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“Do not be conformed to this world,
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ABSTRACT

BONIDIA, R. P. BioAutoML: Democratizing Machine Learning in Life Sciences. 2024. 165
p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2024.

Recent technological advances allowed an exponential expansion of biological sequence data,
and the extraction of meaningful information through Machine Learning (ML) algorithms. This
knowledge improved the understanding of the mechanisms related to several fatal diseases, e.g.,
Cancer and COVID-19, helping to develop innovative solutions, such as CRISPR-based gene
editing, coronavirus vaccine, and precision medicine. These advances benefit our society and
economy, directly impacting people’s lives in various areas, such as health care, drug discovery,
forensic analysis, and food analysis. Nevertheless, ML approaches applied to biological data
require representative, quantitative, and informative features. Necessarily, as many ML algo-
rithms can handle only numerical data, sequences need to be translated into a feature vector. This
process, known as feature extraction, is a fundamental step for the elaboration of high-quality
ML-based models in bioinformatics, by allowing the feature engineering stage, with the design
and selection of suitable features. Feature engineering, ML algorithm selection, and hyperpa-
rameter tuning are often manual and time-consuming processes, requiring extensive domain
knowledge, and performed manually by a human expert. To deal with this problem, we developed
a new package, BioAutoML, which automatically runs an end-to-end ML pipeline. BioAutoML
extracts numerical and informative features from biological sequence databases, automating
feature selection, recommendation of ML algorithm(s), and tuning of hyperparameters, using
Automated ML (AutoML). BioAutoML has two components, divided into four modules, (1)
automated feature engineering (feature extraction and selection modules) and (2) Metalearning
(algorithm recommendation and hyperparameter tuning modules). Our experimental results,
assessing the relevance of our proposal, indicate robust results for different problem domains,
such as SARS-CoV-2, anticancer peptides, HIV sequences, and non-coding RNAs. According to
our systematic review, our proposal is innovative compared to available studies in the literature,
being the first study to propose automated feature engineering and metalearning for biological
sequences. BioAutoML has a high potential to significantly reduce the expertise required to use
ML pipelines, aiding researchers in combating diseases, particularly in low- and middle-income
countries. This initiative can provide biologists, physicians, epidemiologists, and other stake-
holders with an opportunity for widespread use of these techniques to enhance the health and
well-being of their communities.

Keywords: BioAutoML, Automated Feature Engineering, Metalearning, Biological Sequences,
MathFeature, Mathematical Descriptors.





RESUMO

BONIDIA, R. P. BioAutoML: Democratizando Aprendizado de Máquina nas Ciências da
Vida. 2024. 165 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática
Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2024.

Avanços tecnológicos recentes permitiram uma expansão exponencial dos dados de sequências
biológicas e a extração de informações significativas por meio de algoritmos de Aprendizado de
Máquina (AM). Esse conhecimento aprimorou a compreensão dos mecanismos relacionados a
várias doenças fatais, como o câncer e a COVID-19, contribuindo para o desenvolvimento de
soluções inovadoras, como a edição de genes com base no CRISPR, vacinas contra o coronavírus
e medicina de precisão. Esses avanços beneficiam nossa sociedade e economia, impactando
diretamente a vida das pessoas em várias áreas, como cuidados de saúde, descoberta de medi-
camentos, análise forense e análise de alimentos. No entanto, abordagens de AM aplicadas a
dados biológicos requerem características representativas, quantitativas e informativas. Neces-
sariamente, uma vez que muitos algoritmos de AM só podem lidar com dados numéricos, as
sequências precisam ser traduzidas em um vetor de características. Esse processo, conhecido
como extração de características, é uma etapa fundamental para a elaboração de modelos de
AM de alta qualidade em bioinformática, permitindo a etapa de engenharia de características,
com o design e seleção de características adequadas. A engenharia de características, a seleção
de algoritmos de AM e o ajuste de hiperparâmetros são frequentemente processos manuais e
demorados, que requerem amplo conhecimento do domínio e são realizados manualmente por
um especialista humano. Para lidar com esse problema, desenvolvemos um novo pacote, o
BioAutoML, que executa automaticamente um pipeline de AM de ponta a ponta. O BioAutoML
extrai características numéricas e informativas de bancos de dados de sequências biológicas,
automatizando a seleção de características, a recomendação de algoritmos de AM e o ajuste de
hiperparâmetros, usando o Aprendizado de Máquina Automatizado (AutoML). O BioAutoML
possui dois componentes, divididos em quatro módulos: (1) engenharia de características auto-
matizada (módulos de extração e seleção de características) e (2) Meta-Aprendizado (módulos
de recomendação de algoritmos e ajuste de hiperparâmetros). Nossos resultados experimentais,
ao avaliar a relevância de nossa proposta, indicam resultados robustos para diferentes domínios
de problemas, como SARS-CoV-2, peptídeos anticancerígenos, sequências de HIV e RNAs
não codificadores. De acordo com nossa revisão sistemática, nossa proposta é inovadora em
comparação com estudos disponíveis na literatura, sendo o primeiro estudo a propor engenharia
de características automatizada e metalearning para sequências biológicas. O BioAutoML tem
um alto potencial para reduzir significativamente a expertise necessária para usar pipelines de
AM, auxiliando os pesquisadores no combate a doenças, principalmente em países de baixa e
média renda. Esta iniciativa pode oferecer aos biólogos, médicos, epidemiologistas e outras



partes interessadas a oportunidade de utilizar amplamente essas técnicas para aprimorar a saúde
e o bem-estar de suas comunidades.

Palavras-chave: BioAutoML, Engenharia de Características Automatizada, Meta-Aprendizado,
Sequências Biológicas, MathFeature, Descritores Matemáticos.
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CHAPTER

1
INTRODUCTION AND PROBLEM

STATEMENT

Artificial Intelligence (AI), specifically Machine Learning (ML) algorithms, has enabled
the development of innovative solutions in healthcare, agriculture, forensics, and climate change
(PALLATHADKA et al., 2023). Due to the expansion and inherent complexity of biological
data, ML methods have also shown broad applicability in the biology field (LIU et al., 2015;
GREENER et al., 2021; VOLKAMER et al., 2023). ML algorithms can extract useful and mean-
ingful knowledge from biological sequence data (CHEN et al., 2021), accelerating discoveries,
reducing research expenses, and increasing scientific efficiency (SHARMA et al., 2021). These
advances directly benefit society, the economy, and people’s lives.

Furthermore, ML has been successfully used to mitigate the impact of health-related
problems (SHARMA et al., 2021; CANNATARO; HARRISON, 2021; GHANNAM; TECHT-
MANN, 2021a), e.g., COVID-19 pandemic (CANNATARO; HARRISON, 2021; KAMALOV et

al., 2023), cancer diagnosis (PAINULI; BHARDWAJ et al., 2022), and CRISPR/Cas9-based
gene-editing technology (LI; ZHANG; TROYANSKAYA, 2021; MITROFANOV et al., 2020).
Despite its wide application, designing robust and trustworthy ML solutions usually requires
expertise not commonly found in health researchers, causing severe inequalities (AHMED;
MULA; DHAVALA, 2020; RUBEIS; DUBBALA; METZLER, 2022). According to (RUBEIS;
DUBBALA; METZLER, 2022; VANHORN; ÇOBANOĞLU, 2022), in this context, democratiz-
ing AI implies granting accessibility to ML for individuals who are not specialists in the domain,
e.g., individuals without a background in data science, mathematics, or informatics.

Consequently, in an era where AI is present in various processes that impact society,
it is essential to ensure that its contributions are distributed equitably (SEGER et al., 2023).
This democratization must empower each individual, community, or society to contribute pro-
portionately to their aptitude, availability, dedication, and speed, requiring equal opportunities
across the world (RUBEIS; DUBBALA; METZLER, 2022). In addition to these challenges,
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one of the main obstacles to the application of ML algorithms to biological sequences is the
unstructured nature of many of these data, since most algorithms, including those that produce
interpretable models, only work with structured data. This problem can be dealt with feature
extraction techniques to represent the originally unstructured data in a structured format. Never-
theless, the features must capture the relevant information present in the biological sequence,
since the predictive performance of the model induced by an ML algorithm strongly depends on
the representativeness of the input feature vector (WARING; LINDVALL; UMETON, 2020).
These processes often require extensive domain knowledge, performed manually by a human
expert, being one of the most time-consuming steps in the ML pipeline (WARING; LINDVALL;
UMETON, 2020; AMERIFAR; NOROUZI; GHANDI, 2022).

To mitigate this limitation, Automated Machine Learning (AutoML) methods are being
used to democratize access and effective use of ML algorithms by non-experts (KARMAKER et

al., 2021). AutoML has been successfully used in biological sequence data, with robust solutions,
such as autoBioSeqpy (JING et al., 2020), AutoGenome (LIU et al., 2021), iLearn (CHEN
et al., 2019), and iLearnPlus (CHEN et al., 2021). Although these studies mention AutoML,
most of them apply general-purpose AutoML tools that do not automate the whole process,
known as end-to-end ML, nor take into account the specifics of sequence data. The first two
of these tools cover only the data modeling step. The last two, iLearn and iLearnPlus include
more steps but do not automate the feature extraction from unstructured data. Thus, this step
must be performed by the user, who needs to know how to work with unstructured data, mainly
for feature engineering and to have programming skills (NG et al., 2021). However, according
to International Data Corporation (IDC)1, by 2025 about 80% of the data generated will be
unstructured, e.g., biological sequences, text, images, audio, and video.

These limitations motivated the development of a novel open-source software package,
called BioAutoML2,3, that can extract features based on different aspects, and automate the
feature selection, algorithm(s) recommendation, and hyperparameter tuning for multi-class
and binary classification of biological data. BioAutoML is an end-to-end Automated Machine
Learning (AutoML) tool for experiments using biological sequences. This thesis seeks answers
to the following Research Questions (RQ):

• RQ1: How can we effectively represent biological sequences to capture the most relevant
information from the original data for ML applications?

• RQ2: Can we develop an automated, robust, efficient feature engineering and metalearning
pipeline specifically designed for biological sequence data?

Our hypothesis to answer these questions is:
1 https://www.idc.com/
2 https://github.com/Bonidia/BioAutoML
3 https://bonidia.github.io/BioAutoML-WP/



1.1. Feature Engineering Problem 23

• Hypothesis: BioAutoML can recommend efficient and robust pipelines for representing
biological sequences, automating feature selection, algorithm recommendation, and hyper-
parameter tuning. This reduces the time-consuming preprocessing stage while maintaining
or improving the performance of predictive models, consequently lowering the expertise
required to use ML pipelines for biological sequence analysis.

This proposal reduces the barrier to applying automated feature engineering and met-
alearning in biological sequences for non-experts, industries, as well as in fields of biology,
bioinformatics, or medicine, helping analyze and predict large volumes of sequence data faster.

1.1 Feature Engineering Problem

According to Chou’s 5-step rule (CHOU, 2011; LIU et al., 2015), numerically represent-
ing biological sequences with an efficient and adequate mathematical expression, is one of the
most relevant steps to establish an effective statistical predictor for a biological system. In ML,
biological sequences, e.g., DNA/RNA and Protein, must be represented by a fixed number of
features (e.g., binary, categorical, or continuous), transforming originally unstructured data into
a structured format. Feature extraction or feature encoding is a key step in the construction of
high-quality ML-based models, determining the effectiveness of trained models in bioinformat-
ics applications (MUHAMMOD et al., 2019; CHEN et al., 2019; KHATUN et al., 2020). The
feature engineering process is a time-intensive step and requires domain knowledge of experts
(KHURANA et al., 2016; CHEN et al., 2019; WARING; LINDVALL; UMETON, 2020), being
the most time-consuming step, as well as a complex exercise (CHEN et al., 2019). Furthermore,
feature extraction generally includes both a feature engineering and a feature selection task.

Therefore, this thesis considers the feature construction as a key step to ML application
success, being an inevitable step, mainly in biological sequences preprocessing (MUHAMMOD
et al., 2019; ZHANG et al., 2021). In terms of terminology, the feature is synonymous of an
input variable or attribute. Nevertheless, several revised studies also use the feature descriptor

terminology (the majority in our review – see Chapter 2), which is the reason we adopted this
term, where a feature descriptor refers to the feature extraction method/technique that can present
several measures/values. Finally, we define the automated feature engineering task formally
explained as follows:

• Given a set of biological sequence data, D, divided into train (Dtrain) and test (Dtest),
a set of feature descriptors, Fd , where Fd = [ fd1, fd2, . . . , fdn], our goal is to select the
best numerical representation, that is, feature vector (Vf ), combining different feature
descriptors in the training set (Dtrain), using for the evaluation of the best Vf , a heuristic
function that considers the most important feature descriptor (I f d).
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1.2 Metalearning
One of the main difficulties in the application of ML algorithms to a new dataset is the

selection of the most adequate algorithm. Each ML algorithm has an inductive bias, which can
be defined by the way it searches for a robust model, i.e., (1) starting with simple models and
gradually increasing the complexity of the models until an effective model is found, (2) and the
format adopted for the representation, i.e., a model used by a decision tree. Although it can be
seen as a limitation, bias is necessary for learning to occur. As a consequence, each algorithm
fits better datasets with particular conformations. Thus, there is no champion ML algorithm, that
performs better than all others in every situation, but each ML algorithm performs better than
others on some datasets, which are not known beforehand (WOLPERT; MACREADY, 1997).
An alternative to selecting the best ML algorithm for a new dataset is to use prior knowledge
regarding the performance of a set of algorithms in previous learning experiences. This idea is
behind a particular approach to metalearning, defined in (BRAZDIL et al., 2022) as learning
to learn. According to the authors, metalearning is a research area that investigates how to
recommend the most suitable algorithm, or set of algorithms, for a new task. In this study, we
use metalearning to:

• Given a set of selected features, recommend the ML algorithm(s) able to induce the
best predictive model, which can be a set of algorithms, each one inducing a model, and
combine these models into an ensemble (Pml), recommending the best algorithm. Ensemble
methods can boost the performance of simple classifiers (e.g., using multiple prediction
models for solving the same problem) and have proven their effectiveness in bioinformatics
(LIU et al., 2020; HANCOCK; KHOSHGOFTAAR, 2020; HE et al., 2022).

1.3 Objectives
In light of our hypothesis, the main objective is to develop a novel open-source package,

BioAutoML, to extract pertinent numerical insights from biological sequences and, employing
AutoML, establish an automated feature engineering and metalearning pipeline. As a result, the
specific objectives that come to the forefront include:

• To conduct a systematic literature review in the field of feature engineering for biological
sequences;

• To develop the first package (called MathFeature) to provide a large and comprehensive
set of feature extraction techniques based on mathematical descriptors for DNA, RNA,
and Proteins;

• To develop an automated feature construction and metalearning package (called BioAu-
toML);
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• Investigate whether our proposal obtains competitive performance compared to other
studies;

• Assess whether MathFeature and BioAutoML can achieve competitive performance with
state-of-art methods;

• Apply MathFeature and BioAutoML to challenging problems such as CRISPR-Cas9
system, cancer, and COVID-19;

• To publish results through articles (conference and journal) and writing of the doctoral
thesis.

1.4 Justification

To support our proposal, we conducted a systematic literature review (as detailed in
Chapter 2), during which we identified 29 studies that developed feature extraction tools, in-
cluding packages, web servers, and toolkits, to classify biological sequences. These studies
collectively presented 173 feature extraction descriptors, categorized into 15 major groups, such
as physicochemical properties, proteochemometrics, and amino acid composition. During this
review, we identified two significant gaps in the existing research: Firstly, the available studies do
not adequately cover mathematical descriptors (e.g., chaos game, Fourier transform, entropy, and
graphs). Mathematical descriptors have been proven effective in extracting relevant features from
biological sequences (MACHADO; COSTA; QUELHAS, 2011; HOANG; YIN; YAU, 2016;
ITO et al., 2018; BONIDIA et al., 2021a), particularly in cases where the problem structure is
not well understood (NAEEM et al., 2021). This gap highlights a key area that our proposal aims
to address. Secondly, a majority of the existing studies (19 out of 29, or 65.52%) are dedicated to
a specific type of sequence. Our proposal intends to offer a more versatile approach that can be
applied to various biological sequence types, making it a valuable addition to the field.

Additionally, we assessed whether the reviewed studies utilize AutoML methods, and
we identified four packages related to our proposal: iLearn (CHEN et al., 2019), iLearnPlus
(CHEN et al., 2021), autoBioSeqpy (JING et al., 2020), and AutoGenome (LIU et al., 2021).
However, these packages do not include automated feature engineering. The most closely related
package, iLearn, requires users to configure an initial file, including the selection of descriptors
and classifiers, which demands domain knowledge. Even its more advanced version, iLearn-
Plus, requires manually inserting extracted features, lacking the essential feature engineering
automation. Therefore, our proposal stands out as the most comprehensive automated solution,
encompassing the entire pipeline for biological sequence analysis, from feature engineering to
ML algorithm recommendation and hyperparameter tuning, making it accessible even to users
with limited programming skills.
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1.5 Navigating Equity and Ethical Challenges

ML solutions have been proposed in several domains, e.g., in October 2022, the Food
and Drug Administration (FDA) reported 521 AI and ML-enabled medical devices (JOSHI et al.,
2022). Nevertheless, many studies have a black-box nature (decisions are not understandable on
a human level) (RUDIN, 2019; BABIC et al., 2021), which may reduce AI’s trust, accountability,
and acceptance. Another concern is that ML models can follow hidden social biases in the data,
leading to unfair, harmful, or discriminatory decisions. Some examples of these problems are
reported in the literature, e.g., in 2009, genome-wide association studies had more than 96% of
participants of European descent (POPEJOY; FULLERTON, 2016), failing on diversity. Other
studies reported differences and biases of sex and gender in AI (CIRILLO et al., 2020), seeking
your equity. In dermatology and diabetes management, studies have discussed the lack of racial
diversity in ML algorithms, with possible risks of health disparities (ADAMSON; SMITH, 2018;
PHAM et al., 2021).

In search of responsible solutions, this project follows guidelines proposed in the liter-
ature, such as how to develop and use AI responsibly (DIGNUM, 2019), AI for all (RAMOS,
2021), Guidelines for Trustworthy AI (ZHANG; ZHANG, 2023), Ethics of AI (UNESCO), and
others. We also adopt the principles of Data-Centric AI (DCAI) (ZHA et al., 2023; WHANG et

al., 2023), putting data at the heart of an AI system development process. For such, we applied the
FAIR (Findable, Accessible, Interoperable, and Reusable) data principles (WILKINSON et al.,
2016), guidelines to improve the Findability, Accessibility, Interoperability, and Reuse of data,
aiding scientific advancement and promoting. In addition, this thesis provides documentation to
replicate our ML workflows, including (1) libraries and their versions, (2) execution environment,
(3) training runs, (4) samples, (5) measures, and (6) predictions made by the model.

1.6 Innovations and Contributions

This thesis represents a significant advance in the application of ML techniques to the
analysis of biological sequences, addressing fundamental challenges in the field and offering
innovative solutions. The proposal of this thesis not only automates complex tasks but also
enables researchers without domain knowledge to apply ML algorithms for sequence data
analysis. These studies generated applicable results, demonstrating the considerable potential to
substantially decrease the expertise required to operate ML pipelines. The contributions of this
research are multifaceted, extending from theoretical advances to practical applications. They
are summarized as follows:

• A systematic literature review to present, summarize, and study ML-based feature ex-
traction tools (or packages, web servers, and toolkits) that have as a proposal to provide
several feature descriptors for biological sequences classification (DNA, RNA, or Protein);
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• Identification of 170 distinct descriptors for the numerical representation of biological
sequences;

• A novel feature extraction pipeline using mathematical features;

• A novel feature extraction technique based on Tsallis entropy;

• A novel open-source Python package, named MathFeature. This package provides 37
descriptors, 20 of them are mathematical, and organized into five categories. MathFeature is
an extensive and comprehensive set of feature extraction techniques based on mathematical
descriptors for encoding DNA, RNA, and Proteins (primary sequence of amino acids)
sequences. MathFeature is the first package to provide a large set of features based
on mathematical descriptors and also well-known descriptors from other studies with
biological sequences;

• The first study to propose an automated feature engineering and metalearning pipeline for
ncRNA sequences in bacteria;

• BioAutoML, which to the best of our knowledge, automates the most extensive pipeline to
date, encompassing feature engineering, ML algorithm recommendation, and hyperparam-
eter tuning. This comprehensive approach sets a new package in the application of ML to
biological sequences.

1.7 Thesis Organization/Outline

Throughout the thesis, several scenarios have been experimentally evaluated and dis-
cussed, leading to the development of an efficient and robust automated feature engineering and
metalearning package. The topics covered in this thesis are presented in the form of articles
(Collection of Articles), except for Chapter 2 and 8. Each chapter of the thesis can be read
independently, since the information necessary for its understanding is provided within the
chapter itself. Therefore:

• Chapter 2, which follows this introduction, describes a systematic literature review to
present, summarize, and study ML-based feature extraction tools (or packages, web servers,
and toolkits) that have as a proposal to provide several feature descriptors for numerically
represent biological sequences (DNA, RNA, or Protein);

• Chapter 3 proposes a new study of feature extraction approaches based on mathematical
features (numerical mapping with Fourier, entropy, and complex networks);

• Chapter 4 presents a Tsallis entropy-based feature extraction approach;
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• Chapter 5 proposes a novel open-source Python package, named MathFeature, the first
package to provide a large set of features based on mathematical descriptors.

• Chapter 6 develops a new package, BioAutoML, which automatically runs an end-to-
end ML pipeline (using AutoML), extracting numerical and informative features from
biological sequence databases, and automating feature selection, ML algorithm(s) recom-
mendation and hyperparameters tuning.

• Chapter 7 compiles a series of published articles, consisting solely of abstracts, that have
been shaped by the influence of our research;

• Finally, Chapter 8 discusses our findings and further challenges.
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CHAPTER

2
HOW TO NUMERICALLY REPRESENT

BIOLOGICAL SEQUENCES?

In this chapter, we developed a systematic literature review to present, summarize, and
study Machine Learning (ML)-based feature extraction tools (or packages, web servers, and
toolkits) that have as a proposal to provide several feature descriptors for biological sequences
classification (DNA, RNA, or Protein), that is, without a defined scope, therefore, generalist
studies. We propose to answer the following problem:

• Main Problem: How to numerically represent a biological sequence (such as DNA,

RNA, or protein) in a numeric vector that can effectively reflect the most discriminating

information in a sequence?

Considering this, our review has two main contributions: (1) a systematic literature
review of 25 studies and (2) the first study to compile into a single article 173 feature extraction
descriptors, divided into 15 large groups.

2.1 Method

This study followed the Systematic Literature Review (SLR) Guidelines in Software
Engineering (KEELE et al., 2007), which according to Keele et al. (2007) and Brereton et

al. (2007), allows a rigorous and reliable evaluation of primary studies within a specific topic.
This type of review presents a summary of evidence using systematic research methods and
information synthesis (KITCHENHAM et al., 2009a). Moreover, this methodology has been
widely used in several fields. We base our review on recommendations from previous studies
(KEELE et al., 2007; BRERETON et al., 2007; KITCHENHAM et al., 2009a), which divide
this process into three stages: planning, conducting, and reporting.
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2.1.1 Planning the Review

The planning stage covers the identification of the need for a review, the definition of
scientific questions, the identification of databases, the definition of keywords, search strategies,
inclusion, exclusion, and quality criteria (KEELE et al., 2007; BRERETON et al., 2007).

Identification of the Need for a Review

To define the need for a systematic review, we apply the following search string to the
PubMed database.

• ("feature extraction" OR "extraction" OR "features" OR "feature generation" OR "feature

vectors") AND ("tool" OR "web server" OR "package" OR "toolkit") AND ("biological

sequence" OR "sequences") AND ("review" OR "systematic review" "OR overview" OR

"state of the art" OR "systematic mapping")

It is important to emphasize that we consider PubMed our main database, because,
according to (FALAGAS et al., 2008; TOBER, 2011; KHARE; LEAMAN; LU, 2014), this
database is widely used in biomedical and life sciences literature (our field of application). As
a result, the search string returned 97 studies, but without any secondary study related to the
proposed theme.

Review Protocol

Our main aim is to present, summarize, and study ML-based feature extraction tools (or
packages, web servers, and toolkits) that have as a proposal to provide several feature descriptors
for biological sequences classification (DNA, RNA, or Protein), that is, without a defined scope,
therefore, generalist tools. Considering this, we formulated the following questions:

• RQ1: Which are the feature extraction tools for biological sequences?

– RQ1-A: Which is the overview of selected studies?

• RQ2: Which biological sequences are most covered by the tools (DNA, RNA, or Protein)?

• RQ3: Which descriptors or numerical representations are provided by the tools?

• RQ4: Do the tools only provide the feature extraction phase or cover other ML steps like
feature selection, classification, and performance analysis?

– RQ4-A: If the tools cover other phases of the biological sequence classification,
what are they?
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Generally, inclusion, exclusion, and quality criteria are determined after defining the
research questions. Therefore, we have established the following criteria:

• Inclusion criteria:

1. Studies in English

2. Studies with different feature extraction methods for biological sequences

3. Studies with generalist tools, that is, that do not have a specific problem

4. Studies published in journal

• Exclusion criteria:

1. Studies that do not use ML techniques and feature extraction

2. Studies written in a language other than English

3. Duplicate studies

4. Studies that are outside the scope of the review

5. Specific studies on some problems of biological sequences classification

• Quality criteria

1. Are the study aims clearly specified?

2. Are the feature extraction methods adequately detailed?

3. Study with different proposals/results?

4. Study with complete results?

5. Does the study provide a tool (or package, web server, and toolkit)?

6. Is the study within the scope, that is, generalist tools?

To guarantee the quality and reliability of the review, all articles found will be analyzed
according to Title, Abstract, Keywords, Proposed Approach, Results, and Conclusion. Moreover,
we use the following electronic databases:

• ACM Digital Library: dl.acm.org

• IEEE Xplore Digital Library: ieeexplore.ieee.org

• PubMed: https://pubmed.ncbi.nlm.nih.gov/

• Scopus: https://www.scopus.com

Finally, we chose the Boolean method (KARIMI et al., 2010) to search primary studies
in the literature databases. The standard search string was:
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• ("feature extraction" OR "extraction" OR "features" OR "feature generation" OR "feature

vectors") AND ("machine" OR "learning") AND ("tool" OR "web server" OR "package"

OR "toolkit") AND ("biological sequence" OR "sequence")

Due to different query languages and limitations between the scientific articles databases,
there were some differences in the search strings.

2.1.2 Conducting the Review

In this section, three stages are presented, among them: (1) search in databases, (2)
exclusion of repeated studies, and (3) application of inclusion, exclusion, and quality criteria
(KEELE et al., 2007; BRERETON et al., 2007). The (4) evaluation of all selected studies and
(5) data synthesis will be reported in Results and Discussion. For better understanding, Figure 1
shows our SLR workflow. So, our first step was to apply search keys to all databases, returning a
set of 1404 studies. Furthermore, to assist our review and obtain better accuracy and reliability,
we use the Parsifal tool.
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Figure 1 – SLR Workflow. Based on Stafford et al. (2020), our study selection methodology was divided
into four stages: Identification, Screening, Eligibility, and Inclusion.
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Thereafter, duplicate studies were removed, returning an amount of 1097 titles (307
duplicate studies). Then, we perform a thorough analysis on the titles, keywords, and abstracts,
according to the inclusion and exclusion criteria, in which we accept 28 studies (we reject 1069).
Finally, after pre-selecting the studies, we performed a data synthesis, to apply an assessment
based on the quality criteria. Hence, of the 28 studies, 3 were eliminated, leading to a final set of
25 studies.

2.1.3 Data extraction

To analyze the selected studies, we generated a data extraction form (see Table 1) in
order to answer the research questions involved in this review.

Table 1 – Data Extraction Form.

Question Description
RQ1 Title
RQ1 Journal
RQ1 Publication Year
RQ1 Citations
RQ1 Country (First Author)
RQ1 Web-page - Tool
RQ2 Application (e.g., DNA, RNA, or Protein)
RQ3 Feature descriptors (central review issue)
RQ4 Other ML steps

2.1.4 Threats to Validity

According to Wen et al. (2012), we have main threats to validity of our review, such as (1)
study selection bias and (2) inaccurate data extraction. The selection of primary studies depends
on the search strategy, the databases, and selection criteria. Thus, to overcome the problem of
study selection bias, as suggested by Keele et al. (2007) and Brereton et al. (2007), we have
elaborated a review protocol extremely linked to the research questions, using a control group
with more than 10 studies. To overcome the threat of inaccurate data extraction, we elaborated,
in a discussion among all researchers, specialized fields for data extraction, totally linked to
research questions.

2.2 Results and Discussion

This section reports and discusses the findings of this review. Thereby, we present an
overview of the selected studies, followed by a discussion of the findings according to the
research questions (separated by subsections). Moreover, during the discussion, we report our
results in a broader context related to the research questions.
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2.2.1 Feature Extraction Tools for Biological Sequences - RQ1

Initially, after extracting the data fields exposed in Table 1, we generate a new table,
presenting all selected studies, together with an ID for each study (e.g., SN), title, journal of
publication, year and reference, as can be seen in Table 2.

Table 2 – Overview of selected studies

ID Title Journal Year Ref
S1 PROFEAT: a web server for com-

puting structural and physicochemi-
cal features of proteins and peptides
from amino acid sequence

Nucleic Acids Research 2006 (LI et al.,
2006)

S2 PseAAC: a flexible web server for
generating various kinds of protein
pseudo amino acid composition

Analytical biochemistry 2008 (SHEN;
CHOU,
2008)

S3 Update of PROFEAT: a web server
for computing structural and physic-
ochemical features of proteins and
peptides from amino acid sequence

Nucleic Acids Research 2011 (RAO et al.,
2011)

S4 propy: a tool to generate various
modes of Chou’s PseAAC

Bioinformatics 2013 (CAO; XU;
LIANG,
2013)

S5 PseKNC-General: a cross-platform
package for generating various
modes of pseudo nucleotide compo-
sitions

Bioinformatics 2014 (CHEN et

al., 2014b)

S6 PseKNC: A flexible web server
for generating pseudo K-tuple nu-
cleotide composition

Analytical Biochem-
istry

2014 (CHEN et

al., 2014a)

S7 SPiCE: a web-based tool for
sequence-based protein classifica-
tion and exploration

BMC bioinformatics 2014 (BERG et

al., 2014)

S8 protr/ProtrWeb: R package and web
server for generating various numer-
ical representation schemes of pro-
tein sequences

Bioinformatics 2015 (XIAO et

al., 2015)

S9 ProFET: Feature engineering cap-
tures high-level protein functions

Bioinformatics 2015 (OFER;
LINIAL,
2015)
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S10 Pse-in-One: a web server for gener-
ating various modes of pseudo com-
ponents of DNA, RNA, and protein
sequences

Nucleic Acids Research 2015 (LIU et al.,
2015)

S11 repDNA: a Python package to gener-
ate various modes of feature vectors
for DNA sequences by incorporating
user-defined physicochemical prop-
erties and sequence-order effects

Bioinformatics 2015 (LIU et al.,
2014)

S12 Rcpi: R/Bioconductor package to
generate various descriptors of pro-
teins, compounds and their interac-
tions

Bioinformatics 2015 (CAO et al.,
2014)

S13 DNAshapeR: an R/Bioconductor
package for DNA shape prediction
and feature encoding

Bioinformatics 2015 (CHIU et

al., 2015)

S14 repRNA: a web server for generat-
ing various feature vectors of RNA
sequences

Mol Genet Genomics 2016 (LIU et al.,
2016)

S15 Pse-in-One 2.0: an improved pack-
age of web servers for generating
various modes of pseudo compo-
nents of DNA, RNA, and protein se-
quences

Natural Science 2017 (LIU et al.,
2017)

S16 POSSUM: a bioinformatics toolkit
for generating numerical sequence
feature descriptors based on PSSM
profiles

Bioinformatics 2017 (WANG et

al., 2017)

S17 BioSeq-Analysis: a platform for
DNA, RNA and protein sequence
analysis based on machine learning
approaches

Briefings in Bioinfor-
matics

2017 (LIU, 2017)

S18 iFeature: a Python package and web
server for features extraction and se-
lection from protein and peptide se-
quences

Bioinformatics 2018 (CHEN et

al., 2018)



36 Chapter 2. How to Numerically Represent Biological Sequences?

S19 PROSES: A Web Server for
Sequence-Based Protein Encoding

Journal of Comput. Bi-
ology

2018 (KÖSESOY;
GÖK; ÖZ,
2018)

S20 PyBioMed: a python library for var-
ious molecular representations of
chemicals, proteins and DNAs and
their interactions

Journal of Cheminfor-
matics

2018 (DONG et

al., 2018)

S21 PyFeat: a Python-based effective
feature generation tool for DNA,
RNA and protein sequences

Bioinformatics 2019 (MUHAMMOD
et al., 2019)

S22 BioSeq-Analysis2.0: an updated
platform for analyzing DNA, RNA
and protein sequences at sequence
level and residue level based on ma-
chine learning approaches

Nucleic Acids Research 2019 (LIU; GAO;
ZHANG,
2019)

S23 Seq2Feature: a comprehensive web-
based feature extraction tool

Bioinformatics 2019 (NIKAM;
GROMIHA,
2019)

S24 iLearn: an integrated platform and
meta-learner for feature engineering,
machine-learning analysis and mod-
eling of DNA, RNA and protein se-
quence data

Briefings in Bioinfor-
matics

2019 (CHEN et

al., 2019)

S25 Physicochemical n-Grams Tool: A
tool for protein physicochemical de-
scriptor generation via Chou’s 5-
step rule

Chemical Biology and
Drug Design

2020 (VISHNOI;
GARG;
ARORA,
2020)

As can be seen, we present an overview of all selected studies that developed feature
extraction tools (or packages, web servers, and toolkits). Moreover, in Figure 2, we plot a word
cloud of the studies under review, where the size of each word reflects its frequency of occurrence.
This cloud is based on the words contained in the titles of the selected studies. The preponderance
of words refers to the purpose of this review (e.g., package, generating, web server, extraction,
features, numerical, among others), indicating that the type of most discussed sequence in the
literature is Protein, followed by DNA and RNA (see Figure 6). In addition, we generate bar
graphs to observe the distribution of selected studies per year (see Figure 3), per journal (see
Figure 4), and per country (see Figure 5).

In which, we can observe countless relevant information. For example, we note that 2015



2.2. Results and Discussion 37

p
ro
te
in

vario
us

web
g
e
n
e
ra
ti
n
g

sequences

package

server

DNA

se
qu
en
ce

feature

RNA

pseudo

m
od
es

tool

physicochemical

proteinsco
m
p
o
n
e
n
ts

analysis

features

generate

platform

amino

acid

R/Bioconductor

interactions

composition

descriptors

engineering

approache
s

extraction

generation
nucleotide

Pse-in-One

structural

computing

numerical

web-based

flexible

learning
peptides

machine

peptide

PROFEAT

vectors

Chou’s

PseAAC

Python

py
th
on

level

BioSeq-Analysis2.0

machine-learning

BioSeq-Analysis

Physicochemical

rep
resen

tation
s

bioinform
atics

classification

cross-platform

protr/ProtrWeb

PseKNC-General

representation

Sequence-Based

sequence-based

comprehensive

incorporating

se
q
u
e
n
ce
o
rd
e
r

com
positions

meta-learner

Pse-Analysis P
yth

o
n
-b
a
se
d

user-defined
exploration

Seq2Feature

descriptor

high-level

integrated

prediction

properties

analyzing

ch
e
m
ic
a
ls

compounds

DNAshapeR

effective

functions

molecular

selection

captures

Encoding

encoding

iFeature

improved

modeling

profiles

PyBioMed

DNA/RN
A

effects

Feature

K-tuple

library

methods

n-Grams

Protein

residue

sch
em

es

servers

toolkit

updated

iLearn

kernel

POSSUM

ProFET

PROSES

P
se
K
N
C

PyFeat

repDNA

re
p
R
N
A

S
e
rv
e
r

Update

kinds

propy

shape

SPiCE

data

DNAs

PSSM

Rcpi

rule

Tool

Web

Figure 2 – Words that frequently occur in studies under review.
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and 2019 have the largest number of studies. Regarding the number of studies per journal, we
noticed that the majority are contained in two, with an emphasis on Bioinformatics (Oxford
Academic) with 44% of selected studies (11), followed by Nucleic Acids Research (4 studies),
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Analytical Biochemistry (2 studies), and Briefings in Bioinformatics (also 2 studies). Now,
regarding the number of studies by country (considering the first author), we observe a domain
of Chinese researchers, with 60% (15), followed by the USA and India (2 studies each). Finally,
we present a final analysis of the tools available for all studies, as shown in Table 3, to check
the availability of each contribution. Fundamentally, the tables were divided into the study, link,
active (check if the tool is available), and source (where the active link was found).

As can be seen, all studies provide a tool (or package, web server, and toolkit), according
to the main objective raised in this review. In which 92% of the links are available, with the
exception of the study S1 and S3, where we did not find any reference there is an active link.

2.2.2 Biological Sequences Covered by the Studies - RQ2

Here, with the complete definition of a biological sequence, we can divide the selected
studies into application categories (that is, DNA, RNA, or Protein), as exposed in Table 4.
Furthermore, we also plotted a Venn Diagram with the union of the studies by application. As
can be seen, the vast majority of studies are dedicated solely to generating various numerical
representation schemes for protein sequences, representing 48% of the studies, followed by the
application in all sequences with 6 studies. Also, looking at the Venn Diagram, we noticed that
20 studies are dedicated to Protein sequences, 12 for DNA sequences, and 9 for RNA sequences.

2.2.3 Feature Descriptors Provided by the Studies - RQ3

Fundamentally, as previously mentioned, our goal was to evaluate generalist tools for
feature extraction, since this type of study would provide several approaches, presenting a general
bias of ways to numerically represent biological sequences (which would not be possible by
evaluating studies dedicated to some specific problem). As expected, we found hundreds of
feature descriptors. Nevertheless, it is not feasible to individually analyze and describe each
feature, so we chose, as observed in the studies, to divide into large groups (16 groups - these
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Table 3 – Access link to tools.

