• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2020.tde-29012020-100855
Documento
Autor
Nombre completo
Suzinei Aparecida Siqueira Marconato
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1995
Director
Tribunal
Carvalho, Luiz Antonio Vieira de (Presidente)
Ize, Antonio Fernandes
Neves, Aloisio Jose Freiria
Spezamiglio, Adalberto
Táboas, Plácido Zoega
 
Título en portugués
ESTABILIDADE DE EQUAÇÕES DIFERENCIAIS RETARDADAS COM ARGUMENTO SECCIONALMENTE CONTÍNUO
Palabras clave en portugués
Não disponível
Resumen en portugués
Este trabalho é sobre o estudo da estabilidade de Equações Diferenciais Retardadas com Argumento Seccionalmente Continuo e de Equações Discretas, usando Funções Dicotômicas. A definição de Função Dicotômica e teoremas de estabilidade e estabilidade assintótica para as duas equações citadas, são estabelecidos. Evidenciamos a importante relação entre a equação diferencial e sua equação discreta associada provando, sob certas condições, a equivalência no estudo de estabilidade. Um aspecto interessante da equação diferencial é que, a estabilidade do seu equilíbrio nulo com instante inicial n0 ∈ Z, é equivalente à sua estabilidade com instante inicial t0 ∈ R. Os métodos apresentados são ilustrados com aplicaçöes, onde observamos que a principal vantagem destes métodos consiste no uso de funcionais extremamente simples para a obtenção dos resultados desejados de estabilidade.
 
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
This work is concemed with the study of the stability of Retarded Differential Equations with Piecewise Continuous Argument (EPCA) and Discrete Equations, using Dichotomic Maps. The definition of Dichotomic Map, and theorems of stability and asymptotic stability for the two cited equations, are established. We show an important relationship between an EPCA and its associated discrete equation proving, under certain conditions, their equivalence in the study of stability. An interesting aspect of the EPCA is that the stability of its null equilibrium with initial instant no eZ, is equivalent to the stability with initial instant to efr. The developed methods are illustraded with applications through which we highlight the fact that the main advantage of those methods consist in the use of extremely simple functionals for the achievement of the desired results of stability.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-01-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Tesis y Disertaciones de la USP.