Thèse de Doctorat
DOI
https://doi.org/10.11606/T.55.2019.tde-03122019-181121
Document
Auteur
Nom complet
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1978
Directeur
Jury
Onuchic, Nelson (Président)
Ize, Antonio Fernandes
Lopes, Orlando Francisco
Oliva, Waldyr Muniz
Rodrigues, Hildebrando Munhoz

Titre en portugais
APLICAÇÕES DA TEORIA DE ADMISSIBILIDADE AO ESTUDO DE EQUIVALÊNCIA ASSINTÓTICA RELATIVA EM EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
Mots-clés en portugais
Não disponível
Resumé en portugais
Não disponível

Titre en anglais
Applications of the admissibility theory in the study of relative asymptotic equivalence for ordinary differential equations
Mots-clés en anglais
Not available
Resumé en anglais
We deal with the basic ordinary differential systems y = (1) y = A(t)y (2) x = A(t)x + f(t, x) where x, y and f(t, x) are n-vectors, A(t) is an n x n matrix and t ranges on (t0 , ∞), t0 ≥ 0. If µ ≥ 0 is an integer and ρ ≥ 0 is a real, we give conditions on f(t, x) to obtain a positive answer to the following problems: (I) If y(t) ≠ 0 is a solution of (1), find a family of solutions x(t) of (2) satisfying limt→∞ tµ eρt x(t) - y(t) / y(t) = 0 (II) Of x(t) is a solution of (2) with x(t) ≠ 0 for t ≥ t0, find a family of solutions y(t) of (1) satisfying limt→∞ tµ e ρt x(t) - y(t) / x(t) = 0. We also give information, in each case, about the number of parameters depending the family of solutions obtained. ne plan this work as follows: In the first part, we study the A(t) -admissibility of a pair (B,D) of Banach spaces and give a positive answer to the above roblems. We also derive a result on relative asymptotic equivalence, with weight tµ eρt, between two perturbed systems of (1). In the second part, we restrict the conditions On fít,x) and make the above study, with additional information about uniqueness of solution. This enables us to obtain certain topological property on the initial values of the families of solutions found in problems (I) and (IT).

AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-12-04

AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs.
CeTI-SC/STI
© 2001-2024. Bibliothèque Numérique de Thèses et Mémoires de l'USP.