
some patients had record updates or deletions, which makes it impossible to reproduce cohorts
exactly even if we created Pauá views again. However, this characteristic is desirable in the
clinical research context, if the database was updated to �x wrong data inputs or add details.
It was also discovered that the OMOP CDM did not include raw medical data in their model,
requiring links to an external system such as a PACS using a separate key. In our case, we used
an additional table to link the CDM occurrence ids to the PACS ids.

5.1.2 Skin Lesion Identification

Chapter 3 demonstrated an extension of the DermaDL melanoma detection CNN to a
more general task of classifying skin lesions. A new code base was implemented in Tensor�ow
to help understanding the CNN block formulation, which also validated that the model does
not depend on hidden optimizations from a speci�c DL library. We observed that the new CNN
was more di�cult to train as the initial results had poor metrics, and therefore additional work
would be required. The �rst concern was with the strong dataset imbalance both between
classes and between datasets, and also that there were many classes with very few examples.
When futher splitting to multiple classes, the imbalance increased even more. A second concern
that aroused was if di�erent preprocessing con�gurations and approaches could a�ect class
separation. We closed those gaps by regrouping the dataset classes in �ve classes, we provided
colorized versions of image equalization, and �nally augmented the dataset a second time
to alleviate the class imbalance. In this contribution we observed that even if the CNN has
a complex structure, it has much less weights compared to other DL models, making the
architecture suitable for energy-constrained devices such as mobile phones or portable devices.

5.1.3 Cardiac MRI Analysis

Chapter 4 contributed with a method to focus on the heart movements and use that
information to crop the heart region before applying a CNN. The method was carefully de�ned
with convolution operations so future implementations could be added to a CNN architecture if
necessary, and possibly allowing for automatic weight adjustments during the network training
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procedure. The experiments showed promising, but they also exposed some di�cult cases from
the ACDC dataset. The FMF method correctly identi�ed the heart location in those cases, but
the CNN segmentation was worse than before. This suggests that some types of CMR images
may have such unexpected characteristics so that the CNNs tries to learn secondary features
from the regions outside the RoI. It should be noted that the U-Net used after FMF was not
�ne-tuned, and no augmentation was done to the dataset, as the study focused on FMF.

5.2 Open problems

InCor CDM is just one of multiple healthcare centers that has adopted an standardized
data warehouse. The main bene�t of using an standard model is sharing of materials and
methods, which facilitates interoperability between healthcare systems and reproduction of
clinical research protocols. If the data follows the same model, the software and methods can
be reused with minimal changes. However, many systems are designed with a multitude of
non-relational database subsystems, specially for cost or time constraints.

This may pose a challenge when the institution attempts to organize a data warehouse
following a relational model. Even further, some institutions may use internal medical vo-
cabularies that are not compatible with public international standards such as the ICD-10
diagnostic code system. Tito et al. (2020) proposed a fully automatic approach for data analysis
in unstructured datasets, while Lima et al. (2021) proposed to use intermediate data models
that could be combined into a structured data lake. However, the best choice still depends on
the institution research goals, which can be both geared towards understanding unknown data
or strictly following clinical research protocol with a clearly de�ned data model.

Regarding the DL applications in the medical domain, current state-of-the-art already
surpassed human performance in experiments, as reported by Esteva et al. (2017). However,
there is a long road of building con�dence in the computerized decisions that involve healthcare,
such as explaining all steps of the algorithms to the medical specialists, acquiring approval
from government agencies and obtaining the trust of the general public. It is very challenging
to explain DL concepts and reasoning in a mathematically precise manner for the specialists
and that is also understandable and intuitive to everyone else. For that reason the medical
literature still makes heavy usage of feature engineering and linear models, due to the inherent
explainability and mathematical simplicity.

The DL community has made several attempts of explaining CNN behaviour by visual-
izing error gradients, such as in the work of Selvaraju et al. (2020) and similar approaches. This
visual explainability framework also helps researchers to understand how CNN architectures
guide the objective function with attention mechanisms that are used in other DL models such
as in the work of Vaswani et al. (2017). Another common reported visualization is the learned
kernels, but all of these approaches are still too technical.
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Another concern regarding DL research intersects the data interoperability scenario,
because there is a lack of data variability in medical imaging datasets that is currently being
addressed by the scienti�c community. For example, considering the CMR imaging datasets
used in Chapter 4, we observed that literature’s datasets prior to the M&Ms challenge of
Campello et al. (2021) were e�orts done by leading healthcare institutions that often had small
variability of MRI machines and protocols, and were focused on particular diseases or learning
tasks. It is completely perfect for motivating scienti�c research and development of DL models,
but caution must be taken when applying the resulting models to real data acquired in other
hospitals, with di�erent MRI equipment, protocols and population characteristics.

