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Fernando, que com sabedoria e paciência me orientou durante o mestrado e doutorado, me
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RESUMO

SPADON, G. Das Cidades às Séries: Redes Complexas e Aprendizado Profundo para
Aprimorar Análises Espaciais e Temporais. 2021. 171 p. Tese (Doutorado em Ciên-
cias – Ciências de Computação e Matemática Computacional) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

A relação entre diferentes entidades de um conjunto de dados é uma propriedade pasśı-

vel de ser representada por um grafo, os quais são conjuntos estruturados formados por

entidades (i.e., vértices) e relacionamentos (i.e., arestas). Por muitas vezes grafos foram

utilizados para responder questionamentos sobre a interação entre entidades do mundo

real pela análise de seus vértices e arestas (i.e., topologia do grafo). As redes complexas,

por outro lado, ficaram conhecidas por serem grafos de topologia não trivial. Entre suas

aplicações, destaca-se a representação de fenômenos humanos como a urbanização de ci-

dades, o movimento migratório de populações, e a propagação de pandemias. A teoria

dos grafos e a ciência de redes, os campos de pesquisa que regem o estudo de grafos e

redes complexas, têm sido explorados com sinergia no âmbito da inteligência artificial, no

qual transpõe-se a análise da interação entre diferentes entidades para o processo interno

de aprendizado computacional dos algoritmos. Neste sentido, a presente tese introduz um

ferramental de redes complexas juntamente com técnicas de aprendizado supervisionado

de classificação e regressão de modo a contribuir com o entendimento de fenômenos hu-

manos inerentes às malhas viárias, migrações pendulares, e progressões pandêmicas por

meio de modelagem e análise computacional. Entre os resultados alcançados, estão: (i)

técnicas de identificação de falhas de planejamento urbano ao mesmo tempo em que se

auxilia na análise da topologia da rede complexa para diferenciar os vértices mais influ-

entes; (ii) uma metodologia de análise e predição de links em redes complexas no âmbito

de mobilidade humana entre cidades por meio de aprendizado de máquina; e, (iii) uma

nova arquitetura de rede neural capaz de modelar processos dinâmicos observados em

dados variantes no espaço e no tempo, com aplicações de alcance a diferentes domı́nios.

Tais resultados reiteram o potencial dos grafos e das redes complexas na solução de pro-

blemas conectados à análise de diferentes fenômenos humanos, bem como a previsão de

seus processos evolutivos no espaço e no tempo, quando utilizados conjuntamente com os

algoritmos de aprendizado computacional provenientes da inteligência artificial.

Palavras-chave: Ciência de Redes, Inteligência Artificial, Sistemas Urbanos, Séries Temporais.





ABSTRACT

SPADON, G. From Cities to Series: Complex Networks and Deep Learning for Im-
proved Spatial and Temporal Analytics. 2021. 171 p. Thesis (Doctorate Candidate in
Science) – Institute of Mathematics and Computer Sciences, University of São Paulo, São
Carlos – SP, 2021.

The relationship between different entities is a property that can be represented as a

graph, structured sets formed by entities (i.e., vertices) and relationships (i.e., edges).

Graphs have often been used to answer questions about the interaction between entities

from the real world by analyzing their vertices and edges (i.e., the graph’s topology). On

the other hand, complex networks are known to be graphs of non-trivial topology, capable

of representing human phenomena such as cities’ urbanization, peoples’ movement, and

migration, besides epidemic processes. However, graph theory and network science, the

research fields that oversee the study of graphs and complex networks, have also been

traversed in the realm of artificial intelligence, in which the analysis of the interaction be-

tween different entities is transposed to the internal learning process of algorithms. In this

sense, this thesis introduces complex networks and supervised learning (classification and

regression) techniques to improve understanding of human phenomena inherent to street

networks, pendular migration, and pandemics progression through computational analysis

and modeling. Accordingly, we contribute with: (i) techniques for identifying inconsisten-

cies in the urban plan while tracking the most influential vertices; (ii) a methodology for

analyzing and predicting links in the scope of human mobility between cities through ma-

chine learning algorithms; and (iii) a new neural network architecture capable of modeling

dynamic processes observed in spatial and temporal data with applications on different

domains. These results reiterate the potential of graphs and complex networks in solving

problems related to analyzing human phenomena and modeling their evolutive processes

across space and time when used together with articial intelligence learning algorithms.

Keywords: Network Science, Artificial Intelligence, Urban Systems, Time Series.





CONTENTS

Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Context & Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Motivation & Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Network Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.2 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Questions & Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 STREET NETWORK ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . 27

3 HUMAN MOBILITY FORECASTING . . . . . . . . . . . . . . . . . . . . . 43

4 DYNAMIC PROCESSES MODELING IN TIME . . . . . . . . . . . . . . . 59

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Street Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.2 Human Mobility Forecasting . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.3 Dynamic Processes Modeling in Time . . . . . . . . . . . . . . . . . . . 81

5.2 Practical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Street Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 Human Mobility Forecasting . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.3 Dynamic Processes Modeling in Time . . . . . . . . . . . . . . . . . . . 83

5.3 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Scientific Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 First-Authored Publications . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.2 Co-Authored Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 87

APPENDIX A ADDITIONAL PUBLICATIONS . . . . . . . . . . . . . . . . 103

APPENDIX B SUPPLEMENTARY MATERIAL . . . . . . . . . . . . . . . . 139





17

CHAPTER

1
INTRODUCTION

1.1 Context & Problem

The interaction between entities of different natures is a fundamental property of

living systems and a topic that has been studied for centuries under the light of several

methods. In the 18th century, for instance, graph theory, a discrete mathematics topic,

established the graph as the structured amounting to a set that represents properties

from real-world complex systems. That was due to graphs being used for solving the

Seven Bridges of Königsberg problem [Euler 1741]. Nowadays, in the 21st century, graphs

are still as important as in the past, but with the potential to leverage technology to solve

more complex and challenging problems. Recent literature goes beyond traditional graph

theory and nominates network science [Barabási 2016] as the field dedicated to studying

complex networks, which are graphs with unique topological properties [Kim and Wilhelm

2008] considered more sophisticated than traditional ones from discrete mathematics.

According to Boccaletti et al. 2006, complex networks represent entity-interaction

systems, such as networks of product recommendations, countries cooperation, neuronal

connections, subway lines, street meshes, and others. As mathematical models, these

networks stand out due to their algebraic properties and computing potential [Barabási

2016], with analytic applicability to brace cognitive processes of knowledge discovery and

decision-making. Properties that describe several complex networks are, for instance, the

power law of the degree distribution [Barabási and Albert 1999], a high clustering coef-

ficient together with a low diameter in small-world networks [Watts and Strogatz 1998],

modular structures [Newman 2006], and network assortativity mixing [Newman 2002].

For example, in the case of street meshes, complex networks1 can describe fac-

tors related to individuals’ displacement [González, Hidalgo and Barabási 2009], location-

1 Hereinafter we use complex network (or network for short) and graph indistinctly.
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allocation of facilities [Zhang et al. 2016], improvement of tasks related to transport [Scel-

lato et al. 2010], and the study of human movement dynamics [Kang et al. 2013]. This

potential is amplified when the network is provided with additional information about

the vertices and edges (i.e., weights). Through specialized structures, such as weighted

graphs, the related literature has centered on improving the urban design [Goh et al. 2016],

cities comprehension [Cui and Han 2015], and human behavior modeling [Pan et al. 2013];

mainly in the face of heavy traffic [Iacus et al. 2020], epidemics [Kraemer et al. 2020], and

criminality [Spadon et al. 2017, Spadon et al. 2018]. These problems reveal the intricacies

underneath the human behavior [Song et al. 2010, Souza 2017], demonstrating why these

phenomena are challenging to understand when one looks from a single perspective.

Graphs are ubiquitous in the real world, but the knowledge represented through

them is not yet definitive. Approaches that combine graph theory (and network science)

with artificial neural networks (i.e., deep learning [LeCun, Bengio and Hinton 2015]) have

demonstrated promising results by solving problems in a wide range of domains [Zhang,

Cui and Zhu 2020]. Combining computing techniques and graphs makes it possible to

reveal characteristics of interest that are not obvious for human inspections based on

reading. Consequently, research on how to utilize those topics together has attracted

considerable attention. This is because the networks may be wide (i.e., high number of

vertices), intricate (i.e., high number of edges), holding non-trivial patterns and particu-

larities whose observation depends on algorithms. Although end-to-end graph processing

with deep learning is still in the early stages of discussion, research on graph-inspired

deep learning is currently under the spotlight [Hu et al. 2021, Ling et al. 2020, Cheng et

al. 2020, Qiu et al. 2019]. Despite being unable to picture a complex system, such as a

city, in the way complex networks do, graph-inspired models bring to artificial intelligence

algorithms the ability to analyze the topology of a dataset by navigating inside the neigh-

borhood of a graph represented as adjacency matrices through linear algebra operations.

Such techniques have already shown outstanding potential in modeling and forecasting

dynamic processes on several complex systems [Spadon et al. 2021, Oishi et al. 2021].

Accordingly, in the context of data science, this thesis presents results derived from

classic graph methods to cutting-edge graph-inspired deep-learning techniques. We employ

statistics, machine learning, and artificial neural networks to improve the organizational

understanding, and to enhance the modeling and analysis of human phenomena inherent to

street networks, pendular migration, and pandemics progression, achieving, as a result: (i)

a technique capable of tracking urban inconsistencies in street networks – i.e., vertices that

suffer from lack of mobility from/to points of interest – using distance functions and graph

centrality metrics; (ii) a way to employ machine learning algorithms for link prediction

tasks while modeling the dynamics of human mobility and migration between pairs of

cities; and (iii) a graph-inspired deep-learning layer and neural network architecture for

modeling spatial and temporal dynamic processes over differing granularities.
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1.2 Motivation & Rationale

Subsequently, we introduce the motivation and the literature-related reasons that

led us to our three research investigations, which have graphs as a modeling formalism.

1.2.1 Network Science

Over the years, network science has asymptotically evolved, resulting in a range of

innovations in street meshes modeling and forecasting through complex networks. These

networks improve the understanding of entity-interaction systems by analyzing topological

properties like shortest paths [Maruhashi et al. 2012, Galbrun, Pelechrinis and Terzi 2016]

and centrality indicators [Porta et al. 2011, Gil 2016]. They were also used in studies con-

cerning cities’ geometric aspects [Cardillo et al. 2006, Corcoran et al. 2015] and spatial

organization [Barthélemy and Flammini 2008, Zhong et al. 2014], some of which lever-

aged features from the vertices and edges [Scripps et al. 2010, Myronenko, Wenger and

Atmazhov 2016]. Some authors focused on the analytical reasoning over cities represented

as graphs [Crucitti, Latora and Porta 2006, Costa et al. 2010], while others approached

the support of urban design planning [Porta et al. 2009, Strano et al. 2012], apart from the

advancements made by analyzing points of interest on street meshes [Song, Merlin and

Rodriguez 2013, Li and Parrott 2016]. These studies and others with related contributions

provide for the economic, social, political, and environmental spheres of city planning.

From another research perspective, multiple graph metrics have been used to under-

stand the structure of cities [Porta, Crucitti and Latora 2006, Porta, Crucitti and Latora

2006, Travençolo and da F. Costa 2008, Viana and da Fontoura Costa 2011], model street

traffic [Zamith et al. 2015], and plan tourism routes [Spadon and Rodrigues-Jr 2018]. Some

research examined the role of centrality in urban agglomerations [Xiao, Webster and Or-

ford 2014, Hillier 2007], while others focused on mathematical properties found in the

network topology [Sarkar 2015, Spadon et al. 2018]. In such a case, topological properties

refer to shortest paths [Maruhashi et al. 2012, Galbrun, Pelechrinis and Terzi 2016, Gil

2016] analyzed from the viewpoint of geometry [Corcoran et al. 2015], spatial distribu-

tion [Barthélemy and Flammini 2008, Zhong et al. 2014], and external data [Davies and

Johnson 2015, Sopan, Rey and Shneiderman 2013, Shiode and Shiode 2013].

Studies in the field of street network analysis have roots in urban morphology [Goh

et al. 2016], which is a research field that studies the shape of cities, describing geomet-

ric aspects that impact the population [Barthelemy 2017], foundations of urban evolu-

tion [Dibble et al. 2017], and the displacement in cities [Boeing 2019], to name a few.

These studies are mainly based on quantitative methods and metrics for analyzing ur-

ban forms [Boeing 2017]. They have been consistently employed for solving mobility and

access-related issues, such as street pattern modeling, facility location-allocation, and in-
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consistency tracking (i.e., anomaly detection problems). However, a fundamental and yet

unsolved problem has to do with the characterization of cities based on their form [Strano

et al. 2013]. This is because cities are not naturally divided into groups due to historical,

economic, and social traits impacting their evolution and increasing their uniqueness [Bet-

tencourt et al. 2007]. These traits make it challenging to define an accurate model capable

of distinguishing two or more cities, such that studies in this field have been leveraging

from similarity analysis [Spadon, Gimenes and Rodrigues 2018, Boeing 2018].

1.2.2 Artificial Intelligence

Beyond the complex network topology, the literature describes the modeling and

forecasting of human mobility between places using techniques ranging from traditional

mathematics to artificial intelligence. The interest in doing so comes from humans being

bounded to move daily [Ravenstein 1889, Stouffer 1940], and understanding human mo-

bility is vital to explain the processes related to human movement [Barbosa et al. 2018],

which impact the community (nearby people) and environment (cities and nature). The

analysis of human mobility networks can assist in urban planning activities [Krueckeberg

and Silvers 1974, Batty 2008, Batty and Longley 1994, Benenson and Torrens 2004], mod-

eling the evolution and spread of epidemics [Eubank et al. 2004, Colizza et al. 2006, Balcan

et al. 2009], and even forecasting catastrophic events [Carter et al. 2002].

The literature on deep learning using graphs is still in its inception, especially

in domain-oriented cases. Recently there has been an increased interest in graph-based

representation learning through Graph Neural Networks (GNNs) [Li et al. 2016, Hamilton,

Ying and Leskovec 2017, Kipf and Welling 2017, Velickovic et al. 2017, Xu et al. 2018],

which follows a message passing scheme through a recursive neighborhood aggregation

of feature vectors [Xu et al. 2018, Gilmer et al. 2017]. Along these lines, several variant

architectures with mixed neighborhood aggregation and graph-level pooling schemes were

proposed [Scarselli et al. 2009, Defferrard, Bresson and Vandergheynst 2016, Duvenaud

et al. 2015, Hamilton, Ying and Leskovec 2017, Kearnes et al. 2016, Verma and Zhang

2018, Ying et al. 2018, Zhang et al. 2018]. Although such studies show that the GNN

and variants can achieve state-of-the-art performance in many tasks (e.g., topological

classification and link prediction), their architecture is known to be based on intuition,

heuristics, and trial-and-error [Xu et al. 2019]. Either way, GNNs have been used for multi-

agent communication learning in artificial intelligence systems [Sukhbaatar, Szlam and

Fergus 2016], physical reasoning using objects-through-vertex representation [Battaglia

et al. 2016] while leveraging attention to weigh different interactions [Hoshen 2017], and

neural networks augmentation for question answering problems [Santoro et al. 2017].

In conclusion, the related works lack robustness concerning the analytical pro-

cedures and methodologies. Often, they are based on analyzing small parts of cities and
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not the whole complex network, presenting limitations in evaluating the network topology.

Moreover, few of them benefit from multiple graph metrics. Such metrics can define fea-

ture vectors suitable for clustering analysis and multidimensional projection, approaches

weakly explored in the street network literature. There is still much to be explored re-

garding computational intelligence related to human phenomena (i.e., mobility and pan-

demics) as the literature is embryonic, with open flanks to introduce more sophisticated

methodologies. Accordingly, this thesis contributes to the state-of-the-art in both complex

networks and artificial intelligence by conducting a multi-faceted investigation, including

topics that range from the statistical inference over urban structures, the topological anal-

ysis of cities in the form of complex networks, up to the modeling of dynamic processes

related to human mobility and pandemics progression on georeferenced data. Hence, our

investigations and results benefit from an interchangeable underlying structure, the graph.

1.3 Questions & Hypotheses

Concerning the large volume of urban data available from digital maps, urban

indicators contributed by governmental censuses, and empirical observations of collective

phenomena on georeferenced data, this thesis is motivated by the following questions:

Q1 – “How is it possible to detect urban inconsistencies through topological features from

complex networks to highlight the urban design problems of cities?”; Q2 – “In which way

is it possible to use urban indicators from governmental censuses as input of learning

algorithms to forecast the human movement observed in pendular migrations?”; and, Q3 –

“How can one make use of multiple empirical observations from the real world (e.g., cities,

states, and countries) to shape the progression of a pandemic across time and space?”.

The overall outcome of the thesis, driven by the previous questions, was produced

by conducting three different but interconnected research fronts, each handling a particular

set of materials and methods. The first front F1 refers to question Q1 and is tackled in

Chapter 2; the second one F2 refers to question Q2 and is discussed in Chapter 3; while

the last one F3 covers question Q3, whose investigation is reported in Chapter 4. In the

following, we provide details about the research fronts and their initial hypotheses:

F1. We propose using distance and centrality metrics to track inconsistencies in street

networks by assuming that cities should provide the shortest routes among differ-

ent destinations of interest (e.g., hospitals and schools); when considering a vertex

that is closer to a target by geodesic distance and closer to another by shortest

path distance, the vertex is regarded as an urban inconsistency. The joint of urban

inconsistencies and centrality metrics can reveal the importance of elements that

are deficient within a city. We departed from the following hypothesis: using proper
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graph modeling over a digital map makes it possible to design an algorithmic solution

based on set theory to detect spatial inconsistencies in the street mesh of a city.

F2. We propose the use of machine learning to model mobility and migration patterns

inherent to urban indicators. The flow of commuters, also referred to as pendular

migration, describes the daily movement of people between home and work in dier-

ent cities. To this end, machine learning can predict discrete or continuous values of

unknown elements by learning from the data, contributing to the collective human-

behavior characterization. Applications along these lines can assist the design of

cities, reduce costs related to the planning of highways, and provide an estimation

of people’s movement in between governmental censuses. We departed from the

following hypothesis: by using official census information, the use of advanced ma-

chine learning algorithms can provide a more accurate – as compared to analytical

formulations – estimate of the flow of commuters between pairs of cities.

F3. We propose an artificial intelligence framework for tackling higher-dimensional time-

series forecasting problems, which involves looking at multiple time-series and their

related variables simultaneously, leveraging from temporal patterns existing between

different yet related data. An example where such a paradigm applies is in the pan-

demics progression modeling of the Coronavirus Pandemic. This is because, despite

progressing in different moments and locations, the underlying mechanisms behind

the pandemic are supposed to follow similar yet non-identical patterns. Looking

individually at the development of the pandemic in each country enables us to de-

scribe the problem in terms of multiple variables, like the number of confirmed cases,

recovered people, and deaths. However, when looking at all the countries at once,

each country becomes a multivariate sample of a broader problem resulting in a mul-

tiple multivariate time-series forecasting problem. We departed from the following

hypothesis: by exploring the fact that time series are dependent not only on their

inner variables but also on outer variables originated from other concurrent time

series sharing the same timestream, it is possible to advance the state-of-the-art in

terms of Artificial Neural Network architectures for spatial and temporal problems.

In summary, this thesis is grounded on graph-based theory to model phenomena

arising from different domains related to the human nature. It utilizes data science tech-

niques such as set theory, algorithmic classification and regression, and artificial neural

networks to produce analytical artifacts that improve the comprehension of the under-

lying problems. Our results potentially support decision-making, predicting values, and

forecasting events in real-world circumstances as demonstrated in extensive experiments.

Comprising three investigation lines, the spinal cord of this work lies in the use of a

standard base – an ensemble framed from the use of complex networks, data science, and
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computational intelligence. The domains, in turn, are all related to human phenomena

that emerge from social interactions of different granularities, such as the ones observed

between individuals, societies, and cities. This general background, which granted a con-

vergent thematic, was due to the original more general hypothesis, compiled as follows:

General Hypothesis

The analytic processing by means of complex networks and graph metrics combined

with artificial intelligence techniques from the computational intelligence realm can

expand the comprehension and, consequently, the capacity of modeling and forecast-

ing different human phenomena, providing us with information for acting on the

network topology (i.e., street networks from maps), dynamics (i.e., pendular migra-

tion between cities), and inner processes (i.e., pandemics progression over time).

1.4 Summary of Contributions

As our first contribution, we advanced with a set of distance-based pattern-discovery

algorithmic instruments to detect vertices that lack access from/to points of interest in

a given city (see Chapter 2). We presented a proof of concept and case studies, all of

which indicate that our methodology suggests better placements for points of interest at

the same time that it improves access to the majority of the vertices of a city by reduc-

ing the number of inconsistencies. Our contributions are in the definition of a concept

based on intrinsic problems to urban structures; in two algorithms devised to track and

reduce inconsistent vertices in complex networks; and, finally, in a case study, in which we

show how our toolset and algorithms can aid urban planners. Overall, these contributions

introduce a systematic manner to treat a recurrent problem of broad interest in cities.

The second contribution comes from devising a model capable of reconstructing the

inter-city commuters network and accurately reproducing the flow of people traveling from

residence to work in a different city (and vice-versa) using machine learning algorithms

and urban indicators (see Chapter 3). Our results show that gradient-based algorithms

can reconstruct the commuters network with 90.4% of accuracy and describe 77.6% of the

variance observed in the flow of people between cities. We further identify the essential

features to rebuild the network and the indicators that attract workers to commute more

intensely. Distance plays a vital role in commuting, but other indicators such as Gross

Domestic Product and unemployment rate are also driving forces for people to commute.

Because link prediction and network reconstruction are significant challenges in network

science, these results shed new light on the role of urban indicators on commute patterns.

This thesis’s third contribution is based on an artificial intelligence architecture
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for tackling higher-dimensional time-series forecasting problems, which involves looking at

multiple time-series and all their related variables concurrently, leveraging from temporal

patterns existing between different yet related data (see Chapter 4). Thereby, we benefit

from multiple multivariate time series to propose a new neural network and layer archi-

tecture, which are named, respectively, Recurrent Graph Evolution Neural Network (Re-

GENN) and Graph Soft Evolution (GSE) layer. The techniques we propose are capable of

working on higher-dimension tensors from input to output, finding non-linear relationships

between different time series, and making forecasting across time for multiple multivariate

time-series. The results we discuss outperformed both statistical and ensemble-learning

approaches, showing an improvement of 64.87% over the competing algorithms in the task

of epidemiology modeling on the SARS-CoV-2 dataset of the renowned John Hopkins Uni-

versity for 188 countries simultaneously. Besides, we also outperformed the task of climate

forecasting on the Brazilian Weather dataset for 253 sensors by at least 11.96% and patient

monitoring on Intensive Care Units (ICUs) on the PhysioNet dataset by 7.33% for 11,988

patients. Nonetheless, our results are not limited to achieving state-of-the-art marks in

time-aware data modeling but also in interpreting and bringing to light the relationships

found by the neural network, which we do by using similarity analysis over the hidden

weights of the representation learning layers of the neural network.

1.5 Document Organization

In order to describe our results in detail, this thesis is organized as a Collection of

Articles divided into five chapters, in which, besides the Introduction and Conclusion chap-

ters, the intermediary ones reproduce selected articles resulting from the thesis project.

The document organization and the articles contained in each chapter is as follows:

⋄ Chapter 1 introduces the problem, context, and motivation underneath the thesis;

⋄ Chapter 2 reviews the urban design and organization problem with complex networks;

⋆ It covers the following article:

Spadon G., Brandoli B., Eler D. M., and Rodrigues-Jr J. F., Detecting Multi-Scale

Distance-Based Inconsistencies in Cities through Complex-Networks. Journal of

Computational Science. Elsevier, 2018.

□ Further published articles on the same topic are available in Appendix A.

⋄ Chapter 3 addresses the human mobility-related problem using machine learning;

⋆ It covers the following article:

Spadon G., Carvalho A. C. P. L. F., Rodrigues-Jr J. F., and Alves L. G. A., Re-

constructing Commuters Network using Machine Learning and Urban Indicators.
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Scientific Reports. Springer Nature, 2019.

□ Supplementary material is available in Appendix B.

⋄ Chapter 4 outlines the modeling and forecasting of spatial and temporal data; and,

⋆ It covers the following article:

Spadon G., Hong S., Brandoli B., Matwin S., Rodrigues-Jr J. F., and Sun J., Pay At-

tention to Evolution: Time Series Forecasting with Deep Graph-Evolution Learning.

Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2021.

□ Supplementary material is available in Appendix B.

⋄ Chapter 5 presents the conclusions and final remarks, including a discussion on the prac-

tical implications of the thesis contributions focused on the general public understanding.

⋄ Appendix A and B present, respectively, further publications not included as chapters

and supplementary material required for the understanding of the thesis contributions.
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CHAPTER

2
STREET NETWORK ANALYSIS

In this chapter, we reproduce the following article:

Spadon et al. 2018, Detecting Multi-Scale Distance-Based Inconsistencies in Cities

through Complex-Networks. Journal of Computational Science. Elsevier.

The article consists of a distance-based pattern-discovery algorithmic instrument

to improve urban structures by detecting vertices that lack access from/to points of in-

terest in a city. The study assumes that the network has streets that render the shortest

distance between places. In this regard, our toolset uses two distance functions to track

vertices that do not provide shortest-distance routes to vertices of interest. Vertices that

fail to provide minimum-length routes are considered inconsistent vertices and evidence

of anomalies in the city structure. Accordingly, we introduce a greedy algorithm that

can recommend improvements to cities’ structures by suggesting where to place points of

interest, contributing with a thorough process that ranges from mathematical modeling

to algorithmic innovation. These contributions are linked to a sequence of papers also

resulting from this thesis but included in Appendix A and listed as follows:

Spadon et al. 2018, A distance-based toolset to track inconsistent urban structures

through complex-networks1. In International Conference on Computational Science.

Springer, Cham.

Spadon, Gimenes and Rodrigues 2018, Topological street-network characterization

through feature-vector and cluster analysis. In International Conference on Compu-

tational Science. Springer, Cham.

Spadon and Rodrigues-Jr 2018, Computer-assisted city touring for explorers. In

Workshop on Big Social Data and Urban Computing (BiDU) co-located with the

44th International Conference on Very Large Data Bases (VLDB). CEUR-WS.

1 Awarded paper – Invited for publication at the Journal of Computational Science.
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The previous listing of papers are considered to be future works from a mutual paper:

Spadon, Gimenes and Rodrigues-Jr 2017, Identifying Urban Inconsistencies via

Street Networks2. Procedia Computer Science 108. Elsevier.

Among those related to the thesis, we report an early formulation for the Ur-

ban Inconsistencies and present a systematic literature review together with a detailed

methodology for optimizing tourist routes in cities, besides providing empirical evidence

that: (A) the network topology is a source that can reveal groups of cities with similar

characteristics, potentially exposing disparities; (B) although cities may share administra-

tive boundaries with others, they cluster with cities with no apparent similarity; and, (C)

there is a correlation between urban and territorial indicators with the features extracted

from the street-network topology of cities. Those findings allowed us to better comprehend

how cities are organized within the geographical extent of their boundaries.

We reproduce the article from Spadon et al. 2018 under the Rights and Permissions

below on the following pages. Besides the introduction in Section 1, the article is organized

as follows: Section 2 reviews closer-related works found in the literature; Section 3 discusses

the algebraic formulation of the proposed method; Section 4 presents the algorithmic

concepts, solutions, and analysis; Section 5 exposes the results about the applicability of

the proposed toolset; and, Section 6 exhibits the conclusions and remarks.

Rights and Permissions

According to Elseviera, the authors retain the right to include the published article

as-it-is in a thesis or dissertation, provided it is not published commercially. The

permissions granted are extended to images and any other sources not included

along with the article. Writing permission is not required, but the journal should be

referenced as the articles’ source.

a Available at: <https://www.elsevier.com/about/policies/copyright/permissions>

2 Results from the Masters’ dissertation.

https://www.elsevier.com/about/policies/copyright/permissions
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1. Introduction

Complex networks are capable of modeling complex systems
from social networks to railway systems [1], and also, they can
represent cities when linking the network topology with the geo-
graphical position of the network nodes. All these systems, when in
the form of a complex network, describe the information exchang-
ing through the relationships of their entities — edges connecting
nodes. The cities’ complex-network can reveal features capable of
describing urban problems, which are meaningful indicators for
city planners [2]. Such features can reveal, for instance, sites where
social activities are more intense, regions where facilities should be
placed, and locations that lack street access.

In this article, we contribute with an algebraic tool-set and
related algorithms to track multi-scale distance-based inconsisten-
cies by analyzing the complex-network topology of a city using

� This article is an extended version of our conference paper (published under
DOI: 10.1007/978-3-319-93698-7  22 in the ICCS 2018) invited to this JoCS’ special
issue.

∗ Corresponding author.
E-mail addresses: spadon@usp.br (G. Spadon), bruno.brandoli@ufms.br

(B. Brandoli), daniloeler@fct.unesp.br (D.M. Eler), junio@usp.br (J.F. Rodrigues-Jr).
1 http://www.spadon.com.br.

multiple perspectives of displacement. The related literature still
lack methods to analyze and enhance the structure, mobility, and
street access of cities [2–5]. As such, our results have implications
in all the previous points, supporting a finer street planning by
improving mobility indicators and providing better city’s structural
evaluation.

The core assumption of this study is that the network is sup-
posed to provide streets that render the shortest distance between
places considering both pedestrian and automobile displacements.
In this regard, our tool-set uses three distance-functions while
varying the direction of the complex-network edges to track nodes
that do not provide shortest-distance routes to/from nodes of some
interest. Nodes that fail in providing minimum-length routes are
considered to be inconsistencies, which are evidence of structural
problems in the street mesh.

Although we focus on pedestrians and automobiles the method-
ology is suitable to any kind of on-surface transportation (e.g.,
bicycles and buses, to name a few) as they are obligated to follow the
block-based itineraries intrinsic to street networks. Underground
transportation, in turn, defines a totally different problem, since it
can explore shortest line itineraries that are not based on street-
based constraints. The relevance of our proposal comes from the
fact that just 178 cities in 56 countries [6] can count on underground
transportation means.

https://doi.org/10.1016/j.jocs.2018.12.015
1877-7503/© 2018 Elsevier B.V. All rights reserved.
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Accordingly, this article presents an extended version of Spadon
et al. [7], advancing with a more robust algebraic tool-set to track
inconsistent urban structures through complex networks. We have
extended our previous study by considering different types of dis-
placement from pedestrian and automobiles both regarding the
street-mesh of a city; by further discussing the points of inter-
est in the Brazilian city of Sao Carlos; and, by enhancing the
definition of inconsistencies in a continuous rather than a cat-
egorical manner. Along these lines, in face of inconsistencies of
a given city shaped as a complex network, our study is paved
into two hypotheses: (A) the network lacks a more appropriate
mesh; or, instead, (B) the city lacks its points of interest placed
in more appropriate locations. The first one indicates the need
for new points of interest to distribute their load. Contrarily, the
second one indicates the need for relocating points of interest
because the topology of the terrain cannot bear new streets. Along
the investigation of such a hypothesis, we consider the dynamic
particularities of points of interest regarding how citizens have
street-based access to them. As a result, we explore the points of
interest according to four categories (i.e., inward, outward, abso-
lute, and walking-based) of street-based urban planning problems
(i.e., inconsistencies). Furthermore, notice that this work relates to
the concept of street accessibility, which is one of the many vari-
ables that influence the flow of a city, and that is a much broader
problem.

In order to present our contributions, this article is organized
as follows: Section 2 reviews related works found in the literature;
Section 3 discusses the algebraic formulation of our proposal; Sec-
tion 4 presents the algorithmic concepts and solutions; Section 5
exposes the results about the applicability of the proposed tool-set;
and, Section 6 exhibits the conclusions and final remarks.

2. Related work

The motivation of our proposal is the desire to improve the
knowledge about the mobility of cities regarding its points of inter-
est. To this end, we use spatial properties found in street networks
to analyze the access and location of points of interest, support-
ing decision-making activities that might improve the design of
urban structures. Along these lines, other authors pursued similar
purposes with a related motivation, as discussed in the following.

Porta et al. [8] performed an investigation about centrality
in cities, introducing Multiple Centrality Assessment (MCA) as a
methodology defined over 1-square-mile street sub-regions, pro-
viding a different spatial perspective based on graph metrics. We
refrain from using the same approach because the authors do not
focus on identifying elements that are critical to urban planning
and design. Instead, we define a different goal aiming to character-
ize an urban-space based on a set of reference nodes (referred to
as points of interest) of single cities, and not comparatively among
cities.

Following the ideas introduced by the MCA  methodology, other
studies presented a comparative analysis of cities. This is the case of
Crucitti et al. [3], who identified common characteristics between
self-organized and planned cities. Others [9–11] studied centrality
focusing on the characterization of the peculiarities of several cities
by employing visualization functionalities.

The MCA  methodology uses the 1-square-mile sampling
approach that allows for higher scalability over non-optimized
algorithms. This approach is limited in the sense that sampling can
inspect local characteristics, but it is not able to characterize macro-
structural features, which can be found in cities. Differently, our
analyses embrace the whole city, and for each point of interest, our
tool-set analyzes it in the context of its surroundings and nearby
structures.

Following a different approach, the study performed by Strano
et al. [12] investigated the network’s geometrical attributes using
centrality to highlight discrepancies and relationships. In partic-
ular, their results point to the fact that cities share architectural
similarities due to their quasi-planarity, but also that each instance
reveals several unique geometrical proprieties. As another exam-
ple, Scellato et al. [13] explained how it is possible to extract the
backbone of a city using spanning trees based on edge-betweenness
and information centrality. Despite the potential of both, none of
them was proficient in tracking irregularities in the street meshes,
which allows extending the understanding of important routes that
affect public services and retails.

In regard to general transportation, the related literature still
lacks from discussions on how to improve access to critical nodes
of the network mainly when taking into account the inconsistent
nodes found in a city. These former studies have focused on metric-
analytical methods applied to cities [14], others have approached
the support to urban planning and design [15], and there are still
those who have researched on transportation and resource plan-
ning [16,17].

Costa et al. [14] focused on the effectiveness of the underground
systems to facilitate the connection between distant places, while
Viana and Costa [18] explored long-range connections to improve
the traffic between two  points. The first proposal differs from ours
as they consider transportation means beyond the city streets, such
an approach is not reasonable to ours because our focus is on char-
acterizing features extracted from a street network. In the second
one, long-range connections demand single edges that are far larger
than what is feasible in street-based networks, what would demand
another research approach.

Travenç olo and Costa [19], on the other hand, have first defined
the concept of accessibility by means of entropy. They stated the
Outward Accessibility as the diversity of the access of a node con-
cerning all nodes in the network and the Inward Accessibility as the
frequency of accesses to a node from all the others. As a result, they
demonstrate that hypothetical edges can improve the city’s mobil-
ity. Their proposal differs from ours as they consider the access a
global property of the network; meanwhile, we  take it as the ability
of displacement though minimum-length paths concerning a set of
user-given referential nodes.

Huynh et al. [20] investigated the spatial distribution of bus
stops in different cities by employing the percolation cluster from
statistical physics. The motivation of the authors was to provide
information about the transportation found in cities, so to dis-
tinguish them into well-planned or organically grown cities. The
analysis of transportation regarding bus stops gives us a view of
how easily citizens can move around. However, the routes used by
buses are not always adequate by means of minimum-length paths;
they relate only to route planners, which cannot benefit from our
methodology. That is because their goal is to help in the process
of locomotion, but not to fulfill the whole displacement process, in
such a way  that they minimize the distance between passengers’
origins and destinations. In another perspective, we analyze dis-
tinct sets of points of interest in a city and how they behave in the
whole process of locomotion considering displacement from both
pedestrians and automobiles.

The urban analysis is not limited to the previous investigations,
for instance, when aiming towards the solution of questions related
to it, multiple metrics have been adopted to understand and ana-
lyze the structural conditions of the cities [21], the intense traffic of
vehicles [22,23], and the collective behavior [24,25]. More specifi-
cally, some studies [26–29] analyzed the centrality of the elements
acquired from the city representation, and also, others focused on
mathematical and geometrical properties originated from its topol-
ogy; this is the case of shortest paths [30–32] and centrality [33],
that can be analyzed from the perspective of geometry [34], spatial
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disposition [35,36], and either from outside data that can be related
together with the network [37–39].

