Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2019.tde-03122019-181121
Documento
Autor
Nombre completo
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1978
Director
Tribunal
Onuchic, Nelson (Presidente)
Ize, Antonio Fernandes
Lopes, Orlando Francisco
Oliva, Waldyr Muniz
Rodrigues, Hildebrando Munhoz
Título en portugués
APLICAÇÕES DA TEORIA DE ADMISSIBILIDADE AO ESTUDO DE EQUIVALÊNCIA ASSINTÓTICA RELATIVA EM EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
Palabras clave en portugués
Não disponível
Resumen en portugués
Não disponível
Título en inglés
Applications of the admissibility theory in the study of relative asymptotic equivalence for ordinary differential equations
Palabras clave en inglés
Not available
Resumen en inglés
We deal with the basic ordinary differential systems y = (1) y = A(t)y (2) x = A(t)x + f(t, x) where x, y and f(t, x) are n-vectors, A(t) is an n x n matrix and t ranges on (t0 , ∞), t0 ≥ 0. If µ ≥ 0 is an integer and ρ ≥ 0 is a real, we give conditions on f(t, x) to obtain a positive answer to the following problems: (I) If y(t) ≠ 0 is a solution of (1), find a family of solutions x(t) of (2) satisfying limt→∞ tµ eρt x(t) - y(t) / y(t) = 0 (II) Of x(t) is a solution of (2) with x(t) ≠ 0 for t ≥ t0, find a family of solutions y(t) of (1) satisfying limt→∞ tµ e ρt x(t) - y(t) / x(t) = 0. We also give information, in each case, about the number of parameters depending the family of solutions obtained. ne plan this work as follows: In the first part, we study the A(t) -admissibility of a pair (B,D) of Banach spaces and give a positive answer to the above roblems. We also derive a result on relative asymptotic equivalence, with weight tµ eρt, between two perturbed systems of (1). In the second part, we restrict the conditions On fít,x) and make the above study, with additional information about uniqueness of solution. This enables us to obtain certain topological property on the initial values of the families of solutions found in problems (I) and (IT).

ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-12-04