• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.55.2019.tde-28112019-161640
Document
Author
Full name
Erminia de Lourdes Campello Fanti
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1992
Supervisor
Committee
Daccach, Janey Antonio (President)
Conde, Antonio
Pergher, Pedro Luiz Queiroz
Reynol Filho, Augusto
Santos, Nathan Moreira dos
Title in Portuguese
INVARIANTES COHOMOLÓGICOS E DECOMPOSIÇÃO DE GRUPOS
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Neste trabalho definimos um invariante cohomológico E(G,S , M) onde G é um grupo, S = {Si}i∈l é uma família de subgrupos de G de índice infinito e M é um Z2G-módulo. O caso onde S = {S} é investigado. Verificamos que E(G, {S}, M) têm uma interpretação em termos de derivações e derivações principais, e deste modo em certos casos a computação deste invariante é possível. Também apresentamos uma interpretação topológica para E(G, S, M ) em termos de cohomologia relativa de complexos (X, Y) se (X, Y) é um par Eilenberg-MacLane realizando (G, S). Este invariante está intimamente relacionado com o end clássico e(G) para um grupo G, e os ends e(G, S) e ê(G,S) para um par grupo (G, S). Denotamos E(G, {S}, Z2(G/S)) e E(G, {S}, Z2 ⊗Z2S PS) por E(G, S) e Ê(G, S) respectivamente. Temos que E(G, {1}) = Ê(G, {1}) = ê(G) e em alguns casos E(G, S) = e(G, S) e Ê(G, S) = ê(G, S). Entretanto damos exemplos onde eles são distintos. Alguns resultados são obtidos no caso onde G e S têm certas propriedades de dualidade. Relacionamos Ê(G, S) com decomposições de grupos tais como HNN-extensões e produto livre amalgamado.
Title in English
Not available
Keywords in English
Not available
Abstract in English
In this work we define a cohomological invariant E(G, S, M) where G is a group, S = i∈l is a family of infinite index subgroups of G and M a Z2G-module. The case where S = is investigated. We verify that E(G, M) has a interpretation in terms of derivations and principal derivations, and so in certain cases computation is available. Also we give a topological interpretation for E(G, M) in terms of relative cohomology of complexes (X, Y) if (X, Y) is a Eilenberg-MacLane pair realizing (G, S). This invarant is closely related to the classical end ∈(G) for a group G, and the ends e(G, S), ê(G, S) for a group pair. We denote E(G, {S}, Z2(G / S)) and E(G, {S}, Z2G ⊗Z2S PS) by E(G, S) and Ê(G. S) respectively. We have that E(G, {1}) = Ê(G, {1}) = e(G) and in some cases E(G ,S) = e(G, S) and Ê(G, S) = ê(G, S). However we give examples where they are distinct. Some results are obtained in the case where G and S have certain property of duality. We relate Ê(G, S) with decomposition of groups like HNN-extensions and free amalgamated product.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-11-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.