3. Algebraic formulation

3.1. Preliminaries

Along the text, we refer to a complex network as a distance-
weighted directed graph G = {V, E}, which is composed by a set V of
|V| nodes and a set E of |E| edges. To model a city as a complex net-
work, we considered streets as the edges and their crossings as the
nodes, preserving the city topology. An edge e ∈ E is an ordered pair
〈i, j〉, in which i ∈ V is named source,  and j ∈ V is named target, i /= j.
Each node i ∈ V has two properties {Liat, Lion} that correspond to
their coordinates — Liat is the latitude and Lion the longitude. Based
on such coordinates, we conferred to the edges in E a floating-point
weight that refers to the great-circle (or inline) distance between
their source and target. The great-circle distance is the shortest dis-
tance between two points on the surface of a sphere; in our case,
the sphere refers to planet Earth, as detailed in Section 3.3. The
gain from using the great-circle distance is related to the accu-
racy in approximating the real-world distance. There is no loss of
performance in using such an equation because we  compute the
length of the streets only once per city. Furthermore, its asymptotic
complexity is sublinear.

3.2. Problem constraints

The algebraic tool-set we devised tracks nodes that fail to pro-
vide street access with regard to a set of points of interest, such
nodes demand access to pedestrians and automobiles. In this sense,
it is known that both pedestrians and automobiles must obey traf-
fic rules and regulations. Vehicles must follow the streets’ direction
while pedestrians can walk back and forth in any direction.

The idea then is to analyze a city from multiple points of view
considering that closer nodes must be walkable and distant nodes
must be drivable. It is noteworthy that we use the terms walka-
ble (referring to pedestrians) and drivable (referring to automobile
vehicles) when referring to nodes that can render minimum-length
paths to/from points of interest in a given city.

Yong and Diez-Roux [40] stated that the mean distance that
pedestrians usually walk to reach some place is about 0.7 miles
(≈1.13 km), in such a case, we are assuming that any point of inter-
est up to this threshold must be walkable, and the ones beyond the
threshold must be drivable. Along these lines, our tool-set begins
tracking a set P ⊂ V of points of interest; the idea, then, is to deter-
mine three sets of nodes that surrounds a point of interest p ∈ P.
These sets are the perimeter set of p, the driving set of p, and the
walking set of p.

3.3. Grouping nodes in the surroundings of the points of interest

The first set refers to the closest nodes to a point of interest p
according to the great-circle (or inline) distance, which is called the
perimeter set of p. The walking threshold (wt) divides this set into
two, such that the first one consists of nodes that are inside the
walking range and the other one is formed by nodes that are inside
the driving range. Such a threshold is a parameter of our model,
we have defined it based on the results of Yong and Diez-Roux [40]
(see Section 3.2), but it can be changed to adapt to another scenario
based on specific knowledge of urban planners. This means that
nodes pertaining to the walking-perimeter set of p (WE

p ) must have
their great-circle distance to p less than or equal to the threshold

wt and the ones that fail in fitting this constraint are known to be
in the driving-perimeter set of p (DEp), both formalized as follows:

WE
p = {v ∈ V |dEvp ≤ wt, dEvp < dEvp̄, ∀p, p̄ ∈  P, p /= p̄} (1)

DEp = {v ∈ V |dEvp > wt, dEvp < dEvp̄, ∀p, p̄ ∈ P, p /= p̄}  (2)

where dE
ij

is the great-circle distance between i and j in the surface of
Earth. The great-circle distance is an undirected distance function
dE
ij

≡ dE
ji

given by:

dEij = R × arcos
(

sin(Liat) sin(Ljat) + cos(Liat) cos(Ljat) cos(�Lijon
)
)
(3)

where Liat and Ljat are the latitudes, �Lijon
is the difference between

the longitudes Lion and Ljon, both of the nodes i and j. Also, R is the
radius of Earth (6378 km), and all values are represented in radians.
Given a graph G = {V, E} and a set of points of interest P, according
to our formulation, a node v ∈ V pertains to one subset (WE

p or
DEp) from the perimeter set of only one p ∈ P, meaning that they
are mutually disjoint among their equals and also to the opposite
subset:

• WE
p

⋂
WE
p̄ = ∅ and DEp

⋂
DEp̄ = ∅ — ∀p ∈ P, ∀p̄ ∈ P, p /= p̄; and,

• WE
p

⋂
DEp̄ = ∅ — ∀p ∈ P, ∀p̄ ∈ P.

The following two sets are composed of nodes closest to a point
of interest p according to the length of their shortest paths. The
walking set of p (WN

p ) uses the shortest undirected path (dU
ij

) as the

distance function; while the driving set of p (DNp ) uses the shortest
directed path (dN

ij
) instead. This is because pedestrians can walk in

any direction (see Section 3.2). These sets are used to group nodes
that are closest to points of interest when moving through streets.

WN
p = {v ∈ V |dEvp ≤ wt, dUvp < dUvp̄, ∀p ∈ P, ∀p̄ ∈ P, p /= p̄} (4)

DNp = {v ∈ V |dEvp > wt, dNvp < dNvp̄, ∀p ∈ P, ∀p̄ ∈  P, p /= p̄} (5)

We consider a path S between two nodes i and j as an ordered
sequence of connected nodes Sn = 〈v1, v2, . . .,  vq−1, vq〉, in which
the consecutive ones are connected through an edge 〈Snm, Snm+1〉 ∈
E, ∀m ∈ [1,  |Sn|[. In turn, the shortest directed path dN

ij
consists

of minimizing the real-valued weight function f : En → R  that
describes the cost of the paths among all the existing paths S =
{S1, S2, . . .,  Sn} between nodes i and j, such that

∑|S|−1
m=1 f (〈Snm, Snm+1〉)

must be of minimum cost [41]. The cost is related to the weight of
the edges given by the straight-line distance between their nodes
through Eq. (3) and, along these lines, the directed shortest path
distance is defined as follows:

dNij = min

(|S|−1∑
m=1

f (〈Snm, Snm+1〉), ∀Sn ∈ S

)
(6)

Also, dU
ij

measures the shortest undirected paths that refer to
Eq. (6) but now considering that 〈Snm, Snm+1〉 ≡ 〈Snm+1, Snm〉, ∀m ∈
[1,  |Sn|[. In other words, the direction between consecutive con-
nected nodes in a path is not restrictive.

We refer to the shortest path length as direct and undirected
network distance, in the sense that one must necessarily (in the
best case) move across this path to go from the source node to the
target node. Additionally, notice that any node v ∈ V , according
to our formulation, pertains to one subset (WN

p or DNp ) from the
network set of only one p ∈ P, meaning that they are all mutually
disjoint among their similar and opposite subsets, formally defined
as follows:
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• WN
p

⋂
WN
p̄ = ∅ and DNp

⋂
DNp̄ = ∅ — ∀p ∈ P, ∀p̄ ∈  P, p /= p̄; and,

• WN
p

⋂
DNp̄ = ∅ — ∀p ∈ P, ∀p̄ ∈  P.

The direct network-distance TO a point of interest is not necessar-
ily the same as the direct network-distance FROM a point of interest,
which may  result in different driving sets for the same p. This spe-
cialization is addressed in the following section, where we  define
the driving set from a point of interest to the nodes in V by means
of the reverse driving-set of p, defined as follows:

D̄Np = {v ∈ V |dEvp > wt, dNpv < dNp̄v, ∀p ∈ P, ∀p̄ ∈  P, p /= p̄} (7)

3.4. Compartmentalizing inconsistencies using the network
direction

Consider different public services of a city as points of inter-
est; such services may  have different ways to assist the population,
but all of them must require locomotion as a condition for assis-
tance. For instance, in the case of doctors’ clinics, it is desired that
patients get there efficiently. In turn, police stations require that
their police officers efficiently reach the house of the citizens. In
the case of schools, the daily routine demands an efficient back-
and-forth transit to students; along with other services that can be
fitted with this assumption. Notice that, we are referring to efficient
paths as the ones with minimum length.

In the first example, there is an implicit displacement from a
node v to a node p; in the second one, the displacement is from the
node p to the node v; and, in the third case, there is a bi-directional
displacement between v and p, in which v is an ordinary node and p
is a specific point-of-interest. Based on the direction of the network
edges, those three cases led to the following definitions:

1. Inward inconsistency: nodes that are inline-closest to a point of
interest, but network-closest (from v to p — Eq. (5)) to another
one:

�Ip = DEp − DNp (8)

2. Outward inconsistency: the same as the previous category, but in
the opposite direction of the network-closest set (from p to v —
Eq. (7)):

�Op = DEp − D̄Np (9)

3. Absolute inconsistency: nodes that are, simultaneously, known to
be inward and outward inconsistencies, i.e.,  nodes in the inter-
section of sets:

�Ap = �Ip ∩ �Op (10)

In cases where the direction of the edges is not taken into
account, there will be no minimum-length divergence between
paths of a round trip; yet, the inconsistencies can be tracked
by calculating the difference between the walking-perimeter
set WE

p and the walking set WN
p of p, resulting in the following

definition:
4. Walking inconsistency: nodes inside the walking range that are

inline-closest to a point of interest, but undirected network-
closest to another:

�Wp = WE
p − WN

p (11)

3.5. Quantifying inconsistencies in a range

Inconsistencies of a city have been discussed categorically, but
further algebra can aid in identifying the severity of a network
inconsistency in a continuous, rather than a categorical, manner.
The motivation is to assess the inconsistency degree of the nodes
and to focus on nodes that are more inconsistent than others,

improving the decision-making in the design and planning of urban
structures.

Generally speaking, the tool-set for inconsistency tracking relies
on the great-circle distance as the ground truth of displacement
between a node v ∈ V and a point of interest p ∈ P. The idea is to
use such distance to measure the deviation between the great-circle
distance (dE

ij
) to the inline-closest p and the network distance (dN

ij
or

dU
ij

) to the network-closest p using Eqs. (3) and (6).
For example, consider i ∈ V as an inconsistent node inside the

walking range that is inline-closest to p ∈ P and network-closest to
p̄ ∈ P, such that p /= p̄. According to Section 3.3, it is true that dE

ip
>

dU
ip̄

and the distance deviation is:

xi = dEip − dUip̄ (12)

Such an approach can calculate the distance deviation to all the
nodes in �Wp :

xW =
{
dEip − dUip̄|dUip̄ < dU

i ¯̄p
, ∀i ∈ �Wp , ∀p, p̄, ¯̄p ∈  P

}
(13)

Once we  have the distance deviation of all the inconsisten-
cies, we can, for instance, discard the ones that are too close to
the expected distance to their inline-closest p and also, we  can
perform a min–max unity-based normalization bringing all val-
ues into the range [0, 1]; in which values close to 0 indicate less
or non-inconsistent nodes and values close to 1 indicate highly
inconsistent nodes:

X
W
i = xW

i
− min(xW )

max(xW ) − min(xW )
, ∀i ∈

[
1,

∣∣xW ∣∣] (14)

This discussion used the set of walking inconsistencies
(
�Wp

)
,

but it can be directly extended to the other types of inconsistencies
presented in Section 3.4.

4. Algorithmic solution

Algorithm 1 tracks distance-based inconsistencies in complex
networks by using a set P of |P| of points of interest. The algorithm
instantiation requires the user to inform the type of inconsistency
to be tracked regardless of the definition of inconsistency that is
segmented into four types as in Section 3.4.

The algorithm starts by filling a set of empty sets, each one
reserved to store the inconsistencies of a single point of interest (see
lines 1–3). Subsequently, it uses pE and pc to store, respectively, the
inline-closest and network-closest points of interest to an arbitrary
node v ∈ V (see line 5). As the algorithm runs for one inconsistency
type at a time, pc can refer to any closest point of interest, such as
walking-closest or direct/undirected network-closest ones.

For simplicity purposes, the algorithm calls for two external
functions — referred to as InlineClosest and NetworkClosest (see lines
7, 9, 11, and 12) — to extract the closest point of interest to a node
by implementing all distance functions in Section 3.3. InlineClosest
implements dE

ij
following Eq. (3) and NetworkClosest implements

both dN
ij

and dU
ij

by adapting Eq. (6). Any additional variable to the
previous ones is conditional to the inconsistency type that is being
tracked, which is handled by the if–else used in lines 8 and 10.

Once the closest points of interest have been already identified
(see line 14), the algorithm checks whether a node is an incon-
sistency or not using two  possible validations. The first one (see
line 16) is dedicated to inward, outward, and walking inconsis-
tencies and the other one (see line 18) is used just in cases of
absolute inconsistencies. The first test of the algorithm considers a
node inconsistent if the inline-closest point of interest pE and the
network-closest point of interest pc are not the same, in turn, the
second one requires the node to be an inward and outward incon-



G. Spadon et al. / Journal of Computational Science 30 (2019) 209–222 213

sistency so to be an absolute inconsistency. The output then is a set
of inconsistencies of |P| points of interest (see line 21).

Algorithm 1. Inconsistency tracker

Given a graph G = {V, E}, a set P of |P| points of interest, and an
inconsistent node v ∈ V ; such node is known to be an inconsistency
to one and only one p ∈ P.

• �cp
⋂
�cp̄ = ∅ — ∀p ∈ P, ∀p̄ ∈  P, p /= p̄— meaning mutual disjoint-

edness.

It is possible to derive two other sets from a point of interest
p: (i) the inconsistency set �cp; and, (ii) the set of consistent nodes

�̄cp =
(
WE
p ∪ DEp

)
− �cp, such that �̄cp ∩ �cp = ∅. The consistent nodes

are fundamental to the process of suggesting locations to points
of interest because they provide a smaller average distance to the
nodes in their perimeter, different than an inconsistent node.

Finally, we introduce Algorithm 2, that based on the concept of
multi-scale distance-based inconsistencies was designed to suggest

alterations in urban structures seeking improvements to the access
to/from points of interest. Such an algorithm uses centrality to find
locations that are equally accessible to all network nodes using

a greedy approach instead of searching for ideal locations that
would demand to test all possible combinations through an in-
depth search.

Along these lines, we  decided to use Straightness Centrality
[3] as the centrality metric of Algorithm 2 because it analyzes
the nodes of the network by combining both inline and net-
work distances. Nevertheless, any distance-based centrality metric
could be employed, as well as multiple metrics together; how-
ever, different metrics tend to provide dubious or wrong spots for
relocation.

Algorithm 2. Inconsistency reducer
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The algorithm starts by initializing auxiliary variables (see line
1) and by tracking inconsistencies from the original network (see
line 2). Following, the algorithm enters in a loop (see line 4) until
all points of interest have been moved once, or until there are no
more inconsistencies to be reduced on the network. Inside the loop,
the algorithm tries to change one point of interest at a time (see
line 6) using candidate nodes that pertains to the induced sub-
graph GEp of consistent nodes (see lines 8 and 10) that can be nodes
inside the walking or driving range, both of which are related to the
inconsistency type c ∈ {O, I, A, W}.

The algorithm searches for the node that has the highest cen-
trality value among all the other ones (see line 11) testing it as the
new location to the point of interest. The algorithm, then, tempo-
rally replaces the node (see line 12) to collect information about
the inconsistencies of such network configuration (see line 13).
Subsequently, it tests whether the new configuration causes fewer
inconsistencies then the former one (see line 14) before tagging the
node for relocation (see lines 15 and 16). In a greedy manner the

algorithm selects the point of interest that by being replaced will
lead to the highest elimination of inconsistencies; after that, it per-
forms integrity tests, marks the node as relocated, and it removes
the old point of interest (see lines 17–20).

The output of the algorithm is a set R of new locations (see line
23) returned when there are no more profitable changes (see line
22) for the remaining points of interest; each element r ∈ R is an
ordered pair r = 〈oldp, newp〉 of the current (oldp) node where a point
of interest is and a better node (newp) for placing it.

Algorithm 2 runs in O(|V||P|3) in the average case, where |P| is
the number of points of interest and |V| is the number of nodes,
|P| � |V|. The algorithm was proved finite and correct by Spadon
et al. [7] as it never increases the number of inconsistencies in a
city. It is straightly paralyzed and cache values to avoid recom-
puting, running in less than a minute over a 200,000-inhabitant’s
city. It noteworthy that the algorithm holds for any city size, from
hundreds of thousands to millions of inhabitants. The algorithm
performance scales linearly.
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Fig. 1. Topological organization of Sao Carlos considering: (a) the in–out/total degree distribution of the network nodes; (b) the average target neighborhood degree,
considering the source degree of a given node; and, (c) the average nearest neighbor degree correlation.

4.1. Proposal generalization

For simplicity’s sake, we assume that: (i) any displacement goes
through the city streets; (ii) both origin and destination of paths
are network nodes; and, (iii) cities with uniform population distri-
bution. Nevertheless, our tool-set is even for scenarios where these
assumptions are not true.

More specifically, we use a general concept of weight, which can
refer to travel time, edge capacity, route cost, and others. About the
population distribution, it is possible, for instance, to use a normal
distribution peaked at the center of the city, multimodal distri-
butions, or census data. This information can aid in the analysis
of urban structures if it is used to assign values to sets of nodes
corresponding to the population’s density of the area they belong
to.

Also relevant is that fact that, despite being central to our prob-
lem formulation, the redesign and relocation of points of interest is
not possible in most cases. However, the output of our tool-set can
support decision-making in different ways: rethinking the alloca-
tion of resources, the building of new services, reestablishing the
limits of services, and outlining the initial design of a city or neigh-
borhood that, still, is in its early stage of project. More broadly, the
set of inconsistencies, the output of our method, can benefit from
the analysis of a specialist rather than being a categorical result.

Regarding other domains, for instance, our tool-set is also suit-
able to the model of computer networks, when it is necessary to
add an extra switch, or router, or even when there is a need to real-
locate such equipment. It can be used in the topological design of
electronic circuits when it is possible to save on tracks just by redis-
tributing specific components. It works for transportation networks
in situations when it is possible to save on resources if the ware-
house needs to be transferred to an adequate node of the trucks’

network. In fact, the proposed tool-set fits many real-world sce-
narios modeled as complex networks.

5. Results and discussions

Our tool-set was validated over the Brazilian city of Sao Carlos.
Such a city was instantiated as a complex network through a digital
map  from OpenStreetMap (OSM).1 Given a map  file extracted from
OSM, there are two possibilities to build a network from it. The
first one is through a primal graph [8], which considers streets as
edges, and street crossings as nodes (as discussed in Section 3.1).
The other one is through a dual graph [28] in which the streets are
nodes, and street crossings are edges. Our study is based strictly on
primal graphs because one cannot compute distances using non-
georeferenced data as provided by dual graphs.

5.1. Topological characterization

The degree distribution of the city is depicted in Fig. 1a, which
shows the portion — or simple probability P(k) — of nodes that have
a given degree k. The image shows that the city has a majority of
nodes with total degree 2, 4, 6, and 8; in which, nodes with degree
6 are the most recurrent ones followed by nodes with degree 4,
8, and 2. Such topological configuration is compatible with a city
in which: nodes with degree 6 indicate streets forming triangles
or T-like structures; nodes with degree 4 indicate the existence of
straight bi-directed paths used to link distant places; nodes with
degree 8 point to well-designed block structures; and, those with
degree 2 are the city limits or dead end streets.

1 www.openstreetmap.org.
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In addition, Fig. 1b and c shows the degree correlation and the
average neighborhood connectivity of the network nodes. The first
one depicts that, on average, the neighbors of a given node tend
to have the same degree, pointing out a recurrent urban-design
pattern. Such recurrence fails when correlating the in-degree of a
source node with the out-degree of a target node when the source
degree is 1 or 2, and also when correlating the opposite case when
the source degree is 4 or 5. The second figure, in turn, depicts that
the nearest connected neighbor tends to have a lower degree than
the source node, meaning a trade-off between a higher probability
of movement and shortest distances. This implies that movement
through the shortest paths can lead the citizen to inconsistent
regions with fewer alternative routes causing difficulty in moving
out of these regions. In such a way, the trade-off has an impor-
tant impact by explaining some of the city’s inconsistencies, as we
review in the next section.

5.2. Inconsistencies among urban structures

In this section, we discuss some of the inconsistent urban struc-
tures found in the city of Sao Carlos. Among all the existing points
of interest, we chose to discuss the results about post offices, super-
markets, hospitals, police stations, and schools. The number of
points of interest and related case studies is small because of the dif-
ficulty in acquiring maps with points of interest previously mapped
within the street mesh, but the set of points of interest we selected
are known to be relevant because they are part of the daily life of
the citizens.

5.2.1. Visualizing inconsistent regions
Initially, we discuss post offices and supermarkets (grocery

stores in general) because they are affected by walking inconsisten-
cies. When using a supporting visualization, it is possible to detect
regions that are full of inconsistencies, indicating neighborhoods
that lack access regarding such points of interest.

In our visualizations, we depict inconsistencies at the same time
that we omit consistent nodes. The inconsistencies follow a color
scale called Inconsistency Degree defined in the range [0.0, 1.0];
such a scale was built following the definitions of Section 3.5. It
is noteworthy the process of feature normalization considered the
distance deviation of the inconsistencies found in both scenarios so
to afford an accurate comparison between post-offices and super-
markets.

Consider Fig. 2, which depicts the walking inconsistencies of
post offices. The majority of post offices — black stars — are located
at the bottom of the figure, indicating that they are centered in a
small part of the city. This same behavior can be observed regarding
the inconsistent nodes, that seems to be neighboring the loca-
tion of the post offices. Additionally, it is possible to notice that
the most inconsistent nodes (according to the scale of inconsis-
tency) are separated from their inline-closest point of interest by
a big empty area. Such a case can indicate both a miss-connected
region and an area surrounded by constructions that are obstruct-
ing the building of new streets. Either way, the inconsistencies
are not limited to this case, but when alone or in small con-
centration, they should represent no major problem to the city
access.

Fig. 2. The inconsistency degree of the walking inconsistencies when considering post offices as points of interest. We can observe that the inconsistencies are neighboring
the  points of interest (black colored nodes) and that the joining of inconsistent nodes in the bottom of the image indicates a whole area that lacks access when regarding
such  points of interest.
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Fig. 3. The walking inconsistency degree when considering supermarkets as points of interest. The points of interest are spread all over the city creating more possibilities
of  locomotion to the citizens and reducing the degree of inconsistency of the nodes.

The results of the walking inconsistencies in the case of super-
markets are in Fig. 3. In this scenario, the points of interest — black
stars — are spread all over the city along with their inconsisten-
cies. However, it is possible to see that the inconsistent nodes have
a lower degree in the scale of inconsistency. This means that the
divergence between the expected distance to the inline-closest
point of interest and the real distance to the network-closest point
of interest is not as significant as we saw in the case of the post
offices. This is due to a higher number of points of interest that
provide more possibilities for the citizens.

Nonetheless, when joining the supermarkets’ inconsistencies
that are inside the walking-perimeter with those inside the driving-
perimeter — as in Fig. 4, it is possible to notice that these points of
interest still require attention. In such a scenario the mobility issue
is spread all over the network, jeopardizing the access of the city
as a whole. Such a result let us conclude that the nodes inside the
walking range tend to have better access to the points of interest
in a city rather than the ones that are within the driving range. This
is because the further the citizens need to go, the more inconsis-
tencies they tend to find in their routes. This is a characteristic of
Sao Carlos, which has a trade-off between a higher probability of
movement and shortest distances (see Section 5.1) leading the cit-
izens to paths with more inconsistencies and fewer possibilities of
movement.

5.2.2. Assessing inconsistency recovery
In this experiment, we have analyzed a set of 13 hospitals, 4

police stations, and 16 schools. The inconsistencies we  tracked to
all and each one of these cases are in Table 1 together with the

total number of inconsistencies for hospitals, police stations, and
schools that are respectively 559, 342, and 663. Regarding the order
of magnitude from the point of interest with more inconsistencies
to the one with fewer, we  have schools followed by hospitals and
then police stations, which is the same as the order of sets with
more points of interest, suggesting that the occurrence of incon-
sistencies is connected to the number of points of interest. In fact,
inconsistencies appear whenever different perimeters meet; as a
consequence, more points of interest mean more perimeters, what
tends to increase their number. Then, the challenge becomes to
find suitable places to points of interest that reduce the number of
inconsistencies in the city.

By using Algorithm 2, we  were able to reduce the inconsistencies
of Sao Carlos, suggesting the relocation of 6 hospitals, 2 police sta-
tions, and 9 public schools. As a result, the algorithm decreased 160
inconsistencies from hospitals (from 559 to 399), 123 inconsisten-
cies from police stations (from 342 to 219), and 179 inconsistencies
from public schools (from 663 to 484) — as shown in the right side
of Table 1. Despite the inconsistencies of some points of interest
raised in number when comparing the original and the enhanced
city, the total number of inconsistencies were always smaller, as
guaranteed by our algorithm.

5.2.3. Supporting the designing of urban structures
The tool-set we  proposed is not only to be used in the automatic

recovery of inconsistencies but also to aid human-made urban-
planning decisions. This is the case when a specialist designs a
city by having ground truth knowledge about citizens. In this case,
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Fig. 4. A view of the inconsistency degree of the city when the points of interest are supermarkets that are both in the walking or driving range of the network nodes. In such
a  case we can observe that major sets of nodes at the top of the image are suffering from the highest degree of inconsistency, which indicates the lack of access to a whole
residential area.

Table 1
Inconsistencies of the city of Sao Carlos, in which the points of interest are police stations, hospitals, and public schools; we use # to refer to the total number of inconsistencies
and  % to their percentage (reprinted by permission from Springer Customer Service Centre GmbH:  Springer Nature, A Distance-Based Tool-Set to Track Inconsistent Urban
Structures Through Complex-Networks [Spadon et al. 2018], Springer International Publishing AG).

nth POI Original city Enhanced city nth POI

Hospitals Police Stations Schools Hospitals Police Stations Schools

# % # % # % # % # % # %

1 13 2.3% 32 9.3% 15 2.2% 14 3.5% 30 13.7% 19 3.9% 1
2  2 0.3% 4 1.1% 77 11.6% 2 0.5% 48 21.9% 13 2.6% 2
3  12 2.1% 86 25.1% 43 6.4% 18 4.5% 96 43.8% 37 7.6% 3
4  19 3.4% 29 8.4% 71 10.7% 4 1.0% 32 14.6% 58 11.9% 4
5  30 5.3% 191 55.8% 114 17.1% 87 21.8% 13 5.9% 57 11.7% 5
6  49 8.7% – – 3 0.4% 51 12.7% – – 1 0.2% 6
7  145 25.9% – – 8 1.2% 26 6.5% – – 1 0.2% 7
8  39 6.9% – – 15 2.2% 22 5.5% – – 18 3.7% 8
9  12 2.1% – – 78 11.7% 31 7.7% – – 77 15.9% 9
10  43 7.6% – – 51 7.6% 63 15.7% – – 48 9.9% 10
11  72 12.8% – – 38 5.7% 45 11.2% – – 41 8.4% 11
12  95 16.9% – – 15 2.2% 17 4.2% – – 11 2.2% 12
13  28 5.0% – – 56 8.4% 19 4.7% – – 10 2.0% 13
14  – – – – 8 1.2% – – – – 16 3.3% 14
15  – – – – 60 9.0% – – – – 51 10.5% 15
16  – – – – 11 1.6% – – – – 26 5.3% 16

Total  559 100% 342 100% 663 100% 399 100% 219 100% 484 100% Total

Algorithms 1 and 2 can provide for the analysis and suggestion of
distance-efficient locations that are feasible to points of interest.

This section introduces three hypothetical case studies that
depict our tool-set in practice. The first two were conducted con-

sidering a subset of hospitals and public schools of the Brazilian
city of Sao Carlos (see Section 5.2.2). The last one introduces a dis-
cussion on how to improve police stations in cases where reducing
inconsistencies by relocating them is not possible. Nonetheless, our
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Fig. 5. Illustration of the process of designing urban structures under the light of centrality metrics. This process starts by identifying nodes of interest, then it follows by
tracking their inconsistencies, and it ends by suggesting locations to these nodes that reduce the total number of inconsistencies of the city (reprinted by permission from
Springer  Customer Service Centre GmbH:  Springer Nature, A Distance-Based Tool-Set to Track Inconsistent Urban Structures Through Complex-Networks [Spadon et al. 2018],
Springer International Publishing AG).

tool-set is expandable to any point of interest since it is identical to
all of them.

The reader must consider that the case studies considering only
hospitals, schools, and police stations are canonical; that is, they
do not take into account the more intricate nature of each point
of interest. This was a choice to improve the briefness and gen-
eralization of the presentation; nevertheless, real-world settings
should consider more intricate points of interest. For example, it is
common to find communities that have schools of different grades
separated just by a few blocks. Similarly, multiple hospitals ded-
icated to specific religious communities close to each other. Our
canonical modeling approach would find such cases to be inconsis-
tencies. These are not limitations to the proposal, but limitations
to a given instance (implementation) of it. A reasonable implemen-
tation would consider the possibility of customizing the points of
interest according to several possibilities, as the ones just men-
tioned.

The case studies from bellow follow as in Fig. 5, in which we
start analyzing the problems of a given point of interest, next we
try to solve it by ourselves, and then we use our algorithms, under
the light of centrality metrics, to improve the results. It is notewor-
thy that all case studies are depicted by the induced subgraph of
the point of interest under analysis and, although we have illus-
trated some inconsistent nodes in Fig. 5, in the case studies they
are not visible because they do not provide useful visual informa-
tion to the images. The following case studies refrain from using
the same supporting visualization from Section 5.2.1 because we
are assuming to have urban-planning knowledge, so we use the
inconsistencies as a metric helping to solve an already known
issue.

5.2.4. Case study 1: creating a new hospital to reduce the demand
From the set of hospitals of the city of Sao Carlos, we identi-

fied one that, when compared to the others, has excessive nodes
in its perimeter (see Fig. 6a). There is no specific explanation about

the hospital’s location and; we  can hypothesize that the city may
have grown after the hospital has been built or the planners did not
take the surroundings of the hospital into account. One  thing is for
sure, an extensive area with an ill-positioned point of interest will
deprive the access of the nodes; in this case, when points of interest
are healthcare facilities, time-critical activities, as the transporta-
tion of patients in a critical state, can be jeopardized by the lack of
street access. Hence, the problem becomes where to build a new
hospital and how to avoid inconsistencies.

First, we tried to solve the problem manually, visually choosing
a location that could provide nodes with similar characteristics in
the perimeters of both hospitals. Fig. 6a shows a possible place to
the new hospital as well as the resulting perimeter of both of them,
which are defined by a line that cuts the image in half. We  inserted
the proposed location in the set of hospitals, and we used Algorithm
1 to track the inconsistencies in the resulting configuration. Such
a configuration leads us to 615 inconsistencies, which is a higher
value than the original city. We succeeded in building a hospital
that splits the perimeter into two, but we failed in providing better
access to the old and new hospitals.

In a second approach, we  analyzed the nodes’ centrality together
with a supporting visualization. We  colored the nodes by their cen-
trality, what allowed us to notice that the selected location for the
new hospital is a node with low centrality. Then, we used Algo-
rithm 2 to suggest a better place for the new hospital while keeping
the location of the old one. Doing so, the city inconsistencies were
reduced from 615 to 352 (see Fig. 6b), which positively reflected
in the mobility of this area by distributing the demand between
both hospitals. Thus, creating a new hospital in a specific loca-
tion was able to reduce almost half of the inconsistencies of the
city without relocating the old hospital. Along these lines, it is our
expectation that through Algorithms 1 and 2 city planners can rely
on a computer-based mechanism able to “crunch” digital maps that
are way too big and complex for a human being to exhaustively
evaluate.
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Fig. 6. Illustration of the assisted urban planning task from the first case study, in which the point of interest is a hospital and the color of the nodes indicates their centrality
—  the darker, the higher. Fig. (a) shows a hospital’s perimeter that is too large, causing lack of access. This way, we placed a new hospital in a central location in that
same  area to solve the issue. Afterward, we used the algorithm to reduce inconsistencies, which suggested relocating the new hospital to a more central location, reducing
the  inconsistencies. Fig. (b) depicts the result (reprinted by permission from Springer Customer Service Centre GmbH: Springer Nature, A Distance-Based Tool-Set to Track
Inconsistent Urban Structures Through Complex-Networks [Spadon et al. 2018], Springer International Publishing AG).

Fig. 7. Illustration of the second case study, in which the points of interest are public schools and the color of the nodes denotes their centrality — the darker, the higher.
In  this case study, we treated a problem related to the waste of resources that was  caused by having two  schools near each other; Fig. (a) shows the area, which is small,
increasing the drawbacks related to access. By merging both schools, we  achieved a better coverage of nodes, as depicted in Fig. (b) (reprinted by permission from Springer
Customer Service Centre GmbH:  Springer Nature, A Distance-Based Tool-Set to Track Inconsistent Urban Structures Through Complex-Networks [Spadon et al. 2018], Springer
International Publishing AG).

5.2.5. Case study 2: merging schools to centralize public resources
In the second case study, we identified two public schools

that are close to each other and serve a small set of nodes. In
this case, the proximity of the schools (see Fig. 7a) is a problem
since none of them is used up to its capacity, implying a waste
of public resources. In a first approach, by using Algorithm 2 to
relocate them, the number of inconsistencies was reduced from
663 to 635.

Considering the size of the perimeter of both schools, we
decided to remove one school to improve the utility of the one
that remained. By centralizing the schools in a single node, we can
reduce inconsistencies because there will be fewer perimeters bor-
dering each other; hence, the inconsistencies, located whenever

two of them meet, will be naturally decreased. To further enhance
this process, we  used the color-coded centrality metric to choose a
candidate to be the new sole school. Afterward, we used Algorithm
2 to find a better location (see Fig. 7b), which reduced the number
of inconsistencies from 635 to 445.

5.2.6. Case study 3: how to decision-making based on the
detection of inconsistencies

Previously, we revised cases in which the location of points of
interest was altered to enhance the city’s mobility by reducing the
number of inconsistencies. However, some scenarios cannot bear
such structural changes, but we can still use the concept of inconsis-
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tency to help in planning urban logistics. In this case, inconsistent
nodes are not considered to be problems but, rather, indicators.

For example, consider the case of police stations, assuming that
only five stations must assist all the city. The problem here is that
the police stations are not equally distributed along the city, and
despite reducing inconsistencies, we have a majority of network
nodes closest just to a few stations.

Instead of redistributing such points of interest, this informa-
tion can be useful to improve the service provided by them. For
instance, the coverage of each station can be defined manually,
in such a way that some stations will face more inconsisten-
cies, but they will cover ranges similar to the other ones, or
instead, indicating stations that require more human resources and
supplies.

Hence, the decision-making process would join knowledge
about the logistics of the police stations and also about the topology
and mobility of the network. The expected result of such a pro-
cess would be an equilibrium between the theoretical and practical
knowledge. This process hardly would be able to reduce inconsis-
tencies in its algebraic formulation, but instead, it would enhance
the logistics related to the service provided by all the police stations
in the city.

6. Conclusion

In this article, we proposed a set of algebraic formalisms and
algorithms to track and reduce distance-based inconsistencies con-
sidering multiple means of displacement so to improve mobility
issues to/from points of interest in a city. We provided quanti-
tative and qualitative results, all of which provided useful and
unprecedented knowledge for decision-making activities in cities
aiding in reducing the number of inconsistencies and improv-
ing the mobility of a city. Our results are based on the analysis
of street networks from digital maps provided by OpenStreetMap
that is a source extensively used in the related literature, and
through them, we provide results as precise as the quality of the
digital maps.

More specifically, our contributions elucidate intrinsic problems
found in urban structures, which are based on the location of points
of interest through considering multiple types of displacements.
We materialized our developments in the form of two  algorithms to
track and reduce inconsistent nodes in complex networks. Finally,
we demonstrated our methodology in quantitative and qualitative
real-world studies considering points of interest from the Brazilian
city of Sao Carlos.

In summary, we explained how to treat urban structures from
the perspective of complex networks, from data modeling to
computer-assisted urban design, contrasting our contribution to
others in the related literature. The proposed methods were alge-
braically formalized and empirically demonstrated, granting to our
tool-set potential for prompt contribution and for opening new
research questions. As a future work, we shall embrace link pre-
diction methods for suggesting changes in the network topology —
i.e., proposing variations in the flow’s direction, while searching for
better urban topological configurations.
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CHAPTER

3
HUMAN MOBILITY FORECASTING

In this chapter, we reproduce the following article:

Spadon et al. 2019, Reconstructing Commuters Network using Machine Learning

and Urban Indicators. Scientific Reports. Springer Nature.

