Tese de Doutorado
DOI
https://doi.org/10.11606/T.55.2018.tde-20082018-162712
Documento
Autor
Nome completo
Maria Aparecida Bena
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1993
Orientador
Banca examinadora
Carvalho, Luiz Antonio Vieira de (Presidente)
Guidorizzi, Hamilton Luiz
Ladeira, Luiz Augusto da Costa
Reis, José Geraldo dos
Spezamiglio, Adalberto
Título em português
ESTABILIDADE DE EQUAÇÕES DIFERENCIAIS RETARDADAS ATRAVÉS DO MÉTODO DAS FUNÇÕES DICOTÔMICAS
Palavras-chave em português
Não disponível
Resumo em português
Este trabalho é dedicado ao estudo da estabilidade de Equações Diferenciais Retardadas usando Funções Dicotômicas. Inicialmente, alguns conceitos sobre Função Dicotômica e os teoremas para estabilidade e estabilidade assintótica são estabelecidas. Várias aplicações deste método também são feitas. Chamamos a atenção para a equação x'(t) = -λx(t) + λf(x(t - 1)) que tem sido amplamente usada em muitos campos. A força do método pode ser apreciada pelo aperfeiçoamento de muitos resultados e pela simplicidade dos "funcionais" empregados. Nesse sentido, um bom exemplo é dado pela equação x'(t) = -b(t)x(t - r). Apesar de eliminarmos várias hipóteses restritivas no estudo da referida equação, conseguimos, ainda assim, ampliar a região de estabilidade em termos dos parâmetros. Alguns resultados sobre soluções que tendem a zero de maneira oscilatória e sobre equações com retardamento infinito são obtidos.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
This work is devoted to the study of the stability of Retarded Differential Equations using Dichotomic Maps. Firstly, some concepts about Dichotomic Maps and the theorems for stability and asymptotic stability are established. Several applications of this method are also made. We call attention to the equation x'(t) = -λx(t) + λf(x(t - 1)) that has been widely used in many fields. The power of the method can be appreciated by the improvements of many results and by the simplicity of the "functionals" that are employed. In this context, the study of the equation x'(t) = -b(t)x(t - r) shows to be a nice example. In this study, in spite of dropping some restrictive conditions, we still could determine a large region of the stability in terms of the parameters. Some results about solutions that go to zero in an oscillatory way and about equations with infinite delays are also obtained.
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-08-21