Study Link Active Source
S1 jing.cz3.nus.edu.sg/cgi-bin/prof/prof.cgi No Study
S2 www.csbio.sjtu.edu.cn/bioinf/PseAAC/ Yes Internet
S3 bidd.cz3.nus.edu.sg/cgi-bin/prof/protein/profnew.cgi No Study
S4 code.google.com/archive/p/protpy/downloads Yes Study
S5 lin-group.cn/server/pseknc Yes Internet
S6 lin-group.cn/server/pseknc Yes Internet
S7 github.com/basvandenberg/spiceweb Yes Study
S8 protrweb.scbdd.com/ Yes Study
S9 github.com/ddofer/ProFET Yes Study

S10 bioinformatics.hitsz.edu.cn/Pse-in-One/ Yes Study
S11 bioinformatics.hitsz.edu.cn/repDNA/home Yes Study
S12 bioconductor.org/packages/release/bioc/html/Rcpi.html Yes Study
S13 tsupeichiu.github.io/DNAshapeR/ Yes Study
S14 bioinformatics.hitsz.edu.cn/repRNA/ Yes Study
S15 bioinformatics.hitsz.edu.cn/Pse-in-One2.0/ Yes Study
S16 possum.erc.monash.edu/ Yes Study
S17 bioinformatics.hitsz.edu.cn/BioSeq-Analysis Yes Study
S18 ifeature.erc.monash.edu/ Yes Study
S19 proses.yalova.edu.tr/help.html Yes Study
S20 projects.scbdd.com/pybiomed.html Yes Study
S21 github.com/mrzResearchArena/PyFeat/ Yes Study
S22 bliulab.net/BioSeq-Analysis2.0 Yes Study
S23 iitm.ac.in/bioinfo/SBFE/index.html Yes Study
S24 ilearn.erc.monash.edu/ Yes Study
S25 14.139.57.41/pngt/download.html Yes Study

 2  1 

 12 

 2  0 

 6 

 2 

DNA
(12)

RNA
(9)

Protein
(20)

Figure 6 – Venn Diagram - Union of selected studies by application.

were defined based on all studies), as shown in Table 5.

Then, we elaborated three tables dividing all the feature descriptors found in the 25
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Table 4 – Selected studies by application.

Application Study
DNA (CHIU et al., 2015), (LIU et al., 2014)

RNA (LIU et al., 2016)

Protein (LI et al., 2006), (SHEN; CHOU, 2008), (RAO et al., 2011),
(CAO; XU; LIANG, 2013), (BERG et al., 2014), (XIAO
et al., 2015), (OFER; LINIAL, 2015), (CAO et al., 2014),
(CHEN et al., 2018), (WANG et al., 2017), (KÖSESOY;
GÖK; ÖZ, 2018), (VISHNOI; GARG; ARORA, 2020)

DNA + RNA (CHEN et al., 2014a), (CHEN et al., 2014b)

DNA + Protein (DONG et al., 2018), (NIKAM; GROMIHA, 2019)

DNA + RNA + Protein (LIU et al., 2015), (LIU et al., 2017), (LIU, 2017),
(MUHAMMOD et al., 2019), (LIU; GAO; ZHANG, 2019),
(CHEN et al., 2019)

Table 5 – Descriptors group.

Group Initials Application Group
Amino Acid Composition AAC Protein
Pseudo-Amino Acid Composition PseAAC Protein
Composition, Transition, Distribution CTD Protein
Sequence-Order SO Protein
Topological Descriptors TD Protein
Conjoint Triad CT Protein
Proteochemometric Descriptors PCM Protein
Profile-based Features PF Protein
Nucleic Acid Composition NAC DNA, RNA
Pseudo Nucleic Acid Composition PseNAC DNA, RNA
Structure Composition SC DNA, RNA, Protein
Sequence Similarity SS DNA, RNA, Protein
Autocorrelation AC DNA, RNA, Protein
Numerical Mapping NM DNA, RNA, Protein
K-Nearest Neighbor KNN DNA, RNA, Protein
Physicochemical Property PP DNA, RNA, Protein

studies, totaling 170 descriptors to numerically represent biological sequences. Thereby, Table 6
represents DNA sequence descriptors, Table 7, RNA sequence descriptors, and Table 8, protein
sequence descriptors. Each column in the tables refers to:

• Group: This column classifies the feature descriptor in each group shown in Table 5;

• Descriptor: Feature descriptors found in each study and classified in their respective
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group;

• Dimension: Number of features generated by the descriptor (columns). This column is
based on the information contained in the revised studies. The "−" symbol means that the
dimension may vary according to the chosen parameter, or there is no such information in
the studies.

• Study: Which study provides the descriptor.

As can be seen, for DNA sequences, we found 48 feature descriptors. The descriptors
most provided by the studies are basic k-mer, reverse complementary k-mer, increment of
diversity, nucleotide and dinucleotide composition, autocorrelation, and pseudo nucleic acid
composition. For RNA sequences, 39 feature descriptors are presented, being that most provided
by the studies are also nucleic acid composition, autocorrelation, and pseudo nucleic acid
composition. Finally, we found 83 feature descriptors for protein. This number of descriptors is
due to the number of specific studies for these sequences (48%). Moreover, unlike DNA/RNA
(four nitrogenous bases), protein has 20 amino acids, so more information to extract features.
The descriptors most provided by the studies are amino acid composition, pseudo-amino acid
composition, autocorrelation, CTD, and sequence-order.



42 Chapter 2. How to Numerically Represent Biological Sequences?
Ta

bl
e

6
–

D
es

cr
ip

to
rs

fo
un

d
in

al
ls

tu
di

es
-D

N
A

Se
qu

en
ce

s

G
ro

up
D

es
cr

ip
to

r
D

im
en

si
on

St
ud

y
N

A
C

N
uc

le
ot

id
e

co
m

po
si

tio
n

4
S5

,S
22

,S
24

D
in

uc
le

ot
id

e
co

m
po

si
tio

n
16

S5
,S

22
,S

24
Tr

in
uc

le
ot

id
e

co
m

po
si

tio
n

64
S5

,S
22

,S
24

Te
tr

an
uc

le
ot

id
e

co
m

po
si

tio
n

25
6

S5
Pe

nt
an

uc
le

ot
id

e
co

m
po

si
tio

n
10

24
S5

H
ex

an
uc

le
ot

id
e

co
m

po
si

tio
n

40
96

S5
B

as
ic

km
er

4k
S1

0,
S1

1,
S1

3,
S1

5,
S1

7,
S2

0,
S2

2,
S2

4
R

ev
er

se
co

m
pl

em
en

ta
ry

km
er

-
S1

0,
S1

1,
S1

5,
S1

7,
S2

0,
S2

2,
S2

4
In

cr
em

en
to

fd
iv

er
si

ty
2k

S1
1,

S1
5,

S1
7,

S2
2

M
is

m
at

ch
-

S1
5,

S1
7,

S2
2

Su
bs

eq
ue

nc
e

-
S1

5,
S1

7,
S2

2
G

C
-c

on
te

nt
1

S2
1

A
T

/G
T

R
at

io
1

S2
1

C
um

ul
at

iv
e

sk
ew

2
S2

1
kG

ap
-

S2
1

Po
si

tio
n-

sp
ec

ifi
c

nu
cl

eo
tid

e
fr

eq
ue

nc
y

-
S2

2,
S2

4
N

uc
le

ot
id

e
C

on
te

nt
7

S2
3

C
on

fo
rm

at
io

na
lp

ro
pe

rt
ie

s
18

S2
3

E
nh

an
ce

d
nu

cl
ei

c
ac

id
co

m
po

si
tio

n
18

S2
4

C
om

po
si

tio
n

of
k-

sp
ac

ed
N

uc
le

ic
A

ci
d

Pa
ir

s
-

S2
2,

S2
4

A
C

N
or

m
al

iz
ed

M
or

ea
u–

B
ro

to
24

0
S5

,S
15

,S
17

,S
22

M
or

an
24

0
S5

,S
15

,S
17

,S
22



2.2. Results and Discussion 43

G
ea

ry
24

0
S5

,S
15

,S
17

,S
22

D
in

uc
le

ot
id

e-
ba

se
d

au
to

co
va

ri
an

ce
N
·L

AG
S1

0,
S1

1,
S1

5,
S1

7,
S2

0,
S2

2,
S2

4
D

in
uc

le
ot

id
e-

ba
se

d
cr

os
s

co
va

ri
an

ce
N
(N
−

1)
·L

AG
S1

0,
S1

1,
S1

5,
S1

7,
S2

0,
S2

2,
S2

4
D

in
uc

le
ot

id
e-

ba
se

d
au

to
-c

ro
ss

co
va

ri
an

ce
N

2
·L

AG
S1

0,
S1

1,
S1

5,
S1

7,
S2

0,
S2

2,
S2

4
Tr

in
uc

le
ot

id
e-

ba
se

d
au

to
co

va
ri

an
ce

N
·L

AG
S1

0,
S1

1,
S1

5,
S1

7,
S2

0,
S2

2,
S2

4
Tr

in
uc

le
ot

id
e-

ba
se

d
cr

os
s

co
va

ri
an

ce
N
(N
−

1)
·L

AG
S1

0,
S1

1,
S1

5,
S1

7,
S2

0,
S2

2,
S2

4
Tr

in
uc

le
ot

id
e-

ba
se

d
au

to
-c

ro
ss

co
va

ri
an

ce
N

2
·L

AG
S1

0,
S1

1,
S1

5,
S1

7,
S2

0,
S2

2,
S2

4

Ps
eN

A
C

Ty
pe

1
Ps

eu
do

k-
tu

pl
e

nu
cl

eo
tid

e
co

m
po

si
tio

n
4k

+
λ

S5
,S

6
Ty

pe
2

Ps
eu

do
k-

tu
pl

e
nu

cl
eo

tid
e

co
m

po
si

tio
n

4k
+

λ
·N

S5
,S

6
Ps

eu
do

k-
tu

pl
e

nu
cl

eo
tid

e
co

m
po

si
tio

n
4k

+
λ

S1
0,

S1
1,

S1
5,

S1
7,

S2
0,

S2
2,

S2
4

Ps
eu

do
di

nu
cl

eo
tid

e
co

m
po

si
tio

n
16

+
λ

S1
0,

S1
1,

S1
5,

S1
7,

S2
0,

S2
2,

S2
4

G
en

er
al

pa
ra

lle
lc

or
re

la
tio

n
ps

eu
do

di
nu

cl
eo

tid
e

co
m

po
si

tio
n

16
+

λ
S1

0,
S1

1,
S1

5,
S1

7,
S2

0,
S2

2,
S2

4
G

en
er

al
pa

ra
lle

lc
or

re
la

tio
n

ps
eu

do
tr

in
uc

le
ot

id
e

co
m

po
si

tio
n

64
+

λ
S1

0,
S1

1,
S1

5,
S1

7,
S2

0,
S2

2,
S2

4
G

en
er

al
se

ri
es

co
rr

el
at

io
n

ps
eu

do
di

nu
cl

eo
tid

e
co

m
po

si
tio

n
16

+
λ
·N

S1
0,

S1
1,

S1
5,

S1
7,

S2
0,

S2
2,

S2
4

G
en

er
al

se
ri

es
co

rr
el

at
io

n
ps

eu
do

tr
in

uc
le

ot
id

e
co

m
po

si
tio

n
64

+
λ
·N

S1
0,

S1
1,

S1
5,

S1
7,

S2
0,

S2
2,

S2
4

SC
D

N
A

sh
ap

e
fe

at
ur

es
-

S1
3

N
M

Z
-c

ur
ve

th
eo

ry
-

S2
1,

S2
2

N
uc

le
ot

id
e

C
he

m
ic

al
Pr

op
er

ty
-

S2
2,

S2
4

A
cc

um
ul

at
ed

N
uc

le
ot

id
e

Fr
eq

ue
nc

y
-

S2
2,

S2
4

E
le

ct
ro

n-
io

n
in

te
ra

ct
io

n
ps

eu
do

po
te

nt
ia

l
-

S2
2,

S2
4

Ps
eu

do
el

ec
tr

on
-i

on
in

te
ra

ct
io

n
ps

eu
do

po
te

nt
ia

l
-

S2
2,

S2
4

B
in

ar
y

-
S2

2,
S2

4



44 Chapter 2. How to Numerically Represent Biological Sequences?

PP
D

in
uc

le
ot

id
e

ph
ys

ic
oc

he
m

ic
al

-
S2

2,
S2

3
Tr

in
uc

le
ot

id
e

ph
ys

ic
oc

he
m

ic
al

-
S2

2

SS
B

L
A

ST
-m

at
ri

x
-

S2
2



2.2. Results and Discussion 45

Ta
bl

e
7

–
D

es
cr

ip
to

rs
fo

un
d

in
al

ls
tu

di
es

-R
N

A
Se

qu
en

ce
s

G
ro

up
D

es
cr

ip
to

r
D

im
en

si
on

St
ud

y
N

A
C

N
uc

le
ot

id
e

co
m

po
si

tio
n

4
S5

,S
14

,S
22

,S
24

D
in

uc
le

ot
id

e
co

m
po

si
tio

n
16

S5
,S

14
,S

22
,S

24
Tr

in
uc

le
ot

id
e

co
m

po
si

tio
n

64
S5

,S
14

,S
22

,S
24

Te
tr

an
uc

le
ot

id
e

co
m

po
si

tio
n

25
6

S5
,S

14
Pe

nt
an

uc
le

ot
id

e
co

m
po

si
tio

n
10

24
S5

,S
14

H
ex

an
uc

le
ot

id
e

co
m

po
si

tio
n

40
96

S5
,S

14
B

as
ic

km
er

4k
S1

0,
S1

5,
S1

7,
S2

2,
S2

4
R

ev
er

se
co

m
pl

em
en

ta
ry

km
er

-
S2

4
M

is
m

at
ch

-
S1

5,
S1

7,
S2

2
Su

bs
eq

ue
nc

e
-

S1
5,

S1
7,

S2
2

G
C

-c
on

te
nt

1
S2

1
A

T
/G

T
R

at
io

1
S2

1
C

um
ul

at
iv

e
sk

ew
2

S2
1

kG
ap

-
S2

1
Po

si
tio

n-
sp

ec
ifi

c
nu

cl
eo

tid
e

fr
eq

ue
nc

y
-

S2
2,

S2
4

E
nh

an
ce

d
nu

cl
ei

c
ac

id
co

m
po

si
tio

n
-

S2
4

C
om

po
si

tio
n

of
k-

sp
ac

ed
nu

cl
ei

c
ac

id
pa

ir
s

-
S2

2,
S2

4

A
C

N
or

m
al

iz
ed

M
or

ea
u–

B
ro

to
24

0
S5

,S
15

,S
17

,S
22

M
or

an
24

0
S5

,S
15

,S
17

,S
22

G
ea

ry
24

0
S5

,S
15

,S
17

,S
22

D
in

uc
le

ot
id

e-
ba

se
d

au
to

co
va

ri
an

ce
N
·L

AG
S1

0,
S1

5,
S1

7,
S2

2,
S2

4
D

in
uc

le
ot

id
e-

ba
se

d
cr

os
s

co
va

ri
an

ce
N
(N
−

1)
·L

AG
S1

0,
S1

5,
S1

7,
S2

2,
S2

4



46 Chapter 2. How to Numerically Represent Biological Sequences?
D

in
uc

le
ot

id
e-

ba
se

d
au

to
-c

ro
ss

co
va

ri
an

ce
N

2
·L

AG
S1

0,
S1

5,
S1

7,
S2

2,
S2

4

Ps
eN

A
C

Ty
pe

1
Ps

eu
do

k-
tu

pl
e

nu
cl

eo
tid

e
co

m
po

si
tio

n
4k

+
λ

S5
,S

6
Ty

pe
2

Ps
eu

do
k-

tu
pl

e
nu

cl
eo

tid
e

co
m

po
si

tio
n

4k
+

λ
·N

S5
,S

6
Ps

eu
do

k-
tu

pl
e

nu
cl

eo
tid

e
co

m
po

si
tio

n
4k

+
λ

S2
4

Ps
eu

do
di

nu
cl

eo
tid

e
co

m
po

si
tio

n
16

+
λ

S2
4

G
en

er
al

pa
ra

lle
lc

or
re

la
tio

n
ps

eu
do

di
nu

cl
eo

tid
e

co
m

po
si

tio
n

16
+

λ
S1

0,
S1

4,
S1

5,
S1

7,
S2

2,
S2

4
G

en
er

al
se

ri
es

co
rr

el
at

io
n

ps
eu

do
di

nu
cl

eo
tid

e
co

m
po

si
tio

n
16

+
λ
·N

S1
0,

S1
4,

S1
5,

S1
7,

S2
2,

S2
4

SC
Tr

ip
le

t
32

S1
4,

S1
5,

S1
7,

S2
2

Ps
eu

do
-s

tr
uc

tu
re

st
at

us
co

m
po

si
tio

n
-

S1
4,

S1
5,

S1
7,

S2
2

Ps
eu

do
-d

is
ta

nc
e

st
ru

ct
ur

e
st

at
us

pa
ir

co
m

po
si

tio
n

-
S1

4,
S1

5,
S1

7,
S2

2
Se

co
nd

ar
y

st
ru

ct
ur

e
-

S2
2

N
M

Z
-c

ur
ve

th
eo

ry
-

S2
1,

S2
2

N
uc

le
ot

id
e

C
he

m
ic

al
Pr

op
er

ty
-

S2
2,

S2
4

A
cc

um
ul

at
ed

N
uc

le
ot

id
e

Fr
eq

ue
nc

y
-

S2
2,

S2
4

B
in

ar
y

-
S2

2,
S2

4

PP
D

in
uc

le
ot

id
e

ph
ys

ic
oc

he
m

ic
al

-
S2

2



2.2. Results and Discussion 47

Ta
bl

e
8

–
D

es
cr

ip
to

rs
fo

un
d

in
al

ls
tu

di
es

-P
ro

te
in

Se
qu

en
ce

s

G
ro

up
D

es
cr

ip
to

r
D

im
en

si
on

St
ud

y
A

A
C

A
m

in
o

ac
id

co
m

po
si

tio
n

20
S1

,S
3,

S7
,S

8,
S9

,S
12

,S
18

,S
19

,S
20

,S
22

,S
24

D
ip

ep
tid

e
co

m
po

si
tio

n
40

0
S1

,S
3,

S7
,S

8,
S9

,S
12

,S
18

,S
19

,S
20

Tr
ip

ep
tid

e
co

m
po

si
tio

n
80

00
S4

,S
8,

S1
2,

S1
8,

S2
0,

S2
2,

S2
4

Te
rm

in
al

en
d

am
in

o
ac

id
co

un
t

20
S7

A
m

in
o

ac
id

pa
ir

40
0

S1
9

Se
co

nd
ar

y
st

ru
ct

ur
e

co
m

po
si

tio
n

3
S7

Se
co

nd
ar

y
st

ru
ct

ur
e

-a
m

in
o

ac
id

co
m

po
si

tio
n

60
S7

So
lv

en
ta

cc
es

si
bi

lit
y

co
m

po
si

tio
n

2
S7

So
lv

en
ta

cc
es

si
bi

lit
y

-a
m

in
o

ac
id

co
m

po
si

tio
n

40
S7

C
od

on
co

m
po

si
tio

n
64

S7
Pr

ot
ei

n
le

ng
th

1
S7

O
ve

rl
ap

pi
ng

K
-m

er
s

-
S9

In
fo

rm
at

io
n-

ba
se

d
st

at
is

tic
s

-
S9

B
as

ic
km

er
20

k
S1

0,
S1

5,
S1

7,
S2

2
D

is
ta

nc
e-

ba
se

d
re

si
du

e
-

S1
5,

S1
7,

S2
2

D
is

ta
nc

e
pa

ir
-

S1
5,

S1
7,

S2
2

R
es

id
ue

-C
ou

pl
e

M
od

el
-

S1
9

C
om

po
si

tio
n

m
om

en
tv

ec
to

r
-

S1
9

E
nh

an
ce

d
am

in
o

ac
id

co
m

po
si

tio
n

-
S1

8,
S2

4
C

om
po

si
tio

n
of

k-
sp

ac
ed

am
in

o
ac

id
pa

ir
s

24
00

S1
8,

S2
2,

S2
4

D
ip

ep
tid

e
de

vi
at

io
n

fr
om

ex
pe

ct
ed

m
ea

n
40

0
S1

8
G

ro
up

ed
am

in
o

ac
id

co
m

po
si

tio
n

5
S1

8,
S2

2,
S2

4
E

nh
an

ce
d

gr
ou

pe
d

am
in

o
ac

id
co

m
po

si
tio

n
-

S1
8,

S2
4



48 Chapter 2. How to Numerically Represent Biological Sequences?
C

om
po

si
tio

n
of

k-
sp

ac
ed

am
in

o
ac

id
gr

ou
p

pa
ir

s
15

0
S1

8,
S2

2,
S2

4
G

ro
up

ed
di

pe
pt

id
e

co
m

po
si

tio
n

25
S1

8
G

ro
up

ed
tr

ip
ep

tid
e

co
m

po
si

tio
n

12
5

S1
8,

S2
2,

S2
4

kG
ap

-
S2

1
Po

si
tio

n-
sp

ec
ifi

c
nu

cl
eo

tid
e

fr
eq

ue
nc

y
-

S2
2

Ps
eA

A
C

Ty
pe

1
Ps

eA
A

C
20

+
λ

S2
,S

3,
S4

,S
7,

S8
,S

10
,S

12
,S

15
,S

17
,S

18
,S

20
,S

22
,S

24
Ty

pe
2

Ps
eA

A
C

20
+

λ
·N

S2
,S

3,
S4

,S
7,

S8
,S

10
,S

12
,S

15
,S

17
,S

18
,S

20
,S

22
,S

24
D

ip
ep

tid
e

(o
rT

yp
e

3)
Ps

eA
A

C
42

0
S2

G
en

er
al

pa
ra

lle
lc

or
re

la
tio

n
Ps

eA
A

C
20

+
λ

S1
0,

S1
5,

S1
7,

S2
2

G
en

er
al

se
ri

es
co

rr
el

at
io

n
Ps

eA
A

C
20

+
λ
·N

S1
0,

S1
5,

S1
7,

S2
2

Ps
eu

do
K

-t
up

le
re

du
ce

d
A

A
C

(t
yp

e1
to

ty
pe

16
)

-
S1

8,
S2

4

A
C

N
or

m
al

iz
ed

M
or

ea
u–

B
ro

to
24

0
S1

,S
3,

S4
,S

7,
S8

,S
12

,S
18

,S
20

,S
22

,S
24

M
or

an
24

0
S1

,S
3,

S4
,S

7,
S8

,S
12

,S
18

,S
20

,S
22

,S
24

G
ea

ry
24

0
S1

,S
3,

S4
,S

7,
S8

,S
12

,S
18

,S
20

,S
22

,S
24

A
ut

o
co

va
ri

an
ce

-
S1

0,
S1

5,
S1

7,
S2

2
C

ro
ss

co
va

ri
an

ce
-

S1
0,

S1
5,

S1
7,

S2
2

A
ut

o-
cr

os
s

co
va

ri
an

ce
-

S1
0,

S1
5,

S1
7,

S2
2

C
T

D
C

om
po

si
tio

n
21

S1
,S

3,
S4

,S
7,

S8
,S

9,
S1

2,
S1

8,
S1

9,
S2

0,
S2

2,
S2

4
Tr

an
si

tio
n

21
S1

,S
3,

S4
,S

7,
S8

,S
9,

S1
2,

S1
8,

S1
9,

S2
0,

S2
2,

S2
4

D
is

tr
ib

ut
io

n
10

5
S1

,S
3,

S4
,S

7,
S8

,S
9,

S1
2,

S1
8,

S1
9,

S2
0,

S2
2,

S2
4

SO
Se

qu
en

ce
-o

rd
er

-c
ou

pl
in

g
nu

m
be

r
60

S1
,S

3,
S4

,S
8,

S1
2,

S1
8,

S2
0,

S2
2,

S2
4



2.2. Results and Discussion 49

Q
ua

si
-s

eq
ue

nc
e-

or
de

r
10

0
S1

,S
3,

S4
,S

7,
S8

,S
12

,S
18

,S
20

,S
22

,S
24

T
D

To
po

lo
gi

ca
ld

es
cr

ip
to

rs
40

5
S3

PF
Si

gn
al

av
er

ag
e

-
S7

Si
gn

al
pe

ak
s

ar
ea

-
S7

PS
SM

(P
os

iti
on

-S
pe

ci
fic

Sc
or

in
g

M
at

ri
x)

pr
ofi

le
-

S8
,S

12
,S

15
,S

16
,S

17
,S

18
,S

22
,S

24
Pr

ofi
le

-b
as

ed
Ph

ys
ic

oc
he

m
ic

al
di

st
an

ce
-

S1
5,

S1
7,

S2
2

D
is

ta
nc

e-
ba

se
d

To
p-

n-
gr

am
-

S1
5,

S1
7,

S2
2

To
p-

n-
gr

am
-

S1
5,

S1
7,

S2
2

Se
qu

en
ce

co
ns

er
va

tio
n

sc
or

e
-

S1
7,

S2
2

Fr
eq

ue
nc

y
pr

ofi
le

s
m

at
ri

x
-

S2
2

C
T

C
on

jo
in

tT
ri

ad
34

3
S8

,S
12

,S
18

,S
19

,S
20

,S
22

,S
24

C
on

jo
in

tk
-s

pa
ce

d
tr

ia
d

34
3
·(

k
+

1)
S1

8,
S2

4

PC
M

Pr
in

ci
pa

lc
om

po
ne

nt
s

an
al

ys
is

17
5

S8
,S

12
Pr

in
ci

pa
lc

om
po

ne
nt

s
an

al
ys

is
(2

D
an

d
3D

)
40

25
S8

Fa
ct

or
an

al
ys

is
17

5
S8

,S
12

Fa
ct

or
an

al
ys

is
(2

D
an

d
3D

)
40

25
S8

M
ul

tid
im

en
si

on
al

sc
al

in
g

17
5

S8
,S

12
M

ul
tid

im
en

si
on

al
sc

al
in

g
(2

D
an

d
3D

)
40

25
S8

B
L

O
SU

M
an

d
PA

M
m

at
ri

x-
de

riv
ed

17
5

S8
,S

12
,S

18
,S

22
,S

24
B

io
ph

ys
ic

al
qu

an
tit

at
iv

e
pr

op
er

tie
s

-
S9

A
m

in
o

ac
id

pr
op

er
tie

s
-

S1
2



50 Chapter 2. How to Numerically Represent Biological Sequences?
M

ol
ec

ul
ar

de
sc

ri
pt

or
s

-
S1

2

SS
G

en
e

O
nt

ol
og

y
(G

O
)s

im
ila

ri
ty

-
S1

2
Se

qu
en

ce
A

lig
nm

en
t

-
S1

2

SC
Se

co
nd

ar
y

st
ru

ct
ur

e
-

S1
7,

S1
8,

S2
2,

S2
4

So
lv

en
ta

cc
es

si
bl

e
su

rf
ac

e
ar

ea
-

S1
7,

S1
8,

S2
2,

S2
4

Se
co

nd
ar

y
st

ru
ct

ur
e

bi
na

ry
-

S1
8,

S2
2,

S2
4

D
is

or
de

r
-

S9
,S

18
,S

24
D

is
or

de
rc

on
te

nt
-

S1
8,

S2
4

D
is

or
de

rb
in

ar
y

-
S1

8,
S2

4
To

rs
io

na
la

ng
le

s
-

S1
8,

S2
4

N
M

B
in

ar
y

-
S1

8,
S2

2,
S2

4
O

rt
ho

no
rm

al
en

co
di

ng
-

S1
9

6-
di

m
en

si
on

O
ne

-h
ot

m
et

ho
d

-
S2

2

K
N

N
K

-n
ea

re
st

ne
ig

hb
or

fo
rp

ro
te

in
s

60
S1

8,
S2

4

PP
A

A
in

de
x

-
S9

,S
18

,S
22

,S
24

Z
-s

ca
le

-
S1

8,
S2

2,
S2

4
Ph

ys
ic

oc
he

m
ic

al
n-

G
ra

m
s

-
S2

5



2.2. Results and Discussion 51

2.2.4 Other ML Steps Covered by Studies - RQ4

As previously mentioned, we must consider several stages to establish an effective
statistical predictor for a biological system. Therefore, in this section, we investigate which
studies cover another ML process (see Table 9), divided into 5 groups, as shown below.

Table 9 – Other ML steps covered by studies.

Study DR FS Classification Performance Visualization
S1 - - - - -
S2 - - - - -
S3 - - - - -
S4 - - - - -
S5 - - - - -
S6 - - - - -
S7 - - V V V
S8 - - - - -
S9 V V V V V
S10 - - - - V
S11 - - - - -
S12 - - - - -
S13 - - - - V
S14 - - - - -
S15 - - - - V
S16 - - - - -
S17 - V V V V
S18 V V - - -
S19 - - - - -
S20 - - - - -
S21 - - V V V
S22 - V V V V
S23 - - - - -
S24 V V V V V
S25 - - - - -

• Dimensionality Reduction (DR): Algorithms that aim to reduce the dimensionality (fea-
tures) of high-dimension data in a new subset with new features (low dimension) (YAN et

al., 2006).

• Feature Selection (FS): This group contains algorithms that address the feature selection
problem.

• Classification: Classification task is used to predict events with a predefined number of
targets (in the classification, there is a categorical or discrete target). Thus, this approach
can be applied to analyze sequences, to find an indication of which class they belong to,
consequently learning how to classify a new record (SUTHAHARAN, 2016).
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• Performance: This group refers to tools that provide performance metrics (e.g., sensitivity,
specificity, accuracy (ACC), among others.

• Visualization: Tools that provide data visualization, that uses static and interactive visuals
within a specific context, to assist users in the interpretation of generated data or model
performance.

Essentially, 76% of the studies are specifically dedicated to feature extraction, without
considering other stages to establish an effective statistical predictor for a biological system.
Considering this, some studies (24%) have generated the entire pipeline, focusing on several other
processes, as presented above. Therefore, we explore these studies, analyzing which algorithms
are provided for the phases of DR, FS, and classification, as exposed in Table 10. It is important
to highlight that S9 did not present the complete list of algorithms, so we looked at its code.

Table 10 – Algorithms supported by the studies for DR, FS and classification.

Study Description
S7 Classification: Support Vector Machine (SVM), K-Nearest Neigh-

bors (KNN), Linear Discriminant Analysis (LDA), Quadratic Dis-
criminant Analysis (QDA), Gaussian Naive Bayes (GNB), Deci-
sion Tree (DT), Random Forest (RF).

S9 DR: Principal Component Analysis (PCA).
FS: Recursive Feature Elimination (RFE), Univariate Feature Se-
lection (UFS).
Classification: SVM, RF, AdaBoost, Gradient Boosting (GB),
Extra Trees, Logistic Regression (LR), KNN, GNB.

S17 FS: Chi-square test (CHI2), Mutual Information (MI).
Classification: SVM, optimized evidence-theoretic KNN, RF, Co-
variance discriminant.

S18 DR: PCA, Latent Dirichlet allocation, t-Distributed Stochastic
Neighbor Embedding (t-SNE).
FS: CHI2, Information Gain (IG), MI, Pearson’s Correlation Co-
efficient (PCC).

S21 Classification: LR, SVM, KNN, DT, GNB, Bagging, RF, Ad-
aBoost, GB and LDA.

S22 FS: CHI2, MI
Classification: SVM, RF, Conditional Random Field (CRF).

S24 DR: PCA, t-SNE, Latent Dirichlet allocation
FS: CHI2, MI, PCC, IG, F-score.
Classification: SVM, KNN, RF, LR, Artificial Neural Network
(ANN).

We note that all studies address classic algorithms for DR and FS, mainly from statistical
lines (e.g., PCA, CHI2, MI). While in the classification phase, they provide the most diverse
algorithms, both linear and non-linear, classical, and ensembles. A highlight for the S24, which
proves the largest number of algorithms (in general).
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2.3 Systematic Review Updates and Chapter Remarks
So far, four new studies have been published since our review, iLearnPlus (CHEN et

al., 2021), BioSeq-BLM (LI; PANG; LIU, 2021b), autoBioSeqpy (JING et al., 2020), and
AutoGenome (LIU et al., 2021). Thereby, we also decided to assess whether any revised studies
apply Automated ML (AutoML) approaches, that according to (SÁ et al., 2017), have a proposal
similar to the field of hyper-heuristics, automatically recommend pipelines, algorithms, or
parameters for specific tasks without much dependence on user knowledge. These tasks can
include different ways of preprocessing or feature engineering, as well as algorithms and
optimization of its parameters (hyper-parameter tuning) (SÁ et al., 2017; SANTOS et al., 2019).
Considering this, Table 11 lists revised studies from Table 9, which cover another stage of ML,
and recently published, checking if any follow the proposal of this thesis, automated feature
engineering.

Table 11 – Use of AutoML for feature engineering, recommendation of ML algorithm, and hyper-
parameter tuning.

Study Feature Engineering ML algorithm Tuning
SPiCE - - -
ProFET - - -
BioSeq-Analysis - - -
iFeature - - -
BioSeq-Analysis2.0 - - -
iLearn - V V
iLearnPlus - V V
BioSeq-BLM - - -
autoBioSeqpy - V V
AutoGenome - V V

The most similar packages to our proposal are iLearn, iLearnPlus, autoBioSeqpy, and
AutoGenome, which apply AutoML to recommend ML algorithms, but they do not use automated
feature engineering. The most similar package to our proposal, iLearn, requires an initial
configuration file (choosing descriptors and classifiers), which needs domain knowledge from
a human expert. Even in its most sophisticated version, iLearnPlus, a file needs to be inserted
with the extracted features, instead of automatic feature engineering. The autoBioSeqpy and
AutoGenome packages focus on recommending the best deep-learning architecture. Thus, to
the best of our knowledge, BioAutoML automates the longest pipeline for biological sequence
analysis, encompassing feature engineering, ML algorithm recommendation, and hyperparameter
tuning.
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CHAPTER

3
FEATURE EXTRACTION APPROACHES: A

COMPARATIVE STUDY OF
MATHEMATICAL FEATURES

As consequence of the various genomic sequencing projects, an increasing volume
of biological sequence data is being produced. Although machine learning algorithms have
been successfully applied to a large number of genomic sequence-related problems, the results
are largely affected by the type and number of features extracted. This effect has motivated
new algorithms and pipeline proposals, mainly involving feature extraction problems, in which
extracting significant discriminatory information from a biological set is challenging. Considering
this, our work proposes a new study of feature extraction approaches based on mathematical
features (numerical mapping with Fourier, entropy and complex networks). As a case study,
we analyze long non-coding RNA sequences. Moreover, we separated this work into three
studies. First, we assessed our proposal with the most addressed problem in our review, e.g.
lncRNA and mRNA; second, we also validate the mathematical features in different classification
problems, to predict the class of lncRNA, e.g. circular RNAs sequences; third, we analyze its
robustness in scenarios with imbalanced data. The experimental results demonstrated three main
contributions: first, an in-depth study of several mathematical features; second, a new feature
extraction pipeline; and third, its high performance and robustness for distinct RNA sequence
classification.

3.1 Background

In recent years, an increasing number of biological sequences have been generated
by thousands of sequencing projects (GUO; ZOU, 2019), creating a huge volume of data
(HASHEMI et al., 2018a). During the last decade, Machine Learning (ML) methods have shown
broad applicability in computational biology and bioinformatics (MIN, 2010; SILVA et al.,
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2019a). Consequently, several studies have been dedicated to investigating sequences of DNA
and RNA molecules (BUDACH; MARSICO, 2018; MIN; LEE; YOON, 2016; CHEN et al.,
2019). Applying ML methods in these sequences has helped to extract important information
from various datasets to explain biological phenomena (MIN, 2010). The development of efficient
approaches benefits the mathematical understanding of the structure of biological sequences
(LOU et al., 2019), e.g., Precision cancer diagnostics (MAROS et al., 2020), analytics in plants
(MA; ZHANG; WANG, 2014), and Coronavirus epidemic (LI; LIU, 2020; BENVENUTO et al.,
2020).

Nevertheless, according to (MIN, 2010; XU; JACKSON, 2019), there are several chal-
lenging biological problems that motivated the emergence of proposals for new algorithms.
Fundamentally, biological sequence analysis with ML presents one major problem, e.g., Feature
Extraction (STORCHEUS; ROSTAMIZADEH; KUMAR, 2015), an inevitable process, espe-
cially in the stage of biological sequence preprocessing (CHEN et al., 2019; SAIDI et al., 2012;
BONIDIA et al., 2020b). Necessarily, several methods in bioinformatics apply ML algorithms
for sequence classification, and as many algorithms can deal only with numerical data, sequences
need to be translated into sequences of numbers.

Thereby, modern applications extract relevant features from sequences based on sev-
eral biological properties, e.g., physicochemical, Open Reading Frames (ORF)-based, usage
frequency of adjoining nucleotide triplets, GC content, among others. This approach is common
in biological problems, but these implementations are often difficult to reuse or adapt to another
specific problem. For example, ORF features are an essential guideline for distinguishing Long
non-coding RNAs (lncRNA) from protein-coding genes (BAEK et al., 2018), but not useful
features for classifying lncRNA classes (BONIDIA et al., 2019; PAN; XIONG, 2015) (e.g., in
(PAN; XIONG, 2015), ORF score (feature importance) is less than 0.009 to classify circular RNA
from other types of lncRNAs). Consequently, the feature extraction problem arises, in which
extracting a set of useful features that contain significant discriminatory information becomes a
fundamental step in the construction of a predictive model (MUHAMMOD et al., 2019).

Therefore, these problems make the process of biological sequence classification a
challenging task, creating a growing need to develop new techniques and methods to analyze
sequences effectively and efficiently. In this paper, we have investigated the performance of
different feature extraction methods for biological sequence analysis, using mathematical features,
e.g., numerical mapping with Fourier transform, entropy, and graphs. As a case study, we have
used lncRNA sequences, which are fundamentally unable to produce proteins (ABBAS et

al., 2016; SZCZEŚNIAK et al., 2020) and have recently casted doubt on its functionality
(SZCZEŚNIAK et al., 2020). In addition, lncRNAs present several problem classes, such as:
lncRNA vs. mRNA (KANG et al., 2017; HAN et al., 2018), lncRNA vs. circRNA (CHEN et al.,
2018), lncRNA vs. small non-coding RNAs, and lncRNA vs. noncoding antisense transcripts.
Thus, enabling us to create a scenario to answer the questions raised in this work.