The investigation covered in this chapter proposes a model for predicting the num-

ber of people commuting from one city to another when taking into account the urban

indicators from both source and target cities. As a result, we contribute with a model based

on a single machine learning algorithm capable of predicting the flux and the number of

people commuting between pairs of cities. Our results are based on modeling commuters

fluxes using the Brazilian population censuses of 2010. The dataset was built considering

one unity of flux as a person who does not work in the same city where he/she lives and

that daily commute between cities. Such data was used with previously published models

from the literature so to compare their performance with ours. The tests revealed that our

proposal is about four times more accurate than others devised with the same purpose,

achieving 90.4% of accuracy and 77.6% of R2 Score. Furthermore, we show that the other

models cannot make predictions consistent with the observed data. More specifically, our

contributions are in: (1) reconstructing the Brazilian network of commuters fluxes via

machine learning and urban indicators; (2) showing that the modeling of human mobility

is dependent on variables beyond the population size and distance between cities; and, (3)

the analysis of the impact of urban indicators in choosing a city for work and residence.

We reproduce the article from Spadon et al. 2019 under the Rights and Permissions

below on the following pages. To present the related contribution: Section 1 reviews other

models from the related literature used to predict commuters fluxes; Section 2 discusses

the results of the proposed machine learning technique; Section 3 exposes the conclusions

and final remarks; and, Section 4 presents our dataset and methodology. Additionally, in

Appendix B, we provide the supplementary material linked with the discussed article.
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Reconstructing commuters 
network using machine learning 
and urban indicators
Gabriel Spadon  1, Andre c. p. L. f. de carvalho  1, Jose f. Rodrigues-Jr  1 & Luiz G. A. Alves  1,2

Human mobility has a significant impact on several layers of society, from infrastructural planning 
and economics to the spread of diseases and crime. Representing the system as a complex network, 
in which nodes are assigned to regions (e.g., a city) and links indicate the flow of people between two 
of them, physics-inspired models have been proposed to quantify the number of people migrating 
from one city to the other. Despite the advances made by these models, our ability to predict the 
number of commuters and reconstruct mobility networks remains limited. Here, we propose an 
alternative approach using machine learning and 22 urban indicators to predict the flow of people and 
reconstruct the intercity commuters network. our results reveal that predictions based on machine 
learning algorithms and urban indicators can reconstruct the commuters network with 90.4% of 
accuracy and describe 77.6% of the variance observed in the flow of people between cities. We also 
identify essential features to recover the network structure and the urban indicators mostly related 
to commuting patterns. As previously reported, distance plays a significant role in commuting, but 
other indicators, such as Gross Domestic Product (GDP) and unemployment rate, are also driven-forces 
for people to commute. We believe that our results shed new lights on the modeling of migration and 
reinforce the role of urban indicators on commuting patterns. Also, because link-prediction and network 
reconstruction are still open challenges in network science, our results have implications in other areas, 
like economics, social sciences, and biology, where node attributes can give us information about the 
existence of links connecting entities in the network.

Humans move daily to work, do business, have leisure, meet people, and perform routine activities. Modeling 
human mobility is vital to better allocate resources and to improve the impacts of human activities in the commu-
nity (nearby people) and the environment (cities and nature). From physics and mathematics to geography and 
social sciences, several researchers have tried different approaches to understand the impacts of human move-
ment on society and vice-versa1,2. Human mobility is shaped by the urban organization3 and can also change cities 
as an effect of traffic congestion4. Mobility patterns are associated with energy use5,6, the spread of diseases7–10, 
the occurrence of crimes11,12, and others. Therefore, good predictive models can, for instance, help improve daily 
human activities with better urban planning, and also help policy-makers with more informed decisions to inter-
vene in the disease spreading and crime.

Prediction of migration from one area to another, at different time scales, is one of the most critical challenges 
in human mobility. It is common to represent the system as a spatial complex network, where each node repre-
sents a region (e.g., city) and the links between two regions indicate the flow of people. Thus, physics-inspired 
models such as the gravitation13,14 and radiation models15,16 have been used to predict the edges of the network 
as well as their weights (the number of people migrating). These models assume that the number of people going 
from one region/node to another decays with the distance separating them and is proportional to the populations’ 
masses of these regions13–16. However, this assumption often fails to accurately describe the flow of people because 
of other factors that can increase or decrease mobility, such as the underlying transportation network17, socio-
economic aspects3,18–20, and transport congestion4. Usually, these models are limited to predicting the weights 
of existing links, and they overestimate the number of connections between nodes when dealing with sparse 
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mobility networks. Therefore, these limitations make it hard to generalize the model on unseen data and to recon-
struct the structure of human mobility networks.

Link prediction and network reconstruction is a very active area of research in network science21. Most of the 
literature on link prediction is based on evaluating the similarity between nodes and suggesting missing links. For 
instance, the metrics used to evaluate the existence of links include, but are not limited to, the number of common 
neighbors22,23, the existence of short paths between nodes24, measures of centrality25, and hierarchical structures 
within the network26. Reconstruction techniques also include methods based on maximum-entropy distribu-
tion regarding the node degree and the flow strength as constraints27,28 and Bayesian inference of links based on 
edge data information29,30. In general terms, these methods use network-based metrics to infer the existence (or 
non-existence) of links, which significantly differs from predictive models based on meta-data attributes such as 
the population size or the distance between nodes.

A few models can be found in the literature where the node’s attributes are used as complementary informa-
tion to predict links. For instance, in the context of social contact networks, mobility patterns such as co-location 
of individuals was used to evaluate the probability of individuals to be connected in a social network31, restaurant 
reviews were used to predict links in a taste similarity network32, and the frequency of programming code com-
mits was used to predict the mobility in cyberspace of projects33. The focus of our work is in the class of methods 
that can use node’s attributes, such as urban metrics, as input data to fit models that can predict links and can be 
further extended to other data sets where the dependent variable is unknown.

Recently, an unprecedented amount of data related to human behavior and cities became available, from GPS 
tracking of mobile phones to census data of thousands of people14,34–37. These data promoted intense research on 
human mobility1, including transportation networks38, commuters networks17, and network models of migra-
tion39. On the other hand, urban indicators were used to describe scaling in cities3, to measure the performance 
of cities40 and the similarity among different municipalities41,42, and to describe crime-related phenomena3,11,43. 
However, a connection between human mobility and urban indicators, such as unemployment rate and Gross 
Domestic Product (GDP) is still missing. Understanding the influence of these indicators on the individual 
choices on daily commuting to work could help us to predict the flow of people between different areas and recon-
struct the structure of the commuters network. Such a gap has led us to frame the question we want to answer: 
how to quantify the number of people commuting in between cities taking into account a more comprehensive set of 
indicators, beyond distance and population, that might attract or repel commuters?

In this study, we propose an alternative approach to deal with the reconstruction of commuters networks using 
supervised machine learning to understand the relationships between urban indicators and the structure of com-
muters networks. We perform an analysis based on 22 urban indicators of 5,565 Brazilian municipalities, together 
with the daily number of people commuting between every city in the data set. We show that the gravitation and 
radiation models have limited predictive power to classify whether there is a link between two cities or not and to 
quantify the flow (number of people commuting) between cities. In contrast, we show that predictions based on 
machine learning algorithms and urban indicators can reconstruct the commuters network with 90.4% of accuracy 
and describe 77.6% of the variance observed in the flow of people between cities. Further, we interpret the machine 
learning results using SHapley Additive exPlanations (SHAP) values44 to quantify the importance of the urban 
indicators in predicting human mobility. We show that distance is a critical metric for predicting human mobility, 
but other indicators, like GDP and unemployment rate, also play a significant role in attracting/repelling people to 
a particular area. Our approach provides a better way to quantify human mobility and shed new lights on the role 
of urban indicators on commuting patterns. Because link-prediction and network reconstruction are still open 
challenges in network science, our results have implications in other areas, like economics, social sciences, and 
biology, where node attributes can give us information about the existence of links connecting network’s entities.

Results
We started our study from the observation that people move from one city s to work in another city t, taking into 
consideration the advantages of living nearby or far away from where they work. In Fig. 1A each node represents 
a city that offers different opportunities (in terms of jobs), costs of living (number of houses available), and other 
factors, such as hospitals, schools, and urban parks, to name a few. Two given cities, s and t, are separated by a dis-
tance rst, and people have a cost to commute from their home city to the city where they work. Existing migration 
models assume that the flow of people from city s to city t is proportional to their populations and decays with the 
distance. However, plenty of other factors play an important role when deciding where to live or work.

To quantify the number of people commuting in between cities taking into account a more comprehensive set 
of indicators, beyond distance and population, we collected data about the number of people commuting from 
one city to another (pendular migration), in 2010, considering all the 5,565 Brazilian cities, together with 22 
urban indicators related to these municipalities. This data is provided and maintained by the Brazilian Institute of 
Geography and Statistics (IBGE)45. The data consists of the number of people that are living in a city s and com-
muting to work in a city t daily, and of urban indicators describing the cities in terms of population, labor, tuition 
rate, economy, sanitation, infrastructure, and violence, to name a few. We suppose that these indicators can be 
associated with a high or low number of commuters. Thus, less economically developed cities, usually those with 
fewer job opportunities, inferior infrastructure, and possibly higher indices of violence, would attract a lower 
number of people. On the other hand, those with a higher income, larger population, better social development, 
and infrastructure, might offer better job opportunities and would attract a higher number of people.

To investigate the flow of people commuting from one city to another, we assigned a node for each city and, for 
each non-zero flow, an edge with weight wst equal to the number of people commuting from city s to t in the year 2010. 
Figure 1B illustrates the Brazilian commuters network using a kernel-based edge bundling technique46. To illustrate 
our urban indicators, in Fig. 1C, we present the Pearson correlation coefficient between the 22 urban indicators.
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State-of-the-art models. Next, we investigate the limitations of two models widely used to describe the 
flow of people between cities, namely, the gravitation model and the radiation model.

Gravitation model. Inspired by Newton’s law of universal gravitation, it has been first used to predict the trading 
between nations; the model is defined as:

=
α β

γT Cm n
r

,
(1)st

GM s t

st

where ms and nt are the supply and demand forces of nations s and t, respectively47. This model was widely applied 
to predict population movement14, economic relations between countries48, cargo shipping volume49, and 
long-distance phone calls50. In the context of migration, Tst

GM is the number of people commuting, s and t are 
cities, ms and nt are the population masses of these cities, and rst is the distance between them. Thus, the interac-
tion between two municipalities is directly proportional to the population masses and inversely proportional to 
the distance. Such a model depends on the parameters C, α, β, and γ, which can be estimated through Ordinary 
Least Squares (OLS) applying the logarithm operation on both sides of the formula. Although the gravitation 
model provides a good fit for a wide variety of scenarios, there are still some unsolved problems. For instance, 
Simini et al.15 pointed out that:

•	 The model’s equation lacks a rigorous mathematical derivation;
•	 The augmentation of the model is unrestricted, what would scale the number of parameters;
•	 The model fails when the data is not sufficient to estimate its parameters;
•	 The flow is only a function of population and distance, not including any other characteristic inherent to the 

cities and their neighbors;
•	 The number of commuters increases without limit as the population of the target city grows, becoming higher 

than the total population of the source city; and,
•	 The model is deterministic, being unable to estimate fluctuations in the number of people commuting.

Figure 1. Commuters network and urban indicators related to human mobility. (A) Illustration of the work-
mobility problem when people have to choose where to work based on distance, job opportunities, housing 
prices, and other variables related to urban systems. (B) Brazilian commuters network illustrated through 
a kernel-based Edge Bundling technique46 where the thickness of the edges represents the flow intensity. 
(C) Correlation analysis of Brazilian urban indicators considering those that describe the population, labor, 
tuition rate, economy, sanitation, infrastructure, violence, and others. Reddish colors correspond to positively 
correlated indicators and bluish colors to negatively correlated ones.
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Radiation model. Formulated in terms of the radiation and absorption processes from physics, this model was 
proposed to solve the problems inherent to the gravitation model15. It is based on a diffusion process in which an 
object in a specific location emits particles, having nearby objects with a different probability of absorbing these 
particles, which varies according to the forces acting upon them. In the context of commuters, the objects are the 
cities, and the particles are the people commuting. Thus, cities are radiating commuters, which are absorbed by 
neighboring cities.

In contrast to the gravitation model, in the radiation model, the distance between cities is not the major lim-
itation to commuters; differently, the limitation arises from the supply and demand of commuters concerning 
the neighboring cities. The idea of supply and demand comes from the theory of intervening opportunities; this 
theory defines that mobility patterns are more influenced by the commuters’ opportunity to establish in the tar-
get city than the distance to such a city19. The approximate number of intervening opportunities pst is calculated 
according to the population of the source s and target t cities. It also takes into account the population of all the 
neighbors of the source city in a maximum radius of up to the distance to the target city. Thus, the radiation model 
can be defined as:

=
+ + +

T T m n
m p m n p( ) ( )

,
(2)

st
Rad

s
s t

s st s t st

where ms is the population of the source city, nt the population of the target city, and pst is the total population in 
the circle of radius rst centered at city s.

The only parameter of the radiation model, Ts, is the scaling factor of the outgoing number of commuters from 
the source city. The value of Ts can be estimated by adjusting the equation α=T ms s to the data using OLS, in 
which ms is the population of the source city and α is the intersection point of the fitting between the population 
size and the number of commuters from every city in the whole data set. The major limitation of the model is that 
Ts depends on the number of commuters. Thus, the model requires the correct information (or an estimation) 
about the number of people commuting between cities, which makes it difficult to generalize the model to unseen 
data.

Similarly, Ren et al.17 proposed the cost-based radiation model to predict the flow of commuters in spatial 
networks. Although the model has been reported as more efficient than its predecessor, its predictive ability is still 
limited to cases where there is information about the existence of links. As a consequence, the radiation model 
and its cost-based version are not able to reconstruct the structure of the commuters network.

It is also worth to mention that most of these models (gravitation and radiation models) were validated 
through correlation analysis, rather than using the variance between the predicted and real values; this fact causes 
an overestimation of the capability of the model in predicting the flow of people between cities. The variance 
is more error-sensitive than the correlation coefficient (e.g., Pearson, Spearman, or Kendall). Moreover, when 
assessing the results, some authors take into account only existing edges to compare with the predictions, causing, 
once more, an optimistic estimation of their predictive performance.

Next, to further confirm our claims, we applied the gravitation and radiation models to predict the number 
of people in the Brazilian commuters network. Our first observation is that these models (Eqs 1 and 2) are not 
able to reconstruct the unweighted projection of the commuters network structure, because any pair of cities 
with non-zero population would have an edge, resulting in a fully connected network. If one considers faraway 
cities, it is possible to have flow close to zero, but for typical distances between Brazilian cities (average value of 
~1,000 km), we would still find a non-zero flow. The resulting networks generated by these models are far from the 
sparse networks observed in real data. Thus, we quantified the number of commuters considering only edges that 
we know beforehand to have a non-zero flow. We considered the distance to be the length of the geodesic path 
(in kilometers) between two given cities, which is calculated from their coordinates provided by the Brazilian 
census data45.

Our evaluation started by fitting the models (Eqs 1 and 2) to the data through OLS to estimate their descriptive 
parameters. Next, we evaluated the results using R2-score (coefficient of determination) and Pearson correlation 
coefficient. The R2-score measures the variance of a dependent variable that was predicted using independent 
variables; the metric is defined in the range −∞] , 1]. An R2-score closer to 1, means that the variance of the 
prediction concerning the real value is low51. Notice that this metric can be negative since the model can be arbi-
trarily wrong. It is worth mentioning that, along with the text, we express the R2-score through percentage (e.g., 
14% instead of 0.14) because we use it to discuss the proportion of variance explained by the correlation between 
the predicted and observed flow. The Pearson correlation coefficient ρ, in turn, measures the linearity of two var-
iables regarding each other. The metric is defined in the range −[ 1, 1], in which −1 indicates a perfect negative 
correlation, 0 indicates no linear correlation and 1 indicates a perfect positive correlation52. With very wrong 
predictions, one could find results that are very correlated with the empirical values (ρ ≈ 1), misleading the eval-
uation of the predictive model performance.

Figure 2 presents the results related to the fitting of the gravitation and radiation models to our data. From 
this figure, we verify that the values predicted by both models are positively correlated (values greater than 0.60) 
with the real data, but the R2-score is meaningless regardless of the model (values below 0.25). Despite the good 
correlation, the models were not able to correctly predict the data, and the values differ sharply from the real ones. 
The same conclusion was brought by Masucci et al.16, who analyzed the ability of generalization and universality 
of both models with a data set of commuters in the surroundings of London, UK. In agreement with what we 
observed when evaluating the model using the Brazilian data set, neither model could satisfactorily fit their data. 
Thus, we confirmed that the gravitation and radiation models could not correctly describe the mobility pattern of 
the intercity commuters network.
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Alternative modeling using machine learning. Next, we propose the use of predictive models induced 
by machine learning algorithms to predict the number of intercity commuters and to reconstruct the structure 
of the corresponding commuters network. Our approach differs from the regular link prediction because it does 
not take into account any network-based topology metric as an independent variable. Instead, we reconstruct the 
network based on the distance r between two cities, their populations’ size and a set of urban indicators related to 
each city. To do so, we investigate two predictive tasks:

•	 Classification: induce a binary classifier able to predict whether a link between a pair of cities exists or not;
•	 Regression: induce a regressor able to predict the number of commuters between a pair of cities.

Reconstructing the commuters network structure using machine-learning classification. In our context, a binary 
classifier predicts whether a link between a city s and a city t exists or not based on the distance rst, populations 
sizes ms and nt, and more 21 urban indicators from each city, = …U u u{ , , }i i i0 20

, ∈i s t{ , }, and ∈ uij
 for 

≤ ≤j0 20, resulting in a total of 45 urban indicators (referred to as features). That is, given an ordered pair 
〈 〉city city,s t  whose urban indicators define a set =S r m n U U{ , , , , }st st s t s t , Sst

S∈ | | , a binary classifier refers to a 
function

Class: {0, 1} (3)S →| |

in which, 0 indicates no link between s and t, and 1 indicates the opposite.
To find the best classifier, we first employed the holdout approach, splitting the data into 70% for training 

and 30% for testing. Then, we sampled the training data using stratified k-fold cross-validation, with k = 5. The 
training data was used in the model selection, feature selection, and hyperparameter tuning. The test set was used 
only in the final step, after the hyperparameter tuning, to evaluate the predictive performance, generalization, and 
universality of the model in an unseen data set.

Subsequently, we tested 34 classification algorithms with default hyperparameter values from the scikit-learn53 
and eXtreme Gradient Boosting (XGBoost)54 libraries, from which only 27 were able to fit the data and provide 
the resulting accuracy. The 7 removed algorithms (see Supplementary Table 1) fail to fit the data (i.e., to converge) 
without a pre-tuning of hyperparameters, which is intentionally not covered by our methodology. We do not 
perform the pre-tuning of hyperparameter because it would exponentially increase the processing time of the 
experiments’ pipeline with no improvement guaranteed.

Following, to select the best among the 27 remaining classifiers, we used bootstrapping sampling to evaluate 
their predictive performance following an accuracy-based perspective. This procedure consists in feeding the model 
with randomly selected samples to assess its variance. Figure 3A shows the results of the classifiers that passed 
our first test. The algorithms were sorted in ascending order according to their predictive accuracy. It is worth to 
mention that the best algorithms (rightmost) are the CatBoost, XGBoost, and Light Gradient Boosting Machine 
(LGBM), and the ones with the worst performance are the Perceptron, Passive Aggressive Classifier, and Gaussian 
Naive Bayes (NB). The average accuracy score in the experiment varies from 50.2% in the worst case to 87.9% in 
the best case — see Supplementary Table 3. Notice that, the algorithm with the highest median score, lowest vari-
ance, and fewer outliers is the CatBoost. However, the difference between the CatBoost (first-placed) and XGBoost 
(second-placed) is irrelevant (see Supplementary Table 3), and the XGBoost is around fifty times faster per train 
iteration than the CatBoost. For this reason, we have chosen the XGBoost as the best algorithm for this problem.

Following, we evaluated the learning curve considering only the best classifier (i.e., XGBoost), which showed 
an average accuracy score of 87.5% on the training set, with little variance and no significant accuracy outliers. 
The learning curve assesses the model predictability by varying the size of the training set. The curve in Fig. 3B 

Figure 2. Evaluating the predictive ability of the gravitation and radiation models. We used two metrics, the 
coefficient of determination (referred to as R2-score), and the Pearson correlation coefficient; both metrics 
consider the predicted flow and the observed flow of the models. Although the results show a linear correlation 
between the predicted and observed flows, the R2-score reveals that the predicted values are still very noisy 
when compared to the real ones, suggesting that neither model is accurate enough in reconstructing the 
commuters network.
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shows that 89% of the training set is the right amount of data required to train the classifier and a classifier trained 
up to such amount of data yields an accuracy of about 89.2%.

To reduce the computational cost in the induction of the predictive model using XGBoost, we used a 
threshold-based feature selection (see Methods), measuring the accuracy of the model by progressively removing 
features. We considered the degree of importance of a feature as the number of times the feature is used to split a 
node into two trees in the XGBoost algorithm. By doing so, we were able to remove 24 predictive features without 
reducing the model’s predictive accuracy (see Supplementary Table 5).

Finally, we used the test set (the remaining 30% of the data previously not used) to test the induced model. 
We first calculated the predictive accuracy of our classifier on the test data using the model with no grid-search 
optimization, finding 89.3% of accuracy. The grid-search was able to improve this value by 1.1% (see Methods), 
which, in a scenario with thousands of cities with millions of possibilities of commuters flowing between them, 
means more hundreds of thousands of correctly predicted links. Therefore, such an improvement resulted in an 
overall accuracy of 90.4%, as shown in the confusion matrix in Fig. 3C.

Reconstructing the weighted commuters network using machine-learning regression. Deeper in the analytical sce-
nario, we are interested not only in knowing whether a link exists or not but also in the weight wst of each link, 
which represents the flow of people from city s to t. That is, given an edge 〈 〉city city,s t  and its corresponding set of 
indicators =S r m n U U{ , , , , }st st s t s t , Sst

S∈ | |, we seek a function

Weigh: (4)S →| |R N

where Weight predicts the number of commuters between cities s and t.
Similarly to the prediction of links, we first used holdout to split the data into 70% for training and 30% for 

testing. Subsequently, the training set was used for 5-fold cross-validation, model selection, feature selection, and 
hyperparameter tuning, and the test set to evaluate our model in an unseen data set.

Figure 3. Performance of the classification algorithms in reconstructing the unweighted projection of the 
commuters network; see Supplementary Table 1 for a list of the classifiers’ acronyms. (A) The accuracy of the 
classification algorithms in determining whether a link between a given pair of cities exists or not. (B) XGBoost 
learning curves varying the sample size. (C) XGBoost confusion matrix after hyperparameter tuning, showing 
an overall accuracy of 90.4%. Specifically, the results showed 90% of true positives, 10% of false negatives, 9% of 
false positives, and 91% of true negatives.
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We used bootstrapping sampling to assess the variance of different regressors in terms of the R2-score. 
From the 44 models, 21 were not able to provide all values (including outliers) of R2-score higher than 0 (see 
Supplementary Table 2). Figure 4A shows the results obtained from the 23 models that passed the first test, all of 
which were tested with default hyperparameter values from the scikit-learn53 and XGBoost54 libraries. The models 
are presented in ascending order according to the value of their R2-score. The results reveal that the three best 
algorithms are XGBoost, Gradient Boosting, and LGBM, and the three worst are Elastic-Net, Decision Tree, and 
K-Nearest Neighbors. The average R2-score in the test varies from 20.6% in the worst case (i.e., Elastic-Net) to 
65.6% in the best case (i.e., XGBoost), see Supplementary Table 4.

From now on, our focus will be on the best regression model, which was induced by XGBoost with an average 
R2-score of 65.6%, with no significant variance after a thousand predictions using different random samples of 
the training set. The further reason to choose the XGBoost as the best algorithm is that it is fast, as it provides 
a parallel tree boosting that solves problems faster than its competitors and has support to solve problems on 
high-performance computing environments. Thus, we evaluated the learning curve of the XGBoost regressor 
(see Fig. 4B), assessing the model predictability by varying the size of the training set, and we found that 100% of 
the training data is required to train the regressor, yielding an R2-score of 73.4%. One can see that the regressors’ 
predictions are more challenging than those of the binary classification algorithms, requiring more data during 
the training phase and yielding more errors.

Finally, we used the 30% data reserved for testing the model. The results indicated that the regressor was 
able to predict 73.1% of the variance observed in the data. After the hyperparameter tuning (see Methods), the 
XGBoost regressor described 77.6% of the variance. Although the gains seem to be small, our model is intended 
to be used on data sets of thousands of cities, which answer for millions of possibilities of commuters flowing 
between pairs of cities. In such a case, 4.5% improvement means weights closer to the real ones among the actual 
links. Figure 5C compares the predictions about the number of commuters (Weightst) with the actual values (wst) 
observed in the data. Notice that, our model can recover the weighted network structure and predict the number 
of commuters with much higher precision than the gravitation and radiation models. In our case, even consid-
ering links with wst = 0, our predictions are much more accurate than those from the gravitation and radiation 
models (see Fig. 2), which were induced using only existing flows.

Figure 4. Performance of the regression algorithms in reconstructing the weighted projection of the 
commuters network; see Supplementary Table 2 for a list of the regressors’ acronyms. (A) R2-score of the 
regressors’ performance in quantifying the number of people (i.e., Weightst) commuting from city s to city t. (B) 
XGBoost learning curves varying the sample size. (C) Predictions of Weightst made by the XGBoost regressor, 
after hyperparameter tuning, compared with the actual flow wst. Specifically, our model as able to achieve an R2-
score of 77.6% and a Pearson correlation coefficient of 0.881.
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Interpreting machine learning models using SHapley additive exPlanations (SHAP). In contrast with the gravita-
tion and radiation models, the proposed models can accurately reproduce the structure of the network, predicting 
whether a link between a given pair of cities exists or not (XGBoost classification) and accurately estimate the 
number of commuters between two cities (XGBoost regressor), reconstructing the weighted structure of the 
commuters network. The price of having a more complex model is that it becomes harder to interpret the relation-
ship between the independent variables and our predictor. However, if we could understand how the algorithm 
makes decisions, the decision process would be a valuable resource to learn about the equations that describe our 
systems. Thus, instead of assuming mathematical relationships and trying to fit the model to the data, we could 
look into the results and try to figure out what the data tell us about the model that describes our system and the 
relationships between the commuter’s flow and our features.

To turn our black-box algorithm in a more interpretative model, we calculated the features’ importance and 
the impact of the features on individual predictions using the SHapley Additive exPlanations (SHAP) values44,55,56. 
The SHAP metric is based on the Shapley values introduced by Lloyd Shapley in 1953 in the context of game 
theory57; it helps one to understand how the model decides to make a prediction and which features contribute 
to improving the accuracy of the model. The course of action of SHAP is to calculate the importance of a feature 
by comparing what the model predicts with and without the feature. Notice that the order in which we add new 
features to the model can affect its predictions. Thus, we have to permute over all the possible feature orderings to 
fully capture the impact of a feature on the model.

In Fig. 5A, we show the features considered important for the XGBoost classifier, as well as the distribution 
of the impacts of each feature on the model output. While high values of distance Distancest (also known as rst) 
are not good predictive features for the presence of links (values smaller than 0), high GDPt values increase the 
predictive accuracy of the model (values larger than 0). High rates of the elderly population in the target city also 
strongly affect the model accuracy. Finally, the total urban area or traffic accidents are more important than the 
population density.

In Fig. 5B, we show the features’ importance for the XGBoost regressor, as well as the distribution of the 
impacts of each feature on the model output. In this case, high values of distance Distancest have a low impact 
on the predictive performance of the model (values smaller than 0), whereas high GDPt increases the predictive 
performance of the model (values larger than 0). Higher values of the elderly population in the target city decrease 
the performance of the algorithm. Again, we verify that several urban indicators have a role in defining the flow 
of people from one city to others and that urban indicators, such like GDP, area, and traffic accidents, are more 
useful to improve the predictive performance of the model than population size.

Discussion
Predicting decisions related to individual choices, such as housing and working places, is a difficult task. These 
decisions are tied to many variables that are often based on personal reasons and cannot be easily measured. 
However, the analysis of SHAP values can help us to understand how urban indicators and distance can influence 
this decision process and what makes people commute from one area to another to work. The SHAP values point 

Figure 5. Interpreting the relationship between flow and features. Analysis of feature importance in the 
XGBoost (A) classifier and (B) regressor using SHAP values. The features are ranked by importance in 
descending order based on the sum of the SHAP values over all the samples. The violin-shaped plots show the 
distribution of the impacts of each feature on every point of the model output. The colors represent the SHAP 
value, varying from low values (blueish colors) to high values (reddish colors).
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four features that are mutually important in both classification and regression models, i.e., Distance, GDP, Area, 
Traffic accidents in the target city, followed by other less important features.

Distance is the most important feature in predicting the existence of a link between a pair of cities and quan-
tifying the number of people commuting from one city to the other. It is traditionally included in migration 
models. Distant cities make the journey to work unfeasible, as workers must return home by the end of the day, 
limiting the commuting to a certain distance. However, because of other factors, cities close to each other may 
have an insignificant flow, either because they offer similar opportunities or because the infrastructure and trans-
port limit the commuting.

GDP (Gross Domestic Product) is the second most prominent feature. The cities with the highest GDP have 
the highest demand for commuters and the best job opportunities. As a consequence, they attract more com-
muters. Looking at Fig. 5, it is possible to observe that the higher the GDP value, the higher its contribution to 
the predictive performance of the XGBoost induced models. Another possible explanation is that these cities are 
more productive because they attract more workers and, therefore, they have higher GDP values, as suggested by 
Keuschnigg et al.58 for long-term migration.

Area is related to the physical size of a city, and it is the third most influential variable. Larger cities, like 
metropolis and megalopolis, usually are hubs of industries and enterprises and, consequently, tend to offer more 
job opportunities. This variable fails to affect the flow prediction when cities have a wide territorial extension but 
are used for other purposes (e.g., natural reserves, forest, and huge urban parks) rather than urban expansion. 
Our data set reveals just a few records of cities occupying a large area with no significant number of commuters. 
These are the cases of cities with SHAP values close to 0, as we can observe in Fig. 5B.

Traffic accident is the fourth most important variable. This indicator was selected by the model because it has a 
high correlation with a higher flow of people and automobile vehicles (see Fig. 1C), which is also a trait related to 
the economics of the city, as is the case of GDP. Recall that, although the features we used are correlated, the fea-
ture selection process chose to keep the ones that it considers to be important, removing the other ones without 
negatively impact the predictive performance of the model (classifier and regressor).

The following features are ordered differently, depending on the predictive task, whether it is classification 
or regression. In the classification task, the classifier does not require much to predict a fair number of links 
correctly. For example, using just the previously discussed selected features on the training set, the classifier 
presented an accuracy close to 87.6%. The other features improved the model accuracy by 1.6%, also on the 
training set. Among all variables, the unemployment indicator of the source city (i.e., where people live), seems to 
have a significant impact on the existence of flow between two cities. High rates of unemployment seem to make 
commuters leave the city where they live (i.e., repel) to work in nearby cities with better job opportunities (i.e., 
absorb).

Differently from the classification task, in the regression task, the algorithm demands more information 
to estimate the value of flow close to the actual value. Using only the four most important features, the model 
describes 70.6% of the variance of the data on the training set. The remaining features are responsible for improv-
ing the regressor’s predictive performance by 2.8% on the training set. The elderly population indicator has an 
interesting behavior: the larger the number of elderly people in the home city and the smaller their number in the 
city of work, the higher the flow of commuters between the two.

The remaining urban indicators showed little relevance in predicting the flow of people, despite having a sig-
nificant impact on the predictions of the classification and regression tasks. This set of features together provides 
a better prediction and highlights the importance of taking into account a more comprehensive set of indicators, 
in addition to the typical metrics used in migration models, such as population and distance. Further, such mod-
els could be enhanced by adding other indicators that were not explored in our data set, which could potentially 
improve the predictions of links and flow of commuters.

Finally, we believe that our approach is not only to be used on the task of commuters network reconstruction 
but also to complex networks of different domains where node’s attributes can give us information about the exist-
ence of links connecting them. For instance, this methodology could be applied in economic trade networks59,60, 
where the amount of money exchanged could be predicted in terms of indicators as GDP, unemployment, interest 
rate, production, corporate profits, and other macroeconomic variables; in social networks61, where friendship 
connections could be unveiled by individual node’s preferences, such as music or sport preferences, language or 
individual socioeconomic status and education; in metabolic networks62, where biochemical reactions (links) 
could be predicted in terms of metabolites chemical, physical, and biological properties. Thus, further insights 
from these networks could be obtained by exploring the SHAP values to identify decisive indicators to recon-
struct each network topology.

Methods
Data set. We collected data about the number of people commuting from a home city to another city to work 
(pendular migration) in the year of 2010, considering all the 5,565 Brazilian cities as well as 22 yearly-updated 
urban indicators. This data is provided and maintained by the Brazilian Institute of Geography and Statistics 
(IBGE)45. The data was modeled as a complex network represented as a directed graph G = {V, E} composed of 
5,565 vertices and 55,247 edges with non-zero weights. A vertex ∈s V  is considered to be a city, and an edge 

∈e E is an ordered pair = 〈 〉e s t,  representing the flow from the source city ∈s V  to the target city ∈t V . The 
existence of commuters from city s to city t is noted as =Class 1st , and =Class 0st  indicates the opposite; the flow 
Weightst is an integer representing the number of commuters that move daily from city s to city t. The urban indi-
cators shape an initial 45-value feature vector. This vector is composed of urban indicators (a single value per 
indicator) from the source and target cities (22 values for each city) and their distance (in kilometers).
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Data split. The data set composed by the number of commuters (target feature) and the 2 × 22 urban indica-
tors plus the distance between pairs of cities (predictive features) was split in a 70/30 ratio preserving the ratios 
of existing and non-existing links in both sets. Thus, 70% was used as a training set, and the other 30% was used 
as a test set to evaluate the predictive performance, generalization, and universality of the model induced after 
all training and selection steps. To assure that the model could learn all inherent nuances of our data (e.g., dif-
ferent intercity road systems), we also stratified the data by the Federal Brazilian States to feed the model with a 
proportional amount of information about every state. This also saves computational time to train the models by 
eliminating most of the non-existent links across states.

class balancing. Because imbalanced data sets favor the majority class, we balanced the classes of the result-
ing data set keeping 50% of the data labeled with existing links, ≠w 0st , and the other with non-existing links 

=w 0st , resulting in 110,494 pairs of cities (edges). For each existing connection between a city from state A and 
another from state B, our data set has a non-existing link between cities (chosen at random) from these states. 
This process was carried out for both tasks, classification, and regression. In the classification, the labels are 

=Class 1st  if there is a non-zero flow and =Class 0st  otherwise, whereas, in the regression task, the data was labe-
led with the number of commuters in the flow from one city to the other.

Training set stratification. We used a label-based stratified k-fold with 5 folds for the classification tasks 
(categorical data) and a regular k-fold with 5 folds for the regression tasks (number of commuters).

Model selection. Using the training set, which represents 70% of the whole data set and is composed of 
77,345 edges, we tested 78 algorithms of machine learning, including 34 classifiers and 44 regressors. In this 
step, we used the validation subset of the training data to select the best classifier to predict the existence of a 
non-zero flow (link) between cities and the best regressor to predict the number of commuters flowing between 
them (links’ weight). This task was carried out using Bootstrapping, which is a statistical resampling method 
that consists of sampling with replacement to define the upper and lower bound of a statistical evaluation metric 
(accuracy and R2-score)63. We used this method to evaluate different models over random samples of the data set, 
without compromising the significance of the results. From all classifiers and regressors, we only used those that 
could yield a predictive performance without needing early hyperparameter tuning. Almost one-third of all algo-
rithms did not meet such constraints, leaving 27 classifiers and 23 regressors for the experiments. The remaining 
algorithms went through a bootstrapping sampling by training each one with tiny random samples (1% of the 
data chosen with replacement, i.e., 7,734 edges) of the training set (70% of the whole data set, i.e., 77,345 edges) 
to access the variance of predictions over a thousand iterations. Through the bootstrapping sampling results, we 
defined the upper and lower bound of the scoring metric (accuracy and R2-score). Using these metrics as criteria, 
we select the classifier and regressor with the highest median, lowest variance, and fewer outliers. It is important 
to note that bootstrap sampling uses random samples of 1% of the training set to increase the randomness within 
each test sample so to capture all nuances related to the variance and outliers among thousands of predictions.

eXtreme gradient boosting (XGBoost). XGBoost is a machine learning library that provides a set of 
techniques to deal with and model data through both classifiers and regressors. Such a library was designed to be 
highly efficient, flexible, and portable. All the model-inferring algorithms were implemented under the Gradient 
Boosting framework providing further support to parallel and distributed processing54. Gradient Boosting, on 
the other hand, renders a predictive model through tree ensembles, which are submitted to optimization through 
an arbitrary differentiable loss function64.