5.3 Scientific production

This section provides a list of Lima’s publications from 2018 to 2023, which were
divided into �rst-authored publications (main research line) and co-authored publications
(collaborations with research groups). More information about these publications and their full
texts is available in his Lattes, ResearchGate, and ORCID pro�les.

5.3.1 First-authored publications

— Journal Articles —

1 - Lima et al. (2021). DermaDL: Advanced convolutional neural networks for computer-aided
skin-lesion classi�cation. SN Computer Science 2(253), Springer Nature.

2 - Lima et al. (2020). A COVID-19 surveillance platform to monitor risk of infection based on a
machine learning model. Journal of Health Informatics 12(s1), SBIS.

3 - Lima et al. (2019). Transforming two decades of ePR data to OMOP CDM for clinical research.
Studies in Health Technology and Informatics 264, IOS Press.

— Book Chapters —

4 - Lima et al. (2021). Evaluating the risk of COVID-19 infection based on machine learning
of symptoms and conditions versus laboratory methods. Coleção desa�os das engenharias -
Engenharia de computação 3, Atena.

— Conference Proceedings —

5 - Lima et al. (2022). Full Motion Focus: Convolutional Module for Improved Left Ventricle
Segmentation over 4D MRI. In: Proceedings of Image Analysis and Processing – ICIAP 2022.

http://lattes.cnpq.br/7081437700078550
https://www.researchgate.net/profile/Daniel-Lima-27
https://orcid.org/0000-0002-7818-6103
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6 - Lima et al. (2021). Uma proposta de data lake para pesquisa em saúde a partir de data pools
multicêntricos interoperáveis. In: Anais do XXXVI SBBD, SBC.

5.3.2 Co-authored publications
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7 - Carvalho et al. (2023). Long-term respiratory follow-up of ICU hospitalized COVID-19 patients:
prospective cohort study. PLOS ONE 18(1), Public Library of Science.

8 - Carvalho et al. (2022). Chronic lung lesions in COVID-19 survivors: predictive clinical model.
BMJ Open 12(6), British Medical Journal Publishing Group.

9 - Linhares et al. (2022) ClinicalPath: a Visualization tool to Improve the Evaluation of Electronic
Health Records in Clinical Decision-Making. IEEE Transactions on Visualization and Computer
Graphics, IEEE.

10 - Toledo et al. (2021). Study of CNN Capacity Applied to Left Ventricle Segmentation in Cardiac
MRI. SN Computer Science 2(480), Springer Nature.

11 - Costa et al. (2022). Blood pressure estimation from photoplethysmography by considering
intra- and inter-subject variabilities: guidelines for a fair assessment. Submitted to IEEE Access.
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Anamnesis: during a medical consultation, it is the process of paying attention to the patient
complaints, and inspecting the body appearance, posture, signals and symptoms, so the
physician can start diagnosing what conditions or diseases the patient has.

Biostatistics: area of knowledge that applies Statistics to questions in Biology and Health
Sciences.

Clinical: related or concerned with observation of a patient such as to establish a diagnostic
and treatment plan.

Cohort: selection of patients that satisfy the criteria determined by the clinical researcher.

Condition: in the medical context, it is a characteristic or status of a person that is not a
disease but a�ects the health, e.g. smoking.

Convolution: mathematical operation that generalizes multiplication to compose two func-
tions, and is closely related to the cross-correlation.

Dermatoscopy: acquisition of skin images using a special optical device called dermatoscope.

Diagnostic: identi�cation of a disease, problem or characteristic of a person.

Diastole: instant of the heartbeat when the left ventricle is most relaxed.

Melanoma: type of cancer that develops in the pigmented cells of the skin called melanocytes.

Segmentation: image processing task that selects regions by marking pixels one-by-one or
drawing a shape around the contour of the region.

Stroke: heart movement that contracts the left ventricle and sends blood to the body.

Systole: instant of the heartbeat when the left ventricle is most contracted.

Telemedicine: healthcare practice that is executed remotely with the use of information and
communication technologies.

Thresholding: process of limiting a function output to a maximum or minimum value, called
the threshold.
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Triage: process of identifying if the patient status is healthy, sick, urgent or critical then
directing to the appropriate location.

Ventricles: the two bottom chambers of the heart, one right and one left.
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