3.2. Related Works 57

For that reason, the main objective of this paper is to evaluate the ability to generalize
mathematical features in different lncRNA classification tasks. Moreover, we assess whether
mathematical approaches do not have any dependencies from a specific problem when compared
to biological approaches (e.g., those features that present a bias to the problem analyzed or some
biological explanation, e.g., ORF for lncRNA vs. mRNA (Parmezan Bonidia et al., 2019; BAEK
et al., 2018)). Thereby, we assume the following hypothesis:

• Hypothesis: Feature extraction approaches based on mathematical features are generalist,
i.e., the ability to generalize mathematical features in different ncRNA types, such as the
classification of lncRNA subclasses, being as efficient as biological approaches.

Considering this, our work presents new ideas and analysis for the feature extraction
problem in biological sequences, with four main contributions: (1) A new feature extraction
pipeline using mathematical features; (2) Study of 9 mathematical approaches; (3) Analysis of 6
numerical mappings with Fourier, proposing statistical measures; (4) The ability to generalize
mathematical features in different ncRNA types, such as the classification of lncRNA subclasses.

3.2 Related Works

Essentially, as emphasized, we adopt lncRNA sequences as a case study, a class of Non-
Coding RNAs (ncRNAs). In this context, we have conducted an in-depth review of the lncRNAs
classification methods, in which several approaches have been developed, such as: CPC (versions
1 and 2) (KONG et al., 2007; KANG et al., 2017), CPAT (WANG et al., 2013), CNCI (SUN et al.,
2013), PLEK (LI; ZHANG; ZHOU, 2014), lncRNA-MFDL (FAN; ZHANG, 2015), LncRNA-ID
(ACHAWANANTAKUN et al., 2015), lncRScan-SVM (SUN et al., 2015), LncRNApred (PIAN
et al., 2016), DeepLNC (TRIPATHI et al., 2016), PlantRNA_Sniffer (VIEIRA et al., 2017),
PLncPRO (SINGH et al., 2017), RNAplonc (NEGRI et al., 2018), BASiNET (ITO et al., 2018),
LncFinder (HAN et al., 2018), CREMA (SIMOPOULOS; WERETILNYK; GOLDING, 2018),
LncRNAnet (BAEK et al., 2018), CNIT (GUO et al., 2019), PLIT (DESHPANDE et al., 2019),
PredLnc-GFStack (LIU et al., 2019), LGC (WANG et al., 2019) and DeepCPP (ZHANG et

al., 2020). For better understanding, Figure 7 presents theses works divided into Mathematical,
Biological, and Hybrid approaches.

In general, the aforementioned studies apply supervised learning methods using binary
classification (two classes - lncRNAs and protein-coding genes (mRNA)). There is a considerable
amount of research on humans, followed by animals and plants. Regarding feature extraction, we
observed a full domain of ORF and sequence-structure descriptors. As seen in Figure 7, there is
a frequent use of biological features. On the other hand, some works have explored mathematical
approaches for feature extraction, such as Genomic Signal Processing (GSP), DNA Numerical
Representation (DNR) (PIAN et al., 2016; HAN et al., 2018), and Complex Networks (ITO et al.,
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Figure 7 – Feature extraction approaches in our case study divided into: Mathematical, Biological, and
Hybrid.

2018). Nevertheless, the authors used these attributes in conjunction with other biological feature
extraction techniques or without testing other mathematical features. Practically no papers have
focused on several mathematical approaches. Based on this, the objective of this section was to
summarize the main methods of the literature and their characteristic descriptors. Therefore, we
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will not use the studies shown for comparison, but the most often used features.

3.3 Materials and Methods

In this section, we describe the methodological approach used to achieve the proposed
objectives, as shown in Figure 8. Essentially, we divided our study into five stages: (1) Data
selection and preprocessing; (2) Feature extraction; (3) Training; (4) Testing; (5) Performance
analysis. Hence, each stage of the study is described, as well as information about the adopted
process.

Biological
Sequences Preprocessing Feature

Extraction

Test Set

Algorithms

Training Set

Model

Biological
Sequences Preprocessing Feature

Extraction Predict Target

Training

Predicting

 Mappings
Fourier
Graphs
Entropy

Evaluation

Figure 8 – Proposed Pipeline. Essentially, (1) datasets are preprocessed; (2) Feature extraction techniques
are applied to each dataset; (3) Machine learning algorithms are executed in the training set to
induce predictive models; (4) Induced models are applied to the test set; Finally, (5) the models
are evaluated.

This work was also divided into three case studies: (I) We assessed our mathematical
approaches with the most often addressed problem found in our review, e.g., lncRNA vs. mRNA;
(II) We tested its generalization on different lncRNA classification tasks; (III) We analyze its
robustness in scenarios with imbalanced data.

3.3.1 Data Selection

Recently, with a large number of transcribed sequences, the identification of ncRNAs has
been a challenging task. For that reason, we have focused on lncRNAs classification problem,
in special with ML algorithms, as described in section Related Works. However, we also adopt
other datasets to assess the generalization of mathematical features. As preprocessing, we used
only sequences longer than 200nt (LI; ZHANG; ZHOU, 2014), and we also removed sequence
redundancy. Moreover, the sampling method was adopted in our dataset (case study I and II),
since we are faced with the imbalanced data problem (BONIDIA et al., 2019). Therefore, we
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applied random majority under-sampling, which consists of removing samples from the majority
class (to adjust the class distribution) (LIU, 2004).

3.3.1.1 Case Study I

Sequences of five plant species were adopted to validate the proposed approaches. The
summary of the dataset can be seen in Table 12. According to the literature approaches, this
study also adopts two classes for the datasets: the positive class, with lncRNAs, and the negative
class, with protein-coding genes (mRNAs).

Table 12 – Adopted species to create the datasets.

Species Sequences Samples Preprocessing Selected
A. trichopoda lncRNA 5698 4556 4556

mRNA 26846 22326 4556
A. thaliana lncRNA 2540 2540 2540

mRNA 13973 13973 2540
C. sinensis lncRNA 2562 2215 2215

mRNA 46147 45846 2215
C. sativus lncRNA 1929 1730 1730

mRNA 30364 29829 1730
R. communis lncRNA 4198 3487 3487

mRNA 31221 29042 3487

The mRNA data of the Arabidopsis thaliana (obtained from CPC2 (KANG et al., 2017))
were built from the RefSeq database with protein sequences annotated by Swiss-Prot (KANG
et al., 2017), and lncRNA data from the Ensembl (v87) and Ensembl Plants (v32) database.
The mRNA transcript data of the Amborella trichopoda, Citrus sinensis, Cucumis sativus and
Ricinus communis were extracted from Phytozome (version 13) (GOODSTEIN et al., 2011).
The lncRNAs data from these species were extracted from GreeNC (version 1.12) (GALLART
et al., 2015).

3.3.1.2 Case Study II

We applied the best mathematical features (according accuracy values) of the case study
I to different classification problems with lncRNAs. In that case, we used only sequences from
Arabidopsis thaliana, i.e., model species in plants. Thus, we have classified this study into three
sub-problems, as shown in Table 13:

Table 13 – Datasets used in case study II.

Problems Positive data Negative data Source
lncRNA vs. sncRNA 1291 1291 (KANG et al., 2017)
lncRNA vs. Antisense 57 57 (CHEN et al., 2011)
circRNA vs. lncRNA 2540 2540 (CHU et al., 2017; KANG et al., 2017)
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3.3.1.3 Case Study III

In this step, we assessed the mathematical features in new sequences with imbalanced
classes. According to (RAAD; STEGMAYER; MILONE, 2019; STEGMAYER et al., 2019),
this scenario simulates problems found in a real genome, allowing us to assess the robustness of
our approaches. Therefore, we selected four datasets shown in Table 14. In this validation test,
we extend the classification task introduced in case study II, circRNA vs. lncRNA, that has been
approached by several works (PAN; XIONG, 2015; CHEN et al., 2018; ZHANG et al., 2020;
CHAABANE et al., 2020).

Table 14 – Datasets used in the validation test.

Dataset circRNA Database lncRNA Database
Human-1 6995 circRNADb 5000 GENCODE
Human-2 3280 circBase 2700 LNCipedia
Human-3 3280 circBase 60000 LNCipedia
C. sativus 4265 PlantcircBase 1730 GreeNC

We built these datasets, except C. sativus, based on (ZHANG et al., 2020), which uses
different databases. Fundamentally, the four datasets were generated using the combination of
multiple bases, such as circRNADb (CHEN et al., 2016), GENCODE (HARROW et al., 2012),
circBase (GLAŽAR; PAPAVASILEIOU; RAJEWSKY, 2014), LNCipedia (VOLDERS et al.,
2013), PlantcircBase (CHU et al., 2017) and GreeNC (GALLART et al., 2015). In addition, we
introduced human specie data to assess the mathematical features with different sequences.

3.3.2 Feature Extraction

In this section, 9 feature extraction approaches are shown: 6 numerical mapping tech-
niques with Fourier transform (Voss (VOSS, 1992), Integer (MENDIZABAL-RUIZ et al., 2017;
CRISTEA, 2002), Real (CHAKRAVARTHY et al., 2004), Z-curve (ZHANG; ZHANG, 1994),
EIIP (NAIR; SREENADHAN, 2006) and Complex Numbers (ABO-ZAHHAD; AHMED; ABD-
ELRAHMAN, 2012; Anastassiou, 2001; YU; LI; YU, 2018)), Entropy (Shannon (SHANNON,
1948) and Tsallis (TSALLIS; MENDES; PLASTINO, 1998)), and Complex Networks (ITO et

al., 2018). The theoretical and mathematical exploration of each approach can be found in our
version published in Briefings in Bioinformatics (BONIDIA et al., 2021a).

3.3.3 Normalization, Training and Evaluation Metrics

For data normalization, we used the min-max method (SOUTO et al., 2008).Next, to
assess our mathematical approaches, we investigate empirically three classification algorithms,
such as Random Forest (RF) (BREIMAN, 2001), AdaBoost (HASTIE et al., 2009) and CatBoost
(PROKHORENKOVA et al., 2018), in three datasets (A. trichopoda, A. thaliana, and R. commu-

nis). Thereby, to estimate the real accuracy, we applied 10-fold cross-validation, as shown in
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(BONIDIA et al., 2021a), in which all classifiers showed similar performance, with CatBoost
being slightly better. Based on this, we chose for experimental tests, the CatBoost classifier. A
wide variety of fields have employed CatBoost successfully (HANCOCK; KHOSHGOFTAAR,
2020; BENTÉJAC; CSÖRGŐ; MARTÍNEZ-MUÑOZ, 2020).

Moreover, this algorithm can induce interpretable predictive models when humans can
easily understand the internal decision-making process (ZIHNI et al., 2020). Consequently,
domain experts can validate the knowledge used by the models for the classification of new
sequences (Parmezan Bonidia et al., 2019). Finally, to induce our classifier in experimental tests,
we used Hold-out (70% of samples for training (with 10-fold cross-validation) and 30% for
testing), as shown in Table 15. Nevertheless, for a better evaluation in case study II, we also
apply the Leave-One-Out Cross-Validation (LOOCV), which according to (CHENG; GARRICK;
FERNANDO, 2017) is an attractive resampling technique when the datasets are small.

Table 15 – Number of sequences used for training and testing.

Case Study Dataset Samples Training Testing
A. trichopoda 9112 6378 2734
A. thaliana 5080 3556 1524

I C. sinensis 4430 3101 1329
C. sativus 3460 2422 1038
R. communis 6974 4881 2093
lncRNA vs. sncRNA 2582 1807 775

II lncRNA vs. Antisense 114 79 35
circRNA vs. lncRNA 5080 3556 1524
Human-1 11995 8396 3599

III Human-2 5980 4186 1794
Human-3 63280 44296 18984
C. sativus 5995 4196 1799

We assess the effectiveness of our proposal using four measures for balanced datasets,
such as Sensitivity (SE), Specificity (SPC), Accuracy (ACC), and Cohen’s kappa coefficient
(COHEN, 1960). For imbalanced datasets (case study III), we apply Balanced Accuracy (BACC),
Geometric Mean (G-mean), and F1-score. These measures use True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) values. TP measures the correctly predicted
positive labels; TN represents the correctly classified negative labels; FP describes all those
negative entities that are incorrectly classified as positive and; FN represents the positive labels
that are incorrectly classified as the negative labels.

3.4 Results

This section shows experimental results from 9 mathematical feature extraction ap-
proaches for biological sequences, divided into several case studies.
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3.4.1 Case Study I

Initially, we induced models with the CatBoost classifier in the training sets (see Table 15).
Thus, in Table 16, we present the results of all mathematical features using 4 evaluation metrics.
As can be seen, all approaches presented interesting results, with the worst performance (ACC)
of 0.8901 (C. sinensis) and the best of 0.9606 (A. thaliana). That is, all features were efficient in
different datasets without a high loss of performance. Assessing each metric individually, we
realized that in SE, the best performance was F-Real (3 datasets), followed by Tsallis (2 datasets)
and F-Complex (1 dataset). In SPC, the best results were from Entropy (3 datasets), followed by
Graphs (2 datasets). In ACC, Tsallis presented the best performance (3 datasets), followed by
F-Real and F-Complex (1 dataset). For each dataset, we can see in A. trichopoda, the best ACC
was 0.9407 (F-Complex); A. thaliana with 0.9606 (F-Real); C. sinensis with 0.8901 (Tsallis);
C. sativus with 0.8902 (Tsallis); and R. communis with 0.9513 (Tsallis). Highlight for Tsallis
entropy, which evidenced the best results, mainly in ACC, showing to be more efficient in the
case study I.

3.4.2 Case Study II

In this step, we selected the best three mathematical feature extraction approaches for
generalization analysis, as follows: GSP (Fourier + complex numbers), entropy (Tsallis), and
graphs (complex networks). Thereby, we assessed its generalization to classify sequences with
different structures. For this, we used three new datasets established in section: Case Study II, as
can be seen in Figure 9. Furthermore, as some datasets are small, we validate our approaches with
two techniques, such as Hold-out and LOOCV, briefly described in the section: Normalization,

Training and Evaluation Metrics.

Considering the results in case study II, we realized that graph-based features are the
best in 2 of the 3 problems analyzed, followed by entropy and GSP. In the three datasets, with
different validations, mathematical approaches have achieved interesting results with ACC,
SE, and SPC, indicating an alternative and complementary approach to biological features.
Furthermore, considering the classification task between circRNA and lncRNA, mathematical
features were effective when compared to (PAN; XIONG, 2015) and (CHEN et al., 2018),
reaching 0.7780 and 0.7890 of ACC, respectively (using these comparisons as an (indirect)
reference indicator), while our best approach (graph-based features) found 0.8307 (Hold-out)
and 0.8272 (LOOCV) of ACC.

3.4.3 Statistical Significance Tests

The statistical significance was applied in both case studies (difference in ACC), using
Friedman’s statistical test and the Conover post-hoc test. Thereby, our null hypothesis (H0:
there are no significant differences between the approaches compared) is tested against the
alternative hypothesis (HA: some approach has statistical significance (α = 0.05, p < α)). First,
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Table 16 – Performance analysis. This table compares the sensitivity, specificity, accuracy and kappa
metrics for each approach in the test sets using CatBoost classifier (Important: F = Fourier).

Dataset Features SE SPC ACC Kappa
F-Zcurve 0.9744 0.8566 0.9155 0.8310
F-Binary 0.9795 0.9005 0.9400 0.8800
F-Real 0.9802 0.8837 0.9320 0.8639
F-Integer 0.9773 0.8822 0.9298 0.8595

A. trichopoda F-EIIP 0.9781 0.8990 0.9386 0.8771
F-Complex 0.9802 0.9012 0.9407 0.8815
Graphs 0.9737 0.9020 0.9378 0.8756
Shannon 0.9781 0.9020 0.9400 0.8800
Tsallis 0.9795 0.9005 0.9400 0.8800
F-Zcurve 0.9777 0.9383 0.9580 0.9160
F-Binary 0.9619 0.9449 0.9534 0.9068
F-Real 0.9803 0.9409 0.9606 0.9213
F-Integer 0.9698 0.9436 0.9567 0.9134

A. thaliana F-EIIP 0.9646 0.9449 0.9547 0.9094
F-Complex 0.9724 0.9409 0.9567 0.9134
Graphs 0.9685 0.9423 0.9554 0.9108
Shannon 0.9738 0.9462 0.9600 0.9200
Tsallis 0.9764 0.9409 0.9587 0.9173
F-Zcurve 0.9021 0.8707 0.8864 0.7728
F-Binary 0.8901 0.8707 0.8804 0.7607
F-Real 0.9142 0.8571 0.8856 0.7713
F-Integer 0.8825 0.8692 0.8758 0.7517

C. sinensis F-EIIP 0.8840 0.8526 0.8683 0.7367
F-Complex 0.9081 0.8496 0.8789 0.7577
Graphs 0.9006 0.8632 0.8819 0.7637
Shannon 0.9172 0.8586 0.8879 0.7758
Tsallis 0.9262 0.8541 0.8901 0.7803
F-Zcurve 0.8979 0.8478 0.8728 0.7457
F-Binary 0.9056 0.8459 0.8757 0.7514
F-Real 0.9268 0.8439 0.8854 0.7707
F-Integer 0.9056 0.8536 0.8796 0.7592

C. sativus F-EIIP 0.8979 0.8459 0.8719 0.7437
F-Complex 0.9326 0.8343 0.8834 0.7669
Graphs 0.9075 0.8536 0.8805 0.7611
Shannon 0.9326 0.8382 0.8854 0.7707
Tsallis 0.9403 0.8401 0.8902 0.7803
F-Zcurve 0.9446 0.9140 0.9293 0.8586
F-Binary 0.9417 0.9589 0.9503 0.9006
F-Real 0.9589 0.9408 0.9498 0.8997
F-Integer 0.9465 0.9456 0.9460 0.8920

R. communis F-EIIP 0.9455 0.9551 0.9503 0.9006
F-Complex 0.9398 0.9561 0.9479 0.8958
Graphs 0.9455 0.9542 0.9498 0.8997
Shannon 0.9388 0.9589 0.9489 0.8978
Tsallis 0.9417 0.9608 0.9513 0.9025



3.4. Results 65

1.0 0.9474

0.7043

1.0 0.9649

0.8961

1.0 0.9561

0.8002

lncRNA	vs.	sncRNA lncRNA	vs.	Antisense circRNA	vs.	lncRNA
0

0.2

0.4

0.6

0.8

1 SE
SPC
ACC

GSP:	LOOCV

Problems

Sc
or
e

1.0 0.9412

0.7139

1.0

0.8889

0.8727

1.0

0.9143 0.7933

lncRNA	vs.	sncRNA lncRNA	vs.	Antisense circRNA	vs.	lncRNA
0

0.2

0.4

0.6

0.8

1 SE
SPC
ACC

GSP:	Hold-out

Problems

Sc
or
e

0.993 0.9825

0.7567

0.9985

0.9649 0.8764

0.9957

0.9737

0.8165

lncRNA	vs.	sncRNA lncRNA	vs.	Antisense circRNA	vs.	lncRNA
0

0.2

0.4

0.6

0.8

1 SE
SPC
ACC

Entropy:	LOOCV

Problems

Sc
or
e

0.9974

1.0

0.7467

0.9974

1.0

0.8701

0.9974

1.0

0.8084

lncRNA	vs.	sncRNA lncRNA	vs.	Antisense circRNA	vs.	lncRNA
0

0.2

0.4

0.6

0.8

1 SE
SPC
ACC

Entropy:	Hold-out

Problems

Sc
or
e

1.0 0.9412

0.7822

1.0 1.0

0.8793

1.0 0.9714 0.8307

lncRNA	vs.	sncRNA lncRNA	vs.	Antisense circRNA	vs.	lncRNA
0

0.2

0.4

0.6

0.8

1 SE
SPC
ACC

Graphs:	Hold-out

Problems

Sc
or
e

1.0 0.9825

0.7772

1.0 0.9649 0.8772

1.0 0.9737 0.8272

lncRNA	vs.	sncRNA lncRNA	vs.	Antisense circRNA	vs.	lncRNA
0

0.2

0.4

0.6

0.8

1 SE
SPC
ACC

Graphs:	LOOCV

Problems

Sc
or
e

Figure 9 – Performance analysis of three mathematical features, GSP (fourier + complex numbers),
entropy (Tsallis) and graphs (complex networks), for different problems (using Hold-out and
LOOCV validation).

we apply the global test in the case study I, in which the Friedman test indicates significance
(χ2(8) = 17.34, p-value = 0.0268), that is, we can reject H0, as p < 0.05. Thus, it is essential to
execute the post-hoc statistical test. Conover statistics values were obtained, as well as p-values
(see Table 17), using 5% of significance (α = 0.05).

Table 17 – Conover statistics values - The rejected null hypothesis is in bold (p-values for α = 0.05).

F-Zcurve F-Binary F-Real F-Integer F-EIIP F-Complex Graphs Shannon
F-Binary 0.5580 - - - - - - -
F-Real 0.1416 0.3671 - - - - - -
F-Integer 0.7896 0.3956 0.0852 - - - - -
F-EIIP 0.9574 0.5230 0.1284 0.8309 - - - -
F-Complex 0.3671 0.7489 0.5580 0.2451 0.3399 - - -
Graphs 0.5580 1.0000 0.3671 0.3956 0.5230 0.7489 - -
Shannon 0.0687 0.2057 0.7089 0.0390 0.0616 0.3399 0.2057 -
Tsallis 0.0146 0.0550 0.2898 0.0075 0.0128 0.1050 0.0550 0.4892

Concerning to the Conover post-hoc test, only Tsallis and Shannon entropy-based features
have statistical differences for specific cases, such as: F-Zcurve (p < 0.0146), F-Integer (p <

0.0075 (with Tsallis) and p < 0.0390 (with Shannon)), and F-EIIP (p < 0.0128). Moreover,
there is no evidence of causal relationship among Fourier representations and Graphs, hence,
based on statistical test we cannot ensure their efficiency in all datasets. In case study II, we
realized that Friedman’s statistical test is not significant, in which we obtained χ2(2) = 1.64,
p-value = 0.4412, indicating that the three studied feature extraction techniques have a similar
performance in all problems evaluated. However, based on statistical test, we cannot ensure the
best mathematical models and their effectiveness and robustness in all datasets.
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3.4.4 Feature Analysis

In this section, we introduce the feature importance analysis carried out in this study. In
addition, we discuss a possible biological interpretation and offer some insights into the reasons
why some features perform better than others. First, we build a list of features used by each
approach (e.g., GPS, Entropy, and Graphs), as can be seen in Table 18. GSP has fixed attributes,
with 19 statistical measures generated from the Fourier spectrum. Meanwhile, the quantity of
features for entropy and graphs is defined by the parameters k and t, respectively. To better
describe the feature analysis, we have elaborated a brief biological explanation of each approach
(more details regarding theoretical issues can be found in the: Feature Extraction) section.

In GSP, we apply DFT with 6 numerical mapping techniques (or representations), when
we extract statistical measures from the generated spectrum. Thereby, we can conjecture that
RNA sequences are time-domain signals, given their biological properties linked to nucleotides,
base periodicity and their interdependence. Therefore, the distinct mappings contain the same
information organized in different shapes and dimensions. For this reason, the evaluation of
different representations performance is a hard task and it is out of the scope of this research. In
addition, as future work, we will evaluate the relation of mappings through complex and real
numbers with signal processing based on Fourier transform.

Table 18 – Number of features for GSP (Fourier + Mapping), entropy (Shannon and Tsallis) and graphs
(complex networks).

Approach Dimension Features
GSP 19 Peak to Average Power Ratio (2 features), average power

spectrum, median, maximum, minimum, sample stan-
dard deviation, population standard deviation, percentile
(15/25/50/75), range, variance, interquartile range, semi-
interquartile range, coefficient of variation, skewness, and
kurtosis.

Entropy k k = 1,2, . . . ,24

Graphs 12 · t Betweenness, assortativity, average degree, average path
length, minimum degree, maximum degree, number of edges,
degree standard deviation, frequency of motifs (size 3 and
4), clustering coefficient (local and global).

The entropy is considered an information measure able to recover the distribution of the
k-mers and their amount of information. Thus, we have a pattern of k-mers distribution that is
measured by the entropy of the sequence. In advance, if the k-mers distribution and location
have a strong relationship with any classes, that information will be recovered by entropy as an
information measure.

The mapping of RNA sequences to graphs (complex networks) takes into account the



3.4. Results 67

relationship between k-mers (with k = 3 in this study) and their neighborhood (step = 1) for each
sequence. Thus, the neighborhood structural relationship between the k-mers is recovered and
analyzed using complex network measurements (see Table 18). Besides, based on the structural
neighborhood relationship between the k-mers, RNA classes produce networks with different
topologies, which leads to representative and distinct features (measures) for each class of RNA.

Moreover, the application of thresholds generates features in different resolutions of the
complex network. More specifically, starting with many edges and removing the less frequent
edges at each iteration, soon we capture the dynamics of the topological change in the network.
Essentially, identifying relevant features at different thresholds means that the dynamics caused
by the removed edges are efficient to recover the most relevant structural relationships between
the k-mers.

Finally, we also included a feature importance analysis, highlighting the most relevant
features for a classification task. Feature importance is obtained by using a class of techniques
for assigning scores to input features, which are used to induce predictive models. This analysis
indicates the relative importance of each feature when making a prediction. Moreover, the relative
scores can highlight which features may be most relevant to the target, and which features are the
least important. This type of analysis may be interpreted by a domain expert and could support
the decision for gathering more or different data. In this study, we analyzed the best features to
classify lncRNA vs. mRNA and circRNA vs. lncRNA in A. thaliana (specie model in plant), as
can be seen in Figure 10.

This analysis indicated that different features have a higher effect on the induction of a
classifier. Additionally, we classified the highest importance score among sequence composition
features, considering the best mathematical models, as follow: GSP (lncRNA vs. mRNA)
percentile(25) and (lncRNA vs. circRNA) average; Entropy (lncRNA vs. mRNA) 1-mer and
(lncRNA vs. circRNA) 19-mer; Graphs (lncRNA vs. mRNA) Number of edges-t9 and (lncRNA
vs. circRNA) Number of edges-t1.

3.4.5 Computational Time and Complexity Analysis

We also assessed the computational cost and complexity of each tested approach (imple-
mented in Python). For such, we applied GSP (Fourier + complex numbers), entropy (Tsallis),
and graphs (complex networks) to 1291 randomly selected sequences. We performed the experi-
ments using a machine with Intel Core i3-9100F CPU (3.60GHz), 16GB memory, and running
in Debian GNU/Linux 10. The lowest computational cost was observed in the approaches based
on GSP (0m7.183s) and entropy (0m51.427s), while graphs (3m58.208s) presented a much
higher cost. These results demonstrated that, although the approaches report similar predictive
performance, the computational costs are very different.

Regarding computational complexity, we derived worst-case asymptotic expressions
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Figure 10 – Bar chart with relative importance score, GSP (fourier + complex numbers), entropy (Tsallis)
and graphs (complex networks), considering lncRNA vs. mRNA and circRNA vs. lncRNA.

based on the Python implementation. which are presented in Table 19. Since the input variables
for each developed approach are different, we first derived a general complexity expression based
on these input parameters and further derived a set of simplified expressions whose dominant
factor is the sequence size N.

According to (JACOBSEN; LYONS, 2003), the results for the GSP are straightforward,
while the expression for the Entropy and Complex Networks depend on different subroutines,
which may increase the asymptotic complexity when compared to GSP. The entropy expression
depends directly on the parameter k from the k-mer methodology that generates 4k features, hence,
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Table 19 – Computational Complexity Analysis.

Approach Complexity (Complete Expression) Complexity
GSP O(N logN) O(N logN)

Entropy O
(

k
(

4(k
2) + 3

(
4k))) O

(
2k)

Graphs O(k+(k ∗4k)+ t ∗ ((4k)2 +((4k)2)+ c∗ ((4k)2))) O
(
2k)

*k = frequencies of k-mer, t = threshold - number of subgraphs,
*c = number of extracted features, GSP (FFT (JACOBSEN; LYONS, 2003)).

the asymptotic complexity is given by O
(

k
(

4(k
2) + 3

(
4k))). This result can be observed on

the application code1. Fundamentally, the first k represents the loop started at line 62, the first
4k2

is the combination of the two loops in lines 66 and 67, finally, the last parcel, i.e. 3
(
4k), is a

result of lines 72, 77 and 78, which are three equally sized loops.

Finally, the computational complexity of the graphs is also derived according to the
application code2, which depends on the following parameters: k, the k-mer frequencies, t, the
threshold, i.e., the number of subgraphs, and c, the number of extracted features. Therefore,
according to lines 97 through 118 in the application code, the computational complexity is defined
as O(k+(k ∗ 4k)+ t ∗ ((4k)2 +((4k)2)+ c ∗ ((4k)2))). Assuming that k >> c and k >> t, the
computational complexity is O

(
2k). To compare GSP to the other methods in terms of complexity,

we consider that, in the worst-case scenario k = N, hence, asymptotically, the complex networks
and the entropy method have the same computational complexity (exponential), while the GSP
is the least complex (log-linear).

3.4.6 Case Study III - Validation Test With Imbalanced Datasets

In this section, we evaluated the proposed approach performance on new sequences with
imbalanced data, using four datasets (as described in Materials and Methods - Case Study III).
For this study, we selected the most challenging classification task used in case study II, circRNA
vs. lncRNA (PAN; XIONG, 2015; CHEN et al., 2018; ZHANG et al., 2020; CHAABANE et al.,
2020). To assess the mathematical features (same approaches applied in case study II), we used
imbalanced data metrics (e.g., BACC, G-mean, and F1-score), as exposed in Table 20.

As can be seen, graphs-based features presented the best overall predictive performance,
with the best results in three of the four datasets analyzed, while Entropy had better results in
the Human-2 dataset, with a minimum difference of 0.08. Nevertheless, we noticed that the
performance obtained by graphs was similar to that observed in the case study II, even with
imbalanced data, in particular for the datasets: Human-1 (F1-score: 0.8085, BACC: 0.7551,
G-mean: 0.7505), Human-2 (F1-score: 0.8106, BACC: 0.8050, G-mean: 0.8043), and C. sativus
1 For further reference, check: (BONIDIA, 2020) - EntropyClass.py
2 For further reference, check: (BONIDIA, 2020) - ComplexNetworksClass.py
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Table 20 – Performance analysis of three mathematical feature extraction approaches in imbalanced
datasets.

Human-1 Human-2
Approach F1-score BACC G-mean Approach F1-score BACC G-mean
GSP 0.7402 0.6652 0.6559 GSP 0.8041 0.7990 0.7980
Entropy 0.7427 0.6656 0.6552 Entropy 0.8120 0.8060 0.8051
Graphs 0.8085 0.7551 0.7505 Graphs 0.8106 0.8050 0.8043

Human-3 C. sativus
Approach F1-score BACC G-mean Approach F1-score BACC G-mean
GSP 0.3464 0.7977 0.7950 GSP 0.8241 0.6711 0.6469
Entropy 0.3312 0.8060 0.8052 Entropy 0.8337 0.6852 0.6634
Graphs 0.4447 0.8141 0.8127 Graphs 0.8487 0.7235 0.7097

(F1-score: 0.8487, BACC: 0.7235, G-mean: 0.7097). Despite the good predictive performance
obtained in the Human-3 dataset, with a BACC of 0.8141, the high data imbalance affected the
quality of the models obtained by all approaches. Moreover, we noticed that GSP and Entropy-
based features were more affected by the imbalanced data. Therefore, in the next section, we
compared our study with biological and hybrid approaches, to assess the predictive performance
when using other features in the same datasets.

3.5 Comparing Mathematical, Biological and Hybrid Ap-
proaches

In this section, we present our findings and discuss whether they support our hypothesis
(Feature extraction approaches based on mathematical features are generalist, i.e., the ability to

generalize mathematical features in different ncRNA types, such as the classification of lncRNA

subclasses, being as efficient as biological approaches). According to the results obtained in the
several experiments carried out, illustrated by Table 16, Figure 9, and Table 20, all mathematical
feature extraction approaches positively affect the predictive performance obtained.

Nevertheless, to fully support our hypothesis, we also compared GSP, entropy, and graphs,
when adopting a biological and hybrid approach, and applied to eight RNAs classification datasets
(previously used), such as lncRNA vs. mRNA (case study I); lncRNA vs. sncRNA, lncRNA
vs. Antisense, circRNA vs. lncRNA (case study II); Human-1, Human-2, Human-3, C. sativus
(case study III). For a fair comparison, the new experiments follow the same methodology (70%
of the dataset used for training, 30% for test, and using the CatBoost classifier), as shown in
Table 21. The biological and hybrid models were trained and tested on the same dataset as
the mathematical features. We generate our comparative approaches with some of the most
frequently used features, shown in Figure 7. Figure 11 presents a feature ranking found in
our review (specifically in biological approaches, see Figure 7). The x-axis refers to features
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categories and the y-axis to the number of studies.
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Figure 11 – Feature Ranking.

As can be seen, the feature group most often applied by the reported studies is sequence
structure (17), followed by ORF (16), codon (6), alignment (4), protein (2), ribosome (1). Among
these groups, we use the features of higher biological bias to generate our models, such as
ORF coverage, ORF size, ORF integrity, ORF quality, Fickett score, peptide level features,
and hexamer score. Several approaches have used some of these features, as shown in Related

Works, e.g., CPC, CPAT, CREMA, PLIT, LGC, LncFinder, DeepCPP, among others (some works
provide the option to extract these attributes, e.g., (HAN et al., 2018; KANG et al., 2017)).
Thus, the hybrid models in this study are based on a combination of mathematical (proposed
approaches) and biological features, e.g., GPS + Biological (Hybrid-1), Entropy + Biological
(Hybrid-2), and Graphs + Biological (Hybrid-3). The results are shown in Table 21.

According to Table 21, the hybrid-1 and hybrid-2 models reported the best predictive
performance (both 0.9915) in the first problem (lncRNA vs. mRNA datasets), followed by the
biological (0.9888), and Entropy (mathematical approach - 0.9587), with a difference of 0.0328
and 0.0301, respectively. However, it is important to highlight that both biological and hybrid
models have considered the ORF descriptor, which, according to (BAEK et al., 2018), is an
essential guideline for distinguishing lncRNAs from mRNA. Moreover, the ORF feature has a
biological bias, being usually difficult to reuse or adapt to another specific problem (different
than lncRNAs vs. mRNA). Besides, taking into account only the hybrid and biological model
predictive performance, we observed that the gain was minimal when compared to the biological
model (0.0027), highlighting the ORF descriptor importance.
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Table 21 – Performance analysis of three mathematical feature extraction approaches against a biological
and hybrid model for different sequence classification problems.

Balanced Datasets

lncRNA vs. mRNA - A. thaliana lncRNA vs. sncRNA - A. thaliana
Approach SE SPC ACC Approach SE SPC ACC
GSP 0.9724 0.9409 0.9567 GSP 1.0000 1.0000 1.0000
Entropy 0.9764 0.9409 0.9587 Entropy 0.9974 0.9974 0.9974
Graphs 0.9685 0.9423 0.9554 Graphs 1.0000 1.0000 1.0000
Biological 0.9895 0.9882 0.9888 Biological 0.9768 0.9483 0.9626
Hybrid-1 0.9948 0.9882 0.9915 Hybrid-1 1.0000 0.9948 0.9974
Hybrid-2 0.9961 0.9869 0.9915 Hybrid-2 0.9768 0.9922 0.9845
Hybrid-3 0.9921 0.9856 0.9888 Hybrid-3 1.0000 0.9948 0.9974

lncRNA vs. Antisense - A. thaliana circRNA vs. lncRNA - A. thaliana
Approach SE SPC ACC Approach SE SPC ACC
GSP 0.9412 0.8889 0.9143 GSP 0.7139 0.8727 0.7933
Entropy 1.0000 1.0000 1.0000 Entropy 0.7467 0.8701 0.8084
Graphs 0.9412 1.0000 0.9714 Graphs 0.7822 0.8793 0.8307
Biological 0.8889 0.9412 0.9143 Biological 0.7087 0.8635 0.7861
Hybrid-1 0.8889 1.0000 0.9429 Hybrid-1 0.7467 0.8780 0.8123
Hybrid-2 0.9444 0.9412 0.9429 Hybrid-2 0.7585 0.8963 0.8274
Hybrid-3 0.8889 1.0000 0.9429 Hybrid-3 0.7769 0.8911 0.8340

Imbalanced Datasets

circRNA vs. lncRNA - Human-1 circRNA vs. lncRNA - Human-2
Approach F1-score BACC G-mean Approach F1-score BACC G-mean
GSP 0.7402 0.6652 0.6559 GSP 0.8041 0.7990 0.7980
Entropy 0.7427 0.6656 0.6552 Entropy 0.8120 0.8060 0.8051
Graphs 0.8085 0.7551 0.7505 Graphs 0.8106 0.8050 0.8043
Biological 0.9383 0.9280 0.9280 Biological 0.7785 0.7617 0.7615
Hybrid-1 0.9561 0.9474 0.9473 Hybrid-1 0.8323 0.8212 0.8210
Hybrid-2 0.9566 0.9482 0.9481 Hybrid-2 0.8448 0.8336 0.8334
Hybrid-3 0.9595 0.9510 0.9510 Hybrid-3 0.8374 0.8267 0.8265

circRNA vs. lncRNA - Human-3 circRNA vs. lncRNA - C. sativus
Approach F1-score BACC G-mean Approach F1-score BACC G-mean
GSP 0.3411 0.7993 0.7971 GSP 0.8241 0.6711 0.6469
Entropy 0.3338 0.8093 0.8086 Entropy 0.8337 0.6852 0.6634
Graphs 0.4242 0.8058 0.8045 Graphs 0.8487 0.7235 0.7097
Biological 0.2876 0.7782 0.7775 Biological 0.8565 0.6852 0.6449
Hybrid-1 0.3406 0.8211 0.8209 Hybrid-1 0.8384 0.7094 0.6951
Hybrid-2 0.3539 0.8324 0.8323 Hybrid-2 0.9159 0.8499 0.8467
Hybrid-3 0.4485 0.8343 0.8342 Hybrid-3 0.8556 0.7387 0.7273

In addition, case study II extends the evaluation with three different sub-problems. The
results obtained also confirm our hypothesis, since models induced with mathematical features
performed better than those induced with biological features, especially in the classification
tasks, e.g., lncRNA vs. Antisense (third dataset) and circRNA vs. lncRNA (fourth dataset), when
the results obtained by graphs were 0.9714 and 0.8307 of ACC, respectively. In general, models
based on graphs features were superior to those based on biological features by 0.0571 and
0.0446 of ACC. Regarding the hybrid model, the combination of biological and mathematical
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features helped to keep the model competitive in all datasets, mainly in circRNA vs. lncRNA,
with the predictive performance of 0.8340 (ACC), indicating that merging features can improve
the predictive performance of the induced classification models.