Learning curves. We used analysis of learning curves to assess the prediction capability of each model (i.e., 
XGBoost classifier, and regressor) when increasing the size of the training data in increments of 1% up to 70%. 
The right amount of data to train each model is the one with the best trade-off between bias and variance, that is, 
where the training score curve and the cross-validation curve have the lowest deviation.

feature selection. We performed a threshold-based feature selection to decrease the complexity of the 
induced model by removing features from the least important to the most important one up to a 
dynamically-defined importance-threshold. Such a process provides a subtler interpretation of the features’ 
impact on the model’s output and is carried out together with the XGBoost algorithm, which provides an impor-
tance score to each feature during the training phase. The importance score is defined in the interval [0, 1], where 
0 indicates a feature with minimum or no importance, and 1 indicates the opposite. The importance score consists 
of counting the number of times each feature is used to split a node into two trees by the XGBoost algorithm 
during the training phase. The feature selection process consists of measuring the model’s prediction score while 
progressively removing the features from the least important to the most important one. These iterations define a 
threshold that splits the interval into two, such that features with importance between 0 and the threshold are 
removed. The threshold is defined by iteratively increasing the value from 0 up to 1 until the model’s prediction 
score using all features starts decreasing. It is important to note that the features removed are not relevant to the 
induced model because they do not add useful information to predict the target data. This comes from the fact 
that urban indicators are collinear to each other, which means each indicator might contain traces of other indi-
cators within it. Bettencourt3 already discussed such phenomena on urban indicators, however, there still no way 
to avoid or remove it completely from such type of data. The threshold-based feature selection works around this 
problem by removing non-relevant and collinear features, which absence impacts the model nor positively nei-
ther negatively. Therefore, the benefit of using feature selection, in this case, is its ability to reduce the model 
complexity by decreasing the number of dependable variables.
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Hyperparameter tuning. For XGBoost classifier and regressor, we performed hyperparameter tuning; 
a brute-force technique that seeks for the set of hyperparameters within a pre-defined hyperparameters’ sub-
space that optimizes a provided machine learning model. For the sake of experimentation, we tested 3 mil-
lion possibilities out of a hyperparameters space that is exponentially larger. Such a fine-tuning is considerably 
time-consuming and can take several weeks of intensive computing for each model. On the other hand, the time 
is proportional to the number of tested hyperparameters, which is a fair trade-off, and that can be decreased with 
high-performance computing.

For our experiments, we found that the best hyperparameter values for the XGBoost classifier were: (i) learn-
ing rate = 0.05; (ii) number of trees = 300; (iii) maximum tree depth = 9; (iv) fraction of observations used as 
random samples by each tree = 0.85; (v) subsample ratio of features when constructing each tree = 0.8; and, (vi) 
regularization term of the model’s weights = 0.75. In the case of the XGBoost regressor, the best hyperparameter 
values were: (i) learning rate = 0.05; (ii) number of trees = 900; (iii) maximum tree depth = 7; (iv) fraction of 
observations used as random samples by each tree = 0.85; (v) regularization term of the model’s weights = 1.25; 
(vi) minimum loss reduction required to split a node into two trees = 0.25; and, (vii) minimum weight needed in 
a child node = 2.

Model evaluation. After all the training and selection steps, we used the testing set to compare the 
non-optimized and optimized models, reporting the results in a confusion matrix for the classifier and a scatter 
plot for the regressor. The classifiers were evaluated through the balanced accuracy score (i.e., the ratio between 
the correct classified instances and all instances, normalized by the number of elements per label) and the regres-
sors through the R2-score (i.e., the variance between the predicted and observed values).

SHAP values and feature importance. Given a specific prediction f(x), we calculate the importance of a 
feature by comparing what a model predicts with and without the feature. Because the order in which we add new 
features to the model can affect its predictions, we permuted over all possible feature ordering. Mathematically, 
the Shapley value for a particular feature i (out of M total features), given a prediction x is:

∑ ∪φ =
| | − | | −

−
⊆

f x S M S
M

f S i f S( , ) !( 1)!
!

[ ( { }) ( )],
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S M i
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where S is the set of features used to induce the model, and fx is the prediction considering the indicated set of 
features55. In practice, this is too difficult to be calculated because there are far too many possible combinations. 
Instead, we used the SHAP library to calculate φi, which is optimized to take advantage of different model’s struc-
tures44. Thus, the rank of feature importance is given by the sum of SHAP value magnitudes φi over all samples. 
This procedure allows a more in-depth interpretation of the impact of the features on the prediction of individual 
data, turning the black-box algorithm in a more interpretable model.
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CHAPTER

4
DYNAMIC PROCESSES MODELING IN TIME

In this chapter, we reproduce the following article:

Spadon et al. 2021, Pay Attention to Evolution: Time Series Forecasting with

Deep Graph-Evolution Learning. Transactions on Pattern Analysis and

Machine Intelligence. IEEE.

In the article, we introduce the Recurrent Graph Evolution Neural Network (Re-

GENN), which is a graph-inspired time-aware auto-encoder with linear and non-linear

components that work together to provide future predictions based on observations from

the past. The linear part is the autoregression, and the non-linear component is made

of an auto-encoder powered by a pair of Graph Soft Evolution (GSE) layers, a further

contribution of this study. The GSE holds for a graph-based learning-representation layer

that improves the encoding and decoding processes by learning a shared graph over several

time series and timestamps. We selected a range of time-series, machine learning, and deep

learning algorithms for contrasting performance, from conventional to cutting-edge ones,

totaling 49 algorithms. ReGENN surpassed all the baselines and remained effective after

three rounds of 30 ablation tests through distinct hyperparameters. The experiments were

carried out over the SARS-CoV-2, Brazilian Weather, and 2012 PhysioNet Computing in

Cardiology datasets. In the task of epidemiology modeling on the SARS-CoV-2 dataset,

we had improvements of at least 64.87%. We outperformed the task of climate forecasting

on the Brazilian Weather dataset by at least 11.96%, and the task of patient monitoring

on Intensive Care Units (ICUs) on the PhysioNet dataset by 7.33%.

We reproduce the article from Spadon et al. 2021 under the Rights and Permissions

below on the following pages. To present the contribution related to this chapter: Section

1 presents the problem and related literature; Section 2 discusses the proposed network

architecture; Section 3 displays the results in detail; Section 4 goes through the overall

discussions; and, Section 5 presents the conclusions and final remarks. Additionally, in
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Appendix B, we provide the supplementary material linked with the discussed article.
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author(s) and the source, provide a link to the Creative Commons license, and indi-

cate if changes were made. The images or other third-party material in this article

are included in the article’s CC license unless indicated otherwise in a credit line

to the material. If the material is not included in the article’s Creative Commons

license and the intended use is not permitted by statutory regulation or exceeds the
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Pay Attention to Evolution: Time Series
Forecasting with Deep Graph-Evolution Learning

Gabriel Spadon , Shenda Hong , Bruno Brandoli ,
Stan Matwin , Jose F. Rodrigues-Jr , and Jimeng Sun

Abstract—Time-series forecasting is one of the most active research topics in artificial intelligence. It has the power to bring light to
problems in several areas of knowledge, such as epidemiological studies, healthcare inference, and climate change analysis.
Applications in real-world time series should consider two factors for achieving reliable predictions: modeling dynamic dependencies
among multiple variables and adjusting the model’s intrinsic hyperparameters. An open gap in the literature is that statistical and
ensemble learning approaches systematically present lower predictive performance than deep learning methods. The existing
applications consistently disregard the data sequence aspect entangled with multivariate data represented in more than one time
series. Conversely, this work presents a novel neural network architecture for time-series forecasting that combines the power of graph
evolution with deep recurrent learning on distinct data distributions, named after Recurrent Graph Evolution Neural Network
(REGENN). The idea is to infer multiple multivariate relationships between co-occurring time-series by assuming that the temporal
data depends not only on inner variables and intra-temporal relationships (i.e., observations from itself) but also on outer variables and
inter-temporal relationships (i.e., observations from other-selves). An extensive set of experiments was conducted comparing
REGENN with tens of ensemble methods and classical statistical ones. The results outperformed both statistical and
ensemble-learning approaches, showing an improvement of 64.87% over the competing algorithms on the SARS-CoV-2 dataset of the
renowned John Hopkins University for 188 countries simultaneously. For further validation, we tested our architecture in two other
public datasets of different domains, the PhysioNet Computing in Cardiology Challenge 2012 and Brazilian Weather datasets. We also
analyzed the Evolution Weights arising from the hidden layers of REGENN to describe how the variables of the dataset interact with
each other; and, as a result of looking at inter and intra-temporal relationships simultaneously, we concluded that time-series
forecasting is majorly improved if paying attention to how multiple multivariate data synchronously evolve.

Index Terms—Time Series, Graph Evolution, Representation Learning

F

1 INTRODUCTION

Time series refers to the persistent recording of a phe-
nomenon along time, a continuous and intermittent unfold-
ing of chronological events subdivided into past, present,
and future. In the last decades, time series analysis has
been vital to predict dynamic phenomena on a wide range
of applications, such as climate change [1]–[4], financial
market [5]–[7], land-use monitoring [8]–[10], anomaly de-
tection [11]–[13], energy consumption, and price forecast-
ing [14]–[16], apart from epidemiology and healthcare-
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related studies [17]–[22]. On such applications, an effec-
tive data-driven decision requires precise forecasting based
on time series [23]. A prime example is the SARS-CoV-2,
COVID-19, or Coronavirus Pandemic [24], which is known
to be highly contagious and cause increased pressure on
healthcare systems worldwide [25]. In this case, time-series
analysis plays a vital role in planning a safe retake of funda-
mental activities by preventing economic systems’ collapse.

Time series can be regarded as univariate or multi-
variate describing, respectively, single and multiple vari-
ables varying over time [26]. Recent techniques in time
series have roots in the use of Artificial Neural Net-
works [27], which contain a non-linear functioning that
enables it to outperform classical algorithms [28]. Such
techniques evolved into deep learning models for time-
series forecasting, such as Haoyi et al. [29] that used an
informer component to enhance long-sequence time-series
predictions but disregarded the inter-dependencies exist-
ing within different multivariate time-series, besides others
from the spatiotemporal forecasting field. For example, Seo
et al. [30] proposed the Graph Convolutional Recurrent Net-
work (GCRN) from graph-structured and time-varying data
by combining a Convolutional Neural Network (CNN) [31]
that identifies spatial structures and a Recurrent Neural
Network (RNN) [32] that learns dynamic patterns; Li et
al. [33] introduced a spatiotemporal model for traffic fore-
casting with Diffusion over Convolutional Recurrent Neu-
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Fig. 1: A multiple multivariate time-series forecasting problem, where each multivariate time-series (i.e., sample) shares the
same domain, timestream, and variables. When stacking the time-series together, we assemble a tridimensional tensor with
the axes describing samples, timestamps, and variables. The multiple samples have equal variables recorded during the
same timestamps, meaning that samples are unique but all observed in the same way. By tackling the problem altogether,
we leverage inner and outer variables besides intra- and inter-temporal relationships to improve forecasting.

ral Network (DCRNN); and, Zhang et al. [34] presented
a Gated Attention Network (GaAN) for forecasting traffic
speed using a Graph Gated Recurrent Unit (GGRU) with a
CNN controlling the attention head’s importance. Further
contributions on the spatiotemporal field [35]–[37] employ
traditional recurrent units, attention mechanisms, and even
Graph Convolution Network (GCN) [38]. However, due to
being designed to deal with spatial data, those models often
fail to frame temporal dependencies as they aim to achieve
state-of-the-art generalization across space and time at once.

Moreover, the LSTNet [39] encodes short-term data into
low dimensional vectors by using a CNN for later decoding
through an RNN; leverages from a recurrent-skip Gated
Recurrent Unit for capturing long-term dependencies within
the temporal data; and, incorporates an Autoregressive
(AR) component in parallel to the non-linear neural net-
work for preserving the scale of the output. Similarly, the
DSANet [40] integrates an AR component with a dual self-
attention network [41] with parallel convolutional compo-
nents, a versatile idea for modeling global and local tem-
poral patterns. More recently, the MLCNN [42] proposed
the use of short and long-term prediction strategies for
modeling temporal behavior through a multi-layer CNN to-
gether with Long Short-Term Memory (LSTM) [43] recurrent
units. However, although LSTNet, DSANet, and MLCNN
are cutting-edge multivariate time-series forecasting algo-
rithms, they do not explicitly address per-variable and inter-
time-series dependencies, which weakens their forecasting
ability in the face of higher-dimensional data. Therefore,
the state-of-the-art in time-series forecasting is bounded to a
bidimensional space in which we understand the forecasting
process by a non-linear function between time and variables.

Differently, we hypothesize that time-series are dependent
on their inner variables, which are observations from themselves,
and from outer variables provided by different time series that
share the same timestream. For instance, the evolution of
a biological species is not solely related to observations
from itself but also from other species that share the same
habitat, as they are all part of the same food chain. The

time series gains an increased dimensionality by considering
the variables and the dependency aspect during the anal-
ysis. Consequently, a previously considered bidimensional
problem, in which a model’s forecasting ability comes from
observing relationships of variables over time, now becomes
tridimensional, where forecasting means understanding the
entanglement between variables of different time-series that
co-occur in time. Accordingly, time-series define an event
that is not a consequence of a single chain of observations
but a set of synchronous observations of many time-series.

For example, during the Coronavirus Pandemic, it is
paramount to understand the disease’s time-aware behavior
in every country. Despite progressing in different moments
and locations, the pandemic’s underlying mechanisms are
supposed to follow similar (and probably interconnected)
patterns. Along these lines, looking individually at the
development of the pandemic in each country, one can
describe the problem in terms of multiple variables, like the
number of confirmed cases, recovered people, and deaths.
However, when looking at all countries at once, the prob-
lem yields an additional data dimension, and each country
becomes a multivariate sample of a broader problem, such
as depicted in Fig. 1. In linguistic terms, we refer to such a
problem as multiple multivariate time-series forecasting.

Along with these premises, in this study, we contribute
with an unpreceded neural network that emerges from a
graph-based time-aware auto-encoder with linear and non-
linear components working in parallel to forecast multiple
multivariate time-series simultaneously, named after Recur-
rent Graph Evolution Neural Network (REGENN). We refer
to evolution as the natural progression of a process where the
neural network iteratively optimizes a graph representing obser-
vations from the past until it reaches an evolved version of itself
that generalizes on future data still to be observed. Accordingly,
the underlying network structure of REGENN is powered
by two Graph Soft Evolution (GSE) layers, a further con-
tribution of this study. The GSE stands for a graph-based
learning-representation layer that enhances the encoding
and decoding processes by learning a shared graph across
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different time-series and timestamps.

The results we present are based on an extensive set
of experiments, in which REGENN surpassed a set of 49
competing algorithms from the fields of deep learning, ma-
chine learning, and time-series; among of which are single-
target, multi-output, and multi-task regression algorithms in
addition to univariate and multivariate time-series forecast-
ing algorithms. Aside from surpassing the state-of-the-art,
REGENN remained effective after three rounds of 30 abla-
tion tests through distinct hyperparameters. All experiments
were carried out over the SARS-CoV-2, Brazilian Weather,
and PhysioNet datasets. In the task of epidemiology model-
ing on the SARS-CoV-2 dataset, we had improvements of at
least 64.87%. We outperformed the task of climate forecast-
ing on the Brazilian Weather dataset by at least 11.96% and
patient monitoring on intensive care units on the PhysioNet
dataset by 7.33%. Furthermore, we analyzed the results
using the Evolution Weights from the GSE layers, which are
the intermediate hidden adjacency matrices that arise from
the graph-evolution process after going through the cosine
similarity activation, showing that graphs shed new light
on the understanding of non-linear black-box models. Since
multiple multivariate time-series is an ascending research
topic, we understand REGENN has implications in multiple
domains, like economics, social sciences, and biology, in
which different time-series share the same timestream and
co-occur in time, mutually influencing one another.

In order to present our contributions, this paper is fur-
ther divided into four sections. We begin by proposing a
layer and neural network architecture, besides detailing the
methods used along with this study. Subsequently, we dis-
play the experimental results compared to previous litera-
ture. Next, we provide an overall discussion on our proposal
and the achieved results. Finally, we present the conclusions

and final remarks. Alongside, the Supplementary Material
presents extended methods and additional results.

2 METHOD

2.1 Preliminaries
Hereinafter, we use bold uppercase letters to denote mul-
tidimensional matrices (e.g., X), bold lowercase letters to
vectors (e.g., x), and calligraphic letters to sets (e.g., X ).
Matrices, vectors, and sets can be used with subscripts. For
example, the element in the i-th row and j-th columns of a
matrix is Xij , the i-th element of a vector is xi, and the j-th
element of a set is Xj . The transposed matrix of X ∈ Rm×n

is XT ∈ Rn×m, and the transposed vector of x ∈ Rm×1 is
xT ∈ R1×m, where m and n are arbitrary dimensions. We
display in Tab. 1 a summary of all context-specific notations.

2.2 Graph Soft Evolution
Graph Soft Evolution (GSE) stands for a representation-
learning layer that, given a training dataset, builds a graph
in the form of an adjacency matrix, as in Fig. 2. The GSE
layer receives no graph as input but a set of multiple
multivariate time-series. The graph is built by tracking pairs
of co-occurring variables, one sample at a time, and merging
the results into a single co-occurrence graph shared among
samples and timestamps. We define co-occurring variables
as two variables, from a multivariate time-series, with a non-
zero value in the same timestamp – in that case, we say one
variable influences another and is influenced back. The co-
occurrence graph is the projection of a tridimensional tensor,
T, T ∈ Rs×w×v , into a bidimensional one, A, A ∈ Rv×v ,
describing variables’ pair-wise time-invariant relationships.

The co-occurrence graph G = 〈V, E〉 is symmetric and
weighted. It is composed of a set V of |V| nodes equal to the

TABLE 1: Summary of context-specific notations.

Notation Definition

ω ∈ N+ Sliding window size
w, z ∈ N+ Number of training and testing (i.e., stride) timestamps
s, t, v ∈ N+ Number of samples, timestamps, and variables

T ∈ Rs×t×v Tensor of multiple multivariate time-series
Y ∈ Rs×ω×v Batched input of the first GSE and the Autoregression layers

Yα ∈ Rs×ω×v Output of the first GSE and input of the encoder layers
Yε ∈ Rs×ω×v Output of the encoder and input of the decoder layers
Ỹε ∈ Rs×z×v Output from the first recurrent unit and input to the second one
Ỹ ∈ Rs×z×v Output of the second recurrent unit and input of the second GSE layer

Yψ ∈ Rs×z×v Non-linear output yielded by the second GSE layer
Yλ ∈ Rs×z×v Linear output provided by the Autoregression layer
Ŷ ∈ Rs×z×v The final result from the merging of the linear and non-linear outputs
T̂ ∈ Rs×z×v The ground truth expected from merging the linear and non-linear outputs
G = 〈V, E〉 Graph in which V is the set of nodes and E the set of edges
A ∈ Rv×v Adjacency matrix of co-occurring variables

Aµ ∈ Rv×v Neighbor-smoothed per-variable embedding shared between GSE layers
Aφ ∈ Rv×v Evolved adjacency matrix produced by the second GSE layer

U ◦V Batch-wise Hadamard product between matrices U and V
U ·V Batch-wise scalar product between matrices U and V
‖ · ‖F The Frobenius norm of a given vector or matrix
ϕ(·) Dropout regularization function
σg(·) Sigmoid activation function
σh(·) Hyperbolic tangent activation function

cosθ(·) Cosine matrix-similarity activation function
RELU(·) Rectified exponential linear unit activation function

SOFTMAX(·) Normalized exponential function activation function
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adjacency matrices of co-occurring variables. The matrices are element-wise summed to generate a shared graph among
samples, which, after a linear transformation, goes through a similarity activation function and is scaled by an element-wise
multiplication to produce an intermediate hidden adjacency-matrix with similarity properties inherent to the shared graph.

number of variables and another set E of |E| non-directed
edges equal to the number of co-occurring variables. A
node v ∈ V corresponds to a variable from the time-series
multivariate domain, and an edge e ∈ E is an ordered pair
〈u, v〉 ≡ 〈v, u〉 of co-occurring variables u, v ∈ V . The edges’
weight f corresponds to the summation of the values of the
variables u, v ∈ V whenever they co-occur in time, such that
f(u, v) =

∑s−1
i=0

∑w−1
j=0 Ti,j,u + Ti,j,v . We use summation

as the graph-merging operator when building A from G
because, in the face of a zero-one input, a multiplicative
operator would provide values close to zero, division would
make those values overgrow toward infinity, subtraction
would turn some of them into negative, while summation
provides consistently positive values upper bounded to
2 × (s × w), helping to sustain the magnitude of variables’
values. This way, the whole graph is bounded to w, which
is the number of timestamps existing in the training portion
of the input tensor, and if a pair of variables never co-occur
in the training data, no edge will be assigned to the graph,

meaning that 〈u, v〉 6∈ E , and f(u, v) = 0.
The GSE layer for an arbitrary graph is formulated as:

Aµ = Wµ ·A + bµ (1.1)
Aη = Wη ◦ cosθ (Aµ) + bη (1.2)
Yα = Wα · ϕ (Y ·Aη) + bα (1.3)

where Wα, Wη, Wµ ∈ Rv×v are symmetrically-
unconstrained weights and bα, bη, bµ ∈ Rv the bias. In
Eq. 1.1, the layer starts by employing a linear transforma-
tion to the shared adjacency matrix A, providing a per-
variable embedding Aµ after smoothing across neighbors.
Subsequently, in Eq. 1.2, it uses the cosine similarity (see
the Supplementary Material) on the output of Eq. 1.1, i.e.,
cosθ(Aµ), which is an intermediate activation function that
provides the Evolution Weights a symmetric per-variable
similarity adjacency-matrix. Under the same equation, the
Evolution Weights goes through a point-wise operator with
a symmetrically-unconstrained weight matrix that enables
the network to filter meaningful similarities from spurious
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result from the scalar product between the learned representation and the data propagated throughout the network.
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similarities by learning that two variables influence one
another on different scales and resulting in Aη . Next, in
Eq. 1.3, it performs a batch-wise matrix-by-matrix multipli-
cation between the adjacency matrix from Eq. 1.2 and the
batched input tensor Y to combine the information from the
graph, which generalizes samples and timestamps, with the
time-series. The result will be followed by a dropout regu-
larizer [44] and batch-wise matrix-by-matrix multiplication,
where the final features from joining both tensors will be
extracted and forwarded to the next layer of the network.

The evolution concept comes from the cooperation be-
tween two GSE layers, one at the beginning (i.e., right
after the input) and the other at the end (i.e., right before
the output) of a neural network, such as in the example
shown in Fig. 3. As evolution arises from sharing hidden
weights between a pair of non-sequential layers, we named
this process after Soft Evolution. Accordingly, the first layer
(i.e., source) aims to learn the weights to scale the matrix
and produce Aµ. Such a result is the input of the second
GSE layer (i.e., target), and it will be used for learning
the evolved version of the adjacency matrix, referred to as
Aφ and produced as in Eq. 1.1. Notice that in Fig. 3, the
source layer is different from the target one because we
disregard the regularizer ϕ, trainable weights Wα, and bias
bα from Eq. 1.3. They aim to enhance the feature-learning
processes when multiple layers are stacked together and,
as the last layer, GSE provides the output from already

learned features through one last scalar product between
the data propagated throughout the network, i.e., Ỹ, and
the intermediate hidden adjacency-matrix, i.e., Aψ .

One can see that the source GSE layer has two constant
inputs: the graph and input tensor. The target GSE layer has
two dynamic inputs, the shared graph from the source GSE
layer and input propagated throughout the network. In this
work scope, we use an auto-encoder between GSE layers
to learn data codings from the source layer’s output, which
will be decoded into a representation closest to the expected
output and later re-scaled by the target layer. In this sense,
while the first layer learns a graph from the training data
(i.e., past data) working as a pre-encoding feature-extraction
layer, the second one re-learns (i.e., evolve) a graph at the
end of the forecasting process based on future data, working
as a post-decoding output-scaling layer. When joining the
GSE layers with the auto-encoder, we assemble the Recur-
rent Graph Evolution Neural Network (REGENN).

2.3 Recurrent Graph Evolution Neural Network
REGENN is a graph-based time-aware auto-encoder with
linear and non-linear components on parallel data-flows
working together to provide future predictions based on
past observations. The linear component is the autoregres-
sion implemented as a feed-forward layer, and the non-
linear component is made of an encoder and a decoder
module powered by a pair of GSE layers. Fig. 4 shows
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how these components communicate from the input to the
output, and, in the following, we detail their operation.

Autoregressive Component
The non-periodical changes and constant progressions of the
series across time usually decrease the performance of the
network. That is because the output scale loses significance
compared to the input, which comes from the complexity
and non-linear nature of neural networks in time-series
forecasting tasks [39]. Following a systematic strategy to
deal with such a problem [45], [46], REGENN leverages
from an Autoregressive (AR) layer working as a linear feed-
forward shortcut between the input and output, which for a
tridimensional input, is algebraically defined as:

Yλ = W ·Y + b ≡
(

ω∑
i=1

Wi,z ×Ys,i,v

)
+ b (2)

where W ∈ Rω×z are the weights and b ∈ Rz the bias
to be learned. The output of the linear component, i.e.,
Yλ ∈ Rs×z×v as in Eq. 2, is element-wise added to the non-
linear component’s output, i.e., Yψ ∈ Rs×z×v , so to produce
the final predictions of the network Ŷ ∈ Rs×z×v , formally
given as Ŷ = Yλ+Yψ . Subsequently, we describe the auto-
encoder that produces the non-linear output of REGENN.

Encoder
We use a non-conventional Transformer Encoder [41] that
employs self-attention to learn an encoding from the fea-
tures forwarded by the GSE layer. It consists of multiple en-
coders joined through the scaled dot-product attention into
a single set of encodings through multi-head attention. The
number of expected features by the Transformer Encoder
must be a multiple of the number of heads in the multi-
head attention. Our encoder’s non-conventionality comes
from the fact that the first GSE layer’s output goes through
a single scaled dot-product attention on a single-head atten-
tion task. That is because the number of features produced
by the encoder is equal to the length of the sliding window,
and through single-head attention, the window can assume
any length. The encoder module is defined as follows:

Yε = SELF-ATTENTION (Q : Yα,K : Yα,V : Yα) (3a)
Yε = LAYER-NORMγ,β (Yε + ϕ (Yε)) (3b)
Yε = Wε · ϕ (RELU (Wι ·Yε + bι)) + bε (3c)
Yε = LAYER-NORMγ,β (Yε + ϕ (Yε)) (3d)

where self-attention in Eq. 3a is a particular case of the
multi-head attention, in which the input query Q, key
K, and value V of the scaled dot-product attention, i.e.,
SOFTMAX

(
Q ·KT ÷

√
dk
)
· V, are equal; and dk is the di-

mension of the keys. The attention results are followed by
a dropout regularization [44], a residual connection [47],
and a layer normalization [48] as in Eq. 3b to ensure gen-
eralization. The first two layers work to avoid overfitting
and gradient vanishing, while the last one normalizes the
output such that the samples among the input have zero
mean and unit variance γ (∆ (Yε + ϕ (Yε))) + β, where ∆
is the normalization function, and γ and β are parameters to
be learned. After, in Eq. 3c, the intermediate encoding goes
through a double linear layer, a point-wise feed-forward

layer, which, in this case, consists of two linear transfor-
mations in sequence with a ReLU activation in between,
having the weights Wε,Wι and bias bε,bι as optimizable
parameters. Finally, the transformed encoding goes through
one last set of generalizing operations, as shown in Eq. 3d.
The resulting encoding Yε ∈ Rs×ω×v is a tensor with the
time-axis length matching the size of the sliding window ω.

Decoder
The previous encoding will be decoded by two sequence-
to-sequence layers, which are Long Short Term Memory
(LSTM) [43] units. The decoder operates in two of the tridi-
mensional axes of the encoding, the time-axis and variable-
axis, once at a time. Under the sample and time-axis, the
time-axis decoder tracks temporal dependencies, looks for a
set of weights that generalizes across variables, and trans-
lates the window-sized input into a stride-sized output:

f (t) (v) = σg
(
W

(t)
f ·

[
h(t) (v − 1) ,Y(t)

ε (v)
]

+ b
(t)
f

)
i(t) (v) = σg

(
W

(t)
i ·

[
h(t) (v − 1) ,Y(t)

ε (v)
]

+ b
(t)
i

)
o(t) (v) = σg

(
W(t)

o ·
[
h(t) (v − 1) ,Y(t)

ε (v)
]

+ b(t)
o

)
C̃(t) (v) = σh

(
W

(t)
C ·

[
h(t) (v − 1) ,Y(t)

ε (v)
]

+ b
(t)
C

)
C(t) (v) = f (t) (v) ◦C(t) (v − 1) + i(t) (v) ◦ C̃(t) (v − 1)

h(t) (v) = ϕ
(
o(t) (v) ◦ σh

(
C(t) (v)

))
(4)

where v is the v-th variable of the t-th time-series group,
and the weights W

(t)
f ,W

(t)
i ,W

(t)
C ,W

(t)
o ∈ Rω×z and bias

b
(t)
f ,b

(t)
i ,b

(t)
C ,b

(t)
o ∈ Rz are parameters to be learned. Along

with Eq. 4, we refer to f as the forget gate’s activation vector,
i as the input and update gate’s activation vector, o as the
output gate’s activation vector, C̃ as the cell input activation
vector, C as the cell state vector, and h as the hidden state
vector. The last hidden state vector goes through a dropout
regularization ϕ before the next LSTM in the sequence.

Under the time and variable-axis, the next recurrent unit
decodes the variable-axis from the partially-decoded encod-
ing, searches for a set of weights that generalizes across time,
and translates patterns arising from different variables on
the same timestamp. The set of variables within the time-
series does not necessarily imply a sequence, which does
not interfere in the decoding process as long as the variables
are always kept in the same order; a common approach used
with boosting trees, such as the XGBoost [49] algorithm. The
second LSTM, in which t is the t-th timestamp of the v-th
variable group, is algebraically defined as follows:

f (v) (t) = σg
(
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f ·
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+ b
(v)
f
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C̃(v) (t) = σh

(
W

(v)
C ·

[
h(v) (t− 1) , Ỹ(v)

ε (t)
]

+ b
(v)
C

)
C(v) (t) = f (v) (t) ◦C(v) (t− 1) + i(v) (t) ◦ C̃(v) (t− 1)

h(v) (t) = Ỹε + ϕ
(
o(v) (t) ◦ σh

(
C(v) (t)

))
(5)

where Ỹε is the partially-decoded encoding, and the
weights W

(v)
f , W(v)

i , W(v)
C , W(v)

o ∈ Rz×z and bias b
(v)
f ,
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b
(v)
i , b(v)

C , b(v)
o ∈ Rz are internal parameters. The descrip-

tion of the notations within Eq. 4 holds for Eq. 5. Their dif-
ference is the residual connection with the partially-decoded
encoding Ỹε at the last hidden state vector after the dropout
regularization ϕ. After the decoding is complete, the last
recurrent unit output Ỹ goes through the second GSE layer,
producing the non-linear output Yψ of REGENN.

2.4 Optimization Strategy

REGENN operates on a tridimensional space shared be-
tween samples, timestamps, and variables. In such a space,
it carries out a time-based optimization strategy. The train-
ing process iterates over the time-axis of the dataset, show-
ing to the network how the variables within a subset of
time-series behave as time goes by and later repeating the
process through subsets of different samples in distinct
batches of preset window-size. However, the shared graph
A is built during the first epoch of the training phase. Such
a process happens in parallel to the optimization process,
not impacting training stability nor convergence. After that
point, A will remain as it is during the training and testing.

The network’s weights are shared among the entire
dataset and optimized towards best generalization simul-
taneously across samples, timestamps, and variables. We
used Adam [50], a gradient descent-based algorithm, to
optimize the model and, as the optimization criterion, the
Mean Absolute Error (MAE), which is a generalization of the
Support Vector Regression [51] with soft-margin criterion
where Ω is the set of internal parameters of REGENN, Ŷ is
the network’s output, and T̂ the ground truth:

minimize
Ω

s∑
i=1

w∑
j=1

∣∣∣Ŷi,j − T̂i,j

∣∣∣ (6)

Due to the SARS-CoV-2 data behave as a streaming
dataset, we adopted a transfer learning approach to train the
network on that dataset. Transfer learning shares knowledge
across different domains by using pre-trained weights of an-
other neural network. The approach we adopted, although
different, resembles Online Deep Learning [52]. The main
idea is to train the network on incremental slices of the
time-axis, such that the pre-trained weights of a previous
slice are used to initialize the weights of the network in the
next slice. This technique aims not only to achieve better
forecasting performance but also to show that REGENN is
superior to other algorithms throughout the pandemic.

3 EXPERIMENTS

3.1 Experimental Setup

Datasets
The results are based on three datasets, all of which are
multi-sample, multivariate, and vary over time. The first
dataset describes the Coronavirus Pandemic, referred to
as SARS-CoV-2, made available by John Hopkins Univer-
sity [53]. It describes 3 variables through 120 days for 188
countries and varies from the first day of the pandemic to
the day it completed four months of duration. The second
one is the Brazilian Weather dataset collected from 253
sensors during 1,095 days regarding 4 variables. The third

dataset is from the 2012 PhysioNet Computing in Cardiol-
ogy Challenge [54], from which we are using 9 variables
across 48 hours recorded from 11,988 ICU patients.
The variables within the datasets are:

• SARS-CoV-2: Number of Recovered, Number of In-
fected, and Number of Deaths;

• Brazilian Weather: Minimum Temperature, Maximum
Temperature, Solar Radiation, and Rainfall; and,

• PhysioNet: Non-Invasive Diastolic Arterial Blood Pres-
sure (mmHg), Non-Invasive Systolic Arterial Blood
Pressure (mmHg), Invasive Diastolic Arterial Blood
Pressure (mmHg), Non-Invasive Mean Arterial Blood
Pressure (mmHg), Invasive Systolic Arterial Blood Pres-
sure (mmHg), Invasive Mean Arterial Blood Pressure
(mmHg), Urine Output (mL), Heart Rate (bpm), and
Weight (Kg).

The number of datasets that can be used for multiple
multivariate time-series forecasting is still limited. Although
the ones we experimented with have a small number of vari-
ables, there is no theoretical upper bound for the number of
samples, timestamps, and variables REGENN can handle.
However, as REGENN deals with dense tridimensional ten-
sors, increasing any of the axes (samples×time×variables)
in size will make the tensor grow at an almost-cubic rate,
quickly overflowing the GPU Memory. Accordingly, RE-
GENN ends up suffering from a trade-off between the
dataset’s size and the available hardware.

Data Pre-processing

The datasets were individually min-max normalized into a
zero-one scale on the variable-axis to avoid gradient spikes
and speed up training. We used the training data to define
the min-max parameters required for normalization. Such
parameters were applied for normalizing the test data as
well. As a consequence of normalizing the entire dataset,
the network’s output will follow a similar scale. Therefore,
the output was inversely transformed to what it was before
the normalization for evaluating the results.

A simplistic yet effective approach to train time-series
algorithms is through the Sliding Window technique [55],
also referred to as Rolling Window. The window size is
well known to be a highly sensitive hyperparameter [56],
[57]. Consequently, we followed a non-tunable approach,
in which we set the window size before the experiments,
just taking into consideration the context and domain of
the datasets. These values were used across all window-
based experiments, including the baselines and ablation
tests. It is noteworthy that most of the machine-learning
algorithms are not meant to handle time-variant data, such
that no sliding window was used in those cases. Conversely,
we considered training timestamps as features and those
reserved for testing as multi-task regression labels.

