Thèse de Doctorat
DOI
https://doi.org/10.11606/T.55.1977.tde-05072022-110523
Document
Auteur
Nom complet
Paulo Ferreira da Silva Porto Junior
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1977
Directeur
Jury
Loibel, Gilberto Francisco (Président)
Barone Netto, Angelo
Favaro, Luiz Antonio
Ruzante, Auster
Teixeira, Marco Antonio
Titre en portugais
DETERMINAÇÃO FINITA E ESTABILIDADE RELATIVAS DE GERMES DE FUNÇÕES
Mots-clés en portugais
Não disponível
Resumé en portugais
Não disponível
Titre en anglais
Not available
Mots-clés en anglais
Not available
Resumé en anglais
We introduce here two equivalence relations for germs in m(n), the ideal of real differentiable function-germs at the origin of Rn, which vanish at this point. If S is a subset of Rn, containing the origin, we first define that: f, g ∈ m(n), satisfying f|S = g|Ss are equivalent relative to RS if there exists a germ of local diffeomorphism of Rnh, at 0, such that: g = foh and hlS = IdS. If S = x Rn-s s ≥ 1, we define the finite determinacy relative to RS in the obvious way. Following Mather ideas, we obtain some very interesting results where the main one states that: f ∈ m(n) is finitely determined relative to RS if and only if it is (right) finitely determined. Setting S = Rn_ = {(x1, x2,...,xn) ∈ Rn | x1 ≤ O}, we say that f ∈ m(n) is S-stable if for any g ∈ m(n) such that gls = flS, then f and g are equivalent relative to RS. We also give a sufficient condition for S-stability and prove that a (right) finitely determined function-germ is S-stable. However, we observe that finite determinacy is not a necessary condition for S-stability. After we define that f and g in m(n) are equivalent relative to R*S, if there exists a germ of local diffeomorphism h, at 0 of Rn, which conjugates them and preserves S. In other words, h conjugates the given germs and satisfies: h(S) ⊂ S. Considering S = (0) x Rn-s, we state the finite determinacy relative to R*S, in the natural way. Our main result in this direction is: f ∈ m(n) is finitely determined relative to R*S if and only if f and f|S are (right) finitely determined. Finally, setting S = {(x,y) ∈ R2 | x = O}, we prove that: If f ∈ m(2) is a (right) finitely determined function, then the necessary and sufficient condition that f be finitely determined relative to R*S is that f(x,y) = 0 has .contacts of finite order with y-axis. We finish giving reduced forms (normal forms) for a Morse germ f &isisn; m(2) through diffeomorphism germs which lets invariant the y-axis.

AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2022-07-05

AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.