Regarding case study III (imbalanced datasets), there was a clear superiority in the
predictive performance of models induced with hybrid features, followed by those induced with
mathematical and biological features. It is possible to see a robust predictive performance with
mathematical approaches in two datasets: Human-2 (Entropy - G-mean: 0.8106 and Hybrid-2
- G-mean: 0.8334) and Human-3 (Graphs - G-mean: 0.8045 and Hybrid-3 - G-mean: 0.8342).
Furthermore, in all imbalanced datasets, models induced with hybrid features presented the
best predictive performance, such as Human-1 (Hybrid-3, F1-score: 0.9595, BACC: 0.9510,
G-mean: 0.9510), Human-2 (Hybrid-2, F1-score: 0.8448, BACC: 0.8336, G-mean: 0.8334),
Human-3 (F1-score: 0.4485, BACC: 0.8343, G-mean: 0.8342), and C. sativus (F1-score: 0.9159,
BACC: 0.8499, G-mean: 0.8467). These results show the effects of imbalanced data when using
biological features, in particular in the Human-3 dataset, with a difference of 0.1609 (F1-score),
compared to Hybrid-3.

Finally, we also assessed the statistical significance of the different predictive perfor-
mances when comparing models induced with mathematical and biological features in the previ-
ously reported experiments. These tests showed the superiority of entropy (p < 0.0468), graphs
(p < 0.0105), and all hybrid approaches (1: p < 0.0019, 2: p < 0.0001, and 3: p < 4.2e−05),
compared with the use of biological features, supporting the previously mentioned hypothesis.
Furthermore, we observed the high predictive performance of the hybrid models, suggesting
that a combination of biological and mathematical features can lead to the induction of better
predictive models, in particular when combining features from different approaches. Therefore,
the proposed pipeline is efficient and robust in terms of generalization and predictive performance
for different lncRNAs sequence classification problems.

3.6 Chapter Remarks

This work proposed to analyze feature extraction approaches for biological sequence
classification. Specifically, we concentrated our work on the study of efficient and generalist
mathematical features for different problems. As a case study, we used lncRNA sequences. In
our experiments, as a starting point, nine mathematical approaches were analyzed, such as six
numerical mapping techniques with Fourier Transform, Tsallis and Shannon entropy, and Graphs
(complex networks). Thereby, we adopted several sequence classification scenarios to answer
the questions raised in this work.

In our experiments, all mathematical features presented relevant and robust results with
performances (ACC) between 0.8901-0.9606. In the second case study, once more, entropy-based
features and graphs showing the best performance, followed by GSP. In the third case study, with
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imbalanced data, graphs-based features kept the best performance in three of the four datasets
analyzed. Furthermore, we compared three mathematical approaches against biological and
hybrid models, in eight datasets, in which we have presented suitable results, being superior,
competitive, and robust in terms of generalization. We also verified that mathematical approaches
perform as accurately as biological approaches and have a better generalization capacity since
they outperform biological features in scenarios not designed for them. Finally, among the feature
extraction approaches tested in this work, the combination of k-mer and entropy, as well as
complex networks performs better than GSP at the cost of a significant increase in computational
complexity.
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CHAPTER

4
INFORMATION THEORY FOR BIOLOGICAL

SEQUENCE CLASSIFICATION: A NOVEL
FEATURE EXTRACTION TECHNIQUE

BASED ON TSALLIS ENTROPY

The accelerated evolution of sequencing technologies has generated significant growth
in the number of sequence data (HASHEMI et al., 2018b), opening up new opportunities and
creating new challenges for biological sequence analysis. To take advantage of the increased
predictive power of machine learning (ML) algorithms, recent works have investigated the use
of these algorithms to analyze biological data (SILVA et al., 2019b; GREENER et al., 2022).

The development of effective methods for sequence analysis, through ML, benefits
the research advancement in new applications (LOU et al., 2019; BONIDIA et al., 2021a),
such as understanding several problems (LOU et al., 2019; BONIDIA et al., 2021a), e.g., cancer
diagnostics (MAROS et al., 2020), development of CRISPR-Cas systems (EITZINGER et al.,
2020), drug discovery and development (VAMATHEVAN et al., 2019) and COVID-19 diagnosis
(Abubaker Bagabir et al., 2022). Nevertheless, ML algorithms applied to the analysis of biological
sequences present challenges, such as feature extraction (STORCHEUS; ROSTAMIZADEH;
KUMAR, 2015). For non-structured data, as is the case of biological sequences, feature extraction
is a key step for the success of ML applications (IUCHI et al., 2021; CUI; ZHANG; ZOU, 2021;
BONIDIA et al., 2022).

Previous works have shown that universal concepts from Information Theory (IT),
originally proposed by Claude Shannon (1948) (SHANNON, 1948), can be used to extract
relevant information from biological sequences (VINGA, 2013; PRITIŠANAC et al., 2019;
VOPSON; ROBSON, 2021). According to Ré and Azad (2014), an IT-based analysis of symbolic
sequences is of interest in various study areas, such as linguistics, biological sequence analysis,
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or image processing, whose relevant information can be extracted, for example, by Shannon’s
uncertainty theory (AKHTER et al., 2013).

Studies have investigated the analysis of biological sequences with Shannon entropy
in a wide range of applications (AKHTER et al., 2013; MACHADO; COSTA; QUELHAS,
2011; TRIPATHI et al., 2016). Given their large applicability, according to Yamano (2001),
it is important to explore the possibility of generalized entropies, such as Tsallis (TSALLIS,
1988; TSALLIS; MENDES; PLASTINO, 1998), which was proposed to generalize the Boltz-
mann/Gibbs’s traditional entropy to non-extensive physical systems (ALBUQUERQUE; ES-
QUEF; MELLO, 2004). This class of generalized entropy has been used for different prob-
lems, e.g., image analysis (ALBUQUERQUE; ESQUEF; MELLO, 2004; RAMÍREZ-REYES
et al., 2016), inference of gene regulatory networks (LOPES; OLIVEIRA; CESAR, 2011),
DNA analysis (MACHADO; COSTA; QUELHAS, 2011) induction of decision trees (CRUZ-
GARCíA; BORY-REYES; RAMIREZ-ARELLANO, 2022) and classification of epileptic
seizures (THILAGARAJ; RAJASEKARAN; KUMAR, 2019).

In Albuquerque, Esquef and Mello (2004), the authors proposed a new image segmenta-
tion method using Tsallis entropy. Later, Ramírez-Reyes et al. (2016) showed a novel numerical
approach to calculate the Tsallis entropic index feature for a given image. In Lopes, Oliveira and
Cesar (2011), the authors introduced the use of generalized entropy for the inference of gene
regulatory networks. DNA analysis using entropy (Shannon, Rényi, and Tsallis) and phase plane
concepts were presented in (MACHADO; COSTA; QUELHAS, 2011), while (CRUZ-GARCíA;
BORY-REYES; RAMIREZ-ARELLANO, 2022) used the concept of generalized entropy for
decision trees. Recently, Thilagaraj, Rajasekaran and Kumar (2019) investigated a novel single
feature based on Tsallis entropy to classify epileptic seizures. These studies report a wide range
of contributions to the use of Tsallis entropy in different domains. To the best of our knowledge,
this paper is the first work proposing its use as a feature (feature extraction) to represent distinct
biological sequences. Additionally, it presents the first study of different Tsallis entropic indexes
and their effects on classical classifiers.

A preliminary version of this proposal was presented in Bonidia et al. (2021a). Due to
the favorable results obtained, we created a code to extract different descriptors available in a
new programming package, called MathFeature (BONIDIA et al., 2022), which implements
mathematical descriptors for biological sequences. However, until now, we have not studied
Tsallis entropy in depth, e.g., its effect, its application to other biological sequence datasets,
and its comparison with other entropy-based descriptors, e.g., Shannon. Thus, in this paper, we
investigate the answers to the following questions:

• Question 1 (Q1): Are Tsallis entropy-based features robust for extracting information
from biological sequences in classification problems?

• Question 2 (Q2): Does the entropic index affect the classification performance?
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• Question 3 (Q3): Is Tsallis entropy as robust as Shannon entropy for extracting informa-
tion from biological sequences?

We are evaluating robustness in terms of performance, e.g., accuracy, recall, and F1
score, of the feature vectors extracted by our proposal on different biological sequence datasets.
Finally, this study makes the following main research contributions: We propose an effective
feature extraction technique based on Tsallis entropy, which is robust in terms of generalization,
and also potentially representative for collecting information in fewer dimensions for sequence
classification problems.

4.1 Literature Review
In this section, we develop a systematic literature review to present and summarize

feature extraction descriptors for biological sequences (DNA, RNA, or protein). This review
aims to report the need and lack of studies with mathematical descriptors, such as entropy,
evidencing the contribution of this article. This section followed the Systematic Literature
Review (SLR) Guidelines in Software Engineering (KEELE et al., 2007), which, according
to Keele et al. (2007), Brereton et al. (2007), allows a rigorous and reliable evaluation of pri-
mary studies within a specific topic. We base our review on recommendations from previous
studies (KEELE et al., 2007; BRERETON et al., 2007; KITCHENHAM et al., 2009b).

We propose to address the following problem: How can we numerically represent a

biological sequence (such as DNA, RNA, or protein) in a numeric vector that can effectively

reflect the most discriminating information in a sequence? To answer this question, we reviewed
ML-based feature extraction tools (or packages, web servers, and toolkits) that aim, as a proposal,
to provide several feature descriptors for biological sequences—that is, without a defined scope,
and, therefore, generalist studies. Moreover, we used the following electronic databases: ACM
Digital Library, IEEE Xplore Digital Library, PubMed, and Scopus. We chose the Boolean
method (KARIMI et al., 2010) to search primary studies in the literature databases. The standard
search string was: (“feature extraction” OR “extraction” OR “features” OR “feature generation”

OR “feature vectors”) AND (“machine” OR “learning”) AND (“tool” OR “web server” OR

“package” OR “toolkit”) AND (“biological sequence” OR “sequence”).

Due to different query languages and limitations between the scientific article databases,
there were some differences in the search strings. Therefore, our first step was to apply search
keys to all databases, returning a set of 1404 studies. Furthermore, we used the Parsifal tool to
assist our review and obtain better accuracy and reliability. Thereafter, duplicate studies were
removed, returning an amount of 1097 titles (307 duplicate studies). Then, we performed a
thorough analysis of the titles, keywords, and abstracts, according to inclusion and exclusion
criteria: (1) Studies in English, (2) Studies with different feature extraction techniques, (3)
Studies with generalist tools and (4) Studies published in journals. We accepted 28 studies (we
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rejected, 1069). Finally, after pre-selecting the studies, we performed a data synthesis, to apply
an assessment based on the quality criteria: (1) Are the study aims specified? (2) Study with
different proposals/results? (3) Study with complete results?

Hence, of the 28 studies, 3 were eliminated, leading to a final set of 25 studies. As
previously mentioned, we assessed generalist tools for feature extraction, since this type of study
would provide several descriptors, presenting an overview of ways to numerically represent
biological sequences (which would not be possible by evaluating studies dedicated to some
specific problem). As expected, we found more than 100 feature descriptors. We chose to divide
them into large groups (16 groups—these were defined based on all studies), as shown in
Chapter 2. As can be seen, no study provides mathematical descriptors, such as Tsallis entropy,
reinforcing the contribution of our proposal.

4.2 Information Theory and Entropy

According to Martignon (2001), IT can be defined as a mathematical treatment of the
concepts, parameters, and rules related to the transmission and processing of information. The
IT concept was first proposed by Claude Shannon (1948) in the work entitled "A Mathematical
Theory of Communication" (SHANNON, 1948), where he showed how information could be
quantified with absolute precision. The entropy originating from IT can be considered a measure
of order and disorder in a dynamic system (ALBUQUERQUE; ESQUEF; MELLO, 2004;
SHANNON, 1948). However, to define information and entropy, it is necessary to understand
random variables, which, in probability theory, is a mathematical object that can take on a finite
number of different states x1, . . . ,xn with previously defined probabilities p1, . . . , pn (ADAMI,
2012). According to (BONIDIA et al., 2021a), for a discrete random variable R taking values
in {r[0],r[1],r[2], . . . ,r[N−1]} with probabilities {p[0], p[1], p[2], . . . , p[N−1]}, represented as
P(R = r[n]) = p[n], we can define self-information or information as (RAMÍREZ-REYES et al.,
2016)

I =−log(p). (4.1)

Thus, the Shannon entropy HS is defined by

HS =−
N−1

∑
n=0

p[n] log2 p[n]. (4.2)

Here, N is the number of possible events and p[n] the probability that event n occurs.
Fundamentally, with Shannon entropy, we can reach a single value that quantifies the information
contained in different observation periods (LESNE, 2014). Furthermore, it is important to
highlight that the Boltzmann/Gibbs entropy was redefined by Shannon as a measure of uncertainty
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(ALBUQUERQUE; ESQUEF; MELLO, 2004). This formalism, known as Boltzmann–Gibbs–
Shannon (BGS) statistics, has often been used to interpret discrete and symbolic data (RÉ;
AZAD, 2014). Moreover, according to Albuquerque, Esquef and Mello (2004), Zhang and Wu
(2011), if we decompose a physical system into two independent statistical subsystems A and B,
the Shannon entropy has the extensive property (additivity)

HS(A+B) = HS(A)+HS(B) (4.3)

According to Maszczyk and Duch (2008), complementary information on the importance
of specific events can be generated using the notion of generalized entropy, e.g., outliers or
rare events. Along these lines, Constantino Tsallis (TSALLIS, 1988; TSALLIS; MENDES;
PLASTINO, 1998) proposed a generalized entropy of the BGS statistics, which can be defined
as follows:

HT =
1

q−1

(
1−

N−1

∑
n=0

p[n]q
)
. (4.4)

Here, q is called the entropic index, which, depending on its value, can represent var-
ious types of entropy. Depending on the value of q, three different entropies can be defined
(ALBUQUERQUE; ESQUEF; MELLO, 2004; ZHANG; WU, 2011):

• Superextensive entropy (q < 1):

HT (A+B)< HT (A)+HT (B) (4.5)

• Extensive entropy (q = 1):

HT (A+B) = HT (A)+HT (B) (4.6)

• Subextensive entropy (q > 1):

HT (A+B)> HT (A)+HT (B) (4.7)

When q < 1, the Tsallis entropy is superextensive; for q = 1, it is extensive (e.g., leads to
the Shannon entropy), and for q > 1, it is subextensive (TSALLIS, 1999). Therefore, based on
these differences, it is important to explore the possibility of generalized entropies (YAMANO,
2001; CRUZ-GARCíA; BORY-REYES; RAMIREZ-ARELLANO, 2022; DéRIAN et al., 2022).
Another notable generalized entropy is the Rényi entropy, which generalizes the Shannon entropy,
the Hartley entropy, the collision entropy and the min-entropy (FEHR; BERENS, 2014; RÉNYI
et al., 1961). The Rényi entropy can be defined as follows:

HR =
1

1−q
log2

(
N−1

∑
n=0

p[n]q
)
. (4.8)
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As in the Tsallis entropy, q = 1 leads to Shannon entropy.

4.3 Materials and Methods

In this section, we describe the experimental methodology adopted for this study, which
is divided into five stages: (1) data selection; (2) feature extraction; (3) extensive analysis of the
entropic index; (4) performance analysis; and (5) comparative study.

4.3.1 A Novel Feature Extraction Technique

Our proposal is based on the studies of (MACHADO; COSTA; QUELHAS, 2011;
BONIDIA et al., 2021a). To generate our probabilistic experiment (VINGA, 2013), we use a
known tool in biology, the k-mer. In this method, each sequence is mapped in the frequency of
neighboring bases k, generating statistical information. The k-mer is denoted in this work by Pk,
corresponding to Equation (4.9).

Pk(s) =
ck

i
N− k+1

=

(
c1

1
N−1+1

, . . . ,
c1

4
N−1+1

,

c2
4+1

N−2+1
, . . . ,

ck
i

N− k+1

)
k = 1,2, . . . ,n.

(4.9)

Here, each sequence (s) was assessed with frequencies of k = 1,2, . . . ,24, in which
ck

i is the number of occurrences with length k in a sequence (s) with length N; the index
i ∈ {1,2, . . . ,41 + . . .+ 4k} refers to an analyzed substring (e.g., [{AAAA}, . . . ,{T T T T}], for
k = 4). Here, after counting the absolute frequencies of each k, we generate relative frequencies
and then apply Tsallis entropy to generate the features. In the case of protein sequences, index i

is {1,2, . . . ,201 + . . .+20k}. For a better understanding, Algorithm 12 demonstrates our pseu-
docode.

This algorithm is divided into five steps: (1) each sequence is mapped to k−mers; (2)
extraction of the absolute frequency of each k−mer; (3) extraction of the relative frequency of
each k−mer based on absolute frequency; (4) extraction of the Tsallis entropy, based on the
relative frequency for each k−mer—see Equation (4.4); (5) generation, for each k−mer, of an
entropic measure. Regarding interpretability, each entropic measure represents a k−mer, e.g.,
1-mer = frequency of A, C, T, G. In other words, by analyzing the best measures—for example,
through a feature importance analysis—we can determine which k−mers are more relevant to
the problem under study, providing an indication of which combination of nucleotides or amino
acids contributes to the classification of the sequences.
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Figure 12 – Pseudocode of the Proposed Method.

4.3.2 Benchmark Dataset and Experimental Setting

To validate the proposal, we divided our experiments into five case studies:

• Case Study I: Assessment of the Tsallis entropy and the effect of the entropic index q,
generating 100 feature vectors for each benchmark dataset with 100 different q parameters
(entropic index). The features were extracted by Algorithm 12, with q varying from 0.1
to 10.0 in steps of 0.1 (except 1.0, which leads to the Shannon entropy). The goal was
to find the best values for the parameter q to be used in the experiments. For this, three
benchmark datasets from previous studies were used (BONIDIA et al., 2021a; CHU et

al., 2017; MANAVALAN; SHIN; LEE, 2018). For the first dataset (D1), the selected
task was long non-coding RNAs (lncRNA) vs. protein-coding genes (mRNA), as in
(KLAPPROTH et al., 2021), using a set with mRNA and lncRNA sequences (500 for
each label—benchmark dataset (BONIDIA et al., 2021a)). For the second dataset (D2),
a benchmark set from (BONIDIA et al., 2021a), the selected task was the induction
of a classifier to distinguish circular RNAs (cirRNAs) from other lncRNAs using 1000
sequences (500 for each label). The third dataset (D3) is for Phage Virion Protein (PVP)
classification, from (MANAVALAN; SHIN; LEE, 2018), with 129 PVP and 272 non-PVP
sequences.

• Case Study II: We use the best parameters (q : entropic index—found in case study I)
to evaluate its performance on new datasets: D4—Sigma70 Promoters (LIN et al., 2017)
(2141 sequences), D5—Anticancer Peptides (LI et al., 2020a) (344 sequences) and D6—
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, 24815 sequences)
(BONIDIA et al., 2022).

• Case Study III—Comparing Tsallis with Shannon Entropy: As a baseline of the com-
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parison between methods, we use Shannon entropy, as we did not find any article studying
the form of proposed classification with Tsallis entropy and the effect of the entropic
parameter with different classifiers. In this experiment, we use D1, D2, D3, D4, D5 and
D6.

• Case Study IV—Comparing Generalized Entropies: To better understand the effective-
ness of generalized entropies for feature extraction, we evaluated Tsallis with the Rényi
entropy. In this case, the evaluations of the two approaches were conducted by using the
experiments from case study I, changing the entropic index for generating the datasets
from 0.1 to 10.0 in steps of 0.1 and inducing the CatBoost classifier. In addition, the
datasets used were D1, D2, and D3.

• Case Study V—Dimensionality Reduction Analysis: Finally, we assessed our proposal
with other known techniques of feature extraction and dimensionality reduction, e.g.,
Singular Value Decomposition (SVD) (HALKO; MARTINSSON; TROPP, 2011) and
Uniform Manifold Approximation and Projection (UMAP) (MCINNES et al., 2018), using
datasets D1, D2, D3 and D5. We also added three new benchmark datasets provided by
(KHAN et al., 2020) to predict recombination spots (D7) with 1050 sequences (it contained
478 positive sequences and 572 negative sequences) and for the HIV-1 M pure subtype
against CRF classification (D8) with 200 sequences (it contained 100 positive and negative
sequences) (REMITA et al., 2017). In addition, we also used a multiclass dataset (D9)
containing seven bacterial phyla with 488 small RNA (sRNA), 595 transfer RNA (tRNA)
and 247 ribosomal RNA (rRNA) from (BONIDIA et al., 2022a). Moreover, to apply SVD
and UMAP, we kept the same feature descriptor by k-mer frequency.

For data normalization in all stages, we used the min-max algorithm. Furthermore, we
investigated five classification algorithms, such as Gaussian Naive Bayes (GaussianNB), Random
Forest (RF), Bagging, Multi-Layer Perceptron (MLP), and CatBoost. To induce our models, we
randomly divided the datasets into ten separate sets to perform 10-fold cross-validation (case
study I and case study V) and hold-out (70% of samples for training and 30% for testing—case
study II, case study III, and case study IV). Finally, we assessed the results with accuracy (ACC),
balanced accuracy (BACC), recall, F1 score, and Area Under the Curve (AUC). In D9, we
considered metrics suitable for multiclass evaluation.

4.4 Results and Discussion

4.4.1 Case Study I

As aforementioned, we induced our classifiers (using 10-fold cross-validation) across
all feature vectors generated with 100 different q parameters (totaling 300 vectors (3 datasets
times 100 parameters)). Thereby, we obtained the results presented in Table 22. This table shows
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the best and worst parameters (entropic parameter q) of each algorithm in the three benchmark
datasets, taking into account the ACC metric.

Table 22 – The best and worst parameter (q) of each benchmark dataset and classifier, taking into account
the ACC metric.

Dataset GaussianNB RF Bagging MLP CatBoost
q ACC q ACC q ACC q ACC q ACC

D1 2.7 0.9370 0.4 0.9430 2.7 0.9400 2.2 0.9380 2.3 0.9440
9.2 0.4760 9.6 0.7360 9.6 0.7270 10.0 0.5060 9.6 0.747

D2 1.5 0.7980 5.3 0.8220 5.7 0.8080 0.9 0.7800 4.0 0.8300
9.6 0.5210 10.0 0.6510 10.0 0.6170 9.9 0.5060 9.2 0.6800

D3 8.7 0.7008 7.8 0.6910 2.0 0.7157 1.5 0.7184 1.1 0.7282
1.3 0.6062 9.8 0.5985 9.5 0.5962 0.1 0.6860 5.7 0.6610

Thereby, evaluating each classifier, we observed that the CatBoost performed best in
all datasets, with 0.9440 (q = 2.3), 0.8300 (q = 4.0), 0.7282 (q = 1.1) in D1, D2 and D3,
respectively. The other best classifiers were RF, with 0.9430 (q = 0.4 − D1) and 0.8220 (q =
5.3 − D2), followed by Bagging, MLP, and GaussianNB. Furthermore, in general, we noticed
that the best results presented parameters between 1.1 < q < 5.0, i.e., when the Tsallis entropy
was subextensive. Along the same lines, it can be observed in Table 22 that the worst parameters
are between 9.0 < q < 10.0 when the Tsallis entropy is also subextensive. However, for a more
reliable analysis, we plotted graphs with the results of all tested parameters (0.1 to 10.0 in steps
of 0.1), as shown in Figure 13.

A large difference can be observed in the entropy obtained by each parameter q, mainly in
benchmark D3. Thereby, analyzing D1 and D2, we noticed a pattern of robust results until q = 6,
for the best classifiers in both datasets. However, as the q parameter increases, the classifiers are
less accurate. On the other hand, if we look at D3, the entropy obtained for each parameter q

presents a much greater variation but follows the same drop with parameters close to q = 10.
Regarding the superextensive entropy (q < 1), some cases showed robust results; however, most
classifiers behaved better with the subextensive entropy.

4.4.2 Case Study II

After substantially evaluating the entropic index, our findings indicated that the best
parameters were among 1.1 < q < 5.0. Thereby, we generated new experiments using five
parameters to test their efficiency in new datasets, with q = (0.5,2.0,3.0,4.0,5.0), as shown in
Table 23 (sigma70 promoters—D4), Table 24 (anticancer peptides-D5) and Table 25 (SARS-
CoV-2—D6). Here, we generated the results with the two best classifiers (RF and Catboost-best
in bold).

Assessing each benchmark dataset, we note that the best results were ACC: 0.6687 and
AUC: 0.6108 in D4 (RF, q = 2.0), ACC: 0.7212 and AUC: 0.7748 in D5 (RF, q = 3.0), and ACC:
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Figure 13 – Performance analysis with five classifiers on 100 q parameters of three benchmark datasets
(evaluation metric: ACC). (a) Benchmark D1—ACC; (b) Benchmark D2—ACC; (c) Bench-
mark D3—ACC.

1.0000 and AUC: 1.0000 in D6 (RF and CatBoost, q = 5.0). Once more, the results confirm
that the best parameters are in the range of 1.1 < q < 5.0, indicating a good choice when using
Tsallis entropy.
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Table 23 – Performance with different entropic index (q) values for the sigma70 promoter classification
problem.

Dataset q Classifier ACC Recall F1 Score AUC BACC

D4

0.5 RF 0.6594 0.2556 0.3423 0.6279 0.5647
CatBoost 0.6563 0.1973 0.2848 0.6233 0.5487

2.0 RF 0.6687 0.3094 0.3932 0.6108 0.5845
CatBoost 0.6641 0.2063 0.2987 0.6301 0.5567

3.0 RF 0.6672 0.3049 0.3886 0.6150 0.5822
CatBoost 0.6625 0.2377 0.3282 0.6319 0.5629

4.0 RF 0.6641 0.2825 0.3684 0.6163 0.5746
CatBoost 0.6656 0.2466 0.3385 0.6415 0.5674

5.0 RF 0.6641 0.2825 0.3684 0.6348 0.5746
CatBoost 0.6734 0.2646 0.3598 0.6375 0.5775

Table 24 – Performance with different entropic index (q) values for the anticancer peptide classification
problem.

Dataset q Classifier ACC Recall F1 Score AUC BACC

D5

0.5 RF 0.7019 0.5952 0.6173 0.7437 0.6847
CatBoost 0.6923 0.3810 0.5000 0.7488 0.6421

2.0 RF 0.7019 0.5476 0.5974 0.7454 0.6770
CatBoost 0.6538 0.4286 0.5000 0.7500 0.6175

3.0 RF 0.7212 0.5714 0.6234 0.7748 0.6970
CatBoost 0.6827 0.4286 0.5217 0.7385 0.6417

4.0 RF 0.7019 0.5238 0.5867 0.7823 0.6732
CatBoost 0.6923 0.4762 0.5556 0.7642 0.6575

5.0 RF 0.7211 0.5476 0.6133 0.7813 0.6932
CatBoost 0.6923 0.4762 0.5556 0.7600 0.6575

Table 25 – Performance with different entropic index (q) values for the SARS-CoV-2 (COVID-19) classi-
fication problem.

Dataset q Classifier ACC Recall F1 Score AUC BACC

D6

0.5 RF 0.9989 0.9992 0.9994 1.0000 0.9985
CatBoost 0.9982 1.0000 0.9990 0.9999 0.9947

2.0 RF 0.9996 1.0000 0.9998 1.0000 0.9990
CatBoost 0.9951 0.9996 0.9971 1.0000 0.9862

3.0 RF 1.0000 1.0000 1.0000 1.0000 1.0000
CatBoost 0.9996 1.0000 0.9998 1.0000 0.9990

4.0 RF 1.0000 1.0000 1.0000 1.0000 1.0000
CatBoost 0.9996 1.0000 0.9998 1.0000 0.9990

5.0 RF 1.0000 1.0000 1.0000 1.0000 1.0000
CatBoost 1.0000 1.0000 1.0000 1.0000 1.0000

The perfect classification at D6 is supported by other studies in the literature (RAND-
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HAWA et al., 2020; NAEEM et al., 2021; ARSLAN, 2021a). Nevertheless, after testing the
Tsallis entropy on six benchmark datasets, we noticed an indication that this approach behaves
better with longer sequences, e.g., D1 (mean length ≈ 751 bp), D2 (mean length ≈ 2799 bp),
and D6 (mean length ≈ 10,870 bp) showed robust results, while D3 (mean length ≈ 268 bp), D4
(mean length ≈ 81 bp), and D5 (mean length ≈ 26 bp) showed less accurate results.

4.4.3 Case Study III—Comparing Tsallis with Shannon Entropy

Here, we used Shannon entropy as a baseline for comparison, according to Table 26.
Various studies have covered the biological sequence analysis with Shannon entropy, in the most
diverse applications. For a fair analysis, we reran the experiments on all datasets (case study I
and II, six datasets), using hold-out, with the same train and test partition for both approaches.
Once more, we used the best classifiers in case study II (RF and CatBoost), but, for a better
understanding, we only show the best result in each dataset.

Table 26 – Performance of the proposed approach (Tsallis) vs. Shannon entropy (best results in bold). A
tie counts one win for each approach.

Dataset Classifier Entropy q ACC Recall F1
Score

BACC

D1 CatBoost
Tsallis 2.3 0.9420 0.9673 0.9437 0.9421
Shannon - 0.9420 0.9651 0.9435 0.9421

D2 CatBoost
Tsallis 4.0 0.8140 0.7760 0.8053 0.8153
Shannon - 0.8080 0.7582 0.7970 0.8115

D3 CatBoost
Tsallis 1.1 0.7231 0.3869 0.4724 0.6342
Shannon - 0.7207 0.3886 0.4708 0.6334

D4 RF
Tsallis 2.0 0.6687 0.3094 0.3932 0.5845
Shannon - 0.6563 0.2556 0.3403 0.5623

D5 RF
Tsallis 3.0 0.7212 0.5714 0.6234 0.6970
Shannon - 0.7115 0.5476 0.6053 0.6851

D6 RF
Tsallis 5.0 0.9984 0.9846 0.9915 0.9922
Shannon - 0.9985 0.9888 0.9922 0.9942

Mean -
Tsallis - 0.8112 0.6659 0.7049 0.7776
Shannon - 0.8061 0.6507 0.6915 0.7714

Gain - - - 0.51% 1.52% 1.34% 0.62%

Wins -
Tsallis - 5 4 5 5
Shannon - 2 2 1 2

According to Table 26, our proposal with Tsallis entropy showed better results of ACC
(5 wins), recall (4 wins), F1 score (5 wins), and BACC (5 wins) than Shannon entropy in five
datasets, falling short only on D6, with a small difference of 0.0002. Analyzing each metric
individually, we observed that the best Tsallis parameters resulted in an F1 score gain compared
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to Shannon entropy of 5.29% and 1.81% in D4 and D5, respectively. Other gains were repeated
in ACC, recall, and BACC. In the overall average, our proposal achieved improvements of 0.51%,
1.52%, 1.34%, and 0.62% in ACC, recall, F1 score, and BACC, respectively. Despite a lower
accuracy in D3 and D4, this approach alone delivered a BACC of 0.6342 and 0.5845, i.e., it is a
supplementary methodology to combine with other feature extraction techniques available in the
literature. Based on this, we can state that Tsallis entropy is as robust as Shannon entropy for
extracting information from biological sequences.

4.4.4 Case Study IV—Comparing Generalized Entropies

According to the Tsallis entropy results, wherein it overcame Shannon entropy, we
realized the strong performance of generalized entropy as a feature descriptor for biological
sequences. For this reason, we also evaluated the influence of another form of generalized
entropy, such as Rényi entropy (RÉNYI et al., 1961), as a good feature descriptor for biological
sequences. Here, we investigated the performance of Tsallis and Rényi entropy, changing the
entropic index for D1, D2, and D3. Moreover, we have chosen the best classifier from case study
I (CatBoost).

When considering the same reproducible environment for the experiment, the perfor-
mance peak was the same for both methods, as we can see in Figure 14, with graphs containing
accuracy performance results for all the entropic index values (from 0.1 to 10.0). Regarding
the best classification performance, for D1 (Figure 14a), we had ACC: 0.9600, recall: 0.9667,
F1 score: 0.9603, and BACC: 0.9600; for D2 (Figure 14b), we obtained ACC: 0.8300, recall:
0.7733, F1 score: 0.8198, and BACC: 0.8300; and for D3 (Figure 14c), we had ACC: 0.7521,
recall: 0.359, F1 score: 0.4828, and BACC: 0.649. As seen earlier, Tsallis entropy performs
poorly from a specific entropy index onwards, but Rényi entropy demonstrates more consistent
performance when compared to Tsallis, representing a possible alternative. Nevertheless, the
results again highlight the promising use of generalized entropies as a feature extraction approach
for biological sequences.

4.4.5 Case Study V—Dimensionality Reduction

In this last case study, we compared our proposal with other known techniques for
feature extraction and dimensionality reduction in the literature, using the same representation
of the biological sequences, the k−mer frequency. In particular, for each DNA/RNA sequence,
we generated k−mers from k = 1 to k = 10, while, for proteins, we generated it until k = 5,
considering the high number of combinations with amino acids. All datasets used have around
1000 biological sequences, considering the prohibitive computational cost to deal with the k−mer

approach. In this study, our objective was to use SVD and UMAP to reduce the dimensionality
of the k−mer feature vector by extracting new features, as we did in our approach. However,
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Figure 14 – Performance analysis with generalized entropies on 100 q parameters of three benchmark
datasets (evaluation metric: ACC). (a) Benchmark D1—ACC; (b) Benchmark D2—ACC; (c)
Benchmark D3—ACC.

high values of k present high computational costs, due to the amount of generated features, e.g.,
k = 6 in DNA (4096 features) and k = 3 in protein (8000 features).

From previous case studies, we realized that the feature extraction with Tsallis entropy
provided interesting results. Thereby, we extended our study, applying SVD and UMAP in
the datasets with k−mer frequencies, reducing them to 24 components, comparable to the
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dimensions generated in our studies. Fundamentally, UMAP can deal with sparse data, as
can SVD, which is known for its efficiency in dealing with this type of data (BERRY, 1992;
RAJAMANICKAM, 2009; MCINNES; HEALY; MELVILLE, 2018). Both reduction methods
can be used in the context of working with high-dimensional data. Although UMAP is widely
used for visualization (BECHT et al., 2019; DORRITY et al., 2020), the reduction method can
be used for feature extraction, which is part of an ML pipeline (LI et al., 2022). UMAP can
also be used with raw data, without needing to adopt another reduction technique before using
it (MCINNES; HEALY; MELVILLE, 2018). We induced the CatBoost classifier using 10-fold
cross-validation. We obtained the results listed in Table 27.

Table 27 – Performance of the proposed approach (Tsallis) vs. SVD vs. UMAP. A tie counts one win for
each approach.

Dataset Reduction ACC Recall F1 Score BACC

D1
Tsallis (q = 2.3) 0.9430 0.9650 0.9438 0.9434

SVD 0.4980 0.0000 0.0000 0.4982
UMAP 0.4980 0.9963 0.6632 0.4981

D2 Tsallis (q = 4.0) 0.8120 0.7718 0.8030 0.8114
SVD 0.5004 0.0016 0.0032 0.5008

UMAP 0.4994 0.0000 0.0000 0.5000

D3 Tsallis (q = 1.1) 0.7307 0.3538 0.4541 0.6310
SVD 0.5389 0.7132 0.4942 0.5834

UMAP 0.3191 0.9933 0.4825 0.4967

D5 Tsallis (q = 3.0) 0.6720 0.5181 0.5515 0.6508
SVD 0.7403 0.7630 0.7752 0.7261

UMAP 0.4021 0.0000 0.0000 0.5000

D7 Tsallis (q = 3.0) 0.7371 0.6711 0.6947 0.7337
SVD 0.5438 0.0000 0.0000 0.4992

UMAP 0.5143 0.1824 0.1147 0.4963

D8 Tsallis (q = 1.1) 0.6500 0.6111 0.6277 0.6525
SVD 0.8023 0.8575 0.7843 0.8171

UMAP 0.6326 0.7728 0.6544 0.6511

D9 Tsallis (q = 9.2) 0.9489 0.9481 0.9507 0.9481
SVD 0.5586 0.6433 0.5517 0.6433

UMAP 0.5992 0.6528 0.6167 0.6528

Mean
Tsallis 0.7848 0.6913 0.7179 0.7673
SVD 0.5975 0.4255 0.3727 0.6097

UMAP 0.4950 0.5139 0.3616 0.5421

Wins
Tsallis 5 3 4 5
SVD 2 2 3 2

UMAP 0 2 0 0

As can be seen, Tsallis entropy achieved five wins, against two for SVD and zero
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for UMAP, taking into account the ACC. In addition, in the general average, we obtained a
gain of more than 18% in relation to SVD and UMAP in ACC, indicating that our approach
can be potentially representative for collecting information in fewer dimensions for sequence
classification problems.

4.5 Chapter Remarks
In this study, we evaluated the Tsallis entropy as a feature extraction technique, where we

considered five case studies with nine benchmark datasets of sequence classification problems,
as follows: (1) we assessed the Tsallis entropy and the effect of the entropic index; (2) we
used the best parameters on new datasets; (3–4) we validated our study, using the Shannon and
Rényi entropy as a baseline; and (5) we compared Tsallis entropy with other feature extraction
techniques based on dimensionality reduction. In all case studies, we found that our proposal is
robust for extracting information from biological sequences. Furthermore, the Tsallis entropy’s
performance is strongly associated with the length of sequences, providing better results when
applied in longer sequences. The experiments also showed that Tsallis entropy is robust when
compared to Shannon entropy. Regarding the limitations, we found that the entropic index (q)
affects the performance of ML models, particularly when poorly parameterized. Finally, we
highlighted good performance for the entropic index with q values between 1.1 and 5.0.
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CHAPTER

5
MATHFEATURE: FEATURE EXTRACTION

PACKAGE

One of the main challenges in the application of Machine Learning (ML) algorithms
to biological sequence data is how to numerically represent a sequence in a numeric input
vector. Feature extraction techniques capable of extracting numerical information from biologi-
cal sequences have been reported in the literature. However, many of these techniques are not
available in existing packages, such as mathematical descriptors. This paper presents a new
package, MathFeature, which implements mathematical descriptors able to extract relevant
numerical information from biological sequences, i.e., DNA, RNA, and Proteins (prediction of
structural features along the primary sequence of amino acids). MathFeature makes available
20 numerical feature extraction descriptors based on approaches found in the literature, e.g.,
multiple numeric mappings, genomic signal processing, chaos game theory, entropy, and com-
plex networks. MathFeature also allows the extraction of alternative features, complementing
the existing packages. To ensure that our descriptors are robust and to assess their relevance,
experimental results are presented in nine case studies. According to these results, the features
extracted by MathFeature showed high performance (0.6350-0.9897, accuracy), both applying
only mathematical descriptors, but also hybridization with well-known descriptors in the litera-
ture. Finally, through MathFeature, we overcome several studies in eight benchmark datasets,
exemplifying the robustness and viability of the proposed package. MathFeature advances in the
area by bringing descriptors not available in other packages, as well as allowing non-experts to
use feature extraction techniques.