On the deep learning algorithms, we used a window
size of 7 days for training and reserved 7 days for validation
(between the training and test sets) to predict the last 14
days of the SARS-CoV-2 dataset. The 7-7-14 split idea comes
from the disease incubation period, which is of 14 days.
On the other hand, we used a window size of 84 days and
reserved 28 days for validation to predict the last 56 days
in the Brazilian Weather dataset. The 84-28-56 split is based
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on the seasonality of the weather data, such that we will
look to the previous 3 months (a weather-season window)
to predict the last 2 months of the upcoming season. Finally,
we used a window size of 12 hours for training and 6 hours
for validation to predict the last 6 hours of the PhysioNet
dataset. The 12-6-6 split comes from the fact that patients in
ICUs are in a critical state, such that predictions within 24
hours are more useful than long-term predictions.

Algorithms & Ensembles.

Many existing algorithms are limited because they neither
support multi-task nor multi-output regression, making
these algorithms even more limited to tasks when data
is tridimensional. The most straightforward yet effective
approach we followed to compare them to REGENN was to
create a chain of ensembles1. In such a case, each estimator
makes predictions on order specified by the chain using all
of the available features provided to the model plus the
predictions of earlier models in the chain. The number of
estimators in each experiment varies according to the type
of the ensemble and the type of the algorithms, and the final
performance is the average of each estimator’s performance.
For simplicity sake, we grouped the algorithms as follows:
� Corresponds to tridimensional compliant algorithms of

single estimators;
○ Describes multivariate algorithms – s estimators, one

estimator for each sample;
◎ Consists of multi-output and multi-task algorithms – v

estimators, one estimator per variable;
C Indicates single-target algorithms – v×z estimators, one

estimator per variable and stride; and,
+ Represents univariate algorithms – s×v estimators, one

estimator for each sample and variable.

Evaluation Metrics

As time-series forecasting works as a time-aware regres-
sion problem, our goal remains in predicting values that
resemble the ground truth the most. As such, we used
three evaluation metrics, the Mean Squared Logarithmic
Error (MSLE), Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE), that, despite different, have a com-
plementary meaning. The MSLE uses the logarithmic scale
to assess how well the model can predict values close to
zero. Contrarily, the MAE uses the absolute operator to
explain how the model fared among the median values. In
another perspective, the RMSE uses the square root to assess
the model’s ability to predict the larger values, which might
be outliers. The metrics’ formal definition is as follows:

MSLE =
1

n

n∑
i=1

log

(
Ŷi + 1

T̂i + 1

)2

(7)

MAE =
1

n

n∑
i=1

∣∣∣Ŷi − T̂i

∣∣∣ (8)

RMSE =

√√√√ 1

n

n∑
i=1

(
Ŷi − T̂i

)2
(9)

1. See Regressor Chain at https://bit.ly/3hBfxTA.

Hyperparameter Tuning
REGENN has two hyperparameters able to change the
dimension of the weights’ tensors, which are the win-
dow size (i.e., input size) and the stride size (i.e., out-
put size). As already discussed, both were set before the
experiments, and none of them were tuned towards any
performance improvement. The trade-off of having fewer
hyperparameters is to spend more energy on training the
network towards a better performance. We are focusing
on the network optimizer, gradient clipping, learning rate
scheduler, and dropout regularization when we refer to
tunable hyperparameters. Along these lines, we followed
a controlled and limited exploratory approach similar to a
random grid-search, starting with PYTORCH’s defaults. The
tuning process was on the validation set, intentionally re-
served for measuring the network improvement. The tuning
process follows by updating the hyperparameters whenever
observing better results on the validation set, leading us
to a set of optimized but no optimum hyperparameters.
We used the set of optimized hyperparameters to evaluate
REGENN on the test set and the default values for all the
other algorithms [49], [58], [59] unless explicitly required
for working with a particular dataset, as was the case of
LSTNet [39], DSANet [40], and MLCNN [42]. The complete
list of hyperparameters is in the Supplementary Material.

Computer Environment
The experiments related to machine-learning and time-
series algorithms were carried out on a Linux-based system
with 64 CPUs and 750 GB of RAM. The experiments related
to deep-learning on the SARS-CoV-2 dataset were carried
out on a Linux-based system with 56 CPUs, 256 GB of
RAM, and 8 GPUs (Titan X – Pascal). The Brazilian Weather
and PhysioNet datasets were tested on a different system
with 32 CPUs, 512 GB of RAM, and 8 GPUs (Titan X –
Maxwell). While CPU-based experiments are even across all
CPU architectures, the same does not hold for GPUs, such
that the GPU model and architecture must match to guaran-
tee reproducibility. Aiming at complete reproducibility, we
disclose not only the source code of REGENN on GitHub2,
but also the scripts, pre-processed data, and snapshots of all
trained networks on a public folder at Google Drive3.

3.2 Results

Subsequently, we go through the experimental results in
each one of the benchmark datasets. Due to the fact that not
all the algorithms perform evenly across them, we display
the 34 most prominent ones out of the 49 tested algorithms;
for the extended results, please refer to the Supplementary
Material. We also discuss the ablation experiments, which
were carried out with REGENN’s hyperparameters; in the
Supplementary Material, we provide two other rounds of
this same experiment using as hyperparameters PYTORCH’s
defaults4 and other settings recurrently employed in the
literature. Additionally, we draw explanations about the
Evolution Weights, i.e., intermediate adjacency matrices from

2. Available at https://bit.ly/2YDBrOo.
3. Available at https://bit.ly/30csLiJ.
4. Available at https://bit.ly/2QuWRsD.
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Fig. 5: Baseline results for the SARS-CoV-2 dataset over the Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Mean Squared Logarithmic Error (MSLE). The results are presented in descending order of MAE (i.e., worst
performance at the top). The results confirmed REGENN’s superior performance as it is the algorithm with the lowest
error and standard deviation – the improvement in the experiment was no lower than 64.87%. In the image, the algorithms
are symbol-encoded based on their type and number of estimators; we use gray arrows to report the standard deviation of
the results. The negative deviation, which is equal to the positive one, was suppressed for improved readability.

TABLE 2: Ablation results for the SARS-CoV-2 dataset using ReGENN’s data-flow but no GSE layer. The experiment varies
between Recurrent Unit (RU) and their directional flag, differing between Bidirectional (B) and Unidirectional (U). We use
E to designate the non-conventional Transformer Encoder and AR the Autoregression component along with the table.

RECURRENT UNIT (RU) Elman RNN GRU LSTM
NETWORK ARCHITECTURE MAE RMSE MSLE MAE RMSE MSLE MAE RMSE MSLE

BRU 424.32 2819.11 0.07 3130.47 28063.07 7.78 1800.23 20264.27 3.95
E→ BRU 4161.35 28755.33 11.08 596.77 3446.67 0.17 704.80 4088.05 0.20

(E→ BRU + BRU) + AR 1624.44 17245.24 3.84 388.93 1888.70 0.09 1598.03 19056.28 3.89
(E→ BRU + URU) + AR 257.15 1438.72 0.09 366.06 2158.32 0.10 4064.52 31196.10 11.30

(E→ BRU) + AR 1471.49 17050.08 3.74 1502.20 16799.96 3.67 211.93 1181.31 0.08
E→ URU 1949.65 16925.69 3.84 968.83 5982.35 0.22 2778.55 12830.03 0.21

(E→ URU + BRU) + AR 372.80 2155.36 0.11 208.88 1141.56 0.08 1380.99 16370.41 3.66
(E→ URU + URU) + AR 1472.05 16491.81 3.72 4052.71 31384.80 11.30 1713.72 18531.68 3.81

(E→ URU) + AR 1350.35 16673.11 3.69 2852.28 25869.18 7.60 260.66 1513.92 0.10
URU 1175.99 6716.42 2.08 1825.66 20400.04 4.95 3723.88 21022.60 2.83

RECURRENT GRAPH EVOLUTION NEURAL NETWORK (REGENN) 165.41 915.92 0.05
REGENN WITHOUT VARIABLE DECODER 197.51 1141.04 0.15

REGENN WITHOUT AUTOREGRESSION 8208.53 50089.84 19.19
AUTOREGRESSION ONLY 11529.79 76118.62 9.15
OVERALL IMPROVEMENT 20.81% 19.77% 35.72%
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Fig. 6: Set of Evolution Weights, i.e., cosine-similarity activated hidden weights extracted from REGENN at the end of the
network training. The images compare the cosine similarity between the set of variables within the SARS-CoV-2 dataset.

the GSE layers, by using the cosine similarity on the adja-
cency matrices of co-occurring variables (see Section 2.2).

Experiment on SARS-CoV-2 dataset
The SARS-CoV-2 has being updated daily since the begin-
ning of the Coronavirus Pandemic. We used a self-to-self
transfer-learning approach to train the network in slices of
time due to such a dataset’s streaming nature. In short, the
network was re-trained every 15 days with new incoming
data, using as starting weights, the pre-trained weights from
the network trained in the past 15 days so to evaluate
REGENN’s performance over the pandemic’s progression.

In such a case, when the pandemic completed 45 days,
the first time-slice in which REGENN was trained, it outper-
formed the second-placed algorithm, the Orthogonal Match-
ing Pursuit, by 27.27% on the Mean Absolute Error (MAE),
16.50% on the Root Mean Square Error (RMSE), and 38.87%
on the Mean Squared Logarithmic Error (MSLE). For all
subsequent time-slices (i.e., 60, 75, 90, 105, and 120 days), the
second-placed algorithm was the Exponential Smoothing,
which was outperformed with improvement no lower than
47.40% on the MAE, 17.19% on the RMSE, and 37.39% on
the MSLE. We further detail the results on the time-slices
mentioned above in the Supplementary Material. However,
in Fig. 5, we detail the results on the complete dataset of
120 days, in which REGENN surpassed the Exponential
Smoothing, the second-best algorithm, by 75.21% on the
MAE, 64.87% on the RMSE, and 79.61% on the MSLE.

As a result of the analysis of the dataset in time-slices,
we noticed that, as time goes by and more information is
available on the SARS-CoV-2 dataset, the problem becomes
more challenging to solve by looking individually at each
country and more natural when looking at all of them to-
gether. Although countries have their particularities, which
make the disease spread in different ways, the main goal is
to decrease the spreading, such that similarities between the
historical data of different countries provide for finer predic-
tions. Furthermore, we observed that not all the estimators
within an ensemble perform in the same way in the face
of different countries. Due to the REGENN capability of
observing inter-and intra-relationships between time-series,
it performs better on highly uncertain cases like this one.

Subsequently, we present the ablation results, in which
we utilized the same data-flow as REGENN but no GSE
layer while systematically changing the decoder architec-
ture. We provide results using different Recurrent Units
(RU), including the Elman RNN [32], LSTM [43], and
GRU [60]. We also varied the recurrent unit’s directional
flag between Unidirectional (U) and Bidirectional (B). That
because a unidirectional recurrent unit tracks only for-
ward dependencies while a bidirectional one tracks both
forward and backward dependencies. A summarized tag
describes each test’s network architecture; for example,
(E→ URU + BRU) + AR means the model has a Trans-
former Encoder (E) as the encoder, a Unidirectional Re-
current Unit as the time-axis decoder, and a Bidirectional
Recurrent Unit as the variable-axis decoder. Besides that,
the output of the decoder is element-wise added to the
Autoregression (AR) output. The table shows results with
and without the encoder and AR component, besides using
a single recurrent unit only for time-axis decoding.

According to the ablation results in Tab. 2, the im-
provement of REGENN is slightly smaller than previously
reported. That is because its performance not only comes
from the GSE layer but also from how the network handles
the multiple multivariate time-series data. Consequently, the
ablation experiments reveal that some models without GSE
layers are enough to surpass all the competing algorithms.
However, when using REGENN, we can improve them
further and achieve 20.81% of additional reduction on the
MAE, 19.77% on the RMSE, and 35.72% on the MSLE.

Fig. 6 shows the Evolution Weights originated from apply-
ing the cosine similarity on the hidden adjacency matrices of
REGENN. When comparing the input and evolved graphs,
the number of cases and deaths have a mild similarity.
That might come from the fact that diagnosing infected
people was already a broad concern at the beginning of the
pandemic. The problem did not go away, but more infected
people were discovered as more tests were made, and also
because the disease spread worldwide. A similar scenario
can be drawn from the number of recovered people and
the number of cases, as infected people with mild or no
symptoms were unaware of being infected. Contrarily, we
can see that the similarity between recovered and deaths
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Fig. 7: Baseline results for the Brazilian Weather dataset presented in descending order of MAE. In this experiment,
REGENN once more outperformed all the competing algorithms, demonstrating versatility by performing well even on a
highly-seasonal dataset with improvement no lower than 11.95%. In the face of seasonality, the Elman RNN surpassed the
Exponential Smoothing, the previously second-best algorithm. In the image, the algorithms are symbol-encoded based on
their type and number of estimators; we use gray arrows to report the results’ standard deviation. The negative deviation,
which is equal to the positive one, was suppressed for improved readability.

TABLE 3: Ablation results from experimenting over the Brazilian Weather dataset that was conducted by varying the
Recurrent Unit (RU) and its directional flag between Bidirectional (B) and Unidirectional (U). We use E to designate the
non-conventional Transformer Encoder and AR the feed-forward Autoregressive linear component.

RECURRENT UNIT (RU) Elman RNN GRU LSTM
NETWORK ARCHITECTURE MAE RMSE MSLE MAE RMSE MSLE MAE RMSE MSLE

BRU 2.56 5.90 0.45 2.19 5.00 0.28 2.20 5.04 0.28
E→ BRU 2.70 5.66 0.37 2.33 5.19 0.28 2.57 5.42 0.29

(E→ BRU + BRU) + AR 2.18 5.52 0.37 2.38 5.72 0.41 2.44 5.75 0.41
(E→ BRU + URU) + AR 2.84 6.47 0.55 2.24 5.05 0.28 3.17 7.42 0.80

(E→ BRU) + AR 3.58 8.13 0.98 3.31 7.57 0.82 3.61 8.19 0.96
E→ URU 3.12 5.86 0.32 2.81 5.69 0.34 2.96 5.54 0.30

(E→ URU + BRU) + AR 2.36 5.69 0.41 2.23 5.11 0.28 2.47 5.77 0.41
(E→ URU + URU) + AR 2.52 5.83 0.42 2.10 4.97 0.28 4.88 10.24 1.61

(E→ URU) + AR 4.30 9.38 1.34 3.25 7.55 0.81 5.25 10.69 1.75
URU 2.40 5.32 0.32 3.26 7.45 0.77 2.83 6.17 0.50

RECURRENT GRAPH EVOLUTION NEURAL NETWORK (REGENN) 1.92 4.86 0.28
REGENN WITHOUT VARIABLE DECODER 1.95 4.85 0.27

REGENN WITHOUT AUTOREGRESSION 2.00 4.95 0.27
AUTOREGRESSION ONLY 2.69 4.68 0.37
OVERALL IMPROVEMENT 8.42% 2.16% 0.00%
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Fig. 8: The Evolution Weights from REGENN for the Brazilian Weather dataset, in which we use the cosine similarity
activation function on the network’s hidden weights to compare the relationship between pairs of variables. The image
uses "Sol. Rad." as a shortening for Solar Radiation, "Temp" for Temperature, "Max" for Maximum, and "Min" for Minimum.

decreases over time, which comes from the fact that, as more
tests are made, the mortality rate drops to a stable threshold
due to the increased number of recovered people.

Experiment on Brazilian Weather dataset
The Brazilian Weather dataset is a highly seasonal dataset
with a higher number of samples, variables, and timestamps
than the previous one. For simplicity’s sake, in this exper-
iment, REGENN was trained on the whole training set at
once. The results are in Fig. 7, in which REGENN was
the first-placed algorithm, followed by the Elman RNN in
second. REGENN overcame the Elman RNN by 11.95% on
the MAE, 11.96% on the RMSE, and 25.84% on the MSLE.

We noticed that all the algorithms perform quite simi-
larly for this dataset. The major downside for most algo-
rithms comes from predicting small values close to zero, as
noted by the MSLE results. In such a case, the ensembles
showed a high variance when compared to REGENN. We
believe this is why the Elman RNN shows performance
closer to REGENN rather than to Exponential Smoothing,
the third-placed algorithm, as REGENN has a single esti-
mator, while the Exponential Smoothing is an ensemble of
estimators. Another understanding of why some algorithms
underperform on the MSLE is related to their difficulty to
track temporal dependencies, such as weather seasonality.

The ablation results are in Tab. 3, in which we observed
again that the network without the GSE layers already
surpasses the baselines. When decommissioning the GSE
layers of REGENN and using GRU instead of LSTM on the
decoder, we observed a 3.86% improvement on the MAE,
10.02% on the RMSE, and 25.34% on the MSLE when com-
pared to the Elman RNN results. Using REGENN instead,
we achieve a further performance gain of 8.42% on the MAE
and 2.16% on the RMSE over the ablation experiment.

Fig. 8 depicts the Evolution Weights for the current
dataset, in which we can observe a consistent similarity
between pairs of variables in the input graph, which does
not repeat in the evolved graph, implying different relation-
ships. We observe that the similarity between all pairs of

variables increased on the evolved graph. The pairs Solar
Radiation and Rain, Maximum Temperature and Rain, and
Solar Radiation and Minimum Temperature stood out. Those
pairs are mutually related, which comes from solar radiation
interfering in maximum and minimum temperature and in
the precipitation factors, where the opposite relation holds.
What can be extracted from the Evolution Weights, in this
case, is the notion of importance between pairs of variables
so that the pairs that stood out are more relevant and
provide better information during the forecasting process.

Experiment on PhysioNet dataset

The PhysioNet dataset presents a large number of samples
and an increased number of variables, but little information
on the time-axis, a setting in which ensembles still struggle
to perform accurate predictions, as depicted in Fig. 9. Once
again, REGENN keeps steady as the first-placed algorithm
in performance, showing solid improvement over the Lin-
ear SVR, the second-placed algorithm. The improvement
was 7.33% on the MAE and 35.13% on the MSLE, while
the RMSE achieved by REGENN laid within the standard
deviation of the Linear SVR, pointing out an equivalent per-
formance between them. The Linear SVR is an ensemble of
multiple estimators, while REGENN uses only one, making
it better accurate for dealing with the current dataset.

As in Tab. 4, the ablation results reveal that a neural
network architecture without the GSE layers can achieve
a better performance than the baseline algorithms. In this
specific case, we see that by using a bidirectional LSTM in-
stead of unidirectional on the decoder module of the neural
network, we can achieve a performance almost as good as
REGENN, but not enough to surpass it, as REGENN still
shows an improvement of 1.05% on the MAE and 0.98% on
the RMSE over the experiment with bidirectional LSTM.

In this specific case, REGENN learns by observing mul-
tiple ICU patients. However, one cannot say that an ICU
patient’s state is somehow connected to another patient’s
state. Contrarily, the idea holds as in the first experiment,
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Fig. 9: Baseline results for the PhysioNet Computing in Cardiology Challenge 2012 dataset presented in descending order
of MAE, in which REGENN was the algorithm with the best performance followed by the Linear SVR. The comparative
improvement was no lower than 7.33%, but, in this case, REGENN yielded an RMSE compatible with the Linear SVR. In
the image, the algorithms are symbol-encoded based on their type and number of estimators; we use gray arrows to report
standard deviation. The negative deviation, which is equal to the positive one, was suppressed for improved readability.

TABLE 4: Ablation results over the PhysioNet Computing in Cardiology Challenge 2012 dataset, in which the Recurrent
Unit (RU) is changed together with its directional flag, varying between Bidirectional (B) and Unidirectional (U). We use
E as a shortening for the Transformer Encoder and AR for the Autoregressive linear component.

RECURRENT UNIT (RU) Elman RNN GRU LSTM
NETWORK ARCHITECTURE MAE RMSE MSLE MAE RMSE MSLE MAE RMSE MSLE

BRU 19.95 50.47 1.38 24.80 56.42 3.01 19.49 50.46 1.40
E→ BRU 19.11 49.16 1.41 24.17 54.81 3.00 18.88 48.55 1.40

(E→ BRU + BRU) + AR 18.72 48.60 1.37 18.55 47.86 1.39 18.42 47.78 1.37
(E→ BRU + URU) + AR 18.97 49.59 1.38 18.54 48.90 1.37 18.46 48.33 1.36

(E→ BRU) + AR 18.81 50.20 1.38 18.67 48.59 1.39 18.54 47.35 1.38
E→ URU 19.46 50.24 1.44 19.42 51.03 1.44 19.78 51.29 1.44

(E→ URU + BRU) + AR 18.76 48.81 1.39 18.65 48.64 1.38 18.55 48.28 1.38
(E→ URU + URU) + AR 19.02 49.75 1.43 18.64 48.81 1.38 18.63 48.93 1.37

(E→ URU) + AR 18.98 48.67 1.45 18.82 49.98 1.41 18.88 50.31 1.39
URU 20.58 50.32 1.42 30.85 63.30 4.68 24.85 56.41 2.92

RECURRENT GRAPH EVOLUTION NEURAL NETWORK (REGENN) 18.22 47.31 1.37
REGENN WITHOUT VARIABLE DECODER 18.23 47.45 1.37

REGENN WITHOUT AUTOREGRESSION 18.48 49.72 1.37
AUTOREGRESSION ONLY 24.44 53.92 2.08
OVERALL IMPROVEMENT 1.05% 0.98% 0.0%



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

Fig. 10: Evolution Weights extracted from REGENN after training on the PhysioNet Computing in Cardiology Challenge
2012 dataset, in which we use the cosine similarity to compare the relationship between pairs of variables. We use "ABP"
as a shortening for Arterial Blood Pressure, "NI" as Non-Invasive, "Dias" as Diastolic, and "Sys" as Systolic.

where although the samples are different, they have the
same domain, variables, and timestream, such that the
information from one sample might help enhance future
forecasting for another one. That means REGENN learns
both from the past of the patient and from the past of other
patients. Nevertheless, we must be careful about draw-
ing any understanding about these results, as the reason
each patient is in the ICU is different, and while some
explanations might be suited for a small set of patients, it
tends not to generalize to a significant number of patients.
When analyzing the Evolution Weights in Fig. 10 aided by a
physician, we can say that there is a relationship between
the amount of urine excreted by a patient and the arterial
blood pressure, and also that there is a relation between the
systolic and diastolic blood pressure. However, even aided
by the Evolution Weights, we cannot further describe these
relations once there are variables of the biological domain
that are not being taken into consideration.

4 OVERALL DISCUSSIONS

We refer to the Evolution Weights as the intermediate weights
of the representation-learning process optimized through-
out the network’s training. Such weights are time-invariant
and are a requirement for the feature-learning behind the
GSE layer. Although time does not flow through the adja-
cency matrix, the network is optimized as a whole, such that
every operation influences the gradients of the backward
propagation process. That means the optimizer, influenced
by the gradients of both time-variant and invariant data, will
optimize the weights towards a better forecasting ability.
Such a process depends not only on the network architecture
but also on the optimization process’s reliability.

That increases uncertainty, which is the downside of RE-
GENN, demanding more time to train the neural network
and causing the improvement not to be strictly uprising.
Consequently, training might take long sessions, even with
consistently reduced learning rates on plateaus or simulated
annealing techniques; this is influenced by the fact that the

second GSE layer has two dynamic inputs, which arise
from the graph-evolution process. However, we observed
that throughout the epochs, the Evolution Weights reach a
stable point with no major updates. As a result, the network
demonstrates a remarkable improvement in its final itera-
tions when the remaining weights intensely converge to a
near-optimal configuration.

Even though REGENN has a particular drawback, it
demonstrates excellent versatility, which comes from its su-
perior performance in the task of epidemiology modeling on
the SARS-CoV-2 dataset, climate forecasting on the Brazilian
Weather, and patient monitoring on intensive care units on
the PhysioNet dataset. Consequently, we see REGENN as
a tool to be used in data-driven decision-making tasks,
helping prevent, for instance, natural disasters or preparing
for an upcoming pandemic. As a precursor in multiple
multivariate time-series forecasting, there is still much to be
improved. For example, reducing the uncertainty that harms
REGENN without decreasing its performance should be the
first step, followed by extending the proposal to handle
problems in the spatiotemporal field of great interest to
traffic forecasting and environmental monitoring. Another
possibility would be to remove the decoder’s recurrent
layers while tracking the temporal dependencies through
multiple graphs, a new temporal-modeling perspective in
which one could leverage from Graph Convolution Net-
works for extracting inter-variable relationships and using
those as hidden-features during the time-series forecasting
process, to which further hypothesis constraints may apply.

Notwithstanding, in some cases, where extensive gener-
alization is not required, the analysis of singular multivari-
ate time-series may be preferred to multiple multivariate
time-series. That because, when focusing on a single series
at a time, some but not all samples might yield a lower
forecasting error, as the model will be driven to a single
multivariate sample. However, both approaches for tackling
time-series forecasting can coexist in the state-of-the-art,
and, as a consequence, the decision to work on a higher or
lower dimensionality must relate to which problem is being
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solved and how much data is available to solve it.

5 CONCLUSION

This paper tackles multiple multivariate time-series fore-
casting tasks by proposing the Recurrent Graph Evolution
Neural Network (REGENN), a graph-based time-aware
auto-encoder powered by a pair of Graph Soft Evolution
(GSE) layers, a further contribution of this study that stands
for a graph-based learning-representation layer.

The literature handles multivariate time-series forecast-
ing with outstanding performance, but up to this point,
we lacked a technique with increased generalization over
multiple multivariate time-series with sound performance.
Previous research might have avoided tackling such a prob-
lem as a neural network, to that matter, is challenging to
train and usually yields poor results. That because one aims
to achieve good generalization on future observations for
multivariate time-series that do not necessarily hold the
same data distribution.

Because of that, REGENN is a precursor in multiple
multivariate time-series forecasting and, even though this
is a challenging problem, REGENN surpassed all the base-
lines and remained effective after three rounds of 30 ablation
tests through distinct hyperparameters. The experiments
were carried out over the SARS-CoV-2, Brazilian Weather,
and PhysioNet datasets with improvements, respectively, of
at least 64.87%, 11.96%, and 7.33%. As a consequence of
the results, REGENN shows a new range of possibilities
in time-series forecasting, starting by demonstrating that
ensembles poorly perform if compared to a single model
able to learn the entanglement between different variables
by looking at how they interact as time goes by and how
multiple multivariate time-series synchronously evolve.
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CHAPTER

5
CONCLUSION

This thesis contributes to a thorough process for analyzing spatial and temporal

data from the perspective of computer science applied to (A) Street Network Analysis, (B)

Human Mobility Forecasting, and (C) Dynamic Processes Modeling in Time. The reported

results emerge from an interchangeable underlying abstract formalism, the graph. Through

such a structure, we contribute to the analysis of data on multiple scales, from a cities’

street network at a time, going through the analysis of pairs of cities, and ending with

the simultaneous analysis of whole countries expressed as time series. Accordingly, these

contributions (as highlighted in Chapter 1) derived from the following general hypothesis:

General Hypothesis

The analytic processing by means of complex networks and graph metrics combined

with artificial intelligence techniques from the computational intelligence realm can

expand the comprehension and, consequently, the capacity of modeling and forecast-

ing different human phenomena, providing us with information for acting on the

network topology (i.e., street networks from maps), dynamics (i.e., pendular migra-

tion between cities), and inner processes (i.e., pandemics progression over time).

The results we achieved in the paper Detecting multi-scale distance-based incon-

sistencies in cities through complex-networks [Spadon et al. 2018] reinforce the potential

of complex networks in expanding the comprehension and the capacity of intervention

in cities through the topology and geometry of street meshes. Additionally, through the

contribution described in Reconstructing commuters network using machine learning and

urban indicators [Spadon et al. 2019], we show how to describe and predict the collective

human behavior observed within pairs of cities using machine learning together with the

explanation of the role of urban indicators in commuting patterns. Finally, in Pay Atten-

tion to Evolution: Time Series Forecasting with Deep Graph-Evolution Learning [Spadon
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et al. 2021], we go beyond mobility and show how to shape dynamic processes observed

among humans across space and time with a novel graph-inspired deep neural network ar-

chitecture. We contend that these contributions mark strong evidence that advances have

been made to understand challenging and relevant problems related to human phenomena.

5.1 Further Discussion

5.1.1 Street Network Analysis

Chapter 2 delineated analytical formulations that originated algorithms to inspect

the design of street meshes aiming to provide redesign decisions for urban planners. De-

spite being our central motivation, there are significant challenges in redesigning a city.

Changing the network topology will alter its centrality, which reshapes regions that at-

tract vehicles and people. Nevertheless, our techniques are to be used in the initial design

of a city and in precise alterations that are acceptable during the long-term existence of

an urban center. Consequently, we contribute with the definition of a concept based on

inherent problems to urban structures caused by the miss-allocation of points of interest,

two algorithms to track and reduce inconsistent vertices, and two case studies that show

how these results can aid planners in real-world problems from urban systems.

It is noteworthy that, during experimentation, we have assumed (i) transportation

only through cities’ streets and (ii) a city with uniform population distribution. Notwith-

standing, our results hold for scenarios where these assumptions fail, as we can adapt

edge weights following the type of displacement rather than using street distance. This

is because our methods use a general concept of weight, and when providing additional

information, such weight can assume any quantitative value. Nonetheless, whenever more

variables are considered during the street network analysis, the set of inconsistencies within

a city will require a specialist’s validation rather than being a self-explanatory result.

5.1.2 Human Mobility Forecasting

Chapter 3 advanced with a model capable of forecasting and understanding the

pendular migration pattern among Brazilian cities using governmental census data. We

contributed to the prediction of fluxes using machine learning algorithms, which, through

urban indicators, could predict the existence of the flux between two cities using classifica-

tion and the number of people commuting between them through regression. Our model

achieved state-of-the-art performance during experimentation, showing 90.4% of accuracy

in the link prediction task and 77.6% of the R2 Score in the weighted link prediction.

It is noteworthy that the related literature describes models primarily based on

population indicators and the distance between cities. On the other hand, our results

indicate that only these two variables are not enough to model human mobility patterns.
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Contrarily, we verified that many other variables that describe the quality of life and

work in cities are necessary to build a commuters network that resembles real-world ones.

The analysis of the results enabled us to answer questions about the factors impacting

commuters’ fluxes between cities and determine potential reasons that lead people to live

in cities other than those they work. Our results reveal that these reasons are primarily

associated with the city of housing’s quality of life and the city of work’s economic growth.

5.1.3 Dynamic Processes Modeling in Time

Chapter 4 extended the Multivariate Time Series concept by delineating its Multi-

ple Multivariate Time Series version, which refers to a stacked multivariate time series that

share variables and timestream. That means we have the same variables observed during

equal timestamps recorded synchronously for different samples. When looking at all the

samples at once, the multivariate time-series forecasting problem yields an additional data

dimension, and each time series becomes a multivariate sample of a higher-dimensional

time-series forecasting problem. When dealing with higher-dimensional data, traditional

artificial intelligence algorithms perform as ensembles by focusing on a single dimension

of the problem, limiting the information shared about different yet related time series.

As a result of tackling the problem on a higher dimension, we created the Recurrent

Graph Evolution Neural Network (ReGENN), a graph-inspired time-aware auto-encoder

with linear and non-linear components working in parallel to provide forecasting capabili-

ties based on observations from the past. ReGENN uses a pair of Graph Soft Evolution

(GSE) layers, which stands for a graph-based learning-representation layer that improves

the encoding and decoding processes by learning a shared graph over several time series

and timestamps. ReGENN was confronted with numerous ensembles and traditional sta-

tistical methods, confirming improvements of up to 64.87% over the competing algorithms.

ReGENN operates on a three-dimensional space from the input to the output due

to being designed to work with higher-dimensional time-series data. Consequently, it can

operate not only across time but also over space when spatiotemporal data is provided.

That means, ReGENN learns by looking at observations from the past, which can be

related to one or many time series of different samples recorded in different places across

the globe. However, a set of time series can be used with ReGENN if, and only if, they are

related to some extent. For example, the sound wave of two birds singing and sharing the

same habitat is feasible for ReGENN’s input, but not birds singing at different habitats.

5.2 Practical Implications

Science has a stringent methodological fashion that aims for numerical results

presentation and technical discussions. In such a way, the broad understanding about the

relevance of the scientific research does not achieve a more comprehensive range of people,
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limiting the general perception about the usefulness of science. With that in mind, this

section presents a brief discussion about the practical implication of this thesis using a

less-academic way of writing to ease the understanding of the results to the general public.

5.2.1 Street Network Analysis

In Chapter 2, we present the Urban Inconsistencies, our first contribution to the

analysis of cities using computational methods. In a city, there are urban planning im-

perfections that affect nearby citizens’ locomotion, which can be found on the streets

blueprint. The methods we devised are able to detect such imperfections by means of

mathematical formulations. Along with that chapter, we show how traffic engineers and

urban planners can use this new concept in practice. The idea is to guide the improvement

of a city’s urban mobility both for pedestrians and for automobile vehicles. The output

of our methods, despite objective, must be analyzed by specialists, such as traffic engi-

neers and urban planners, who will ponder other factors related to the big culture but

that did reach the algorithms’ input. Specialists will make the best decisions for the local

community based on their knowledge, providing unique designs for each city.

Urban Inconsistencies have great potential for use in more general scenarios, but

it also depends on the experts’ knowledge. For example, we can use this concept to bet-

ter distribute goods across distribution centers around a country, thus minimizing costs

related to buying and selling merchants. It can also help to plan the location of vaccina-

tion centers, providing information to the government on distributing vaccines, which are

scarce in many places worldwide. In general, our results can be used with spatial data

related to locomotion through urban streets, roads, highways, railways, bicycle paths, and

other street-like structures to analyze potential mobility issues. Regardless of what is being

analyzed, the ultimate goal will always be the same, providing information for specialists

to make more accurate decisions. In the long run, these decisions tend to generate lower

costs for constructing and maintaining street-like structures. Cost reduction, in this case,

can indicate a better use of taxes or the reduction of expenses of a private company.

5.2.2 Human Mobility Forecasting

In Chapter 3, we show how one can use machine learning to solve a decades-old

migration forecasting problem. Migration is an activity present in human history and

something that we continually experience at different intensity levels. For example, when

moving between cities, states, and countries. Through this research, we found what leads

someone to migrate at the same time that we provide a way to forecast the intensity of

such migration. Such reasons may seem obvious in some cases, but the question is broad

and related to a population subgroup. Thus, in that chapter, we addressed the specific case

of commuting workers between cities, describing people working in one city but residing in
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another. Throughout the chapter, we review several theoretical approaches that carry out

similar problems to this one, pointing out their pros and cons compared to our proposal,

which focuses on machine learning. As a result, we show how to predict the number of

workers migrating between Brazilian cities in 2010 through governmental census data.

Furthermore, we show that the reasons that lead Brazilians to work in one city and reside

in another are directly related to the job opportunity and the cost of living. As a result,

people tend to work in cities with more job opportunities, live in others with a lower living

cost, and daily commute to work. Therefore, comprehending migratory phenomena have

a significant impact on the understanding of populations worldwide. By demonstrating

the potential of artificial intelligence in solving this problem, we open doors for revisiting

problems as old as this one bringing more knowledge to our society.

The understanding of migration has a comprehensive economic impact on regional

planning. For example, it allows a better understanding of the concentration and distri-

bution of wealth among the population. Besides, it potentially explains other phenomena

such as crime and unemployment that may be connected with the lack of jobs in partic-

ular cities. More broadly, we can extrapolate the proposed solution to a range of other

problems, such as buying and selling goods, international trade between countries, and

the spread of epidemics between places. As is the case of migration between cities, we can

find the relationship between two entities in the human brain, nature’s food chains, inter-

personal and professional relationships, among others. Modeling these relations through

artificial intelligence expands our knowledge about society and ourselves, implying more

information for decision-making, whether focused on public or private policies.

