• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.55.1975.tde-29062022-143943
Document
Auteur
Nom complet
Plácido Zoega Táboas
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1975
Directeur
Jury
Onuchic, Nelson (Président)
Ize, Antonio Fernandes
Lopes, Orlando Francisco
Qualifik, Paul
 
Titre en portugais
ADMISSIBILIDADE E APLICAÇÕES EM EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
Mots-clés en portugais
Não disponível
Resumé en portugais
Não disponível
 
Titre en anglais
Not available
Mots-clés en anglais
Not available
Resumé en anglais
We are concerned with the following ordinary differential equation: (1) 5: : A(t)z + f(t,x), where :, x, f(t,x) are n-vectors, A(t) is an nxn matrix, the independent variable t ranging on [O,∞). A well known theorem of Corduneanu [5, Th. I] establishes the existence of a set f of solutions of (1), contained in a given Banach space D. Furthermore, f can be posed in one-to-one correspondence with a subspace of the phase space. This work is planned as follows: First, we study the admissibility of certains pairs of Banach spaces (B,D) with respect to A(t). In other words, we look for sufficient conditions in order that the (equation. (2) y = A(t)y + b(t) have a solution in D, provided b(t) ε B. Secondly, under suitable conditions we establish homeomorphisms between the above mentioned set f, its section f(0), and a subspace of the phase space. In the last part, we introduce the concept of D stability as an extension of stability in the sense of Lyapunov. We deal with admissibility results, in connection with the topological properties of the set f, to make applications in conditional Dstability. The main tool used here is prowided by results of Massera and Schãffer on linear differential equations and functional analysis [11,12,13].
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2022-06-30
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs.
CeTI-SC/STI
© 2001-2024. Bibliothèque Numérique de Thèses et Mémoires de l'USP.