5.1 Background

Machine learning (ML) algorithms have been successfully applied to genomics, transcrip-
tomics, and proteomics problems (DINIZ; CANDURI, 2017; SOUZA et al., 2018). Nevertheless,
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their predictive performance depends on the representation of the sequences by relevant features,
able to extract important aspects present in the original sequences. In Chou (2011), Liu et

al. (2015), the authors address the relevance of using an appropriate mathematical expression
to extract features from biological data, which has been adopted by several studies (BONI-
DIA et al., 2019; LIU; GAO; ZHANG, 2019; CHEN et al., 2019), e.g., non-classical secreted
proteins (ZHANG et al., 2020), phage virion proteins (MANAVALAN; SHIN; LEE, 2018),
SARS-CoV-2 (NAEEM et al., 2020; ARSLAN, 2021b), sigma70 promoters (LIN et al., 2017),
Long Non-Coding RNAs (HAN et al., 2018; BONIDIA et al., 2020a).

As result, many techniques have been proposed and experimentally investigated (CHEN
et al., 2014a; CHEN et al., 2014b), and several of them were made available in public software
packages, such as PROFEAT (LI et al., 2006), PseAAC (SHEN; CHOU, 2008), propy (CAO;
XU; LIANG, 2013), PseKNC-General (CHEN et al., 2014b), SPiCE (BERG et al., 2014),
protr/ProtrWeb (XIAO et al., 2015), ProFET (OFER; LINIAL, 2015), Pse-in-One (LIU et

al., 2015), repDNA (LIU et al., 2014), Rcpi (CHIU et al., 2015), repRNA (LIU et al., 2016),
BioSeq-Analysis (LIU, 2017), iFeature (CHEN et al., 2018), PyBioMed (DONG et al., 2018),
Seq2Feature (NIKAM; GROMIHA, 2019), PyFeat (MUHAMMOD et al., 2019), iLearn (CHEN
et al., 2019), periodicDNA (SERIZAY; AHRINGER, 2021), and iLearnPlus (CHEN et al., 2021).

These software packages have been used to extract features from sequences. However,
there are some aspects present in the sequences that the features extraction techniques included
in these tools cannot extract. These features, which were shown to be relevant in previous studies
(MACHADO; COSTA; QUELHAS, 2011; HOANG; YIN; YAU, 2016; MENDIZABAL-RUIZ
et al., 2017; BONIDIA et al., 2021b), describe mathematical aspects observed in biological
sequences and will be named here mathematical descriptors (NGUYEN; CANG; WEI, 2020).
These descriptors are based on several techniques, such as multiple numeric mappings, Fourier
transform, chaos game theory, entropy, and complex networks. To allow the extraction of these
descriptors as features for the study of biological sequences, but also including conventional
descriptors available in other packages, we created a novel open-source Python package, named
MathFeature.

This package provides, in a single environment, many of the mathematical descriptors
previously proposed for feature extraction from biological sequences (MACHADO; COSTA;
QUELHAS, 2011; HOANG; YIN; YAU, 2016; MENDIZABAL-RUIZ et al., 2017; BONIDIA
et al., 2021b). MathFeature contains 37 descriptors, in which, 20 of them are mathematical,
organized into five groups (numerical mapping, chaos game, Fourier transform, entropy, and
graphs). Additionally, MathFeature extends our preliminary investigation (BONIDIA et al.,
2021b), where we investigated nine sets of mathematical features. MathFeature also includes
descriptors for Protein sequences, i.e., prediction of structural features along the primary sequence
of amino acids. To the best of our knowledge, MathFeature is the first package to provide such a
large and comprehensive set of feature extraction techniques based on mathematical descriptors
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for DNA, RNA, and Proteins.

5.2 Related Works
Fundamentally, we consider feature engineering a key step to ML application success

(GUYON et al., 2008; VISHNOI; GARG; ARORA, 2020; GHANNAM; TECHTMANN, 2021b),
mainly in the biological sequences preprocessing (CHOU, 2011; SAIDI et al., 2012; ZHANG et

al., 2021). In terms of terminology, according to (GUYON et al., 2008), feature is synonymous
of an input variable or attribute. Nevertheless, studies also use the feature descriptor terminology
(the majority in our review - 15 studies), being the reason why we adopt this term, where a
feature descriptor refers to the feature extraction method/technique that can present several
measures/values.

In this section, we described 17 studies (cited in Background Section) related to feature
extraction packages (tools, web servers, toolkits, etc), providing several feature descriptors for
biological sequence analyzes. We organized the selected studies into application categories
(that is, DNA, RNA, or Protein), as exposed in Table 28. Furthermore, we also plotted a Venn
Diagram (Figure 15) with the composition of all studies by application. In general, most studies
are focused on the representation of proteins (eight studies), while DNA and RNA studies had
one application each. Moreover, considering the intersection of applications, we found four
studies of applications combining DNA, RNA, and Protein, while DNA+Protein with two studies
and DNA+RNA with one study, respectively.

Table 28 – Selected studies by application.

Application Study
DNA (LIU et al., 2014)
RNA (LIU et al., 2016)
Protein (LI et al., 2006), (SHEN; CHOU, 2008), (CAO; XU; LIANG,

2013), (BERG et al., 2014), (XIAO et al., 2015), (OFER; LINIAL,
2015), (CHIU et al., 2015), (CHEN et al., 2018)

DNA + RNA (CHEN et al., 2014b)
DNA + Protein (DONG et al., 2018), (NIKAM; GROMIHA, 2019)
DNA + RNA + Protein (LIU et al., 2015), (LIU, 2017), (MUHAMMOD et al.,

2019),(CHEN et al., 2019)

In our literature review, we found 173 feature descriptors. It is not feasible to individually
analyze and describe each descriptor. For this reason, we have divided, based on our review,
these descriptors into 15 large groups, as shown in Table 29. The group column classifies the
feature descriptors based on the reviewed studies, and the study column includes packages that
have at least one descriptor from the related group.

Considering the groups introduced in Table 29, we realized that most descriptors are
based on AAC, PseAAC, CTD, and SO for proteins, while NAC and PseNAC descriptors for
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Figure 15 – Venn Diagram - Intersection of selected studies by application.

Table 29 – Descriptor groups in reviewed studies.

Group Initials Application Group Study
Amino Acid Composition AAC Protein (CHEN et al., 2019) (LIU et al., 2015) (LI et al., 2006) (CAO; XU;

LIANG, 2013) (BERG et al., 2014) (XIAO et al., 2015) (OFER; LINIAL,
2015) (CHIU et al., 2015) (LIU, 2017) (CHEN et al., 2018) (DONG et
al., 2018) (NIKAM; GROMIHA, 2019) (MUHAMMOD et al., 2019)

Pseudo-Amino Acid Composition PseAAC Protein (CHEN et al., 2019) (LIU et al., 2015) (SHEN; CHOU, 2008) (CAO;
XU; LIANG, 2013) (BERG et al., 2014) (XIAO et al., 2015) (CHIU et
al., 2015) (LIU, 2017) (CHEN et al., 2018) (DONG et al., 2018)

Composition, Transition, Distribution CTD Protein (CHEN et al., 2019) (LI et al., 2006) (CAO; XU; LIANG, 2013) (BERG
et al., 2014) (XIAO et al., 2015) (OFER; LINIAL, 2015) (CHIU et al.,
2015) (CHEN et al., 2018) (DONG et al., 2018)

Sequence-Order SO Protein (CHEN et al., 2019) (LI et al., 2006) (CAO; XU; LIANG, 2013) (BERG
et al., 2014) (XIAO et al., 2015) (CHIU et al., 2015) (CHEN et al., 2018)
(DONG et al., 2018)

Conjoint Triad CT Protein (CHEN et al., 2019) (XIAO et al., 2015) (CHIU et al., 2015) (CHEN et
al., 2018) (DONG et al., 2018)

Proteochemometric Descriptors PCM Protein (CHEN et al., 2019) (XIAO et al., 2015) (CHIU et al., 2015) (CHEN et
al., 2018)

Profile-based Features PF Protein (CHEN et al., 2019) (BERG et al., 2014) (XIAO et al., 2015) (CHIU et
al., 2015) (LIU, 2017) (CHEN et al., 2018)

Nucleic Acid Composition NAC DNA, RNA (CHEN et al., 2019) (LIU et al., 2015) (CHEN et al., 2014b) (LIU et al.,
2014) (LIU et al., 2016) (LIU, 2017) (DONG et al., 2018) (MUHAM-
MOD et al., 2019)

Pseudo Nucleic Acid Composition PseNAC DNA, RNA (CHEN et al., 2019) (LIU et al., 2015) (CHEN et al., 2014b) (LIU et al.,
2014) (LIU et al., 2016) (LIU, 2017) (DONG et al., 2018)

Structure Composition SC DNA, RNA, Protein (CHEN et al., 2019) (LIU et al., 2016) (LIU, 2017) (CHEN et al., 2018)

Sequence Similarity SS DNA, RNA, Protein (CHIU et al., 2015)

Autocorrelation - DNA, RNA, Protein (CHEN et al., 2019) (LI et al., 2006) (CAO; XU; LIANG, 2013) (CHEN
et al., 2014b) (BERG et al., 2014) (XIAO et al., 2015) (LIU et al., 2015)
(LIU et al., 2014) (CHIU et al., 2015) (LIU, 2017) (CHEN et al., 2018)
(DONG et al., 2018)

Numerical Mapping - DNA, RNA, Protein (CHEN et al., 2019) (CHEN et al., 2018)

K-Nearest Neighbor KNN DNA, RNA, Protein (CHEN et al., 2019) (CHEN et al., 2018)

Physicochemical Property PP DNA, RNA, Protein (CHEN et al., 2019) (OFER; LINIAL, 2015) (CHEN et al., 2018)
(NIKAM; GROMIHA, 2019)
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Table 30 – Descriptors calculated by MathFeature compared to the available feature extraction pack-
ages. This table shows the number of MathFeature descriptors that existing packages have
implemented.

Package Mathematical Descriptors Conventional Descriptors Number of Descriptors Calculated
MathFeature 20 17 37
PROFEAT 0 2 2
PseAAC 0 2 2
propy 0 5 5
PseKNC-General 0 5 5
SPiCE 0 4 4
ProtrWeb 0 5 5
ProFET 2 3 5
Pse-in-One 0 5 5
repDNA 0 5 5
Rcpi 0 3 3
repRNA 0 5 5
BioSeq-Analysis 0 9 9
iFeature 1 4 5
PyBioMed 0 7 7
Seq2Feature 0 0 0
PyFeat 1 8 9
iLearn 2 13 15

DNA/RNA, and AC (Autocorrelation) for DNA, RNA, and protein. Nevertheless, MathFeature
overcomes other packages in different types of mathematical descriptors (e.g., chaos game,
Fourier transform, entropy and graphs), except two descriptors in numerical mapping, available
in only two packages (CHEN et al., 2018; CHEN et al., 2019). In addition, to better illustrate
the advantages of MathFeature compared with other studies, we included the Table 30, which
shows the number of MathFeature descriptors that can also be found in other tools. In that case,
it can be noticed that only iLearn has 15 descriptors from a total of 37 descriptors available
on MathFeature. Also, we found only a few sets (2 up to 9) of similar descriptors from other
packages compared to our study. Based on this analysis, we realized the novelty of MathFeature
for providing different descriptors in biological sequences, which we believe be an important
contribution. Moreover, most studies (13, 76.47%) were dedicated to evaluating only one type of
sequence, while 4 (23.53%) studies cover multiple types of sequences, including MathFeature.
Finally, our package is also competitive in terms of descriptors number (total of 37).

5.3 Package Description

MathFeature is a user-friendly package that covers 20 mathematical descriptors, as
illustrated by Figure 16. We also elaborate the MathFeature execution workflow, which can be
divided into four simple steps, as shown in Figure 18. In Table 31, we organized the 20 descriptors
into 5 groups1 (numerical mapping (7), chaos game (2), Fourier transform (7), entropy (2), and
graphs (2)), according to their structure. MathFeature can be run on the console, but we also

1 L = length of the longest sequence, k = frequencies of k-mer, t = threshold - number of subgraphs.
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provide a GUI-based platform, as shown in Figure 17. We briefly describe each of the 5 groups
representing the 20 descriptors:

Biological Sequence

Feature Extraction

Fourier
Spectrum

Discrete Fourier
Transform

Spectrum Power
Calculation

Numerical
Mapping

Numerical
Sequence

Numerical
Mapping Extract k-mer

Absolute
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CGR
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Numerical
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Figure 16 – Pipeline of descriptors calculated by MathFeature. A: Numerical Mapping; B: Fourier Trans-
form; C: Chaos Game Representation; D: Entropy; E: Complex Networks.

A B

Figure 17 – MathFeature - GUI-based platform. A: Home screen and B: Fourier-based descriptor.

• Numerical Mapping: Several sequence analysis studies require converting a biological
sequence to a numeric sequence. Previous studies Zhang and Zhang (1994), Anastassiou
(2001), Cristea (2002) have proposed descriptors for such, which are able to represent
important aspects of these sequences. This group contains 7 descriptors for numerical
mapping: Voss (VOSS, 1992) (known as binary mapping), Integer (CRISTEA, 2002), Real
(CHAKRAVARTHY et al., 2004), Z-curve (ZHANG; ZHANG, 1994), Electron-Ion Inter-
action Potential (EIIP) (NAIR; SREENADHAN, 2006; BLOCH; ARCE, 2006), Complex
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Table 31 – Mathematical descriptors calculated by MathFeature for DNA, RNA, and Protein sequences.

Descriptor groups Descriptor Dimension Biological Sequence
Binary L ·4 DNA/RNA
Z-curve L ·3 DNA/RNA
Real L DNA/RNA

Numerical Mapping Integer L DNA/RNA/Protein
EIIP L DNA/RNA/Protein
Complex Number L DNA/RNA
Atomic Number L DNA/RNA

Binary + Fourier 19 DNA/RNA
Fourier Transform Z-curve + Fourier 19 DNA/RNA

Real + Fourier 19 DNA/RNA
Integer + Fourier 19 DNA/RNA/Protein
EIIP + Fourier 19 DNA/RNA/Protein
Complex Number + Fourier 19 DNA/RNA
Atomic Number + Fourier 19 DNA/RNA

Chaos Game Representation L ·2 DNA/RNA
Chaos Game Chaos Game Signal (with Fourier) 19 DNA/RNA

Entropy Shannon k DNA/RNA/Protein
Tsallis k DNA/RNA/Protein

Graphs Complex Networks (with threshold) 12 · t DNA/RNA/Protein
Complex Networks (without threshold) 26 · k DNA/RNA/Protein

Numbers (Anastassiou, 2001; YU; LI; YU, 2018) and Atomic Number (HOLDEN et al.,
2007; MENDIZABAL-RUIZ et al., 2017).

• Fourier Transform (FT): This group consists of feature extraction methods which gen-
erate sequence features based on Genomic Signal Processing (GSP), using FT, a widely
applied approach in several biological sequence analysis problems (YIN; CHEN; YAU,
2014; HOANG; YIN; YAU, 2016; MENDIZABAL-RUIZ et al., 2017; BONIDIA et al.,
2021b). To implement GSP techniques, we use all numerical mappings. A mathematical
exploration can be seen in Bonidia et al. (2021b).

• Chaos Game Representation (CGR): This approach is also a mapping to a numerical
sequence, but scale-independent and iterative for geometric representation of DNA se-
quences (JEFFREY, 1990). Based on available CGR representations, MathFeature package
considers classical CGR (JEFFREY, 1990; HOANG; YIN; YAU, 2016), frequency CGR
(ALMEIDA et al., 2001), and CGR signal with Fourier Transform (FT) (HOANG; YIN;
YAU, 2016).

• Entropy: Different studies have applied concepts from information theory for sequence
feature extraction, mainly Shannon’s Entropy (SE) (AKHTER et al., 2013; MACHADO;
COSTA; QUELHAS, 2011). According to (YAMANO, 2001), Tsallis Entropy (TE)
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(TSALLIS; MENDES; PLASTINO, 1998) has been successfully explored in several
studies. Moreover, Tsallis entropy try to generalize the Boltzmann/Gibbs’s traditional
entropy. This group includes these two descriptors (BONIDIA et al., 2021b).

• Graphs: This group has descriptors based on graph theory (Complex Networks (CN))
which has been successfully used to represent biological sequence for classification tasks
(PAVLOPOULOS et al., 2011; AITTOKALLIO; SCHWIKOWSKI, 2006). The descriptors
implemented in this group include techniques proposed in Ito et al. (2018) and explored in
Bonidia et al. (2021b).

MathFeature also provides well-known descriptors from other studies with biological
sequences (here named conventional descriptors, see Table 32, due to the large number of im-
plementations in the revised packages, see Table 29) such as Nucleic acid composition (NAC),
dinucleotide composition (DNC), trinucleotide composition (TNC), pseudo K-tuple nucleotide
composition (PseKNC) (CHEN et al., 2014b), accumulated nucleotide frequency (ANF - DNA,
RNA, and protein) (NARAYAN et al., 1994), basic k-mer (DNA, RNA, and protein) (MAPLE-
SON et al., 2016), AAC, dipeptide composition (DPC), tripeptide composition (TPC), and Xmer
k-Spaced Ymer composition frequency (kGap - DNA, RNA, and protein) (MUHAMMOD et

al., 2019). In addition, we have also implemented two widely known descriptors in coding
sequence studies, e.g., ORF (open reading frame) or coding features (BONIDIA et al., 2021b)
and Fickett score (WANG et al., 2013). Finally, we summarized the set of features generated
by each descriptor investigated in this study (mathematical and conventional), as described in
Table 33. MathFeature is freely available at https://github.com/Bonidia/MathFeature, and its
documentation is provided at https://bonidia.github.io/MathFeature/.

Table 32 – Conventional descriptors calculated by MathFeature for DNA, RNA, and Protein sequences.

Descriptor groups Descriptor Dimension Biological Sequence
Basic k-mer 4k or 20k DNA/RNA/Protein
Customized k-mer 4k or 20k DNA/RNA/Protein
NAC 4 DNA/RNA

Other descriptors DNC 16 DNA/RNA
TNC 64 DNA/RNA
ORF Features or Coding Features 10 DNA/RNA
Fickett score 2 DNA/RNA
PseKNC - DNA/RNA
ANF L DNA/RNA/Protein
kGap 4X ·4Y or 20X ·20Y DNA/RNA/Protein
AAC 20 Protein
DPC 400 Protein
TPC 8000 Protein
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Figure 18 – MathFeature Execution Workflow. Step 1: Select input sequence (DNA/RNA/Protein - Math-
Feature only accepts fasta format); Step 2: Choose the descriptor (mathematical or conven-
tional); Step 3: It is necessary to run each descriptor separately; Step 4: With the generated
vectors, you can use them separately or hybridize them in a single vector.

5.4 Results
The main of this paper is to make publicly available a large set of feature extraction

techniques for biological sequences, including mathematical descriptors not found in similar
packages. These descriptors have been successfully applied to extract relevant features from
biological sequences, as can be seen in Bonidia et al. (2021b), Hoang, Yin and Yau (2016), Yin,
Chen and Yau (2014), Machado, Costa and Quelhas (2011), and Ito et al. (2018). For this reason,
to assess the relevance of MathFeature descriptors, we provide case studies, which are detailed
and presented in the experimental scenario section.

5.4.1 Experimental Setting

We run experiments for nine case studies with distinct scenarios for the classification of
DNA, RNA, and protein sequences, as shown in Table 34. These case studies compare the use of
several descriptors in distinct problem domains. Furthermore, we did not include any feature
selection or hyperparameter optimization technique. Hence, for a fair comparison, we have
selected descriptors using stratified random sampling (choosing descriptors in each group defined
in the article, e.g., numerical mapping, Fourier transform, chaos game, entropy, graphs, and
conventional) in all case studies to avoid any biased choices according to the problem domain.
In addition, to compare our results with state-of-the-art studies, we use different ML algorithms,
performance measures, and dataset partitions to adapt our pipeline to the benchmark dataset.
Finally, we also select hybridized features using stratified random sampling, to assess how these
feature sets can improve the machine learning model prediction.

5.4.2 Case Study I - Non-Classical Secreted Proteins

Here, we induced a classifier for the non-classical secreted proteins using benchmark
datasets provided by Zhang et al. (2020) (training: 141 positive and 446 negative samples; test:
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Table 33 – Features generated by each mathematical and conventional descriptor calculated by MathFea-
ture.

Descriptors Features
Binary, Z-curve, Real, Integer, EIIP, Complex
Number, Atomic Number, CGR, ANF

Convert a biological sequence into a numerical sequence, e.g., Integer
representation: GAGAGTGACCA == 3, 2, 3, 2, 3, 0, 3, 2, 1, 1, 2.

Binary + Fourier, Z-curve + Fourier, Real +
Fourier, Integer + Fourier, EIIP + Fourier, Com-
plex Number + Fourier, Atomic Number +
Fourier, Chaos Game Signal (with Fourier)

Peak to average power ratio (2 features), average power spectrum, me-
dian, maximum, minimum, sample standard deviation, population stan-
dard deviation, percentile (15/25/50/75), range, variance, interquartile
range, semi-interquartile range, coefficient of variation (cv), skewness,
and kurtosis.

Shannon, Tsallis For each k-mer (e.g., 1-mer, 2-mers, . . . , k-mers), we generate an
entropic measure.

Complex Networks (with threshold) Betweenness, assortativity, average degree, average path length, mini-
mum degree, maximum degree, number of edges, degree standard devia-
tion, frequency of motifs (size 3 and 4), clustering coefficient (local and
global).

Complex Networks (without threshold) Betweenness, assortativity, average degree, average path length, mini-
mum degree, maximum degree, number of edges, degree standard devia-
tion, frequency of motifs (size 3 and 4), clustering coefficient (local and
global), Kleinberg’s authority centrality scores, closeness centralities,
Burt’s constraint scores, multiplicities, density, diameter, eccentricity,
edge betweenness, Kleinberg’s hub score, maximum degree of a vertex
set, neighborhood size, radius, strength (weighted degree), number of
vertices.

k-mer, Customized k-mer, NAC, DNC, TNC,
AAC, DPC, TPC, kGap

Generation of nucleic acid or amino acid statistical information, e.g.,
NAC for DNA: relative frequency of A, C, T, G.

ORF Features or Coding Features Maximum ORF length, minimum ORF length, std ORF length, average
ORF length, cv ORF length, maximum GC content - ORF, minimum
GC content - ORF, std GC content - ORF, average GC content - ORF, cv
GC content - ORF.

Fickett score Fickett:orf, Fickett:full:sequence

PseKNC Modes of PseKNC with physicochemical properties

34 positive and 34 negative objects). We extracted features using integer mapping, FT + integer
mapping and AAC. Afterwards, we applied the CatBoost algorithm to the new datasets and
assessed the predictive performance using Accuracy (ACC), F1-score and Matthews Correlation
Coefficient (MCC). Our performance (ACC: 0.8382, F1-score: 0.8070 and MCC: 0.7149) was
superior to state-of-the-art tools, such as SecretomeP (BENDTSEN et al., 2005) (ACC: 0.5880,
F1-score: 0.4620, and MCC: 0.2000) and PeNGaRoo (ZHANG et al., 2020) (ACC: 0.7790,
F1-score: 0.7890, and MCC: 0.5610).

5.4.3 Case Study II - Phage Virion Proteins

In this study, we use the problem of Phage Virion Proteins (PVP), as reported in Man-
avalan, Shin and Lee (2018). For the experiments carried out, we used benchmark data provided
by Charoenkwan et al. (2020b), with 500 sequences for training (250 PVP and 250 non-PVP) and
126 for test (63 PVP and 63 non-PVP). To numerically represent the sequences, we built a hybrid
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Table 34 – Experimental setting in nine case studies.

Problem Reference Case Study Application Number of Sequences Classifier
Non-Classical Secreted Proteins (ZHANG et al., 2020) I Protein 655 CatBoost
Phage Virion Proteins (CHAROENKWAN et al., 2020b) II Protein 626 Support Vector Machines
SARS-CoV-2 Sequences (HATCHER et al., 2016) III DNA 24815 Random Forest
Sigma70 Promoters (LIN et al., 2017) IV DNA 2141 Support Vector Machines
Anticancer Peptides (LI et al., 2020b) V Protein 344 Random Forest
Protein Lysine Crotonylation (Zhao et al., 2020) VI Protein 40587 Random Forest
Long Non-Coding RNAs (HAN et al., 2018) VII RNA 21000 and 12000 CatBoost
Long Non-Coding RNAs (MENG et al., 2021) VIII RNA 36000 Deep Learning
Sigma70 Promoters (HAQUE et al., 2021) IX DNA 2141 Random Forest

feature set with SE (k = 12), CN (k = 1, t = 2) and AAC. To generate our predictive model, a
classifier was induced using an ensemble method (bagging) of Support Vector Machines (SVMs),
assessing its predictive performance with F1-score, ACC, Area under the curve (AUC), and MCC.
Experimental results showed high performance for F1-score: 0.7934, ACC: 0.8016, AUC: 0.8661
and MCC: 0.6051. The results using the hybrid set of features were superior to the performance
obtained using conventional features extracted from the same dataset (CHAROENKWAN et

al., 2020b). The use of the hybrid feature set also improved the predictive performance, when
compared with the feature set used by PVPred (DING et al., 2014) (ACC: 0.7300, AUC: 0.8570
and MCC: 0.5050), PVP-SVM (MANAVALAN; SHIN; LEE, 2018) (ACC: 0.7460, AUC: 0.8440
and MCC: 0.5050), and PVPred-SCM (CHAROENKWAN et al., 2020a) (ACC: 0.7140, AUC: -
and MCC: 0.4320), and slightly worse than Meta-iPVP (CHAROENKWAN et al., 2020b) (ACC:
0.8170, AUC: 0.8700 and MCC: 0.6420).

5.4.4 Case Study III - SARS-CoV-2 Sequences

For this case study, we conducted experiments using a dataset to differentiate SARS-
CoV-2 from other viruses (e.g., HIV, Influenza, hepatitis, ebolavirus, SARS). We downloaded all
available virus sequences (29135) from the NCBI Viral Genome database (HATCHER et al.,
2016) (complete genomic sequences (DNA), e.g., Nucleotide Completeness = "complete" AND
host = "homo sapiens"). In a preprocessing phase, we removed sequences smaller than 2000bp
and larger than 50000bp (RANDHAWA et al., 2020) to eliminate any bias in the sequence size,
since SARS-CoV-2 has an average length of 29838bp, resulting in a dataset with 22442 and 2373
sequences from other viruses and SARS-CoV-2, respectively. In this experiment, we extracted
the TE-based features (k = 12 and q = 6). We applied the Random Forest (RF) algorithm to the
dataset represented by TE-based features, using 10-fold cross-validation (mean). It is important to
note that we continued with an unbalanced dataset, keeping performance metrics (e.g., F1-score,
BACC, but also including Cohen’s kappa coefficient). In the experimental results, the predictive
performance of the RF model to discriminate SARS-CoV-2 from several other viruses with
F1-score, BACC, and kappa of 0.9873, 0.9919, 0.9860, respectively. Moreover, we tested other
conventional descriptors (e.g., k-mer, PseKNC, ORF features, Fickett score, and TNC). These
descriptors performed between (0.9800-0.9900, BACC), and hence, we realized the classification
task between SARS-CoV-2 and other viruses, are linearly separable even using different feature
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vectors. In addition, these results are supported by Naeem et al. (2020), Arslan (2021b).

5.4.5 Case Study IV - Sigma70 Promoters

In this case study, we trained a SVM classifier to induce a sigma70 promoters predictor
based on the benchmark dataset from Lin et al. (2017). This dataset contains 741 positive samples
(promoter) and 1400 negative samples (non-promoter). For the feature extraction, we used the
CGR descriptor. The experiments were assessed partitioning the dataset with 5-fold cross-
validation (same as in (LIN et al., 2017)), when the following mean performance values were
obtained: 0.8594, 0.8346, 0.7872, and 0.6852 for ACC, BACC, F1-score, and MCC, respectively.
In Lin et al. (2017), the authors report the performance of their tool, iPro70-PseZNC, also using
SVM, for 2 of this metrics, ACC: 0.8450 and MCC: 0.6630. Thus, by using the mathematical
descriptors, the results improved by 0.0144 (1.44%), for ACC, and 0.0222 (2.22%), for MCC.

5.4.6 Case Study V - Anticancer Peptides

In this case study, our goal is to identify anticancer peptides based on Li et al. (2020b).
For such, we extracted the features CN (k = 2, t = 1) and AAC from the benchmark dataset
provided by the authors (206 non-anticancer peptides and 138 anticancer peptides). The RF
algorithm was applied to the transformed dataset using 10-fold cross-validation. The mean
predictive performance of the trained model was assessed using ACC, F1-score, and MCC. The
performance of this model was superior to the performance reported in Li et al. (2020b), (ACC:
0.9300, F1-score: 0.9061 and MCC: 0.8563 against ACC: 0.9273, F1-score: 0.9270 and MCC:
0.8490).

5.4.7 Case Study VI - Protein Lysine Crotonylation

Based on Zhao et al. (2020), we induced and assessed the RF algorithm for the identifi-
cation of protein lysine crotonylation sites. The benchmark data provided by the author contains
32418 sequences for training (2742 positive and 29676 negative peptides - papaya) and 8169
sequences for test (711 positive and 7458 negative peptides - papaya). For feature extraction,
we applied numerical mapping with EIIP. We assess the predictive performance with BACC
and MCC, which were 0.6450 and 0.1652, respectively. These results were better than those
obtained with the some feature extraction techniques used in Zhao et al. (2020), e.g., RFAAC

(MCC: 0.1030) and RFCKSAAP (MCC: 0.1110).

5.4.8 Case Study VII - Long Non-Coding RNAs (lncRNA)

In this case study, we trained the CatBoost algorithm to classify lncRNAs sequences
from protein-coding genes (mRNAs), using two datasets made available by Han et al. (2018):
Human (training set: 16000 sequences and test set: 5000 sequences) and Wheat (training set:



5.4. Results 103

8000 sequences and test set: 4000 sequences). From these datasets, we extracted the FT + real
mapping, TNC and coding descriptors. Essentially, we follow the same pipeline of previous case
studies. Once again, the predictive model induced using our descriptors showed high predictive
performance in the datasets, e.g., Human (ACC: 0.9652, F1-score: 0.9646, MCC: 0.9309) and
Wheat (ACC: 0.8870, F1-score: 0.8907, MCC: 0.7757). Our results were better than several
tools shown in Han et al. (2018), e.g., CPC (KONG et al., 2007) (Human - ACC: 0.8304; Wheat
- ACC: 0.9595), CNCI (SUN et al., 2013) (Human - ACC: 0.9450; Wheat - ACC: 0.6158), CPAT
(WANG et al., 2013) (Human - ACC: 0.9642; Wheat - ACC: 0.8743), PLEK (LI; ZHANG;
ZHOU, 2014) (Human - ACC: 0.9274; Wheat - ACC: 0.8773), CPC2 (KANG et al., 2017)
(Human - ACC: 0.9614; Wheat - ACC: 0.7870).

5.4.9 Case Study VIII - Using MathFeature with Deep Learning

According to Min, Lee and Yoon (2017), Deep Learning (DL) is a field of ML responsible
for several advances, due to its high predictive performance in big data (TANG et al., 2019).
Therefore, we assess our descriptors with a DL architecture, using the same case study problem
VII (lncRNAs versus mRNAs - feature vector (FT + real mapping and coding descriptors)),
but with a benchmark dataset from Meng et al. (2021) (Zea mays dataset (36000 sequences:
18000 lncRNA and 18000 mRNA), who dedicates his article to a DL approach. Our classifier
was generated using Keras (CHOLLET, ) (default parameters). Furthermore, we compared
our model with three DL tools used in Meng et al. (2021) (PlncRNA-HDeep (MENG et al.,
2021), lncRNAnet (BAEK et al., 2018) and LncADeep (YANG et al., 2018)), using the same
pipeline (hold-out (80% of samples for training and 20% for testing), ACC, Recall, and F1-
score). Our model showed high predictive performance in the dataset, e.g., ACC: 0.9605, Recall:
0.9917, and F1-score: 0.9616, overcoming lncRNAnet (ACC: 0.7290, Recall: 0.7200, F1-score:
0.7260), LncADeep (ACC: 0.8000, Recall: 0.6660, F1-score: 0.7690) and PlncRNA-HDeep
(Recall: 0.9790), but with a small decimal loss in relation (ACC: 0.0045 and F1-score: 0.0034)
to PlncRNA-HDeep (ACC: 0.9650 and F1-score: 0.9650). Therefore, based on our results,
MathFeature can also generate robust and efficient feature vectors for DL approaches.

5.4.10 Case Study IX - MathFeature versus other packages

So far, we have evaluated MathFeature with eight experiments in well-established prob-
lems. Nevertheless, in this last case study, we also compared MathFeature with five packages, e.g.,
BioSeq-Analysis (LIU, 2017), Seq2Feature (NIKAM; GROMIHA, 2019), PyFeat (MUHAM-
MOD et al., 2019), iLearn (CHEN et al., 2019), and SubFeat (HAQUE et al., 2021). The
experiments were carried out using the dataset provided by Haque et al. (2021), the same dataset
used in the case study IV (Sigma70 Promoters). For this study, we considered 741 positive
samples (promoter) and 1400 negative samples (non-promoter) and three metrics (ACC, AUC,
MCC), evaluating the RF classifier using 10-fold cross-validation (as our reference). We kept our
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CGR descriptor. MathFeature (ACC: 0.8576, AUC: 0.9252, and MCC: 0.6797) outperformed
all packages, BioSeq-Analysis (ACC: 0.7637, AUC: 0.8297, and MCC: 0.4726), Seq2Feature
(ACC: 0.7197, AUC: 0.7637, and MCC: 0.3723), PyFeat (ACC: 0.7842, AUC: 0.8589, and MCC:
0.5064), iLearn (ACC: 0.7597, AUC: 0.8173, and MCC: 0.5275), and SubFeat (ACC: 0.8098,
AUC: 0.9232, and MCC: 0.5664). Moreover, based on results obtained comparing MathFeature
and Seq2Feature, we generated a hybrid vector with features from both packages (MathFeature:
CGR and Seq2Feature: Nucleotide content, random choice), which provided the best result (ACC:
0.8627, AUC: 0.9332, and MCC: 0.6927). Therefore, we achieved high predictive performance,
applying only MathFeature or a hybrid combination of packages.

5.5 Discussion

We have assessed the MathFeature package in nine case studies grouped by protein and
DNA/RNA sequences. We considered four protein problems and three DNA/RNA problems in
the experiments. The classification problems in each case were chosen based on recent articles
with distinct domains. For example, for protein molecules, we use the following datasets: (1) non-
classical secreted proteins, that according to Zhang et al. (2020), are important for understanding
pathogenesis mechanisms of Gram-positive bacteria; (2) The PVP identification, e.g., to develop
new antibacterial drugs (MANAVALAN; SHIN; LEE, 2018); (3) anticancer peptides that present
a new direction in the treatment of cancer (CHEN et al., 2016; LI et al., 2020b); and (4) protein
lysine crotonylation, type of post-translational modification (Zhao et al., 2020; WANG et al.,
2020). In these studies, we noticed that the hybrid combination of mathematical and conventional
descriptors (available at MathFeature) improves the performance of the models, mainly applying
CN, FT, numerical mapping (e.g., EIIP and integer), and AAC, varying the ACC/BACC of
0.6450-0.9300 in all problems. For DNA/RNA molecules, the problems used are (1) SARS-CoV-
2, hot topic in bioinformatics (NAEEM et al., 2020; ARSLAN, 2021b); (2) detection of sigma70
promoters to study the dynamics of gene expression (LIN et al., 2017; CASSIANO; SILVA-
ROCHA, 2020); (3) lncRNA sequences, that can play essential roles in biological processes,
e.g., transcriptional regulation (PISIGNANO; LADOMERY, 2021; MENG et al., 2021). For
these problems, we obtained highly robust results (varying the ACC/BACC of 0.8594-0.9900),
both applying only mathematical descriptors or a hybrid combination, highlighting TE-based
features, CGR, FT, TNC, and coding descriptors. Finally, our findings report the relevance of
MathFeature descriptors in several applications, e.g., humans, plants, and bacteria data.