5.2.3 Dynamic Processes Modeling in Time

In Chapter 4, we introduce a new neural network designed to predict time series

and spatiotemporal series, which are time-varying and space-time-varying data. A neural

network is a computational technique derived from machine learning1 that mimics a brain

neuron’s functioning, aiming to predict future not-yet-seen data by observing past data. As

a result of our study, we created a computational technique from a theoretical formulation

that provides a different way of looking at time-series forecasting problems. This novel

perspective describes that one needs to observe multiple series of events that happen

mutually and synchronously to predict the future more accurately. For example, when

monitoring an endangered animal, one requires understanding the animal’s habitat while

considering direct and indirect predators. Thus, we transferred such a perception of time

to a scenario where computers, through a neural network, can analyze the relationships

between different series-like data. This way, we achieved highly accurate predictions as

compared with real-world circumstances. Specifically, we contributed with a novel neural

1 Also referred to as deep learning.
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network technique that has shown great potential in predicting the evolution of pandemics

worldwide, forecasting climate at a country level, and monitoring the health status of ICU-

admitted patients. However, because time is a basic premise for human existence, the

applications of a neural network in forecasting events related to time series are manifold.

We can use data of several natures through multiple variables varying over time.

This is the case of predicting the evolution of migratory patterns between governmental

censuses or monitoring the human mobility improvement over cities between different

municipal administrations. Regardless of the application, one can expect our model to

highly accurately describe the future based on the past; at least, more accurately than

the 48 algorithms against which we compared our method. Because forecasting future

events is one of the basic premises for decision-making related to urban planning, consumer

behavior forecasting, market trend analysis, among other applications, our neural network

can be thoroughly valuable by both the private and public sectors. Regardless of the

purpose of use, knowing glances of the future allows one to make clear decisions, indirectly

optimizing decision-making time and better allocating the available resources.

5.3 Open Problems

Regarding the analysis of street meshes using complex networks, there are still

open problems related to identifying the backbone of a city, which is linked to the study

of Scellato et al. 2006. The backbone consists of a group of streets that are of central

importance to a city’s locomotion. Due to its synthesizer nature, such a backbone allows

a hierarchical delineation of a city’s traffic, helping identify streets more susceptible to

problems. A first metric that can be explored to solve that task is the Spanning Tree

Centrality [Mavroforakis et al. 2015, Teixeira, Santos and Francisco 2016], which computes

all the spanning trees based on shortest paths to quantify the importance of the edges of

a graph according to how many times each edge appears in a different spanning tree. This

approach can be performed iteratively, defining the level of importance of the edges in:

⋄ Primary streets: the main streets of the city with the highest traffic of people and

vehicles, characterizing streets that might be more sensitive to locomotion issues;

⋄ Secondary streets: consist of capillary streets that are connected to the arterial

(primary) streets, which are used to avoid and distribute the traffic of vehicles; and,

⋄ Ternary streets: these are streets responsible for routing inside the neighborhoods.

Through the backbone’s hierarchic delineation, it is possible to produce short summaries

of network traffic, enabling drivers to promptly understand their overall organization, find

routes more quickly, or even explore an unknown city more efficiently. Such a problem
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is still open as the related algorithms are computationally expensive, requiring too much

time to provide a result and making it difficult to experiment on medium and large cities.

Regarding dynamic processes like human mobility, which impact several layers

of the society, from infrastructural planning and economic decisions to the spread of

epidemics, one open problem is to infer urban indicators through graph metrics. A model

capable of inferring urban indicators can predict indicators in regions where they are

unknown, which would reduce costs related to obtaining such information and expand

our understanding of cities worldwide. In this experiment, one should focus on predicting

urban indicators related to Gross Domestic Product, Unemployment Rate, and Traffic

Accidents, all of which are broadly collected by a range of countries, aiding in the model

validation. To this end, one can use traditional regression techniques and classification

algorithms adapted to regression tasks, such as Nearest Neighbors [Aha, Kibler and Albert

1991], Decision Trees [Breiman 2017], and Adaptive Boosting [Freund and Schapire 1995];

an approach that can also leverage deep learning techniques [LeCun, Bengio and Hinton

2015], especially graph-inspired neural networks architectures [Zhang, Cui and Zhu 2020].

Accordingly, it becomes feasible to use these indicators to infer global human mo-

bility. The greatest challenge of this approach is related to the discrepant characteristics of

cities, such that using only Brazilian data will probably not be enough to estimate fluxes

among cities around the world. However, cluster analysis can help because international

cities with similar topology to the Brazilian ones might share similarities related to their

urban indicators. This way, it is possible to devise models focused on predicting urban

indicators and mobility fluxes among clusters of similar cities, explaining how urban in-

dicators and graph metrics act upon global human-movement phenomena. Contributions

in this area have the potential to evaluate the quality of census data (i.e., contrasting the

manually collected with the predicted data when the model is accurate enough), predict

the fluxes of commuters in years between governmental censuses, and predict fluxes where

such information is unknown or private to the general public.

Concerning the analysis of street networks, the validation of the result can be

through analytic methods, mainly statistical ones. In this case, one should evaluate the

significance of the findings, for instance, through null models [Roxburgh and Matsuki

1999] and confidence intervals [Efron 1987]. Examples in these areas refer to the genera-

tion of random networks [Villas Boas, Rodrigues and da Fontoura Costa 2009] that enable

comparing the number of times a pattern appears in the real network and several random

networks. Another technique to be used is bootstrapping [Efron 1992], a random sampling

evaluation with replacement that defines confidence intervals of a given statistical evalu-

ation metric. To analyze the correlation between graph metrics and urban indicators, we

highlight the correlation of Pearson, Spearman, and Kendall [Chiang 2003]. It is notewor-

thy that they can be evaluated according to the behavior of the probability distribution
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fitting (e.g., Poisson, Gaussian, and Pareto) of both urban indicators and graph metrics.

Concerning machine and deep learning, classifiers and regressors must be verified

in the last step of the machine or statistical learning processes. This verification unfolds

into a set of metrics that translates into performance estimates. The quality of the clas-

sifiers’ predictions can be apprised through the accuracy score, confusion matrix, and

F-Measure [Rijsbergen 1979]. Similarly, regressors’ prediction can be analyzed through

the R2 Score, mean squared error, and mean absolute error [James et al. 2013]. Together,

these metrics provide a panorama of accuracy, miss-classification, deviation from the ex-

pected output, and behavior against the dataset size. They guide the hyperparameters

tuning process towards better outputs and provide a verdict on success or failure.

5.4 Scientific Production

This section provides a list of Spadon’s publications from 2017 to 2021, which were

divided into first-authored publications (main research line) and co-authored publications

(collaborations with the research group). More information about these publications and

their full texts is available in his Google Scholar, ReserachGate, and ORCID profiles.

5.4.1 First-Authored Publications

Journal Articles

1. Spadon G., Hong S., Brandoli B., Matwin S., Rodrigues-Jr J. F., and Sun J., Pay At-

tention to Evolution: Time Series Forecasting with Deep Graph-Evolution Learning.

Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2021;

2. Spadon G., Carvalho A. C. P. L. F., Rodrigues-Jr J. F., and Alves L. G. A., Re-

constructing Commuters Network using Machine Learning and Urban Indicators.

Scientific Reports. Springer Nature, 2019; and,

3. Spadon G., Brandoli B., Eler D. M., and Rodrigues-Jr J. F., Detecting Multi-

Scale Distance-Based Inconsistencies in Cities through Complex-Networks. Journal

of Computational Science. Elsevier, 2018.

Book Chapters

4. Spadon G., Gimenes G., and Rodrigues-Jr J. F., Topological Street-Network Char-

acterization through Feature-Vector and Cluster Analysis. International Conference

on Computational Science. Springer, 2018;

5. Spadon G., Brandoli B., Eler D. M., and Rodrigues-Jr J. F., A Distance-Based

toolset to Track Inconsistent Urban Structures Through Complex-Networks2. Inter-

2 Awarded paper – Invited for publication at the Journal of Computational Science.

https://scholar.google.com/citations?user=bfdGsGUAAAAJ
https://www.researchgate.net/profile/Gabriel_Spadon
https://orcid.org/0000-0001-8437-4349
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national Conference on Computational Science. Springer, 2018; and,

6. Spadon G., Scabora L. C., Araujo M. V., Oliveira P. H., Brandoli B., Sousa E. P.

M., Traina-Jr C., and Rodrigues-Jr J. F., Complex-Network Tools to Understand the

Behavior of Criminality in Urban Areas3. Information Technology-New Generations.

Springer, 2018.

Conference Papers

7. Spadon G. and Rodrigues-Jr J. F., Computer-Assisted City Touring for Explorers.

Workshop on Big Social Data and Urban Computing (BiDU) co-located with the

44th International Conference on Very Large Data Bases (VLDB). CEUR-WS, 2018;

8. Spadon G., Gimenes G., and Rodrigues-Jr J. F., Identifying Urban Inconsistencies

via Street Networks3. Procedia Computer Science 108. Elsevier, 2017; and,

9. Spadon G., Scabora L. C., Oliveira P. H., Araujo M.V., Brandoli B., Sousa E. P.

M., Traina-Jr C., and Rodrigues-Jr J. F., Behavioral Characterization of Criminality

Spread in Cities3. Procedia Computer Science 108. Elsevier, 2017.

Public Communication

10. Redes Complexas Ajudam a Entender Movimento Diário da População Entre Cidades.

Jornal da USP, 2019. Available online at <https://bit.ly/3f1T8jh>;

11. Using Computational Models to Improve Street Planning. Science Trends, 2019.

Available online at <https://bit.ly/2S9pujp>;

12. Reconstructing Commuter Networks using Machine Learning and Urban Indicators.

Science Trends, 2019. Available online at <https://bit.ly/3u2ofzt>; and,

13. Redes de Ruas Produzidas em Computador Ajudam a Planejar Trânsito. Jornal da

USP, 2018. Available online at <https://bit.ly/3wz5yp5>.

5.4.2 Co-Authored Publications

Journal Articles

14. Brandoli B., Geus A. R., Souza J. R., Spadon G., Soares-Jr A., Rodrigues-Jr J. F.,

Komorowski. J, Matwin S., Aircraft Fuselage Corrosion Detection using Artificial

Intelligence. Sensors. MDPI, 2021;

15. Rodrigues-Jr J. F., Gutierrez M., Spadon G., Brandoli B., Amer-Yahia S., LIG-

Doctor: Efficient Patient Trajectory Prediction using Bidirectional Minimal Gated-

Recurrent Networks. Information Sciences. Elsevier, 2021;

3 Results from the Masters’ dissertation.

https://bit.ly/3f1T8jh
https://bit.ly/2S9pujp
https://bit.ly/3u2ofzt
https://bit.ly/3wz5yp5
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16. Brandoli B., Spadon G., Esau T., Hennessy P., Carvalho A. C. P. L. F., Rodrigues-

Jr J. F., Amer-Yahia S., DropLeaf: A Precision Farming Smartphone Application

for Measuring Pesticide Spraying Methods. Journal of Computers and Electronics

in Agriculture. Elsevier, 2020;

17. Rodrigues-Jr J. F., Spadon G., Brandoli B., Amer-Yahia S., Patient Trajectory

Prediction in the Mimic-III Dataset, Challenges and Pitfalls. arXiv, 2019;

18. Correia R. C. M., Spadon G., Gomes P. H. A., Eler D. M., Garcia R. E., and Olivete-

Jr C., Hadoop Cluster Deployment: A Methodological Approach. Information. MDPI,

2018; and,

19. Scabora L. C., Oliveira P. H., Spadon G., Kaster D., Rodrigues-Jr J. F., Traina

A., Traina-Jr C., Cutting-Edge Relational Graph Data Management with Edge-k:

From One to Multiple Edges in the Same Row. Journal of Information and Data

Management. SBC, 2018.

Book Chapters

20. Rocha J. E., Olivete-Jr C., Gomes P. H. A., Garcia R. E., Correia R. C. M., Spadon

G., and Eler D. M., Internet-Based Education: A New Milestone for Formal Lan-

guage and Automata Courses. Information Technology-New Generations. Springer,

2018; and,

21. Correia R. C. M., Spadon G., Eler D. M., Olivete-Jr C., and Garcia R. E., Teach-

ing Distributed Systems using Hadoop. Information Technology-New Generations.

Springer, 2018.

Conference Papers

22. Scabora L. C., Spadon G., Cazzolato M. T., Kaster D. S., Traina A. J., Rodrigues-

Jr J. F., Traina-Jr C. SHARq: Sharing Recursive Queries in Relational Databases.

Proceedings of the 36th Annual ACM Symposium on Applied Computing. ACM,

2021;

23. Scabora L. C., Spadon G., Oliveira P. H., Rodrigues-Jr J. F., Traina-Jr C., En-

hancing Recursive Graph Querying on RDBMS with data Clustering Approaches.

Proceedings of the 35th Annual ACM Symposium on Applied Computing. ACM,

2020;

24. Rodrigues-Jr J. F., Spadon G., Brandoli B., Amer-Yahia S., Lig-Doctor: Real-World

Clinical Prognosis using a Bi-Directional Neural Network. 33rd International Sym-

posium on Computer-Based Medical Systems (CBMS). IEEE, 2020;
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25. Brandoli B., Spadon G., Arruda M. D. S., Gonçalves W. N., Carvalho A. C. P. L.

F., and Rodrigues-Jr J. F., A Smartphone Application to Measure the Quality of

Pest Control Spraying Machines via Image Analysis. Proceedings of the 33rd Annual

ACM Symposium on Applied Computing. ACM, 2018;

26. Arruda M. D. S., Spadon G., Rodrigues-Jr J. F., Gonçalves W. N., and Brandoli B.,

Recognition of Endangered Pantanal Animal Species using Deep Learning methods.

International Joint Conference on Neural Networks (IJCNN). IEEE, 2018;
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Learning Techniques. Frontiers in Education Conference (FIE). IEEE, 2018;
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R. E., Databases Available through APIs using Restify: Characteristics, Program-

ming Models, and Benchmarks. 12th Iberian Conference on Information Systems

and Technologies (CISTI). IEEE, 2017;

30. Caldeira D. C., Correia R. C. M., Spadon G., Eler D. M., Olivete-Jr C., and Garcia

R. E., Data Mining on Linkedin Data to Define Professional Profile via MineraSkill

Methodology. 12th Iberian Conference on Information Systems and Technologies

(CISTI). IEEE, 2017;

31. Almeida C. E. M., Correia R. C. M., Eler D. M., Olivete-Jr C., and Garcia R.

E., Scabora L. C., and Spadon G., Prediction of Winners in MOBA Games. 12th
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OISHI, C. M.; AMARAL, F. V. G.; FRANÇA, H. L.; NAKATA,W. H.; AGUIAR, D. A.;
SANTOS, G. F. de O.; MEDEIROS, D. de O.; SPADON, G.; RODRIGUES-JR, J. F.;
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Abstract. Complex networks can be used for modeling street meshes
and urban agglomerates. With such a model, many aspects of a city can
be investigated to promote a better quality of life to its citizens. Along
these lines, this paper proposes a set of distance-based pattern-discovery
algorithmic instruments to improve urban structures modeled as complex
networks, detecting nodes that lack access from/to points of interest in
a given city. Furthermore, we introduce a greedy algorithm that is able
to recommend improvements to the structure of a city by suggesting
where points of interest are to be placed. We contribute to a thorough
process to deal with complex networks, including mathematical modeling
and algorithmic innovation. The set of our contributions introduces a
systematic manner to treat a recurrent problem of broad interest in cities.

Keywords: Complex network · Network analysis · Urban structure

1 Introduction and Related Works

The synergy of real-world systems can be described as complex networks that
exchange information through their entities’ relationships. Such networks can
model complex systems from neuronal networks to subway systems [1] and also,
they can shape cities when linking the network topology with georeferenced data.

By analyzing the complex network of a city, it is possible to extract fea-
tures that can describe urban problems, which are meaningful indicators for city
planners [2]. Such features can reveal, for instance, sites where social activities
are more intense, regions where facilities should be placed, and neighborhoods
that lack street access. Particularly, these networks can expose distance-based
inconsistencies, which is how we refer to nodes that lack efficient street access
from/to others in the same network, possibly resulting in structural bottlenecks.

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10860, pp. 288–301, 2018.
https://doi.org/10.1007/978-3-319-93698-7_22
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Along these lines, we identified a lack of methods to analyze and improve the
structure, mobility, and street access of cities. Consequently, in this paper, we
contribute with a mathematical tool-set and algorithms to track distance-based
inconsistencies by analyzing the complex-network topology of a city. Our results
have implications for the street access, supporting a finer street planning by
enhancing mobility indicators and providing better city’s structural assessment.

The core assumption of this study is that the network is supposed to provide
streets that render the shortest distance between places. In this regard, our
tool-set uses two distance-functions to track nodes that do not provide shortest
distance routes between them and other nodes that are of some interest. Nodes
that fail in providing minimum-length routes are considered to be inconsistent
nodes, which are evidence of problems in the city structure. Accordingly, in
the face of an inconsistency, we raise two hypotheses: (A) the network lacks
a more appropriate mesh; or, instead, (B) the city lacks its points of interest
placed in better locations. The first one indicates the need for new points of
interest to distribute their load. Contrarily, the second one indicates the need for
relocating points of interest because the topology of the terrain cannot afford new
streets.

A vast number of studies have been conducted to analyze inherent properties
and behaviors found in cities. For instance, multiple metrics have been adopted to
explain their structural conditions [3], their intense traffic of vehicles [4], and the
emergence of collective behavior [5]. In other studies, the authors centered on the
geometrical perspective of the network [6], and on the elements positioning [7,8].
Furthermore, there are those who reviewed the role of the city elements [9,10],
that addressed the support to the urban planning and design [11,12], and that
improved the facility-location analysis and planning of street meshes [13]. In
addition to the ones that inspected the effectiveness of the underground sys-
tems [10] and the improvement of long-range connections [14], besides those who
defined the concept of accessibility through complex networks and cities [15] and
that tested the centrality of cities considering their space syntax [16–18].

In this paper, we contribute with a tool-set that improve the analysis of
cities by tracking inconsistent urban structures through complex networks. This
proposal follows by showing that the distance between two nodes can reveal ill-
located points of interest and that such information can be used to make a city
better distance-efficiently to their citizens. To present our contributions, this
paper is organized as follows: Sect. 2 discusses our mathematical formulation
and related algorithms; Sect. 3 discusses the results about the applicability of
the proposed tool-set; and, Sect. 4 presents the conclusions and final remarks.

2 Mathematical Formulation and Algorithms

2.1 Preliminaries

Along the text, we refer to a complex network as a distance-weighted directed
graph G = {V, E}, which is composed by a set V of |V| nodes and a set E of |E|
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edges. To model a city as a complex network, we considered streets as the edges
and their crossings as the nodes, aiming to preserve their element’s geometry.
An edge e ∈ E is an ordered pair 〈i, j〉, in which i ∈ V is named source and
j ∈ V is named target, i �= j. Each node i ∈ V has two properties {Li

at,Li
on}

that correspond to their coordinates—Li
at is the latitude and Li

on the longitude.
Based on such coordinates, we conferred to the edges in E a floating-point weight
that refers to the great-circle (or inline) distance between their source and target.

Our mathematical tool-set tracks inconsistencies identified through distance
functions to detect which element does not follow a pattern. The pattern that
we consider refers to the real-world distance between the nodes of the network,
which in turn can provide insights about the locomotion through the city streets.
In this regard, we begin by tracking a set P ⊂ V of points of interest; the idea,
then, is to determine two sets of nodes that surrounds a point of interest p ∈ P,
which can reveal the city’s inconsistencies through applying algebraic operations.
We introduce these two sets as the perimeter set of p and the network set of p.

2.2 Grouping Nodes in the Surroundings of Points of Interest

The first set matches the closest nodes to a point of interest p according to the
great-circle (or inline) distance, which is referred as the perimeter set of p:

VEp = {v ∈ V|dEvp < dEvp̄,∀p ∈ P,∀p̄ ∈ P, p �= p̄} (1)

where dEij is the great-circle distance between i and j in the surface of Earth:

dEij = R × arcos
(
sin(Li

at)sin(Lj
at) + cos(Li

at)cos(Lj
at)cos(�Lij

on
)
)

(2)

where Li
at and Lj

at are the latitudes, �Lij
on

is the difference between the longitudes
Li
on and Lj

on, both of nodes i and j. Also, R is the radius of Earth (6,378 km),
and all values are represented in radians. Given a graph G = {V, E} and a set of
points of interest P, a node v ∈ V pertains to the perimeter set of only one p ∈ P.

∴ VEp and VEp̄ — ∀p ∈ P,∀p̄ ∈ P, p �= p̄ — are mutually disjoint.

The second set corresponds to the network set of p, which is made of nodes
closest to a point of interest p according to the length of their shortest paths:

VNp = {v ∈ V|dNvp < dNvp̄,∀p ∈ P,∀p̄ ∈ P, p �= p̄} (3)

where dNij is the length of the shortest directed path (spathij) between i and
j—i.e. the sum of weights of all the edges in a minimum-length path, as follows:

minimum length(spathij) =
∑

e∈spathij

weight(e) (4)

Recall that, the edge weight is given by the straight-line distance between
their nodes using the great-circle distance (see Eq. 2). We refer to the shortest
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path length as network distance, in the sense that one must necessarily (in the
best case) move across this path to go from the source node to the target node.
Notice that any node v ∈ V is network-closest to one and only one p ∈ P.

∴ VNp and VNp̄ — ∀p ∈ P,∀p̄ ∈ P, p �= p̄ — are mutually disjoint.

In cases where the complex network is directed, the network-distance TO a
point of interest is not necessarily the same as the network-distance FROM a
point of interest, which may result in different network sets for the same p. This
detail is addressed in the following section, where we define the network set from
a point of interest to the nodes in V by mean of the reversed network-set of p:

V̄Np = {v ∈ V|dNpv < dNp̄v,∀p ∈ P,∀p̄ ∈ P, p �= p̄} (5)

2.3 Compartmentalizing Inconsistencies for Directed Networks

Consider different public services of a city as points of interest; such services
may have different ways to assist the population, but all of them must require
locomotion as a condition for assistance. For example, in the case of doctors’
clinics, it is desired that patients get there efficiently. In turn, police stations
require that their police officers efficiently reach the house of the citizens. In
the case of schools, the daily routine demands an efficient back-and-forth transit
to students. Along with other services that can be fitted with this assumption.
Notice that, we are referring to efficient paths as the ones with minimum length.

In the first example, there is an implicit displacement from a node v to a
node p; in the second one, the displacement is from the node p to the node v;
and, in the third case, there is a bi-directional displacement between v and p, in
which v is an ordinary node and p is a specific point-of-interest. Based on the
network direction, those three cases led to the following definitions:

1. Inward Inconsistency: nodes that are inline-closest to a point of interest,
but network-closest (from v to p, as given by Eq. 3) to a different one:

ΨI
p = VEp − VNp (6)

2. Outward Inconsistency: the same as the previous category, but in the
opposite direction (from p to v, as given by Eq. 5), resulting in the set:

ΨO
p = VEp − V̄Np (7)

3. Absolute Inconsistency: nodes that are, simultaneously, considered to be
inward and outward inconsistencies—i.e. nodes in the sets’ intersection:

ΨA
p = ΨI

p ∩ ΨO
p (8)

As mentioned, these categories rely on the direction of the network. In cases
where there is no direction, there will be no minimum-length divergence between
paths of a round trip, but yet the inconsistencies can be tracked by calculating
the difference between the perimeter set VEp and the network set VNp of p. To
provide further discussion, hereinafter we are considering just directed networks.
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2.4 Tracking Distance-Based Inconsistencies

In this section, we discuss Algorithm 1 that joins the concepts that we previously
introduced. The aim of such algorithm is to track distance-based inconsistencies
in distance-weighted directed networks by using a set P of |P| of points of interest.
Notice that, despite the definition of inconsistency is segmented into three types
(see Sect. 2.3), the algorithm considers a single inconsistency type at a time.

The algorithm starts by filling a set of empty sets, each one reserved to store
the inconsistencies of a single point of interest (see lines 1 to 2). Subsequently,
we use pE and pN to store, respectively, the inline-closest and network-closest
points of interest to a node v ∈ V (see lines 5 and 6). We used the external
functions inline closest and network closest (see lines 8 and 9) to extract
the closest point of interest to the node v; they implement, respectively, Eq. 2
and 4. Following, we perform a test to check whether a node is an inconsistency
or not; thus, if the inline-closest point pE and the network-closest point pN are
not the same (see line 11) then v is an inconsistency of pE (see line 12). Finally,
a set of the inconsistencies of |P| points of interest is returned as the result (see
line 13).

Data: G = {V, E}, P ⊂ V, and c ∈ {I, O, A} — c is used to indicate the direction
Result:

{
Ψc

p, ∀p ∈ P
}

— a set of inconsistencies for all points of interest p ∈ P

1 Ψc ← ∅
2 for each p ∈ P do
3 Ψc

p ← ∅ // notice that Ψc
p ⊂ Ψc, ∀p ∈ P, therefore |Ψc| = |P|

4 for each v ∈ V do
5 pE ← ∅
6 pN ← ∅
7 for each p̄ ∈ P do
8 pE ← inline closest(v,

〈
pE, p̄

〉
)

9 pN ← network closest(v,
〈
pN, p̄

〉
, c)

10 if pE �= ∅ and pN �= ∅ then
11 if

{
pE

} − {
pN

} �= ∅ then
12 Ψc

pE ← Ψc
pE ∪ {v} // v should be closer to pE than to pN

13 return Ψc

Algorithm 1: An algorithm to track distance-based inconsistencies in
cities modeled as networks. We use pE and pN to refer to the closest points
of interest to a node v considering, respectively, the inline and the network
distances; other methods are related to the ones of Sect. 2.2.

Given a graph G = {V, E}, a set P of |P| points of interest, and an inconsistent
node i; such node is known to be an inconsistency to one and only one p ∈ P.

∴ Ψc
p and Ψc

p̄ — ∀p ∈ P,∀p̄ ∈ P, p �= p̄, c ∈ {I, O, A} — are mutually disjoint.
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Consequently, it is possible to derive two other sets from a point of interest p:
(i) the inconsistency set Ψc

p; and (ii) the set of consistent nodes Ψ̄c
p = VEp − Ψc

p,
such that Ψ̄c

p ∩ Ψc
p = ∅. The consistent nodes are fundamental to the process of

suggesting locations to points of interest because they provide a smaller average
distance to the nodes in their perimeter, different than an inconsistent node.

2.5 Reducing Distance-Based Inconsistencies

In this section, we introduce Algorithm 2, which was designed to suggest changes
in the location of points of interest to improve their access through the streets
of a city. The task of finding a perfect location for a point of interest might
demand the test of all possibilities through an exhaustive search. Consequently,
our algorithm has a greedy approach that uses information about centrality
metrics to guide the placement of a point of interest. Centrality is not only an
adequate technique to quantify the importance of a node but also it is capable
to indicate central locations that are equally accessible to all nodes of a network.

Along these lines, we decided to adopt Straightness Centrality [9] as
the centrality metric of Algorithm 2 because it analyzes the nodes of a net-
work by joining both inline and network distances. It is noteworthy that any
distance-based centrality metric could be employed, as well as multiple metrics
together; however, different metrics tend to provide dubious or bad choices for a
relocation.

Our algorithm starts by initializing auxiliary variables (see line 1) and by
tracking the inconsistent nodes in the original version of the network (see line
2). In line 4, it starts looping until all points of interest have been replaced or until
there are no more inconsistencies to be reduced from the original network. After
that, it tries to change one point of interest at a time (see line 7). The candidates
to host a point of interest pertains to the induced subgraph GEp of consistent nodes
(see line 8). By using the induced subgraph the algorithm searches for the node
that has the highest centrality value among all the other ones (see line 9).

The algorithm continues by testing the highest central node as the new loca-
tion to the point of interest; such that, it temporally replaces the node (see line
10) and then it collects information about the inconsistencies of this network
configuration (see line 11). Following, it tests whether the new configuration
causes fewer inconsistencies then the previous one (see line 12) before marking
the node for relocation (see lines 13 to 15). In a greedy fashion, it first selects
the point of interest that by being replaced will lead to the highest elimination
of inconsistencies. After choosing the one to be replaced, we perform integrity
tests, we mark the node as relocated, and then we remove it (see lines 16 to 19).

The algorithm ends when there are no more profitable changes (see line 21).
It is noteworthy to mention that each point of interest can be moved only once;
this is due to the greedy nature of the algorithm. Otherwise, it would run until
there are no more inconsistencies in the network at a prohibitive computational
cost. The output of the algorithm is a set R of new locations (see line 22); each
element r ∈ R is an ordered pair r = 〈oldp, newp〉 that denotes the current
(oldp) node where a point of interest is and a better node (newp) for placing it.
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Algorithm 2 runs in O(|V||P|3) in the average case, where |P| is the number
of points of interest and |V| is the number of nodes, |P| � |V|. Besides that, the
algorithm was designed to be straightly parallelized; and, moreover, in our tests,
it took less than a minute to compute a whole city with 200,000 inhabitants.

Correctness of the algorithm formulation

In this section, we demonstrate that Algorithm 2 is finite and it never increases
the number of inconsistencies of a city, as required by the problem formulation.

Theorem 1. We hypothesize that Algorithm2 provides a set of central and con-
sistent nodes that can replace specific points of interest in a city because replacing
them will never increase the total number of inconsistencies.

Proof. Hereinafter, aiming to prove Theorem1 by reduction to absurdity, we are
supposing that the use of Algorithm 2 can increase the number of inconsistencies.

Data: G = {V, E}, P ⊂ V, and c ∈ {I, O, A} — c is used to indicate the direction
Result: R — set of suggested positions for points of interest

1 R ← ∅ P̄ ← ∅ P̃ ← ∅
2 Ψc ← algorithm 1(G, P, c)
3 Φc ← Ψc // copy of the original set

4 while |P| − |P̄| > 0 and
(∑|P|

i=1 |Ψc
i| ≥ ∑|P|

i=1 |Φc
i|

)
do

5 oldp ← ∅
6 newp ← ∅
7 for each p ∈ (P − P̄) do
8 GEp ← G

(
VEp − Ψc

p

)
// induced subgraph of consistent nodes

9 p̄ ← extract central(GEp)
10 P ← ((

(P − P̄) ∪ P̃
) − {p}) ∪ {p̄}

11 Ωc ← algorithm 1 (G,P, c)

12 if
(∑|P|

i=1 |Φc
i| >

∑|P|
i=1 |Ωc

i|
)
then

13 Φc ← Ωc // new lowest number of inconsistencies

14 oldp ← p

15 newp ← p̄

16 if oldp �= ∅ and newp �= ∅ then
17 R ← R ∪ {oldp, newp} // oldp was moved to newp
18 P̄ ← P̄ ∪ {oldp} // old location

19 P̃ ← P̃ ∪ {newp} // new location

20 else
21 break // there are no more enhancements to be made

22 return R

Algorithm 2: An algorithm that uses the contributions of Algorithm1 to
reduce distance-based inconsistencies of cities shaped as networks.
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Bearing in mind that the type of the inconsistency has no effect on such proof, we
will follow by proving the algorithm using Inward Inconsistency (see Sect. 2.3).

Consider the existence of a city mapped as a complex network G = {V, E}
and a set P of |P| points of interest located in this same city. We start by finding
the perimeter set of p (VEp) for each p ∈ P, which is given by Eq. 1. Subsequently,
we proceed with gathering the network set of p (VNp) that is defined by Eq. 3.

Following, we detect a consistent node p̄ that is the most central by an
arbitrary centrality metric. The most central node is the one that has the highest
centrality when compared to the other nodes, potentially being a better place
for positioning a point of interest in a city. We follow by replacing p by the most
central node p̄ in its perimeter. Then, we calculate the updated perimeter (VEp̄)
and network (VNp̄) sets, both of p̄. Notice that p �= p̄, thus VEp �= VEp̄ and VNp �= VNp̄.

At this point, there are two pairs of answers, one pair for p and the other one
for p̄, as follows: 〈VEp, VNp〉 and 〈VEp̄, VNp̄〉. The algorithm we proposed will replace p
by p̄ following Eq. 9, which corresponds to a clause saying that the sets computed
from p̄ will be used just if they provide fewer inconsistencies than the original
set; otherwise, it will keep the original one without making any changes.

ΨI
p =

{
VEp − VNp,

∣∣VEp − VNp
∣∣ ≤ ∣∣VEp̄ − VNp̄

∣∣
VEp̄ − VNp̄, otherwise

(9)

The algorithm ceases when all the points of interest are changed at least once
or when no change will result in inconsistency elimination (see Sect. 2.5); as such,
the algorithm is guaranteed to be finite. Therefore, by reduction to absurdity, it
is an absurdum to suppose that the number of inconsistencies increases due to
the use of Algorithm 2 because the algorithm provides a set with less or equal
inconsistencies than the original set—as defined by Eq. 10.

∴
∣∣ΨI

p

∣∣ ≤ ∣∣VEp − VNp
∣∣ (10)

3 Results and Discussions

The tool-set we proposed was validated over the Brazilian city of Sao Carlos.
Such city was instantiated as a complex network through a digital map from
OpenStreetMap1. We considered streets as edges and their crossings as nodes;
this way, we preserved the georeferenced attributes of the city that are necessary
to the distance computation of our tool-set. The resulting network is planar and
it can be represented in two dimensions, in which edges intersect only at nodes.

3.1 Assessing Inconsistency Recovery

In this section, we analyze the inconsistent nodes found in the city of Sao Carlos
regarding the location of hospitals, police stations, and public schools, which are
our points of interest; such public services are known to be affected respectively
1 www.openstreetmap.org.
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by inward, outward, and absolute inconsistencies as described in Sect. 2.3. It
is noteworthy that each set of points of interest are independent, as such, the
inconsistencies of one set of points have no relationship with the ones of others.

The inconsistent nodes we tracked are in Table 1, which suggest that their
occurrence is connected to the number of points of interest. In fact, they appear
whenever different perimeters meet; as a consequence, there is no way to eradi-
cate them without altering the network topology by changing the streets’ direc-
tion or creating new streets. In addition, more points of interest mean more
boundaries, what tends to increase their number. Hence, the challenge is to find
locations to points of interest that reduce, rather than eradicate, inconsistencies.

We used Algorithm 2 so to reduce the inconsistencies from Sao Carlos (see
Table 1). The algorithm suggested relocating 6 hospitals, 2 police stations, and
9 public schools; such configuration, was able to reduce 160 inconsistencies from
the hospitals (from 559 to 399), 123 inconsistencies from the police stations (from
342 to 219), and 179 inconsistencies from the public schools (from 663 to 484).
Notice that the inconsistencies of some points of interest raised in number from
the original to the enhanced city, which is a setback of our approach. However,
as we have already proved, the total number of inconsistencies is always smaller.

Table 1. Analysis of the inconsistencies of the city of Sao Carlos, in which we con-
sidered police stations, hospitals, and public schools as points of interest; we use # to
refer to the total number of inconsistencies and % to their percentage.

nth POI Original City Enhanced City nth POI

Hospitals Police Stations Schools Hospitals Police Stations Schools

# % # % # % # % # % # %

01 013 02.3% 032 09.3% 015 02.2% 14 03.5% 30 13.7% 19 03.9% 01

02 002 00.3% 004 01.1% 077 11.6% 02 00.5% 48 21.9% 13 02.6% 02

03 012 02.1% 086 25.1% 043 06.4% 18 04.5% 96 43.8% 37 07.6% 03

04 019 03.4% 029 08.4% 071 10.7% 04 01.0% 32 14.6% 58 11.9% 04

05 030 05.3% 191 55.8% 114 17.1% 87 21.8% 13 05.9% 57 11.7% 05

06 049 08.7% — — 003 00.4% 51 12.7% — — 01 00.2% 06

07 145 25.9% — — 008 01.2% 26 06.5% — — 01 00.2% 07

08 039 06.9% — — 015 02.2% 22 05.5% — — 18 03.7% 08

09 012 02.1% — — 078 11.7% 31 07.7% — — 77 15.9% 09

10 043 07.6% — — 051 07.6% 63 15.7% — — 48 09.9% 10

11 072 12.8% — — 038 05.7% 45 11.2% — — 41 08.4% 11

12 095 16.9% — — 015 02.2% 17 04.2% — — 11 02.2% 12

13 028 05.0% — — 056 08.4% 19 04.7% — — 10 02.0% 13

14 — — — — 008 01.2% — — — — 16 03.3% 14

15 — — — — 060 09.0% — — — — 51 10.5% 15

16 — — — — 011 01.6% — — — — 26 05.3% 16

Total 559 100% 342 100% 663 100% 399 100% 219 100% 484 100% Total

3.2 Supporting the Designing of Urban Structures

Our tool-set is not only to be used in the automatic recovery of inconsistencies,
but also to assist human-made urban-planning decisions. This is the case, for
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instance, when a specialist designs a city by having knowledge of the citizens’
needs. In this case, Algorithms 1 and 2 can aid the process by analyzing and
recommending distance-efficiently locations that are feasible to points of interest.

