• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2019.tde-09042019-143115
Documento
Autor
Nome completo
Vera Lucia da Rocha Lopes
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1988
Orientador
Banca examinadora
Zago, Jose Vitorio (Presidente)
Cassago Junior, Herminio
Moura, Carlos Antonio de
Perez, José Mario Martinez
Tygel, Martin
Título em português
SOLUCAO, POR ELEMENTOS FINITOS, DE EQUACOES DE DIFUSAO LINEARES, VIA PRINCIPIOS EXTREMOS DUAIS.
Palavras-chave em português
Não disponível
Resumo em português
Neste trabalho desenvolvemos métodos numéricos para aproximação de solução da equação do calor, baseados nos princípios extremos dúais de Noble e Sewell, onde usamos o método dos Elementos Finitos para a discretização. Exibimos um espaço de Hilbert X, uma forma bilinear's a ele associada e verificamos todas as condições do lema de Max-Milgram com as quais temos prova de existência e unicidade de solução da nossa formulação. Além disso provamos um teorema de convergência. Nós usamos funções lineares por partes no tempo e no espaço. Os problemas de minimização e maximização resultantes, são resolvidos por um método de Gradientes Conjugado matricial. Para uma precisão de 10-5, são necessárias cerca de n/20 iterações para n grande, onde n é o tamanho da discretização.
Título em inglês
Not available
Palavras-chave em inglês
Not availavle
Resumo em inglês
In this work we develop numerical methods for approximate solutions of the heat equation, based on the dual extremum principies of Noble and Sewell, where we use the Finite Element Method for discretization. We exhibit a Hilbert Space X, bilinear form S associated to it and we verify ali the condi tions of Lax-Milgram's lemma with Which we get proof of existence and uniqueness of solution of our formulation.Flurtilemore we prove a convergence theorem. We use piecewise linear functions both in time- and in space. The resulting minimization and maximization problents are solved by a matricial form of the Conjugate Gradient method . For n large enough it was needed about n/20 iterations to achiev the precision of 10-5, n is the size of the discretization.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-04-09
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.