5.6 Chapter Remarks

In this study, we have described a new package, named MathFeature, composed of an
extensive and comprehensive set of 37 feature descriptors for biological sequences. From these
37 descriptors, 20 are based on mathematical approaches and are not available in other feature
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extraction packages. Other 17 descriptors, named conventional descriptors, were selected from
those often used in the literature. The main motivation for this new package was that, despite
the relevance of the features extracted by mathematical descriptors, they are not available in the
current packages. Thus, MathFeature extends the existing packages, including mathematical
techniques. To experimentally assess the descriptors implemented in this package, we conducted
nine case studies, using several biological scenarios, e.g., DNA, RNA, and Proteins (primary
sequence of amino acids), applied in different problem domains. Also, we avoid including any
type of bias from selected features, and hence, the quality assessment of each feature can be
done by the community with regards to the specific problem of interest. In the experiments, we
obtained high predictive performance, both applying only mathematical descriptors (e.g., case
studies II, III, VI) and applying a hybrid combination of them with well-known conventional
descriptors found in the literature (e.g., AAC, TNC, Coding). Finally, through MathFeature,
we outperformed several studies in benchmark datasets, indicating that all descriptors within
MathFeature can improve the performance of predictive models induced by ML algorithms.
Regarding the limitations, we observed that some of these descriptors (e.g., Fourier, Shannon,
and Tsallis) have a low performance for short sequences. However, when mathematical are
combined with conventional descriptors, in hybrid sets, there is a clear improvement in the
predictive performance. Finally, as future work, we intend to investigate descriptors for short
sequences, especially in prokaryotic organisms, and also include more protein descriptors. Some
key points:

• A novel open-source Python package, named MathFeature;

• MathFeature provides 37 descriptors, 20 of them are mathematical, organized into five
categories;

• MathFeature can be run on the console, but also provide a GUI (Graphical User Interface)-
based platform;

• MathFeature is an extensive and comprehensive set of feature extraction techniques based
on mathematical descriptors for encoding DNA, RNA and Proteins (primary sequence of
amino acids) sequences;

• MathFeature is the first package to provide a large set of features based on mathematical
descriptors and also well-known descriptors from other studies with biological sequences.
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6
BIOAUTOML: AUTOMATED FEATURE

ENGINEERING AND METALEARNING FOR
THE PREDICTION OF NON-CODING RNAS

IN BACTERIA

Considering advances in sequencing, an increasing number of biological sequences have
been generated (HASHEMI et al., 2018a; LOU et al., 2019). With the expansion in volume and
complexity of biological data, ML algorithms have been successfully applied to their analysis
(LIU et al., 2015; GREENER et al., 2021; CHEN et al., 2019). ML algorithms can extract new
and useful knowledge from biological data (CHEN et al., 2021), allowing complex analyses,
speeding up new findings and reducing research costs (SHARMA et al., 2021). These advances
bring important social and economical benefits, such as improving diagnosis, treatment and
the design of new medications (SHARMA et al., 2021; CANNATARO; HARRISON, 2021;
GHANNAM; TECHTMANN, 2021a), e.g., COVID-19 pandemic (CANNATARO; HARRISON,
2021; RANDHAWA et al., 2020), cancer diagnosis (MAROS et al., 2020), and CRISPR/Cas9-
based gene-editing technology (LI; ZHANG; TROYANSKAYA, 2021; MITROFANOV et al.,
2020).

Moreover, with the advancement of next generation sequencing technologies and multi-
omics analysis (TURNER et al., 2019), studies have focused on discovering and characterizing
small non-coding RNAs (sRNAs) in bacteria and archaea, expanding the understanding of
gene regulation and elucidating new biological mechanisms (STAV et al., 2019). Moreover,
Non-coding RNAs (ncRNAs) have distinct classes with specific functions, depending on their
spatial structure, sequence composition, and length (COSTA et al., 2021). Regarding genome
annotation, the identification of protein-coding and non-protein-coding sequences is the first
and most crucial step (WASHIETL et al., 2011). In addition, sRNAs controls gene expression
in prokaryotes, regulating processes, e.g., stress responses, nutrient acquisition, virulence, and
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biofilm formation (DAR; SOREK, 2018). According to Ahmed, Zheng and Liu (2016), there is a
large number of regulatory ncRNAs, highlighting their potential links to bacterial pathogenesis.

Nevertheless, one of the main difficulties for applying ML algorithms to ncRNAs and
other sequences are the categorical and unstructured nature of biological sequence data. A
frequent alternative to deal with this problem is to apply, in a feature engineering process,
feature extraction techniques (e.g., DNA sequences: A, C, T, G), to transform biological se-
quences into numerical data (e.g., GC content and k-mers) with a structured format. Feature
extraction techniques based on various aspects have been proposed to extract numbers from
these sequences, including physicochemical, biological and mathematical features (CHEN et al.,
2021; GHANNAM; TECHTMANN, 2021a). No matter the aspect, the features must capture
the relevant information present in the biological sequence, as the predictive performance of
the model induced by a ML algorithm strongly depends on the representativeness of the input
feature vector (WARING; LINDVALL; UMETON, 2020). A common approach to increase the
representativeness of the features is to select, among the extracted features, the subset that leads
to the best predictive performance of a model induced by a ML algorithm. This approach, known
as feature selection using wrappers, is also part of the feature engineering process.

The feature engineering process often requires extensive domain knowledge, performed
manually by a human expert, and is one of the most time-consuming steps in the ML pipeline
(WARING; LINDVALL; UMETON, 2020). Furthermore, according to (STAVRIDIS et al., 2018),
ncRNAs are divided into categories based on their cellular functionality and their sequential,
thermodynamic, and structural properties, assuming that their sequence can provide robust
discriminative features. However, the same sequences can act as more than one type of ncRNAs,
e.g., mature microRNA can also be transfer RNA fragments. Consequently, most computational
approaches can predict only the presence of ncRNAs. Even those designed to classify more than
one type (class) of ncRNAs do not work well with more than 3 types (STAVRIDIS et al., 2018;
CHEN; QIAN; YOON, 2018).

These limitations motivated the development of a novel open-source software package,
called BioAutoML, that can extract features based on different aspects, and automate the feature
selection, algorithm(s) recommendation and algorithm(s) tuning steps for multi-class classifica-
tion of biological data. BioAutoML is an end-to-end Automated Machine Learning (AutoML)
tool for experiments using biological sequences, BioAutoML is able to deal with different
categories of ncRNA in bacteria, such as: small RNA (sRNA), transfer RNA (tRNA), ribosomal
RNA (rRNA), precursor-microRNA (pre-miRNA), microRNA (miRNA), small nucleolar RNA
(snoRNA), small nuclear RNA (snRNA), transfer-messenger RNA (tmRNA) (STAVRIDIS et

al., 2018; CONSORTIUM, 2020). According to Sá et al. (2017), He, Zhao and Chu (2021),
AutoML has a proposal similar to the area of hyper-heuristics, automatically recommending
pipelines, algorithms, or hyper-parameters for specific tasks, reducing dependence on on user
knowledge. These tasks can include different ways of preprocessing or feature engineering,
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as well as algorithms and optimization of its parameters (hyper-parameter tuning) (SÁ et al.,
2017; HE; ZHAO; CHU, 2021; SANTOS et al., 2019). In this study, BioAutoML calls the
MathFeature package (BONIDIA, 2020; BONIDIA et al., 2022) to extract feature descriptors
representing relevant numerical information from ncRNA sequences (Feature Extraction mod-
ule). After receiving the feature values, BioAutoML, automatically recommends, using Bayesian
Optimization (FRAZIER, 2018), the best pair of selected features and predictive model.

To select the features (Feature Selection module), BioAutoML follows the wrapper
approach, using a predictive model to assess how good a feature set is. The feature extraction
and feature selection model are part of the Feature Engineering process. To recommend the best
model, BioAutoML recommends the best number of predictive models, and the ML algorithm
to be used for the induction of each model (Algorithm Recommendation module). These two
tasks are carried simultaneously, whereby one feeds information to the other in the Bayesian
optimization process, until the predictive performance obtained by the pair {selected features and
recommended algorithm} is not further improved. It is important to point out that the predictive
model used in the wrapper and induced by the recommended algorithm can be an ensemble of
predictive models.

This occurs when the Algorithm recommendation model recommends more than one
ML algorithm. In this case, each recommended algorithm induces a predictive model, and the
induced models are combined in an ensemble. As an ensemble of predictive models is, by itself,
a predictive model, for the sake of simplicity, we will name the ensemble also a predictive
model. Having finished the Feature Engineering module and the Algorithm Recommenda-
tion module, BioAutoML goes to the fourth module, which uses AutoML to fine tune the
hyper-parameters of the recommended ML algorithms (SÁ et al., 2017; HE; ZHAO; CHU, 2021;
SANTOS et al., 2019), aiming to improve the predictive performance of the model (Tuning
and Combination module). If the predictive model is an ensemble, the algorithm that induces
each model in the ensemble has its hyper-parameters tuned. Afterwards, the predictive models
induced by the tuned algorithms are combined in the ensemble.

To make the role clearer of each module in the whole process, the part of the pipeline
with the Feature Extraction module and the Feature Selection module, as they mainly work
at the feature level, is named here Feature Engineering. The other part of the pipeline, with
the Algorithm Recommendation module and the Tuning and Combination module, as their
work at the ML level, is called henceforth Metalearning. Thus, BioAutoML creates an automated
pipeline working at the data feature and algorithm level. In this research, we have investigated
several insights to support our hypothesis, as follow:

• Hypothesis: Automated feature engineering and metalearning provides an efficient mech-
anism to extract features based on different aspects, and automates the feature selection,
algorithm(s) recommendation and tuning steps, and hence, a high-quality prediction of
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categories of ncRNAs in bacteria.

The approach will help us to answer our Research Question (RQ), and consequently be
used to confirm or deny the hypothesis, described as follows:

• RQ: Is it possible to predict different categories of bacterial ncRNAs using automated
feature engineering and metalearning pipelines?

Finally, to support our hypothesis and research question, we have validated BioAutoML
into three different case studies using several bacterial families.

6.1 Feature Engineering

According to Chou’s 5-step rule Liu et al. (2015), Chou (2011), numerically representing
biological sequences with an efficient and adequate mathematical expression is one of the
most relevant steps to establish an effective statistical predictor for a biological system. In
ML, biological sequences must be represented by a fixed number of features (e.g., binary,
categorical, or continuous), transforming originally unstructured data into a structured format.
Feature extraction or feature encoding is a key step in the construction of high-quality ML-
based models, determining the effectiveness of trained models in bioinformatics applications,
such as biological sequence classification (CHEN et al., 2019; MUHAMMOD et al., 2019;
KHATUN et al., 2020). Nevertheless, the feature engineering process is a time-intensive step and
requires domain knowledge of experts (WARING; LINDVALL; UMETON, 2020; KHURANA
et al., 2016; CHEN et al., 2019), which is a complex exercise (CHEN et al., 2019). Therefore,
to develop our proposal and answer our research question, we define the automated feature
engineering task formally explained as follows:

• Given a set of sequence data, D, divided into train (Dtrain) and test (Dtest), a set of feature
descriptors, Fd , where Fd = [ fd1, fd2, . . . , fdn], our aim is to select the best numerical
representation, that is, the feature vector (Vf ), combining different feature descriptors in
the training set (Dtrain), using an objective function that considers the most important
feature descriptor (I f d) to evaluate the best Vf .

6.2 Metalearning

One of the main difficulties in applying ML algorithms to a new dataset is selecting the
most adequate algorithm for this dataset. Each ML algorithm has an inductive bias, which can be
defined by the way it searches for a robust model, e.g. starting with simple models and gradually
increasing the complexity of the models, until a robust model is found, and the format adopted
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to represent the models, e.g. a model represented by a decision tree. Although it can be seen
as a limitation, the bias is necessary for learning to occur. As consequence, each algorithm fits
better datasets with particular conformations. Thus, there is no champion ML algorithm, that
performs better than all the others in every situation, but each ML algorithm performs better
than the others on some datasets, which are not known beforehand (WOLPERT; MACREADY,
1997). A good alternative to select the best ML algorithm for a new dataset is to use previous
knowledge regarding the performance of a set of algorithms in previous learning experiences.
This is the idea behind a particular approach for metalearning, defined in (BRAZDIL et al., 2022)
as learning to learn. According to the authors, metalearning is a research area that investigates
how to recommend the most suitable algorithm, or set of algorithms, for a new task. In this study,
we use metalearning to do the following:

• Given a set of selected features, recommend the ML algorithm(s) able to induce the
best predictive model, which can be a set of algorithms, each one inducing a model, and
combine these models into an ensemble (Pml), recommending the best algorithm. Ensemble
methods can boost the performance of simple classifiers (e.g., using multiple prediction
models for solving the same problem) and has proven its effectiveness in bioinformatics
(LIU et al., 2020; HANCOCK; KHOSHGOFTAAR, 2020; HE et al., 2022).

6.3 Related Works

6.3.1 Feature Engineering

After a carrying out systematic literature review, we found 14 related studies proposing
packages that use feature engineering (feature extraction and selection) and ML algorithms for
biological sequence classification: PseAAC (SHEN; CHOU, 2008), propy (CAO; XU; LIANG,
2013), PseKNC-General (CHEN et al., 2014b), SPiCE (BERG et al., 2014), Pse-in-One (LIU
et al., 2015), repDNA (LIU et al., 2014), Rcpi (CHIU et al., 2015), BioSeq-Analysis (LIU,
2017), PyFeat (MUHAMMOD et al., 2019), iLearn (CHEN et al., 2019), iLearnPlus (CHEN
et al., 2021), BioSeq-BLM (LI; PANG; LIU, 2021a), autoBioSeqpy (JING et al., 2020), and
AutoGenome (LIU et al., 2021). For each package, we checked if it uses AutoML for feature
engineering, ML algorithms and, when they use these algorithms, tune their hyper-parameters.
Table 35 summarizes our findings.

The most similar packages to BioAutoML are iLearn, iLearnPlus, autoBioSeqpy, and
AutoGenome, which apply AutoML to recommend ML algorithms, but they do not use automated
feature engineering. The most similar package to our proposal, iLearn, requires an initial
configuration file (choosing descriptors and classifiers), which needs domain knowledge from
a human expert. Even in its most sophisticated version, iLearnPlus, a file needs to be inserted
with the extracted features, instead of automatic feature engineering. The autoBioSeqpy and



112 Chapter 6. BioAutoML: Automated Feature Engineering and Metalearning

Table 35 – Use of AutoML for feature engineering, recommendation of ML algorithm and hyper-parameter
tuning.

Study Feature Engineering ML algorithm Tuning
PseAAC - -
propy - - -
PseKNC-General - - -
SPiCE - - -
Pse-in-One - - -
repDNA - - -
Rcpi - - -
BioSeq-Analysis - -
PyFeat - - -
iLearn - V V
iLearnPlus - V V
BioSeq-BLM - - -
autoBioSeqpy - V V
AutoGenome - V V
BioAutoML V V V

AutoGenome packages focus on recommending the best deep learning architecture. Thus, to
the best of our knowledge, BioAutoML automates the longest pipeline for biological sequence
analysis, encompassing feature engineering, ML algorithm recommendation and hyper-parameter
tuning. Furthermore, BioAutoML is a user-friendly tool for non-experts.

Looking at more general applications of AutoML, we can cite RECIPE (SÁ et al., 2017)
and TPOT (LE; FU; MOORE, 2020). Tree-based Pipeline Optimization Tool (TPOT) is an
AutoML tool that optimizes ML pipelines using genetic programming. REsilient ClassifIcation
Pipeline Evolution (RECIPE) is an AutoML framework with grammar-based genetic program-
ming. One of the most notable methods of RECIPE is how it uses grammar to organize the
knowledge acquired from the literature (SÁ et al., 2017). RECIPE can also be an alternative
to TPOT, as TPOT can create ML pipelines that are arbitrary, failing to solve a classification
problem, therefore leading to a waste of computational resources (SÁ et al., 2017). The major
difference compared to BioAutoML is the lack of a feature extraction module for biological
sequences. These two packages are for any application domain, requiring a previously selected
feature vector.

6.3.2 Prediction Techniques of ncRNAs in Bacteria

Many ML-based techniques have been proposed to identify ncRNAs in bacteria (EPPEN-
HOF; PEÑA-CASTILLO, 2019; ALMEIDA et al., 2021; HE et al., 2018; XIE; ZHANG; XIAO,
2020; BARIK; DAS, 2018; BAR et al., 2021). In Barik and Das (2018), the authors compare the
predictive performance of different techniques for RNAs classes, such as tRNAs, rRNAs, and
mRNAs. For such, they use normalized minimum free energy of folding, motif frequency, and
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several RNA-folding parameters, such as base-pairing propensity, Shannon entropy, and base-pair
distance. The model induced by the Random Forest algorithm presented 89.5% of predictive
accuracy. Another related study, Eppenhof and Peña-Castillo (2019) constructed ML models
to discriminate bona fide sRNAs applying five ML algorithms to random genomic sequences
from five bacterial species. Seven features were used, including secondary structure. In He et

al. (2018) the support vector machine (SVM) algorithm was applied to a Non-Coding DNA
(ncDNA) benchmark dataset, collected from Saccharomyces cerevisiae. SVM was also used in
Barman, Mukhopadhyay and Das (2017) to identify sRNAs in bacteria, particularly Salmonella

Typhimurium LT2, Escherichia coli (E. coli) K-12, and Salmonella Typhi (S. Typhi). Some
features are combined to achieve better results with accuracy of 81.25% and 88.82% for E. coli

K-12 and S. Typhi Ty2. Unlike BioAutoML, these approaches did not apply an end-to-end ML
pipeline.

6.4 BioAutoML Package

BioAutoML is a user-friendly multi-class and binary classification package that allows
the use of automated feature engineering and metalearning, as illustrated by Figure 19. Its use
does not require specialized human assistance. BioAutoML only needs a training dataset of
biological sequences (FASTA files) to perform an end-to-end ML experiment, from the feature
engineering to generating of the predictive model induced by tuned ML algorithms. Nevertheless,
the modules implemented in the BioAutoML package can be run independently, i.e. users can
just generate the best numerical representation and send it to another ML model generation
package, or they can use features extracted from other packages to generate a predictive model.
For such, BioAutoML has two components with two modules each (1) automated feature
engineering (feature extraction and selection) and (2) Metalearning (algorithm recommendation
and hyperparameters tuning). In the next sections, we briefly describe each component and
module.

6.4.1 Feature Extraction

This module, which is the first feature engineering stage, extracts feature descriptors
using the MathFeature package (BONIDIA et al., 2022), e.g., Mathematical descriptors (Fourier,
Shannon, Tsallis, among others) and Conventional descriptors (Nucleic Acid Composition
(NAC), dinucleotide composition (DNC), trinucleotide composition (TNC), ORF Features, Xmer
k-Spaced Ymer composition frequency (kGap), Fickett score, among others). As a result, more
than 15 feature extraction techniques can numerically represent information found in biological
sequences.
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Figure 19 – Components implemented in the BioAutoML package: (1) Automated Feature Engineering
(feature extraction and selection) and (2) Metalearning (algorithm recommendation and
hyper-parameters tuning).

6.4.2 BioAutoML - Selection and Recommendation

The second module carries out automated feature engineering, selecting the best feature
vector and ML algorithm to induce predictive models, which can be an ensemble of predictive
models, as shown in Figure 20. For such, it uses the Bayesian optimization technique (FRAZIER,
2018). We use this technique because there is a large number of alternatives for the types and
number of feature descriptors, characterizing an NP-hard problem. This module receives the
following as input:

NAC TNC kGAP

DNC NAC TNC ORF

...

...

DNC NAC TNC ORF ...Fickett

Chaos DNC ORF Entropy ...Fourier

...... ... ... ... ...

Classifier

Classifier

Classifier

Classifier

...

Objective
Function

Bayesian
Optimization 

Tree of Parzen
Estimators

(TPE)

Feature
Descriptors 

Optimal Feature Vector
Configuration

Ensemble
Classifier

...... ... ... ...TNC ORF NAC Fickett CatBoostBest Feature Vector

Figure 20 – Illustration of how BioAutoML works: Selection and recommendation module.

• (1) All feature descriptors extracted by the first module;

• (2) An objective function, e.g., in our case, balanced accuracy for binary problems and
F1-score (weighted) for multi-class problems;
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• (3) ML algorithms (CatBoost (PROKHORENKOVA et al., 2018), AdaBoost (SCHAPIRE,
2013), Random Forest (LIAW; WIENER et al., 2002), and LightGBM (KE et al., 2017)).
These classifiers are responsible for analyzing the potential of the selected features. These
algorithms are used for the wrapper-based feature selection, using different feature subsets
as input. We chose these ML algorithms because they have good predictive performance
and induce interpretable predictive models, allowing the understanding of the internal
decision-making process (BONIDIA et al., 2020a). The algorithms are widely adopted in
the bioinformatics literature (LIU et al., 2020; HANCOCK; KHOSHGOFTAAR, 2020;
HE et al., 2022).

To represent the search space (for selecting feature descriptors and recommending ML
algorithms), we use a partially binary input vector, e.g. [1, 0, 1, 0, 0, 1, [2]], when the last
position can be a value from the set 0, 1, 2, 3, representing each of the four ML algorithms. In
the other position, value 0 means that the feature descriptor was not selected for the subset to be
evaluated, and value 1 that was selected. Next, using Bayesian optimization (Hyperopt library
- Tree of Parzen Estimators (BERGSTRA et al., 2013)), BioAutoML selects a quasi-optimal
feature vector, regarding the predictive performance of the model used in the wrapper. We
chose Bayesian optimization based on studies in the literature (FRAZIER, 2018; VICTORIA;
MARAGATHAM, 2021; ELSAYAD; NASSEF; AL-DHAIFALLAH, 2022), which demonstrate
that it saves time and improves performance, presenting benefits over random search (TURNER
et al., 2021). As can be seen in Figure 20, BioAutoML generates combinations of features and
ML algorithm(s) until it finds the best pair (selected feature set, recommended ML algorithm)
to send to the fourth module, hyper-parameter tuning. We adopted as stopping criterion for the
optimization when the predictive performance reaches a plateau or after assessing 50 pairs (this
number can be changed by the user). Let us remember that this module can recommend one ML
algorithm or a set of ML algorithms (when an ensemble model induced by ML algorithms is
recommended).

6.4.3 ML Algorithm(s) Hyper-parameter Tuning

The last module is tuning, where users can generate a predictive model using the rec-
ommendation of the feature vector and ML algorithms (among those whose implementation
is available at BioAutoML). These algorithms will use the feature vector to induce a set of
classification models, whose output will be combined using an ensemble-based approach. The
quality of the classification models will be affected by the hyper-parameter values used for
the recommended ML algorithms. In this work, Bayesian optimization is used to tune their
hyper-parameters. For such, we separate part of the training set. The hyper-parameters tuned for
each algorithm are defined by their official documentation, e.g., Random Forest (n_estimators,
max_features, criterion, max_depth, min_samples_split, min_samples_leaf, and bootstrap). The
optimization stops when the predictive performance reaches a plateau or after assessing 100
possible sets of values. In addition, this module generates important performance analysis files as
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outputs, e.g., best features, performance results, trained model, and feature importance, among
others.

6.5 Experimental Results

The main purpose of this article was to provide a user-friendly and open access pack-
age that allows automated feature engineering and metalearning for the analysis of biological
sequences. To assess the relevance of the proposed package, we evaluate its predictive perfor-
mance in three case studies, described in the following sections: (1) Case Study I - Genomic
Pipeline, (2) Case Study II - Pipeline with Annotated Bacterial Sequences, and (3) Case Study
III - BioAutoML versus other proposed packages for automated experiments.

6.5.1 Case Study I - Genomic Pipeline

We designed an experiment to classify ncRNA families in bacteria, using three known
types of bacterial RNA: sRNA, tRNA, and rRNA. These RNAs are often considered and studied
to analyze ncRNA sequences, e.g., (1) tRNAs and rRNA can contaminate sRNA samples
isolated from cytoplasmic total RNA extracts (LOONG; MISHRA, 2007), and (2) sRNAs in
bacteria, key actors in transcriptional and post-transcriptional regulation (BARIK; DAS, 2018),
emphasizing the importance of accurate prediction of these sequences. To further demonstrate
the usefulness of our package, we generated our dataset using a standard bioinformatics pipeline,
as shown in Figure 21, extracting sequences from genomes and then applying ML algorithms to
predictive models. Our aim is to demonstrate that non-experts can easily connect their pipeline
to BioAutoML.

To collect the RNAs from genomes, we used the Infernal application (NAWROCKI;
EDDY, 2013). First, in our genomic pipeline, we accessed the Rfam Public MySQL Database
obtaining a list of families for each RNA type (KALVARI et al., 2021), using the Rfam database
in its 14.7 version. Next, with the lists and the complete Rfam Covariance Model (CM), we
generated three CM files using cmfetch, i.e., one for each RNA type. We use cmsearch consid-
ering the gathering cutoff (GA) selected by the Rfam curators to extract the sequences for the
RNA types (KALVARI et al., 2018), given the CM files and a genome. Once the sequences are
extracted, they are passed as input to BioAutoML. Thereby, we selected Escherichia coli K-12
genome for an initial experiment with the genomic pipeline. In Table 36, we show the sequences
generated for training and testing (Hold-out 80% training and 20% test).

BioAutoML returned a combination of three feature descriptors that considered to better
numerically represent this dataset, kGap, Fourier, and Tsallis entropy. After automated feature
engineering, our package select a feature vector and recommended an ML algorithm to be finely
tuned. The final results are shown in Table 37 and Figure 22-A. As our problem is multi-class,
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Figure 21 – Case Study I - Genomic Pipeline

Table 36 – Number of sequences from E. coli K-12 used for training and test.

RNA type Samples Training Test
sRNA 166 133 33
tRNA 50 40 10
rRNA 40 32 8

we report the main results using precision (Macro and Weighted), recall (Macro and Weighted),
F1-score (Macro and Weighted), and confusion matrix (GRANDINI; BAGLI; VISANI, 2020).

Table 37 – Results: E. coli K-12 - case study I.

Precision Recall F1-Score
sRNA 1.00 0.97 0.98
tRNA 1.00 1.00 1.00
rRNA 0.89 1.00 0.94
Macro Average 0.96 0.99 0.98
Weighted Average 0.98 0.98 0.98

BioAutoML was performed between 0.96-0.98 (macro and weighted average) in this
initial experiment, showing a robust numerical representation for the input genome. Next, we used
the recommended algorithm to induce a predictive model to classify new unknown sequences.
To test the potential of our package, we did a more complex experiment using bacterial phyla, as
shown in Table 38. We analyzed the generalization potential for the classification of new bacterial
genomes as new organisms will not be in the training set, e.g., training with Chloracidobacterium

and classifying a new genome as Terriglobus roseus. Moreover, according to Lu and Salzberg
(2020), the different GC content skew patterns throughout bacterial phylogenetic groups could
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change relevant characteristics of the sequences’ primary structure used for the generation of
descriptors. The bacterial phyla used for this experiment are shown in Table 38 and Figure 22-B.

Table 38 – Number of sequences for bacterial phyla by RNA type.

Phylum Bacteria sRNA tRNA rRNA NCBI Taxonomy ID Used as
Acidobacteria Chloracidobacterium 21 50 7 Negative 2821542 Train

Terriglobus roseus 4 47 11 Negative 926566 Test
Actinobacteria Corynebacterium diphtheriae - 43 14 Positive 1450520 Train

Mycobacterium tuberculosis 11 45 8 Positive 83332 Test
Bacteroidota Flavobacterium sediminis - 41 19 Negative 2201181 Train

Mucilaginibacter gossypii - 46 20 Negative 551996 Test
Cyanobacteria Oscillatoria acuminata 9 65 19 Negative 56110 Train

Prochlorococcus marinus 2 39 7 Negative 167539 Test
Firmicutes Staphylococcus aureus 84 35 31 Positive 93061 Train

Staphylococcus epidermidis 44 38 11 Positive 1282 Test
Proteobacteria Escherichia coli 166 50 40 Negative 83333 Train

Salmonella enterica 118 52 39 Negative 99287 Test
Verrucomicrobia Akkermansia glycaniphila - 44 7 Negative 1679444 Test

Luteolibacter ambystomatis 29 46 14 Negative 2824561 Train

We randomly selected one bacteria from each phylum for a fair split, as shown in Table
38. We used seven bacteria for training and testing. The number of sequences generated by RNA
type is also presented. The sequences were extracted using the same pipeline exposed in Figure
21. The performance metrics can be seen in Table 39.

Table 39 – Results: Bacterial phyla - case study I.

Precision Recall F1-Score
sRNA 0.97 0.97 0.97
tRNA 0.98 1.00 0.99
rRNA 0.99 0.95 0.97
Macro Average 0.98 0.97 0.98
Weighted Average 0.98 0.98 0.98

Our package recommended six feature descriptors that best represent this new scenario,
NAC, TNC, kGap, Fourier, and ORF. Two of these descriptors were in the initial experiment
(kGap, and Fourier). Again, BioAutoML showed good predictive results, between 0.97-0.98
(macro and weighted average). However, we were classifying new bacterial sequences that were
not in training, indicating the package’s ability to recommend robust feature descriptors for the
input problem.

6.5.2 Case Study II - Pipeline with Annotated Bacterial Sequences

For this case, we extracted annotated bacterial sequences from databases, standard
pipeline in several studies (LIU et al., 2020; JING et al., 2020; LIU et al., 2021). We used
eight classes for this analysis: pre-miRNA, miRNA, snoRNA, snRNA, tmRNA, tRNA, rRNA
and mRNA. Compared to case study I, we worked with specific types of small RNAs to study
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Figure 22 – Confusion matrix of the experiments. (A) Case Study I - E. Coli K-12. (B) Case Study I -
Bacterial phyla. (C) Case Study II - Annotated Bacterial Sequences.

BioAutoML capacity for dealing with more classes. In addition, we used mRNA as a counter-
point by containing coding regions compared to the ncRNAs. These classes can be separated
into regulatory, and housekeeping ncRNAs (ZHANG et al., 2019). We also demonstrate the
performance metrics for the application considering recurrent problems such as the classification
of pre-miRNA between miRNA (STAVRIDIS et al., 2018; TASDELEN; SEN, 2021; FU et al.,
2019), and the prediction of miRNA by itself (WANG; ZHANG; ZHAO, 2017). There are few
studies related to the prediction of miRNAs in bacteria (DANG et al., 2019) as the number of
these annotated sequences is still small (CARDIN; BORCHERT, 2017).

We collected ncRNA sequences from RNAcentral, a database of non-coding RNA
sequences that provides a single access point to at least 44 RNA resources in its last version
(CONSORTIUM, 2020). We accessed the RNAcentral Public Postgres database running SQL
queries to filter active cross-reference sequences by type, limited to 1,000 sequences, and
restricting them to bacterial organisms. With the results from the queries, FASTA files for
each class were created. Considering how collecting from diverse databases could bring some
redundancy, we used CD-HIT Est (LI; GODZIK, 2006) to cluster the sequences, removing
redundancy at 95% similarity. The same preprocessing pipeline was applied for mRNA, but we
collected the sequences from GenBank (SAYERS et al., 2019), filtering for bacterial organisms.
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In Table 40, we show the numbers of examples collected from RNAcentral and GenBank, the
numbers after applying CD-HIT Est with the preprocessing method used in BioAutoML, and
how many of these sequences are used for training and testing (Hold-out 80% training and 20%
test). The results generated by BioAutoML are presented in Table 41 and Figure 22-C.

Table 40 – Number of sequences used for training and test - case study II.

RNA type Samples Preprocessing Training Test
pre-miRNA 327 253 203 50
miRNA 464 263 211 52
snoRNA 331 178 143 35
snRNA 176 113 91 22
tmRNA 1,000 350 280 70
tRNA 1,000 445 356 89
rRNA 1,000 687 549 138
mRNA 1,000 702 514 188

Table 41 – Results generated by BioAutoML in the case study II.

Precision Recall F1-Score
pre-miRNA 0.69 0.76 0.72
miRNA 0.63 0.58 0.60
snoRNA 0.60 0.60 0.60
snRNA 0.65 0.50 0.56
tmRNA 0.99 0.96 0.97
tRNA 0.95 0.99 0.97
rRNA 0.95 0.98 0.96
mRNA 0.98 0.97 0.97
Macro Average 0.80 0.79 0.80
Weighted Average 0.89 0.89 0.89

Again, our package presented robust performance, even for eight classes, ranging from
0.79-0.89 (macro and weighted average). By analyzing each class individually, we observed a
better performance for rRNA (F1-Score: 0.96), tRNA (F1-Score: 0.97), tmRNA (F1-Score: 0.97),
pre-miRNA (F1-Score: 0.72), and mRNA (F1-Score: 0.97), but lower performance for miRNA,
snoRNA and snRNA (F1-Score: both around 0.60). However, multi-class classification problems
present more challenges than binary classification problems, e.g., an imbalanced dataset. Even
so, BioAutoML recommended a good feature vector formed by the descriptors NAC, DNC, TNC,
kGAP, ORF feature, Fourier, and Tsallis entropy.

6.5.3 Case Study III - Comparing BioAutoML with other AutoML
packages

In this last case study, we compared BioAutoML with well-known AutoML packages
used in different classification tasks (BALAJI; ALLEN, 2018; ZÖLLER; HUBER, 2021). In
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our literature review, we did not find any tool for biological sequence classification with auto-
matic feature engineering, characterizing the innovative nature of BioAutoML. To allow the
experimental comparison, we chose two packages using AutoML: RECIPE (SÁ et al., 2017) and
TPOT (LE; FU; MOORE, 2020). The major difference compared to BioAutoML is the lack of a
feature extraction module for biological sequences.

Similar to BioAutoML, they include feature selection, algorithm recommendation and
hyper-parameter tuning. These two packages are for any application domain, requiring a previ-
ously selected feature vector. For a fair comparison, we used the same output from the feature
extraction module in the AutoML packages (all feature descriptors), feature descriptors rec-
ommended by BioAutoML, and datasets from the previous case studies. These experiments
assess whether BioAutoML can build predictive models with recommended feature vectors and
ML algorithms as robust as RECIPE and TPOT, which are well known for the quality of their
pipelines (BALAJI; ALLEN, 2018; ZÖLLER; HUBER, 2021). The BioAutoML results shown in
Table 42 are the average of 10 runs. All experiments, package configurations (default parameters)
and datasets can be consulted in our repository1. We performed the experiments using a machine
with Intel Core i3-9100F CPU (3.60GHz), 16GB memory, and running in Debian GNU/Linux
10.

Table 42 – Case study III - BioAutoML versus other AutoML packages

Dataset Version Precision (Weighted) Recall (Weighted) F1-Score (Weighted) Time (minutes)
CS-I-phyla BioAutoML 0.97 0.97 0.97 16.34

Recommended Feature Descriptors RECIPE 0.97 0.97 0.97 32.48
Recommended Feature Descriptors TPOT 0.99 0.99 0.99 72.41

All Feature Descriptors RECIPE 0.96 0.96 0.96 30.46
All Feature Descriptors TPOT 0.98 0.98 0.98 46.39

CS-II BioAutoML 0.88 0.88 0.88 85.02

Recommended Feature Descriptors RECIPE 0.87 0.61 0.68 272.46
Recommended Feature Descriptors TPOT 0.89 0.89 0.89 416.28

All Feature Descriptors RECIPE 0.77 0.36 0.38 151.12
All Feature Descriptors TPOT 0.90 0.89 0.89 338.55

As can be seen, we observed similar performance between BioAutoML and other tools
(TPOT and RECIPE) in CS-I and CS-II, considering two different types of experiments: (i) with
all feature descriptors, and (ii) with the vector recommended by BioAutoML. We also noted the
improvement prediction of TPOT when the input was provided by vector recommended from
BioAutoML (gain of 2% and 1% for CS-I and CS-II, respectively). Another interesting result is
related to the computational time to generate an ML model when both TPOT and RECIPE spent a
huge computational effort (416.26 and 272.46 minutes, respectively in CS-II) while BioAutoML
spent 85.02 minutes. BioAutoML also recommends the best vector be extracted automatically. It’s
important to highlight that both TPOT and RECIPE do not have any mechanism to recommend

1 https://github.com/Bonidia/BioAutoML - Case Studies



122 Chapter 6. BioAutoML: Automated Feature Engineering and Metalearning

the best vector to be automatically extracted for biological sequences. Finally, the statistical
significance was applied in this case study (difference in F1-Score (Weighted)), using Friedman’s
test, indicating that there is no statistical significance in performance (P− value = 0.156, using
α = 0.05), suggesting that our proposal is as robust as known methods in the literature.

6.6 Discussion

We assessed BioAutoML in three case studies with ncRNA sequences. We consider
different ncRNA categories for multi-class classification tasks using ncRNA bacteria data. For
case study I, we used Infernal, which builds statistical models of RNA secondary structure and
sequence consensus called Covariance Models (CMs) (NAWROCKI; EDDY, 2013). Infernal
is still widely used for genome annotation, especially for detecting non-coding RNA (LI et al.,
2021; CHAN et al., 2021). However, one of its limitations for creating CM is the need for a
secondary structure model for the RNA families. The experimental results from this case study
show the success of BioAutoML in using only primary structure features to predict what we
found with Infernal.

For case study II, we considered eight classes, including miRNAs. Although some studies
in the literature consider that prokaryotes do not have true miRNA as in eukaryotes (CLARK;
PAZDERNIK; MCGEHEE, 2019; WATKINS; ARYA, 2019), recently, many similarities between
the non-coding sequences were observed, indicating miRNA-like mechanisms in prokaryotes,
which resulted in the annotated sequences used in our study (WATKINS; ARYA, 2019; SOLTANI-
FARD et al., 2021). Prokaryotic miRNAs can also accumulate in the nucleolus as pre-miRNAs,
and mature miRNAs (SOLTANI-FARD et al., 2021), emphasizing the challenge for an accurate
classification in these two classes. Other classes used, such as snoRNA (STREIT et al., 2020) and
snRNA (LINDSAY et al., 2013), are also relatively rare in prokaryote organisms. Nevertheless,
it is relevant to discover more of these non-coding sequences in bacteria with the advancements
in RNA sequencing technology and ML-based algorithms.

Finally, in case study III, we observed the robust predictive performance of BioAutoML
when compared with AutoML tools found in the literature, mainly due to the quality of their
pipelines (BALAJI; ALLEN, 2018; ZÖLLER; HUBER, 2021). The experimental results in-
dicated the efficiency of the feature extraction module, which can extract features based on
different aspects, automated feature selection, algorithm(s) recommendation, and tuning steps.
Together, they predicted the categories of ncRNAs in bacteria with high predictive accuracy,
even when the number of classes was increased.