This section introduces two hypothetical case studies that depict our tool-set
in practice. Both of them were conducted considering a subset of hospitals and
public schools of the city of Sao Carlos (see Sect. 3.1). Nonetheless, our tool-set
is extendable to any point of interest since it is equivalent to all of them.

Both case studies follow as in Fig. 1, in which we start by finding a point
of interest, next we try to solve the problem by ourselves, and then we use the
algorithms to improve our results; all steps are guided under the light of the
nodes’ straightness centrality . Furthermore, all case studies are represented
by the induced subgraph of the point of interest being analyzed and, although
we have illustrated the inconsistencies in Fig. 1, in the case studies they are not
visible because they do not provide visual information to the other images.

Fig. 1. Illustration of the process of designing urban structures under the light of
centrality metrics. This process starts by identifying nodes that are of interest, then it
follows by tracking their inconsistencies, and it ends by suggesting new locations—that
reduce the number of inconsistencies—to place these nodes.

Case Study 1: Creating a new hospital to reduce demand

From the set of hospitals of the city of Sao Carlos, we identified one that, when
compared to another hospital in the city, has excessive nodes in its perimeter
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(see Fig. 2a). There is no specific explanation of the hospital’s location and, for
instance, we can think that the city may have grown after the hospital has been
built or the planners did not take the surroundings of the hospital into account.
One thing is for sure, an extensive area with an ill-positioned point of interest
will deprive the street access of the nodes; in this case, when points of interest
are healthcare facilities, time-critical activities, as the transportation of patients
in a critical state, can be jeopardized by lack of street access. Hence, the problem
becomes where to build a hospital and how to avoid inconsistencies.

Fig. 2. Illustration of the assisted urban planning task from the first case study, in
which the point of interest is a hospital and the color of the nodes denotes their
centrality—the darker, the higher. Figure 2a shows a hospital’s perimeter that is too
large causing lack of access. We placed a new hospital in an eye-based central location
in that same area to solve this issue. Afterwards, we used the algorithm to reduce
inconsistencies, which suggested relocating the new hospital to a more central location
that reduces the hospital’s inconsistencies; as in Fig. 2b.

First, we tried to solve the problem manually by an eye-based analysis of
a location that could provide equal nodes to the perimeters of both hospitals.
Figure 2a shows a possible place to the new hospital as well as the resulting
perimeter of both of them, which are defined by a line that cuts the image in
half. After that, we inserted the proposed location in the set of hospitals and
we used Algorithm 1 to track the inconsistencies of the resulting configuration.
Such configuration lead us to 615 inconsistencies, which is a bigger value than the
original city. Thus, we succeeded in building a hospital that splits the perimeter
into two, but we failed in providing efficient access to both old and new hospital.

In a second approach, we analyzed the nodes’ centrality together with a sup-
porting visualization. We colored the nodes by their centrality, what allowed us
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to notice that the selected location for the new hospital is a node with low cen-
trality. Then, we used Algorithm 2 to suggest a better place for the new hospital
while keeping the location of the old one. Doing so, the city inconsistencies were
reduced from 615 to 352 (see Fig. 2b), which positively reflected in the mobility
of this area by distributing the demand between both hospitals. Thus, creat-
ing a new hospital in a specific location was able to reduce almost half of the
inconsistencies of the city without relocating the existing ones.

Case Study 2: Merging schools to centralize public resources

In a similar fashion, we identified two public schools that are adjacent and sup-
port a short set of nodes. In this case, the proximity of the schools (see Fig. 3a)
is a problem since none of them is used up to its capacity implying a waste of
public resources. In a first approach, by using Algorithm 2 to relocate them, the
number of inconsistencies was reduced from 663 to 635.

Fig. 3. Illustration of the assisted urban planning task from the second case study, in
which the points of interest are public schools and the color of the nodes denotes their
centrality—the darker, the higher. In this case study, we treated a problem related to
the waste of resources that was caused by having two schools near each other; Fig. 3a
shows the problematic area, which is small, increasing the drawbacks related to access.
By replacing both schools with a single one we achieved a better coverage of nodes, as
depicted in Fig. 3b.

Considering the size of the perimeter of both schools, we decided to remove
one school to improve the utility of the one that remained. By centralizing the
schools in a single node, we can reduce inconsistencies because there will be fewer
perimeters bordering each other; hence, the inconsistencies, located whenever
two of them meet, will be naturally decreased. To further enhance this process,
we used the color-coded centrality metric to choose a candidate to be the new
sole school. Afterward, we used Algorithm 2 to provide a better location (see
Fig. 3b), which reduced the total number of inconsistencies from 635 to 445.
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3.3 Discussions on Results Generalization

For a concise results presentation, we have assumed: (i) that any displacement
is through cities’ streets; and, (ii) a city with a uniform population distribution.
However, our tool-set holds for scenarios where these assumptions are not true.

We can use weights in accordance with the type of the displacement rather
than using streets distance. This is because our tool-set uses a general concept
of weight and when providing additional information such weight can assume
any quantitative value—i.e. travel time, edge capacity, route cost, and so on.

About the population distribution, it is possible, for instance, to use a normal
distribution peaked at the center of the city, multimodal distributions, or census
data. This information can aid in the analysis of urban agglomerations if it is
used to assign values to sets of nodes corresponding to the population density
of the area that they belong to. Nevertheless, the set of inconsistencies would
depend on the analysis of a specialist rather than being a self-explanatory result.

Also, despite being central to our problem formulation, the viability of
redesigning a city is not suited for most cases. Furthermore, changing the topol-
ogy of the network will alter the centrality of its elements, which will modify
regions that attract vehicles and people. Our tool-set is not only to be used in
redesigning a city but also on the initial design when all possibilities are open.

Finally, our proposal has open problems that support further studies: (1) the
tool-set to track inconsistencies is categorical, then further algebra can aid in
identifying the severity of a network inconsistency in a continuous, rather than
binary, manner; (2) for simplicity’s sake, we assumed the origin and destination
of all paths as nodes of the network; such nodes are street intersections, which
might not be real-world points of interest, requiring the addition of new nodes.

4 Conclusion

This paper was instantiated as a set of mathematical formalisms and algorithms
to track and reduce distance-based inconsistencies improving access to/from
points of interest in a city. Beyond the mathematical formulation, we provided a
proof of concept and case studies, all of which indicate that our tool-set is able to
suggest better placements for points of interest at the same time that it improves
the access to the majority of the nodes of a city by reducing its inconsistencies.

More specifically, our contributions are in the definition of a concept based
on intrinsic problems to urban structures that are caused by the misallocation of
points of interest in cities; also, in two algorithms that were devised to track and
reduce inconsistent nodes in complex networks; and, finally, in a case study, in
which we show how our tool-set and algorithms can aid planners and designers.

In summary, our methods were proved empirically and formally, granting
potential for prompt contribution and for opening new research questions. In
addition, as a future work, we shall embrace link prediction methods for sug-
gesting relocations in the network topology, i.e. proposing variations in the flow’s
direction, in the task of looking for a better topological setting for a city.
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Abstract. Complex networks provide a means to describe cities through
their street mesh, expressing characteristics that refer to the structure
and organization of an urban zone. Although other studies have used
complex networks to model street meshes, we observed a lack of meth-
ods to characterize the relationship between cities by using their topo-
logical features. Accordingly, this paper aims to describe interactions
between cities by using vectors of topological features extracted from
their street meshes represented as complex networks. The methodology
of this study is based on the use of digital maps. Over the computational
representation of such maps, we extract global complex-network features
that embody the characteristics of the cities. These vectors allow for the
use of multidimensional projection and clustering techniques, enabling a
similarity-based comparison of the street meshes. We experiment with
645 cities from the Brazilian state of Sao Paulo. Our results show how the
joint of global features describes urban indicators that are deep-rooted
in the network’s topology and how they reveal characteristics and simi-
larities among sets of cities that are separated from each other.

Keywords: Network topology · Feature vector · Cluster analysis

1 Introduction and Related Works

Complex networks are used to shape real-world systems, e.g. networks of protein
interaction, street meshes, and subway lines. These networks, as mathematical
models, stand out due to their algebraic properties and computing potential, with
analytical applicability to support cognitive processes of decision-making [1].
Through metrics and methods based on topology and/or geometry, it is possible
to identify characteristics of interest that are not obvious for human inspections
based on reading; this is because the networks may be wide (high number of
vertices), intricate (high number of edges), or may hold non-trivial patterns and
attributes whose observation depends on the application of algorithms.

In the specific case of the representation of street networks, complex networks
describe factors related to the displacement of individuals, allocation of services,

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10860, pp. 274–287, 2018.
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the improvement of tasks related to transport, and even to the study of factors
from collective behavior, when the network is weighted by the associated data.
In this regard, we observed a lack of methods to characterize groups of cities by
means of the features that can be extracted from their topology, which is the aim
of this research. This methodology has potential to enhance the understanding of
an urban space and to explain the reason why cities share properties of interest.

To this end, we developed a methodology composed of Data Acquisition
and Preparation, Feature Extraction and Selection, and Feature Vector Anal-
ysis. We analyzed 645 cities from the state of Sao Paulo, aiming to pro-
vide comprehension of peculiarities from different cities by interpreting global
network-characteristics. These cities are representations of street meshes that
were extracted from digital maps, such that they were gathered and analyzed by
using machine-learning methods of feature extraction, multidimensional projec-
tion, and cluster analysis. In order to demonstrate our methodology, we inves-
tigate the following hypotheses: (A) the network topology is a tool-set that can
reveal groups of cities with similar characteristics, potentially revealing dispari-
ties; (B) although cities may share administrative boundaries with others, they
cluster with cities with no apparent geographical similarity; and, (C) there might
be interesting correlations between urban and/or territorial indicators and the
features extracted from the street-network topology of a given set of cities. The
answering of such assumptions allows us to render better analysis of urban
agglomerations by helping in the understanding of cities by comprehending how
they are arranged within the geographical extent of their territorial boundaries.

Aiming to solve questions related to the urban scenario, a vast number of
studies have been conducted to explain cities considering their intense flow of
vehicles [2] and collective behaviors [3], while others analyzed the accidents den-
sity in street networks [4] and the discrepancies between cities driven by their
urban indicators [5]. Furthermore, some authors investigated metrical and ana-
lytical methods applied to cities [6,7], others approached the assistance to the
urban planning and design [8–10], and there are those who advanced with facility-
location analysis and planning in street meshes [11]. However, although cluster
analysis has been less focused [12,13], it is still an important toolset [14].

Two state-of-the-art works used clustering techniques to analyze groups of
cities, but both of them left open questions to be explored. The first one had the
intention to measure the similarity among ten European cities [12], while the
second one performed an eye-based cluster evaluation considering the proximity
and overlap of 1,150 cities, mainly from the Anglo-Saxon America [13]. Their lack
of proficiency is mainly because they do not employ clustering algorithms in the
same fashion that we do, including validation metrics and analytical indicators.

In this paper, we contribute with a methodology that advances the analysis
of cities modeled as complex networks. To present our contributions, this paper
is organized as follows: Sect. 2 displays our methodology while explaining the
validation of its results; Sect. 3 discusses the results about the applicability of
the proposed methods; and, Sect. 4 presents the conclusions and final remarks.
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2 Methodology

Our methodology is based on the intersection of methods of data Acquisition,
Modeling, and Computation, and it follows a process flow depicted in Fig. 1.

Fig. 1. Methodology for street-network characterization through feature-vector and
cluster analysis based on data Acquisition, Modeling, and Computation. The method-
ology starts by acquiring digital maps of cities from the OpenStreetMap (OSM), such
maps are used for the modeling of complex networks. The resulting networks are used
in the processes of extraction and selection of topological-features. These features are
analyzed according to data-mining methods of multidimensional projection and cluster
detection.

2.1 Preliminaries

Hereinafter, we represent complex networks as distance-weighted directed
graphs. Notice that, despite different, complex networks and graphs are con-
sidered to be equivalent. A graph G = {V,E} is composed of a set of |V | nodes
and a set of |E| edges. Furthermore, each edge e ∈ E is known to be an ordered
pair 〈o, d〉, in which o ∈ V is named origin and d ∈ V is named destination,
o �= d. We provided to the edges a double-precision floating-point weight dod,
which refers to the great-circle distance between node o and node d. The great-
circle distance refers to the Euclidean distance between two points on the surface
of a sphere; which in our case, the sphere is a projection of the Earth.

2.2 Data Acquisition and Preparation

For each one of the 645 cities from the Brazilian state of Sao Paulo, we got their
administrative boundaries and indicators related to territorial extension and
demography from the Brazilian Institute of Geography and Statistics (IBGE)1.
The boundaries served as shapefiles to crop data obtained from OpenStreetMap
(OSM)2, which is an open data repository and a social network of collaborative
1 www.ibge.gov.br.
2 www.openstreetmap.org.
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street mapping. The OSM’s data describe real-world abstractions represented
by georeferenced objects. These objects are described by means of its relations,
which, in turn, refer to the streets (edges) and crossings (nodes) of a city, which
were turned into complex networks where the edges intersect only at the nodes.

2.3 Feature Extraction and Selection

Metrics of graphs, referred to as features, can be divided into local and global [15];
local metrics describe properties of individual elements that form the network,

Fig. 2. A visualization of the mutual-correlation matrix of all the metrics we consid-
ered. The color describes the correlation between pairs of features. The metrics were
hierarchically grouped through a dendrogram by means of the correlation of their val-
ues. Consequently, correlated metrics tend to stay in the same group; non-correlated
metrics tend to be in separated groups. Additionally, the metrics we selected are colored
in black and highlighted by a diamond marker. (Color figure online)
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while global metrics characterize the whole network by a single value that is
computed considering all of their elements. We rather use global metrics than
local ones because they allow straightforward comparison between cities.

In order to gather these metrics, we designed a feature extractor to calculate
a feature vector from any complex network given as input. First, we selected
various metrics as candidates to render characteristics about cities, from which
29 metrics were chosen by their potential in providing insights about a given
street network (see Fig. 2 for details). Such metrics were selected because they
are linked to the network topology, which describes the streets of the cities.

After collecting all the metrics, we removed the non-relevant ones based on
their mutual correlation. We computed the Pearson correlation coefficient [16]
for each pair of metrics; such coefficient is defined in the interval [−1.0, 1.0]
where the extreme values indicate, respectively, the maximum negative and pos-
itive correlation, while 0.0 indicates no linear correlation at all. Following, we
removed all the metrics with strong mutual correlation as indicated by the Pear-
son correlation in the interval [−0.5, 0.5]. In cases where any two metrics are
outside this interval, one of the metrics was randomly discarded. Such process
of metrics selection ensures that just metrics that are unique and non-related
with the others will be used to describe the cities. Other processes of feature
selection can be used in this step; even the multidimensional projection by itself
can provide reasonable results. Notice that, the reduction of the dimensionality
of the data was not our main priority, but rather to find the most complete
set of metrics, that is the one that better characterizes the networks, without
including redundant information; and, to this end, features correlation plays an
import role. All metrics are depicted in Fig. 2; the ones that remained, 9 out of
29, were highlighted and are defined according to Costa et al. [17], as follows:

Degree Distribution Entropy (H). The degree distribution of a network
describes the probability of finding a vertex with a given degree. Whereas, the
entropy represents the amount of uncertainty and randomness in a certain piece
of information. By using the entropy in a city degree distribution, we can measure
the uncertainty between street connections. Equation 1 describes such metric,
where Pk represents the ratio of nodes with degree k.

Average Shortest Path (L ). It quantifies the average of all shortest paths
(dSij) that link all the pairs of nodes in a complex network (Eq. 2), it is used
to quantify the capacity of locomotion through the shortest paths of a city.

H = −
∞∑

k=0

Pk × log(Pk) (1) L =

∑|V |
i=1

∑|V |
j=1 dSij

|V |(|V | − 1)
(2)

Degree Assortativity Coefficient (R). It refers to the in and/or out degree
correlation between pairs of nodes. That is, positive values indicate that nodes
with similar degrees tend to connect to each other, while negative values indicate
the same, but regarding nodes with different degrees. It can be understood as
the probability of moving from an unimportant street to an important one based
only on the number of adjacent streets to both of them. Equation 3 uses exy to
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refer to the fraction of edges that join together vertices with degree x and y, ax

and by to the fractions of edges that start and end at vertices with degree x and
y; and, σa and σb to the standard deviations of the distributions ax and by.

Eccentricity (E). This metric is a local one, measuring for a vertex the longest
shortest distance between all the other vertices of a given graph [18] (see Eq. 4).
In a global perspective, the greatest eccentricity from a graph is known to
be the network diameter, while the smallest one is regarded as the network
radius. They can reveal cities that may suffer from access issues by being
sparse if the radius of a network is too small when compared to its diameter.

R =

∑
xy xy(exy − axby)

σaσb
(3) Ei =

1
max{dSij |∀j ∈ V } (4)

Planar Network Density (D). The density of a planar graph is defined as the
ratio between the number of edges E and the number of all possible edges in a
network with N nodes with no intersecting edges. It can be used to describe how
dense is the street mesh of a city or a neighborhood. The metric is unique to
each network, once the position of the nodes interferes in the number of edges.
It is an algorithmic adaptation of the graph density [19], described in Eq. 5.

Central Point Dominance (CP
D). This metric assesses the global centrality

of a whole network by means of its network’s betweenness deviation, which is a
distance-based centrality metric. Values close to 0 indicate plenty of distance-
efficient routes similar to the shortest one; whereas, values close to 1 indicate
that the network might become vulnerable without its central node because the
node might be used to connect different components, serving as an access point
(e.g. bridges and tunnels). In Eq. 6, v̄ is the node with the highest betweenness
and B(v) is the normalized betweenness of the node v that lies in the range [0, 1].

D =
|E|

|N | (|N | − 1)
(5) CP

D =
∑|V |

v Bv̄ − Bv

|V |(|V | − 1)
(6)

Two-way Streets (Tw). It refers to the number of double edges in a network,
which are edges that provide two-way routes between the same pair of nodes.
This metric follows Eq. 8, in which fij is a clause-based auxiliary function.

Global Clustering (Gc). The metric, which is described by Eq. 8, consists of
the fraction of the number of triangles N� and triples N3 of the network. It refers
to how the streets tend to cluster in the crossings of a given city, such that the
greater the value the more possibilities of locomotion in fewer steps.

Tw =

∑E
〈i,j〉 fij

2
, fij =

{
1, 〈j, i〉 ∈ E

0, otherwise
(7) Gc =

(3 × N�)
N3

(8)
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2.4 Feature Vector Analysis

In this step, we focused on two methods from the data mining literature, the
first one of multidimensional projection and the second one of clustering detec-
tion. Multidimensional projection allows the visualization of data by reducing its
dimensional space, revealing particularities and behaviors to be explored through
cluster-based analysis. Cluster analysis, in turn, focuses on the study of data
interactions, inferring that two elements are similar because they are in the
same cluster or dissimilar because they are in different ones. Consequently, the
combination of these two methods contributes to the assessment of cities by their
potential to reveal patterns that are not evident through an eye-based analysis.

Regarding multidimensional projection, our methodology consists of using
two techniques [20]; the first one is named Isomap and the second one is known
as Principal Components Analysis (PCA). Isomap is a nonlinear dimensionality
reduction technique, which provides an embedding in a lower dimension while
maintaining the geodesic distance between the data elements. Contrarily, PCA is
a linear technique, which uses orthogonal conversions to turn a set of variables
into linearly uncorrelated values with the largest possible variance. To choose
both techniques, we used knowledge about the domain; we have kept track of
some already-known dissimilar cities, seeking for approaches to distinguish them.

In the cluster analysis part, we used the technique KMeans [21], which splits
the data into groups of equal variance, minimizing the sum-of-squares distance
within clusters. The KMeans algorithm assumes that (i) the distribution of fea-
tures within each cluster resembles spheres, which means that all features have
equal variance and they are independent of each other; (ii) regarding the clus-
ter size, the dataset is balanced; and, (iii) the density of the clusters is similar.
The dataset we used consists of uncorrelated values and balanced instances of
feature vectors, all of which have quasi-equal variance, meeting the algorithm
requirements. In addition, KMeans is widely used in the related literature due
to its robustness, versatility, and scalability. To validate our results we consid-
ered cluster quality metrics [22]. Their focus is to analyze the similarity between
elements that have been assigned to the same cluster. We used a combination of
the Silhouette score [23] and the Dunn index [24]; both of which are known to be
internal-quality metrics, not requiring a pre-labeled dataset. The Silhouette is
defined between [−1, 1] for each cluster, the closer to 1 the better; it measures the
cohesion and separation of clusters by evaluating how similar an element is in its
own cluster when contrasted to other clusters. To further enhance the reliability
of our analysis, we applied the Dunn index, which is a cluster distance-based
quality metric that measures the separation among clusters, whose values are in
between of [0,∞]. In cases when the Dunn’s index distance is greater than one,
there is little or none cluster overlapping. Using both together, we have a double
validation of quality by means of cohesion and separation of our set of clusters.
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3 Results

3.1 Relationship of Population Size and Topological Features

With regard to the population density — see Fig. 3 for details —, the majority of
the cities in our dataset is of tiny or small size, but the dataset has a substantial
number of medium-sized cities and a small number of large-sized ones, including
Sao Paulo — the biggest Brazilian city. Prior analyses can be done by observing
Fig. 4, where cities (depicted as points) were sized by their number of nodes.

Fig. 3. Urban indicator related to the population
density of the cities of the state of Sao Paulo. The
cities were divided into four classes that describe the
number of inhabitants of each one of them.

A first evidence that
the topological features we
selected can describe rele-
vant knowledge about cities
is the fact that Sao Paulo is
isolated from the other ones
in the PCA projection. A
similar fact can be observed
on a small scale consider-
ing the large-sized city of
Campinas and the medium-
sized cities of Marilia and
Piracicaba, which are apart
from the main group of cities
located on the left part of the
image. We believe that such
behavior is connected to the
demographics of the cities.
On a large scale, topological features can predict demographic characteristics
of a city, whereas, on a small scale, they can reflect the neighborhoods that are
densely or sparsely populated. For a less unbalanced view, we removed Sao Paulo
from the dataset, depicting in Fig. 5 the normalized values of the feature vectors
of the cities that remained using both PCA and Isomap techniques.

The two techniques show us that the majority of the data is concentrated
in a small region, while the rest of it is sparse and distributed along the axes.
The main difference between both of them is that Isomap implies multiple areas
with considerable density, while PCA has a single dense area and many sparse
data. This is evidence that tiny and small-sized cities tend to cluster isolating
medium and large-sized cities that are too different from them. Despite the fact
that such cities tend to cluster, Isomap shows that they have particularities
that make them split into smaller clusters inside a bigger one. Also, it is safe to
infer that by being scattered, medium-sized and large-sized cities have no clear
pattern, but still, they may share common characteristics to be further explored
with clustering algorithms. Even so, we can show, by using correlation, that the
network’s demography can be inferred from the city’s topology – see Fig. 6.

To prove that the network’s demography can be inferred from the city’s
topology, we measured the relationship between the topological features and the
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Fig. 4. Projection of feature vectors in two dimensions by using PCA; the size of the
points refers to the number of nodes (intersections) in the cities’ complex-network.
The projected features reveal that the city of Sao Paulo (on the right-hand side) is an
outlier when compared to the others (on the left-hand side).

demography by means of correlation. To this end, we reduced the dimensional-
ity of the feature vectors of each city to one, using both techniques, PCA and
Isomap, resulting in one single value for each one of the 645 cities. Next, we
correlated such values with the size of their population. As a result, we got 0.803
and 0.799 of correlation for PCA and Isomap, respectively. Both values indicate
that the data has a strong correlation, allowing us to state that in the case of the
Brazilian state of Sao Paulo, topological features and demographics are strongly
correlated. Such pattern opens doors for new investigations, as the ones placed
by the dynamics of the social behavior; as in the case of criminality and mobility.

Fig. 5. Projection of the features, excluding Sao Paulo, using PCA and Isomap. PCA
shows a single dense area with many sparse data, while Isomap shows multiple dense
areas together with several sparse data. As a consequence, PCA implies a single cluster
while Isomap points to an inherent hierarchy of clusters.
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Fig. 6. Correlation test between the population density and a one-dimension projection
of the cities’ topological-features regarding both PCA and Isomap. Both images show
a strong correlation, revealing that, on a large scale, the topological features of the
cities can indicate, or even predict, their demography.

3.2 Relationship of Cluster Assignment and Territorial Extension

The cluster analysis aimed at the identification of the best number of clusters to
describe our dataset. Consequently, we exhaustively tested the KMeans’ cluster-
quantity parameter from 2 to 644 clusters — the total number of cities without
considering Sao Paulo. During the test, we were seeking for the greatest average
Silhouette score (AVG) only when the Dunn index (DNN) was larger than one.

The previous experiment suggests that the best way to split our data is into
two clusters. Such configuration has an AVG of 0.59 and a DNN of 1.10 (see
Fig. 7). When dividing the data into two, the clusters are better balanced rather
than when considering Sao Paulo — a big outlier — as part of the dataset.

Fig. 7. Silhouette analysis of the subset of our data without Sao Paulo, in which
clusters are represented as color-coded polygons. In each scenario that we have tested,
the results were validated according to the Dunn index together with the Silhouette
score. Although we have depicted the first three tested scenarios, which are also the
best ones, the experiment considers a total of 643 scenarios. (Color figure online)

Subsequently, we investigated the reason why the cities were better arranged
into only two clusters. By analyzing indicators related to population and ter-
ritory extension, we found that 61.20% of the state’s population is in the first
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cluster and 38.80% is in the second one (see Fig. 8a), and that the first cluster is
mainly populated with cities that are considered to be of tiny or small territorial
extension (see Fig. 8b), while the second cluster has the opposite behavior. Bear-
ing in mind that our dataset does not imply any relationship between indicators
of territorial extension and population density, we concluded that the relation
that favored two clusters, as the arrangement with best values of Silhouette and
Dunn index, was the territorial extension of the cities. Hence, we found evidence
that there is a significant relationship between topological features, territorial
extension, and demographics of the cities of Sao Paulo state.

Fig. 8. Investigating cities through clustering techniques; Fig. 8a shows the results
of the clustering of topological features when removing the Sao Paulo city from the
dataset; this layout has an average Silhouette of 0.59 and Dunn Index of 1.1. Figure 8b
describe the area within the cities’ administrative boundaries.

The relationship between the cluster arrangement and territorial extension
can be understood as the way cities organize within their available space. In fact,
regarding the territorial extension, 30.51% of the cities from the first cluster
are tiny-sized, 31.13% are small-sized, 25.78% are medium-sized, and 12.58%
are large-sized; whereas, 7.59% of the ones from the second cluster are tiny-
sized, 6.32% are small-sized, 22.78% are medium-sized, and 63.29% are large-
sized. Therefore, cities in the first cluster can be considered smaller and heavily
populated, while the ones in the second cluster are larger and less populated.

3.3 Discussions on Results Generalization

We have chosen to present a joint of direct findings and analytical conclusions in
our results section. This was done so that one can follow the practical application
of the proposed methodology in a way that can be adapted and generalized for
different domains and scenarios. Our methodology can also be used in non-urban
applications, such as in the characterization of the topology in any group of
complex networks, however, depending on the specificities of the domain, it may
be necessary to use different network metrics and features to be more effective.
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Additionally, while our findings cannot be generalized for any set of cities, we
believe that the proposed methodology can be used to find non-trivial properties
in different urban scenarios and not only to the cities that shape the state of Sao
Paulo. Comprising a straightforward framework of analysis that can be useful to
the academic community and cities’ governing body, e.g. planners and designers.

Finally, our proposal has intricacies that can be explored in further studies:
(1) using hierarchical clustering to reveal additional knowledge, which may also
demand prior expertise about the cities (e.g. history and geography); and, (2)
using more complex feature selection techniques such as fractal-dimension based
methods or by applying ones related to mutual information. Notice that, this
refinement might reveal other patterns of the data, but will not change the ones
we discussed; and, (3) including non-topological features to capture different
characteristics of cities, enhancing our methods capabilities and its versatility.

4 Conclusion

In this paper we proposed a three-folded method encompassing the data
Acquisition, Modeling, and Computation. Furthermore, our methodology com-
prises the following phases: Data Acquisition and Preparation, Feature Extraction
and Selection, and Feature Vector Analysis; culminating in the use of multidi-
mensional projection and cluster analysis algorithms to assess feature vectors of
complex-network metrics. To validate our proposal, we investigated the following
hypotheses: (A) the network topology is a tool-set that can reveal groups of cities
with similar characteristics, potentially revealing disparities; (B) although cities
may share administrative boundaries with others, they cluster with cities with no
apparent geographical similarity; and, (C) there might be interesting correlations
between urban and/or territorial indicators and the features extracted from the
street-network topology of a given set of cities. Such hypotheses were investigated
by analyzing relations between 645 cities that constitute the Brazilian state of
Sao Paulo. Our main findings confirm the hypotheses of our work, allowing us
to state that, on a large scale, the topological features of the cities can indicate,
or even predict, their demography and that cities group themselves by means of
their territorial extension, which describes the way that cities organize within
their available space. Therefore, our main contributions are: (i) the description
of how the network topology is capable of revealing groups of cities with similar
characteristics; (ii) the correlation analysis between the demography of the cities
and their features; and, (iii) the discussion of why cities cluster with other cities
distant apart instead of with those that they share boundaries with. As a future
work, we will measure the similarity between cities by means of non-topological
features, looking for discrepancies in the collective behavior that emerges from
this same set of cities.
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Computer-assisted city touring for explorers
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Abstract. The basic purpose of a map is to trace shortest paths
between two locations in a city. However, this is not always what a user
needs. Consider a tourist in an unknown city, he/she might want to
trace routes to visit multiple landmarks while passing through the main
streets of the city, possibly more than once through the same street.
Such functionality is not yet available in online map services, which are
prone to provide shortest paths that connect all landmarks. Rather, is
of common interest a tour that puts together the most central streets
(topologically speaking), minimizes the trajectory and, at the same time,
passes through such landmarks. To cope with this problem, it is possible
to investigate techniques of Center-Piece Subgraph, Absorbing Random
Walk Centrality and Spanning Edge-Betweenness; such techniques can
be used to find induced subgraphs that optimize centrality measures for
a set of referential nodes or edges, i.e. landmarks or streets. The results
shall be in the form of optimized algorithms, and how to integrate them
into online systems. Studies in this line can succeed if they can guarantee
timely scalability at the same time that they provide algorithms that
produce tours (1) considering all the known destinations; (2) including
the main streets of a city; and, (3) ensuring the shortest routes.

Keywords: Complex Network; Urban Structure; City Tour.

1 Problem Statement

Digital maps are becoming available to everyone, anywhere, through computers,
smartphones, car assistants, and electronic devices in general. The most common
use of such maps is to trace routes, or shortest paths, among different locations.
However, this basic use is not always what one needs. In the case of a tourist
visiting an unknown city, for instance, the user is not looking for the fastest
and/or shortest path. Rather, he/she is looking for a tour that visits multiple
landmarks (i.e. points of interest) while passing, possibly more than once,
through the main streets of the city. That is, the user not only has several
destinations, he/she desires a route that favors hotspots of the city in what is
usually called city-tour. For instance, imagine a tourist is on the east side of the
Central Park in New York and wants to go all the way down to the World Trade
Center; the fastest and shortest path is to go through the monotonous 7th avenue.
For a tourist, differently, the best pick might be to go through Broadway, despite
its traffic and higher distance. The idea then is to find the tour that puts together



City-Tour

Fig. 1: An illustration of the methodology and desired results of the city-tour.
It starts by (I) creating a graph from a map, (II) then the user informs some
points of interest in the city; (III) these places are analyzed by means of their
placement using metrics of graphs; (IV) then the algorithm returns a city-tour
that passes through all of them and also through the main streets of the city.

the most central streets (topologically speaking), minimizes the trajectory and,
at the same time, passes through points of interest. Differently, current systems
are more likely to provide the user with shortest paths that connect all the
points of interest. In other cases, the user does not even have destinations to
visit; he/she wants to cruise through the city, discovering it iteratively. Such
functionalities are not yet available in online map services and can be explored
through complex-network tools by using a methodological process similar to the
one presented in Figure 1.

2 Research Goals

The goal is to use graph-processing techniques to compute touristic routes with,
or without, multiple destinations satisfying performance constraints. Given a
city, or a region of a city, such routes might come as the answer to two queries:
(1) to compute a multiple-destinations tour; or, (2) to compute a tour, even
if the set of destinations is empty. The second query might sound odd, but it
is not an unusual case, especially for explorers in unknown cities. Notice that,
such queries depend on the investigation of techniques based on random-walk
with restart [12], usually used to find hub nodes of a network, but that, by
means of edge processing, might be used to find the most significant edges
related to a set of nodes [7]. The queries also depend on techniques that identify
the edges with the highest centrality, which, in the context of maps, must be
concomitantly related to shortest paths so to reflect good routes — Hannah et
al. [1] performed a study that explores these properties, but not considering the
city-tour constraints.

3 Related Works

Besides the aforementioned work, others touched the issue of processing digital
maps. Scellato et al. [8] investigated how it is possible to extract the backbone



of a city using Spanning Trees based on Edge-Betweenness and Information
Centrality; they proposed a method that allows extending the comprehension of
the most important routes that affect the city flow, retails, land-use separation,
and that impact upon collective behavior. However, the authors used a greedy
algorithm, which fails in circumstances when the topology is not adequate to the
greedy strategy, for instance, when the lengths of the streets strongly diverge in
different regions. Additionally, Delling et al. [2] have focused on algorithms to
solve problems from the commercial domain; this is the case when one needs
to choose the best placement for a new store. Dibbelt, Pajor, and Wagner [3]
explored a multi-modal common-route planning problem. These studies consider
the possibility of using heterogeneous transportation to go from one point to the
other (common-route problem), favoring only the criterion of shortest paths.

4 Suggested Methodology

Nowadays, digital maps can be extracted from many different sources, but
some of them are not freely available. OpenStreetMap1 is a collaborative
street-mapping community and an open-source option for digital maps. Over
OpenStreetMap, it is possible to investigate techniques related to the questions
placed in Section 2. Such research questions can be explored by means of three
techniques, as follows:

Center-Piece Subgraph (CEPS). The Center-Piece Subgraph technique
summarizes a graph, producing an induced topology that connects a subset of
referential nodes provided as input. It follows by using random-walks with restart
and cost functions to measure the adequacy of the edges that will be part of the
resulting topology [11]. The summarized graph is validated by analyzing the
goodness of the graph nodes [6], such that, heuristically, the best simplification
is the one that contains the essential elements according to a goodness criterion
(as defined by Equation 1), where r(q, j) is the goodness score for a given node
j considering a query set Q.

g(CP ) =
∑

j ∈ nodes(CP )

r(Q, j) (1)

The goodness criterion minimizes the sum of weights to connect all the edges
in the subset while inducing a subgraph; however, it does not consider edge
properties, leading to a subgraph with semantics related to a route in a map.
The metric was not designed to provide a minimum set of edges, as necessary in
multiple-destination routes, but only with as many edges as desired by the user.

Example. Let us consider an unknown city represented as a graph G(V,E)
which has a couple of touristic attractions T and let T ′ be the subset of those
that he/she wants to visit or, alternatively, avoid. The idea then is to extract a
subgraph G′ that confers the user a reduced network in which he/she can travel

1 www.openstreetmap.org



back and forth to visit the desired destinations. The output of CEPS, in this
particular case, shall be a subgraph indicating the easiest and most interesting
way to travel from a source place ti to a target one ti+1, where {(ti, ti+1) ∈ T ′}.