6.7 Chapter Remarks

In this article, we propose and experimentally evaluate a new package, BioAutoML,
to classify biological sequences. BioAutoML uses AutoML to select the best feature vector
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from a set of descriptors extracted by the MathFeature package, to recommend the best ML
algorithms, and tune the hyper-parameters of the recommended algorithm. For such, it initially
performs automated feature engineering and metalearning for non-coding sequences in bacteria,
which has the potential to accelerate new studies in bioinformatics. We develop a package that
does not require specialized human assistance, supporting research on challenging problems
in biological sequence analysis. Our findings support our hypothesis, showing the benefits of
using automated feature engineering and metalearning. Although in this study, BioAutoML
is applied only to ncRNA sequences in bacteria, it can be used in other DNA/RNA sequence
scenarios. We focused exclusively on bacteria, due to the biotechnological potential existing
in the investigated strains. Nevertheless, the first module of BioAutoML is an important task
for providing feature descriptors for different types of sequences (nucleotides or proteins, i.e.,
prediction of structural features along the primary sequence of amino acids). We also used our
previous framework, MathFeature, to extract features for BioAutoML. BioAutoML can be used
for binary and multi-class classification problems, allowing its integration with many existing
packages. Finally, in future work, we intend to expand the BioAutoML to proteins and add
new feature extraction packages, e.g., iLearn, BioSeq-Analysis, and BioSeq-BLM, testing other
feature selection methods such as combining Bayesian Optimization and Lipschitz Optimization,
Genetic Algorithm and Genetic programming. Key Points:

• The first study to propose an automated feature engineering and metalearning pipeline for
ncRNA sequences in bacteria;

• BioAutoML can be used in multi-class and binary problems;

• BioAutoML can be employed in other DNA/RNA sequences scenarios;

• BioAutoML can accelerate new bioinformatics studies, reducing the feature engineering
time-consuming stage and improving the design and performance of ML pipelines;

• BioAutoML reduces the requirement of human expert assistance.
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CHAPTER

7
EMPOWERING SCIENTIFIC DISCOVERY

In this section, we have curated a collection of articles, whether published or not, each
exclusively comprised of abstracts that demonstrate the utilization or influence of our research.
These abstracts collectively serve as a testament to the impact of our study. As you review these
summaries, our aim is for you to recognize the diverse ways our research can be employed in the
field of biological sequences.

7.1 MathPIP: Classification of Proinflammatory Peptides

Proinflammatory peptide (PIP) is a relevant part of the inflammatory response, often the
first response of our immune system to strange bodies, i.e., inflammatory-inducing infection, such
as COVID-19. Thus, it is essential to have reliable ways to classify and analyze new instances of
PIPs. Machine learning (ML) models have been widely employed for the classification of biolog-
ical sequences, being the basis for most studies in extensive databases of biological information.
Most ML algorithms have difficulty directly dealing with these sequences. Thereby, relevant
features are extracted from these sequences, making feature extraction one of the key steps in the
application of ML algorithms to biological data. Different features have been proposed, many
of them based on prior knowledge, such as molecular structures. However, many biological
sequences publicly available do not come with prior knowledge. To deal with this limitation, we
propose to investigate the use of mathematical descriptors to extract features from PIP sequences.
To assess how relevant the features extracted using mathematical descriptors, we run experiments
where we apply three ML algorithms. In these experiments, we obtained a predictive accuracy of
0.7034, which is on par with current PIP classifiers.

CAVALCANTE, João Pedro Uchôa; GONÇALVES, Anderson Cardoso; BONIDIA, Robson
Parmezan; SANCHES, Danilo Sipoli; DE CARVALHO, André Carlos Ponce de Leon Ferreira.
MathPIP: classification of proinflammatory peptides using mathematical descriptors. In:
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Advances in Bioinformatics and Computational Biology: 14th Brazilian Symposium on Bioinfor-
matics, BSB 2021, Virtual Event, November 22–26, 2021, Proceedings 14. Springer International
Publishing, 2021. p. 131-136.

7.2 Feature Importance Analysis of Non-Coding Sequences
Non-coding sequences have gained increasing space in scientific areas related to bioinfor-

matics, due to essential roles played in different biological processes. Elucidating the function of
these non-coding regions is a relevant challenge, which has been addressed by several Machine
Learning (ML) studies in various fields of ncRNA, e.g., small non-coding RNAs (sRNAs) and
Circular RNAs (circRNAs). The identification of these biological sequences is possible through
feature engineering techniques, which can help point out specifics in different types of problems
with ML. Thereby, there are recent studies focusing on interpretable computational methods,
i.e., the best features based on feature importance analysis. For that reason, in this study we
have proposed to explore different feature descriptors and the degree of importance involved
in classification tasks, using two case studies: (1) prediction of sRNAs in Bacteria and (2)
prediction of circRNA in Humans. We developed a general pipeline using hybrid feature vectors
with mathematical and conventional descriptors. In addition, these vectors were generated with
MathFeature package and feature selection techniques in both case studies. Finally, our experi-
ment results reported high predictive performance and the relevance of combining conventional
and mathematical descriptors in different organisms.

DE ALMEIDA, Breno Lívio Silva; QUEIROZ, Alvaro Pedroso; SANTOS, Anderson Paulo
Avila; BONIDIA, Robson Parmezan; DA ROCHA, Ulisses Nunes; SANCHES, Danilo Sipoli;
DE CARVALHO, André Carlos Ponce de Leon Ferreira. Feature importance analysis of
non-coding dna/rna sequences based on machine learning approaches. In: Advances in
Bioinformatics and Computational Biology: 14th Brazilian Symposium on Bioinformatics, BSB
2021, Virtual Event, November 22–26, 2021, Proceedings 14. Springer International Publishing,
2021. p. 81-92.

7.3 Fatectídeos: Prediction of Antiviral Peptides
Since the beginning of time, humanity has been grappling with various types of biologi-

cally significant viral threats, including tropical pathogens, some highly lethal or pandemic in
nature, such as Ebola and H1N1. Recently, we experienced one of the largest global pandemics
in history, caused by the Sars-CoV-2 virus, also known as the Novel Coronavirus, posing a
challenging problem. Despite advancements in health research, viral infections continue to yield
a high mortality rate. Research and projects for the development of new antiviral medications
are ongoing. Consequently, peptide-based drugs have become increasingly important to explore,
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aiding in vaccine development. Antiviral peptides (AVPs) are a subset of antimicrobial peptides
(AMPs) that act as the first line of defense in the innate immune response in many organisms,
and they are defense peptides produced in response to pathogenic diseases that have a significant
impact on humanity. AVPs can be obtained through different methods: computational methods,
natural sources, and biological sources. One of the relatively unexplored methods for predicting
antiviral peptides is the development of tools using machine learning. However, despite these
contributions, there are still opportunities for improvement in various prediction tools, with
a focus on prediction. One of the major challenges is dealing with unstructured biological
sequence data, as many algorithms only handle numerical data. Thus, it is necessary to translate
biological sequences into numerical vectors. Based on this, we propose a tool that will perform
the classification of antiviral peptides using the BioAutoML tool as a foundation, which extracts
information from biological sequences for conversion into numerical data. This will simplify
this step for biologists and researchers developing various methods using AVPs, impacting not
only Brazilian science but also society and health.

MEDEIROS, Beatriz Leite; INÁCIO, Gabriele de Campos; BONIDIA, Robson Parmezan. Fate-
ctídeos: Prediction of Antiviral Peptides. In: Iniciação Científica - Fatec Ourinhos - Ciência
de Dados.

7.4 CRISPRloci: CRISPR–Cas systems

CRISPR–Cas systems are adaptive immune systems in prokaryotes, providing resistance
against invading viruses and plasmids. The identification of CRISPR loci is currently a non-
standardized, ambiguous process, requiring the manual combination of multiple tools, where
existing tools detect only parts of the CRISPR-systems, and lack quality control, annotation, and
assessment capabilities of the detected CRISPR loci. Our CRISPRloci server provides the first
resource for the prediction and assessment of all possible CRISPR loci. The server integrates
a series of advanced Machine Learning tools within a seamless web interface featuring: (i)
prediction of all CRISPR arrays in the correct orientation; (ii) definition of CRISPR leaders
for each locus; and (iii) annotation of cas genes and their unambiguous classification. As a
result, CRISPRloci is able to accurately determine the CRISPR array and associated information,
such as: the Cas subtypes; cassette boundaries; accuracy of the repeat structure, orientation,
and leader sequence; virus-host interactions; self-targeting; as well as the annotation of cas
genes, all of which have been missing from existing tools. This annotation is presented in an
interactive interface, making it easy for scientists to gain an overview of the CRISPR system
in their organism of interest. Predictions are also rendered in GFF format, enabling in-depth
genome browser inspection. In summary, CRISPRloci constitutes a full suite for CRISPR–Cas
system characterization that offers annotation quality previously available only after manual
inspection.
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ALKHNBASHI, Omer S; MITROFANOV, Alexander; BONIDIA, Robson et al. CRISPRloci:
comprehensive and accurate annotation of CRISPR–Cas systems. Nucleic Acids Research,
v. 49, n. W1, p. W125-W130, 2021.

7.5 Stability of Gut Microbial Communities

Beta-diversity dispersion based on Bray-Curtis distances of a set of samples calculated
using 16S amplicon sequencing data can indicate the stability in microbial communities. We
hypothesize that a genome-centric analysis of the biodiversity of viruses and prokaryotes can
predict the stability in the gut microbiome of children with and without atopic eczema (AE).
Bray-Curtis distances to centroids of two 10-year-old children groups (AE: 17 children with
AE; non-AE: 13 healthy children) were calculated. We also sequenced metagenomes from the
gut DNA of the two groups to test our hypothesis. After, we recovered metagenome-assembled
genomes (MAGs) and uncultivated virus genomes (UViGs) using MuDoGeR. We generated 33
new samples to balance our dataset using Synthetic Minority Oversampling Technique (SMOTE).
We predicted the stability of the community using a random forest regression model (RF) based
on Bray-Curtis distances to centroids (target) and MAG and UViG coverages (features). We
evaluated our RF model’s accuracy using the root mean squared errors (RMSE) and R2 from a
linear curve of the observed and predicted values. The stability of the gut microbial community
in non-AE was higher than that observed for the AE children, based on the average higher
interquartile ranges of Bray-Curtis distance of each group’s samples to their centroids (t-test,
p < 0.05). 2255 MAGs and 2024 UViGs were recovered from our metagenome dataset. The
MAGs were affiliated with 11 phyla. UViG Taxonomic analysis indicated, 1633 UViGs affiliated
with the Phylum Uroviricota; however, 391 UViGs were not affiliated with any known taxa.
The 0.075 RMSE and 0.799 R2 of our RF showed that our bioindicators were good predictors
of stability in the gut microbial communities. We identified 24 MAGs and 59 UViGs as AE
bioindicators of community stability using the RF’s mean decrease Gini coefficient analysis.
These 24 MAGs belonged to Firmicutes A (17), Bacteroidota (4), Actinobacteriota (3). The 59
UViGs were distributed to 10 families, the most dominant being Peduoviridae (26). Most of these
UViGs (46) were temperate viruses, and we could assign hosts for 47 UViGs, from which 5 are
also bioindicators (4 Clostridia, 1 Bacteroidia). Our study demonstrated that the gut microbiome
of children with AE is a good model for exploring analysis stability in human gut microbiomes.
Our bioindicators may be used to define omics-based diagnostic tools for AE, and an in-depth
analysis of their genetic potential may open doors for novel microbiome-based treatments for AE.

Hu, Die; . . . ; da Roch, Ulisses Nunes. Predicting the Stability of Gut Microbial Commu-
nities using Viral-Prokaryotic Genome-Centric Analysis Machine Learning in Children
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with Atopic Eczema. Department of Environmental Microbiology, Helmholtz Centre for Envi-
ronmental Research, 04318 Leipzig, Saxony, Germany.

7.6 BioDeepFuse: A Hybrid Deep Learning Approach
The accurate classification of non-coding RNA (ncRNA) sequences is pivotal for ad-

vanced non-coding genome annotation and analysis, a fundamental aspect of genomics that
facilitates understanding of ncRNA functions and regulatory mechanisms in various biological
processes. While traditional machine learning approaches have been employed for distinguishing
ncRNA, these often necessitate extensive feature engineering. Recently, deep learning algorithms
have provided advancements in ncRNA classification. This study presents BioDeepFuse, a hy-
brid deep learning framework integrating convolutional neural networks (CNN) or bidirectional
long short-term memory (BiLSTM) networks with handcrafted features for enhanced accuracy.
This framework employs a combination of k-mer one-hot, k-mer dictionary, and feature ex-
traction techniques for input representation. Extracted features, when embedded into the deep
network, enable optimal utilization of spatial and sequential nuances of ncRNA sequences.
Using benchmark datasets and real-world RNA samples from bacterial organisms, we evaluated
the performance of BioDeepFuse. Results exhibited high accuracy in ncRNA classification,
underscoring the robustness of our tool in addressing complex ncRNA sequence data chal-
lenges. The effective melding of CNN or BiLSTM with external features heralds promising
directions for future research, particularly in refining ncRNA classifiers and deepening insights
into ncRNAs in cellular processes and disease manifestations. In addition to its original ap-
plication in the context of bacterial organisms, the methodologies and techniques integrated
into our framework can potentially render BioDeepFuse effective in various and broader domains.

SANTOS, Anderson Paulo Avila; DE ALMEIDA, Breno Lívio Silva; BONIDIA, Robson
Parmezan et al. BioDeepFuse: A Hybrid Deep Learning Approach with Integrated Feature
Extraction Techniques for Enhanced Non-coding RNA Classification. In: Submitted in RNA
Biology, 2023, accepted with minor reviews.

7.7 BioPrediction: Study of Molecular Interactions
Given the increasing number of biological sequences stored in databases, there is a large

source of information that can benefit several sectors such as agriculture and health. Machine
Learning (ML) algorithms can extract useful and new information from these data, increasing so-
cial and economic benefits, in addition to productivity. However, the categorical and unstructured
nature of biological sequences makes this process difficult, requiring ML expertise. In this paper,
we propose and experimentally evaluate an end-to-end automated ML-based framework, named
BioPrediction, able to identify implicit interactions between sequences, e.g., long non-coding



130 Chapter 7. Empowering Scientific Discovery

RNA and protein pairs, without the need for end-to-end ML expertise. Our experimental results
show that the proposed framework can induce ML models with high predictive accuracy, between
77% and 91%, which are competitive with state-of-the-art tools.

FLORENTINO, Bruno Rafael; SANCHES, Natan Henrique; BONIDIA, Robson Parmezan;
CARVALHO, André C. P. L. F. de. BioPrediction: Democratizing Machine Learning in the
Study of Molecular Interactions. In: Anais do XX Encontro Nacional de Inteligência Artificial
e Computacional. SBC, 2023. p. 525-539.

7.8 BioAutoML: End-to-End Machine Learning Package
for Life Sciences

Humanity has faced several challenges related to healthcare, epidemiological problems,
climate change, energy consumption, and water resources. Consequently, with advances in
sequencing, an increasing number of biological data has been generated in the post-genomic
age, where approaches have been developed for genomics, transcriptomics, and proteomics
problems. Due to this large amount of data, opportunities arise to change these challenging
scenarios using Machine Learning (ML) algorithms. ML can extract useful and meaningful
knowledge from biological data, reducing research expenses and increasing scientific efficiency.
These advances benefit our society and economy, impacting people’s lives in various areas,
such as health care, the environment, pollution, and water treatment. Nevertheless, many studies
usually neglected FAIR data principles for software development in ML. Furthermore, other
challenges are that ML approaches applied to biological data also require quality steps related
to feature engineering, algorithm selection, and hyperparameter tuning. These processes are
manual and require extensive knowledge of ML. To address this concern, we developed BioAu-
toML, which automatically runs an end-to-end ML pipeline. To the best of our knowledge,
our proposal automates the longest pipeline for biological sequence analysis, encompassing
feature engineering, ML algorithm recommendation, and hyperparameter tuning. So far, we
have achieved promising results on several problems, such as SARS-CoV-2, anticancer peptides,
pro-inflammatory peptides, HIV-1 sequences, and phage virion proteins. BioAutoML lowers the
barrier to applying feature engineering and metalearning in biological sequences for non-experts,
democratizing ML in life sciences.

BONIDIA, Robson et al. BioAutoML: End-to-End Machine Learning Package for Life
Sciences. In: 10th FEMS Congress of European Microbiologists, 2023, Hamburg - Germany.
10th FEMS Congress of European Microbiologists, 2023.

BONIDIA, Robson. BioAutoML:Helmholtz Visiting Researcher Grant/Award - Helmholtz
Information & Data Science Academy (HIDA), 2023.
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BONIDIA, Robson. BioAutoML:FEMS Research & Training Grant/Award - Federation of
European Microbiological Societies (FEMS), 2023.

7.9 BioAutoML-API
In this article, we present a case study on democratization, especially Machine Learning

(ML) resources in the field of biology, and the importance of these advancements for society.
Technology has contributed to the advancement of human life. However, recent occurrences of
recurring biological issues on the planet have taught us a lesson and accelerated an important pro-
cess, the democratization of technology. Motivated by these factors, we have developed an API
to support the data pipeline responsible for the processes of the BioAutoML application, which
is an end-to-end ML tool designed for sequence data processing. Considering BioAutoML’s
capability to optimize scientific research in microbiology and biotechnology, we have recognized
the need to build a scalable application to support the execution of multiple concurrent processes.
This contributes to a more user-friendly environment and, consequently, a more democratic one.
The goal is to facilitate access and encourage the equitable and responsible development and
provision of ML-based tools.

Rampazzo, Felipe César S.; Souza, Octávio Onofre A.; BONIDIA, Robson Parmezan. BioAutoML-
API. In: Iniciação Científica - Fatec Ourinhos - Ciência de Dados.

7.10 AutoAI-Pandemics
Infectious diseases, transmitted directly or indirectly, are among the main causes of

epidemics, or even pandemics. Despite recent achievements, there are several open challenges
in predicting epidemic outbreaks, detecting variants, contact tracing, discovering new drugs,
and fighting misinformation. Artificial Intelligence (AI) can provide tools to deal with these
scenarios, demonstrating promising results in the fight against the COVID-19 pandemic. Al-
though AI creates new opportunities, its proper use requires advanced knowledge of computing,
statistics, and mathematics, restricting its use by public health professionals working with infec-
tious diseases. Our objective is to develop an integrated and user-friendly platform that can be
effectively employed by non-experts working with infectious diseases. This platform, named
AutoAI-Pandemics, will provide robust solutions using Automated Machine Learning for (T1)
epidemiological analysis to detect possible epidemic scenarios and corresponding interventions
to suppress disease spread with minimal social impact safely; (T2) bioinformatics analysis,
supporting pathogen genome mining, and (T3) fighting misinformation by assisting the search
for reliable information sources. This platform will be able to work on various critical stages of
an epidemic/pandemic. Thus, it can be used by policymakers and other stakeholders, healthcare
professionals, pharmaceutical industries, genomic surveillance organizations, and for combat-
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ing disinformation. AutoAI-Pandemics will comply with what is expected of responsible AI
solutions, which include fairness, privacy protection, sustainability, and respect for legislation.
To deal with the complex aspects of this project, we assembled an interdisciplinary team of
researchers with expertise in computer science, AI, bioinformatics, and infectious diseases
epidemiology.

BONIDIA, Robson et al. AutoAI-Pandemics: Democratizing Machine Learning for Analy-
sis, Study, and Control of Epidemics and Pandemics. This work was selected as one of the
most promising proposals (a total of 221 proposals from 47 countries following a rigorous review
process (142 from Africa, 40 from Asia, 26 from LAC, and 12 from MENA)) in a global compe-
tition, held by the Global South Artificial Intelligence for Pandemic and Epidemic Preparedness
and Response Network - AI4PEP - 2023.

7.11 Democratizing Artificial Intelligence in LAC
Artificial Intelligence (AI) is becoming increasingly integrated into various aspects of

society. However, it is crucial to ensure, not only, that AI benefits are distributed equitably, but
also, its responsible use. Multiple countries are creating regulations to address these concerns,
but the borderless nature of AI requires global cooperation to define regulatory and guideline
consensus. Considering this, The Global South AI for Pandemic & Epidemic Preparedness
& Response Network (AI4PEP) has developed an initiative comprising 16 projects across 16
countries in the Global South, seeking to strengthen equitable and responsive public health
systems that leverage Southern-led responsible AI solutions to improve prevention, preparedness,
and response to emerging and re-emerging infectious disease outbreaks. This paper introduces
our branches in Latin American and Caribbean (LAC) countries and discusses AI governance
in LAC. Our network in LAC has high potential to help fight infectious diseases, particularly
in low– and middle-income countries, generating opportunities for the widespread use of AI
techniques to improve the health and well-being of their communities.

CARVALHO, André; BONIDIA, Robson et al. Democratising Artificial Intelligence for Pan-
demic Preparedness and Global Governance in Latin American and Caribbean Countries.
This work was submitted to the United Nations Call for Papers on Global AI Governance1.

1 https://www.un.org/techenvoy/ai-advisory-body)
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CHAPTER

8
CONCLUSIONS AND FUTURE CHALLENGES

Artificial Intelligence (AI) offers valuable tools to mitigate the impact of numerous
challenges that affect society. Advances in all knowledge domains show how AI can not only
accelerate scientific discoveries and the design of innovative solutions but also be one of the
most valuable tools for improving the quality of life on Earth. Nevertheless, it is crucial to ensure
that these benefits are distributed equitably. To this end, we should establish plans to democratize
AI and benefit all regions of the globe. The democratization of AI, especially Machine Learning
(ML), is a transformative journey towards inclusion, innovation, and scientific excellence that
should not just be a theoretical concept; but a practical effort.

In this thesis, we focus on one of the numerous definitions of AI democratization, which,
according to (RUBEIS; DUBBALA; METZLER, 2022; VANHORN; ÇOBANOĞLU, 2022),
involves granting accessibility to ML for individuals who are not specialists in the domain, such
as those without a background in data science, mathematics, or informatics. To address this
concern, we developed BioAutoML, which automatically runs an end-to-end ML pipeline for
biological sequence data. To the best of our knowledge, our proposal automates the longest
pipeline, encompassing feature engineering, ML algorithm recommendation, and hyperparameter
tuning.

We chose the field of life sciences because ML algorithms can extract valuable and
meaningful knowledge from biological data, accelerating discoveries, reducing research ex-
penses, and enhancing scientific efficiency. These advancements can directly benefit society, the
economy, and people’s lives. Furthermore, other challenges are that ML approaches applied to
biological data also require quality steps related to feature engineering, algorithm selection, and
hyperparameter tuning. These processes often require extensive domain knowledge, performed
manually by a human expert, being one of the most time-consuming steps.

As a result, the proposal of this thesis not only automates complex tasks but also enables
researchers without domain knowledge to apply ML algorithms for sequence data analysis. The
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ability to generate an end-to-end automated ML pipeline reduces the burden of laborious manual
data preprocessing. Our studies have generated results applicable to the analysis of biological
sequences, demonstrating the considerable potential for substantially decreasing the expertise
needed to operate AI/ML pipelines. This support aids researchers in addressing diverse issues,
including diseases that profoundly affect human lives, giving biologists and other stakeholders
an opportunity for the widespread use of these techniques.

Furthermore, we have achieved robust results with successful cases across multiple
problem domains, such as SARS-CoV-2, anticancer peptides, pro-inflammatory peptides, HIV-1
sequences, phage virion proteins, non-classical secreted proteins, sigma70 promoters, protein
lysine crotonylation, recombination spots, small non-coding RNAs, long non-coding RNAs, cir-
cular RNAs, and others. The results of this thesis also generated awards, grants, and publications
in high-impact scientific journals. The papers and tools associated with the thesis, up until its
completion, have garnered 104 stars on GitHub and approximately 119 citations. The principal
papers derived from this thesis (five in total) have an accumulated impact factor of 59.319.

In addition, during my time in Germany at the Helmholtz Centre for Environmental
Research — UFZ, Leipzig, we conducted tests with BioAutoML using real-world problems to
fine-tune its functionalities, adapting them to address the practical challenges encountered by
biologists, microbiologists, and virologists in their everyday work. Regarding the limitations, we
are in the final stages of releasing a user-friendly and comprehensible web version, code-free,
to broadly apply the benefits of BioAutoML. Additionally, we are also carrying out a code
refactoring process to optimize computational execution costs.

Therefore, it is no longer acceptable for ML applications in Life Sciences, or any other
field, to remain confined to the domain of specialists and data scientists. With our research, it has
been possible to witness how democratization opens doors, breaks down barriers, and welcomes
all who wish to harness its potential. This means a shift from exclusivity to accessibility, making
ML a shared resource for the collective improvement of science and society. However, the power
that comes with democratization requires an unwavering commitment to ethical conduct. For this
reason, it is extremely important to address ethical considerations, data privacy, and scientific
integrity as we democratize knowledge and tools.

To democratize AI knowledge, it is crucial to maximize the dissemination of results
and products among target communities where motivating issues arise, as well as to train
human resources. We must also educate young academics, health professionals, policymakers,
journalists, and invested citizens. To this end, we participate in an initiative called AI4PEP
(The Global South AI for Pandemic & Epidemic Preparedness & Response Network), which
proposes various approaches, such as (1) Engagement with under-represented communities; (2)
Special short courses; (3) Public awareness campaigns on AI; (4) Collaboration with Industry;
(5) International Collaboration; (6) Open-source initiatives; and (7) Community development.

I recognize that our journey continues, ensuring that the benefits of democratization reach
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researchers, communities, and societies around the world. To achieve this, I will continue to
dedicate myself to three new fronts: (1) AutoAI-Pandemics1 (Democratizing Machine Learning
for Analysis, Study, and Control of Epidemics and Pandemics); (2) BioPrediction2 (Democ-
ratizing Machine Learning in the Study of Molecular Interactions), and (3) Drug Discovery
(Democratizing Machine Learning in the Study of Drug Discovery). Finally, the democratization
of AI is more than just a possibility – it is a necessity. By utilizing tools such as BioAutoML, and
engaging in initiatives like AI4PEP, we are actively working to dismantle barriers and promote
inclusion for a future in which the power of AI is accessible to the many, not just the privileged
few.

8.1 Grants, Awards, and Books

• Google Latin America Research Awards (LARA), Google, 2021. Project: BioAutoML:
Automated Feature Engineering for Classification of Biological Sequences. Elected by
LARA-Google among the 24 most promising ideas in Latin America (24 awarded projects,
from a base of 700 submissions)3,4,5.

• AutoAI-Pandemics, which was selected as one of the most promising proposals (a
total of 221 proposals from 47 countries following a rigorous review process (142 from
Africa, 40 from Asia, 26 from LAC, 12 from MENA)) in a global competition, held by
the Global South Artificial Intelligence for Pandemic and Epidemic Preparedness and
Response Network – AI4PEP – CAN$362,5006,7,8,9.

• CARVALHO, André; MENEZES, Angelo; BONIDIA, Robson. Ciência de Dados –
Fundamentos e Aplicações. GEN – Grupo Editorial Nacional, v. 1, 2023 — In launch
phase.

• Helmholtz Visiting Researcher Grant/Award – Helmholtz Information & Data Science
Academy (HIDA), 2023. Project Title: BioAutoML-Fast: End-to-End Multi-Threaded
Machine Learning Package for Life Sciences.

1 http://autoaipandemics.icmc.usp.br/
2 https://github.com/Bonidia/BioPrediction
3 https://blog.google/intl/pt-br/novidades/iniciativas/conheca-os-vencedores-do-premio-lara-2021-o-

programa-de-bolsas-de-pesquisa-do-google/
4 https://cemeai.icmc.usp.br/programa-de-bolsas-do-google-premia-trabalhos-orientados-pelo-cemeai/
5 https://npdiario.com.br/cidades/norte-pioneirense-e-premiado-pelo-google/
6 http://autoaipandemics.icmc.usp.br/
7 https://veja.abril.com.br/tecnologia/plataforma-virtual-ajuda-a-combater-epidemias-com-

inteligencia-artificial/
8 http://www.saocarlos.usp.br/cemeai-apoia-projeto-selecionado-em-chamada-global-para-ia-na-

saude-publica/
9 https://ai4pep.org/our-projects/
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• FEMS Research & Training Grant/Award – Federation of European Microbiological
Societies (FEMS), 2023 (C: 5,000.00).

• BioPrediction – Project selected to participate in Prototypes for Humanity 2023, dur-
ing COP28-Dubai, chosen from 3000 entries, from more than 100 countries, standing out
among the 100 best, Prototypes for Humanity – COP28-Dubai10.

• Finalists (Top 15 of 82) – Falling Walls Lab Brazil 2022, DWIH São Paulo, Falling
Walls Foundation, DAAD The German Center for Science and Innovation11.

• Winning Team (Advisor), 1st place, “Breaking the Wall of Fake News”, Falling Walls
Lab Brazil 2023, DWIH São Paulo, Falling Walls Foundation, DAAD, The German Center
for Research and Innovation 12.

• Supervisor of the ÁGUEDA Project (Artificial Intelligence for Early Detection of Breast
Cancer), recognized as the best ongoing research project in the field of Exact and Earth
Sciences in Brazil for undergraduate scientific initiation by Conic-Semesp (the Largest
Scientific Initiation Congress in Brazil), among more than 1,400 registered projects.13.

• Finalist Team (Advisor), “Breaking the Wall of Alzheimer’s Detection”, Falling Walls
Lab Brazil 2023, DWIH São Paulo, Falling Walls Foundation, DAAD, The German Center
for Research and Innovation 14.

• Certificate of excellence for the distinction achieved at Falling Walls Lab Brazil 2023 as
Advisor Professor, 2023.

• Motion No. 405/2023 (Ourinhos-SP City Council, Brazil) — Congratulations to the
students and professors of Fatec Ourinhos for developing the ’ITT – Is That True’ app, a
platform to combat fake news, 2023.

8.2 Papers Published During the Ph.D.

• IEEE Access (IF 2019: 3.745): BONIDIA, Robson Parmezan et al. A Novel Decom-
posing Model With Evolutionary Algorithms for Feature Selection in Long Non-Coding
RNAs – (BONIDIA et al., 2020a)

• Briefings in Bioinformatics (IF 2020: 11.622): BONIDIA, Robson Parmezan et al. Fea-
ture extraction approaches for biological sequences: a comparative study of mathematical
features – (BONIDIA et al., 2021a)

10 https://www.prototypesforhumanity.com/
11 https://www.youtube.com/watch?v=H5C_UIgVeQM
12 http://biofatecou.fatecourinhos.edu.br
13 https://www.semesp.org.br/conic/resultados/
14 http://biofatecou.fatecourinhos.edu.br
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• Nucleic Acids Research (IF 2020: 16.971): CRISPRloci: comprehensive and accurate
annotation of CRISPR–Cas systems – (ALKHNBASHI et al., 2021)

• Briefings in Bioinformatics (IF 2021: 13.994): BONIDIA, Robson Parmezan et al. Math-
Feature: feature extraction package for DNA, RNA, and protein sequences based on
mathematical descriptors – (BONIDIA et al., 2022)

• BSB – Brazilian Symposium on Bioinformatics: MathPIP: Classification of Proinflam-
matory Peptides Using Mathematical Descriptors – (CAVALCANTE et al., 2021)

• BSB – Brazilian Symposium on Bioinformatics: Feature Importance Analysis of Non-
coding DNA/RNA Sequences Based on Machine Learning Approaches – (ALMEIDA et

al., 2021)

• Entropy (IF 2021: 2.738): BONIDIA et al. Information Theory for Biological Sequence
Classification: A Novel Feature Extraction Technique Based on Tsallis Entropy, 2022 –
(BONIDIA et al., 2022b)

• Briefings in Bioinformatics (IF 2021: 13.994): BONIDIA et al. BioAutoML: Automated
Feature Engineering and Metalearning for the Prediction of Non-Coding RNAs in Bacteria,
2022 – (BONIDIA et al., 2022c)

• 20th Encontro Nacional de Inteligência Artificial e Computacional: BioPrediction:
Democratizing Machine Learning in the Study of Molecular Interactions, 2023 – (FLO-
RENTINO et al., 2023).

• This work was submitted to the United Nations Call for Papers on Global AI Gov-
ernance: Democratizing Artificial Intelligence for Pandemic Preparedness and Global
Governance in Latin American and Caribbean Countries.

• RNA Biology (IF 2022: 4.1000): SANTOS, Anderson Paulo Avila; DE ALMEIDA, Breno
Lívio Silva; BONIDIA, Robson Parmezan et al. BioDeepFuse: A Hybrid Deep Learning
Approach with Integrated Feature Extraction Techniques for Enhanced Non-coding RNA
Classification, 2023 — accepted with minor reviews.

• Nucleic Acids Research (IF 2022: 14.900): BONIDIA, Robson Parmezan et al. BioAu-
toML: Democratizing Machine Learning in Life Sciences, 2023 – In preparation.

8.3 Other Recognitions Obtained During the Ph.D.

• Finalist in the Higher Education Category (Among the 10 finalists in the Higher Ed-
ucation Category – 2897 subscribers - BioFatecou Project), Transformer Educator
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Award - Sebrae, Instituto Significare and Bett Brasil, which aims to select the most
transformative projects in Brazil, 202315,16.

• Honorable mention to the BioFatecou Project (more than 200 submissions) – 25th edition
of the Professor Mário Palmério Top Educational Award - ABMES - Associação
Brasileira de Mantenedoras de Ensino Superior - Brazil - 202317,18.

• Hollie’s Hub for Good – DigitalOcean. BioFatecou: Introducing Undergraduates to
Academic Research, 2023 (US$: 2,500.00)19.

• Grace: Resume Recommendation System with Artificial Intelligence — Article pub-
lished at the IV Workshop for Undergraduate Student Works, held during the Brazilian
Symposium on Databases (SBBD) 2023.

• Predicting Playoff Winners: A Case Study with Machine Learning in American Football
Matches — Article published at the IV Workshop for Undergraduate Student Works, held
during the Brazilian Symposium on Databases (SBBD) 2023.

• Advisor to undergraduate students Ana Clara B. Medeiros et al., 2nd place at the 1st
Cambará Ideas Fair, Grace: Resume Recommendation System with Artificial Intelligence
— 1st Cambará Ideas Fair - Norte Pioneiro - Paraná, 2023.

• Advisor of undergraduate student Wagner Lopes Cardozo, 3rd place at the 1st Cambará
Ideas Fair, Águeda: Artificial Intelligence for Early Detection of Breast Cancer – 1st
Cambará Ideas Fair - Norte Pioneiro - Paraná, 2023.

8.4 Supplementary Endeavors Throughout the Ph.D.

• Organizer – I Workshop de Soluções de Problemas com Ciência de Dados (2022)20:
(1) Event with 210 registrations; (2) Meeting with 10 companies; (3) Presentation of
projects; (4) Expert lectures.

• 1st Data Science Challenge - Fatec Ourinhos21 National Football League (NFL) Results
Prediction.

15 https://www.cps.sp.gov.br/professor-da-fatec-ourinhos-chega-a-final-do-premio-educador-
transformador/

16 https://conteudo.significare.org.br/finalistas_premio-educador-transformador
17 https://top.abmes.org.br/noticias-2/54-projeto-que-oferece-formacao-on-line-e-gratuita-sobre-

competencias-empreendedoras-vence-a-25-edicao-do-premio-top-educacional
18 https://www.linkedin.com/feed/update/urn:li:activity:7094726276795502592/
19 https://www.digitalocean.com/community/pages/hollies-hub-for-good
20 https://bonidia.github.io/workshop-cd/
21 https://www.kaggle.com/competitions/1-desafio-cd-fatec-ourinhos
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• Organizer – BioFatecou Deep Talks (2023)22: (1) Twenty presentations of projects; (2)
Event with 120 registrations.

• BioFatecou23: Introducing Undergraduate Students to Academic Research and Respon-
sible Use of Artificial Intelligence — The project aims to contribute to the development
of excellent professionals, with ethical awareness of AI usage, who will work directly in
the field, often impacting people’s lives with their solutions. Among other contributions,
we can mention: (I) Personal and professional growth; (II) Cultivation of critical thinking,
impacting all areas of their lives; and (III) Interaction with other professionals in the
field, promoting networking. The main competencies emphasized in the project include
argumentation, communication, knowledge, empathy, planning, organization, teamwork,
responsibility, citizenship, and scientific, critical, and creative thinking. Additionally,
BioFatecou’s goal is to encourage participants to develop solutions that align with the
Sustainable Development Goals (SDGs) [9], such as (SDG 3) Good Health and Well-being;
(SDG 4) Quality Education; (SDG 5) Gender Equality; (SDG 10) Reduced Inequalities;
and (SDG 13) Climate Action. The project has been underway in the Data Science program
at Faculdade de Tecnologia de Ournhos (FATEC) since August 2021, integrated into the
courses of Integrative Project (III, IV, and V). Currently, it involves the participation of over
54 students, a number projected to exceed 100 in the upcoming months, with prospects for
growth.

22 https://drive.google.com/drive/u/1/folders/1OXHM79q5bIdPiNV1oFdWAep-_s-moH05
23 http://biofatecou.fatecourinhos.edu.br/
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BENTÉJAC, C.; CSÖRGŐ, A.; MARTÍNEZ-MUÑOZ, G. A comparative analysis of gradient
boosting algorithms. Artificial Intelligence Review, Springer, p. 1–31, 2020. Citation on page
62.

BENVENUTO, D.; GIOVANETTI, M.; CICCOZZI, A.; SPOTO, S.; ANGELETTI, S.; CI-
CCOZZI, M. The 2019-new coronavirus epidemic: Evidence for virus evolution. Journal of
Medical Virology, v. 92, n. 4, p. 455–459, 2020. Available: <https://onlinelibrary.wiley.com/
doi/abs/10.1002/jmv.25688>. Citation on page 56.

BERG, B. A. van den; REINDERS, M. J.; ROUBOS, J. A.; RIDDER, D. D. Spice: a web-based
tool for sequence-based protein classification and exploration. BMC bioinformatics, Springer,
v. 15, n. 1, p. 93, 2014. Citations on pages 34, 40, 92, 93, 94, and 111.

BERGSTRA, J.; YAMINS, D.; COX, D. D. et al. Hyperopt: A python library for optimizing
the hyperparameters of machine learning algorithms. In: CITESEER. Proceedings of the 12th
Python in science conference. [S.l.], 2013. v. 13, p. 20. Citation on page 115.

BERRY, M. W. Large-scale sparse singular value computations. The International Journal of
Supercomputing Applications, SAGE Publications Sage UK: London, England, v. 6, n. 1, p.
13–49, 1992. Citation on page 89.

BLOCH, K. M.; ARCE, G. R. Analyzing protein sequences using signal analysis techniques. In:
Computational and Statistical Approaches to Genomics. [S.l.]: Springer, 2006. p. 137–161.
Citation on page 96.

BONIDIA, R. P. Feature Extraction Approaches for Biological Sequences:
A Comparative Study of Mathematical Features. [S.l.]: GitHub, 2020.
Https://github.com/Bonidia/FeatureExtraction_BiologicalSequences. Citations on pages 69
and 109.

BONIDIA, R. P.; DOMINGUES, D. S.; SANCHES, D. S.; CARVALHO, A. C. de. Mathfeature:
feature extraction package for dna, rna and protein sequences based on mathematical descriptors.
Briefings in Bioinformatics, Oxford University Press, v. 23, n. 1, p. bbab434, 2022. Citations
on pages 75, 76, 81, 109, 113, and 137.

BONIDIA, R. P.; MACHIDA, J. S.; NEGRI, T. C.; ALVES, W. A. L.; KASHIWABARA, A. Y.;
DOMINGUES, D. S.; CARVALHO, A. D.; PASCHOAL, A. R.; SANCHES, D. S. A novel
decomposing model with evolutionary algorithms for feature selection in long non-coding rnas.
IEEE Access, v. 8, p. 181683–181697, 2020. Citations on pages 92, 115, and 136.

BONIDIA, R. P. et al. Feature extraction and selection analysis in biological sequence: a
case study with metaheuristics and mathematical models. Master’s Thesis (Master’s Thesis)
— Universidade Tecnológica Federal do Paraná, 2020. Citation on page 56.

BONIDIA, R. P.; SAMPAIO, L. D. H.; DOMINGUES, D. S.; PASCHOAL, A. R.; LOPES, F. M.;
CARVALHO, A. C. P. L. F. de; SANCHES, D. S. Feature extraction approaches for biological
sequences: a comparative study of mathematical features. Briefings in Bioinformatics, 02 2021.
ISSN 1477-4054. Bbab011. Citations on pages 25, 61, 62, 75, 76, 78, 80, 81, and 136.

https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25688
https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25688


144 Bibliography

. Feature extraction approaches for biological sequences: a comparative study of mathe-
matical features. Briefings in Bioinformatics, 02 2021. ISSN 1477-4054. Bbab011. Available:
<https://doi.org/10.1093/bib/bbab011>. Citations on pages 92, 97, 98, and 99.

BONIDIA, R. P.; SAMPAIO, L. D. H.; LOPES, F. M.; SANCHES, D. S. Feature extraction of
long non-coding rnas: A fourier and numerical mapping approach. In: NYSTRÖM, I.; HEREDIA,
Y. H.; NÚÑEZ, V. M. (Ed.). Progress in Pattern Recognition, Image Analysis, Computer
Vision, and Applications. Cham: Springer International Publishing, 2019. p. 469–479. ISBN
978-3-030-33904-3. Citations on pages 56, 59, and 92.

BONIDIA, R. P.; SANTOS, A. P. A.; ALMEIDA, B. L. de; STADLER, P. F.; ROCHA, U. N.
da; SANCHES, D. S.; CARVALHO, A. C. de. Bioautoml: automated feature engineering
and metalearning to predict noncoding rnas in bacteria. Briefings in Bioinformatics, Oxford
University Press, v. 23, n. 4, p. bbac218, 2022. Citation on page 82.

BONIDIA, R. P.; SANTOS, A. P. A.; ALMEIDA, B. L. de; STADLER, P. F.; ROCHA, U.
Nunes da; SANCHES, D. S.; CARVALHO, A. C. D. Information theory for biological sequence
classification: A novel feature extraction technique based on tsallis entropy. Entropy, MDPI,
v. 24, n. 10, p. 1398, 2022. Citation on page 137.

BONIDIA, R. P.; SANTOS, A. P. A.; ALMEIDA, B. L. S. de; STADLER, P. F.; ROCHA, U. N.
da; SANCHES, D. S.; CARVALHO, A. C. P. L. F. de. BioAutoML: automated feature engineering
and metalearning to predict noncoding RNAs in bacteria. Briefings in Bioinformatics, v. 23,
n. 4, p. bbac218, 06 2022. ISSN 1477-4054. Available: <https://doi.org/10.1093/bib/bbac218>.
Citation on page 137.

BRAZDIL, P. B.; RIJN, J. N. van; SOARES, C.; VANSCHOREN, J. Metalearning: Applica-
tions to Automated Machine Learning and Data Mining. [S.l.]: Leiden University, Institute
of Advanced Computer Science, 2022. Citations on pages 24 and 111.

BREIMAN, L. Random forests. Machine learning, Springer, v. 45, n. 1, p. 5–32, 2001. Citation
on page 61.

BRERETON, P.; KITCHENHAM, B. A.; BUDGEN, D.; TURNER, M.; KHALIL, M. Lessons
from applying the systematic literature review process within the software engineering domain.
Journal of systems and software, Elsevier, v. 80, n. 4, p. 571–583, 2007. Citations on pages
29, 30, 32, 33, and 77.

BUDACH, S.; MARSICO, A. pysster: classification of biological sequences by learning sequence
and structure motifs with convolutional neural networks. Bioinformatics, v. 34, n. 17, p. 3035–
3037, 04 2018. ISSN 1367-4803. Available: <https://doi.org/10.1093/bioinformatics/bty222>.
Citation on page 56.

CANNATARO, M.; HARRISON, A. Bioinformatics helping to mitigate the impact of COVID-19
– Editorial. Briefings in Bioinformatics, v. 22, n. 2, p. 613–615, 03 2021. ISSN 1477-4054.
Available: <https://doi.org/10.1093/bib/bbab063>. Citations on pages 21 and 107.

CAO, D.-S.; XIAO, N.; XU, Q.-S.; CHEN, A. F. Rcpi: R/Bioconductor package to generate
various descriptors of proteins, compounds and their interactions. Bioinformatics, v. 31, n. 2, p.
279–281, 09 2014. ISSN 1367-4803. Available: <https://doi.org/10.1093/bioinformatics/btu624>.
Citations on pages 35 and 40.

https://doi.org/10.1093/bib/bbab011
https://doi.org/10.1093/bib/bbac218
https://doi.org/10.1093/bioinformatics/bty222
https://doi.org/10.1093/bib/bbab063
https://doi.org/10.1093/bioinformatics/btu624


Bibliography 145

CAO, D.-S.; XU, Q.-S.; LIANG, Y.-Z. propy: a tool to generate various modes of Chou’s
PseAAC. Bioinformatics, v. 29, n. 7, p. 960–962, 02 2013. ISSN 1367-4803. Available: <https:
//doi.org/10.1093/bioinformatics/btt072>. Citations on pages 34, 40, 92, 93, 94, and 111.

CARDIN, S.-E.; BORCHERT, G. M. Viral micrornas, host micrornas regulating viruses, and
bacterial microrna-like rnas. Bioinformatics in MicroRNA Research, Springer, p. 39–56, 2017.
Citation on page 119.

CASSIANO, M. H. A.; SILVA-ROCHA, R. Benchmarking bacterial promoter prediction tools:
Potentialities and limitations. Msystems, Am Soc Microbiol, v. 5, n. 4, p. e00439–20, 2020.
Citation on page 104.

CAVALCANTE, J. P. U.; GONÇALVES, A. C.; BONIDIA, R. P.; SANCHES, D. S.; CAR-
VALHO, A. C. P. d. L. F. d. Mathpip: Classification of proinflammatory peptides using mathe-
matical descriptors. In: SPRINGER. Brazilian Symposium on Bioinformatics. [S.l.], 2021. p.
131–136. Citation on page 137.

CHAABANE, M.; WILLIAMS, R. M.; STEPHENS, A. T.; PARK, J. W. circdeep: deep learning
approach for circular rna classification from other long non-coding rna. Bioinformatics, Oxford
University Press, v. 36, n. 1, p. 73–80, 2020. Citations on pages 61 and 69.

CHAKRAVARTHY, N.; SPANIAS, A.; IASEMIDIS, L. D.; TSAKALIS, K. Autoregressive mod-
eling and feature analysis of dna sequences. EURASIP Journal on Applied Signal Processing,
Hindawi Publishing Corp., v. 2004, p. 13–28, 2004. Citations on pages 61 and 96.

CHAN, P. P.; LIN, B. Y.; MAK, A. J.; LOWE, T. M. trnascan-se 2.0: improved detection and
functional classification of transfer rna genes. Nucleic acids research, Oxford University Press,
v. 49, n. 16, p. 9077–9096, 2021. Citation on page 122.

CHAROENKWAN, P.; KANTHAWONG, S.; SCHADUANGRAT, N.; YANA, J.; SHOOMBU-
ATONG, W. Pvpred-scm: improved prediction and analysis of phage virion proteins using a
scoring card method. Cells, Multidisciplinary Digital Publishing Institute, v. 9, n. 2, p. 353, 2020.
Citation on page 101.

CHAROENKWAN, P.; NANTASENAMAT, C.; HASAN, M. M.; SHOOMBUATONG, W.
Meta-ipvp: a sequence-based meta-predictor for improving the prediction of phage virion
proteins using effective feature representation. Journal of Computer-Aided Molecular Design,
Springer, v. 34, n. 10, p. 1105–1116, 2020. Citations on pages 100 and 101.

CHEN, C.-C.; QIAN, X.; YOON, B.-J. RNAdetect: efficient computational detection of novel
non-coding RNAs. Bioinformatics, v. 35, n. 7, p. 1133–1141, 08 2018. ISSN 1367-4803.
Citation on page 108.

CHEN, D.; YUAN, C.; ZHANG, J.; ZHANG, Z.; BAI, L.; MENG, Y.; CHEN, L.-L.; CHEN,
M. PlantNATsDB: a comprehensive database of plant natural antisense transcripts. Nucleic
Acids Research, v. 40, n. D1, p. D1187–D1193, 11 2011. ISSN 0305-1048. Available: <https:
//doi.org/10.1093/nar/gkr823>. Citation on page 60.

CHEN, L.; ZHANG, Y.-H.; HUANG, G.; PAN, X.; WANG, S.; HUANG, T.; CAI, Y.-D. Dis-
criminating cirrnas from other lncrnas using a hierarchical extreme learning machine (h-elm)
algorithm with feature selection. Molecular Genetics and Genomics, Springer, v. 293, n. 1, p.
137–149, 2018. Citations on pages 56, 61, 63, and 69.

https://doi.org/10.1093/bioinformatics/btt072
https://doi.org/10.1093/bioinformatics/btt072
https://doi.org/10.1093/nar/gkr823
https://doi.org/10.1093/nar/gkr823


146 Bibliography

CHEN, W.; DING, H.; FENG, P.; LIN, H.; CHOU, K.-C. iacp: a sequence-based tool for
identifying anticancer peptides. Oncotarget, Impact Journals, LLC, v. 7, n. 13, p. 16895, 2016.
Citation on page 104.

CHEN, W.; LEI, T.-Y.; JIN, D.-C.; LIN, H.; CHOU, K.-C. Pseknc: A flexible web server
for generating pseudo k-tuple nucleotide composition. Analytical Biochemistry, v. 456, p.
53 – 60, 2014. ISSN 0003-2697. Available: <http://www.sciencedirect.com/science/article/pii/
S0003269714001249>. Citations on pages 34, 40, and 92.

CHEN, W.; ZHANG, X.; BROOKER, J.; LIN, H.; ZHANG, L.; CHOU, K.-C. PseKNC-General:
a cross-platform package for generating various modes of pseudo nucleotide compositions.
Bioinformatics, v. 31, n. 1, p. 119–120, 09 2014. ISSN 1367-4803. Available: <https://doi.org/
10.1093/bioinformatics/btu602>. Citations on pages 34, 40, 92, 93, 94, 98, and 111.

CHEN, X.; HAN, P.; ZHOU, T.; GUO, X.; SONG, X.; LI, Y. circrnadb: a comprehensive
database for human circular rnas with protein-coding annotations. Scientific reports, Nature
Publishing Group, v. 6, n. 1, p. 1–6, 2016. Citation on page 61.

CHEN, X.; LIN, Q.; LUO, C.; LI, X.; ZHANG, H.; XU, Y.; DANG, Y.; SUI, K.; ZHANG, X.;
QIAO, B. et al. Neural feature search: A neural architecture for automated feature engineering. In:
IEEE. 2019 IEEE International Conference on Data Mining (ICDM). [S.l.], 2019. p. 71–80.
Citations on pages 23 and 110.

CHEN, Z.; ZHAO, P.; LI, C.; LI, F.; XIANG, D.; CHEN, Y.-Z.; AKUTSU, T.; DALY, R.; WEBB,
G.; ZHAO, Q.; KURGAN, L.; SONG, J. iLearnPlus: a comprehensive and automated machine-
learning platform for nucleic acid and protein sequence analysis, prediction and visualization.
Nucleic Acids Research, 02 2021. ISSN 0305-1048. Gkab122. Available: <https://doi.org/10.
1093/nar/gkab122>. Citations on pages 21, 22, 25, 53, 92, 107, 108, and 111.

CHEN, Z.; ZHAO, P.; LI, F.; LEIER, A.; MARQUEZ-LAGO, T. T.; WANG, Y.; WEBB, G. I.;
SMITH, A. I.; DALY, R. J.; CHOU, K.-C.; SONG, J. iFeature: a Python package and web
server for features extraction and selection from protein and peptide sequences. Bioinformatics,
v. 34, n. 14, p. 2499–2502, 03 2018. ISSN 1367-4803. Available: <https://doi.org/10.1093/
bioinformatics/bty140>. Citations on pages 35, 40, 92, 93, 94, and 95.

CHEN, Z.; ZHAO, P.; LI, F.; MARQUEZ-LAGO, T. T.; LEIER, A.; REVOTE, J.; ZHU, Y.; POW-
ELL, D. R.; AKUTSU, T.; WEBB, G. I.; CHOU, K.-C.; SMITH, A. I.; DALY, R. J.; LI, J.; SONG,
J. iLearn: an integrated platform and meta-learner for feature engineering, machine-learning anal-
ysis and modeling of DNA, RNA and protein sequence data. Briefings in Bioinformatics, v. 21,
n. 3, p. 1047–1057, 04 2019. ISSN 1477-4054. Available: <https://doi.org/10.1093/bib/bbz041>.
Citations on pages 22, 23, 25, 36, 40, 56, 92, 93, 94, 95, 103, 107, 110, and 111.

CHENG, H.; GARRICK, D. J.; FERNANDO, R. L. Efficient strategies for leave-one-out cross
validation for genomic best linear unbiased prediction. Journal of animal science and biotech-
nology, Springer, v. 8, n. 1, p. 38, 2017. Citation on page 62.

CHIU, T.-P.; COMOGLIO, F.; ZHOU, T.; YANG, L.; PARO, R.; ROHS, R. DNAshapeR:
an R/Bioconductor package for DNA shape prediction and feature encoding. Bioinformatics,
v. 32, n. 8, p. 1211–1213, 12 2015. ISSN 1367-4803. Available: <https://doi.org/10.1093/
bioinformatics/btv735>. Citations on pages 35, 40, 92, 93, 94, and 111.

CHOLLET, F. Keras: https://keras. io, 2015. Citation on page 103.

http://www.sciencedirect.com/science/article/pii/S0003269714001249
http://www.sciencedirect.com/science/article/pii/S0003269714001249
https://doi.org/10.1093/bioinformatics/btu602
https://doi.org/10.1093/bioinformatics/btu602
https://doi.org/10.1093/nar/gkab122
https://doi.org/10.1093/nar/gkab122
https://doi.org/10.1093/bioinformatics/bty140
https://doi.org/10.1093/bioinformatics/bty140
https://doi.org/10.1093/bib/bbz041
https://doi.org/10.1093/bioinformatics/btv735
https://doi.org/10.1093/bioinformatics/btv735


Bibliography 147

CHOU, K.-C. Some remarks on protein attribute prediction and pseudo amino acid composition.
Journal of theoretical biology, Elsevier, v. 273, n. 1, p. 236–247, 2011. Citations on pages 23,
92, 93, and 110.

CHU, Q.; ZHANG, X.; ZHU, X.; LIU, C.; MAO, L.; YE, C.; ZHU, Q.-H.; FAN, L. Plantcircbase:
a database for plant circular rnas. Molecular plant, Elsevier, v. 10, n. 8, p. 1126–1128, 2017.
Citations on pages 60, 61, and 81.

CIRILLO, D.; CATUARA-SOLARZ, S.; MOREY, C.; GUNEY, E.; SUBIRATS, L.; MELLINO,
S.; GIGANTE, A.; VALENCIA, A.; REMENTERIA, M. J.; CHADHA, A. S. et al. Sex and
gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ
digital medicine, Nature Publishing Group UK London, v. 3, n. 1, p. 81, 2020. Citation on
page 26.

CLARK, D. P.; PAZDERNIK, N. J.; MCGEHEE, M. R. Chapter 19 - noncoding rna. In: CLARK,
D. P.; PAZDERNIK, N. J.; MCGEHEE, M. R. (Ed.). Molecular Biology (Third Edition).
Third edition. Academic Cell, 2019. p. 604–621. ISBN 978-0-12-813288-3. Available: <https:
//www.sciencedirect.com/science/article/pii/B9780128132883000197>. Citation on page 122.

COHEN, J. A coefficient of agreement for nominal scales. Educational and psychological
measurement, Sage Publications Sage CA: Thousand Oaks, CA, v. 20, n. 1, p. 37–46, 1960.
Citation on page 62.

CONSORTIUM, R. RNAcentral 2021: secondary structure integration, improved sequence
search and new member databases. Nucleic Acids Research, v. 49, n. D1, p. D212–D220, 10
2020. Citations on pages 108 and 119.

COSTA, M. C.; OLIVEIRA, J. V. de A.; SILVA, W. M.; SEN, R.; FALLMANN, J.; STADLER,
P. F.; WALTER, M. E. M. Machine learning studies of non-coding rnas based on artificially
constructed training data. In: BIOINFORMATICS. [S.l.: s.n.], 2021. p. 176–183. Citation on
page 107.

CRISTEA, P. D. Conversion of nucleotides sequences into genomic signals. Journal of cellular
and molecular medicine, Wiley Online Library, v. 6, n. 2, p. 279–303, 2002. Citations on
pages 61 and 96.

CRUZ-GARCíA, J. S. De la; BORY-REYES, J.; RAMIREZ-ARELLANO, A. A two-parameter
fractional tsallis decision tree. Entropy, v. 24, n. 5, 2022. ISSN 1099-4300. Available: <https:
//www.mdpi.com/1099-4300/24/5/572>. Citations on pages 76 and 79.

CUI, F.; ZHANG, Z.; ZOU, Q. Sequence representation approaches for sequence-based protein
prediction tasks that use deep learning. Briefings in Functional Genomics, v. 20, n. 1, p. 61–73,
02 2021. ISSN 2041-2657. Available: <https://doi.org/10.1093/bfgp/elaa030>. Citation on page
75.

DANG, T. H. Y.; TYAGI, S.; D’CUNHA, G.; BHAVE, M.; CRAWFORD, R.; IVANOVA, E. P.
Computational prediction of micrornas in marine bacteria of the genus thalassospira. PloS one,
Public Library of Science San Francisco, CA USA, v. 14, n. 3, p. e0212996, 2019. Citation on
page 119.

DAR, D.; SOREK, R. Bacterial noncoding RNAs excised from within protein-coding transcripts.
mBio, American Society for Microbiology, v. 9, n. 5, sep 2018. ISSN 21507511. Available:
<https://journals.asm.org/doi/abs/10.1128/mBio.01730-18>. Citation on page 108.

https://www.sciencedirect.com/science/article/pii/B9780128132883000197
https://www.sciencedirect.com/science/article/pii/B9780128132883000197
https://www.mdpi.com/1099-4300/24/5/572
https://www.mdpi.com/1099-4300/24/5/572
https://doi.org/10.1093/bfgp/elaa030
https://journals.asm.org/doi/abs/10.1128/mBio.01730-18


148 Bibliography

DESHPANDE, S.; SHUTTLEWORTH, J.; YANG, J.; TARAMONLI, S.; ENGLAND, M. Plit:
An alignment-free computational tool for identification of long non-coding rnas in plant tran-
scriptomic datasets. Computers in Biology and Medicine, v. 105, p. 169 – 181, 2019. ISSN
0010-4825. Citation on page 57.

DIGNUM, V. Responsible artificial intelligence: how to develop and use AI in a responsible
way. [S.l.]: Springer, 2019. Citation on page 26.

DING, H.; FENG, P.-M.; CHEN, W.; LIN, H. Identification of bacteriophage virion proteins by
the anova feature selection and analysis. Molecular BioSystems, Royal Society of Chemistry,
v. 10, n. 8, p. 2229–2235, 2014. Citation on page 101.

DINIZ, W. J. d. S.; CANDURI, F. Bioinformatics: an overview and its applications. Genet Mol
Res, v. 16, n. 1, 2017. Citation on page 91.

DONG, J.; YAO, Z.-J.; ZHANG, L.; LUO, F.; LIN, Q.; LU, A.-P.; CHEN, A. F.; CAO, D.-S.
Pybiomed: a python library for various molecular representations of chemicals, proteins and
dnas and their interactions. Journal of cheminformatics, BioMed Central, v. 10, n. 1, p. 16,
2018. Citations on pages 36, 40, 92, 93, and 94.

DORRITY, M. W.; SAUNDERS, L. M.; QUEITSCH, C.; FIELDS, S.; TRAPNELL, C. Dimen-
sionality reduction by umap to visualize physical and genetic interactions. Nature communica-
tions, Nature Publishing Group, v. 11, n. 1, p. 1–6, 2020. Citation on page 89.

DéRIAN, N.; PHAM, H.-P.; NEHAR-BELAID, D.; TCHITCHEK, N.; KLATZMANN, D.;
ERIC, V.; SIX, A. The tsallis generalized entropy enhances the interpretation of transcriptomics
datasets. PLOS ONE, Public Library of Science, v. 17, n. 4, p. 1–16, 04 2022. Citation on page
79.

EITZINGER, S.; ASIF, A.; WATTERS, K. E.; IAVARONE, A. T.; KNOTT, G. J.; DOUDNA,
J. A.; MINHAS, F. Machine learning predicts new anti-CRISPR proteins. Nucleic Acids Re-
search, v. 48, n. 9, p. 4698–4708, 04 2020. ISSN 0305-1048. Citation on page 75.

ELSAYAD, A. M.; NASSEF, A. M.; AL-DHAIFALLAH, M. Bayesian optimization of multiclass
svm for efficient diagnosis of erythemato-squamous diseases. Biomedical Signal Processing
and Control, v. 71, p. 103223, 2022. ISSN 1746-8094. Citation on page 115.

EPPENHOF, E. J.; PEÑA-CASTILLO, L. Prioritizing bona fide bacterial small rnas with
machine learning classifiers. PeerJ, PeerJ Inc., v. 7, p. e6304, 2019. Citations on pages 112
and 113.

FALAGAS, M. E.; PITSOUNI, E. I.; MALIETZIS, G. A.; PAPPAS, G. Comparison of pubmed,
scopus, web of science, and google scholar: strengths and weaknesses. The FASEB journal,
Federation of American Societies for Experimental Biology, v. 22, n. 2, p. 338–342, 2008.
Citation on page 30.

FAN, X.-N.; ZHANG, S.-W. lncrna-mfdl: identification of human long non-coding rnas by fusing
multiple features and using deep learning. Molecular BioSystems, Royal Society of Chemistry,
v. 11, n. 3, p. 892–897, 2015. Citation on page 57.

FEHR, S.; BERENS, S. On the conditional rényi entropy. IEEE Transactions on Information
Theory, IEEE, v. 60, n. 11, p. 6801–6810, 2014. Citation on page 79.



Bibliography 149

FLORENTINO, B. R.; SANCHES, N. H.; BONIDIA, R. P.; CARVALHO, A. C. de. Biopredic-
tion: Democratizing machine learning in the study of molecular interactions. In: SBC. Anais do
XX Encontro Nacional de Inteligência Artificial e Computacional. [S.l.], 2023. p. 525–539.
Citation on page 137.

FRAZIER, P. I. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.
Citations on pages 109, 114, and 115.

FU, X.; ZHU, W.; CAI, L.; LIAO, B.; PENG, L.; CHEN, Y.; YANG, J. Improved pre-mirnas
identification through mutual information of pre-mirna sequences and structures. Frontiers in
genetics, Frontiers, v. 10, p. 119, 2019. Citation on page 119.

GALLART, A. P.; PULIDO, A. H.; LAGRÁN, I. Anzar Martínez de; SANSEVERINO, W.;
CIGLIANO, R. A. Greenc: a wiki-based database of plant lncrnas. Nucleic acids research,
Oxford University Press, v. 44, n. D1, p. D1161–D1166, 2015. Citations on pages 60 and 61.

GHANNAM, R. B.; TECHTMANN, S. M. Machine learning applications in microbial ecology,
human microbiome studies, and environmental monitoring. Computational and Structural
Biotechnology Journal, Elsevier, 2021. Citations on pages 21, 107, and 108.

. Machine learning applications in microbial ecology, human microbiome studies, and en-
vironmental monitoring. Computational and Structural Biotechnology Journal, 2021. ISSN
2001-0370. Available: <http://www.sciencedirect.com/science/article/pii/S2001037021000325>.
Citation on page 93.

GLAŽAR, P.; PAPAVASILEIOU, P.; RAJEWSKY, N. circbase: a database for circular rnas. Rna,
Cold Spring Harbor Lab, v. 20, n. 11, p. 1666–1670, 2014. Citation on page 61.

GOODSTEIN, D. M.; SHU, S.; HOWSON, R.; NEUPANE, R.; HAYES, R. D.; FAZO, J.;
MITROS, T.; DIRKS, W.; HELLSTEN, U.; PUTNAM, N. et al. Phytozome: a comparative
platform for green plant genomics. Nucleic acids research, Oxford University Press, v. 40,
n. D1, p. D1178–D1186, 2011. Citation on page 60.

GRANDINI, M.; BAGLI, E.; VISANI, G. Metrics for multi-class classification: an overview.
arXiv preprint arXiv:2008.05756, 2020. Citation on page 117.

GREENER, J. G.; KANDATHIL, S. M.; MOFFAT, L.; JONES, D. T. A guide to machine
learning for biologists. Nature Reviews Molecular Cell Biology, Nature Publishing Group, p.
1–16, 2021. Citations on pages 21 and 107.

. A guide to machine learning for biologists. Nature Reviews Molecular Cell Biology,
Nature Publishing Group, v. 23, n. 1, p. 40–55, 2022. Citation on page 75.

GUO, J.-C.; FANG, S.-S.; WU, Y.; ZHANG, J.-H.; CHEN, Y.; LIU, J.; WU, B.; WU, J.-R.;
LI, E.-M.; XU, L.-Y.; SUN, L.; ZHAO, Y. CNIT: a fast and accurate web tool for identifying
protein-coding and long non-coding transcripts based on intrinsic sequence composition. Nucleic
Acids Research, v. 47, n. W1, p. W516–W522, 05 2019. ISSN 0305-1048. Citation on page 57.

GUO, M.; ZOU, Q. Perspectives of bioinformatics in big data era. Current Genomics, v. 20,
n. 2, p. 79, 2019. Citation on page 55.

GUYON, I.; GUNN, S.; NIKRAVESH, M.; ZADEH, L. A. Feature extraction: foundations
and applications. [S.l.]: Springer, 2008. Citation on page 93.

http://www.sciencedirect.com/science/article/pii/S2001037021000325


150 Bibliography

HALKO, N.; MARTINSSON, P.-G.; TROPP, J. A. Finding structure with randomness: Proba-
bilistic algorithms for constructing approximate matrix decompositions. SIAM review, SIAM,
v. 53, n. 2, p. 217–288, 2011. Citation on page 82.

HAN, S.; LIANG, Y.; MA, Q.; XU, Y.; ZHANG, Y.; DU, W.; WANG, C.; LI, Y. Lncfinder: an
integrated platform for long non-coding rna identification utilizing sequence intrinsic composi-
tion, structural information and physicochemical property. Briefings in Bioinformatics, 2018.
Citations on pages 56, 57, 71, 92, 101, 102, and 103.

HANCOCK, J.; KHOSHGOFTAAR, T. M. Catboost for big data: an interdisciplinary review.
Research Square, 2020. Citations on pages 24, 62, 111, and 115.

HAQUE, H. F.; RAFSANJANI, M.; ARIFIN, F.; ADILINA, S.; SHATABDA, S. Subfeat:
Feature subspacing ensemble classifier for function prediction of dna, rna and protein sequences.
Computational Biology and Chemistry, Elsevier, v. 92, p. 107489, 2021. Citations on pages
101 and 103.

HARROW, J.; FRANKISH, A.; GONZALEZ, J. M.; TAPANARI, E.; DIEKHANS, M.;
KOKOCINSKI, F.; AKEN, B. L.; BARRELL, D.; ZADISSA, A.; SEARLE, S. et al. Gen-
code: the reference human genome annotation for the encode project. Genome research, Cold
Spring Harbor Lab, v. 22, n. 9, p. 1760–1774, 2012. Citation on page 61.

HASHEMI, F. S. G.; ISMAIL, M. R.; YUSOP, M. R.; HASHEMI, M. S. G.; SHAHRAKI,
M. H. N.; RASTEGARI, H.; MIAH, G.; ASLANI, F. Intelligent mining of large-scale bio-data:
Bioinformatics applications. Biotechnology & Biotechnological Equipment, Taylor & Francis,
v. 32, n. 1, p. 10–29, 2018. Citations on pages 55 and 107.

HASHEMI, F. S. G.; ISMAIL, M. R.; YUSOP, M. R.; HASHEMI, M. S. G.; SHAHRAKI, M.
H. N.; RASTEGARI, H.; MIAH, G.; ASLANI, F. Intelligent mining of large-scale bio-data:
Bioinformatics applications. Biotechnology & Biotechnological Equipment, Taylor & Francis,
v. 32, n. 1, p. 10–29, 2018. Citation on page 75.

HASTIE, T.; ROSSET, S.; ZHU, J.; ZOU, H. Multi-class adaboost. Statistics and its Interface,
International Press of Boston, v. 2, n. 3, p. 349–360, 2009. Citation on page 61.

HATCHER, E. L.; ZHDANOV, S. A.; BAO, Y.; BLINKOVA, O.; NAWROCKI, E. P.;
OSTAPCHUCK, Y.; SCHäFFER, A. A.; BRISTER, J. R. Virus Variation Resource – improved
response to emergent viral outbreaks. Nucleic Acids Research, v. 45, n. D1, p. D482–D490, 11
2016. ISSN 0305-1048. Available: <https://doi.org/10.1093/nar/gkw1065>. Citation on page
101.

HE, S.; DOU, L.; LI, X.; ZHANG, Y. Review of bioinformatics in azheimer’s disease research.
Computers in Biology and Medicine, v. 143, p. 105269, 2022. ISSN 0010-4825. Citations on
pages 24, 111, and 115.

HE, W.; JU, Y.; ZENG, X.; LIU, X.; ZOU, Q. Sc-ncdnapred: a sequence-based predictor for
identifying non-coding dna in saccharomyces cerevisiae. Frontiers in microbiology, Frontiers,
v. 9, p. 2174, 2018. Citations on pages 112 and 113.

HE, X.; ZHAO, K.; CHU, X. Automl: A survey of the state-of-the-art. Knowledge-Based
Systems, Elsevier, v. 212, p. 106622, 2021. Citations on pages 108 and 109.

https://doi.org/10.1093/nar/gkw1065


Bibliography 151

HOANG, T.; YIN, C.; YAU, S. S.-T. Numerical encoding of dna sequences by chaos game
representation with application in similarity comparison. Genomics, Elsevier, v. 108, n. 3-4, p.
134–142, 2016. Citations on pages 25, 92, 97, and 99.

HOLDEN, T.; SUBRAMANIAM, R.; SULLIVAN, R.; CHEUNG, E.; SCHNEIDER, C.; JR, G.
T.; FLAMHOLZ, A.; LIEBERMAN, D.; CHEUNG, T. Atcg nucleotide fluctuation of deinococ-
cus radiodurans radiation genes. In: INTERNATIONAL SOCIETY FOR OPTICS AND PHO-
TONICS. Instruments, Methods, and Missions for Astrobiology X. [S.l.], 2007. v. 6694, p.
669417. Citation on page 97.

ITO, E. A.; KATAHIRA, I.; VICENTE, F. F. d. R.; PEREIRA, L. F. P.; LOPES, F. M.
Basinet—biological sequences network: a case study on coding and non-coding rnas iden-
tification. Nucleic acids research, 2018. Citations on pages 25, 57, 58, 61, 98, and 99.

IUCHI, H.; MATSUTANI, T.; YAMADA, K.; IWANO, N.; SUMI, S.; HOSODA, S.; ZHAO,
S.; FUKUNAGA, T.; HAMADA, M. Representation learning applications in biological se-
quence analysis. Computational and Structural Biotechnology Journal, v. 19, p. 3198–
3208, 2021. ISSN 2001-0370. Available: <https://www.sciencedirect.com/science/article/pii/
S2001037021002208>. Citation on page 75.

JACOBSEN, E.; LYONS, R. The sliding dft. IEEE Signal Processing Magazine, IEEE, v. 20,
n. 2, p. 74–80, 2003. Citations on pages 68 and 69.

JEFFREY, H. J. Chaos game representation of gene structure. Nucleic acids research, Oxford
University Press, v. 18, n. 8, p. 2163–2170, 1990. Citation on page 97.

JING, R.; LI, Y.; XUE, L.; LIU, F.; LI, M.; LUO, J. autobioseqpy: a deep learning tool for the
classification of biological sequences. Journal of Chemical Information and Modeling, ACS
Publications, v. 60, n. 8, p. 3755–3764, 2020. Citations on pages 22, 25, 53, 111, and 118.

JOSHI, G.; JAIN, A.; ADHIKARI, S.; GARG, H.; BHANDARI, M. Fda approved artificial
intelligence and machine learning (ai/ml)-enabled medical devices: An updated 2022 landscape.
medRxiv, Cold Spring Harbor Laboratory Press, p. 2022–12, 2022. Citation on page 26.

KALVARI, I.; NAWROCKI, E. P.; ARGASINSKA, J.; QUINONES-OLVERA, N.; FINN, R. D.;
BATEMAN, A.; PETROV, A. I. Non-coding rna analysis using the rfam database. Current
protocols in bioinformatics, Wiley Online Library, v. 62, n. 1, p. e51, 2018. Citation on page
116.

KALVARI, I.; NAWROCKI, E. P.; ONTIVEROS-PALACIOS, N.; ARGASINSKA, J.;
LAMKIEWICZ, K.; MARZ, M.; GRIFFITHS-JONES, S.; TOFFANO-NIOCHE, C.; GAU-
THERET, D.; WEINBERG, Z. et al. Rfam 14: expanded coverage of metagenomic, viral and
microrna families. Nucleic Acids Research, Oxford University Press, v. 49, n. D1, p. D192–
D200, 2021. Citation on page 116.

KAMALOV, F.; CHERUKURI, A. K.; SULIEMAN, H.; THABTAH, F.; HOSSAIN, A. Ma-
chine learning applications for covid-19: a state-of-the-art review. Data Science for Genomics,
Elsevier, p. 277–289, 2023. Citation on page 21.

KANG, Y.-J.; YANG, D.-C.; KONG, L.; HOU, M.; MENG, Y.-Q.; WEI, L.; GAO, G. Cpc2: a
fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic acids
research, Oxford University Press, v. 45, n. W1, p. W12–W16, 2017. Citations on pages 56, 57,
60, 71, and 103.

https://www.sciencedirect.com/science/article/pii/S2001037021002208
https://www.sciencedirect.com/science/article/pii/S2001037021002208


152 Bibliography

KARIMI, S.; POHL, S.; SCHOLER, F.; CAVEDON, L.; ZOBEL, J. Boolean versus ranked
querying for biomedical systematic reviews. BMC medical informatics and decision making,
BioMed Central, v. 10, n. 1, p. 58, 2010. Citations on pages 31 and 77.

KARMAKER, S. K.; HASSAN, M. M.; SMITH, M. J.; XU, L.; ZHAI, C.; VEERAMACHA-
NENI, K. Automl to date and beyond: Challenges and opportunities. ACM Computing Surveys
(CSUR), ACM New York, NY, v. 54, n. 8, p. 1–36, 2021. Citation on page 22.

KE, G.; MENG, Q.; FINLEY, T.; WANG, T.; CHEN, W.; MA, W.; YE, Q.; LIU, T.-Y. Lightgbm:
A highly efficient gradient boosting decision tree. Advances in neural information processing
systems, v. 30, 2017. Citation on page 115.

KEELE, S. et al. Guidelines for performing systematic literature reviews in software engi-
neering. [S.l.], 2007. Citations on pages 29, 30, 32, 33, and 77.

KHAN, F.; KHAN, M.; IQBAL, N.; KHAN, S.; KHAN, D. M.; KHAN, A.; WEI, D.-Q.
Prediction of recombination spots using novel hybrid feature extraction method via deep
learning approach. Frontiers in Genetics, v. 11, p. 1052, 2020. ISSN 1664-8021. Available:
<https://www.frontiersin.org/article/10.3389/fgene.2020.539227>. Citation on page 82.

KHARE, R.; LEAMAN, R.; LU, Z. Accessing biomedical literature in the current information
landscape. In: Biomedical Literature Mining. [S.l.]: Springer, 2014. p. 11–31. Citation on
page 30.

KHATUN, M. S.; HASAN, M. M.; SHOOMBUATONG, W.; KURATA, H. Proin-fuse: improved
and robust prediction of proinflammatory peptides by fusing of multiple feature representations.
Journal of Computer-Aided Molecular Design, Springer, v. 34, n. 12, p. 1229–1236, 2020.
Citations on pages 23 and 110.

KHURANA, U.; TURAGA, D.; SAMULOWITZ, H.; PARTHASRATHY, S. Cognito: Automated
feature engineering for supervised learning. In: 2016 IEEE 16th International Conference on
Data Mining Workshops (ICDMW). [S.l.: s.n.], 2016. p. 1304–1307. Citations on pages 23
and 110.

KITCHENHAM, B.; BRERETON, O. P.; BUDGEN, D.; TURNER, M.; BAILEY, J.; LINKMAN,
S. Systematic literature reviews in software engineering–a systematic literature review. Informa-
tion and software technology, Elsevier, v. 51, n. 1, p. 7–15, 2009. Citation on page 29.

. Systematic literature reviews in software engineering–a systematic literature review.
Information and software technology, Elsevier, v. 51, n. 1, p. 7–15, 2009. Citation on page
77.

KLAPPROTH, C.; SEN, R.; STADLER, P. F.; FINDEISS, S.; FALLMANN, J. Common features
in lncrna annotation and classification: A survey. Non-coding RNA, MDPI, v. 7, n. 4, p. 77,
2021. Citation on page 81.

KONG, L.; ZHANG, Y.; YE, Z.-Q.; LIU, X.-Q.; ZHAO, S.-Q.; WEI, L.; GAO, G. Cpc: assess
the protein-coding potential of transcripts using sequence features and support vector machine.
Nucleic acids research, Oxford University Press, v. 35, n. suppl_2, p. W345–W349, 2007.
Citations on pages 57 and 103.
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