Absorbing Random Walk Centrality (ARwC). The Absorbing Random
Walk Centrality technique is capable of evaluating the centrality of a subgraph
considering a set of query nodes Q [5]; ARwC considers the number of steps
needed to absorb a walker that starts from a query node q ∈ Q and walks to
all the other nodes C in the graph, denoted as acqQ(C). This metric is based
on the k-Arw-Centrality optimization, which is an NP-hard problem; to solve
that problem, ARwC uses a greedy approach that provides solutions with good
approximation guarantees. Equation 2 presents the metric, whose result is the
centrality of a set of nodes C with regard to a set of query nodes Q.

acQ(C) =
∑
q∈Q

1

|Q|
× acqQ(C) (2)

Example. Consider an unknown city with some touristic attractions represented
as a graph. It is possible to assess the centrality of these attraction points inside
the subset T ′ using ARwC, which will provide a set of values {Crw

t ∀ t ∈ T ′}
that represent the importance of an attraction with respect to the others.
Consequently, the result of this process is a hierarchical city view, which can: (1)
represent how critical a node is among the others; (2) quantify how drastically
he/she needs to avoid critical nodes to improve his/her mobility in a city;
and, (3) classify the touristic attraction which will receive more or fewer visits
considering its positioning.

Spanning Edge-Betweenness (SEB). A Spanning Tree (ST) is a graph
structure that contains all the nodes connected by a subset of non-cyclic edges.
It can be produced with weighted or non-weighted edges. In the context of a
map, an accurately computed ST (not necessarily the minimum) generates a
Backbone representation of a city, which conforms to the problem of computing
a tour without a set of destinations. To this end, SEB is a centrality metric
computed by considering all the STs of a graph; it works by quantifying the
number of times that each edge pertains to an ST. The result of this metric is a
hierarchical formation of streets according to their importance.

SEB was firstly defined over undirected and weighted graphs to improve the
analysis of phylogenetic trees [9]; it has been shown to be a powerful tool able
to evaluate the most relevant edges of a graph that, if removed, might disrupt
the network structure [10]; notice that, the metric is not only to be used in
the analysis of phylogenetic trees but also over massive graphs with millions of
nodes [4]. Equation 3 formally defines SEB, where τG is the number of STs for
a graph G, and τG(e) is the number of different STs where edge e occurs.

δG(e) =
τG(e)

τG
(3)



Example. Suppose that it is desired to detect the most common and interesting
route that connects the nodes of an unknown city. That is, one wants not only the
streets with the minimum length, but also wants those that, given the network
topology, render better routes more frequently. This process can be achieved by
using SEB whenever it is possible to infer weights to the set of network edges.

5 Expected Results

The results shall be in the form of optimized algorithms, and how to integrate
them into online systems, including how to extract and prepare the network
(maps are not necessarily represented as graphs), how to provide input to these
algorithms, and how to interpret the outputs. The results shall be validated
through extensive testing over a significant number of representative cities.
Studies in this line can succeed if they can process queries over a map within
seconds, and if the algorithms produce tours that (1) consider all the destinations
(if known); (2) include the main streets of a city (higher centralities); and,
(3) minimize the length of the paths (good routes). It is possible to verify
those conditions in large scale by using brute-force algorithms or multi-objective
optimization techniques; and, in small scales, by considering case studies of
known cities and their tours. Research following these lines shall pave the way for
future map processing, turning tours into a novel concept on electronic-trajectory
computing. The results have the potential to be reported in international
conferences and journals of Data Mining, Transportation Systems, and Physics.

6 Further Research Lines

The possibilities of research and investigation are not limited to the calculation
of city-tours. It is possible, for instance, to analyze different sets of cities by
extracting feature vectors that describe the complex-networks of their tours.
This is because feature vectors can describe cities by detailing their topology and
structural peculiarities, which would enable further analysis based on clustering
detection, similarity search, multidimensional projection, and fractal analysis.
All of which have the potential to enhance the understanding both about cities
and tourist behaviors in the face of different types of landmarks that can be
found in a given city. More specifically, by investigating feature vectors through
these tools, it is possible: (i) to analyze cities according to their similarities and
differences; (ii) to determine characteristics shared between cities or groups of
cities; and, (iii) to disclose routing problems that are exclusive to peculiar cities.
In fact, all these activities help in the designing of the urban space, they also
help in its improvement and comprehension because similar cities might share
the valuable characteristics; meanwhile, exceptional cities might indicate routing
problems that can be further studied through a different set of tools.

Acknowledgments

We would like to thank the Brazilian agencies CNPq, FAPESP, and CAPES
that fully supported this research.



Bibliography

[1] Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T.,
Sanders, P., Wagner, D., Werneck, R.F.: Route planning in transportation
networks. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering, pp.
19–80. Springer International Publishing (2016)

[2] Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable Route
Planning in Road Networks. Transportation Science (may 2015)

[3] Dibbelt, J., Pajor, T., Wagner, D.: User-Constrained Multi-Modal Route
Planning. In: 2012 Proceedings of the Fourteenth Workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 118–129. Society for
Industrial & Applied Mathematics (SIAM) (jan 2012)

[4] Mavroforakis, C., Garcia-Lebron, R., Koutis, I., Terzi, E.: Spanning edge
centrality. In: Proceedings of the 24th International Conference on World
Wide Web - WWW’15. pp. 732–742. ACM Press (2015)

[5] Mavroforakis, C., Mathioudakis, M., Gionis, A.: Absorbing random-walk
centrality: Theory and algorithms. In: 2015 IEEE International Conference
on Data Mining. pp. 901–906. IEEE (nov 2015)

[6] Rodrigues-Jr, J.F., Tong, H., Pan, J.Y., Traina, A.J.M., Traina, C.,
Faloutsos, C.: Large Graph Analysis in the GMine System. IEEE
Transactions on Knowledge and Data Engineering 25(1), 106–118 (jan 2013)

[7] Rodrigues-Jr, J.F., Tong, H., Traina, A., Faloutsos, C., Leskovec, J.: GMine:
A System for Scalable, Interactive Graph Visualization and Mining. In:
VLDB. ACM, Seul, South Corea (jun 2006)

[8] Scellato, S., Cardillo, A., Latora, V., Porta, S.: The backbone of a city. The
European Physical Journal B - Condensed Matter and Complex Systems
50(1-2), 221–225 (feb 2006)

[9] Teixeira, A.S., Monteiro, P.T., Carriço, J.A., Ramirez, M., Francisco, A.P.:
Spanning edge betweenness. In: Workshop on Mining and Learning with
Graphs. vol. 24, pp. 27–31 (2013)

[10] Teixeira, A.S., Santos, F.C., Francisco, A.P.: Spanning Edge Betweenness
in Practice. In: Studies in Computational Intelligence, pp. 3–10. Springer
Nature (2016)

[11] Tong, H., Faloutsos, C.: Center-piece subgraphs. In: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data
mining - KDD’06. pp. 404–413. KDD ’06, ACM Press (2006)

[12] Tong, H., Faloutsos, C., yu Pan, J.: Fast random walk with restart and its
applications. In: Sixth International Conference on Data Mining (ICDM’06).
pp. 613–622. IEEE (dec 2006)





139

APPENDIX

B

SUPPLEMENTARY MATERIAL

Subsequently, we reproduce the supplementary material of the following papers:

1. Spadon G., Carvalho A. C. P. L. F., Rodrigues-Jr J. F., and Alves L. G. A., Recon-

structing Commuters Network using Machine Learning and Urban Indicators. Scientific

Reports. Springer Nature, 2019 [Spadon et al. 2019].

2. Spadon G., Hong S., Brandoli B., Matwin S., Rodrigues-Jr J. F., and Sun J., Pay

Attention to Evolution: Time Series Forecasting with Deep Graph-Evolution Learning.

Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2021 [Spadon et al.

2021].

Both documents are reproduced under the Rights and Permissions stated below:

Rights and Permissions

This article is licensed under a Creative Commons (CC) Attribution 4.0 Interna-

tional Licensea, which permits use, sharing, adaptation, distribution, and reproduc-

tion in any medium or format, as long as you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indi-

cate if changes were made. The images or other third-party material in this article

are included in the article’s CC license unless indicated otherwise in a credit line

to the material. If the material is not included in the article’s Creative Commons

license and the intended use is not permitted by statutory regulation or exceeds the

permitted use, permission directly from the copyright holder will be required.

a Available at: <https://creativecommons.org/licenses/by/4.0/>

https://creativecommons.org/licenses/by/4.0/


Supplementary Information

Reconstructing commuters network using

machine learning and urban indicators

Gabriel Spadon, Andre C. P. L. F. de Carvalho,
Jose F. Rodrigues-Jr, and Luiz G. A.Alves

List of Classifiers

# Acronym Name Result
1 AdaBoost Adaptive Boosting Classifier 3

2 Bagging Bagging Classifier 3

3 BernoulliNB Bernoulli Naive Bayes Classifier 3

4 CalibratedCV Calibrated Classifier with in-built cross-validation 3

5 CatBoost CatBoost Classifier 3

6 ComplementNB Complement Naive Bayes Classifier 3

7 DecisionTree Decision Tree Classifier 3

8 ExtraTrees Extremely Randomized Trees Classifier 3

9 GaussianNB Gaussian Naive Bayes Classifier 3

10 GaussianProcess Gaussian Processes Classifier 7

11 GradientBoosting Gradient Boosting Classifier 3

12 HistGradientBoosting Histogram-based Gradient Boosting Classification Tree 3

13 KNeighbors K-Nearest Neighbors Classifier 3

14 LGBM Light Gradient Boosting Machine Classifier 3

15 LabelPropagation Label Propagation Classifier 7

16 LabelSpreading Label Spreading Classifier 7

17 LinearDA Linear Discriminant Analysis Classifier 3

18 LinearSVC Linear Support Vector Classification 3

19 Logistic Logistic Regression Classifier 3

20 LogisticCV Logistic Regression Classifier with in-built cross-validation 3

21 MLP Multi-layer Perceptron Classifier 3

22 MultinomialNB Multinomial Naive Bayes Classifier 3

23 NearestCentroid Nearest Centroid Classifier 3

24 NuSVC Nu-Support Vector Classification 7

25 PassiveAggressive Passive Aggressive Classifier 3

26 Perceptron Perceptron Classifier 3

27 QuadraticDA Quadratic Discriminant Analysis Classifier 3

28 RadiusNeighbors Radius Neighbors Classifier 7

29 RandomForest Random Forest Classifier 3

1



30 Ridge Ridge Classifier 3

31 RidgeCV Ridge Classifier with in-built cross-validation 3

32 SGD Stochastic Gradient Descent Classifier 7

33 SVC Support Vector Classification 7

34 XGBoost Extreme Gradient Boosting Classifier 3

Number of selected classifiers: 27/34

Table 1: List of classifiers tested during the unweighted link prediction of the commuters network.
The Acronym column presents the short name of the algorithms, the Name column shows the full
name of the algorithms, and the Results column marks with 3 the classifiers that do not require
early hyperparameter tuning and have passed for the subsequent testing phase, and with 7 the
discarded ones.

List of Regressors

# Acronym Name Result
1 ARD Automatic Relevance Determination Regression 7

2 AdaBoost Adaptive Boosting Regressor 3

3 Bagging Bagging Regressor 3

4 BayesianRidge Bayesian Ridge Regressor 3

5 CCA Canonical Correlation Analysis Regressor 7

6 CatBoost CatBoost Regressor 3

7 DecisionTree Decision Tree Regressor 3

8 ElasticNet Elastic-Net Regressor 3

9 ElasticNetCV Elastic-Net Regressor with in-built cross-validation 3

10 ExtraTrees Extremely Randomized Trees Regressor 3

11 GaussianProcess Gaussian Processes Regressor 7

12 GradientBoosting Gradient Boosting Regressor 3

13 HistGradientBoosting Histogram-based Gradient Boosting Regression Tree 3

14 Huber Huber Regressor 3

15 Isotonic Isotonic Regression 7

16 KNeighbors K-Nearest Neighbors Regressor 3

17 KernelRidge Kernel Ridge Regressor 7

18 LGBM Light Gradient Boosting Machine Regressor 3

19 Lars Lars Regressor 7

20 LarsCV Lars Regressor with in-built cross-validation 7

21 Lasso Lasso Regressor 7

22 LassoCV Lasso Regressor with in-built cross-validation 3

23 LassoLars Lasso-Lars Regressor 7

24 LassoLarsCV Lasso-Lars Regressor with in-built cross-validation 3

25 LassoLarsIC Lasso-Lars Regressor with information criterion 3

26 Linear Linear Regression 7

27 LinearSVR Linear Support Vector Regression 7

28 MLP Multi-layer Perceptron Regressor 3

29 NuSVR Nu-Support Vector Regression 7
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30 OrthogonalMP Orthogonal Matching Pursuit Regrssor 3

31 OrthogonalMPCV Orthogonal Matching Pursuit Regrssor with in-built cross-validation 7

32 PLSCanonical Partial Least Squares Canonical Regressor 7

33 PLS Partial Least Squares Regressor 3

34 PassiveAggressive Passive Aggressive Regressor 7

35 RANSAC Random Sample Consensus Regressor 7

36 RadiusNeighbors Radius Neighbors Regressor 7

37 RandomForest Random Forest Regressor 3

38 Ridge Ridge Regressor 3

39 RidgeCV Ridge Regressor with in-built cross-validation 3

40 SGD Stochastic Gradient Descent Regressor 7

41 SVR Support Vector Regression 7

42 TheilSen Theil-Sen Regressor 7

43 TransformedTarget Transformed Target Regressor 7

44 XGBoost Extreme Gradient Boosting Regressor 3

Number of selected regressors: 23/44

Table 2: List of regressors tested during the weighted link prediction of the commuters network.
The Acronym column presents the short name of each algorithm, the Name column shows the full
name of all algorithms, and the Results column marks with 3 the regressors that do not require
early hyperparameter tuning and have passed for the subsequent testing phase, and with 7 the
discarded ones.

Classifiers’ Performance

# Algorithm Mean Standard Deviation (σ) Variance (σ2)
1 CatBoost 0.87938 0.00270 0.00001
2 XGBoost 0.87523 0.00282 0.00001
3 LGBM 0.87391 0.00306 0.00001
4 HistGradientBoosting 0.87382 0.00298 0.00001
5 GradientBoosting 0.87288 0.00298 0.00001
6 AdaBoost 0.85866 0.00468 0.00002
7 Bagging 0.85620 0.00523 0.00003
8 RandomForest 0.83895 0.01334 0.00018
9 DecisionTree 0.81229 0.00924 0.00009
10 ExtraTrees 0.74033 0.02400 0.00058
11 LogisticCV 0.70626 0.02802 0.00079
12 Ridge 0.70278 0.01123 0.00013
13 LinearDA 0.69882 0.01014 0.00010
14 Logistic 0.67249 0.05846 0.00342
15 MLP 0.64219 0.02921 0.00085
16 QuadraticDA 0.63175 0.00419 0.00002
17 BernoulliNB 0.62663 0.00316 0.00001
18 KNeighbors 0.61093 0.00778 0.00006
19 LinearSVC 0.59470 0.06886 0.00474
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20 CalibratedCV 0.58282 0.04873 0.00237
21 NearestCentroid 0.57061 0.00853 0.00007
22 GaussianNB 0.56790 0.01159 0.00013
23 ComplementNB 0.56444 0.04092 0.00167
24 MultinomialNB 0.56191 0.04357 0.00190
25 PassiveAggressive 0.52767 0.03754 0.00141
26 RidgeCV 0.51654 0.07597 0.00577
27 Perceptron 0.50213 0.02163 0.00047

Table 3: Statistics from the bootstrap sampling describing the Mean, Standard Deviation, and
Variance of a thousand predictions made on different random samples of the training set. The
experiment was carried out using the classifiers that have passed the first testing phase, see Table 1.

Regressors’ Performance

# Algorithm Mean Standard Deviation (σ) Variance (σ2)
1 XGBoost 0.65623 0.01124 0.00013
2 GradientBoosting 0.65430 0.01139 0.00013
3 LGBM 0.63696 0.01102 0.00012
4 HistGradientBoosting 0.63630 0.01102 0.00012
5 ExtraTrees 0.62010 0.01405 0.00002
6 RandomForest 0.60985 0.01727 0.00003
7 Bagging 0.60943 0.01675 0.00028
8 CatBoost 0.58423 0.01269 0.00016
9 AdaBoost 0.49586 0.04169 0.00174
10 MLP 0.49051 0.04793 0.00230
11 BayesianRidge 0.47401 0.00049 0.00002
12 ElasticNetCV 0.47311 0.00047 0.00002
13 LassoLarsCV 0.47300 0.00571 0.00003
14 LassoCV 0.47268 0.00529 0.00003
15 RidgeCV 0.47175 0.00604 0.00004
16 LassoLarsIC 0.47120 0.00629 0.00004
17 OrthogonalMP 0.47020 0.00511 0.00003
18 Ridge 0.46906 0.00639 0.00004
19 Huber 0.42919 0.01558 0.00024
20 PLS 0.36433 0.03680 0.00135
21 KNeighbors 0.34232 0.01488 0.00022
22 DecisionTree 0.31286 0.05175 0.00268
23 ElasticNet 0.20615 0.03905 0.00153

Table 4: Bootstrap sampling performance describing the Mean, Standard Deviation, and Variance
of a thousand predictions made on different random samples of the training set. The experiment
was carried out using the regressors that have passed the first testing phase, as described in Table 2.
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List of Features and Selected Features

Classifier Regressor
# Features Citys Cityt Citys Cityt

1 Area 3 3 3 3

2 Child labor 3 7 7 3

3 Domestic violence 7 7 7 7

4 Elderly population 7 3 3 3

5 Female population 3 7 3 7

6 Gross Domestic Product 7 3 7 3

7 Homicides 7 7 3 7

8 Human Development Index 3 3 7 3

9 Illiteracy 3 3 3 7

10 Income 7 3 7 3

11 Male population 7 7 7 7

12 Minimum wage 7 3 3 3

13 Population 7 7 7 7

14 Population density 3 7 3 3

15 Sanitary sewage 7 3 7 3

16 Sanitation 7 7 7 7

17 Street arborization 3 3 3 3

18 Street urbanization 3 7 3 7

19 Suicides 7 7 7 3

20 Traffic accidents 7 3 7 3

21 Tuition rate 3 7 7 7

22 Unemployment 3 7 3 7

23 Distance 3 3

Number of selected features: 21/45 23/45

Table 5: List of features selected by the threshold-based feature selection process applied to both
models inferred from the XGBoost classifier and regressor. In the table, we use Citys and Cityt

to denote the source and target cities, 3 to indicate the remaining features after feature selection
and 7 to indicate the removed ones. Notice that the distance between two given cities is the same
regardless of the city of departure. As a consequence, the distance represents a single feature, and
there is no distinction between the distance from the source to the target city and vice-versa.
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Notes. Table 1 list the acronym and full name of all algorithms we tested during the baselines’ computation.
Tables 2 to 6 present detailed information from the experiments discussed along with the main manuscript. The
following tables regard the tests using Transfer Learning on the SARS-CoV-2 dataset, in which a new network
was trained every 15 days starting on 45 days after the pandemic started and up to 120 days of its duration.

Extended Methods
Cosine Similarity. The cosine similarity, which has been widely applied in learning approaches, accounts
for the similarity between two non-zero vectors based on their orientation in an inner product space [1]. The
underlying idea is that the similarity is a function of the cosine angle θ between vectors u = [u1, u2, . . . , uN ] ∈
RN×1 and v = [v1, v2, . . . , vN ] ∈ RN×1. Hence, when θ = 1, the two vectors in the inner product space have
the same orientation, when θ = 0, these vectors are oriented a 90◦ relative to each other, and when θ = −1, the
vectors are diametrically opposed. The cosine similarity between the vectors u and v is defined as:

cosθ(u,v) =
u · v

‖u‖ ◦ ‖v‖
(1)
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Pay Attention to Evolution: Time Series forecasting with Deep Graph-Evolution Learning

where u · v =
∑N
i=1 uivi denotes the dot product between u and v, and ‖u‖ represents the norm of the vector

u =
√
u · u, while ui is the i-th variable of u. In this work’s scope, the cosine similarity is used to build

similarity adjacency matrices, which measures per-nodes similarity in a variables’ co-occurrence graph. The
similarity between two nodes in the graph describes how likely those two variables co-occur in time. In this case,
the similarity ends up acting as an intermediate activation function, enabling the graph evolution process by
maintaining relationships’ similarity between pairs of nodes. Thus, the cosine-matrix similarity is defined as:

cosθ(A) =
A ·AT

‖A‖ ◦ ‖A‖T
(2)

where A · AT denotes the dot product between the adjacency matrix A and the transposed AT, while ‖A‖
represents the norm of that same matrix with respect to any of its ranks. The resulting matrix of using the
cosine-similarity activation is symmetric and referred to along with the main manuscript as Evolution Weights.

Horizon Forecasting. It stands for an approach used for making non-continuous predictions by accounting
for a future gap in the data. It is useful in a range of applications by considering, for instance, that recent data
is not available or too costly to be collected. Thereby, it is possible to optimize a model that disregards the near
future and focuses on the far-away future. However, such an approach abdicates from additional information
that could be learned from continuous timestamp predictions [2]. By not considering the near past as a variable
that influences the near future, we might result in a non-stochastic view of time, meaning that the algorithm
focuses on long-term dependencies rather than both long-and short-term dependencies. Along these lines, both
the LSTNet [3] and DSANet [4] comply with horizon forecasting, and to make our results comparable, we set
the horizon to one on both of them. Thus, we started assessing the test results right after the algorithms’ last
validation step because as closer to the horizon, the more accurate the horizon-based models should be.

Time-Series Segmentation. A simplistic yet effective approach to train time-series algorithms is through
the Sliding Window technique [5], which is also referred to as Rolling Window (see Fig. 1). Such a technique

Test Data

Time Axis Future

Training Data Test Data

StrideWindow

Test DataStrideWindow

Validation
Data

Validation
Data

Validation
Data

 R
epeat 

Test DataWindow Validation
Data

Test DataWindow

Test DataStrideWindow Validation
Data

Past

Training Data

Training during N Epochs

Testing on the reserved data

Figure 1: Sliding Window technique for training neural networks.
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fixes a window size, which slides over the time axis, predicting a predefined number of future steps, referred to as
stride. Some time-series studies have been using a variant technique known as Expanding Sliding Window [6,7].
This variant starts with a prefixed window size, which grows as it slides, showing more information to the
algorithm as time goes by. ReGENN holds for the traditional technique as it is bounded to the tensor weights
dimension. Those dimensions are of a preset size and cannot be effortlessly changed during training, as it comes
with increased uncertainty by continuously changing the number of internal parameters, such that a conventional
neural network optimizer cannot handle it properly. Nevertheless, the window size of the Sliding Window is well
known to be a highly sensitive hyperparameter [8,9]; to avoid an increased number of hyperparameter, we followed
a non-tunable approach, in which we set the window size before the experiments taking into consideration the
context of the datasets; such values were even across all window-based trials, including the baselines and ablation.

Optimization Strategy. ReGENN operates on a three-dimensional space shared between samples, time,
and variables. In such a space, it carries out a time-based optimization strategy. The training process iterates
over the time-axis of the dataset, showing to the network how the variables within a subset of time-series behave
as time goes by, and later repeating the process through subsets of different samples. The network’s weights are
shared among the entire dataset and optimized towards best generalization simultaneously across samples, time,
and variables. The dataset T ∈ Rs×t×v is sliced into training T̃ ∈ Rs×w×v and testing T̂ ∈ Rs×z×v as follows:

T̃ =


T1,1,v T1,2,v T1,2,v . . . T1,w,v

T2,1,v T2,2,v T2,2,v . . . T2,w,v

T3,1,v T3,2,v T3,2,v . . . T3,w,v

...
...

...
. . .

...
Tb,1,v Tb,2,v Tb,2,v . . . Tb,w,v

 T̂ =


T1,1+z,v T1,2+z,v T1,2+z,v . . . T1,w+z,v

T2,1+z,v T2,2+z,v T2,2+z,v . . . T2,w+z,v

T3,1+z,v T3,2+z,v T3,2+z,v . . . T3,w+z,v

...
...

...
. . .

...
Tb,1+z,v Tb,2+z,v Tb,2+z,v . . . Tb,w+z,v


Once the data is sliced, we follow by using a gradient descent-based algorithm to optimize the model. In

this work’s scope, we used Adam [10] as the optimizer, as it is the most common optimizer among time-series
forecasting problems. As the optimization criterion, we used the Mean Absolute Error (MAE), which is a
generalization of the Support Vector Regression [11] with soft-margin criterion formalized as it follows:

minimize
w

(
1

2
‖w‖2F + C

)
×

n∑
i=1

(ξi + ξ∗i )

subject to yi − (w · xi)− b ≤ ρ+ ξi,

(w · xi) + b− yi ≤ ρ+ ξ∗i ,

ξi, ξ
∗
i ≥ 0.

where w is the set of optimizable parameters, ‖·‖F is the Frobenius norm, and both C and ρ are hyperparameters.
The idea, then, is to find w that better fit yi,xi∀i ∈ [1, n] so that all values are in [ρ+ ξi, ρ+ ξ∗i ], where ξi and
ξ∗i are the two farther opposite points in the dataset. A similar formulation on the Linear SVR implementation
for horizon forecasting was presented by Lai et al. [3]. Due to the higher-dimensionality among the multiple
multivariate time-series used in this study, in which we consider the time to be continuous, the problem becomes:

minimize
Ω

(
1

2
‖Ω‖2F + C

)
×

s∑
i=1

w∑
j=1

ξi subject to
∣∣∣Ŷi,j − T̂i,j

∣∣∣ ≤ ρ+ ξi,j , ξi,j ≥ 0.

where Ω is the set of internal parameters of ReGENN, Ŷ is the network’s output and T̂ the ground truth.
When disregarding C and setting ρ as zero, we can reduce the problem to the MAE loss formulation:

minimize
Ω

s∑
i=1

w∑
j=1

∣∣∣Ŷi,j − T̂i,j

∣∣∣
3
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Square-and logarithm-based criteria can also be used with ReGENN. We avoid doing so, as this is a decision
that should be made based on each dataset. Contrarily, we follow the SVR path towards the evaluation of
absolute values, which is less sensitive to outliers and enables ReGENN to be applied to a range of applications.

Transfer-Learning Approach. We adopted a Transfer Learning approach to train the network on the SARS-
CoV-2 dataset that, although different, resembles Online Deep Learning [12]. The idea is to train the network on
incremental slices of the time-axis, such that the pre-trained weights of a previous slice are used to initialize the
weights of the network in the next slice (see Fig. 2). This technique aims not only to achieve better performance
towards the network but also to show that ReGENN is useful throughout the pandemic.

Time Axis

Slice 1 Slice 2 Slice 3 Slice 4 Slice N...

Xavier Initialization

Transfer
Learning

Network
Snapshot

 Initializing with pre-trained weights from Slice 1 after a 20% Dropout 

Transfer
Learning

Network
Snapshot

 Initializing with pre-trained weights from Slice 2 after a 20% Dropout 

Transfer
Learning

Network
Snapshot

 Initializing with pre-trained weights from Slice 3 after a 20% Dropout 

Final Prediction

 Initializing with pre-trained weights from Slice N after a 20% Dropout 

Training
on Loop Network

Snapshot
 Using the weights from the previous iteration 

Trained Model
(Final Weights)

...New DataOld Data

...New DataOld Data

...New DataOld Data

...New Data

Figure 2: Transfer Learning used for streaming time-series.

Hyperparameters adjustment is usually required when transferring the weights from one network to another,
mainly the learning rate; for the list of hyperparameters we used, see Tab. 3. Besides, we deliberately applied a
20% Dropout on all tensor weights outside the network architecture and before starting the training. The aim
behind that decision was to insert randomness in the pipeline and avoid local optima. It worth mentioning that
we did not observe any decrease in performance, but the optimizer’s convergence was slower in some cases.

Baselines Algorithms. Open-source Python libraries provided the time series and machine learning algo-
rithms used along with the experiments. Time series algorithms came from the statsmodels1, while the machine
learning ones majorly from the Scikit-Learn2. Further algorithms, such as XGBoost3, LGBM4, and CatBoost5,

1Available at https://www.statsmodels.org/stable/index.html.
2Available at https://scikit-learn.org/stable/.
3Available at https://xgboost.readthedocs.io/en/latest/.
4Available at https://lightgbm.readthedocs.io/en/latest/.
5Available at https://catboost.ai/.
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have a proprietary open-source implementation, which was preferred over the others. We used the default hyper-
parameters over all the experiments, performing no fine-tuning. However, because all the datasets we tested are
strictly positive, we forced all the negative output to become zero, such as made by a ReLU activation function.

A list with names and algorithms tested along with the experiments is provided in Tab 1, which contains
more algorithms than we reported in the main paper. That because we are listing all algorithms, even those
removed from the pipeline due to being incapable of working with the input data and yielding exceptions.

Table 1: List of algorithms tested during the baselines’ computation. The Acronym column presents each
algorithm’s short name, and the Name column shows the full name of all algorithms (when applicable).

# Acronym Name
0 AdaBoost Adaptive Boosting
1 ARD Automatic Relevance Determination
2 ARIMA Autoregressive Integrated Moving Average
3 ARMA Autoregressive Moving Average
4 Autoregressive —
5 Bagging —
6 BayesianRidge —
7 CatBoost —
8 CCA Canonical Correlation Analysis
9 Decision Tree —
10 DSANet Dual Self-Attention Network
11 Elman RNN Elman’s Recurrent Neural Network
12 Exponential Smoothing Single Exponential Smoothing
13 Extra Tree Extremely Randomized Tree
14 Extra Trees Extremely Randomized Trees
15 Gaussian Process —
16 Gradient Boosting —
17 GRU Gated Recurrent Unit
18 Histogram Grad. Boosting Histogram Gradient Boosting
19 Historical Average Dummy Regressor
20 Huber —
21 Isotonic —
22 Kernel Ridge —
23 KNeighbors k-Nearest Neighbors
24 Lars Least Angle Regression
25 Lasso-Lars Least Absolute Shrinkage and Selection Operator w/ Lars
26 Lasso-Lars-IC Lasso-Lars w/ Information Criterion
27 LGBM Light Gradient Boosting Machine
28 Linear Regression —
29 Linear SVR Linear Support Vector Regression
30 LSTM Long Short Term Memory
31 LSTNet Long-and Short Term time-series Network
32 MLCNN Multi-Level Construal Neural Network
33 Moving Average —
34 Multi-Task Elastic-Net —
35 Multi-Task Lasso —

5



Pay Attention to Evolution: Time Series forecasting with Deep Graph-Evolution Learning

36 NuSVR Nu-Support Vector Regression
37 Orthogonal Matching Pursuit —
38 Passive Aggressive —
39 PLS Canonical Partial Least Squares Canonical
40 PLS Partial Least Squares
41 Radius Neighbors —
42 Random Forest —
43 RANSAC Random Sample Consensus Regressor
44 ReGENN Recurrent Graph Evolution Neural Network
45 Ridge —
46 SARIMA Seasonal Autoregressive Integrated Moving Average
47 SGD Stochastic Gradient Descent
48 SVR Support Vector Regression
49 Theil-Sen —
50 Transformed Target —
51 Vector Autoregression —
52 XGBoost Extreme Gradient Boosting
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Table 2: List of hyperparameters used during the main experiments.

—————| ReGENN |—————

SARS-CoV-2 Brazilian Weather PhysioNet
autoregression True True True

batch-size 32 64 256
bias True True True

bidirectional-gate False False False
bidirectional-sequencer False False False

clip-norm 85.0 10.0 25.0
criterion MAE MAE MAE
dropout 0.0 0.0 0.0

early-stop 250 100 10
epochs 2500 1000 100

evolution-function Identity Identity Identity
gate LSTM LSTM LSTM

iterator Time Time Time
learning-rate 0.001 0.0001 0.001
load-weights True False False
no-encoder False False False

no-sequencer False False False
normalization-axis 2 2 2
normalization-type Maximum Maximum Maximum

optimizer Adam Adam Adam
output-function ReLU ReLU ReLU

random-seed 0 0 0
scheduler-factor 0.95 0.95 0.2
scheduler-min-lr 0.0 0.0 0.0

scheduler-patience 25 50 40
scheduler-threshold 0.1 0.1 0.1

sequencer LSTM LSTM LSTM
stride 14 56 6
seed 0 0 0

validation-stride 7 28 6
watch-axis 2 2 2

window 7 84 12

—————| MLCNN |—————

SARS-CoV-2 Brazilian Weather PhysioNet
batch-size 32 64 256
clip-norm 10 10 10

collaborate-span 2 2 2
collaborate-stride 1 1 1

criterion MAE MAE MAE
dropout 0.2 0.2 0.2
epochs 2500 1000 100

hidden-CNN 100 100 100
hidden-RNN 100 100 100

highway-window 1 1 1
input-size 7 84 12
kernel-size 5 5 5

learning-rate 0.001 0.001 0.001
mode Continuous Continuous Continuous

num-CNN 10 10 10
normalization 1 1 1

optimizer Adam Adam Adam
output-function ReLU ReLU ReLU

output-size 14 56 6
seed 0 0 0



Table 2 continued from previous page

—————| DSANet |—————

SARS-CoV-2 Brazilian Weather PhysioNet
batch-size 32 64 256
clip-norm 10 10 10
criterion MAE MAE MAE

dim-inner 2048 2048 2048
dim-k 64 64 64

dim-model 512 512 512
dim-v 64 64 64

dropout 0.1 0.1 0.1
early-stop 250 100 10

epochs 2500 1000 100
horizon 1 1 1

learning-rate 0.001 0.001 0.001
local 3 3 3

num-heads 8 8 8
num-kernels 32 32 32
num-layers 6 6 6

normalization 2 2 2
optimizer Adam Adam Adam

output-function ReLU ReLU ReLU
seed 0 0 0

w-kernel 1 1 1
window 7 84 12

—————| LSTNet |—————

SARS-CoV-2 Brazilian Weather PhysioNet
batch-size 32 64 256
clip-norm 10 10 10

CNN-kernel 6 6 6
criterion MAE MAE MAE
dropout 0.2 0.2 0.2

early-stop 250 100 10
epochs 2500 1000 100

hidden-CNN 100 100 100
hidden-RNN 100 100 100
hidden-Skip 7 84 12

highway-window 7 84 12
horizon 1 1 1

learning-rate 0.001 0.001 0.001
normalization 2 2 2

optimizer Adam Adam Adam
output-function ReLU ReLU ReLU

seed 0 0 0
skip-steps 2 2 2
window 7 84 12
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Table 3: List of hyperparameters used during the ablation experiments.

ReGENN PyTorch’ Deafult Literature’s Default
clip-norm — 0 10
dropout — 0 0.1

learning-rate — 0.001 0.001
scheduler-factor — 0.1 0.95

scheduler-patience — 10 25
scheduler-threshold — 0.001 0.1

Note. The hyperparameters from above are shared across all the datasets; the other ones follow as in Tab. 2.
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Hyperparameters
used for

Transfer Learning



Table 8: List of hyperparameters used during Transfer Learning.

Transfer Learning
45 Days 60 Days 75 Days 90 Days 105 Days 120 Days

autoregression True True True True True True
batch-size 32 32 32 32 32 32

bias True True True True True True
bidirectional-gate False False False False False False

bidirectional-sequencer False False False False False False
clip-norm 15.0 0.0 10.0 0.0 0.0 85.0
criterion MAE MAE MAE MAE MAE MAE
dropout 0.25 0.0 0.35 0.1 0.0 0.0

early-stop 250 250 250 250 250 250
epochs 2500 5000 2500 2500 2500 2500

evolution-function Identity Identity Identity Identity Identity Identity
gate LSTM LSTM LSTM LSTM LSTM LSTM

iterator Time Time Time Time Time time
learning-rate 0.006 0.009 0.001 0.002 0.0002 0.001
load-weights False True True True True True
no-encoder False False False False False False

no-sequencer False False False False False False
normalization-axis 2 2 2 2 2 2
normalization-type Maximum Maximum Maximum Maximum Maximum Maximum

optimizer Adam Adam Adam Adam Adam Adam
output-function ReLU ReLU ReLU ReLU ReLU ReLU

random-seed 0 0 0 0 0 0
scheduler-factor 0.95 0.95 0.95 0.65 0.05 0.95
scheduler-min-lr 0.0 0.0 0.0 0.0 0.0 0.0

scheduler-patience 25 20 25 60 25 25
scheduler-threshold 0.1 0.01 0.1 0.1 0.1 0.1

sequencer LSTM LSTM LSTM LSTM LSTM LSTM
stride 14 14 14 14 14 14

validation-stride 7 7 7 7 7 7
watch-axis 2 2 2 2 2 2

window 7 7 7 7 7 7
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